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Mutations in the RAS–RAF–MEK–ERK pathway are frequent alterations

in cancer and RASopathies, and while RAS oncogene activation alone

affects 19% of all patients and accounts for approximately 3.4 million new

cases every year, less frequent alterations in the cascade’s downstream

effectors are also involved in cancer etiology. RAS proteins initiate the sig-

naling cascade by promoting the dimerization of RAF kinases, which can

act as oncoproteins as well: BRAFV600E is the most common oncogenic

driver, mutated in the 8% of all malignancies. Research in this field led to

the development of drugs that target the BRAFV600-like mutations (Class

I), which are now utilized in clinics, but cause paradoxical activation of the

pathway and resistance development. Furthermore, they are ineffective

against non-BRAFV600E malignancies that dimerize and could be either

RTK/RAS independent or dependent (Class II and III, respectively),

which are still lacking an effective treatment. This review discusses

the recent advances in anti-RAF therapies, including paradox breakers,

dimer-inhibitors, immunotherapies, and other novel approaches, critically

evaluating their efficacy in overcoming the therapeutic limitations, and

their putative role in blocking the RAS pathway.

1. Introduction

RAS family members are among the most studied

proteins due to their roles in signal transduction, cell

proliferation, migration, survival, and as oncogenes

in human cancers. The RAS family consists of four

GTPase isoforms, namely KRAS4a, KRAS4b,

HRAS, and NRAS, which activate, among several

pathways, the mitogen-activated protein kinase

(MAPK) RAF–ERK–MEK cascade [1]. RAS
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mutations occur in approximately 30% of all cancers

[2], and, although there is a high degree of similarity

between the four isoforms, KRAS is the most fre-

quent tumor driver [3,4]. At the molecular level,

alterations in this gene family inhibit the enzymatic

process that transforms active RAS-GTP to inactive

RAS-GDP, leading to unbalanced protein activation

[5]. In the last few years, RAS mutations have gained

increasing importance as diagnostic and prognostic

indicators and therapeutic determinants in human

cancer. Some recent studies have contributed to the

development of molecular targeted therapy, personal-

ized medicine, or precision medicine, and have been

extensively reviewed elsewhere [4,6]. With the discov-

ery of compounds that bind covalently and therefore,

irreversibly to cysteine 12 of GDP-KRASG12C

mutants (off-inhibitors), a new frontier for directly

targeting KRAS has emerged after years of research.

The two small molecules adagrasib (MRTX849) [7]

and sotorasib (AMG510) [8] have been approved as

the first targeted therapies for KRASG12C

non-small-cell lung cancer (NSCLC), with modest

efficacy in colon cancer. However, despite the thera-

peutic benefit shown in many patients, most of them

eventually developed acquired resistance to single-

agent therapy, with mechanisms of resistance to

KRASG12C inhibition still incompletely poorly under-

stood [9–12]. The issue of tailored therapy for tumors

driven by different KRAS mutations or RAS iso-

forms remains unresolved [13,14] despite the promis-

ing breakthroughs in covalent drugs.

The RAF enzymes, protein-serine/threonine kinases,

are the primary effectors that GTP-bound RAS recruits

to initiate the RAS-dependent pathway activation [15].

Their activation requires direct contact with active

RAS proteins localized at the membrane and leads to

the initiation of a sequence of downstream phosphory-

lation events starting from MEK to different cellular

targets that will specify a variety of biological responses

[16]. Thus, they represent a second central node in the

RAS–RAF–MEK–ERK pathway and play a pivotal

role in tumors that rely heavily on this cascade. Also,

RAF kinases themselves can act as oncoproteins: The

most common oncogenic variant in the family is

BRAFV600E, mutated in the 8% of all malignancies [2].

Over time, several attempts have been made to develop

RAF inhibitors for cancer therapy. Treatment of

BRAF mutant (V600E) melanomas with RAF inhibi-

tors (such as vemurafenib and dabrafenib—Table 1)

has been shown to be clinically beneficial; however,

resistance and paradoxical activation (see Section 3) of

the pathway still arise as a result of RAF dimerization

and reactivation of ERK signaling [17–19]. In addition,

they are ineffective against NON-V600 BRAF muta-

tions [20]. Therefore, there is an unmet need for further

innovative approaches to target the RAS–RAF path-

way more effectively and with a better outcome for

patients.

Here, we review the recent breakthroughs in anti-

RAF treatments, such as small molecule inhibitors tar-

geting all the RAF isoforms that would eventually

break the paradox. In addition, we also discuss the

dimer-directed inhibitors and other innovative solu-

tions, critically evaluating their efficacy in overcoming

real therapeutic limits as well as their potential func-

tion in inhibiting oncogenic RAS.

2. RAF proteins

There are three isoforms in the RAF family, A-

RAF, B-RAF, and C-RAF/RAF-1, originating

from three independent genes (Fig. 1A). Three con-

served domains—two in the N-terminal regulatory

domain (CR1 and CR2) and one in the C-terminal

catalytic domain (CR3)—are present in all RAF

proteins [21]. CR1 contains a Cysteine-rich domain

(CRD) [22], which associates with the plasma mem-

brane through binding to phospholipids present in

it [23] and farnesyl groups of RAS proteins [24].

Furthermore, CR1 involves an RAS-binding

domain (RBD), which is essential for binding to

RAS [25]. The serine/threonine-rich CR2 domain

contains a conserved 14-3-3 binding motif [26].

CR3 domain serves as the kinase domain [21] and

includes the catalytic DFG motif and the regula-

tory aC-helix domain and is in control of binding

and phosphorylating MEK1 or MEK2. A region

near the N terminus of the kinase domain is known

as the N-terminal acidic (NtA) motif. For ARAF

(S299, Y301, Y302) and CRAF (S338, S339, Y340,

Y341) to dimerize, two NtA residues must be phos-

phorylated. Unlike these two isoforms, BRAF is

constitutively phosphorylated at the serine residues

(S445, S446) and has an aspartic acid residue

instead of a tyrosine (D447, D448) to impart a

constitutive negative charge. This region interacts

with the aC-helix, resulting in the formation of the

RAF dimerization interface [27,28]. When the RAF

activation loop is phosphorylated, the RAF struc-

ture switches from DFG-OUT to DFG-IN and

from the aC-helix-out to the aC-helix-in orienta-

tion, leading to an active protein conformation [29].

In addition, previous and more recent structural

studies have shown that the CRD and the 14-3-3

binding motif are the key regulators of RAF auto-

inhibition (Fig. 1B) [30–35].
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Table 1. List of drugs discussed in the review and grouped according to the mechanism of action. Clinical trial references are included

when possible.

