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Abstract

Let S be a subset of C™. For a positive integer M we define the quantity wys(S) as
the minimum degree of an algebraic hypersurface having a singularity of order > M at
any point of S. Several result of Waldschmidt, Masser, Wiistholz, Esnault and Viehweg
give the inequality . .

;M(S) < MWM(S) (*)
where ¢,, is a positive constant depending only on n. In my paper, I work with the
arithmetical equivalent of wy(.5), namely the minimum size @y (S) of a polynomial with
integer coefficient having a singularity of order > M at any point of S (as usual the size
of a polynomial is defined as the maximum between its degree and its logarithmic height).
The main result is to generalize the inequality (*) at the quantity wy,(S). To do this I use
the theory of Chow Forms developed by Ju. V. Nesterenko and P. Philippon and a new
definition of multiplicity, given in terms of the Chow Form of an ideal.

In the second part, I give an application of the main result to the problem of comparing
the transcendence type of an n-uple of complex numbers with its approximation type.
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0 — Introduction

Let S be a non-empty finite subset of C™. Following Waldschmidt (see [W2] §1.3 e) )
we define wy(S) as the minimum degree of an algebraic hypersurface having a singularity
of order > M at any point of S. We are looking for inequalities between wy (S) and was(S),
M > 1. Trivially, we have

Tren(S) < wi(S) (1)

In the opposite sense, using powerful tools from complex analysis, Waldschmidt proved
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“wi(8) < <wou(s) )
(see [W2] §7.5 b) ). The last inequality follows from Bombieri-Skoda’s existence theorem,
which in turn derives from some L?-estimates and from existence theorems for the operator
0, due to Hormander.
Weaker results of the following kind:

1 1
where ¢, is some constant greater than n, were obtained by Masser and Wiistholz inde-
pendently (see [M] and [Wu]).
More recently, using deep arguments from projective geometry, Esnault and Viehweg (see
[E-W]) have obtained the following improvement of (2):

wi(S)+1 1
% < MwM(S) for n > 1.

A conjecture of J.P. Demailly asserts that one should have

—1 1
wi(5) Z i < MwM(S) for n > 1.

In this paper we give some results of the type (2') in the ring Z[x1, . .., z,] with explicit
bounds for the height of the polynomials.
Given a polynomial f € Z[xo,...,z,] we define its size t(f) as t(f) = degf + InH(f),
where H(f) is the maximum absolue value of its coefficients. For a positive integer M
we also define wy/(S) as the minimum size of a polynomial f € Z[zq,...,x,] such that
the hypersurface {f = 0} has a singularity of order > M at any point of S (if any such
polynomial does not exist, we let Wy (S) = +00). Of course, we have the inequality

1
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As in the ”geometric” case, we have a simple inequality between w; and w);:

%MM(S) < @01(S) +n log(l + @1(9)).

We claim that a relation in the opposite direction exists. In fact we shall prove:

THEOREM 1

There exists an effective constant ¢ > 0 depending only on n such that

%wl(S) < %wM(S).

A need for results of this kind arises in the study of certain problems connected with
relations between transcendence measures in codimension 1 and approximation measures
in dimension n, as we shall show in the last section of this paper.
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1 — Auxiliary assertions

For the proof of theorem 1 we use the theory of eliminating forms, as developed by
Ju.V.Nesterenko (see [N1],[N2] and [N3]). We work over a ring R which will be either Z
or C. For an arbitrary polynomial P € Rlyo, ..., ym]| we denote by d°P its total degree.
We further denote by A the ring of polynomials in the n + 1 variables xq,...,x, over
R. We define the rank of a prime ideal p of A as the largest integer k for which there
exists a strictly increasing chain of length k£ of prime ideals contained in . The rank of
an ideal I C A will be defined as the minimum rank of the prime ideals containing I. In
what follows we denote by I a homogeneous ideal of A with / "R = (0) and such that
IClzg,...,x,] is unmixed of rank n + 1 — r. If A and B are polynomial rings over R,
p: A — B an homomorphism and A" , B’ polynomial rings over A and B, we shall denote
by the same p the homomorphism p : A’ — B’ defined in the natural way. Similarly, if v
is a valuation over some field K and B is a polynomial ring over K, we shall denote by the
same v the valuation over the quotient field of B defined by taking for v(P), P € B, the
minimum value of v on the coefficients of P.
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DEFINITION 1
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be r linear form. We define the ideal I of R[U] as the set of polynomials G € Rlu’] for
which there exists a natural number M that such

Gmé\/IE(I,Ll,...,LT) for j =0,...,n.

