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Abstract

Let S be a subset of Cn. For a positive integer M we define the quantity ωM (S) as
the minimum degree of an algebraic hypersurface having a singularity of order ≥ M at
any point of S. Several result of Waldschmidt, Masser, Wüstholz, Esnault and Viehweg
give the inequality

1
cn
ω1(S) ≤ 1

M
ωM (S) (∗)

where cn is a positive constant depending only on n. In my paper, I work with the
arithmetical equivalent of ωM (S), namely the minimum size ωM (S) of a polynomial with
integer coefficient having a singularity of order ≥ M at any point of S (as usual the size
of a polynomial is defined as the maximum between its degree and its logarithmic height).
The main result is to generalize the inequality (*) at the quantity ωM (S). To do this I use
the theory of Chow Forms developed by Ju. V. Nesterenko and P. Philippon and a new
definition of multiplicity, given in terms of the Chow Form of an ideal.

In the second part, I give an application of the main result to the problem of comparing
the transcendence type of an n-uple of complex numbers with its approximation type.
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0− Introduction

Let S be a non-empty finite subset of Cn. Following Waldschmidt (see [W2] §1.3 e) )
we define ωM (S) as the minimum degree of an algebraic hypersurface having a singularity
of order ≥M at any point of S. We are looking for inequalities between ω1(S) and ωM (S),
M > 1. Trivially, we have

1
M
ωM (S) ≤ ω1(S). (1)

In the opposite sense, using powerful tools from complex analysis, Waldschmidt proved

1
n
ω1(S) ≤ 1

M
ωM (S) (2)

(see [W2] §7.5 b) ). The last inequality follows from Bombieri-Skoda’s existence theorem,
which in turn derives from some L2-estimates and from existence theorems for the operator
∂̄, due to Hörmander.
Weaker results of the following kind:

1
cn
ω1(S) ≤ 1

M
ωM (S) (2′)

where cn is some constant greater than n, were obtained by Masser and Wüstholz inde-
pendently (see [M] and [Wu]).
More recently, using deep arguments from projective geometry, Esnault and Viehweg (see
[E-W]) have obtained the following improvement of (2):

ω1(S) + 1
n

≤ 1
M
ωM (S) for n > 1.

A conjecture of J.P. Demailly asserts that one should have

ω1(S) + n− 1
n

≤ 1
M
ωM (S) for n ≥ 1.

In this paper we give some results of the type (2′) in the ring Z[x1, . . . , xn] with explicit
bounds for the height of the polynomials.
Given a polynomial f ∈ Z[x0, . . . , xn] we define its size t(f) as t(f) = degf + lnH(f),
where H(f) is the maximum absolue value of its coefficients. For a positive integer M
we also define ω̄M (S) as the minimum size of a polynomial f ∈ Z[x1, . . . , xn] such that
the hypersurface {f = 0} has a singularity of order ≥ M at any point of S (if any such
polynomial does not exist, we let ω̄M (S) = +∞). Of course, we have the inequality

ω̄M (S) ≥ ωM (S).
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As in the ”geometric” case, we have a simple inequality between ω̄1 and ω̄M :

1
M
ω̄M (S) ≤ ω̄1(S) + n log(1 + ω̄1(S)).

We claim that a relation in the opposite direction exists. In fact we shall prove:

THEOREM 1
There exists an effective constant c > 0 depending only on n such that

1
c
ω̄1(S) ≤ 1

M
ω̄M (S).

A need for results of this kind arises in the study of certain problems connected with
relations between transcendence measures in codimension 1 and approximation measures
in dimension n, as we shall show in the last section of this paper.
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1−Auxiliary assertions

For the proof of theorem 1 we use the theory of eliminating forms, as developed by
Ju.V.Nesterenko (see [N1],[N2] and [N3]). We work over a ring R which will be either Z
or C. For an arbitrary polynomial P ∈ R[y0, . . . , ym] we denote by d◦P its total degree.
We further denote by A the ring of polynomials in the n + 1 variables x0, . . . , xn over
R. We define the rank of a prime ideal ℘ of A as the largest integer k for which there
exists a strictly increasing chain of length k of prime ideals contained in ℘. The rank of
an ideal I ⊂ A will be defined as the minimum rank of the prime ideals containing I. In
what follows we denote by I a homogeneous ideal of A with I ∩R = (0) and such that
IC[x0, . . . , xn] is unmixed of rank n + 1 − r. If A and B are polynomial rings over R,
ρ : A→ B an homomorphism and A′ , B′ polynomial rings over A and B, we shall denote
by the same ρ the homomorphism ρ : A′ → B′ defined in the natural way. Similarly, if ν
is a valuation over some field K and B is a polynomial ring over K, we shall denote by the
same ν the valuation over the quotient field of B defined by taking for ν(P ), P ∈ B, the
minimum value of ν on the coefficients of P .

2



Polynomials with high multiplicity

DEFINITION 1
Let U = {uij , i = 1, . . . , r; j = 0, . . . , n} be a set of independent variables and let

Li =
n∑
j=0

uijxj , i = 1 . . . r

be r linear form. We define the ideal Ī of R[U ] as the set of polynomials G ∈ R[uij ] for
which there exists a natural number M that such

GxMj ∈ (I, L1, . . . , Lr) for j = 0, . . . , n.

Ī is a principal ideal (see [N1] prop.2). We say that a generator F of Ī is an eliminating
form of I and we define N(I) as 1

rd
◦F . If R = Z we define the size t(I) of I as t(I) =

N(I) + lnH(F ).