Drug name Class Research phase Cancer type Reference

Sorafenib ATP competitive

inhibitor

Approved in clinic Advanced renal cell carcinoma; angiosarcoma;

gastrointestinal stromal tumor (GIST);

leiomyosarcoma (LMS); unresectable

hepatocellular carcinoma (HCC); progressive,

locally recurrent radioactive iodine-refractory

differentiated thyroid carcinoma (DTC);

progressive, metastatic radioactive iodine-

refractory differentiated thyroid carcinoma (DTC)

[84,85]

Vemurafenib ATP competitive

inhibitor

Approved in clinic Metastatic melanoma; refractory lung non-small

cell carcinoma; unresectable melanoma;

refractory Erdheim–Chester disease

[88,115]

Dabrafenib ATP competitive

inhibitor

Approved in clinic Locally advanced anaplastic thyroid cancer; low-

grade glioma; melanoma; metastatic anaplastic

thyroid cancer; metastatic melanoma;

metastatic non-small cell lung cancer;

metastatic solid tumors; unresectable

melanoma

[88,115]

Encorafenib ATP competitive

inhibitor

NCT04655157 (Phase 1/2);

NCT05270044 (Phase 3)

Metastatic colorectal cancer (CRC); metastatic

melanoma; metastatic non-small cell lung

cancer; unresectable melanoma

[89]

LY3009120 PanRaf NCT02014116 (Phase 1) Melanoma; non-small cell lung carcinoma;

colorectal neoplasms; neoplasms metastasis;

neoplasms

[128]

TAK-580 PanRaf NCT03429803 (Phase 1) Melanoma [129]

Belvarafenib PanRaf NCT02405065 (Phase 1);

NCT03284502 (Phase 1);

NCT03118817 (Phase 1);

NCT04835805 (Phase 1)

Melanoma [135]

Lifirafenib PanRaf NCT02610361 (Phase 1);

NCT03905148 (Phase 1)

Solid tumors [137]

LXH254 PanRaf NCT02607813 (Phase 1);

NCT04417621 (Phase 2);

NCT02974725 (Phase 1);

NCT04294160 (Phase 1)

Melanoma [139]

Exarafenib PanRaf NCT04913285 (Phase 1);

NCT04511013 (Phase 2)

Non-small cell lung cancer; melanoma; solid

tumors

[145]

PLX4072 Paradox breaker Preclinical [151]

PLX8394 Paradox breaker NCT02012231 (Phase 1);

NCT05503797 (Phase 2)

Melanoma; thyroid cancer; colorectal cancer; non-

small cell lung cancer

[151]

C1a Paradox breaker Preclinical [125]

PHI1 Allosteric inhibitor Preclinical [162]

Braftide Allosteric inhibitor Preclinical [164]

SJF-0628 BRAF targeting PROTAC Preclinical [175]

P4B BRAF targeting PROTAC Preclinical [176]

CRBR(BRAF)-24 BRAF targeting PROTAC Preclinical [177]

Trametinib MEK inhibitor NCT04417621 (Phase 2);

NCT02974725 (Phase 1);

NCT04294160 (Phase 1)

Advanced non-small cell lung cancer (NSCLC);

locally advanced anaplastic thyroid cancer; low-

grade glioma; melanoma; metastatic anaplastic

thyroid cancer; metastatic melanoma;

metastatic non-small cell lung cancer

Cobimetinib MEK inhibitor NCT03284502 (phase 1);

NCT04835805 (Phase 1)

Melanoma; locally advanced solid tumor;

metastatic solid tumor

Mirdametinib MEK inhibitor NCT03905148 (Phase 1) Solid tumors
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2.1. RAF activating phosphorylation and

dimerization

In quiescent cells, the RAF proteins are found as

monomers in the cytoplasm [36], where they lack a

subcellular localization motif and are, therefore, stable

and inactive prior to pathway activation [16].

There are several mechanisms to keep the RAF

monomers in such a stable, inactive state, including

autoinhibition [37], phosphorylation of negative regu-

latory sites, and binding of inhibitory proteins [38,39].

To be activated, the RAF proteins must overcome

autoinhibition mediated by the amino-terminal

domain. One example of this process is the autoinhibi-

tory interaction between the CR1 and the kinase

domain, which should be released to enable the transi-

tion to the active state [16,32]. All RAF proteins selec-

tively interact with GTP-bound RAS [40], even if RAF

enzymatic activity is not directly stimulated by this

contact, but rather by the relocation of cytosolic RAF

to the plasma membrane, which is an essential step in

RAF activation [41]. The proteins are phosphorylated

at two conserved tyrosine residues (Tyr-340/Tyr-341 in

CRAF, not present in BRAF) and a highly conserved

serine (Ser-299 in ARAF, Ser-446 in BRAF, and Ser-

338 in CRAF) in the regulatory region (NtA) [42–44],
which results in a conformational shift accompanied

or induced by reorganization of 14-3-3 binding sites,

which is considered a prerequisite for further RAF

activation.

RAF dimerization represents another key event in

their priming process: Dimer can be formed with the

kinase suppressor of RAS (KSR) proteins, which func-

tion as scaffolds for ERK signaling and are controlled

by the extracellular signals and MEK [45], along with

any other RAF family member (homo- or heterodi-

merization) [46]. Data have shown that RAS-mediated

signaling is dominated by BRAF/CRAF heterodimers,

which also have the highest catalytic activity [47,48]. A

key conformational change happens when the C-helix

and the activation segment (AS) in the N- and C-

lobes, respectively, move into an active form. This

event allows alignment of the hydrophobic residues in

the regulatory R-spine (L358 for ARAF, L505 for

BRAF, and L397 for CRAF), which is next to the

conserved RKTR motif in the dimer interface (DIF),

and causes dimerization of RAF kinase [49,50].

Several processes must occur for the RAF to return

to a pre-activation state. One of the first processes

leading to RAF inactivation is the dephosphorylation

of sites previously activated by phosphorylation. The

crucial S338 N-region site of C-RAF has been discov-

ered to be dephosphorylated by protein phosphatase 5

(PP5) [51]. Holderfield et al. [52] found autoinhibitory

sites in the ATP-binding P-loop of BRAF dimers, and

a phosphoproteomic study of the BRAF V600E

mutant revealed an autoinhibitory site in the AS

(S614B-RAF) [53]. Activated ERK phosphorylates the

RAF on numerous S/TP sites in a negative feedback

loop, which is another significant mechanism that

reduces the activity of all RAF isoforms [38].

2.2. The importance of MRAS/SHOC2/PP1c in

RAS and RAF signaling

Another mechanism that promotes full activation of

the RAF–ERK pathway is the dephosphorylation of

an inhibitory site on RAF kinases by the MRAS–

Table 1. (Continued).