I is a principal ideal (see [N1] prop.2). We say that a generator F of I is an eliminating
form of I and we define N(I) as td°F. If R = Z we define the size t(I) of I as t(I) =
N(I)+InH(F).

The following factorization formula is available (see [N2] lemma 2):

PROPOSITION 1
Let F' be an eliminating form of I. Then

N(I)
F=a H L,(a™)
h=1
where
ac€Ru', ... u"1
and o = (aff, ..., al) with
a?EQ(ul,...,u’") for h=1,...,N(I), j=0,...,n.
Moreover, if z; ¢ ¢ for any prime ideal p of I, we may assume a? =1forh=1,...,N(I).
Let S',...,S" be skew-symmetric matrices in the new variables s};l, 1 <17 <

0 < k,l < n which are connected only by the relations
Sqi'cl + S%k = O
We denote by S the corresponding set of independent variables, S = {st,, 1 <i <r;
0<k,l<n}. Let 0:C[U] — C|[S, x] the homomorphism given on each u’ by u’ — S*.x.
For w € C"*1\{0} we further denote by p,, : C[z] — C the homomorphism which maps
x to w; the composed homomorphism p,, o § will be denoted by 6,,.
If R = Z we define the norm ||I]|,, as
o = lw]"™V P H(O,F)

3
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where F' is an eliminating form of I.
For any f € A we define its multiplicity m,(f) at w € C*™1\{0} in the usual way,

0*f

mw(f) = min{a| Hjl, ce ,ja S [0, ce ,n] such that pwm % 0}
J1 Ja

If F € R[U] we define i, (F') as

iw(F) = my(0F) = ;Iel}]?m me (f)

where Jr C A is the ideal generated by the coefficients of the products of power of the
independent variables s}, € S in 0F. It is the same as taking

0°0F

fw(F) = min{a] 1, jo € [0, ] such that po ="

£ 0}.

Notice that i, defines a valuation over R(U).

Now we want to make clear some important properties of i.,. First of all, it would
be very agreable to show that i, (F) = i, (F(ul,...,u" !, Tw)) for “almost-all” skew-
symmetric matrices T', if F' is an eliminating form. The geometric meaning of this is that
the generic hyperplane section through w of some algebraic variety V has the same order
of multiplicity at w as V. We begin with a simple lemma:

LEMMA 1

Let vy, vy be two valuations over C(U). Let us assume that the following assertions
hold:
1) for any eliminating form F there exist r — 1 vectors v?, ..., v" € C"T1\{0} such that

2) for any a € C"T1\{0} we have:
vi(LH(a)) = va(LH (o).
Then vy (F') > vo(F) for any eliminating form F'.

Proof

Let F' be an eliminating form of an ideal I, we have, with 1)
vi(F) = v;(F(u', 0%, .. ,0") = i (GP - GF) (i = 1,2)

where G1i,...,G; € Clul] are eliminating forms of the prime ideals of codimension n
associated to (I,v%,...,v"). Thus it is enough to prove lemma 1 for an eliminating form of

4
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a prime ideal p C CJz] of codimension n, hence for a linear form, but this follows obviously
from 2).

Q.E.D.

For w € C""1\{0}we define three other functions v; , : C[U] — N U {+o0}, i =1,2,3:

(F) = min{a| J1.....ju € [0.....n] such that py—20eF gy
V1.0(F) = min ey da e - — ,
1, al 371 J n] such that p Jr, -0,
: : O"F
Vow(F) = min{a| 3j € [0,...,n] such that §, —— # 0},
A(uj)e
vso(F) = min{a| 3j1,...,Ja € [0,...,n], Ji1,...,i, € [1,...,7] such that

; 9 OF
W (i) (ia)
81‘j11 U ax.](l

where 61 0, Pw are the homomorphisms defined as follow:

6L :C[U] — C[S, z],

u Sle, ifi=1,
Stw, ifi=2,...,m;

Sah

:C[U] — C[S,l‘(l), e ,m(r)],

uw— S i =1,

Pw :C[ac(l), .. ,x(r)] — C,

D s w, i=1,...,r

The following proposition, which is due to P.Philippon, shows that these functions take
the same values as i, on the eliminating forms.

PROPOSITION 2

For any eliminating form F

V1 w(F) =1v24,(F) = v3,,(F) =i,(F).

