
Gradual Guarantee for FJ with lambda-Expressions

Pedro Ângelo
DCC-FCUP & LIACC, Universidade do Porto, Porto,

Portugal, up201207861@edu.fc.up.pt

Viviana Bono
Dipartimento di Informatica, University of Torino, Italy,

viviana.bono@unito.it

Mariangiola Dezani-Ciancaglini
Dipartimento di Informatica, University of Torino, Italy,

dezani@di.unito.it

Mário Florido
DCC-FCUP & LIACC, Universidade do Porto, Porto,

Portugal, am�orid@fc.up.pt

ABSTRACT

We present FJ&_★, a new core calculus that extends Featherweight
Java (FJ) with interfaces, _-expressions, intersection types and a form
of dynamic type. Intersection types can be used anywhere, in par-
ticular to specify target types of _-expressions. The dynamic type
is exploited to specify parts of the class tables and programs we
want to exclude temporarily from static typing. Our main result is
the gradual guarantee, which says that if a program is well typed
in a class table, then replacing type annotations (from the program
and from the class table) with the dynamic type always produces a
program that is still well typed in the obtained class table. Further-
more, if a typed program evaluates to a value in a class table, then
replacing type annotations with dynamic types always produces
a program that evaluates to the same value in the obtained class
table.

CCS CONCEPTS

• Theory of computation→ Object oriented constructs; Type
structures.

KEYWORDS

Featherweight Java, _-expressions, Gradual Typing, Intersection
Types

ACM Reference Format:

Pedro Ângelo, Viviana Bono, Mariangiola Dezani-Ciancaglini, and Mário
Florido. 2023. Gradual Guarantee for FJ with lambda-Expressions. In Pro-

ceedings of the 25th ACM International Workshop on Formal Techniques for

Java-like Programs (FTfJP ’23), July 18, 2023, Seattle, WA, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3605156.3606453

This work was partially supported by: (i) the Portuguese Fundação para a Ciência e a
Tecnologia, under the PhD grant number SFRH/BD/145183/2019, and by Base Funding
- UIDB/00027/2020 of the Arti�cial Intelligence and Computer Science Laboratory –
LIACC - funded by national funds through the FCT/MCTES (PIDDAC); (ii) the EuroHPC
JU by way of the ADMIRE project (G.A. n. 956748) and by the Spoke 1 "FutureHPC &
BigData” of ICSC – Centro Nazionale di Ricerca in High-Performance Computing, Big
Data and Quantum Computing, funded by European Union – NextGenerationEU.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
FTfJP ’23, July 18, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0246-4/23/07. . . $15.00
https://doi.org/10.1145/3605156.3606453

1 INTRODUCTION

Type veri�cation may be performed either at compile type or at
run-time. These two approaches are called static and dynamic typ-
ing, respectively, and each has its own bene�ts and drawbacks.
Integrating these two disciplines has become quite an active area of
research in recent years, especially since the introduction of grad-
ual typing [9, 10]. Gradual typing accomplishes this by allowing
programmers to choose which portions of the program are stati-
cally typed and which are dynamically typed. By annotating code
with the dynamic type ★, the type system is relaxed, allowing type
checking for that portion of code to be delayed until runtime. In this
way, the expressiveness of the type system is increased, because
possible type errors are limited to dynamically annotated portions
of code, then plausibly correct programs type-check. To ensure
errors are eventually caught at run-time, runtime type checks are
inserted during compilation, into the borders between statically
and dynamically typed code, via a phase called cast insertion.

Following the dichotomy above, Java [4] and its formalisations [3,
6] employ static typing. In this paper we aim to add the dynamic
type ★ to the calculus of [3], where Featherweight Java (FJ) [6]
is enriched with interfaces, _-expressions and intersection types.
According to [4] (page 93), Java uses for _-expressions the types
required by the contexts enclosing them, called target types. In [3]
target types can be intersections of interfaces including several ab-
stract methods with di�erent signatures. Thus target types are able
to express multiple, possibly unrelated, properties of _-expressions.
Similarly to [3] we achieve this by:
• adding casts in the reduction rules for �eld access and method
invocation;
• reducing the cast of a _-expression to the _-expression decorated
by its target type (decorated _-expressions are values).

We are thus working in the direction of getting a core Java 8
calculus (dubbed FJ&_★) with the addition of a form of dynamic
type and target types as intersections of interfaces with more than
one abstract method. However, the full gradual typing approach,
that is, compiling programs written in the source calculus into an
intermediate language with dynamic casts inserted into the borders
between statically and dynamically typed code, seems not possible
in our setting (or at least, it appears to be very di�cult). Indeed,
FJ&_★ (and Java) _-expressions can have target types containing
a di�erent set of default methods for each possible target type
and there is no evident way the right target type can be inferred
statically, that is, without knowing the context a _-expression will
be used in at runtime. In particular, target types are needed for
calling default methods on _-expressions (see Rule [MethD_] in
Figure 3), therefore they must be present at runtime.