Drug name Class Research phase Cancer type Reference

Binimetinib MEK inhibitor NCT04655157 (phase 1/2);

NCT05270044 (phase 3);

NCT04511013 (Phase 2)

Melanoma

LTT462 ERK inhibitor NCT02974725 (Phase 1);

NCT04417621 (Phase 2)

Non-small cell lung cancer; melanoma

Ipilimumab Anti-CTLA-4 antibody NCT04655157 (phase 1/2);

NCT04511013 (Phase 2)

Melanoma; renal cell carcinoma (RCC); colorectal

cancer; hepatocellular carcinoma; non-small cell

lung cancer

Nivolumab anti-PD1 antibody NCT04655157 (phase 1/2);

NCT04511013 (Phase 2)

PD1 expressing tumors

Spartalizumab anti-PD1 antibody NCT02607813 (Phase 1) Non-small cell lung cancer; ovarian cancer;

melanoma; other solid tumors

Cobicistat CYP3A inhibitor NCT05503797 (Phase 2) Recurrent or progressive CNS tumors harboring

BRAF fusions; recurrent high-grade glioma

(HGG) harboring BRAF V600E mutation
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SHOC2–PP1 complex [54]. MRAS is structurally simi-

lar to HRAS, NRAS, and KRAS and shares most reg-

ulatory and effector interactions [55]. MRAS binds

directly to SHOC2, which was originally identified in

Caenorhabditis elegans as a positive regulator of the

RAS pathway [56]. Additionally, SHOC2 is necessary

for the tumorigenic features of tumor-derived cell lines

with RAS mutations [54]. Later, the catalytic subunit

PP1 (PP1c) is attached to the MRAS–SHOC2 com-

plex, thereby, recruiting the entire complex to the

plasma membrane, where it activates RAF by depho-

sphorylating CRAF kinase at S259 (S365 in BRAF

and S214 in ARAF). Notably, dephosphorylation only

occurs on RAF associated with RAS proteins in the

membrane [57]. A detailed analysis of this complex’s

biochemical and structural components has shown its

remarkable capacity to control RAF specificity, and

provide approaches to inhibit it and target the RAS–
ERK pathway [55,58,59].

The RASopathies, including Noonan syndrome,

which are driven by mutations that increase signal

transduction activity downstream of RAS, are better

understood because of these novel structures. These

structural studies and the evidence for their increased

binding to MRAS explain the gain-of-function muta-

tions impacting SHOC2 and PP1C identified in Noo-

nan syndrome [60,61]. Interestingly, RAF mutations

have been detected in RASopathies, where BRAF

mutations are mostly related to cardio-facio-cutaneous

and CRAF mutations to Noonan syndrome [62,63].

Significantly, the molecular features provided by these

novel structures can contribute to the identification of

disease-causing mutations, improving our knowledge

of the signaling mechanisms at work in both physio-

logical and pathological contexts. Additionally, they

uncover novel areas in the complex that might bind to

inhibitors, opening up new possibilities for therapeutic

approaches [58].

2.3. RAF’s role in cancer

RAF is the second most frequently mutated element of

the RAS–RAF–MEK–ERK pathway in cancers, after

the RAS oncogene. BRAF mutations’ higher incidence

is registered in melanomas (40–50% of cases), and at a

lower frequency in thyroid (10–70% depending on the

histology), colorectal cancer (10% of cases), and

NSCLC (3–5% of cases) [64].

Depending on the mode of activation and signaling

of the kinase, the broad spectrum of BRAF mutations

in human cancer has been divided into three sub-

classes. Class I mutations are the most common and

depend on the residue V600, which increases BRAF

kinase activity by ~500 times. The mutation replicates

the structural changes that take place after dimeriza-

tion; hence, BRAF V600 mutants can signal as a

monomer in a RAS-independent manner even if RAS

is necessary for these mutants to form dimers [17,64-

67]. Class II mutations fall either in the activation seg-

ment or in the P-loop. These mutations present an

intermediate to high kinase activity that activates the

pathway more efficiently than the wild-type (WT)

BRAF but to a lower extent as compared to the class

I mutations. To initiate the signaling cascade, these

class II mutants form dimers in an RAS-independent

manner [64,65,67]. Class III mutations are found in

the P-loop, in the catalytic loop, and in the DFG

motif, and they either confer a lower kinase activity

than the WT BRAF or completely abolish it. These

mutants can engage the pathway only after the forma-

tion of heterodimers together with CRAF or WT

BRAF. This dimerization process is RAS dependent:

Thus, class III mutations strongly rely on the upstream

signaling. Hence, these mutations are rarely found

alone; instead, they are typically co-expressed with

other mutations that activate RAS [65,67,68].

BRAF can also be constitutively activated after dele-

tions occur in the proximity of the aC-helix, which is

kept in the active conformation, similar to class I

mutations [69]. Furthermore, the protein fusions with

many counterparts entail deletions at the N-terminal

CR1 auto-inhibitory domain, which results in dimer

formation comparable to class II mutants [70].

Mutations in the two other isoforms of RAF,

ARAF, and CRAF are very rare. Imielinski et al. [71]

found low-frequency mutations affecting both the iso-

forms (ARAFS214C and CRAFS257W and

CRAFS259F). Like BRAF, CRAF fusion proteins are

found in low-grade pediatric gliomas, prostate cancer,

melanoma, and pancreatic cancer. The C-terminal

CRAF kinase domain connects to an N-terminal

fusion partner with a dimerization domain in these

mutants, creating an aberrant protein that can dimer-

ize in an RAS-independent manner [72].

Interestingly, RAF has an isoform-specific role in

tumorigenesis in different non-RAF-driven cancers,

particularly in those driven by RAS mutations. BRAF

has been proven to be important for the phosphoryla-

tion of ERK in RAS-driven skin cancer [73] but is

nonessential for the development of KRAS mutant

lung cancer. Due to its kinase-independent functions,

CRAF ablation prevents lung tumor development by

KRAS mutants [74–76] and is indispensable for the

initiation of RAS-driven skin tumors [77]. However, it

is not required for the formation of pancreatic ductal

adenocarcinoma (PDACs) [78,79] and exerts a
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Fig. 1. RAF isoforms and their predicted structures. (A) The kinase domain (orange) and the RBD (cyan) are conserved in each isoform. The

detailed crystal structures are not available; predicted structures were obtained from the Alpha Fold database with the following identifiers.

ARAF: AF-P10398-F1; BRAF: AF-P15056-F1; CRAF: AF-P04049-F1. Molecular graphics and the editing of the structures were performed with

UCSF CHIMERA (https://www.cgl.ucsf.edu/chimera), an extensible molecular modeling system developed by the Resource for Biocomputing, Visuali-

zation, and Informatics at the University of California, San Francisco, with support from NIH P41-GM103311. (B) The three RAF proteins, A-, B-,

and CRAF share three conserved domains; CR1, CR2 (regulatory domain), and CR3 (kinase domain). CR1 contains a RBD and a Cys-rich region

(CRD) and is essential for binding to RAS at the plasma membrane. CR2 includes a serine/threonine (S/T) phosphorylation site and a binding site

for 14-3-3 protein. The kinase domain CR3 contains the phosphorylation loop (P-loop), and the activation loop (A-loop), and is responsible for

RAF dimerization and MEK1/2 phosphorylation. At the C terminus of each RAF protein, there is a secondary 14-3-3 binding site which promotes

dimerization. The N-terminal acidic region (NtA) is located next to CR3 and interacts with helix aC causing the formation of the RAF dimerization

interface. The noteworthy mutations are represented in the domains. Adapted from Degirmenci et al. [206].
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tumor-suppressive effect in hepatocellular carcinoma

[80]. Lastly, it was discovered that in NRAS-driven

melanomas, BRAF is essential for the early stages of

the illness’s development and its activity cannot be

replaced by CRAF; however, in the late stages of the

disease, both proteins are needed [81].