Proof
Let F' be an eliminating form of I, first we prove the equality v .,(F) = v o, (F'). For
this we apply for j = 0,...,n lemma 1 to the valuations v ., and

. 0°F
I/2,w,j(F) = m1n{a| such that HWW})Q 7_é 0}
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Assertion 1 is obviously satisfied. Further we observe that

(L (a)) = {0, if o # w

1, fa=w ’

0, if a# w,
vow (L) =<1 ifa=wandw; #0
oo, ifa=wandw; =0
where o = 3 means that o, 3 € C**1\{0} define the same point in the projective space.
Hence lemma 1 leads to

Vw(F)=10,(F)= min vy, ;(F).

7=0,...,n
For proving vy ,(F') > i, (F'), we recall that proposition 1 of [P2] implies

9°F 90 f
M
K ea(ul)a - (3% - Oz,

J

| fedr, jl,-.-,jaE[O,...,n]>

for some integer M > 1.

The inequality vs ., (F) > 11, (F) derives immediatly from proposition 2 of [P2],as
explained there.

Finally the relation i, (F") > v, (F) is obvious.

Q.E.D.

COROLLARY 1
For any eliminating form F' we have

iw(F) =i, (F(ut,...,u" "1 Tw))

for a generic skew-matrix T.

Now we may define the multiplicity of I at w.

DEFINITION 2

Let w € C"™1\{0} and I be as in definition 1. Let F' be an eliminating form of I; we
define the multiplicity i,,(I) of I at w as i.,(I) = i, (F).

Remark

It is easy to see that i, (I) = 0 if and only if w is in the projective variety generated by
I. It is also possible to prove that i, (1) = 1 for a prime ideal I if and only if the projective
variety generated by I is smooth at w (see [A] lemma 2.2).

The following lemma shows the equivalence between i, ((f)) and the usual notion of
multiplicity of an algebraic hypersurface at a point.

LEMMA 2
Let f € R[xo,...,7,] and w € C""1 — {0}, then i, ((f)) = mu(f).
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Proof
Let us assume wgy # 0, and let Ag, Ay, ..., A, be the cofactors of zq,z1,...,z, in the
matrix
o X1 .. Ip
Y S
ug - uy U,

F(u) = f(Ao,...,Ay) is an eliminating form of (f) (see [N3] lemma 2). Moreover, 0,A,; =
Az; for some A € C[st,, xg,...,z,] with A(w) # 0 (see [N3] p.432). Hence
iw((f)) = iw(F) = mu (AT f) = mo(ATT) < m(f) = mu(f).

Q.E.D.

Let .
g € A\ U ©'n
h=1

where ¢';,..., ¢, are the prime ideals associated to I. We define the resultant Res(F,g)
of F' and g as

N(I)
Res(F,g) = a® ] g(a").
h=1
Lemma 4 of [N2] ensures Res(F,g) € R[u!,...,u""!]. Moreover

Res(F,g) = bET* --- ES*

where b € R and Fj,..., E, are eliminating forms of the minimal prime ideals @, ..., ps
of (I,g) such that o, "R = (0) for I =1,...,s (see [N2] lemma 6). We define Res(I,g) as
the corresponding intersection of symbolic powers

Res(I,g) = o\ N0 ples).
The following propositions show the behaviour of the quantities N (I), i, (I), t(I) and
|I||c with respect to the primary decomposition and the resultant operation.

PROPOSITION 3
Let

I'=QiN---NQy

be an irreducible primary decomposition in which for | < s we have Q; N R = (0) and
Qst1N---NQ:NR = (b), b € R\{0}. Furthermore, for | < s suppose that p; = \/Q; and
e; is the exponent of the ideal QQ;. Let F1, ..., E, be eliminating forms of g1, ..., ps. Then

F=bES ... E

7
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is an eliminating form of 1. Hence

i) N(I) =) eN(p);
1=1

i) iw(I) =) eriu(pr).
1=1

Moreover, if R = Z,

i) loglb] + > " ert(pr) — eN(I) < t(I) < loglb| + > est(g) + N (I);
=1 =1
i) loglbl + >~ ellloill — eN(I) < ||l < loglbl + > elllgillw + eN(I).
=1 =1

where c is some positive constant depending only on n.

Proof
For i), iii) and iv) see [N3] proposition 2 and [W1] lemma 4.2.14. ii) is obvious.

Q.E.D.

PROPOSITION 4
Let g be as above. Then

i) N(Res(I,g)) < N(I)d°g;

i) iw(Res(I,9)) > iu(I)iu((g))

Moreover, if R = Z,

i11) t(Res(I,g)) < (3+n+rin(n+ 1))t(I)t(g);

i) logl|(Res(I,9))|l < ct(I)t(g) + logMaz(||Tw, |w|~*?|g(w)])

where c is some positive constant depending only on n.