32

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3605156.3606453
https://doi.org/10.1145/3605156.3606453
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605156.3606453&domain=pdf&date_stamp=2023-07-18

FTfJP ’23, July 18, 2023, Sea�le, WA, USA Pedro Ângelo, Viviana Bono, Mariangiola Dezani-Ciancaglini, and Mário Florido

Nevertheless, a novel approach to partial static typing, still ex-
ploiting dynamic type annotations, is possible in our setting, too,
where no compilation step is present and no casts to ★ are thus
inserted before evaluation. Note that such casts can appear during
evaluation, together with the other casts. We propose then to use
★ in declarations and to type with ★ �eld accesses and method
invocations requiring only that the subterms can be typed. In this
way, we obtain a calculus enjoying the gradual guarantee, relating
the behaviour of programs that di�er only with respect to their dy-
namic type annotations. As pointed out in [11], this is the keystone
in the formal characterisation of being gradually typed.

The prototypical example showing the full power of _-calculi
with intersection types is the type (U&(U → V)) → V (where U, V
are arbitrary types) for the auto-application function _G.G G . The
arrow denotes the function type constructor and the intersection
type U&(U → V) says that the parameter must behave both as
function and as argument of itself.We can type the auto-application

function in FJ&_★, too, since we can de�ne the method
★ auto (Arg&Fun x){return x.mFun(x).mArg(new C());}

where C is any class without �elds, Arg and Fun are two interfaces
with the abstract methods ★ mArg (★ y) and ★ mFun (★ z), respec-
tively. This method auto can take as argument any _-expression of
arity one and, as expected, the resulting term can reduce to a value,
or diverge or reduce to error.

Outline. In Section 2 we supply the class table and the lookup
function de�nitions. In the following two sections we present the
type assignment system and the operational semantics, respectively.
Section 5 is devoted to the proof of safety, which we dub weak due
to the possibility of evaluating well-typed terms to error. Our main
result, i.e., the gradual guarantee, is the content of Section 6. We
conclude with related works. The full version of the paper (with
complete proofs) can be found as auxiliary material.

2 SYNTAX

We useC,D to denote classes, I, J to denote interfaces, T,U to denote
nominal types, i.e., either classes or interfaces, and ★ to denote the
dynamic type. Types are ranged over by g, f and target types are
ranged over by i (see De�nition 2.2).

We use f, g to denote �eld names; m, n to denote method names;
t to denote terms; x, y to denote variables, including the special

variable this. We use
−→
t as a shorthand for the list t1, . . . , t= , M

as a shorthand for the sequence M1 . . .M= , and similarly for the
other names. The order in lists and sequences is sometimes unim-
portant, and this is clear from the context. In rules, we write both

N as a declaration and
−→
N for some name N: the meaning is that

a sequence is declared and the list is obtained from the sequence

adding commas. The notation g f; abbreviates g1f1; . . . g=f= ; and
−→g
−→
f

abbreviates g1f1, . . . , g=f= (likewise −→g −→x) and this.f = f; abbreviates
this.f1 = f1; . . . this.f= = f= ;. This convention on and −→ is also
used in the typing and reduction rules. Sequences of interfaces,
�elds, parameters and methods are assumed to contain no duplicate
names. The keyword super, used only in constructor’s body, refers
to the superclass constructor.

The syntax of terms, classes and interfaces of FJ&_★ is given in
the following de�nition.

De�nition 2.1 (Terms, Classes, Interfaces).

t ::= v | x | t.f | t.m(
−→
t) | newC(

−→
t) | (g) t

v ::= w | −→x → t
w ::= newC(−→v) | (−→x → t)i

CD ::= class C extendsD implements
−→
I {g f;KM}

ID ::= interface I extends
−→
I {H;M}

K ::= C(−→g
−→
f){super(

−→
f); this.f = f;}

H ::= gm(−→g −→x)
M ::= H {return t;}

Terms are values, variables, �eld accesses, method calls, object
creations and casts. Values include _-expressions, ranged over by
t_g. We distinguish between values (ranged over by v, u) and proper
values (ranged over by w). A pure _-expression is a value, while
a _-expression decorated by its target type i is a proper value.
Decorated _-expressions are produced at run-time only.

CD ranges over class declarations; ID ranges over interface
declarations; K ranges over constructor declarations; H ranges
over method header (abstract method) declarations; M ranges over
method declarations. Thus, an interface declaration can contain not
only abstract methods, but also concrete methods with a default
implementation. For simplicity, we omit the keyword default and
the parentheses around parameters of _-expressions.

A class table CT is a mapping from nominal types to their decla-
rations. Object is a special class without �elds and methods and it
is not included in the class table.

A special role is played by the target types, that can be assigned
to _-expressions by the contexts of usage. These types for us are
intersections of interfaces, which can declare a method name at
most once. In Java, instead, target types are intersections of in-
terfaces which must declare exactly one abstract method. Types
can also be intersections of one class with interfaces and with the
dynamic type ★, which can declare a method name at most once.
The type syntax is given in the following de�nition, proviso that
intersections satisfy the unicity of method names.

