

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Polynomials with high multiplicity

This is the author's manuscript			
Original Citation:			
Availability:			
This version is available http://hdl.handle.net/2318/1944830 since 2023-11-28T13:17:10Z			
Published version:			
DOI:10.4064/aa-56-4-345-364			
Terms of use:			
Open Access			
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.			

(Article begins on next page)

Francesco Amoroso Scuola Normale Superiore Piazza dei Cavalieri 7 I-56100 PISA

Polynomials with high multiplicity

(Acta Arithmetica)

Keywords for classification: 10 E

Abstract

Let S be a subset of \mathbb{C}^n . For a positive integer M we define the quantity $\omega_M(S)$ as the minimum degree of an algebraic hypersurface having a singularity of order $\geq M$ at any point of S. Several result of Waldschmidt, Masser, Wüstholz, Esnault and Viehweg give the inequality

$$\frac{1}{c_n}\omega_1(S) \le \frac{1}{M}\omega_M(S) \tag{(*)}$$

where c_n is a positive constant depending only on n. In my paper, I work with the arithmetical equivalent of $\omega_M(S)$, namely the minimum size $\overline{\omega}_M(S)$ of a polynomial with integer coefficient having a singularity of order $\geq M$ at any point of S (as usual the size of a polynomial is defined as the maximum between its degree and its logarithmic height). The main result is to generalize the inequality (*) at the quantity $\overline{\omega}_M(S)$. To do this I use the theory of Chow Forms developed by Ju. V. Nesterenko and P. Philippon and a new definition of multiplicity, given in terms of the Chow Form of an ideal.

In the second part, I give an application of the main result to the problem of comparing the transcendence type of an n-uple of complex numbers with its approximation type.

POLYNOMIALS WITH HIGH MULTIPLICITY

Francesco Amoroso

0 - Introduction

Let S be a non-empty finite subset of \mathbb{C}^n . Following Waldschmidt (see [W2] §1.3 e)) we define $\omega_M(S)$ as the minimum degree of an algebraic hypersurface having a singularity of order $\geq M$ at any point of S. We are looking for inequalities between $\omega_1(S)$ and $\omega_M(S)$, M > 1. Trivially, we have

$$\frac{1}{M}\omega_M(S) \leq \omega_1(S). \tag{1}$$

In the opposite sense, using powerful tools from complex analysis, Waldschmidt proved

$$\frac{1}{n}\omega_1(S) \leq \frac{1}{M}\omega_M(S) \tag{2}$$

(see [W2] §7.5 b)). The last inequality follows from Bombieri-Skoda's existence theorem, which in turn derives from some L^2 -estimates and from existence theorems for the operator $\bar{\partial}$, due to Hörmander.

Weaker results of the following kind:

$$\frac{1}{c_n}\omega_1(S) \leq \frac{1}{M}\omega_M(S) \tag{2'}$$

where c_n is some constant greater than n, were obtained by Masser and Wüstholz independently (see [M] and [Wu]).

More recently, using deep arguments from projective geometry, Esnault and Viehweg (see [E-W]) have obtained the following improvement of (2):

$$\frac{\omega_1(S) + 1}{n} \leq \frac{1}{M} \omega_M(S) \quad \text{for } n > 1$$

A conjecture of J.P. Demailly asserts that one should have

$$\frac{\omega_1(S) + n - 1}{n} \leq \frac{1}{M} \omega_M(S) \quad \text{for } n \geq 1.$$

In this paper we give some results of the type (2') in the ring $\mathbf{Z}[x_1, \ldots, x_n]$ with explicit bounds for the height of the polynomials.

Given a polynomial $f \in \mathbf{Z}[x_0, \ldots, x_n]$ we define its size t(f) as t(f) = degf + lnH(f), where H(f) is the maximum absolue value of its coefficients. For a positive integer Mwe also define $\bar{\omega}_M(S)$ as the minimum size of a polynomial $f \in \mathbf{Z}[x_1, \ldots, x_n]$ such that the hypersurface $\{f = 0\}$ has a singularity of order $\geq M$ at any point of S (if any such polynomial does not exist, we let $\bar{\omega}_M(S) = +\infty$). Of course, we have the inequality

$$\bar{\omega}_M(S) \geq \omega_M(S).$$

1
I
-

As in the "geometric" case, we have a simple inequality between $\bar{\omega}_1$ and $\bar{\omega}_M$:

$$\frac{1}{M}\bar{\omega}_M(S) \leq \bar{\omega}_1(S) + n \log(1 + \bar{\omega}_1(S)).$$

We claim that a relation in the opposite direction exists. In fact we shall prove:

THEOREM 1

There exists an effective constant c > 0 depending only on n such that

$$\frac{1}{c}\bar{\omega}_1(S) \leq \frac{1}{M}\bar{\omega}_M(S).$$

A need for results of this kind arises in the study of certain problems connected with relations between transcendence measures in codimension 1 and approximation measures in dimension n, as we shall show in the last section of this paper.

Acknowledgement

I wish to thank Roberto Dvornicich for his patient care in reading this paper and for his precious advice. I am indebted as well to Sergio Venturini for the present proof of lemma 5.

I would also like to thank Marc Chardin, Patrice Philippon and Michel Waldschmidt for their useful suggestions. In particular, I am indebted to Philippon for suggesting a new definition for the multiplicity of an ideal at a point.

1 - Auxiliary assertions

For the proof of theorem 1 we use the theory of eliminating forms, as developed by Ju.V.Nesterenko (see [N1],[N2] and [N3]). We work over a ring \mathbf{R} which will be either \mathbf{Z} or \mathbf{C} . For an arbitrary polynomial $P \in \mathbf{R}[y_0, \ldots, y_m]$ we denote by $d^{\circ}P$ its total degree. We further denote by \mathbf{A} the ring of polynomials in the n + 1 variables x_0, \ldots, x_n over \mathbf{R} . We define the rank of a prime ideal \wp of \mathbf{A} as the largest integer k for which there exists a strictly increasing chain of length k of prime ideals contained in \wp . The rank of an ideal $I \subset \mathbf{A}$ will be defined as the minimum rank of the prime ideals containing I. In what follows we denote by I a homogeneous ideal of \mathbf{A} with $I \cap \mathbf{R} = (0)$ and such that $I\mathbf{C}[x_0, \ldots, x_n]$ is unmixed of rank n + 1 - r. If A and B are polynomial rings over \mathbf{R} , $\rho: A \to B$ an homomorphism and A', B' polynomial rings over A and B, we shall denote by the same ρ the homomorphism $\rho: A' \to B'$ defined in the natural way. Similarly, if ν is a valuation over some field \mathbf{K} and B is a polynomial ring over \mathbf{K} , we shall denote by the same ν the valuation over the quotient field of B defined by taking for $\nu(P), P \in B$, the minimum value of ν on the coefficients of P.

 $\mathbf{2}$

DEFINITION 1

Let $U = \{u_j^i, i = 1, ..., r; j = 0, ..., n\}$ be a set of independent variables and let

$$L_i = \sum_{j=0}^n u_j^i x_j, \qquad i = 1 \dots r$$

be r linear form. We define the ideal \overline{I} of $\mathbf{R}[U]$ as the set of polynomials $G \in \mathbf{R}[u_j^i]$ for which there exists a natural number M that such

$$Gx_j^M \in (I, L_1, \dots, L_r)$$
 for $j = 0, \dots, n$.

 \overline{I} is a principal ideal (see [N1] prop.2). We say that a generator F of \overline{I} is an eliminating form of I and we define N(I) as $\frac{1}{r}d^{\circ}F$. If $\mathbf{R} = \mathbf{Z}$ we define the size t(I) of I as $t(I) = N(I) + \ln H(F)$.

The following factorization formula is available (see [N2] lemma 2):

PROPOSITION 1

Let F be an eliminating form of I. Then

$$F = a \prod_{h=1}^{N(I)} L_r(\underline{\alpha}^h)$$

where

$$a \in \mathbf{R}[u^1, \dots, u^{r-1}]$$

and $\underline{\alpha}^h = (\alpha_0^h, \dots, \alpha_n^h)$ with

$$\alpha_j^h \in \overline{\mathbf{Q}(u^1, \dots, u^r)}$$
 for $h = 1, \dots, N(I), \ j = 0, \dots, n.$

Moreover, if $x_j \notin \wp$ for any prime ideal \wp of I, we may assume $\alpha_j^h = 1$ for $h = 1, \ldots, N(I)$.