Proof

i) See [N3| lemma 5;
ii) We assume wy # 0; let N =i,((g)), 6 = N(I), D = d°g and let F' be an eliminating
form of I. According to proposition 1, we have:

é
F=a H L.(a™).

h=1

8
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We may extend the valuation
v:Cut,...,.u" ) = Z

defined by v(F/G) = i,(F) —i,(G) to a valuation over K = C(ul,...,u"~! af) which we
still denote by v. Moreover, we may extend v to the polynomial ring K[u"] in the following
way. Let P € K[u"] and assume

P(S"w) = Z bmm

meA

where A € CJ[s},] is a finite set of monomial and b,,, € K Vm € A. Then we define v(P) as

v(P) = nr?eujq\ v(bm).

Lemma 1 gives v(G) = i, (G) for any G € Clul, ... u"]. We have

0

iu(Res(F9)) = v(Res(F.g)) = v(a” TL ot -

h=1

)
= Du(a) + 3 vig(a")).

h=1

The Taylor’s expansion of g gives:

n
E : D—|A| ] [ Aj
g(m) = CATy (xtwj — fjwt) 7 c) € C.
A=(Ag, -+ Neyeens An) j=1
N<[A|<D it

Hence

h .
v(g(a")) > N min viogw; — ajwy) >
J#t

>N min v(ogw; — qjw) =
1<t<j<n

= Nv(S"w.a™) .
Thus
iw(Res(F,g)) > Dv(a) + NZ v(S"w.a)
h=1
> Nv(F(u',...,u" "1, S"w)) = Ni,(F).

v

iii) See [N3] lemma 5.
iv) See [N3] proposition 3).

Q.E.D.
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For the proof of theorem 1 we should find out lower bound for the exponent of some
primary components associated with I. This is the aim of the following lemma:

LEMMA 3

We use the same notations as in proposition 3. Let us assume
iw(I) > M

for the generic point w of Vp(cn)(p1). Then

€1 Z M.
Proof
We observe that gﬁg ¢ ©, since its total degree is less than d°FE;. Thus, taking into
account proposition 1, we have
iw(l) = M;
iw(pn) =0 for h=2,....1;
iw(p1) =1

for the generic point w of Vp(cn)(p1). Hence by proposition 3, ii)
M S ZW(I) - 61%(@1) + - eliw(pl) = €1.

Q.E.D.

2 — Proof of theorem 1

Now we assume R = Z. For a homogeneous prime ideal p C A we define S, (H, s)
as the set of residues modulo p of homogeneous polynomials g € Z[zy, ..., x,] of degree s
whose coefficients do not exceed H in absolute value. Using an upper bound for the growth
of S,(H,s) due to Ju.V.Nesterenko (see [N2] theorem 3) it is easy to prove the following

COROLLARY 2
There exists g € VI such that

t(g) < 3(6n)"T4H(I) "7

10
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Proof of theorem 1

Let S be a non-empty subset of C™ and let P € Z[x1,...,x,] with t(P) =wp(S) =T
such that D*P(a) = 0 for @ € S and for any multiindex u € N” such that |u| < M.
Let f = P be the homogeneization of P. Clearly, it is enough to give a homogeneous
polynomial g with

t(g) < ‘I

such that g(a) = 0 for any a € V;, where

Var = {a € P(C") such that D*f(a) = 0 for any A € N"*! with |\| < M}.

We assume V), # () and we denote by c1, ..., cg positive constants depending only on n.
Let tg,...,t, € [0,1] be defined by

to =0
tr=Mm+1—k)™ fork=1...n

Let kg < n be a natural number which will be specified later. By induction we define a
sequence {Ix}r=1, . k, of pure ideal of rank k:

k=1

.....

I = (f).

k—k+1
Let
I =0QixN---NQu k

be an irreducible primary decomposition of Ij. Let us put o, = /@Q; r and let us denote
by e; i the exponent of Q); ;. After a permutation of 1,...,[;, we may assume that there
exists an integer s € [0, ..., x| such that:

D>‘_f € pjr forany A € N with |\ <M, if j=1,..., sg;
DN f ¢ ©jr for some M € N" ™ with M| <t M, if j=sp+1,..., 1.

Let
Te= ) Qi
J>sk

if Vpcn)(Jx) N Var = 0 we let kg = k (this certainly occurs if k& = n, since otherwise
there would exist an index j > s, such that Vpcn)((9;,s, DN f )) # (0 which is impossible
because the homogeneous ideal (p; s, , DX f) has codimension n + 1).