The following factorization formula is available (see [N2] lemma 2):

PROPOSITION 1
Let F be an eliminating form of I. Then

F = a

N(I)∏
h=1

Lr(αh)

where
a ∈ R[u1, . . . , ur−1]

and αh = (αh0 , . . . , α
h
n) with

αhj ∈ Q(u1, . . . , ur) for h = 1, . . . , N(I), j = 0, . . . , n.

Moreover, if xj 6∈ ℘ for any prime ideal ℘ of I, we may assume αhj = 1 for h = 1, . . . , N(I).

Let S1, . . . , Sr be skew-symmetric matrices in the new variables sikl, 1 ≤ i ≤ r;
0 ≤ k, l ≤ n which are connected only by the relations

sikl + silk = 0.

We denote by S the corresponding set of independent variables, S = {sikl, 1 ≤ i ≤ r;
0 ≤ k, l ≤ n}. Let θ : C[U ] −→ C[S, x] the homomorphism given on each ui by ui 7→ Si.x.
For ω ∈ Cn+1\{0} we further denote by ρω : C[x] −→ C the homomorphism which maps
x to ω; the composed homomorphism ρω ◦ θ will be denoted by θω.

If R = Z we define the norm ‖I‖ω as

‖I‖ω = |ω|−rN(I)H(θωF )
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where F is an eliminating form of I.
For any f ∈ A we define its multiplicity mω(f) at ω ∈ Cn+1\{0} in the usual way,

mω(f) = min{a| ∃j1, . . . , ja ∈ [0, . . . , n] such that ρω
∂af

∂xj1 · · · ∂xja
6= 0}.

If F ∈ R[U ] we define iω(F ) as

iω(F ) = mω(θF ) = min
f∈JF

mω(f)

where JF ⊂ A is the ideal generated by the coefficients of the products of power of the
independent variables silk ∈ S in θF . It is the same as taking

iω(F ) = min{a| ∃j1, . . . , ja ∈ [0, . . . , n] such that ρω
∂aθF

∂xj1 · · · ∂xja
6≡ 0}.

Notice that iω defines a valuation over R(U).
Now we want to make clear some important properties of iω. First of all, it would

be very agreable to show that iω(F ) = iω(F (u1, . . . , ur−1, Tω)) for “almost-all” skew-
symmetric matrices T , if F is an eliminating form. The geometric meaning of this is that
the generic hyperplane section through ω of some algebraic variety V has the same order
of multiplicity at ω as V. We begin with a simple lemma:

LEMMA 1

Let ν1, ν2 be two valuations over C(U). Let us assume that the following assertions
hold:
1) for any eliminating form F there exist r − 1 vectors v2, . . . , vr ∈ Cn+1\{0} such that

νi(F ) = νi(F (u1, v2, . . . , vr)), i = 1, 2;

2) for any α ∈ Cn+1\{0} we have:

ν1(L1(α)) ≥ ν2(L1(α)).

Then ν1(F ) ≥ ν2(F ) for any eliminating form F .

Proof

Let F be an eliminating form of an ideal I, we have, with 1)

νi(F ) = νi(F (u1, v2, . . . , vr)) = νi(Ge11 · · ·G
el
l ) (i = 1, 2)

where G1, . . . , Gl ∈ C[u1] are eliminating forms of the prime ideals of codimension n
associated to (I, v2, . . . , vr). Thus it is enough to prove lemma 1 for an eliminating form of
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a prime ideal ℘ ⊂ C[x] of codimension n, hence for a linear form, but this follows obviously
from 2).

Q.E.D.

For ω ∈ Cn+1\{0}we define three other functions νi,ω : C[U ] −→ N ∪ {+∞}, i = 1, 2, 3:

ν1,ω(F ) = min{a| ∃j1, . . . , ja ∈ [0, . . . , n] such that ρω
∂aθ1

ωF

∂xj1 · · · ∂xja
6≡ 0},

ν2,ω(F ) = min{a| ∃j ∈ [0, . . . , n] such that θω
∂aF

∂(u1
j )a
6≡ 0},

ν3,ω(F ) = min{a| ∃j1, . . . , ja ∈ [0, . . . , n], ∃i1, . . . , ia ∈ [1, . . . , r] such that

ρ̃ω
∂aθ̃F

∂x
(i1)
j1
· · · ∂x(ia)

ja

6≡ 0}

where θ1
ω, θ̃, ρ̃ω are the homomorphisms defined as follow:

θ1
ω :C[U ] −→ C[S, x],

ui 7→
{
S1x, if i = 1,
Siω, if i = 2, . . . , r;

θ̃ :C[U ] −→ C[S, x(1), . . . , x(r)],

ui 7→ Six(i), i = 1, . . . , r;

ρ̃ω :C[x(1), . . . , x(r)] −→ C,

x(i) 7→ ω, i = 1, . . . , r.

The following proposition, which is due to P.Philippon, shows that these functions take
the same values as iω on the eliminating forms.

PROPOSITION 2
For any eliminating form F

ν1,ω(F ) = ν2,ω(F ) = ν3,ω(F ) = iω(F ).

Proof
Let F be an eliminating form of I, first we prove the equality ν1,ω(F ) = ν2,ω(F ). For

this we apply for j = 0, . . . , n lemma 1 to the valuations ν1,ω and

ν2,ω,j(F ) = min{a| such that θω
∂aF

∂(u1
j )a
6≡ 0}.
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Assertion 1 is obviously satisfied. Further we observe that

ν1,ω(L1(α)) =
{

0, if α 6≡ ω
1, if α ≡ ω ,

ν2,ω,j(L1(α)) =


0, if α 6≡ ω,
1, if α ≡ ω and ωj 6= 0
∞, if α ≡ ω and ωj = 0

,

where α ≡ β means that α, β ∈ Cn+1\{0} define the same point in the projective space.
Hence lemma 1 leads to

ν1,ω(F ) = ν2,ω(F ) = min
j=0,...,n

ν2,ω,j(F ).