De�nition 2.2 (Types). (1) Target types are: i ::= I | i&I
(2) Types are: g ::= C |] | C&] where] ::= ★ | i |]&I

The notation C[&]] means either the class C or the type C&].
We assume that there are no cycles in the subclass relation be-

tween nominal types induced by the class table.
Lookup functions for a given class table CT are as follows, where

we use inheritance and overriding as expected:

• Am(CT ;i) gives the set of abstract methods de�ned in i ;
• fields(CT ;C) gives the sequence of �elds declarations in
class C;

• mtype(CT ;m;g) gives the parameter and return types of
method m in g ;

• mbody(CT ;m;g) gives the formal parameters and the body
of method m in g .

3 TYPE ASSIGNMENT SYSTEM

We compare types by means of the subtyping, precision and con-
vertibility relations.

33

Gradual Guarantee for FJ with lambda-Expressions FTfJP ’23, July 18, 2023, Sea�le, WA, USA

x : g ∈ Δ

[VAR]
Δ ⊢CT x : g

Δ ⊢CT t : C[&]] g f ∈ fields(CT ;C)
[FIELD]

Δ ⊢CT t.f : g

Δ ⊢CT t : g
[★FIELD]

Δ ⊢CT t.f : ★

Δ ⊢CT t : g mtype(CT ;m;g) = −→f → f Δ ⊢♭
CT

t : f
[INVK]

Δ ⊢CT t.m(
−→
t) : f

Δ ⊢CT t : g Δ ⊢♭
CT

t : g
[★INVK]

Δ ⊢CT t.m(
−→
t) : ★

fields(CT ;C) = −→g
−→
f Δ ⊢♭

CT
t : g

[NEW]
Δ ⊢CT newC(

−→
t) : C

m ∈ Am(CT ;i) and mtype(CT ;m;i) = −→g → g imply Δ,−→y :
−→g ⊢♭

CT
t : g

[_]
Δ ⊢CT (−→y → t)i : i

Δ ⊢CT (t_)
i : i

[♭_]
Δ ⊢♭

CT
t_ : i

Δ ⊢CT t : f t ≠ t_ f ⊑ g
[♭¬_]

Δ ⊢♭
CT

t : g

Δ ⊢CT t : f f ⇒ g
[UC]

Δ ⊢CT (g) t : g

Δ ⊢CT t : f g ⇒ f
[DC]

Δ ⊢CT (g) t : g

Δ ⊢CT t : f f ̸⇒ g g ̸⇒ f
[SC]

Δ ⊢CT (g) t : g

Δ ⊢CT (t_)
i : i

[_C]
Δ ⊢CT (i) t_ : i

Figure 1: Term typing rules for class table CT .

mtype(CT ;m;g) = −→g → g −→x :
−→g , this : T ⊢♭

CT
t : g

[M CT -OK in T]
gm(−→g −→x){return t; } CT -OK in T

M CT -OK in I
[I CT -OK]

interface I extends
−→
I {H;M} OK

K = C(−→g −→g ,−→f
−→
f){super(−→g); this.f = f; } fields(CT ;D) = −→g −→g M CT -OK in C

mtype(CT ;m;C) de�ned implies mbody(CT ;m;C) de�ned
[C CT -OK]

class C extendsD implements
−→
I {g f;KM} OK

Figure 2: Method, class and interface declaration typing rules for class table CT .

The subtype relation <: takes into account both the subclass
relation induced by the class table, and the set theoretic properties
of intersection:

g <: T8 for all 1 ≤ 8 ≤ =
[<: &R]

g <: T1& . . .&T=
T8 <: g for some 1 ≤ 8 ≤ =

[<: &L]
T1& . . .&T= <: g

The dynamic type is only subtype of itself: ★ <: ★.
In the precision relation ★ is the top type. This relation plays a

fundamental role in formalising the gradual guarantee, see [11]. It
is denoted by ⊑, and it is the transitive closure of

g ⊑ ★
g <: f

g ⊑ f

g ⊑ g ′ f ⊑ f′

g&f ⊑ g ′&f′

The convertibility relation relates ★ to any type. It is denoted by
⇒, and it is de�ned by

★⇒ g g ⇒ ★
g <: f

g ⇒ f

g ⇒ g ′ f ⇒ f′

g&f ⇒ g ′&f′

Note that convertibility is not transitive.
We write g ̸⊑ f if g ⊑ f does not hold and similarly for ̸⇒.
These relations depend on the subclass relation induced by a

given class table. Such a class table is contextually identi�able when
we use the relations in typing and reduction rules.

Figure 1 presents the typing rules for terms. As in [3], we can use
intersections everywhere and we avoid the restriction that target
types must have a single abstract method. Rules [VAR] and [FIELD]
are standard.

The auxiliary judgments ⊢♭
CT

derive a target type for a pure _-
expression (Rule [♭_]) and a less precise type for a term which is not
a pure _-expression (Rule [♭¬_]). These judgments are used in Rules
[INVK], [★INVK] and [NEW] to deal with actual parameters, since
pure _-expression can only have the exact target type required by
the context, while all others terms can have any type which is more
precise than the type of the matching formal parameter.