A classical trick (see for instance [M-W] Ch.4 lemma 2, [P1] lemma 1.9) allows us to find
AL A e N with |\ < ¢ M and ¢4, ...,¢, € A with d°¢; = || and t(¢;) < 1T
such that

DN f

A

DM f

Y = ¢1 +"'+¢av¢pj,k

11
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for any j > s,. We observe that D (o) = 0 for a € Vy and N > || + ¢, M. Notice
that
t(or) < T (3)

Then we define
Iiv1 = Res(Ji, Y).

We claim the following three assertions hold:

ko Sk
Vi C U U Vpcr)(9k); (4)
k=1j=1
k—1
ej7k2MkH(tk—th)2n_2kMk for j=1,...,sp and k =1,..., ko; (5)
h=0
Sk
Zej,kt(@j,k) S Cng for k = 1, PN ,k‘o. (6)

j=1

Assume for the moment (4),(5),(6) proved. For any k = 1,..., ko, corollary 2 ensures the
Sk

existence of gi € ﬂ ;. such that
j=1

Sk

k
ea(Y tpip)) "
j=1

Using (5) and (6) we obtain:

T
(gk < C5M 2_:6] kt @3, /k < C6M-

ko
Let g = H gk: relation (4) ensures that g is zero over V; and we have
k=1
T
t(g) < SEVE

Hence it is enough to prove (4),(5) and (6).
:(4) By induction we have

Sh

Vu C ( U U Ve (0in ) U Ve (i)

h=1j=1

12
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and VP(Cn)(e]k;0> NV = 0.

:(5) By induction we prove the following
LEMMA 4

Let N > t,_1M and

k—1 sp
w e Vn\ U U Ve (95,n),
h=1j=1
then
k—1
iw(Ix) = [[(N =t ).
h=0
Proof

k = 1: lemma 2 ensures that i, (/1) = N for any w € V.
k = k + 1: by inductive hypotesis, for

k Sh

we V| U Ve (o))

h=1j=1

we have

(if G is an eliminating form of J; and F' is an ehmlnatlng form of I then, by proposition
1, G=FEF and 0,F # 0, hence i, (J;) = i,(Ix)), besides,

iw((Yr)) = N — tp M.

Hence, using proposition 4 ii),

k
w(Tns) = [TV = tn D).

h=0
Q.E.D.
Lemma 3 allows us to prove (5). In fact,
Ve (9in) € Vi for j=1,... 8

Hence, using the lemma above and lemma 3,

k—1

ej,k Z H(tkM — thM) =
h=0
ME A k—h
n—k+1hl:[1(n—k:+1)(n—h+1)_n ’ Itk

and (5) is proved.

13
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:(6) Using proposition 4 and inequality (3), it is easy to see t(I}) < c¢;T"*. Hence, by
proposition 3 iii),

Sk
Z €j7kt(pj7k) < Cng.
Jj=1

Q.E.D.

Remark

Our method is able to say something about the relation beetwen w1 (S) and wy(S),

but we obtain only
1
4730 (S) < Mu)M(S). (7)

Using Chardin’s bound for Hilbert’s function (see [CH]), we may improve (7) to

1
n w1 (9) < MwM(S)
3 — Some applications
Let £ = (&1,...,&,) be an uple of complex numbers. We define its transcendence type

7(§) as the infimum of the set of real numbers 7 for which there exists a positive constant
¢, such that the inequality
log|P(§)] > —crt(P)"

holds for any non-zero polynomial P with integer coefficients. Using the box-principle, it
is easy to see that 7(§) > n + 1.

Similarly we define n(§) as the infimum of the set of real numbers 7 for which there
exists a positive constant ¢, such that

logla — &| > —cpwr(a)”

holds for any a € C".
We have the trivial inequality

n(&) <7(¢)

which reposes on the following lemma:

LEMMAS

Let ¢ € C™. For any P € Clxy,...,x,] and for any « € C" with P(a) = 0 and
lao — &| <1 we have:

[P < a—€l[2+ [€))(n+ 1)°]" PH(P).

14
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Proof \
|D*P(a)|
PEOI< )] g - &M o — &M <
1<|A[<d°P

|DAP(a)]

< o= ¢ Z i <

0<|A|<doP

<la—=¢|(n+ 1)dOP sup |P(z + a)| <

|z|=1

< la—€[(L+[al)(n+ 1|7 PH(P) <
<la =€+ €N+ 1" PHP) <.