For proving ν2,ω(F ) ≥ iω(F ), we recall that proposition 1 of [P2] implies

xMj θ
∂aF

∂(u1
j )a
∈
(

∂aθf

∂xj1 · · · ∂xja
| f ∈ JF , j1, . . . , ja ∈ [0, . . . , n]

)
for some integer M ≥ 1.

The inequality ν3,ω(F ) ≥ ν1,ω(F ) derives immediatly from proposition 2 of [P2],as
explained there.

Finally the relation iω(F ) ≥ ν3,ω(F ) is obvious.

Q.E.D.

COROLLARY 1
For any eliminating form F we have

iω(F ) = iω(F (u1, . . . , ur−1, Tω))

for a generic skew-matrix T .

Now we may define the multiplicity of I at ω.

DEFINITION 2
Let ω ∈ Cn+1\{0} and I be as in definition 1. Let F be an eliminating form of I; we

define the multiplicity iω(I) of I at ω as iω(I) = iω(F ).

Remark

It is easy to see that iω(I) = 0 if and only if ω is in the projective variety generated by
I. It is also possible to prove that iω(I) = 1 for a prime ideal I if and only if the projective
variety generated by I is smooth at ω (see [A] lemma 2.2).

The following lemma shows the equivalence between iω((f)) and the usual notion of
multiplicity of an algebraic hypersurface at a point.

LEMMA 2
Let f ∈ R[x0, . . . , xn] and ω ∈ Cn+1 − {0}, then iω((f)) = mω(f).

6



Polynomials with high multiplicity

Proof
Let us assume ω0 6= 0, and let ∆0,∆1, . . . ,∆n be the cofactors of x0, x1, . . . , xn in the

matrix 
x0 x1 . . . xn
u1

0 u1
1 . . . u1

n
...

...
...

...
un0 un1 . . . unn

 .

F (u) = f(∆0, . . . ,∆n) is an eliminating form of (f) (see [N3] lemma 2). Moreover, θω∆j =
Axj for some A ∈ C[sikl, x0, . . . , xn] with A(ω) 6≡ 0 (see [N3] p.432). Hence

iω((f)) = iω(F ) = mω(Ad
◦ff) = mω(Ad

◦f ) ·mω(f) = mω(f).

Q.E.D.

Let

g ∈ A\
t⋃

h=1

℘′h

where ℘′1, . . . , ℘′t are the prime ideals associated to I. We define the resultant Res(F, g)
of F and g as

Res(F, g) = ad
◦g

N(I)∏
h=1

g(αh).

Lemma 4 of [N2] ensures Res(F, g) ∈ R[u1, . . . , ur−1]. Moreover

Res(F, g) = bEe11 · · ·Eess

where b ∈ R and E1, . . . , Es are eliminating forms of the minimal prime ideals ℘1, . . . , ℘s
of (I, g) such that ℘l ∩R = (0) for l = 1, . . . , s (see [N2] lemma 6). We define Res(I, g) as
the corresponding intersection of symbolic powers

Res(I, g) = ℘
(e1)
1 ∩ · · · ∩ ℘(es)

s .

The following propositions show the behaviour of the quantities N(I), iω(I), t(I) and
‖I‖ω with respect to the primary decomposition and the resultant operation.

PROPOSITION 3
Let

I = Q1 ∩ · · · ∩Qt
be an irreducible primary decomposition in which for l ≤ s we have Ql ∩ R = (0) and
Qs+1 ∩ · · · ∩Qt ∩R = (b), b ∈ R\{0}. Furthermore, for l ≤ s suppose that ℘l =

√
Ql and

el is the exponent of the ideal Ql. Let E1, . . . , Es be eliminating forms of ℘1, . . . , ℘s. Then

F = bEe11 · · ·Eess

7
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is an eliminating form of I. Hence

N(I) =
s∑
l=1

elN(℘l);i)

iω(I) =
s∑
l=1

eliω(℘l).ii)

Moreover, if R = Z,

log|b|+
s∑
l=1

elt(℘l)− cN(I) ≤ t(I) ≤ log|b|+
s∑
l=1

elt(℘l) + cN(I);iii)

log|b|+
s∑
l=1

el‖℘l‖ω − cN(I) ≤ ‖I‖ω ≤ log|b|+
s∑
l=1

el‖℘l‖ω + cN(I).iv)

where c is some positive constant depending only on n.

Proof

For i), iii) and iv) see [N3] proposition 2 and [W1] lemma 4.2.14. ii) is obvious.

Q.E.D.

PROPOSITION 4

Let g be as above. Then

N(Res(I, g)) ≤ N(I)d◦g;i)
iω(Res(I, g)) ≥ iω(I)iω((g)).ii)

Moreover, if R = Z,

t(Res(I, g)) ≤ (3 + n+ rln(n+ 1))t(I)t(g);iii)

log‖(Res(I, g))‖ω ≤ ct(I)t(g) + logMax(‖I‖ω, |ω|−d
◦g|g(ω)|)iv)

where c is some positive constant depending only on n.

Proof

i) See [N3] lemma 5;
ii) We assume ωt 6= 0; let N = iω((g)), δ = N(I), D = d◦g and let F be an eliminating

form of I. According to proposition 1, we have:

F = a
δ∏

h=1

Lr(αh).