Let S^1, \ldots, S^r be skew-symmetric matrices in the new variables s_{kl}^i , $1 \leq i \leq r$; $0 \leq k, l \leq n$ which are connected only by the relations

$$s_{kl}^i + s_{lk}^i = 0.$$

We denote by S the corresponding set of independent variables, $S = \{s_{kl}^i, 1 \leq i \leq r; 0 \leq k, l \leq n\}$. Let $\theta : \mathbb{C}[U] \longrightarrow \mathbb{C}[S, x]$ the homomorphism given on each u^i by $u^i \mapsto S^i.x$. For $\omega \in \mathbb{C}^{n+1} \setminus \{0\}$ we further denote by $\rho_{\omega} : \mathbb{C}[x] \longrightarrow \mathbb{C}$ the homomorphism which maps x to ω ; the composed homomorphism $\rho_{\omega} \circ \theta$ will be denoted by θ_{ω} .

If $\mathbf{R} = \mathbf{Z}$ we define the norm $||I||_{\omega}$ as

$$||I||_{\omega} = |\omega|^{-rN(I)}H(\theta_{\omega}F)$$

٠	J	,
•	٦)
~	-	

where F is an eliminating form of I.

For any $f \in \mathbf{A}$ we define its multiplicity $m_{\omega}(f)$ at $\omega \in \mathbf{C}^{n+1} \setminus \{0\}$ in the usual way,

$$m_{\omega}(f) = \min\{a \mid \exists j_1, \dots, j_a \in [0, \dots, n] \text{ such that } \rho_{\omega} \frac{\partial^a f}{\partial x_{j_1} \cdots \partial x_{j_a}} \neq 0\}.$$

If $F \in \mathbf{R}[U]$ we define $i_{\omega}(F)$ as

$$i_{\omega}(F) = m_{\omega}(\theta F) = \min_{f \in J_F} m_{\omega}(f)$$

where $J_F \subset A$ is the ideal generated by the coefficients of the products of power of the independent variables $s_{lk}^i \in S$ in θF . It is the same as taking

$$i_{\omega}(F) = \min\{a \mid \exists j_1, \dots, j_a \in [0, \dots, n] \text{ such that } \rho_{\omega} \frac{\partial^a \theta F}{\partial x_{j_1} \cdots \partial x_{j_a}} \neq 0\}.$$

Notice that i_{ω} defines a valuation over $\mathbf{R}(U)$.

Now we want to make clear some important properties of i_{ω} . First of all, it would be very agreable to show that $i_{\omega}(F) = i_{\omega}(F(u^1, \ldots, u^{r-1}, T\omega))$ for "almost-all" skewsymmetric matrices T, if F is an eliminating form. The geometric meaning of this is that the generic hyperplane section through ω of some algebraic variety \mathbf{V} has the same order of multiplicity at ω as \mathbf{V} . We begin with a simple lemma:

$\underline{LEMMA 1}$

Let ν_1 , ν_2 be two valuations over $\mathbf{C}(U)$. Let us assume that the following assertions hold:

1) for any eliminating form F there exist r-1 vectors $v^2, \ldots, v^r \in \mathbb{C}^{n+1} \setminus \{0\}$ such that

$$\nu_i(F) = \nu_i(F(u^1, v^2, \dots, v^r)), \qquad i = 1, 2;$$

2) for any $\alpha \in \mathbb{C}^{n+1} \setminus \{0\}$ we have:

$$\nu_1(L^1(\alpha)) \ge \nu_2(L^1(\alpha)).$$

Then $\nu_1(F) \ge \nu_2(F)$ for any eliminating form F.

Proof

Let F be an eliminating form of an ideal I, we have, with 1)

$$\nu_i(F) = \nu_i(F(u^1, v^2, \dots, v^r)) = \nu_i(G_1^{e_1} \cdots G_l^{e_l}) \ (i = 1, 2)$$

where $G_1, \ldots, G_l \in \mathbf{C}[u^1]$ are eliminating forms of the prime ideals of codimension n associated to (I, v^2, \ldots, v^r) . Thus it is enough to prove lemma 1 for an eliminating form of

a prime ideal $\wp \subset \mathbf{C}[x]$ of codimension n, hence for a linear form, but this follows obviously from 2).

Q.E.D.

For $\omega \in \mathbf{C}^{n+1} \setminus \{0\}$ we define three other functions $\nu_{i,\omega} : \mathbf{C}[U] \longrightarrow \mathbf{N} \cup \{+\infty\}, i = 1, 2, 3$:

$$\nu_{1,\omega}(F) = \min\{a \mid \exists j_1, \dots, j_a \in [0, \dots, n] \text{ such that } \rho_\omega \frac{\partial^a \theta_\omega^1 F}{\partial x_{j_1} \cdots \partial x_{j_a}} \neq 0\},$$

$$\nu_{2,\omega}(F) = \min\{a \mid \exists j \in [0, \dots, n] \text{ such that } \theta_\omega \frac{\partial^a F}{\partial (u_j^1)^a} \neq 0\},$$

$$\nu_{3,\omega}(F) = \min\{a \mid \exists j_1, \dots, j_a \in [0, \dots, n], \exists i_1, \dots, i_a \in [1, \dots, r] \text{ such that }$$

$$\tilde{\rho}_\omega \frac{\partial^a \tilde{\theta} F}{\partial x_{j_1}^{(i_1)} \cdots \partial x_{j_a}^{(i_a)}} \neq 0\}$$

where θ_{ω}^1 , $\tilde{\theta}$, $\tilde{\rho}_{\omega}$ are the homomorphisms defined as follow:

$$\begin{aligned} \theta^{1}_{\omega} : \mathbf{C}[U] &\longrightarrow \mathbf{C}[S, x], \\ u^{i} &\mapsto \begin{cases} S^{1}x, & \text{if } i = 1, \\ S^{i}\omega, & \text{if } i = 2, \dots, r; \end{cases} \\ \\ \tilde{\theta} : \mathbf{C}[U] &\longrightarrow \mathbf{C}[S, x^{(1)}, \dots, x^{(r)}], \\ u^{i} &\mapsto S^{i}x^{(i)}, \ i = 1, \dots, r; \end{cases} \\ \\ \\ \tilde{\rho}_{\omega} : \mathbf{C}[x^{(1)}, \dots, x^{(r)}] &\longrightarrow \mathbf{C}, \\ x^{(i)} &\mapsto \omega, \ i = 1, \dots, r. \end{aligned}$$

The following proposition, which is due to P.Philippon, shows that these functions take the same values as i_{ω} on the eliminating forms.

PROPOSITION 2

For any eliminating form F

$$\nu_{1,\omega}(F) = \nu_{2,\omega}(F) = \nu_{3,\omega}(F) = i_{\omega}(F).$$

Proof

Let F be an eliminating form of I, first we prove the equality $\nu_{1,\omega}(F) = \nu_{2,\omega}(F)$. For this we apply for $j = 0, \ldots, n$ lemma 1 to the valuations $\nu_{1,\omega}$ and

$$\nu_{2,\omega,j}(F) = \min\{a | \text{ such that } \theta_{\omega} \frac{\partial^a F}{\partial(u_j^1)^a} \neq 0\}.$$

Assertion 1 is obviously satisfied. Further we observe that

$$\nu_{1,\omega}(L^{1}(\alpha)) = \begin{cases} 0, & \text{if } \alpha \neq \omega \\ 1, & \text{if } \alpha \equiv \omega \end{cases},$$
$$\nu_{2,\omega,j}(L^{1}(\alpha)) = \begin{cases} 0, & \text{if } \alpha \neq \omega, \\ 1, & \text{if } \alpha \equiv \omega \text{ and } \omega_{j} \neq 0 \\ \infty, & \text{if } \alpha \equiv \omega \text{ and } \omega_{j} = 0 \end{cases}$$

where $\alpha \equiv \beta$ means that $\alpha, \beta \in \mathbb{C}^{n+1} \setminus \{0\}$ define the same point in the projective space. Hence lemma 1 leads to

,

$$\nu_{1,\omega}(F) = \nu_{2,\omega}(F) = \min_{j=0,\dots,n} \nu_{2,\omega,j}(F).$$

For proving $\nu_{2,\omega}(F) \ge i_{\omega}(F)$, we recall that proposition 1 of [P2] implies

$$x_j^M \theta \frac{\partial^a F}{\partial (u_j^1)^a} \in \left(\frac{\partial^a \theta f}{\partial x_{j_1} \cdots \partial x_{j_a}} | f \in J_F, \ j_1, \dots, j_a \in [0, \dots, n] \right)$$

for some integer $M \geq 1$.