To type a decorated _-expression Rule [_] requires that the body
of the _-expression be well typed for all the headers of the abstract
methods declared in the interfaces occurring in its target type. The

body of the _-expression is typed by means of ⊢♭
CT

to use the correct
typing judgement for pure _-expressions and other terms. Note
that, in the type system ⊢CT there is no typing rule for pure _-
expressions, since we expect each _-expression to be decorated
with its target type before typing its body.

Rules [★FIELD] and [★INVK] type �eld selection and method call
with the dynamic type ★ requiring only that all subterms must be
typed. Note that we can use these rules also when the corresponding
standard rules are applicable. This implies that the same term can
have more than one type, which is typical of intersection types.

As in [3], a pure _-expression can be casted to a target type if
the corresponding decorated _-expression can be typed by exactly
that target type (Rule [_C]). The other cast rules are the rules of [6]
where subtyping is replaced by convertibility.

34

FTfJP ’23, July 18, 2023, Sea�le, WA, USA Pedro Ângelo, Viviana Bono, Mariangiola Dezani-Ciancaglini, and Mário Florido

We write ̸⊢♭
CT

v : g if ⊢♭
CT

v : g does not hold, and similarly for

̸⊢♭
CT

v : g , where v and g can have di�erent lengths.
The typing rules for method, class and interface declaration

given in Figure 2 are standard, see [3].

4 OPERATIONAL SEMANTICS

Figure 3 depicts the reduction rules producing terms. As usual,
[x ↦→ t] denotes the substitution of x by t and it generalises to an
arbitrary number of variables/terms as expected.

Rules [FieldNew] and [MethNew] are standard, but for the addition
of the casts which are needed in order to associate _-expression
with their target types. A decorated _-expression implements all
the abstract methods declared in the interfaces of its target type,
therefore in Rule [MethA_] the call of one of such methods reduces
to the body of the _-expression in which the formal parameters
are substituted by the actual ones. In case the method called is one
of the default methods with body t, the _-expression acts as the
object on which the method is called. Then the call reduces to t
in which the (decorated) _-expression replaces this and the actual
parameters replace the formal ones (Rule [MethD_]).

Rule [CastNew] uses convertibility in agreement with the typing
Rules [UC], [DC] and [SC]. The cast of a pure _-expression to a
target type reduces to the _-expression decorated by the type (Rule
[Cast_]). The cast of a decorated _-expression behaves similarly to
the cast of an object (Rule [Cast_D]).

Finally Rule [Ctx] reduces inside evaluation contexts E, which
are de�ned by:

E ::= [] | E .f | E .m(
−→
t) | w.m(−→v E

−→
t) | newC(−→v E

−→
t) | (g) E

We use −→∗
CT

to denote the re�exive and transitive closure of
−→CT .

To formalise the gradual guarantee it is handy to have reduction
rules producing Error when the reduction rules of Figure 3 cannot
be applied. We use↬CT to denote reduction to Error and we give

these rules in Figure 4, where |
−→
t | denotes the length of the list

−→
t .

Wewrite t −→CT as short for t −→CT t′ for some t′ and similarly
for↬CT .

5 PROPERTIES

This section is devoted to the proof of the safety property (Theo-
rem 5.4). This ensures only that executions of typed terms never
encounters untrapped errors [10], because of the presence of the
dynamic type.

As usual, soundness is proved in two steps, commonly known as
progress and preservation [8, Section 8.3], see Theorems 5.2 and 5.3.
Also in these theorems we need to consider the cases in which
terms reduce to Error. Therefore, we dub these properties weak
safety, weak progress and weak preservation.

The key lemma to show weak progress relates the two reduc-
tion relations. It states that if a closed term cannot be reduced
using −→CT , then it is a typable value, or a _-expression (pure or
decorated), or it reduces using↬CT .

Lemma 5.1. If t is a closed normal form for −→CT di�erent from

a _-expression with or without decorations, then either t is a typable
value or t↬CT Error.

Proof. By structural induction on t. We consider only the case

t = newC(
−→
t). By induction, each term in

−→
t either reduces to

Error or it is a typable value. If a term in
−→
t reduces to Error, then

t↬CT Error by Rule [E-Ctx]. If all terms in
−→
t are typable values,

then either t can be typed by Rule [NEW] or t↬CT Error by Rule
[E-NewA]. □

The property of weak progress follows from the previous lemma.

Theorem 5.2 (Weak Progress). If ⊢CT t : g , then t −→CT or

t↬CT or t is a typable value.

Proof. The condition ⊢CT t : g excludes t to be a _-expression
without decoration. If t is a decorated _-expression, then t is a
typable value since ⊢CT t : g . Otherwise the statement follows from
Lemma 5.1. □

By reducing a typed term, either we get a term with a more
precise type, or we get a untypable term that reduces to Error.