8
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We may extend the valuation

ν : C(u1, . . . , ur−1)→ Z

defined by ν(F/G) = iω(F )− iω(G) to a valuation over K = C(u1, . . . , ur−1, αhi ) which we
still denote by ν. Moreover, we may extend ν to the polynomial ring K[ur] in the following
way. Let P ∈ K[ur] and assume

P (Srω) =
∑
m∈Λ

bmm

where Λ ∈ C[srkl] is a finite set of monomial and bm ∈ K ∀m ∈ Λ. Then we define ν(P ) as

ν(P ) = min
m∈Λ

ν(bm).

Lemma 1 gives ν(G) = iω(G) for any G ∈ C[u1, . . . , ur]. We have

iω(Res(F, g)) = ν(Res(F, g)) = ν

(
aD

δ∏
h=1

g(αh)
)

=

= Dν(a) +
δ∑

h=1

ν(g(αh)).

The Taylor’s expansion of g gives:

g(x) =
∑

λ=(λ0,...,λ̂t,...,λn)
N≤|λ|≤D

cλx
D−|λ|
t

n∏
j=1
j 6=t

(xtωj − xjωt)λj cλ ∈ C.

Hence
ν(g(αh)) ≥ N min

1≤j≤n
j 6=t

ν(αtωj − αjωt) ≥

≥ N min
1≤t<j≤n

ν(αtωj − αjωt) =

= Nν(Srω.αh) .

Thus

iω(Res(F, g)) ≥ Dν(a) +N
δ∑

h=1

ν(Srω.αh) ≥

≥ Nν(F (u1, . . . , ur−1, Srω)) = Niω(F ).

iii) See [N3] lemma 5.
iv) See [N3] proposition 3).

Q.E.D.
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For the proof of theorem 1 we should find out lower bound for the exponent of some
primary components associated with I. This is the aim of the following lemma:

LEMMA 3
We use the same notations as in proposition 3. Let us assume

iω(I) ≥M

for the generic point ω of VP(Cn)(℘1). Then

e1 ≥M.

Proof

We observe that ∂E1
∂u1

0
6∈ ℘1 since its total degree is less than d◦E1. Thus, taking into

account proposition 1, we have

iω(I) ≥M ;
iω(℘h) = 0 for h = 2, . . . , l;
iω(℘1) = 1

for the generic point ω of VP(Cn)(℘1). Hence by proposition 3, ii)

M ≤ iω(I) = e1iω(℘1) + · · · eliω(℘l) = e1.

Q.E.D.

2− Proof of theorem 1

Now we assume R = Z. For a homogeneous prime ideal ℘ ⊂ A we define S℘(H, s)
as the set of residues modulo ℘ of homogeneous polynomials g ∈ Z[x0, . . . , xn] of degree s
whose coefficients do not exceed H in absolute value. Using an upper bound for the growth
of S℘(H, s) due to Ju.V.Nesterenko (see [N2] theorem 3) it is easy to prove the following

COROLLARY 2
There exists g ∈

√
I such that

t(g) ≤ 3(6n)n+4t(I)
1

n+1−r .

10
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Proof of theorem 1

Let S be a non-empty subset of Cn and let P ∈ Z[x1, . . . , xn] with t(P ) = ω̄M (S) = T
such that DµP (α) = 0 for α ∈ S and for any multiindex µ ∈ Nn such that |µ| < M .
Let f = hP be the homogeneization of P . Clearly, it is enough to give a homogeneous
polynomial g with

t(g) ≤ c
T

M

such that g(α) = 0 for any α ∈ VM , where

VM = {α ∈ P(Cn) such that Dλf(α) = 0 for any λ ∈ Nn+1 with |λ| < M}.

We assume VM 6= ∅ and we denote by c1, . . . , c8 positive constants depending only on n.
Let t0, . . . , tn ∈ [0, 1] be defined by{

t0 = 0
tk = (n+ 1− k)−1 for k = 1 . . . n .

Let k0 ≤ n be a natural number which will be specified later. By induction we define a
sequence {Ik}k=1,...,k0 of pure ideal of rank k:
k = 1

I1 = (f).

k → k + 1
Let

Ik = Q1,k ∩ · · · ∩Qlk,k

be an irreducible primary decomposition of Ik. Let us put ℘j,k =
√
Qj,k and let us denote

by ej,k the exponent of Qj,k. After a permutation of 1, . . . , lk, we may assume that there
exists an integer sk ∈ [0, . . . , lk] such that:{

Dλf ∈ ℘j,k for any λ ∈ Nn+1 with |λ| ≤ tkM , if j = 1, . . . , sk;
Dλjf 6∈ ℘j,k for some λj ∈ Nn+1 with |λj | ≤ tkM , if j = sk + 1, . . . , lk.

Let
Jk =

⋂
j>sk

Qj,k,

if VP(Cn)(Jk) ∩ VM = ∅ we let k0 = k (this certainly occurs if k = n, since otherwise
there would exist an index j > sn such that VP(Cn)((℘j,sn , D

λjf)) 6= ∅ which is impossible
because the homogeneous ideal (℘j,sn , D

λjf) has codimension n+ 1).
A classical trick (see for instance [M-W] Ch.4 lemma 2, [P1] lemma 1.9) allows us to find
λ1, . . . , λa ∈ Nn+1 with |λi| ≤ tkM and φ1, . . . , φa ∈ A with d◦φi = |λi| and t(φi) ≤ c1T
such that

ψk = φ1
Dλ1

f

λ1!
+ · · ·+ φa

Dλaf

λa!
6∈ ℘j,k

11



Polynomials with high multiplicity

for any j > sk. We observe that Dλψk(α) = 0 for α ∈ VN and N > |λ| + tkM . Notice
that

t(φk) ≤ c2T (3)

Then we define
Ik+1 = Res(Jk, ψk).