The inequality $\nu_{3,\omega}(F) \geq \nu_{1,\omega}(F)$ derives immediatly from proposition 2 of [P2], as explained there.

Finally the relation $i_{\omega}(F) \ge \nu_{3,\omega}(F)$ is obvious.

Q.E.D.

COROLLARY 1

For any eliminating form F we have

 $i_{\omega}(F) = i_{\omega}(F(u^1, \dots, u^{r-1}, T\omega))$

for a generic skew-matrix T.

Now we may define the multiplicity of I at ω .

DEFINITION 2

Let $\omega \in \mathbb{C}^{n+1} \setminus \{0\}$ and I be as in definition 1. Let F be an eliminating form of I; we define the multiplicity $i_{\omega}(I)$ of I at ω as $i_{\omega}(I) = i_{\omega}(F)$.

<u>Remark</u>

It is easy to see that $i_{\omega}(I) = 0$ if and only if ω is in the projective variety generated by I. It is also possible to prove that $i_{\omega}(I) = 1$ for a prime ideal I if and only if the projective variety generated by I is smooth at ω (see [A] lemma 2.2).

The following lemma shows the equivalence between $i_{\omega}((f))$ and the usual notion of multiplicity of an algebraic hypersurface at a point.

$\underline{LEMMA \ 2}$

Let
$$f \in R[x_0, \ldots, x_n]$$
 and $\omega \in \mathbb{C}^{n+1} - \{0\}$, then $i_{\omega}((f)) = m_{\omega}(f)$.

Polynomials with high multiplicity

 \mathbf{Proof}

Let us assume $\omega_0 \neq 0$, and let $\Delta_0, \Delta_1, \ldots, \Delta_n$ be the cofactors of x_0, x_1, \ldots, x_n in the matrix

x_0	x_1	• • •	$x_n \setminus$
u_0^1	u_1^1		u_n^1
•	•		•
·	•	•	
•	•	•	• 1
$\setminus u_0^n$	u_1^n	•••	u_n^n /

 $F(u) = f(\Delta_0, \ldots, \Delta_n)$ is an eliminating form of (f) (see [N3] lemma 2). Moreover, $\theta_{\omega} \Delta_j = Ax_j$ for some $A \in \mathbb{C}[s_{kl}^i, x_0, \ldots, x_n]$ with $A(\omega) \neq 0$ (see [N3] p.432). Hence

$$i_{\omega}((f)) = i_{\omega}(F) = m_{\omega}(A^{d^{\circ}f}f) = m_{\omega}(A^{d^{\circ}f}) \cdot m_{\omega}(f) = m_{\omega}(f).$$

Q.E.D.

Let

$$g \in \mathbf{A} \backslash \bigcup_{h=1}^{t} \wp'_{h}$$

where \wp'_1, \ldots, \wp'_t are the prime ideals associated to *I*. We define the resultant Res(F,g) of *F* and *g* as

$$Res(F,g) = a^{d^{\circ}g} \prod_{h=1}^{N(I)} g(\underline{\alpha}^h).$$

Lemma 4 of [N2] ensures $Res(F,g) \in \mathbf{R}[u^1, \ldots, u^{r-1}]$. Moreover

$$Res(F,g) = bE_1^{e_1} \cdots E_s^{e_s}$$

where $b \in \mathbf{R}$ and E_1, \ldots, E_s are eliminating forms of the minimal prime ideals \wp_1, \ldots, \wp_s of (I, g) such that $\wp_l \cap \mathbf{R} = (0)$ for $l = 1, \ldots, s$ (see [N2] lemma 6). We define Res(I, g) as the corresponding intersection of symbolic powers

$$Res(I,g) = \wp_1^{(e_1)} \cap \dots \cap \wp_s^{(e_s)}.$$

The following propositions show the behaviour of the quantities N(I), $i_{\omega}(I)$, t(I) and $||I||_{\omega}$ with respect to the primary decomposition and the resultant operation.

PROPOSITION 3

Let

$$I = Q_1 \cap \dots \cap Q_t$$

be an irreducible primary decomposition in which for $l \leq s$ we have $Q_l \cap \mathbf{R} = (0)$ and $Q_{s+1} \cap \cdots \cap Q_t \cap \mathbf{R} = (b), \ b \in \mathbf{R} \setminus \{0\}$. Furthermore, for $l \leq s$ suppose that $\wp_l = \sqrt{Q_l}$ and e_l is the exponent of the ideal Q_l . Let E_1, \ldots, E_s be eliminating forms of \wp_1, \ldots, \wp_s . Then

$$F = bE_1^{e_1} \cdots E_s^{e_s}$$

7

Polynomials with high multiplicity

is an eliminating form of I. Hence

$$i) N(I) = \sum_{\substack{l=1\\s}}^{s} e_l N(\wp_l);$$

Moreover, if $\mathbf{R} = \mathbf{Z}$,

iii)
$$\log|b| + \sum_{l=1}^{s} e_l t(\wp_l) - cN(I) \le t(I) \le \log|b| + \sum_{l=1}^{s} e_l t(\wp_l) + cN(I);$$

iv)
$$log|b| + \sum_{l=1}^{s} e_l \|\wp_l\|_{\omega} - cN(I) \le \|I\|_{\omega} \le log|b| + \sum_{l=1}^{s} e_l \|\wp_l\|_{\omega} + cN(I).$$

where c is some positive constant depending only on n.

\mathbf{Proof}

For i), iii) and iv) see [N3] proposition 2 and [W1] lemma 4.2.14. ii) is obvious.

Q.E.D.

PROPOSITION 4

Let g be as above. Then

$$\begin{array}{ll} i) & N(Res(I,g)) \leq N(I)d^{\circ}g; \\ ii) & i_{\omega}(Res(I,g)) \geq i_{\omega}(I)i_{\omega}((g)). \end{array}$$

Moreover, if $\mathbf{R} = \mathbf{Z}$,

iii)
$$t(Res(I,g)) \le (3+n+rln(n+1))t(I)t(g);$$

$$iv) \qquad \qquad \log \|(\operatorname{Res}(I,g))\|_{\omega} \le ct(I)t(g) + \log \operatorname{Max}(\|I\|_{\omega}, |\omega|^{-d^{\circ}g}|g(\omega)|)$$

where c is some positive constant depending only on n.

Proof

i) See [N3] lemma 5;

ii) We assume $\omega_t \neq 0$; let $N = i_{\omega}((g))$, $\delta = N(I)$, $D = d^{\circ}g$ and let F be an eliminating form of I. According to proposition 1, we have:

$$F = a \prod_{h=1}^{\delta} L_r(\underline{\alpha}^h).$$

We may extend the valuation

$$\nu: \mathbf{C}(u^1, \dots, u^{r-1}) \to \mathbf{Z}$$

defined by $\nu(F/G) = i_{\omega}(F) - i_{\omega}(G)$ to a valuation over $\mathbf{K} = \mathbf{C}(u^1, \dots, u^{r-1}, \alpha_i^h)$ which we still denote by ν . Moreover, we may extend ν to the polynomial ring $\mathbf{K}[u^r]$ in the following way. Let $P \in \mathbf{K}[u^r]$ and assume

$$P(S^r\omega) = \sum_{m \in \Lambda} b_m m$$

where $\Lambda \in \mathbf{C}[s_{kl}^r]$ is a finite set of monomial and $b_m \in \mathbf{K} \ \forall m \in \Lambda$. Then we define $\nu(P)$ as

$$\nu(P) = \min_{m \in \Lambda} \nu(b_m).$$

Lemma 1 gives $\nu(G) = i_{\omega}(G)$ for any $G \in \mathbf{C}[u^1, \ldots, u^r]$. We have

$$\begin{split} i_{\omega}(\operatorname{Res}(F,g)) &= \nu(\operatorname{Res}(F,g)) = \nu\left(a^{D}\prod_{h=1}^{\delta}g(\underline{\alpha}^{h})\right) = \\ &= D\nu(a) + \sum_{h=1}^{\delta}\nu(g(\underline{\alpha}^{h})). \end{split}$$