Theorem 5.3 (Weak Preservation). If ⊢CT t : g and t −→CT t′,
then either ⊢CT t′ : g ′ for some g ′ such that g ′ ⊑ g or t′ ↬CT Error.

Proof. The proof is by induction on −→CT and by cases on
the reduction rules. We present here some interesting cases only.
Rule [Ctx]. In this case t = E[t0], t0 −→CT t′

0
and t′ = E[t′

0
]. By

de�nition of evaluation contexts t0 and t′
0
are closed terms and

t0 can be typed. By induction either t′
0
can be typed or t′

0
↬CT

Error. In the second case t′ ↬CT Error. We show the �rst case by
structural induction on E.

E = newC(−→v E′−→t). Then t is typed using Rule [NEW], which

implies g = C and fields(CT ;C) =
−→g f−→f

−→
f and ⊢♭

CT
v : g and

⊢♭
CT

E′ [t0] : f and ⊢♭
CT

t : f . Since a _-expression cannot be

reduced, ⊢♭
CT

E′ [t0] : f is derived by Rule [♭¬_], which implies
⊢CT E′ [t0] : d with d ⊑ f . By structural induction ⊢CT E′ [t′

0
] : d′

and d′ ⊑ d . By transitivity of ⊑ we get d′ ⊑ f . We then derive

⊢♭
CT

E′ [t′
0
] : f by Rule [♭¬_] and so ⊢CT t′ : C by Rule [NEW].

E = (g) E′. Then t is typed using Rule [UC], [DC], or [SC], since
a _-expression cannot be reduced. This implies ⊢CT E′ [t0] : f . By
structural induction ⊢CT E′ [t′

0
] : f′ and f′ ⊑ f . We can then derive

⊢CT t′ : g using one of the Rules [UC], [DC], and [SC] according to
the relations between g and f′. □

Weak safety follows easily from weak progress (Theorem 5.3)
and weak preservation (Theorem 5.2).

Theorem 5.4 (Weak Safety). If ⊢CT t : g , then one of the follow-

ing holds:

• t −→CT t′ and either ⊢CT t′ : g ′ for some g ′ such that g ′ ⊑ g

or t′ ↬CT Error
• t↬CT Error
• t is a typable value.

If we avoid the dynamic type we obtain the usual type safety as
shown in the following theorem.

Theorem 5.5 (Safety). If CT , t and g do not contain the dynamic

type, then ⊢CT t : g without using Rules [DC], [SC], [★FIELD],
[★INVK] and t −→∗

CT
t′ where t′ is a normal form imply that t′ is a

proper value and ⊢CT t′ : g ′, for some g ′ such that g ′ <: g .

35

Gradual Guarantee for FJ with lambda-Expressions FTfJP ’23, July 18, 2023, Sea�le, WA, USA

fields(CT ;C) = −→g
−→
f

[FieldNew]
newC(−→v) .f9 −→CT (g 9)v9

mbody(CT ;m;C) = (−→x , t) mtype(CT ;m;C) = −→g → g
[MethNew]

newC(−→v).m(−→u) −→CT [−→x ↦→ (−→g)−→u , this ↦→ newC(−→v)] (g)t

m ∈ Am(CT ;i) mtype(CT ;m;i) = −→g → g
[MethA_]

(−→y → t)i .m(−→v) −→CT [−→y ↦→ (−→g)−→v] (g)t

mbody(CT ;m;i) = (−→x , t) mtype(m;i) = −→g → g
[MethD_]

(t_)
i .m(−→v) −→CT [−→x ↦→ (−→g)−→v , this ↦→ (t_)

i] (g)t

C ⇒ g
[CastNew]

(g) newC(−→v) −→CT newC(−→v)
[Cast_]

(i) t_ −→CT (t_)
i

i ⇒ g
[Cast_D]

(g) (t_)
i −→CT (t_)

i

t −→CT t′
[Ctx]

E[t] −→CT E[t′]

Figure 3: Reduction rules of −→CT .

fields(CT ;C) = −→g
−→
f g ∉

−→
f
[E-FNew]

newC(−→v).g↬CT Error

[E-F_]
t_ .f ↬CT Error

[E-F_D]
(t_)

i .f ↬CT Error

mbody(CT ;m;C) unde�ned
[E-MNew1]

newC(−→v) .m(−→u) ↬CT Error

mbody(CT ;m;C) = (−→x , t) |−→x | ≠ |−→u |
[E-MNew2]

newC(−→v).m(−→u) ↬CT Error

[E-M_]
t_ .m(−→v) ↬CT Error

m ∉ Am(CT ;i) mbody(CT ;m;i) unde�ned
[E-M_D1]

(t_)
i .m(−→v) ↬CT Error

m ∈ Am(CT ;i) |−→x | ≠ |−→v |
[E-M_D2]

(−→x → t)i .m(−→v) ↬CT Error

mbody(CT ;m;i) = (−→x , t) |−→x | ≠ |−→v |
[E-M_D3]

(t_)
i .m(−→v) ↬CT Error

fields(CT ;C) = −→g
−→
f ̸⊢♭

CT
v : g

[E-NewA]
newC(−→v) ↬CT Error

C ̸⇒ g
[E-CastNew]

(g) newC(−→v) ↬CT Error

̸⊢CT (t_)
g : g

[E-Cast_]
(g) t_ ↬CT Error

i ̸⇒ g
[E-Cast_D]

(g) (−→x → t)i ↬CT Error

t↬CT Error
[E-Ctx]

E[t] ↬CT Error

Figure 4: Reduction rules of↬CT .