We claim the following three assertions hold:

VM ⊆
k0⋃
k=1

sk⋃
j=1

VP(Cn)(℘j,k); (4)

ej,k ≥Mk
k−1∏
h=0

(tk − th) ≥ n−2kMk for j = 1, . . . , sk and k = 1, . . . , k0; (5)

sk∑
j=1

ej,kt(℘j,k) ≤ c3T k for k = 1, . . . , k0. (6)

Assume for the moment (4),(5),(6) proved. For any k = 1, . . . , k0, corollary 2 ensures the

existence of gk ∈
sk⋂
j=1

℘j,k such that

t(gk) ≤ c4(
sk∑
j=1

t(℘j,k))1/k.

Using (5) and (6) we obtain:

t(gk) ≤ c5M−1(
sk∑
j=1

ej,kt(℘j,k))1/k ≤ c6
T

M
.

Let g =
k0∏
k=1

gk: relation (4) ensures that g is zero over VM and we have

t(g) ≤ c7
T

M
.

Hence it is enough to prove (4),(5) and (6).
:(4) By induction we have

VM ⊆
( k⋃
h=1

sh⋃
j=1

VP(Cn)(℘j,h)
)⋃

VP(Cn)(Jk)

12
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and VP(Cn)(Jk0) ∩VM = ∅.
:(5) By induction we prove the following

LEMMA 4
Let N > tk−1M and

ω ∈ VN\
k−1⋃
h=1

sh⋃
j=1

VP(Cn)(℘j,h),

then

iω(Ik) ≥
k−1∏
h=0

(N − thM).

Proof
k = 1: lemma 2 ensures that iω(I1) = N for any ω ∈ VM .

k ⇒ k + 1: by inductive hypotesis, for

ω ∈ VN\
k⋃
h=1

sh⋃
j=1

VP(Cn)(℘j,h)

we have

iω(Jk) ≥
k−1∏
h=0

(N − thM)

(if G is an eliminating form of Jk and F is an eliminating form of Ik then, by proposition
1, G = EF and θωE 6≡ 0, hence iω(Jk) = iω(Ik)), besides,

iω((ψk)) ≥ N − tkM.

Hence, using proposition 4 ii),

iω(Ik+1) ≥
k∏
h=0

(N − thM).

Q.E.D.

Lemma 3 allows us to prove (5). In fact,

VP(Cn)(℘j,h) ⊆ VtkM for j = 1, . . . , sk.

Hence, using the lemma above and lemma 3,

ej,k ≥
k−1∏
h=0

(tkM − thM) =

=
Mk

n− k + 1

k−1∏
h=1

k − h
(n− k + 1)(n− h+ 1)

≥ n−2k+1Mk; j = 1, . . . , sk

and (5) is proved.

13
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:(6) Using proposition 4 and inequality (3), it is easy to see t(Ik) ≤ c7T
k. Hence, by

proposition 3 iii),
sk∑
j=1

ej,kt(℘j,k) ≤ c8T k.

Q.E.D.

Remark

Our method is able to say something about the relation beetwen ω1(S) and ωM (S),
but we obtain only

4−nn−n−3ω1(S) ≤ 1
M
ωM (S). (7)

Using Chardin’s bound for Hilbert’s function (see [CH]), we may improve (7) to

n−4ω1(S) ≤ 1
M
ωM (S).

3− Some applications

Let ξ = (ξ1, . . . , ξn) be a n uple of complex numbers. We define its transcendence type
τ(ξ) as the infimum of the set of real numbers τ for which there exists a positive constant
cτ such that the inequality

log|P (ξ)| > −cτ t(P )τ

holds for any non-zero polynomial P with integer coefficients. Using the box-principle, it
is easy to see that τ(ξ) ≥ n+ 1.

Similarly we define η(ξ) as the infimum of the set of real numbers η for which there
exists a positive constant cη such that

log|α− ξ| > −cηω̄1(α)η

holds for any α ∈ Cn.
We have the trivial inequality

η(ξ) ≤ τ(ξ)

which reposes on the following lemma:

LEMMA 5
Let ξ ∈ Cn. For any P ∈ C[x1, . . . , xn] and for any α ∈ Cn with P (α) = 0 and

|α− ξ| ≤ 1 we have:

|P (ξ)| ≤ |α− ξ|[(2 + |ξ|)(n+ 1)2]d
◦PH(P ).

14



Polynomials with high multiplicity

Proof

|P (ξ)| ≤
∑

1≤|λ|≤d◦P

|DλP (α)|
λ!

|α1 − ξ1|λ1 · · · |αn − ξn|λn ≤

≤ |α− ξ|
∑

0≤|λ|≤d◦P

|DλP (α)|
λ!

≤

≤ |α− ξ|(n+ 1)d
◦P sup
|x|=1

|P (x+ α)| ≤

≤ |α− ξ|[(1 + |α|)(n+ 1)2]d
◦PH(P ) ≤

≤ |α− ξ|[(2 + |ξ|)(n+ 1)2]d
◦PH(P ) ≤ .

Q.E.D.

In the opposite sense, using lemma 2.7 of [P2], it is possible to prove

τ(ξ) ≤ η(ξ) + 1.

It seems to be natural to expect

τ(ξ) = η(ξ) for τ(ξ) > n+ 1 (8)

(notice that (8) holds if n=1: see for instance [W1] pg 133).
(8) implies the following conjecture of G.V. Chudnovsky (see [C] Problem 1.3 page 178):

Conjecture

For almost all (in the sense of Lebesgue’s measure in R2n) n-uples ξ of complex
numbers we have:

τ(ξ) ≤ n+ 1.