The Taylor's expansion of g gives:

$$g(x) = \sum_{\substack{\lambda = (\lambda_0, \dots, \hat{\lambda}_t, \dots, \lambda_n) \\ N \le |\lambda| \le D}} c_\lambda x_t^{D-|\lambda|} \prod_{\substack{j=1 \\ j \ne t}}^n (x_t \omega_j - x_j \omega_t)^{\lambda_j} \qquad c_\lambda \in \mathbf{C}.$$

Hence

$$\nu(g(\underline{\alpha}^{h})) \geq N \min_{\substack{1 \leq j \leq n \\ j \neq t}} \nu(\alpha_{t}\omega_{j} - \alpha_{j}\omega_{t}) \geq$$
$$\geq N \min_{1 \leq t < j \leq n} \nu(\alpha_{t}\omega_{j} - \alpha_{j}\omega_{t}) =$$
$$= N\nu(S^{r}\omega.\underline{\alpha}^{h}) .$$

Thus

$$\begin{split} i_{\omega}(\operatorname{Res}(F,g)) &\geq D\nu(a) + N\sum_{h=1}^{\delta}\nu(S^{r}\omega.\underline{\alpha}^{h}) \geq \\ &\geq N\nu(F(u^{1},\ldots,u^{r-1},S^{r}\omega)) = Ni_{\omega}(F). \end{split}$$

iii) See [N3] lemma 5.

iv) See [N3] proposition 3).

Q.E.D.

For the proof of theorem 1 we should find out lower bound for the exponent of some primary components associated with I. This is the aim of the following lemma:

$\underline{LEMMA 3}$

We use the same notations as in proposition 3. Let us assume

$$i_{\omega}(I) \ge M$$

for the generic point ω of $\mathbf{V}_{\mathbf{P}(\mathbf{C}^n)}(\wp_1)$. Then

$$e_1 \geq M.$$

Proof

We observe that $\frac{\partial E_1}{\partial u_0^1} \notin \overline{\wp}_1$ since its total degree is less than $d^{\circ}E_1$. Thus, taking into account proposition 1, we have

$$i_{\omega}(I) \ge M;$$

 $i_{\omega}(\wp_h) = 0$ for $h = 2, \dots, l;$
 $i_{\omega}(\wp_1) = 1$

for the generic point ω of $\mathbf{V}_{\mathbf{P}(\mathbf{C}^n)}(\wp_1)$. Hence by proposition 3, ii)

$$M \leq i_{\omega}(I) = e_1 i_{\omega}(\wp_1) + \cdots + e_l i_{\omega}(\wp_l) = e_1.$$

Q.E.D.

2 - Proof of theorem 1

Now we assume $\mathbf{R} = \mathbf{Z}$. For a homogeneous prime ideal $\wp \subset \mathbf{A}$ we define $S_{\wp}(H, s)$ as the set of residues modulo \wp of homogeneous polynomials $g \in \mathbf{Z}[x_0, \ldots, x_n]$ of degree s whose coefficients do not exceed H in absolute value. Using an upper bound for the growth of $S_{\wp}(H, s)$ due to Ju.V.Nesterenko (see [N2] theorem 3) it is easy to prove the following

COROLLARY 2

There exists $g \in \sqrt{I}$ such that

$$t(g) \le 3(6n)^{n+4} t(I)^{\frac{1}{n+1-r}}.$$

Proof of theorem 1

Let S be a non-empty subset of \mathbb{C}^n and let $P \in \mathbb{Z}[x_1, \ldots, x_n]$ with $t(P) = \bar{\omega}_M(S) = T$ such that $D^{\mu}P(\alpha) = 0$ for $\alpha \in S$ and for any multiindex $\mu \in \mathbb{N}^n$ such that $|\mu| < M$. Let $f = {}^{h}P$ be the homogeneization of P. Clearly, it is enough to give a homogeneous polynomial g with

$$t(g) \ \le \ c \frac{T}{M}$$

such that $g(\alpha) = 0$ for any $\alpha \in \mathbf{V}_M$, where

$$\mathbf{V}_M = \{ \alpha \in \mathbf{P}(\mathbf{C}^n) \text{ such that } D^{\lambda} f(\alpha) = 0 \text{ for any } \lambda \in \mathbf{N}^{n+1} \text{ with } |\lambda| < M \}.$$

We assume $\mathbf{V}_M \neq \emptyset$ and we denote by c_1, \ldots, c_8 positive constants depending only on n. Let $t_0, \ldots, t_n \in [0, 1]$ be defined by

$$\begin{cases} t_0 = 0 \\ t_k = (n+1-k)^{-1} & \text{for } k = 1 \dots n \end{cases}$$

Let $k_0 \leq n$ be a natural number which will be specified later. By induction we define a sequence $\{I_k\}_{k=1,...,k_0}$ of pure ideal of rank k:

 $\underline{k=1}$ $I_1 = (f).$

 $\frac{k \to k+1}{\text{Let}}$

$$I_k = Q_{1,k} \cap \dots \cap Q_{l_k,k}$$

be an irreducible primary decomposition of I_k . Let us put $\wp_{j,k} = \sqrt{Q_{j,k}}$ and let us denote by $e_{j,k}$ the exponent of $Q_{j,k}$. After a permutation of $1, \ldots, l_k$, we may assume that there exists an integer $s_k \in [0, \ldots, l_k]$ such that:

$$\begin{cases} D^{\lambda} f \in \wp_{j,k} & \text{for any } \lambda \in \mathbf{N}^{n+1} \text{ with } |\lambda| \leq t_k M, \text{ if } j = 1, \dots, s_k; \\ D^{\lambda^j} f \notin \wp_{j,k} & \text{for some } \lambda^j \in \mathbf{N}^{n+1} \text{ with } |\lambda^j| \leq t_k M, \text{ if } j = s_k + 1, \dots, l_k. \end{cases}$$

Let

$$J_k = \bigcap_{j > s_k} Q_{j,k},$$

if $\mathbf{V}_{\mathbf{P}(\mathbf{C}^n)}(J_k) \cap \mathbf{V}_M = \emptyset$ we let $k_0 = k$ (this certainly occurs if k = n, since otherwise there would exist an index $j > s_n$ such that $\mathbf{V}_{\mathbf{P}(\mathbf{C}^n)}((\wp_{j,s_n}, D^{\lambda^j}f)) \neq \emptyset$ which is impossible because the homogeneous ideal $(\wp_{j,s_n}, D^{\lambda^j}f)$ has codimension n + 1).

A classical trick (see for instance [M-W] Ch.4 lemma 2, [P1] lemma 1.9) allows us to find $\lambda^1, \ldots, \lambda^a \in \mathbf{N}^{n+1}$ with $|\lambda^i| \leq t_k M$ and $\phi_1, \ldots, \phi_a \in \mathbf{A}$ with $d^{\circ}\phi_i = |\lambda^i|$ and $t(\phi_i) \leq c_1 T$ such that

$$\psi_k = \phi_1 \frac{D^{\lambda^1} f}{\lambda^1!} + \dots + \phi_a \frac{D^{\lambda^a} f}{\lambda^a!} \notin \wp_{j,k}$$

for any $j > s_k$. We observe that $D^{\lambda}\psi_k(\alpha) = 0$ for $\alpha \in \mathbf{V}_N$ and $N > |\lambda| + t_k M$. Notice that

$$t(\phi_k) \le c_2 T \tag{3}$$

Then we define

$$I_{k+1} = Res(J_k, \psi_k).$$

We claim the following three assertions hold:

$$\mathbf{V}_M \subseteq \bigcup_{k=1}^{k_0} \bigcup_{j=1}^{s_k} \mathbf{V}_{\mathbf{P}(\mathbf{C}^n)}(\wp_{j,k}); \tag{4}$$

$$e_{j,k} \ge M^k \prod_{h=0}^{k-1} (t_k - t_h) \ge n^{-2k} M^k$$
 for $j = 1, \dots, s_k$ and $k = 1, \dots, k_0$; (5)

$$\sum_{j=1}^{s_k} e_{j,k} t(\wp_{j,k}) \le c_3 T^k \quad \text{for } k = 1, \dots, k_0.$$
(6)

Assume for the moment (4),(5),(6) proved. For any $k = 1, ..., k_0$, corollary 2 ensures the existence of $g_k \in \bigcap_{j=1}^{s_k} \wp_{j,k}$ such that

$$t(g_k) \le c_4 (\sum_{j=1}^{s_k} t(\wp_{j,k}))^{1/k}.$$

Using (5) and (6) we obtain:

$$t(g_k) \le c_5 M^{-1} (\sum_{j=1}^{s_k} e_{j,k} t(\wp_{j,k}))^{1/k} \le c_6 \frac{T}{M}$$

Let $g = \prod_{k=1}^{k_0} g_k$: relation (4) ensures that g is zero over \mathbf{V}_M and we have

$$t(g) \le c_7 \frac{T}{M}.$$

Hence it is enough to prove (4),(5) and (6).