CRAF was found to be upregulated also in hepato-

cellular carcinoma (HCC) patients, where silencing it

with siRNA or miRNA decreased the progression of

HCC cells [82,83].

3. Current therapies’ limitations

The history of RAF inhibitors begins with sorafenib

(Table 1), which was initially intended to target RAS-

driven cancers but failed to achieve its purpose [84,85];

it was also evaluated for the treatment of melanoma

BRAFV600E patients, exhibiting only minor responses

[86]. However, given the dramatic role of this muta-

tion, efforts in the field contributed to the development

of ATP-competitive inhibitors with high specificity for

monomeric (V600-like) BRAF (from now on RAFis).

Vemurafenib and dabrafenib were the first character-

ized and approved molecules for clinical use in mela-

noma [87,88], followed by encorafenib (Table 1) [89].

Melanoma patients treated with RAFis usually bene-

fit from a good progression-free survival (PFS) (around

6 months), but often relapse up to 1 year later [90–92].
The cases of resistance are usually associated with muta-

tions in which ERK activation depends on RAF dimer-

ization (presented in Fig. 2), RTKs and RAS protein

alterations [93], BRAF copy number gains [94] splice

variants (e.g., p61 BRAFV600E, which acts like a

dimer) or fusions [17,95], and MEK mutations [96].

Another concern is regarding the inefficacy of these

compounds in contexts driven by RAF dimers, that is,

BRAF mutations other than V600 (except for contro-

versial rare cases) [97–100], and tumors harboring

RTK or RAS mutations [101]. Surprisingly, RAFis

generate an opposite effect: They bind to WT RAF

protomers priming their dimerization and then trigger-

ing the cascade, thereby, resulting in a process known

as “paradoxical activation” of the pathway. In

BRAFV600 patients, this peculiar event was correlated

with the development of keratoacanthomas and

squamous-cell carcinomas, which are noninvasive and

readily removed hyperplasia harboring RAS mutations

[102,103]. After approximately a decade of research, it

was shown that this molecular process, activated by

upstream signaling (RAS dependency), derives from

the allosteric regulation mediated by both drug and

RAS-GTP binding to RAF protomers (both WT and

BRAFV600 mutants) [104–106]. The contact with the

drug promotes a series of events that include BRAF

autoinhibition state release [68,107], RAS–RAF inter-

actions [106,107], and homo- or heterodimerization of

the protomers [17,28,67]. Additionally, this appeared

to be inversely correlated with the dosage, as pERK

signaling is triggered at low doses of inhibitor, but

entirely quenched at higher concentrations [108], where

the inhibitors occupy both protomers. Even if the pre-

cise mechanism is still unknown, it is evident that the

paradoxical activation limits the use of RAFis in cir-

cumstances where RAS mutations may already be pre-

sent or emerge as a resistance mechanism.

In conclusion, when triggered by upstream signals,

RAFis can cause dimerization of WT-RAF protomers.

However, as RAFis are highly selective for monomers,

they cannot prevent dimer formation accounting for their

pathway activation (paradox). Resistant cases, RAS-

driven malignancies, and class II and III BRAF mutant

tumors cannot be targeted by these compounds for the

same reason. It is, thus, clear that identifying dimer-

directed treatments may improve therapy efficiency for

RAS–RAF–MEK–ERK-dependent malignancies.

3.1. Structural insights

Upon thorough structure/function investigation, an

explanation for the peculiar and contrasting behavior

of RAFis has been provided and is linked to their spa-

tial disposition in the RAF catalytic domain. There-

fore, an insight into the molecular basis of targeting a

kinase is necessary to appreciate the molecular expla-

nation for the issues linked to the paradoxical activa-

tion, and the strategies undertaken to overcome them.

In general, the kinases switch between active and

inactive state depending on the spatial conformation

of two different regions in the RAF ATP-binding

pocket, the aC-helix and the DFG motifs, which can

be in an “IN” or “OUT” orientation. Proteins are

active when both regions are in the “IN” state, which

allows dimerization [109]. Consequently, kinase inhibi-

tors have been classified by their affinity for a certain

configuration. For example, type I, I ½, and II com-

pounds are ATP competitors that bind to a different

conformation of the proteins, namely, (a) aC-
IN/DFG-IN (CIDI, e.g., the GDC-0879 BRAF inhibi-

tor [107]), (b) aC-OUT/DFG-IN conformation

(CODI, e.g., RAFis), (c) aC-IN/DFG-OUT (CIDO,

e.g., sorafenib) [110–112]; the three different conforma-

tions compared to the physiological dimers are pre-

sented in Fig. 3A–D.

RAFis, thus, bind and lock RAF kinases in a aC-
OUT/DFG-IN state. As shown in Fig. 3E (left), this

conformation, at low concentrations of the inhibitor,
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decreases the affinity for the second protomer binding

(negative allostery). Altogether, this explains the strong

selectivity of type I ½ inhibitors for monomers rather

than dimers, accounting for both the high therapeutic

success in class I BRAF mutations, where single proto-

mers are the driving oncoproteins and the inefficient

block of dimers driving signaling (i.e., class II and III

and RAF–MEK–ERK upstream mutations). However,

in the latter setting, with WT RAF and high RAS-

GTP levels, the same allosteric interaction triggers an

opposite effect (Fig. 3F) [105]. After binding to a

CODI, the protomers are first released from their

autoinhibited state [107], primed to RAS-GTP binding

due to allosteric [105] or spatial localization events

Fig. 2. Mechanisms of resistance to RAFis. (A) The overactivation of the MAPK pathway is abolished in response to RAFi, which inhibits

the growth of tumor cells. The reactivation of the MAPK pathway by both RTKR (B) and RAS (C) mutations, and subsequent disease

relapse, mediate the loss of dependency on BRAFV600E signaling. (D) A “sponge effect” occurs when there is an excess of mutant target

due to BRAFV600E copy number gain. This indicates that while all drug molecules are bound, there are still free targets that are capable of

initiating the signaling. (E) Splice variants that dimerize and prevent drug binding, like p61 BRAFV600E, reactivate the pathway, and cause

resistance. Created with Biorender.com.

Fig. 3. Examples of BRAF-CRAF heterodimers formation in the presence of different kinase inhibitors starting from a condition of a drug-

free dimerization. (A) Type I, I ½, and II compounds are ATP competitors that bind to different conformations of the proteins, such as (B)

aC-IN/DFG-IN (CIDI, for example, the GDC-0879 BRAF inhibitor), (C) aC-OUT/DFG-IN conformation (CODI, e.g., BRAFis), (D) aC-IN/DFG-OUT

(CIDO, e.g., sorafenib), respectively, represented in the binding pocket with different colors (see the legend). Starting from a physiological

condition (A) (aC-IN/DFG-IN), BRAFis lock RAF kinases in an aC-OUT/DFG-IN state (C), and, at low concentrations decrease the affinity for

the second protomer binding (negative allostery, E, left). At high concentrations of inhibitors, however, all the protomers are occupied and

the negative allosteric effect is neutralized (E, right). Paradoxical activation: the same allosteric interaction triggers an opposite effect in a

context driven by high RAS-GTP levels and WT RAF: when bound to RAS-GTP, the complex transactivates the second protomer of BRAF or

CRAF, which adopts a configuration detrimental for drug binding but allows signal transmission and homo- or heterodimerization, ultimately

activating the paradox (F). Created with Biorender.com.
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[113], and thereby, transactivating a second protomer

of BRAF or CRAF, which adopts a conformation

that is detrimental for drug binding (aC-IN), but that

allows signal transmission and homo- or heterodimeri-

zation, ultimately activating the paradox [105]. As

shown in Fig. 3E (right), at higher doses of inhibitors,

all the protomers are occupied and the paradox is neu-

tralized [108,114]. Therefore, the research for novel

RAF inhibitors has been focused for years on com-

pounds that are able to block not only monomeric

RAF (V600 mutations) but also WT BRAF and

CRAF protomers to prevent dimerization.