Proof. The type system without Rules [★FIELD] and [★INVK]
is the type system of [3], where the theorem is proved. □

6 GRADUAL GUARANTEE

In order to formalise the gradual guarantee (Theorem 6.5) we need
to de�ne the precision relation between terms, class and interface
declarations, object constructors, method headers, method declara-
tions and class tables.

De�nition 6.1 (Term Precision). Term precision is the re�exive and
transitive relation de�ned by:

(1) if t ⊑ t′, then t.f ⊑ t′ .f;

(2) if t ⊑ t′ and
−→
t ⊑

−→
t′ , then t.m(

−→
t) ⊑ t′ .m(

−→
t′);

(3) if
−→
t ⊑

−→
t′ , then newC(

−→
t) ⊑ newC(

−→
t′);

(4) if t ⊑ t′ and g ⊑ g ′, then (g) t ⊑ (g ′) t′;
(5) if t ⊑ t′, then −→x → t ⊑ −→x → t′;
(6) if t ⊑ t′ and i ⊑ i ′, then (−→x → t)i ⊑ (−→x → t′)i

′
.

De�nition 6.2. (1) if g ⊑ g ′ and K ⊑ K′ and M ⊑ M′,

then class C extendsD implements
−→
I {g f;KM} ⊑

class C extendsD implements
−→
I {g ′ f;K′M′};

(2) if H ⊑ H′ andM ⊑ M′, then interface I extends
−→
I {H;M} ⊑

interface I extends
−→
I {H′;M′};

(3) if −→g ⊑
−→
g ′ , then C(−→g

−→
f){super(

−→
f); this.f = f;} ⊑

C(
−→
g ′
−→
f){super(

−→
f); this.f = f;};

(4) if g ⊑ g ′ and −→g ⊑
−→
g ′ , then gm(−→g −→x) ⊑ g ′m(

−→
g ′−→x);

(5) if H ⊑ H′ and t ⊑ t′, then H {return t;} ⊑ H′ {return t′;}.

De�nition 6.3 (Class Table Precision). A class table CT is more or
equally precise than a class table CT ′, notation CT ⊑ CT

′, if all the
class and interface declarations of CT are in the relation ⊑ with all
the class and interface declarations of CT ′.

Note that if CT ⊑ CT
′, then CT and CT ′ de�ne the same subtype

relation and hence the same precision and convertibility relations
between types.

36

FTfJP ’23, July 18, 2023, Sea�le, WA, USA Pedro Ângelo, Viviana Bono, Mariangiola Dezani-Ciancaglini, and Mário Florido

The following lemma connects precision relations with the look
up functions. The proof easily follows from the de�nitions.

Lemma 6.4. Let CT ⊑ CT
′.

(1) If C[&]] ⊑ D[&]′] and ff ∈ fields(CT ;C), then f′f ∈

fields(CT ′;D) with f ⊑ f′.

(2) If g ⊑ g ′ and mtype(CT ;m;g) = −→f → f , then

mtype(CT ′;m;g ′) =
−→
f′ → f′ with −→f ⊑

−→
f′ and f ⊑ f′.

(3) If fields(CT ;C) = −→g , then fields(CT ′;C) =
−→
g ′ with −→g ⊑

−→
g ′ .

(4) If mbody(CT ;m;C) = (−→x , t), then mbody(CT ′;m;C) =
(−→x , t′) with t ⊑ t′.

(5) If mtype(CT ;m;C) =
−→g → g , then mtype(CT ′;m;C) =

−→
g ′ → g ′ with −→g ⊑

−→
g ′ and g ⊑ g ′.

The gradual guarantee ensures that a less precise program with a
less precise class table behaves the same as a more precise program
with a more precise class table, except that the less precise program
with a less precise class table might have less trapped errors.

Theorem 6.5 (Gradual Guarantee). Let CT ⊑ CT
′ and t ⊑ t′

and ⊢CT t : g , then

(1) ⊢CT ′ t′ : g ′ and g ⊑ g ′;

(2) if t −→CT t0, then t′ −→CT
′ t′

0
and t0 ⊑ t′

0
;

(3) if t′ −→CT
′ t′

0
, then either t −→CT t0 and t0 ⊑ t′

0
or t ↬CT

Error.