Q.E.D.
In the opposite sense, using lemma 2.7 of [P2], it is possible to prove
7(§) < n(§) + 1.
It seems to be natural to expect
T(§) =n(§)  for7(§) >n+1 (8)

(notice that (8) holds if n=1: see for instance [W1] pg 133).
(8) implies the following conjecture of G.V. Chudnovsky (see [C] Problem 1.3 page 178):

Conjecture

For almost all (in the sense of Lebesgue’s measure in R?") n-uples ¢ of complex
numbers we have:
7€) <n+1

The link between (8) and the conjecture above is given by the following proposition:

PROPOSITION 5

The set of n-uples of complex numbers £ for which

n€) >n+1

has Lebesgue’s measure 0.
Proof

We denote by A the Lebesgue’s measure in C". Let B = {{ € C” such that |£| < 1}.
It is enough to prove that

A = {¢ € B such that n(§) >n+ 1}

15
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has Lebesgue’s measure 0. From the definition of A we have:

+oo
AC ﬂ U U Ap(exp(—sN" )

s=2 NeN feZ[zq,..., zn]
[t(H]=N

where
Af(e) = {¢ € Bl dist(¢,{f = 0}) <e}.
We need the following lemma from measure theory:

LEMMA 6

Let 'V be a pure algebraic variety in C" of codimension k and degree d. Then for any
e€(0,1)
A{€ € B dist(¢,V) < e}) < c(n, k)e**d

where c¢(n, k) is some positive constant depending only on n and k.

Proof
We denote by H” the 2k-dimensional Hausdorff’s measure and by B,(r) the ball of C"
with centre at x and radius r. We also denote by co, ..., c13 effective positive constants

depending only on n and k.
We begin with a bound for the area of V N By(r). Using theorem 3.2.22(4) of [F1], a
Fubini-Tonelli argument yields:

H™ (V1 By(r)) = ¢ /

dv(p) / card(V 0 Bo(r) N p~ ' (y))dH" " (y)
G(n,n—k) p(VNBo(r))

where G(n,n — k) is the set of (n — k)-dimensional complex subvector spaces of C™ (which
are in turn identified with the set of orthogonal projections p over these spaces) and v is
the only measure on G(n,n — k) with unitary mass and invariant by the action of U(n).
For v-almost all p and for all y € p(V N By(r))

card(V N By(r)Np~t(y)) < d.

Hence

H"*(V N By(r) < c9d/

dy(p)/ dH"fk(y) < ¢podr?™=h), (9)
G(n,n—k) p(VNBy(r))

The link between the growth of the area and the measure of the set of points which are
close to V is given by the following formula which derives from theorem 6.2 of [F2]:

H" 8V N By(r))H™"(By(s)) = o H" (V1 By(r) N Be(s))dA(€).

Using the formula above with 7 =1 4 2¢ and s = 2¢ and the bound (9) we find:
c11de®™ > / H"F(V N Be(2€))dA(€). (10)
{€eB| dist(£,V)<e}

16
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For £ € B, dist(€, V) < e, let £* € V be such that dist(&, V) = dist(£,£*). Then
VN Bg(?é‘) D VN B« (E)
The function

H" *(V N B (2))
e2(n—k)

E —

is monotonically increasing and is bounded from below by some positive constant ¢4 (see
[L] theorem 2.23). Hence

H" " %(V N Be(2)) > H" F(V N Bex(€)) > 106270,
Combining with (10) we have
M{€ € B dist(¢,V) < e}) < c13de?.
Q.E.D.

From the lemma above with V = {f = 0}, we obtain:
MAg(exp(—sN™ 1)) < c(n,1)Nexp(—2sN"h).

The number of polynomials in n variables with integer coefficients and size < N is bounded
by exp(2N™1), hence for all s > 2

AA) < )\( U U Af(eacp(—SNn+1)> <

NeN fezzy,..., zn]
[t(P)]=N

< Z c(n,1)Nexp(—2(s — 1)N™1) = 4)(s)

N>1
and
Y(s) = 0 for s — 4o0.
Q.E.D.

Let 7 = 7(£) and n = n(&). As an application of the method of the proof of theorem
1, we shall prove:

THEOREM 2

Let us assume 7 >n+ 1, n > 2. Then

n—1 2n—n
n+1 n+1

T <1+ Max( ).

17
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Moreover, if n = 2,
4 — 77)
5 )

T <n+ Max(0,
For example, if n = 2 we find:

7 <3.34 for n < 3;
T =mn forn > 4.