4. Strategies to overcome the
limitations

The first attempt to stop ERK reactivation in the afore-

mentioned cases involved the use of targeted therapies

against MEK (MEK inhibitors, MEKis), as it is the

direct RAF effectors in the cascade. They have been

approved both as a single therapy [115] and in combina-

tion with RAFis for melanoma [87,116], NSCLC [117],

and in 2022, the FDA granted the agnostic approval for

the treatment of unresectable or metastatic solid BRAF

V600E tumors, excluding colorectal cancers, that are

intrinsically resistant to RAFis [118]. This approach,

based on prevention of feedback activation [119],

improved the treatment outcome and delayed resistance

occurrence, especially when considering upstream (e.g.,

RAS mutations) or collateral (e.g., CRAF dependency)

pathway reactivation [94], but did not completely

address the problem [120–122]. Furthermore, there is a

lack of clinical evidence to justify the combinatorial use

for class II and III BRAF mutations [72], and it has not

been approved for RAS mutant cancers [2]. Therefore,

several compounds, such as pan-RAF inhibitors and

paradox breakers, were designed and developed to cir-

cumvent these difficulties.

4.1. Pan-RAF

Considering the structural evidence and the idea of tar-

geting both the dimer counterparts, pan-RAF potent

inhibitors (pan-RAFis) of all the RAF isoforms were

considered to be a promising option to prevent the limi-

tations of type I ½ monomer-selective drugs. A wide

variety of compounds (aC-helix-IN/DFG-OUT -type

II) were generated with the objective of binding with the

same affinity (no negative allostery) to the protomers of

all the RAF proteins, preventing their transactivation,

and retaining potency against RAF dimers (listed in

[123]). Nonetheless, they still caused a mild grade of par-

adoxical activation [124-127]. Indeed, as later explained

by Karoulia et al. [105], locking the aC-helix in the

“IN” position can actually stabilize the second protomer

in another “IN”-activated state, favoring the dimeriza-

tion and thus triggering the cascade. In addition, a

promising preclinical efficacy for monotherapies in the

clinics was not observed: Firstly, as these compounds

can bind to WT RAF also in untransformed cells, pan-

RAFis were predicted to have a narrow therapeutic

index [105]. This is the case of LY3009120 (Table 1),

which, despite multiple encouraging experimental out-

comes, could not achieve beneficial effects at the highest

tolerable dose in the clinics (NCT02014116) [128]. Sec-

ond, even if some trial responses are still awaited

(NCT02607813, NCT04985604), the data available indi-

cate that patients showed only minimal response to pan-

RAFis such as TAK-580 and belvarafenib monothera-

pies [129,130].

However, the benefits of these compounds have been

proved in vertical combination with MEKi and ERKis

in PDAC [94,131-133]. This is further corroborated by

the finding that certain drugs (such as MEKis) may

increase RAF dimers or RAS-GTP levels, which could

augment the sensitivity of RAS mutant tumors to pan-

RAF inhibitors [134]. For example, the combination

of belvarafenib (Table. 1) with cobimetinib (a MEKi,

Table 1) showed potential effectiveness in NRAS

mutant melanoma (NCT03284502) [135], while further

studies are ongoing (NCT04835805).

Lifirafenib (BGB-283) (Table 1) is another pan-RAF

inhibitor that also targets EGFR [136]. It demon-

strated a favorable safety profile and efficacy against

BRAFV600-mutant solid tumors, including melanoma

and KRAS-mutant NSCLC (NCT02610361) [137].

Interestingly, when combined with MEKis, lifirafenib

significantly blocked KRAS signaling in preclinical

models [138]. This justified its recent translation to a

phase Ib clinical study (NCT03905148-rectruiting) in

combination with mirdametinib (PD-0325901, Table 1)

among other MAPK alterations, for KRAS mutant

NSCLCs patients.

Another interesting example is represented by

LXH254 (Table 1), an inhibitor of BRAF and CRAF

but not ARAF [139]. Unfortunately, the phase I study

on LXH254 monotherapy (NCT02607813) for KRAS

mutant patients did not show promising results, with

only a minority of patients exhibiting disease stability

[140]; this variability could be related to the higher or

lower dependency of the tumors on ARAF, but, in

general, ARAF expression is not low [141]. Despite its

failure as a monotherapy, its combination with MEKis

appeared promising in preclinical investigations [139],

and with both MEKis and an ERKi (LTT462, Table 1)

in clinics. For example, trials for the combination of
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LXH254 with LTT462 or trametinib (Table 1) are cur-

rently active but not recruiting NSCLC and melanoma

patients (NCT02974725 and NCT04417621). In the

former, a good safety profile and preliminary efficacy

were observed in BRAF mutants [142], while in the

latter, the combination with LTT462 or trametinib

appears to be promising in NRAS-mutant melanoma

patients [143]. These findings provide new hope for

RAS mutant patients; however, it is unclear whether

these approaches can be applied to all scenarios where

the signaling is dependent on dimerization (e.g., class

II or III BRAF mutants). In addition, in regard to

ARAF: LXH254 spares this isoform, and ARAF

mutations were observed in cases of belvarafenib resis-

tance (HM95573) [19]. Therefore, further research is

necessary to evaluate its role in both responses to ther-

apies and patients’ relapse. For example, it could be

interesting to investigate whether pan-RAFis demon-

strate optimal effects on malignancies that are more

dependent on BRAF and CRAF [144]. Finally, in pre-

clinical studies, KIN-2787 (exarafenib) displayed good

potency against all classes of BRAF mutants, as well

as NRAS and KRAS mutants [145], but not against

WT RAS/RAF; therefore, a dose escalation clinical

trial is now underway (NCT04913285).