The link between (8) and the conjecture above is given by the following proposition:

PROPOSITION 5

The set of n-uples of complex numbers ξ for which

η(ξ) > n+ 1

has Lebesgue’s measure 0.

Proof

We denote by λ the Lebesgue’s measure in Cn. Let B = {ξ ∈ Cn such that |ξ| ≤ 1}.
It is enough to prove that

Λ = {ξ ∈ B such that η(ξ) > n+ 1}

15
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has Lebesgue’s measure 0. From the definition of Λ we have:

Λ ⊂
+∞⋂
s=2

⋃
N∈N

⋃
f∈Z[x1,...,xn]

[t(f)]=N

Af (exp(−sNn+1))

where
Af (ε) = {ξ ∈ B| dist(ξ, {f = 0}) ≤ ε}.

We need the following lemma from measure theory:
LEMMA 6

Let V be a pure algebraic variety in Cn of codimension k and degree d. Then for any
ε ∈ (0, 1)

λ({ξ ∈ B| dist(ξ,V) ≤ ε}) ≤ c(n, k)ε2kd

where c(n, k) is some positive constant depending only on n and k.

Proof
We denote by Hk the 2k-dimensional Hausdorff’s measure and by Bx(r) the ball of Cn

with centre at x and radius r. We also denote by c9, . . . , c13 effective positive constants
depending only on n and k.

We begin with a bound for the area of V ∩B0(r). Using theorem 3.2.22(4) of [F1], a
Fubini-Tonelli argument yields:

Hn−k(V ∩B0(r)) = c9

∫
G(n,n−k)

dν(p)
∫
p(V∩B0(r))

card(V ∩B0(r) ∩ p−1(y))dHn−k(y)

where G(n, n−k) is the set of (n−k)-dimensional complex subvector spaces of Cn (which
are in turn identified with the set of orthogonal projections p over these spaces) and ν is
the only measure on G(n, n − k) with unitary mass and invariant by the action of U(n).
For ν-almost all p and for all y ∈ p(V ∩B0(r))

card(V ∩B0(r) ∩ p−1(y)) ≤ d.

Hence

Hn−k(V ∩B0(r)) ≤ c9d
∫
G(n,n−k)

dν(p)
∫
p(V∩B0(r))

dHn−k(y) ≤ c10dr
2(n−k). (9)

The link between the growth of the area and the measure of the set of points which are
close to V is given by the following formula which derives from theorem 6.2 of [F2]:

Hn−k(V ∩B0(r))Hn(B0(s)) =
∫
Cn

Hn−k(V ∩B0(r) ∩Bξ(s))dλ(ξ).

Using the formula above with r = 1 + 2ε and s = 2ε and the bound (9) we find:

c11dε
2n ≥

∫
{ξ∈B| dist(ξ,V)<ε}

Hn−k(V ∩Bξ(2ε))dλ(ξ). (10)

16
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For ξ ∈ B, dist(ξ,V) < ε, let ξ∗ ∈ V be such that dist(ξ,V) = dist(ξ, ξ∗). Then

V ∩Bξ(2ε) ⊃ V ∩Bξ∗(ε).

The function

ε→ Hn−k(V ∩Bξ∗(ε))
ε2(n−k)

is monotonically increasing and is bounded from below by some positive constant c4 (see
[L] theorem 2.23). Hence

Hn−k(V ∩Bξ(2ε)) ≥ Hn−k(V ∩Bξ∗(ε)) ≥ c12ε
2(n−k).

Combining with (10) we have

λ({ξ ∈ B| dist(ξ,V) ≤ ε}) ≤ c13dε
2k.

Q.E.D.

From the lemma above with V = {f = 0}, we obtain:

λ(Af (exp(−sNn+1)) ≤ c(n, 1)Nexp(−2sNn+1).

The number of polynomials in n variables with integer coefficients and size ≤ N is bounded
by exp(2Nn+1), hence for all s ≥ 2

λ(Λ) ≤ λ

( ⋃
N∈N

⋃
f∈Z[x1,...,xn]

[t(P )]=N

Af (exp(−sNn+1)

)
≤

≤
∑
N≥1

c(n, 1)Nexp(−2(s− 1)Nn+1) = ψ(s)

and
ψ(s)→ 0 for s→ +∞.

Q.E.D.

Let τ = τ(ξ) and η = η(ξ). As an application of the method of the proof of theorem
1, we shall prove:

THEOREM 2

Let us assume τ > n+ 1, n ≥ 2. Then

τ ≤ η +Max(
n− 1
η + 1

,
2n− η
n+ 1

).

17
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Moreover, if n = 2,

τ ≤ η +Max(0,
4− η

3
).

For example, if n = 2 we find:

τ ≤ 3.34 for η ≤ 3;
τ = η for η > 4.

If n = 3 the situation is a little worse:

τ ≤ 4.5 for η ≤ 4;
τ ≤ 6.34 for η ≤ 6.

We observe that for any fixed n our result approaches to (8) when η (or τ)→ +∞:

COROLLARY 3

η ≤ τ ≤ η + o(
1
η

) for η → +∞.

Proof of Theorem 2

Let us assume τ > n + 1 . We choose a real number ρ with n + 1 ≤ ρ < τ . By
hypothesis, for any positive constant C there exists a polynomial P with integer coefficients
such that

log|P (ξ)| < −CT ρ, (11)

where T is the size of P . Let d = d◦P ; in what following we denote by c14, . . . , c25 positive
constants depending only on n and |ξ|.