Proof. We only consider the most interesting cases.
(1). The proof is by structural induction on t and t′ and by cases

on the de�nition of ⊑.
If t = t0 .f, then t′ = t′

0
.f and t0 ⊑ t′

0
. If ⊢CT t : g is the conclusion

of Rule [FIELD], then ⊢CT t0 : C[&]] and g f ∈ fields(CT ;C). By
structural induction ⊢CT ′ t′

0
: f and C[&]] ⊑ f . If f = D[&]′] and

g ′f ∈ fields(CT ′;D), then g ⊑ g ′ by Lemma 6.4(1). In this case,
we derive ⊢CT ′ t′ : g ′ using Rule [FIELD]. Otherwise we derive
⊢CT ′ t′ : ★ using Rule [★FIELD]. If ⊢CT t : g is the conclusion of
Rule [★FIELD], then g = ★ and we derive ⊢CT ′ t′ : ★ with Rule
[★FIELD].

If t = t0 .m(
−→
t), then t′ = t′

0
.m(

−→
t′) with t0 ⊑ t′

0
and

−→
t ⊑

−→
t′ . If

⊢CT t : g is the conclusion of Rule [INVK], then ⊢CT t0 : f and
mtype(CT ;m;f) = −→g → g and ⊢♭

CT
t : g . By structural induction

we get ⊢CT ′ t′
0
: f′ with f ⊑ f′. If mtype(CT ′;m;f′) =

−→
g ′ → g ′,

then −→g ⊑
−→
g ′ and g ⊑ g ′ by Lemma 6.4(2). The judgments ⊢♭

CT
t : g

mean ⊢CT t8 : d8 with d8 ⊑ g8 if t8 is not a _-expression and
⊢CT (t8)d8 : d8 if t8 is a _-expression with d8 = g8 a target type. By
structural induction ⊢CT ′ t : d′ with d ⊑ d′. If these judgments

imply ⊢♭
CT

t : g ′, then we derive ⊢CT ′ t′ : g ′ using Rule [INVK].
Otherwise we derive ⊢CT ′ t′ : ★ using Rule [★INVK]. If ⊢CT t : g
is the conclusion of Rule [★INVK], then g = ★ and we derive
⊢CT ′ t′ : ★ using Rule [★INVK].

(2). The proof is by cases on the reduction rules.
Rule [FieldNew]. In this case t = newC(−→v).f9 and

fields(CT ;C) =
−→g and t′ = newC(

−→
v′).f9 with −→v ⊑

−→
v′ . By

Lemma 6.4(3) fields(CT ′;C) =
−→
g ′ with −→g ⊑

−→
g ′ . We get t′ −→CT

′

(g ′9)v
′
9 by Rule [FieldNew].

Rule [MethNew]. In this case t = newC(−→v) .m(−→u) and
mbody(CT ;m;C) = (−→x , t0) and mtype(CT ;m;C) =

−→g → g and

t′ = newC(
−→
v′) .m(

−→
u′) with −→v ⊑

−→
v′ and −→u ⊑

−→
u′. By Lemma 6.4(4)

mbody(CT ′;m;C) = (−→x , t′
0
) with t0 ⊑ t′

0
. By Lemma 6.4(5)

mtype(CT ′;m;C) =
−→
g ′ → g ′ with −→g ⊑

−→
g ′ and g ⊑ g ′. We get

t′ −→CT
′ [−→x ↦→ (

−→
g ′)

−→
u′, this ↦→ newC(

−→
v′)] (g ′)t′

0
by Rule [Meth-

New].
(3). The proof is by induction on reduction and by cases on the

reduction rules.
Rule [CastNew]. In this case t′ = (g ′) newC(

−→
v′) and C ⇒ g ′

and t = (g) newC(−→v) with g ⊑ g ′ and −→v ⊑
−→
v′ . If C ⇒ g , then

t −→CT newC(−→v) using Rule [CastNew]. Otherwise t↬CT Error.
Rule [Ctx]. In this case t′ = E′ [s′] and s′ −→CT

′ s′
0
and t′

0
=

E′ [s′
0
] and t = E[s] with E[s] ⊑ E′ [s′]. By induction, either

s −→CT s0 with s0 ⊑ s′
0
, or s↬CT Error. In the �rst case t −→CT

E[s0] by Rule [Ctx]. Note that E[s] ⊑ E′ [s′] and s0 ⊑ s′
0
imply

E[s0] ⊑ E′ [s′
0
]. In the second case t ↬CT Error by Rule [E-Ctx].

□

7 RELATED WORKS AND CONCLUSION

Java Core Calculi. The calculus FJ [6] is an elegant description of
main Java features suitable for extension and variations. We build
on [3] where FJ is enriched with interfaces, _-expressions, �rst-class
intersection types and �exible target types (i.e., they can contain
more than one abstract method).
Gradual Typing for Objects. The object calculus of [1] is extended
with a gradual typing system in [9]. The main contribution of this
work is to show that gradual typing and subtyping are orthogo-
nal and can be combined in a principled fashion. The language
of [7] combines dynamic types and generics, extending [6]. There,
dynamic types can be used as type arguments of a generic class,
permitting a smooth interfacing between dynamically and statically
typed code. The work [12] presents the design of a gradual typing
system that accommodates class composition across components
with di�erent type disciplines. In [2] there is a formal framework
for de�ning and comparing various gradually-typed object oriented
languages.