:(4) By induction we have

$$\mathbf{V}_M \subseteq \left(\bigcup_{h=1}^k \bigcup_{j=1}^{s_h} \mathbf{V}_{\mathbf{P}(\mathbf{C}^n)}(\wp_{j,h})\right) \bigcup \mathbf{V}_{\mathbf{P}(\mathbf{C}^n)}(J_k)$$

and $\mathbf{V}_{\mathbf{P}(\mathbf{C}^n)}(J_{k_0}) \cap \mathbf{V}_M = \emptyset$.

:(5) By induction we prove the following

 $\underline{LEMMA 4}$

Let $N > t_{k-1}M$ and

$$\omega \in \mathbf{V}_N \setminus \bigcup_{h=1}^{k-1} \bigcup_{j=1}^{s_h} \mathbf{V}_{\mathbf{P}(\mathbf{C}^n)}(\wp_{j,h}),$$

then

$$i_{\omega}(I_k) \ge \prod_{h=0}^{k-1} (N - t_h M).$$

Proof

<u>k = 1</u>: lemma 2 ensures that $i_{\omega}(I_1) = N$ for any $\omega \in \mathbf{V}_M$. <u> $k \Rightarrow k + 1$ </u>: by inductive hypotesis, for

$$\omega \in \mathbf{V}_N \setminus \bigcup_{h=1}^k \bigcup_{j=1}^{s_h} \mathbf{V}_{\mathbf{P}(\mathbf{C}^n)}(\wp_{j,h})$$

we have

$$i_{\omega}(J_k) \ge \prod_{h=0}^{k-1} (N - t_h M)$$

(if G is an eliminating form of J_k and F is an eliminating form of I_k then, by proposition 1, G = EF and $\theta_{\omega}E \neq 0$, hence $i_{\omega}(J_k) = i_{\omega}(I_k)$), besides,

$$i_{\omega}((\psi_k)) \ge N - t_k M.$$

Hence, using proposition 4 ii),

$$i_{\omega}(I_{k+1}) \ge \prod_{h=0}^{k} (N - t_h M).$$

Q.E.D.

Lemma 3 allows us to prove (5). In fact,

 $\mathbf{V}_{\mathbf{P}(\mathbf{C}^n)}(\wp_{j,h}) \subseteq \mathbf{V}_{t_k M} \quad \text{for } j = 1, \dots, s_k.$

Hence, using the lemma above and lemma 3,

$$e_{j,k} \ge \prod_{h=0}^{k-1} (t_k M - t_h M) =$$

= $\frac{M^k}{n-k+1} \prod_{h=1}^{k-1} \frac{k-h}{(n-k+1)(n-h+1)} \ge n^{-2k+1} M^k; \qquad j = 1, \dots, s_k$

and (5) is proved.

13

:(6) Using proposition 4 and inequality (3), it is easy to see $t(I_k) \leq c_7 T^k$. Hence, by proposition 3 iii),

$$\sum_{j=1}^{s_k} e_{j,k} t(\wp_{j,k}) \le c_8 T^k.$$
 Q.E.D.

\underline{Remark}

Our method is able to say something about the relation between $\omega_1(S)$ and $\omega_M(S)$, but we obtain only

$$4^{-n}n^{-n-3}\omega_1(S) \leq \frac{1}{M}\omega_M(S).$$
 (7)

Using Chardin's bound for Hilbert's function (see [CH]), we may improve (7) to

$$n^{-4}\omega_1(S) \le \frac{1}{M}\omega_M(S).$$

3-Some applications

Let $\xi = (\xi_1, \ldots, \xi_n)$ be a *n* uple of complex numbers. We define its transcendence type $\tau(\xi)$ as the infimum of the set of real numbers τ for which there exists a positive constant c_{τ} such that the inequality

$$\log|P(\xi)| > -c_{\tau}t(P)^{\tau}$$

holds for any non-zero polynomial P with integer coefficients. Using the box-principle, it is easy to see that $\tau(\xi) \ge n+1$.

Similarly we define $\eta(\xi)$ as the infimum of the set of real numbers η for which there exists a positive constant c_{η} such that

$$\log|\alpha - \xi| > -c_{\eta}\bar{\omega}_1(\alpha)^{\eta}$$

holds for any $\alpha \in \mathbf{C}^n$.

We have the trivial inequality

$$\eta(\xi) \le \tau(\xi)$$

which reposes on the following lemma:

$\underline{LEMMA 5}$

Let $\xi \in \mathbb{C}^n$. For any $P \in \mathbb{C}[x_1, \ldots, x_n]$ and for any $\alpha \in \mathbb{C}^n$ with $P(\alpha) = 0$ and $|\alpha - \xi| \leq 1$ we have:

$$|P(\xi)| \le |\alpha - \xi| [(2 + |\xi|)(n+1)^2]^{d^{\circ}P} H(P).$$

Proof

$$\begin{aligned} |P(\xi)| &\leq \sum_{1 \leq |\lambda| \leq d^{\circ}P} \frac{|D^{\lambda}P(\alpha)|}{\lambda!} |\alpha_{1} - \xi_{1}|^{\lambda_{1}} \cdots |\alpha_{n} - \xi_{n}|^{\lambda_{n}} \leq \\ &\leq |\alpha - \xi| \sum_{0 \leq |\lambda| \leq d^{\circ}P} \frac{|D^{\lambda}P(\alpha)|}{\lambda!} \leq \\ &\leq |\alpha - \xi| (n+1)^{d^{\circ}P} \sup_{|x|=1} |P(x+\alpha)| \leq \\ &\leq |\alpha - \xi| [(1+|\alpha|)(n+1)^{2}]^{d^{\circ}P} H(P) \leq \\ &\leq |\alpha - \xi| [(2+|\xi|)(n+1)^{2}]^{d^{\circ}P} H(P) \leq . \end{aligned}$$
Q.E.D.

In the opposite sense, using lemma 2.7 of [P2], it is possible to prove

$$\tau(\xi) \le \eta(\xi) + 1.$$

It seems to be natural to expect

$$\tau(\xi) = \eta(\xi) \qquad \text{for } \tau(\xi) > n+1 \tag{8}$$

(notice that (8) holds if n=1: see for instance [W1] pg 133).
(8) implies the following conjecture of G.V. Chudnovsky (see [C] Problem 1.3 page 178):

Conjecture

For almost all (in the sense of Lebesgue's measure in \mathbb{R}^{2n}) n-uples ξ of complex numbers we have:

$$\tau(\xi) \le n+1.$$

The link between (8) and the conjecture above is given by the following proposition:

PROPOSITION 5

The set of n-uples of complex numbers ξ for which

$$\eta(\xi) > n+1$$

has Lebesgue's measure 0.

Proof

We denote by λ the Lebesgue's measure in \mathbb{C}^n . Let $B = \{\xi \in \mathbb{C}^n \text{ such that } |\xi| \leq 1\}$. It is enough to prove that

$$\Lambda = \{\xi \in B \text{ such that } \eta(\xi) > n+1\}$$

has Lebesgue's measure 0. From the definition of Λ we have:

$$\Lambda \subset \bigcap_{s=2}^{+\infty} \bigcup_{N \in \mathbf{N}} \bigcup_{f \in \mathbf{Z}_{[x_1, \dots, x_n]} \atop [t(f)] = N} A_f(exp(-sN^{n+1}))$$

where

$$A_f(\varepsilon) = \{\xi \in B | dist(\xi, \{f = 0\}) \le \varepsilon\}.$$

We need the following lemma from measure theory:

LEMMA 6

Let **V** be a pure algebraic variety in \mathbf{C}^n of codimension k and degree d. Then for any $\varepsilon \in (0, 1)$

$$\lambda(\{\xi \in B | dist(\xi, \mathbf{V}) \le \varepsilon\}) \le c(n, k)\varepsilon^{2k}d$$

where c(n, k) is some positive constant depending only on n and k.