If n = 3 the situation is a little worse:

T < 4.5 for n < 4;
7 <6.34 for n <6.

We observe that for any fixed n our result approaches to (8) when 7 (or 7)— +o0:

COROLLARY 3

1
n<T<n+o(>)  forn— +oo.
n

Proof of Theorem 2

Let us assume 7 > n 4+ 1 . We choose a real number p with n +1 < p < 7. By
hypothesis, for any positive constant C' there exists a polynomial P with integer coefficients
such that

log|P(&)| < —CT?, (11)

where T is the size of P. Let d = d° P; in what following we denote by c14, ..., co5 positive
constants depending only on n and [£].
For any multiindex A € N™ we define the real number ¢()\) as

_ 14card{h €1,...,n] such that A\, = 0}

o) n—+1

we have ¢((0,...,0)) =1 and ¢(A) > 1/(n + 1) for any multiindex A € N™. Let A € N”
a multiindex with |\ = d such that the monomial z}* ---z}* has non-zero coefficient in
P(x); then, using (11):

1 — —
5D PE)= 1> [P

Hence we can define an integer M € (0, d) as the first integer for which there exists A eN"
with |[A| = M + 1 such that

1 ~ ~
|;DAP(€)| > [P(&)1PW. (12)
We can find h € [1,...,n] such that A # 0; let

H = (5\15 s 75\h—17075\h+15 s 7)\77,)

18
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We have |p| < M and ¢(u) — ¢(N\) = 1/(n + 1). Let us consider

1
Q(t> - HDMP(gla cee 7£h—1vta£h—|—17 cee 7€n)7

Q(t) is a polynomial in one variable of degree 6 < d — |ul; let aq,...,as be its roots. We
need the following lemma:

LEMMAT7
For any s > 0 there exists a homogeneous polynomial Rs € Clyy,...,ys] of degree s
and height < §°~1's! such that
°Q(t _ _
8t§ ) _ QMR((t—ay) ™. .., (t—as)™h). (13)
Proof
Let

1
Q(t) =a ] (t—an)
h=1

and let o:[yi,...,y5] — C(t) be the homomorphism defined by y, — (t — ay)~! for
h=1,...,6. We prove our assertion using induction on s; we define Ry as Ry = 1 and
Ry as Ry = y1 + -+ + yq: it is easy to verify that relation (13) holds for s = 0,1. Let us
assume (13) holds for some s for a polynomial R, of degre s and height < §*~!s!; then

o°H1Q(t)  aQ(t) d , OR,
otsT1 - ot URS - Q(t) };(t - ah) g 8yh -
°. ,OR,
= QW)o(RiRs = Yy 5 =),
he1 Yn

Hence we can define R;41 as

é
OR;
Royr = RiRe = > yp——;

using the inductive hypothesis we see that Rsy; is a homogeneous polynomial of degree
s+ 1 and height
H(Rsy1) < d0H(Rs) +0sH(Rs) < 6°(s+ 1)l

Q.E.D.

Now we assume
g —&p| < - < |as — &nl;

19



Polynomials with high multiplicity

then, by lemma 7,

oM 315 A
L)) < QeI (a s — | (14)

By the definition (12) of M we have

1Q(&)] < |P(&)*W

and

Q&) _ 1 5 ;
= gD PE] > AP,

Combining with (14) we find out

< (d = )PP,

lag — &,

Let o« = (&1, .. .,&h—1,01,&p41, - - -,&n); taking the logarithms in the last inequality and
using our upper bound (11) for log|P(§)| we find

C
logla — €| < logd — (M+1)(n+1)Tp' (15)

Moreover D*P(«) = 0, hence

_ 1
@1(a) S 1 DMP) < 2T, (16)

Let u € [0,1] be defined by
" log (M +1)
N log T

from relations (15) and (16) (with a suitable choice of C') we have
p<n+u. (17)

Now we apply the machinery of theorem 1 to find another bound for p which becomes
better for a large u. we follow closely the pattern of the proof of theorem 1. Let f be the
homogenization " P of P; for simplicty we shall consider C"* C P™ via the canonical map

(X1, ymp) — (Lixy oo my).
Using the definition (12) of M and the inequality ¢(A) > 1/(n + 1) we find out

Jmax [ DUfE)] < [P
IN[<SM, Xg=0
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We prove by induction that the following

[(d+n)lgl*

o Pl (18)

S <

holds for any A € N"*! such that [A\| < M. Let us assume (18) hold for any A with
Ao =k — 1 and let A € N**! be a multiindex with A\g = k; by Euler’s formula we have