The most recent advances in the field categorized the

pan-RAFis into two classes: inhibitors binding with

equivalent potency to monomers and dimers (mRAFis,

e.g., lifirafenib, TAK580, LY3009120-Table 1) and com-

pounds selective for dimers (dRAFis, e.g., sorafenib,

belvarafenib, LXH254), an effect probably induced by

the latters’ aC-helix stabilization toward the “IN” con-

formation during RAF dimerization [144,146]. The

authors proposed a triple combination of a monomer

selective (dabrafenib) + dimer selective

(LHX254) + MEKi (trametinib, which would be target-

ing the RAF–MEK complex), which potently sup-

pressed the pathway in PDXs (with lower toxicity than

LHX254 + trametinib only) and in a patient with

advanced CRC [146]. The idea of combining a type I ½

and a type II RAF inhibitor was also predicted by

modeling and thermodynamic studies and verified in cel-

lular models by Rukhlenko et al. Indeed, during the

transactivation process, the drug’s affinity for the sec-

ond protomer is drastically reduced [108,147] because

the dimer structure is thermodynamically favored when

composed by a drug bound and a drug-free protomer

[148]. This implies that the dimer could be successfully

inhibited by molecules like type II inhibitors that would

fit in the dimeric structure constituted of a free protomer

coupled with an inhibited one [113,149]. Even if the

combination, dabrafenib + LHX254 + trametinib, has

not reached the clinics yet, a similar vertical triplet

treatment trial for the combination of dabrafenib,

LXH254, and LTT462 (ERKi) is presently ongoing in

advanced stage CRC patients (NCT04294160).

In conclusion, this classification defines RAF pro-

teins as groups exhibiting different structural states

and acknowledges that this spatial configuration diver-

sity reduces the efficacy of monotherapies.

The combination of different types of RAF kinase

inhibitors targeting diverse structural states is then a

brilliant novel approach for overcoming both resis-

tance and paradoxical activation. However, further

research on selective dRAFis for combinatorial treat-

ments is required, as the previous compounds were

developed as pan-RAFis and thus, retain some

potency against monomers [150].

4.2. Paradox breakers

Given the well-documented effects of the paradoxical

activation, many independent investigations focused

on molecules termed “Paradox-Breakers” (PBs). As

previously stated, pan-RAFis were considered to be

good PBs, but after initial enthusiasm, a minimal para-

doxical activation was observed. Apart from pan-

RAFis, which have a good potential in combinatorial

treatments, specific efforts in this field have culminated

in the discovery and characterization of two pure PBs,

PLX4072 and PLX8394 (Table 1) [151].

These compounds fall into the category of type I ½

inhibitors, similar to RAF inhibitors (RAFis). They

operate by binding to the ATP binding pocket of the

RAF protein, locking it into a CODI conformation.

Notably, they possess the unique ability to stabilize

the R506 residue in the OUT position within the aC-
helix. This altered conformation is less likely to facili-

tate interactions with RAS-GTP compared to the IN

conformation typically observed with RAF inhibitors

[105].

PLX8394 inhibited the dimerization of BRAF

homodimers and BRAF-CRAF heterodimers, but no

activity was observed on homo- or heterodimers of

CRAF and ARAF. Thus, the molecule demonstrated

high potency against class I and II BRAF mutants but

showed only partial effectiveness against class III alter-

ations or in the context of RAS mutations [152], which

are more dependent on CRAF [153]. However, upon

CRAF overexpression, the RAS–RAF–MEK–ERK

pathway was activated [154], which is not surprising,

because the molecule is BRAF-specific, unable to effi-

ciently prevent CRAF dimerization [152], and it

has been reported that the paradox can be driven

by CRAF bound to BRAF-specific inhibitor in

BRAF�/� cells [108,147].
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Regarding resistant tumors, BRAF fusions

responded to PB treatment in specific genetic back-

grounds [152,155]: In some of these cases, paradoxical

activation was eventually observed, most likely because

protein fusions can alter the drug’s allosteric interac-

tions and transactivate the dimer partner. These last

aspects justify a thorough examination of the genetic

signature when projecting clinical translation. In this

regard, a phase I/II trial (NCT02428712) is now

underway to assess the clinical utility of a PLX8394

therapy with preliminary encouraging outcomes on

BRAF-mutant tumors [156]. Furthermore, a phase II

trial of this drug in combination with cobicistat to

improve its bioavailability has been initiated, but it is

not yet recruiting patients with BRAF fusions and

CNS BRAF class I and II mutations (NCT05503797).

Lately, a compound known as C1a (Table 1) was

generated from a library of quinazolinic analogs [125]

and demonstrated PLX8394-like behavior, with good

activity against BRAF mutant cell lines or PDX and

no MEK–ERK activation in RAS mutant and WT

BRAF as compared to RAFis [157]. Furthermore, it

demonstrated efficacy against RAF-dimer-dependent

resistance models [157], as well as the ability to cross

the brain–blood barrier. Interestingly, since the exist-

ing therapies (both RAFis monotherapy and combina-

tion with MEKis) are poorly bioavailable in the brain

[158,159], this peculiarity, which is driven by a rela-

tively low molecular weight (MW 461 Da), could play

a significant role in the treatment of melanoma brain

metastases. C1a effects were confirmed in cellular

models and PDX that relapsed after the combination

therapy, resulting in an overall tumor remission

achieved at very low drug dosages [160]. Although

clinical efficacy and resistance in different genetic sce-

narios have not been established, the properties of this

compound appear promising and undoubtedly high-

light the search for novel molecules that, while over-

coming the paradox, would bring new hopes to

relapsing patients and address the poorly investigated

aspects of the disease. Finally, details of C1a localiza-

tion into the binding pocket, currently unknown, could

be considered for gaining structural insights into the

unresolved mechanism of paradoxical activation.

4.3. Novel allosteric inhibitors

Type III and type IV allosteric inhibitors (namely,

molecules that bind sites, respectively, close or

secluded from the catalytic pocket [112]) were studied

and developed to possibly lower the emergence of

resistance counter-mechanism by targeting a site other

than the catalytic pocket [161].

4.3.1. Type III

PHI1 (Table 1) is a type III RAF allosteric inhibitor

particularly selective for aC-helix “IN” conformation,

and binding to a previously unknown allosteric site in

this area. This dRAFis was able to bind a single pro-

tomer and induce positive cooperativity toward the

second. This molecule demonstrated preclinical efficacy

against dimers from class II and III BRAF mutants,

and cases of resistance to RAFis, but no activity on

RAS mutant cell lines [162]. This is a single prelimi-

nary study and deserves further investigation, which

will open the way for the development of RAF inhibi-

tors with a novel mechanism of action.

4.3.2. Type IV–dimer interface inhibitors

With the idea of targeting the dynamic interactions

between the RAF proteins, two structure-guided inves-

tigations aimed at targeting the protein–protein inter-

actions (PPIs) present at the DIF to inhibit the RAF

node in RAS or dimer-dependent BRAF mutant or

resistant cancers. After a structure-guided study, mac-

rocyclic peptides with high affinity for the RAF’s DIF

were developed as type IV allosteric inhibitors and

demonstrated good efficacy in preventing paradoxical

activation induced by vemurafenib [163]. Gunderwala

et al. used the same computational model to generate

braftide (Table 1): This peptide effectively inhibited

both a mutant and WT BRAF without causing para-

doxical activation nor negative allostery; it also dem-

onstrated activity toward BRAF fusions and showed

an increased effect in combination with dabrafenib.

Similar to proteolysis targeting chimeras (PROTACs),

braftide segregation of BRAF in an inactive state

prompted the RAF–MEK complex degradation in the

proteasomes, although the mechanism has not been

characterized [164]. These are promising but unique

examples of compounds that are able to target the

DIF as no small molecules have been developed for

this purpose to date.