In this paper, we add the dynamic type to the calculus of [3]
in a light way, since we were not able to introduce easily an in-
termediate language with explicit cast to ★ for run-time checks.
Therefore FJ&_★ is not a gradually typed calculus in the traditional
way. However, FJ&_★ enjoys weak safety and satis�es the gradual
guarantee. Notably, if we apply the Java restrictions in the use of
intersection types and in the de�nition of target types, we get a
core Java 8 calculus with the addition of a form of dynamic type.

As future work, we plan to study which conditions must be
satis�ed by dynamically annotated parts of code surrounding _-
expressions in order to have enough information (albeit partial) to
be able to reduce the _-expressions themselves. This would be a �rst
step towards a standard gradual typing approach, with compilation
in an intermediate calculus with dynamic casts. In another direction
we will enrich FJ&_★with generics, as in [7]. Moreover, it would
be interesting to analyse FJ&_★ from the point of view of cast
accumulation [5], in particular because FJ&_★ seems not to su�er
of this issue (in fact, a cast applied to a _-expression simply goes
away if the annotated target type is convertible to it).

37

Gradual Guarantee for FJ with lambda-Expressions FTfJP ’23, July 18, 2023, Sea�le, WA, USA

REFERENCES
[1] Martin Abadi and Luca Cardelli. 1996. A Theory of Objects. Springer, Berlin.

ISBN: 0387947752.
[2] Benjamin Chung, Paley Li, Francesco Zappa Nardelli, and Jan Vitek. 2018. KafKa:

Gradual Typing for Objects. In ECOOP (LIPIcs, Vol. 109), Todd Millstein (Ed.).
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, 12:1–12:24. https:
//doi.org/10.4230/LIPIcs.ECOOP.2018.12

[3] Mariangiola Dezani-Ciancaglini, Paola Giannini, and Betti Venneri. 2018. Inter-
section Types in Java: Back to the Future. In Models, Mindsets, Meta: The What,
the How, and the Why Not? (LNCS, Vol. 11200), Tiziana Margaria, Susanne Graf,
and Kim G. Larsen (Eds.). Springer, Berlin, 68–86. https://doi.org/10.1007/978-3-
030-22348-9_6

[4] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and Alex Buckley. 2015. The
Java Language Speci�cation, Java SE 8 Edition. Oracle, Austin, TX. ISBN-13:
9780133900699.

[5] David Herman, Aaron Tomb, and Cormac Flanagan. 2010. Space-e�cient gradual
typing. Higher Order Symbol. Comput. 23, 2 (2010), 167–189. https://doi.org/10.
1007/s10990-011-9066-z

[6] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Featherweight
Java: A Minimal Core Calculus for Java and GJ. ACM Trans. Program. Lang. Syst.

23, 3 (2001), 396–450. https://doi.org/10.1145/503502.503505
[7] Lintaro Ina and Atsushi Igarashi. 2011. Gradual Typing for Generics. In OOPSLA.

ACM Press, New York, NY, 609–624. https://doi.org/10.1145/2048066.2048114
[8] Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press, Cam-

bridge, MA. ISBN: 0262162091.
[9] Jeremy Siek and Walid Taha. 2007. Gradual Typing for Objects. In ECOOP, Erik

Ernst (Ed.). Springer, Berlin, 2–27. https://doi.org/10.1007/978-3-540-73589-2_2
[10] Jeremy G Siek and Walid Taha. 2006. Gradual typing for functional lan-

guages. Scheme and Functional Programming Workshop, Robby Findler (Ed.),
http://scheme2006.cs.uchicago.edu/scheme2006.pdf, pages 81–92.

[11] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland.
2015. Re�ned Criteria for Gradual Typing. In SNAPL (LIPIcs, Vol. 32). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, 274–293. https://doi.org/
10.4230/LIPIcs.SNAPL.2015.274

[12] Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam Tobin-
Hochstadt, and Matthias Felleisen. 2012. Gradual Typing for First-Class Classes.
In OOPSLA. ACM Press, New York, NY, 793–810. https://doi.org/10.1145/2384616.
2384674

Received 2023-05-26; accepted 2023-06-23

38

https://doi.org/10.4230/LIPIcs.ECOOP.2018.12
https://doi.org/10.4230/LIPIcs.ECOOP.2018.12
https://doi.org/10.1007/978-3-030-22348-9_6
https://doi.org/10.1007/978-3-030-22348-9_6
https://doi.org/10.1007/s10990-011-9066-z
https://doi.org/10.1007/s10990-011-9066-z
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/2048066.2048114
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.1145/2384616.2384674
https://doi.org/10.1145/2384616.2384674

	Abstract
	1 Introduction
	2 Syntax
	3 Type Assignment System
	4 Operational Semantics
	5 Properties
	6 Gradual Guarantee
	7 Related Works and Conclusion
	References