7o
2 [am D“f] v = (d— |u) D" f
where = (Ao — 1, A1,...,\,). Hence

D ()] < (d — !ul)u!!%D“f(ﬁ)lJr

(4 el o {HOL--(Mti1)!---%!'3117““5)'} <
A (et o
< X4l " P(e)[ T =

PNCETY s

(18) is proved. Combining this with (11) we obtain

A _ p
max log| D™ f(§)] < —e1CT”. (19)

From this point on, we follow closely the pattern of the proof of theorem 1. We define I
as usual; let us assume Iy, ..., I} defined. If

1
log|| Jklle > §l09||fk||£

we let kg = k and we stop here. Otherwise we construct I y; as in the proof of theorem
1. Inequalities (5) and (6) are still true. Moreover, repeatedly applying proposition 4 iii)
and iv) with the bounds (19) for the value of D*f at &, we obtain

t(IkO ) < 614Tk0 ,

log|llk, lle < —c15CT”

(we remember that p > n+ 1 and C' >> 1). This implies ky < n, since otherwise we
would find an ideal I, of codimension n + 1 which satisfies log||I,+1]|¢ < 0. Notice that
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ko > 2 too (f is irreducible and, a fortiori, square-free). Hence, using proposition 3 iv)
and relation (6),

Sk;o

> i rologllpirolle < logl Iy lle — logll T, lle + 16T <
Jj=1

Sko

p/ko
< —e1rCT? < —e1sC (Y einat(oin)) (20)
j=1

Let us assume

p—ukg

log||@j.iolle = —c10Ct (9.1, ) T %0 for j =1,...,s;

By the two inequalities above,

SkO

p/ko it _puko
018C< Z ej,kot(@j,ko)) < c19C Z kot (94,k) TR0 <
Jj=1 j=1
Sko Sko %RL
§019C<Z€j,ko ©,ko )(Zt ©,ko ) >
j=1 j=1
Hence
Skg Skq 1
S ernat(Bine) < (ero/ee) 7 (S o)) (21)
j=1 j=1
On the other side, using (5) and (6) we obtain
Skq Sko
D einot(@ing) = n 2ROMR > (k) =
i=1 i=1
Sko
_ n—QkOTuko Zt(pj,ko> >
j=1
Sko Sko
2koc3 (Zej ko KJJ ko > Zt p] kO
7j=1
Hence
Sko Skq 1
Zej,kot(@j,ko) > (n**oc) (Zt §24,ko > . (22)
j=1 j=1

Comparing (21) and (22) we find out

2k 1 _—ptko
C19 > Cop = Clg(n 003) (I—uwko
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Hence there exists some prime ideal p of I, such that

—uk

logllplle < —c20Ct(p) Tk < 0. (23)
Corollary 2 ensures the existence of g € p with
t(g) < cart(p)'/*.
Hence for any zero a € C™ of p we have
O1(@) < eart(p)/* (24).

We distinguish two cases:
Case 1
Let us assume 2 < kg < n — 1 (hence this case does not occur if n = 2). Then lemma 2.7
of [P1] and inequalities (23) — (24) ensure the existence of a zero a € C™ in the projective
variety defined by @ such that

p—ko p=n+1

logla — €| < caat(p) Hogllplle < —c23Cin (o) T+ < —cp3Cwr(ar) T .

We conclude
p<nl—u)+n-—1. (25)

Case 2

Let us assume ky = n. The set of projective zeros of p is a zero-dimensional variety, hence
smooth. Theorem 1.1 of [A] asserts that we can find a zero o € C™ in the projective
variety defined by @ such that

loglor — €| <logllplle + cast(p)”.

Thus if 5

pun >2and C > =

(1 —u)n 20
we have (using (23) — (24))

1 3 p—un 1 _
logla — &| < —50200w1(a) T—u < —50200w1(a)p.
Hence we conclude
p < Max((2 —u)n,n). (26)

Collecting (17),(25) and (26) we find

n—1
< Mmn+unl—u)+n—1)<n+ ——
P> (n n( ) )<n N1
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for 2 <kyg<n-—1, and

2 —
p < Min(n+u, Maz((2 —u)n,n)) < n+ Max(0, :+ 1?7)

for kg = n.
In any case
n—1 2n—n

<n+M
p<n+ aﬂn+1,n+1

).
If n =2 case 1 does not occur and we have the better result

2n —n
<1+ Maz(0, .
p <n+ Max( n+1)

Theorem 2 is proved.

Q.E.D.
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