4.4. Proteolysis targeting chimeras

Targeted protein degradation is considered another

valuable approach to overcome the limitations posed

by the classical RAFis. With the objective of decreas-

ing a target protein’s levels by degradation, the PRO-

TAC approach is a promising technology in this area:

This system is based on small molecules that function

as heterobifunctional degraders consisting of two

ligands connected by a linker. One component recruits

and binds to a protein of interest (POI), whereas the
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other recruits and binds to an E3 ubiquitin ligase. The

POI and the ligase are, therefore, in close proximity so

that the target can be ubiquitinated and then degraded

by proteasomes. Given their ability to interact with a

target, its commercially available inhibitors are utilized

in PROTAC as warheads that bind the POI. In the

recent years, numerous attempts have been undertaken

to produce PROTACs that can specifically target

oncogenic proteins such as BRD4, BRD9, ALK, and

CDK4/6 [165–172], and thus, several research groups

tried to develop PROTACs that could degrade RAF

proteins in order to bypass RAFis limitations.

Chen et al. were the first in the field to describe a

PROTAC approach. They used rigosertib (RGS) as a

warhead, a small anticancer drug designed to target

PLK1 but that can also mimic RAS and interact with

RBD. Since BRAF’s mutations do not fall into the

RBD, RGS is insensitive to its mutational state.

Hence, it was used as a warhead that binds RAF and

linked to pomalidomide (that can interact with cere-

blon (CRBN) E3 ligase). This molecule can degrade

up to 80% of BRAF, but only at high concentrations,

indicating a scarce potency [173].

Since 2020, several groups worked on the develop-

ment of PROTACs directed versus BRAFV600E based

on available RAFis vemurafenib, dabrafenib [174,175],

BI882370 [174,176], and the PB PLX8394 [177]. The

aforementioned compounds were linked to either a

Von Hipple–Lindau (VHL) E3 ligase [175] or CRBN

E3 ligase [174,176,177] binder to induce the degrada-

tion. All of them demonstrated advantages over the

single molecules and were active at nanomolar concen-

trations [175,177], with a fast kinetic degradation

[174,176] with DMax (maximal percentage of degrada-

tion) ranging between 80% and 95% [175,177].

The effect of all the compounds on the degradation

of WT BRAF was tested and none of them decreased

its levels. Alabi et al. [175] suggest that, although their

PROTAC is able to bind the protein, the ternary com-

plex (BRAF-PROTAC-E3) is characterized by weak

interactions that do not allow the degradation of the

target.

Another advantage of the PROTACs is the longer

inhibition of the RAS–RAF–MEK–ERK pathway

after the interruption of the treatment compared to

the classical inhibitors [174,175,177]. A shorter inhibi-

tion of the pathway was only observed for the

BI882370 PROTAC compared to its “parental inhibi-

tor” [176]. However, the paradoxical effect was still

triggered by the PROTACs based on vemurafenib,

dabrafenib, and BI882370 when administered to WT

BRAF cells and a high level of upstream activation,

especially RAS activation [175,176]. As expected, the

effect was not observed with the PB PLX-8394 [177],

indicating that the paradoxical activation, which is

related to how the small molecules interact with the

target, cannot be overcome by adopting this strategy.

The efficacy of PROTACs might not be exclusive to

the targeting of BRAF and its mutants. Drosten and

Barbacid suggest that PROTACs targeting CRAF

might have great success in the RAS-mutant context,

as they may recapitulate the effects obtained with the

genetic ablation of this gene in GEM models, which

are driven by the CRAF’s kinase-independent function

[76,178,179]. This strategy, however, cannot be applied

yet owing to the lack of molecules that can specifically

bind to this isoform. Furthermore, as suggested by

Poulikakos et al. [144], due to its role in resistance to

RAF-dimer inhibitors belvarafenib and LXH254,

ARAF degradation by PROTACs could represent a

future solution for overcoming resistance to this novel

but promising pan-RAFis.

4.5. Immunotherapies

In the recent years, immunotherapies have become

increasingly important as first-line treatments for various

cancers, either as monotherapies or in combination with

chemo- or targeted therapies [180,181]. Thus, this strategy

has also been exploited with the aim of improving the effi-

cacy of RAF inhibitors. Most of the immunotherapies

target immune checkpoints expressed by tumor cells that

negatively regulate T-cell activation, impairing cell-

mediated immune response, such as programmed cell

death 1 (PD-1) as well as cytotoxic T-lymphocyte antigen

4 (CTLA-4), expressed by T-lymphocyte, and pro-

grammed cell death ligand 1 (PD-L1).

Since 2010, numerous studies provided the biological

rationale for the use of immune checkpoint inhibitors

(ICIs) in cancers along with RAF mutations. Khalili

et al. [182] reported an increase in the expression of

IL-1a and b cytokines enhancing T-lymphocyte sup-

pression by promoting PD-L1 in melanocyte and mela-

noma cell lines. Furthermore, the treatment with

RAFis increased the expression of PD-L1 in resistant

melanoma cells through the reactivation of the path-

way [183]. Recently, high levels of CD8+ have been

associated with pan-RAFis + MEKis combination

therapy, supporting the idea of a triple combination

with anti-PD1/PD-L1 therapies [133]. Even the tumor

microenvironment can be affected by RAFis alone or

in combination with MEKi. For example, these treat-

ments reduced vascular endothelial growth factor

(VEGF) levels, which are responsible for blood vessel

anomalies in tumor regions [183,184], or increased

melanocyte differentiation antigens (MDA) and
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promoted T-lymphocyte specific recognition antigen

[184,185]. All these molecular alterations amplified the

tumor microenvironment’s lymphocyte recruitment.

Additionally, the development of novel small mole-

cules alongside the use of new ICIs is opening up the

potential for novel therapeutic combinations: for

example, a recent study on mice allografts of brain-

metastatic melanoma (poorly immunogenic) revealed

that PB “C1a” therapy induced an immunological phe-

notype, sensitizing the tumor to anti-PD-1 therapy. In

addition, while for the C1a monotherapy relapse was

observed in four of 10 mice, no tumor relapse was

observed for the combination C1a + anti-PD-1 [160].

Altogether, these preclinical results justified the design

of potentially more effective combinatorial strategies.

In clinical settings, the combination or sequence of

ICIs and RAFi/MEKi was mostly studied in the

BRAF mutant melanomas. Even if the first combina-

tion of vemurafenib and ipilimumab (Table 1) for

BRAFV600 melanoma patients induced significant

hepatotoxicity after only a few weeks of treatment

[186], different combinations of ICIs and RAFi were

better tolerated, and thus, one of them was approved

by FDA during the recent years. In particular, an

anti-PD-1 and anti-CTLA-4 (nivolumab, Table 1, and

ipilimumab, respectively) enhanced the overall survival

(OS) of BRAFV600E and non-BRAFV600E mela-

noma cancer patients as single treatments or in combi-

nation (phase III CheckMate 067 clinical trial) [187].