\mathbf{Proof}

We denote by H^k the 2k-dimensional Hausdorff's measure and by $B_x(r)$ the ball of \mathbb{C}^n with centre at x and radius r. We also denote by c_9, \ldots, c_{13} effective positive constants depending only on n and k.

We begin with a bound for the area of $\mathbf{V} \cap B_0(r)$. Using theorem 3.2.22(4) of [F1], a Fubini-Tonelli argument yields:

$$H^{n-k}(\mathbf{V} \cap B_0(r)) = c_9 \int_{G(n,n-k)} d\nu(p) \int_{p(\mathbf{V} \cap B_0(r))} card(\mathbf{V} \cap B_0(r) \cap p^{-1}(y)) dH^{n-k}(y)$$

where G(n, n-k) is the set of (n-k)-dimensional complex subvector spaces of \mathbb{C}^n (which are in turn identified with the set of orthogonal projections p over these spaces) and ν is the only measure on G(n, n-k) with unitary mass and invariant by the action of U(n). For ν -almost all p and for all $y \in p(\mathbf{V} \cap B_0(r))$

$$card(\mathbf{V} \cap B_0(r) \cap p^{-1}(y)) \le d.$$

Hence

$$H^{n-k}(\mathbf{V} \cap B_0(r)) \le c_9 d \int_{G(n,n-k)} d\nu(p) \int_{p(\mathbf{V} \cap B_0(r))} dH^{n-k}(y) \le c_{10} dr^{2(n-k)}.$$
 (9)

The link between the growth of the area and the measure of the set of points which are close to \mathbf{V} is given by the following formula which derives from theorem 6.2 of [F2]:

$$H^{n-k}(\mathbf{V}\cap B_0(r))H^n(B_0(s)) = \int_{\mathbf{C}^n} H^{n-k}(\mathbf{V}\cap B_0(r)\cap B_{\xi}(s))d\lambda(\xi)$$

Using the formula above with $r = 1 + 2\varepsilon$ and $s = 2\varepsilon$ and the bound (9) we find:

$$c_{11}d\varepsilon^{2n} \ge \int_{\{\xi \in B \mid dist(\xi, \mathbf{V}) < \varepsilon\}} H^{n-k}(\mathbf{V} \cap B_{\xi}(2\varepsilon)) d\lambda(\xi).$$
(10)

For $\xi \in B$, $dist(\xi, \mathbf{V}) < \varepsilon$, let $\xi^* \in \mathbf{V}$ be such that $dist(\xi, \mathbf{V}) = dist(\xi, \xi^*)$. Then

$$\mathbf{V} \cap B_{\xi}(2\varepsilon) \supset \mathbf{V} \cap B_{\xi^*}(\varepsilon).$$

The function

$$\varepsilon \to \frac{H^{n-k}(\mathbf{V} \cap B_{\xi^*}(\varepsilon))}{\varepsilon^{2(n-k)}}$$

is monotonically increasing and is bounded from below by some positive constant c_4 (see [L] theorem 2.23). Hence

$$H^{n-k}(\mathbf{V} \cap B_{\xi}(2\varepsilon)) \ge H^{n-k}(\mathbf{V} \cap B_{\xi^*}(\varepsilon)) \ge c_{12}\varepsilon^{2(n-k)}.$$

Combining with (10) we have

$$\lambda(\{\xi \in B | dist(\xi, \mathbf{V}) \le \varepsilon\}) \le c_{13} d\varepsilon^{2k}.$$

Q.E.D.

From the lemma above with $\mathbf{V} = \{f = 0\}$, we obtain:

$$\lambda(A_f(exp(-sN^{n+1})) \le c(n,1)Nexp(-2sN^{n+1}).$$

The number of polynomials in n variables with integer coefficients and size $\leq N$ is bounded by $exp(2N^{n+1})$, hence for all $s \geq 2$

$$\lambda(\Lambda) \leq \lambda \left(\bigcup_{\substack{N \in \mathbf{N} \\ [t(P)] = N}} \bigcup_{\substack{f \in \mathbf{Z}[x_1, \dots, x_n] \\ [t(P)] = N}} A_f(exp(-sN^{n+1}))\right) \leq \\ \leq \sum_{\substack{N \geq 1}} c(n, 1) Nexp(-2(s-1)N^{n+1}) = \psi(s)$$

and

$$\psi(s) \to 0 \text{ for } s \to +\infty.$$

Q.E.D.

Let $\tau = \tau(\xi)$ and $\eta = \eta(\xi)$. As an application of the method of the proof of theorem 1, we shall prove:

THEOREM 2

Let us assume $\tau > n+1, n \ge 2$. Then

$$\tau \le \eta + Max(\frac{n-1}{\eta+1}, \frac{2n-\eta}{n+1}).$$

Moreover, if n = 2,

$$\tau \le \eta + Max(0, \frac{4-\eta}{3}).$$

For example, if n = 2 we find:

 $\begin{aligned} \tau &\leq 3.34 \text{ for } \eta \leq 3; \\ \tau &= \eta \text{ for } \eta > 4. \end{aligned}$

If n = 3 the situation is a little worse:

 $\begin{aligned} \tau &\leq 4.5 \text{ for } \eta \leq 4; \\ \tau &\leq 6.34 \text{ for } \eta \leq 6. \end{aligned}$

We observe that for any fixed n our result approaches to (8) when η (or τ) $\rightarrow +\infty$:

COROLLARY3

$$\eta \le \tau \le \eta + o(\frac{1}{\eta}) \qquad for \ \eta \to +\infty.$$

Proof of Theorem 2

Let us assume $\tau > n + 1$. We choose a real number ρ with $n + 1 \leq \rho < \tau$. By hypothesis, for any positive constant C there exists a polynomial P with integer coefficients such that

$$\log|P(\xi)| < -CT^{\rho},\tag{11}$$

where T is the size of P. Let $d = d^{\circ}P$; in what following we denote by c_{14}, \ldots, c_{25} positive constants depending only on n and $|\xi|$.

For any multiindex $\lambda \in \mathbf{N}^n$ we define the real number $\phi(\lambda)$ as

$$\phi(\lambda) = \frac{1 + card\{h \in [1, \dots, n] \text{ such that } \lambda_h = 0\}}{n+1};$$

we have $\phi((0,\ldots,0)) = 1$ and $\phi(\lambda) \ge 1/(n+1)$ for any multiindex $\lambda \in \mathbf{N}^n$. Let $\overline{\lambda} \in \mathbf{N}^n$ a multiindex with $|\overline{\lambda}| = d$ such that the monomial $x_1^{\lambda_1} \cdots x_n^{\lambda_n}$ has non-zero coefficient in P(x); then, using (11):

$$\left|\frac{1}{\bar{\lambda}!}D^{\bar{\lambda}}P(\xi)\right| \ge 1 > |P(\xi)|^{\phi(\bar{\lambda})}.$$

Hence we can define an integer $M \in (0, d)$ as the first integer for which there exists $\tilde{\lambda} \in \mathbf{N}^n$ with $|\tilde{\lambda}| = M + 1$ such that

$$\left|\frac{1}{\tilde{\lambda}!}D^{\tilde{\lambda}}P(\xi)\right| > |P(\xi)|^{\phi(\tilde{\lambda})}.$$
(12)

We can find $h \in [1, ..., n]$ such that $\tilde{\lambda}_h \neq 0$; let

$$\mu = (\tilde{\lambda}_1, \dots, \tilde{\lambda}_{h-1}, 0, \tilde{\lambda}_{h+1}, \dots, \tilde{\lambda}_n).$$

We have $|\mu| \leq M$ and $\phi(\mu) - \phi(\tilde{\lambda}) = 1/(n+1)$. Let us consider

$$Q(t) = \frac{1}{\mu!} D^{\mu} P(\xi_1, \dots, \xi_{h-1}, t, \xi_{h+1}, \dots, \xi_n);$$

Q(t) is a polynomial in one variable of degree $\delta \leq d - |\mu|$; let $\alpha_1, \ldots, \alpha_{\delta}$ be its roots. We need the following lemma:

$\underline{LEMMA 7}$

For any $s \ge 0$ there exists a homogeneous polynomial $R_s \in \mathbb{C}[y_1, \ldots, y_{\delta}]$ of degree s and height $\le \delta^{s-1} s!$ such that

$$\frac{\partial^s Q(t)}{\partial t^s} = Q(t) R_s((t - \alpha_1)^{-1}, \dots, (t - \alpha_\delta)^{-1}).$$
(13)