For any multiindex λ ∈ Nn we define the real number φ(λ) as

φ(λ) =
1 + card{h ∈ [1, . . . , n] such that λh = 0}

n+ 1
;

we have φ((0, . . . , 0)) = 1 and φ(λ) ≥ 1/(n + 1) for any multiindex λ ∈ Nn. Let λ̄ ∈ Nn

a multiindex with |λ̄ = d such that the monomial xλ1
1 · · ·xλnn has non-zero coefficient in

P (x); then, using (11):

| 1
λ̄!
Dλ̄P (ξ)| ≥ 1 > |P (ξ)|φ(λ̄).

Hence we can define an integer M ∈ (0, d) as the first integer for which there exists λ̃ ∈ Nn

with |λ̃| = M + 1 such that

| 1
λ̃!
Dλ̃P (ξ)| > |P (ξ)|φ(λ̃). (12)

We can find h ∈ [1, . . . , n] such that λ̃h 6= 0; let

µ = (λ̃1, . . . , λ̃h−1, 0, λ̃h+1, . . . , λ̃n).

18



Polynomials with high multiplicity

We have |µ| ≤M and φ(µ)− φ(λ̃) = 1/(n+ 1). Let us consider

Q(t) =
1
µ!
DµP (ξ1, . . . , ξh−1, t, ξh+1, . . . , ξn);

Q(t) is a polynomial in one variable of degree δ ≤ d− |µ|; let α1, . . . , αδ be its roots. We
need the following lemma:

LEMMA 7
For any s ≥ 0 there exists a homogeneous polynomial Rs ∈ C[y1, . . . , yδ] of degree s

and height ≤ δs−1s! such that

∂sQ(t)
∂ts

= Q(t)Rs((t− α1)−1, . . . , (t− αδ)−1). (13)

Proof
Let

Q(t) = a
δ∏

h=1

(t− αh)

and let σ: [̧y1, . . . , yδ] → C(t) be the homomorphism defined by yh 7→ (t − αh)−1 for
h = 1, . . . , δ. We prove our assertion using induction on s; we define R0 as R0 = 1 and
R1 as R1 = y1 + · · · + yd: it is easy to verify that relation (13) holds for s = 0, 1. Let us
assume (13) holds for some s for a polynomial Rs of degre s and height ≤ δs−1s!; then

∂s+1Q(t)
∂ts+1

=
∂Q(t)
∂t

σRs −Q(t)
δ∑

h=1

(t− αh)−2σ
∂Rs
∂yh

=

= Q(t)σ(R1Rs −
δ∑

h=1

y2
h

∂Rs
∂yh

).

Hence we can define Rs+1 as

Rs+1 = R1Rs −
δ∑

h=1

y2
h

∂Rs
∂yh

;

using the inductive hypothesis we see that Rs+1 is a homogeneous polynomial of degree
s+ 1 and height

H(Rs+1) ≤ δH(Rs) + δsH(Rs) ≤ δs(s+ 1)!.

Q.E.D.

Now we assume
|α1 − ξh| ≤ · · · ≤ |αδ − ξh|;
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then, by lemma 7,

|∂
λ̃hQ(ξh)
∂tλ̃h

| ≤ |Q(ξh)|(d− |µ|)λ̃h−1λ̃h!|α1 − ξh|−λ̃h (14)

By the definition (12) of M we have

|Q(ξh)| ≤ |P (ξ)|φ(µ)

and

|∂
λ̃hQ(ξh)
∂tλ̃h

| = | 1
µ!
Dλ̃P (ξ)| > λ̃h!|P (ξ)|φ(λ̃).

Combining with (14) we find out

|α1 − ξh|λ̃h < (d− |µ|)λ̃h−1|P (ξ)|φ(µ)−φ(λ̃).

Let α = (ξ1, . . . , ξh−1, α1, ξh+1, . . . , ξn); taking the logarithms in the last inequality and
using our upper bound (11) for log|P (ξ)| we find

log|α− ξ| < logd− C

(M + 1)(n+ 1)
T ρ. (15)

Moreover DµP (α) = 0, hence

ω̄1(α) ≤ t( 1
µ!
DµP ) ≤ 2T. (16)

Let u ∈ [0, 1] be defined by

u =
log (M + 1)

log T

from relations (15) and (16) (with a suitable choice of C) we have

ρ ≤ η + u. (17)

Now we apply the machinery of theorem 1 to find another bound for ρ which becomes
better for a large u. we follow closely the pattern of the proof of theorem 1. Let f be the
homogenization hP of P ; for simplicty we shall consider Cn ⊂ Pn via the canonical map

(x1, . . . , xn) 7→ (1 : x1 : . . . : xn).

Using the definition (12) of M and the inequality φ(λ) ≥ 1/(n+ 1) we find out

max
λ∈Nn+1

|λ|≤M, λ0=0

| 1
λ!
Dλf(ξ)| ≤ |P (ξ)|

1
n+1 .
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We prove by induction that the following

| 1
λ!
Dλf(ξ)| ≤ [(d+ n)|ξ|]λ0

λ0!
|P (ξ)|

1
n+1 (18)

holds for any λ ∈ Nn+1 such that |λ| ≤ M . Let us assume (18) hold for any λ with
λ0 = k − 1 and let λ̃ ∈ Nn+1 be a multiindex with λ0 = k; by Euler’s formula we have

n∑
t=0

[
∂

∂xt
Dµf

]
xt = (d− |µ|)Dµf

where µ = (λ0 − 1, λ1, . . . , λn). Hence

|Dλf(ξ)| ≤ (d− |µ|)µ!| 1
µ!
Dµf(ξ)|+

+ (n+ |µ|)µ!|ξ| max
1≤t≤n

{
1

µ0! · · · (µt + 1)! · · ·µn!
| ∂
∂xt

Dµf(ξ)|
}
≤

≤ λ!
k

(d+ n)|ξ| [(d+ n)|ξ|]k−1

(k − 1)!
|P (ξ)|

1
n+1 =

= λ!
[(d+ n)|ξ|]k

k!
|P (ξ)|

1
n+1 .