Now, this represents one of the first line of standard

care options for patients with unresectable/metastatic

BRAF mutant melanoma [188]. To date, three clinical

trials investigating the combination of ICIs and BRA-

Fi/MEKi have documented a controllable safety

profile [189-191], with two of these trials demonstrat-

ing encouraging preliminary efficacy [189,191]. Many

other clinical trials are actively recruiting to investigate

the positive effect of ICIs with RAFis and MEKis in

melanoma BRAF mutant cancers. For example, the

safety and efficacy of a double combination of encora-

fenib/binimetinib (MEKi, Table 1) with nivolumab

and ipilimumab is being tested in patients with

advanced BRAF mutant melanoma in a phase 1/2

(QUAD01, NCT04655157) and phase 2

(NCT04511013) clinical trials. Sequential treatments

are an important issue that clinicians face in their

everyday practice, especially when different drug regi-

mens show efficacy both in first- and further-line ther-

apies. Optimizing sequential treatments can improve

treatment duration, efficacy, and minimize adverse

events (AE) of ICIs and RAF target therapies. Some

clinical trials such as SECOMBIT (NCT02631447) and

DREAMSeq (NCT02224781) have demonstrated the

efficacy of ICI treatment followed by targeted

therapies; both of them observed an increase in the

2-year OS (73% and 71%) for groups treated with

ICIs in combination before receiving RAFis, com-

pared to the ICI treatment after RAFis (65% and

51.5%) [192,193].

Conversely, ICIs or their combinations with RAFis

and MEKis have been tested, such as the “classic”

oncogene-addicted NSCLC, where the efficacy of

immunotherapy is otherwise poor [194,195]. However,

it is known that not all the molecular subgroups of

NSCLCs are the same; in fact, Guisier et al. [196] con-

ducted a retrospective analysis on a heterogeneous

group of NSCLCs, containing BRAF, HER2, MET,

and RET as driver mutations, treated with ICIs and

found that the response rate is similar to that of

NSCLC patients without actionable mutations.

Another study considered only BRAF V600E and

non-V600E mutant NSCLC patients treated with ICIs

and reported a similar response rate and PFS in both

groups [197]. Unfortunately, due to the small propor-

tion of BRAF-mutanr NSCLC, definitive conclusions

about which sequential or combinational strategies are

the best therapeutic choice are not definitive. While

new combinational strategies are being tested, it is

now widely accepted that immunotherapy represents

one of the standard care options for non-oncogene-

addicted metastatic NSCLC [198,199]. Finally, a

recently completed phase I clinical trial analyzed the

efficacy and safety of a new pan-RAF compound,

LXH254, and an anti-PD1, spartalizumab (PDR-001,

Table 1), against different solid tumors including

NSCLC; however, the results of this study are not yet

available (NCT02607813).

Another interesting therapeutic approach is the

Adoptive Cell Transfer (ACT) treatments. Here,

immune cells from patients or donors are firstly

expanded and enhanced in vitro to be tumor-specific,

and then intravenously infused into the patients.

Among them, the chimeric antigen receptor (CAR) T-

cell therapy is a novel approach that is used when ICIs

therapies fail in patients [200]. In this case, the

patient’s T-cell receptors are genetically modified to

identify a particular tumor antigen and expanded

before being reinfused into the patient. This therapy

was successfully used against liquid cancers and in the

recent years was applied to solid malignancies too. In

particular, a recent in vitro study on BRAF mutant

melanoma suggests that the combination dabrafenib-

trametinib interferes less than vemurafenib-cobimetinib

with the CAR-T therapeutical efficacy, thanks to its

lower inhibitory effect on the CD4+ and CD8+ T-

lymphocyte [185,201]. Another example is the ACT
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tumor-infiltrating lymphocyte (TIL) immune cells; they

are isolated from excised tumors, then selected for

those that are able to recognize the tumor-associated

antigens, expanded, and then reinfused into patients.

This therapy is particularly effective in advanced mela-

noma patients who have failed ICI therapy and

appears to be more effective when combined with

BRAF and MEK inhibitors, which boost tumor

immunogenicity [202].

Nowadays immunotherapies are efficient against a

selected group of malignancies; however, new strate-

gies have been developed in the past few years to

improve the efficacy of immunotherapeutic drugs such

that it can be combined with RAFis. For example,

PF-04136309, a small molecule that suppresses the

CCL2-CCR2 axis involved in immunosuppressive

tumor microenvironment maintenance, thereby,

increasing CD4+ and CD8+ activity and showing

promising results [203]. Furthermore, with the discov-

ery of new targets, novel targeted therapies will be

developed, and, therefore, new combinatorial treat-

ments will be designed, making immunotherapy a stan-

dard care option to improve therapeutic outcomes.

5. Conclusions

While RAFis provide considerable improvements in

cancer treatment, they also exhibit some limitations,

including drug resistance, paradoxical activation, and

low efficacy for class II and III BRAF mutations and

RAS-driven malignancies. To circumvent such con-

straints, various strategies associated with type II

inhibitor monotherapy approaches are being investi-

gated, with a few displaying encouraging results. How-

ever, the most impressive outcomes derive from the

combinatorial use of different small molecule inhibi-

tors, and with immunotherapies. In the latter case,

encouraging preclinical results on the combination of

novel RAFis and ICIs warrants further research in this

direction to detect potential biological vulnerabilities,

and that, in general, immunotherapies can act syner-

gistically with these inhibitors, to improve and prolong

their efficacy. However, if the combinatorial treat-

ments seem promising and feasible, the efficacy and

safety of the proposed strategies are still under investi-

gation in clinics (dose escalation trials). Notably, these

innovative approaches have been proposed not only

for RAFis-resistant tumors but also on RAS-driven

malignancies. Indeed, while for a long time attempts

to target RAS utilizing its downstream effectors were

unsuccessful, in the recent years, novel findings justi-

fied the rationale of using RAF inhibitors in RAS

mutant tumors as well [204]. Hence, the combination

with the recently approved direct KRAS inhibitors

needs to be further evaluated.

Conversely, new technological strategies such as the

PROTACs provide novel design of RAF inhibitors,

together with the new targetable features and novel

type III and IV allosteric inhibitors. The recent

advances in understanding cancer biology will also

pave the way for the discovery of new targets: For

example, the structures of autoinhibited and active

BRAF-MEK1-14-3-3 complexes were recently

reported, showing the underlying molecular mecha-

nisms governing RAF modulation. These outcomes

will provide unique options to treat RAF-related

malignancies and shed light on how 14-3-3 affects the

paradoxical activation by RAFis, and hence, the sus-

ceptibility to these molecules [33,205].

In addition, a recent analysis of the complex,

MRAS-SHOC2-PP1, and its biochemical and struc-

tural components have revealed its remarkable capac-

ity to control specificity for RAF and provide

approaches to inhibit it to target the RAS–ERK path-

way [55,58,59]. In conclusion, our molecular under-

standing of the signaling mechanisms in both

physiological and pathological contexts and unex-

plored areas in the complexes that might be able to

bind inhibitors, open a new realm of therapeutic

strategies.
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