Proof

Let

$$Q(t) = a \prod_{h=1}^{\delta} (t - \alpha_h)$$

and let $\sigma: [y_1, \ldots, y_{\delta}] \to \mathbf{C}(t)$ be the homomorphism defined by $y_h \mapsto (t - \alpha_h)^{-1}$ for $h = 1, \ldots, \delta$. We prove our assertion using induction on s; we define R_0 as $R_0 = 1$ and R_1 as $R_1 = y_1 + \cdots + y_d$: it is easy to verify that relation (13) holds for s = 0, 1. Let us assume (13) holds for some s for a polynomial R_s of degre s and height $\leq \delta^{s-1} s!$; then

$$\frac{\partial^{s+1}Q(t)}{\partial t^{s+1}} = \frac{\partial Q(t)}{\partial t}\sigma R_s - Q(t)\sum_{h=1}^{\delta} (t-\alpha_h)^{-2}\sigma \frac{\partial R_s}{\partial y_h} = Q(t)\sigma (R_1R_s - \sum_{h=1}^{\delta} y_h^2 \frac{\partial R_s}{\partial y_h}).$$

Hence we can define R_{s+1} as

$$R_{s+1} = R_1 R_s - \sum_{h=1}^{\delta} y_h^2 \frac{\partial R_s}{\partial y_h};$$

using the inductive hypothesis we see that R_{s+1} is a homogeneous polynomial of degree s+1 and height

$$H(R_{s+1}) \le \delta H(R_s) + \delta s H(R_s) \le \delta^s (s+1)!.$$

Q.E.D.

Now we assume

$$|\alpha_1 - \xi_h| \leq \cdots \leq |\alpha_\delta - \xi_h|;$$

then, by lemma 7,

$$\left|\frac{\partial^{\tilde{\lambda}_{h}}Q(\xi_{h})}{\partial t^{\tilde{\lambda}_{h}}}\right| \leq |Q(\xi_{h})|(d-|\mu|)^{\tilde{\lambda}_{h}-1}\tilde{\lambda}_{h}!|\alpha_{1}-\xi_{h}|^{-\tilde{\lambda}_{h}}$$
(14)

By the definition (12) of M we have

$$|Q(\xi_h)| \le |P(\xi)|^{\phi(\mu)}$$

and

$$|\frac{\partial^{\tilde{\lambda}_h}Q(\xi_h)}{\partial t^{\tilde{\lambda}_h}}| = |\frac{1}{\mu!}D^{\tilde{\lambda}}P(\xi)| > \tilde{\lambda}_h!|P(\xi)|^{\phi(\tilde{\lambda})}.$$

Combining with (14) we find out

$$|\alpha_1 - \xi_h|^{\tilde{\lambda}_h} < (d - |\mu|)^{\tilde{\lambda}_h - 1} |P(\xi)|^{\phi(\mu) - \phi(\tilde{\lambda})}.$$

Let $\alpha = (\xi_1, \ldots, \xi_{h-1}, \alpha_1, \xi_{h+1}, \ldots, \xi_n)$; taking the logarithms in the last inequality and using our upper bound (11) for $\log |P(\xi)|$ we find

$$\log|\alpha - \xi| < \log d - \frac{C}{(M+1)(n+1)}T^{\rho}.$$
 (15)

Moreover $D^{\mu}P(\alpha) = 0$, hence

$$\bar{\omega}_1(\alpha) \le t(\frac{1}{\mu!}D^{\mu}P) \le 2T.$$
(16)

Let $u \in [0, 1]$ be defined by

$$u = \frac{\log (M+1)}{\log T}$$

from relations (15) and (16) (with a suitable choice of C) we have

$$\rho \le \eta + u. \tag{17}$$

Now we apply the machinery of theorem 1 to find another bound for ρ which becomes better for a large u. we follow closely the pattern of the proof of theorem 1. Let f be the homogenization ${}^{h}P$ of P; for simplicity we shall consider $\mathbf{C}^{n} \subset \mathbf{P}^{n}$ via the canonical map

$$(x_1,\ldots,x_n)\mapsto (1:x_1:\ldots:x_n).$$

Using the definition (12) of M and the inequality $\phi(\lambda) \ge 1/(n+1)$ we find out

$$\max_{\substack{\lambda \in \mathbf{N}^{n+1} \\ |\lambda| \le M, \quad \lambda_0 = 0}} \left| \frac{1}{\lambda!} D^{\lambda} f(\xi) \right| \le |P(\xi)|^{\frac{1}{n+1}}.$$

We prove by induction that the following

$$\left|\frac{1}{\lambda!}D^{\lambda}f(\xi)\right| \le \frac{[(d+n)|\xi|]^{\lambda_0}}{\lambda_0!}|P(\xi)|^{\frac{1}{n+1}}$$
(18)

holds for any $\lambda \in \mathbf{N}^{n+1}$ such that $|\lambda| \leq M$. Let us assume (18) hold for any λ with $\lambda_0 = k - 1$ and let $\tilde{\lambda} \in \mathbf{N}^{n+1}$ be a multiindex with $\lambda_0 = k$; by Euler's formula we have

$$\sum_{t=0}^{n} \left[\frac{\partial}{\partial x_t} D^{\mu} f \right] x_t = (d - |\mu|) D^{\mu} f$$

where $\mu = (\lambda_0 - 1, \lambda_1, \dots, \lambda_n)$. Hence

$$\begin{split} |D^{\lambda}f(\xi)| &\leq (d - |\mu|)\mu! |\frac{1}{\mu!} D^{\mu}f(\xi)| + \\ &+ (n + |\mu|)\mu! |\xi| \max_{1 \leq t \leq n} \left\{ \frac{1}{\mu_0! \cdots (\mu_t + 1)! \cdots \mu_n!} |\frac{\partial}{\partial x_t} D^{\mu}f(\xi)| \right\} \leq \\ &\leq \frac{\lambda!}{k} (d + n) |\xi| \frac{[(d + n)|\xi|]^{k-1}}{(k - 1)!} |P(\xi)|^{\frac{1}{n+1}} = \\ &= \lambda! \frac{[(d + n)|\xi|]^k}{k!} |P(\xi)|^{\frac{1}{n+1}}. \end{split}$$

(18) is proved. Combining this with (11) we obtain

$$\max_{\lambda \le M} \log |D^{\lambda} f(\xi)| < -c_1 C T^{\rho}.$$
(19)

From this point on, we follow closely the pattern of the proof of theorem 1. We define I_1 as usual; let us assume I_1, \ldots, I_k defined. If

$$\log \|J_k\|_{\xi} \geq \frac{1}{2} \log \|I_k\|_{\xi}$$

we let $k_0 = k$ and we stop here. Otherwise we construct I_{k+1} as in the proof of theorem 1. Inequalities (5) and (6) are still true. Moreover, repeatedly applying proposition 4 iii) and iv) with the bounds (19) for the value of $D^{\lambda}f$ at ξ , we obtain

$$t(I_{k_0}) < c_{14}T^{k_0},$$

 $\log \|I_{k_0}\|_{\xi} < -c_{15}CT^{\rho}$

(we remember that $\rho \ge n+1$ and C >> 1). This implies $k_0 \le n$, since otherwise we would find an ideal I_{n+1} of codimension n+1 which satisfies $\log ||I_{n+1}||_{\xi} < 0$. Notice that

 $k_0 \ge 2$ too (f is irreducible and, a fortiori, square-free). Hence, using proposition 3 iv) and relation (6),

$$\sum_{j=1}^{s_{k_0}} e_{j,k_0} \log \|\wp_{j,k_0}\|_{\xi} \le \log \|I_{k_0}\|_{\xi} - \log \|J_{k_0}\|_{\xi} + c_{16}T^{k_0} \le < -c_{17}CT^{\rho} \le -c_{18}C \Big(\sum_{j=1}^{s_{k_0}} e_{j,k_0}t(\wp_{j,k_0})\Big)^{\rho/k_0}$$
(20)

Let us assume

$$\log \|\wp_{j,k_0}\|_{\xi} \ge -c_{19}Ct(\wp_{j,k_0})^{\frac{\rho-uk_0}{(1-u)k_0}} \quad \text{for } j = 1, \dots, s_k.$$