(18) is proved. Combining this with (11) we obtain

max
λ≤M

log|Dλf(ξ)| < −c1CT ρ. (19)

From this point on, we follow closely the pattern of the proof of theorem 1. We define I1
as usual; let us assume I1, . . . , Ik defined. If

log‖Jk‖ξ ≥
1
2
log‖Ik‖ξ

we let k0 = k and we stop here. Otherwise we construct Ik+1 as in the proof of theorem
1. Inequalities (5) and (6) are still true. Moreover, repeatedly applying proposition 4 iii)
and iv) with the bounds (19) for the value of Dλf at ξ, we obtain

t(Ik0) < c14T
k0 ,

log‖Ik0‖ξ < −c15CT
ρ

(we remember that ρ ≥ n + 1 and C >> 1). This implies k0 ≤ n, since otherwise we
would find an ideal In+1 of codimension n+ 1 which satisfies log‖In+1‖ξ < 0. Notice that
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k0 ≥ 2 too (f is irreducible and, a fortiori, square-free). Hence, using proposition 3 iv)
and relation (6),

sk0∑
j=1

ej,k0 log‖℘j,k0‖ξ ≤ log‖Ik0‖ξ − log‖Jk0‖ξ + c16T
k0 ≤

< −c17CT
ρ ≤ −c18C

( sk0∑
j=1

ej,k0t(℘j,k0)
)ρ/k0

(20)

Let us assume

log‖℘j,k0‖ξ ≥ −c19Ct(℘j,k0)
ρ−uk0

(1−u)k0 for j = 1, . . . , sk.

By the two inequalities above,

c18C
( sk0∑
j=1

ej,k0t(℘j,k0)
)ρ/k0

< c19C

sk0∑
j=1

ej,k0t(℘j,k0)
ρ−uk0

(1−u)k0 ≤

≤ c19C
( sk0∑
j=1

ej,k0t(℘j,k0)
)( sk0∑

j=1

t(℘j,k0)
) ρ−k0

(1−u)k0 .

Hence
sk0∑
j=1

ej,k0t(℘j,k0) < (c19/c18)
k0
ρ−k0

( sk0∑
j=1

t(℘j,k0)
) 1

1−u
(21)

On the other side, using (5) and (6) we obtain

sk0∑
j=1

ej,k0t(℘j,k0) ≥ n−2k0Mk0

sk0∑
j=1

t(℘j,k0) =

= n−2k0Tuk0
sk0∑
j=1

t(℘j,k0) ≥

≥ n−2k0c−u3

( sk0∑
j=1

ej,k0t(℘j,k0)
)u sk0∑

j=1

t(℘j,k0).

Hence
sk0∑
j=1

ej,k0t(℘j,k0) ≥ (n2k0cu3 )−
1

1−u

( sk0∑
j=1

t(℘j,k0)
) 1

1−u
. (22)

Comparing (21) and (22) we find out

c19 > c20 := c18(n2k0cu3 )
−ρ+k0
(1−u)k0 .
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Hence there exists some prime ideal ℘ of Ik0 such that

log‖℘‖ξ < −c20Ct(℘)
ρ−uk0

(1−u)k0 < 0. (23)

Corollary 2 ensures the existence of g ∈ ℘ with

t(g) ≤ c21t(℘)1/k0 .

Hence for any zero α ∈ Cn of ℘ we have

ω̄1(α) ≤ c21t(℘)1/k0 (24).

We distinguish two cases:
Case 1
Let us assume 2 ≤ k0 ≤ n− 1 (hence this case does not occur if n = 2). Then lemma 2.7
of [P1] and inequalities (23)− (24) ensure the existence of a zero α ∈ Cn in the projective
variety defined by ℘ such that

log|α− ξ| < c22t(℘)−1log‖℘‖ξ ≤ −c23Cω̄1(α)
ρ−k0
1−u ≤ −c23Cω̄1(α)

ρ−n+1
1−u .

We conclude
ρ ≤ η(1− u) + n− 1. (25)

Case 2
Let us assume k0 = n. The set of projective zeros of ℘ is a zero-dimensional variety, hence
smooth. Theorem 1.1 of [A] asserts that we can find a zero α ∈ Cn in the projective
variety defined by ℘ such that

log|α− ξ| < log‖℘‖ξ + c24t(℘)2.

Thus if
ρ− un

(1− u)n
≥ 2 and C ≥ 2c24

c20

we have (using (23)− (24))

log|α− ξ| < −1
2
c20Cω̄1(α)

ρ−un
1−u ≤ −1

2
c20Cω̄1(α)ρ.

Hence we conclude
ρ ≤Max((2− u)n, η). (26)

Collecting (17),(25) and (26) we find

ρ ≤Min(η + u, η(1− u) + n− 1) ≤ η +
n− 1
η + 1

23



Polynomials with high multiplicity

for 2 ≤ k0 ≤ n− 1, and

ρ ≤Min(η + u,Max((2− u)n, η)) ≤ η +Max(0,
2n− η
n+ 1

)

for k0 = n.
In any case

ρ ≤ η +Max(
n− 1
η + 1

,
2n− η
n+ 1

).

If n = 2 case 1 does not occur and we have the better result

ρ ≤ η +Max(0,
2n− η
n+ 1

).

Theorem 2 is proved.

Q.E.D.
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