By the two inequalities above,

$$c_{18}C\Big(\sum_{j=1}^{s_{k_0}} e_{j,k_0}t(\wp_{j,k_0})\Big)^{\rho/k_0} < c_{19}C\sum_{j=1}^{s_{k_0}} e_{j,k_0}t(\wp_{j,k_0})^{\frac{\rho-uk_0}{(1-u)k_0}} \le c_{19}C\Big(\sum_{j=1}^{s_{k_0}} e_{j,k_0}t(\wp_{j,k_0})\Big)\Big(\sum_{j=1}^{s_{k_0}}t(\wp_{j,k_0})\Big)^{\frac{\rho-k_0}{(1-u)k_0}}.$$

Hence

$$\sum_{j=1}^{s_{k_0}} e_{j,k_0} t(\wp_{j,k_0}) < (c_{19}/c_{18})^{\frac{k_0}{\rho-k_0}} \left(\sum_{j=1}^{s_{k_0}} t(\wp_{j,k_0})\right)^{\frac{1}{1-u}}$$
(21)

On the other side, using (5) and (6) we obtain

$$\sum_{j=1}^{s_{k_0}} e_{j,k_0} t(\wp_{j,k_0}) \ge n^{-2k_0} M^{k_0} \sum_{j=1}^{s_{k_0}} t(\wp_{j,k_0}) =$$
$$= n^{-2k_0} T^{uk_0} \sum_{j=1}^{s_{k_0}} t(\wp_{j,k_0}) \ge$$
$$\ge n^{-2k_0} c_3^{-u} \Big(\sum_{j=1}^{s_{k_0}} e_{j,k_0} t(\wp_{j,k_0}) \Big)^u \sum_{j=1}^{s_{k_0}} t(\wp_{j,k_0}).$$

Hence

$$\sum_{j=1}^{s_{k_0}} e_{j,k_0} t(\wp_{j,k_0}) \ge (n^{2k_0} c_3^u)^{-\frac{1}{1-u}} \left(\sum_{j=1}^{s_{k_0}} t(\wp_{j,k_0})\right)^{\frac{1}{1-u}}.$$
(22)

Comparing (21) and (22) we find out

$$c_{19} > c_{20} := c_{18} (n^{2k_0} c_3^u)^{\frac{-\rho+k_0}{(1-u)k_0}}.$$
22

Hence there exists some prime ideal \wp of I_{k_0} such that

$$\log \|\wp\|_{\xi} < -c_{20}Ct(\wp)^{\frac{\rho-uk_0}{(1-u)k_0}} < 0.$$
(23)

Corollary 2 ensures the existence of $g \in \wp$ with

$$t(g) \le c_{21} t(\wp)^{1/k_0}.$$

Hence for any zero $\alpha \in \mathbf{C}^n$ of \wp we have

$$\bar{\omega}_1(\alpha) \le c_{21} t(\wp)^{1/k_0}$$
 (24).

We distinguish two cases:

$\underline{Case \ 1}$

Let us assume $2 \le k_0 \le n-1$ (hence this case does not occur if n = 2). Then lemma 2.7 of [P1] and inequalities (23) - (24) ensure the existence of a zero $\alpha \in \mathbb{C}^n$ in the projective variety defined by \wp such that

$$\log|\alpha - \xi| < c_{22}t(\wp)^{-1}\log||\wp||_{\xi} \le -c_{23}C\bar{\omega}_1(\alpha)^{\frac{\rho-k_0}{1-u}} \le -c_{23}C\bar{\omega}_1(\alpha)^{\frac{\rho-n+1}{1-u}}.$$

We conclude

$$\rho \le \eta (1-u) + n - 1.$$
(25)

 $\underline{Case \ 2}$

Let us assume $k_0 = n$. The set of projective zeros of \wp is a zero-dimensional variety, hence smooth. Theorem 1.1 of [A] asserts that we can find a zero $\alpha \in \mathbb{C}^n$ in the projective variety defined by \wp such that

$$\log|\alpha - \xi| < \log||\wp||_{\xi} + c_{24}t(\wp)^2.$$

Thus if

$$\frac{\rho - un}{(1 - u)n} \ge 2 \text{ and } C \ge \frac{2c_{24}}{c_{20}}$$

we have (using (23) - (24))

$$\log|\alpha - \xi| < -\frac{1}{2}c_{20}C\bar{\omega}_1(\alpha)^{\frac{\rho - un}{1 - u}} \le -\frac{1}{2}c_{20}C\bar{\omega}_1(\alpha)^{\rho}.$$

Hence we conclude

$$\rho \le Max((2-u)n,\eta). \tag{26}$$

Collecting (17),(25) and (26) we find

$$\rho \le Min(\eta + u, \eta(1 - u) + n - 1) \le \eta + \frac{n - 1}{\eta + 1}$$

for $2 \leq k_0 \leq n-1$, and

$$\rho \le Min(\eta + u, Max((2 - u)n, \eta)) \le \eta + Max(0, \frac{2n - \eta}{n + 1})$$

for $k_0 = n$. In any case

$$\rho \leq \eta + Max(\frac{n-1}{\eta+1}, \frac{2n-\eta}{n+1}).$$

If n = 2 case 1 does not occur and we have the better result

$$\rho \le \eta + Max(0, \frac{2n - \eta}{n + 1}).$$

Theorem 2 is proved.

Q.E.D.

24

REFERENCES

- [A] F. AMOROSO, "Some remarks about algebraic independence measures in high dimension", Bulletin de la société mathématique de France 117, 101-111 (1989);
- [C] G.V. CHUDNOVSKI, "Contribution to the theory of transcendental numbers", AMS n.19 (1984);
- [CH] M. CHARDIN, "Une majoration de la fonction de Hilbert et ses conséquences pour l'interpolation algébrique", Bulletin de la société mathématique de France, à paraître ;
- [E-V] H. ESNAULT and E. VIEHWEG, "Sur une minoration du degré d'hypersurfaces s'annulant en certains points", Math.Ann. 263, 75-86 (1983);
- [F1] M. FEDERER, Geometric measure theory, Springer-Verlag, Berlin 1969;
- [F2] M. FEDERER, "Some Integralgeometric Theorems", Trans. of the Amer. Math. Soc. 77, 238-261 (1954);
- [L] P. LELONG, Entire functions of Several Complex Variables, Springer-Verlag, Berlin 1986;
- [M] D.W. MASSER, "A note on multiplicities of polynomials", in Problèmes Diophantiens, éd.
 D. Bertrand and M. Waldshmidt, Pub. Math. Univ. P. et M. Curie Paris VI n.43, 1981;
- [M-W] D.W. MASSER and G.WÜSTHOLZ, "Fields of large transcendence degree generated by values of elliptic functions", Invent.Math. 72 (1983), 407-464;
- [N1] Ju.V. NESTERENKO, "Estimates for the orders of zeros of functions of certain class and applications in the theory of transcendental numbers", Izv.Akad.Nauk SSSR Ser.Mat. 41 (1977), 253-284 = Math. USSR Izv. 11 (1977);
- [N2] Ju.V. NESTERENKO, "Estimates for the characteristic function of a prime ideal", Mat. Sbornik 123 (165), (1984), 11-34 = Math. USSR Sbornik 51 (1985), 9-32;
- [N3] Ju.V. NESTERENKO, "On algebraic independence of algebraic powers of algebraic numbers", Mat. Sbornik 123. No.4, (1984), 435-459 = Math. USSR Sbornik 51 (1985), 429-453;
- [P1] P. PHILIPPON, "Critères pour l'indépendance algébrique", Inst. Hautes Etudes Sci. Publ. Math. 64 (1986), 5-52;
- [P2] P. PHILIPPON, "Théorème des zéros effectif et élimination", dans "Séminaire de Théorie des Nombres de Bordeaux 1989" à paraître;
- [W1] M. WALDSCHMIDT, <u>Nombres transcendants</u>, Springer-Verlag, Berlin 1974;
- [W2] M. WALDSCHMIDT, <u>Nombres transcendants et groupes algébriques</u>, Astérisque 69-70, 1979;
- [Wu] G. WUSTHOLZ, "On the degree of algebraic hypersurfaces with given singularities", in Problèmes Diophantiens, éd. D. Bertrand and M. Waldshmidt, Pub. Math. Univ. P. et M. Curie - Paris VI n.43, 1981.

Francesco Amoroso

Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 PISA (ITALIA)

 et

Université de Paris VI, URA du CNRS n.763 "Problèmes diophantiens", Institut Henri Poincaré, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (FRANCE).