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Chapter 1

Preface

Collective migration in biological systems is a fascinating phenomenon observed at dif-
ferent levels, i.e., from the cellular scale to the case of animal populations. The First
Part of this Thesis focuses on an emblematic example of coordinated multi-agent move-
ment and organization: the swarming of honeybees. In particular, the dynamics of a bee
colony is guided by a small group of scout individuals, which are informed of the target
destination (e.g., the new nest). However, little is known on the mechanisms underlying
this leader-follower system: i.e., in particular it is not clear the specific behavior that
allows the leader to point out the flight direction and how this information then diffuses
within the poopulation. These aspects are investigated in this dissertation with a discrete
particle-based mathematical approach. In more details, each bee is here represented by
a material point and assigned a role within the colony. Furthermore, it is set to move
according to individual strategies and social interactions, the former involving the desire to
reach a target destination and to communicate the flight direction, the latter accounting for
repulsive/attractive stimuli and alignment processes.

Entering in more details, after the introduction of the biological phenomenon and of
the modeling framework, we first study whether a single leader bee is able to transmit the
direction of movement to the rest of the population, testing both topological and metric-
based alignments. The former amounting to a synchronization to a given number of bees,
regardless of distance; the latter to a synchronization to all bees within a set region. As
a result, we observe that an efficient guidance is obtained under (i) a sufficiently large
alignment region (i.e., defined by a radius encompassing the entire bee cloud) for metric
alignments or (ii) for sufficiently high numbers of groupmates under topological alignment.
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The second goal of the first Part of the Thesis is then to prise out how the subtlety
of scout visibility and behaviour hypotheses impact on swarm efficiency. Specifically,
we propose alternative assumptions on the flight synchronization mechanism of unin-
formed individuals and on the characteristic dynamics of the scout insects. In this respect,
numerical realizations point out the combinations of behavioral hypotheses resulting in
collective productive movement. Specifically, alignment mechanisms involving a control
over groupmate velocity do not certainly imply directionally productive and collective
swarm dynamics. An efficient and coordinate flight is instead reproduced if the follower
individuals synchronize their movement (i) to all insects sufficiently close to their position
and (ii) only to close enough uninformed and leader groupmates, provided the fact that the
leaders stop upon reaching the front of the cloud. Further, the correlation between scout
percentage on total swarm size and guidance efficiency is investigated, with larger swarms
demanding a smaller fraction of scouts to achieve comparable targeting. An analysis of the
phenomenology of the swarm in domains with environmental complexity is also performed,
and reproduces realistic morphological evolution of the cloud of insects, i.e. needed to
circumnavigate structural elements.

Finally, experiments relative to the disruption of coordinated swarming behavior due to
the confusing presence of high density traffic lines of forager bees are reproduced. In this
respect, our results suggest that among the previously proposed combinations of behavioral
assumptions, the most reliable set of hypotheses involves follower bees synchronising their
movement to all the insects sufficiently close to their position regardless of their status,
provided that the leaders slowly come back from the front to the rear edge of the bee cloud.

In the Second Part of this Thesis, another particle-based model is presented, which is
able to capture self-organization and movement of a generic group of animals. Again, each
agent moves following a first-order ODE, however this approach distinguishes individual
speed and orientation. In particular, the latter is the result of the balance of a given set of
behavioral stimuli, each of them defined by a direction and a weight, that quantifies its relat-
ive importance. Working in the limit of fast orientation dynamics, such a second modeling
is intrinsically based on a minimal set of parameters and is able to capture and classify, in
terms of pattern and type of motion, a number of collective group evolutions emerging from
different individual preferred dynamics. This approach is then here extended to account
for group heterogeneity, i.e., for the presence of predators with different hunting strategies
(i.e., confused vs. not confused) which impacts on the behavior of a prey population. The
proposed dissertation is also equipped by a review on the pertinent literature dealing with
collective animal dynamics with a particular emphasis on discrete models. Along the
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dissertation some hints for possible developments and future perspectives of the proposed
approaches are given. Comments on the numerical results are provided as well.
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Chapter 2

A brief review on selected modeling
approaches for collective migration

The description of the collective and coordinated dynamics of groups of animals is a
challenging topic for theoretical researchers. Populations of intelligent living entities
are in fact complex systems, since the component individuals are not passively dragged
by external forces but rather they undergo active decision-based dynamics, so that the
use of classical passive mechanics is no longer sufficient. The overall evolution of the
group in fact emerges from the rules governing the individual behavior. The mathematical
and computational literature in this field presents indeed a particularly wide range of
approaches.

For instance, microscopic models (also called individual-based models, IBMs) de-
scribe a group of animals as a collection of isolated agents: each of them is individually
considered, assimilated for instance to a point particle or a quasi-rigid disk and followed
during motion. More specifically, a first subgroup of microscopic models is represented
by the so-called cellular automata (CA), where each animal is set to behave according
to phenomenological algorithmic rules, that depend on its individuality and/or on the
surrounding environment. Another subtype of microscopic approach involves instead
discrete models: they rely on classical Newtonian laws of point mechanics, as the motion
of each agent is defined by a first- or a second-order ordinary differential equation (ODE).
Microscopic approaches are typically able to provide a detailed description of the dynamics
of each agent and therefore represent a natural tool to investigate animal world-related
collective phenomena (see, for instance, [20, 26, 27, 32, 39, 44, 47, 58, 67]).
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However, when the number of component individuals is significantly large, as in the
case of fishes [64] or myxobacteria [99, 51], microscopic methods become computationally
expensive and therefore different approaches are needed. In this respect, continuous models,
characteristic of a macroscopic point of view, rely on the definition of a proper density
of agents, which evolves following (typically nonlinear) partial differential equations
(PDEs), which implement conservation laws and require phenomenological assumptions
for their closure, see for example [11, 93–95]. It is useful to remark that the rules of
motion underlying discrete and continuous approaches often coincide: however, in the
former case, they are related to the individual behavior of single agents, whereas, in the
second case, they account for the dynamics of the overall population density, treated as an
undifferentiated element.

A bridge between the microscopic word and the macroscopic representation of animal
systems is represented by kinetic models. Characteristics of a mesoscopic point of view,
they are able to derive, employing hydrodynamic arguments, Boltzmann-like evolution
laws for statistical distribution functions, which describe position and velocity of the
components of the population of interest [12, 16, 52].

As said in the Abstract, the models presented in this dissertation belong to the class
of microscopic/discrete methods. This choice is justified by the fact that (i) we typically
deal with bee swarm or animal populations formed by a number of individuals that can be
easily approached from a numerical perspective and (ii) the topic of the Thesis is to shed
light on individual behavioral assumptions that result in selected collective dynamics.



Part I

A particle-based model analyzing
honeybee swarming





Chapter 3

Biological background

The aim of describing emerging collective dynamics of populations of interacting indi-
viduals, such as birds, fishes, insects and certain mammals, from individual behaviors has
increased in the last decades the multidisciplinary interest of various research communities,
e.g., biologists, ecologists, sociologists, physicists, and applied mathematicians.

For instance, the coordinated behavior of bee swarms represents an interesting problem
to be studied. Such insect populations, which are typically composed by the old queen
and by 10000 to 30000 worker individuals, in fact undergo a synchronized flight with
the specific purpose of reaching a new nest site [87]. All colonies are subject to this
natural phenomenon, and every year beekeepers have to deal with it in late spring and early
summer. In this period, as the weather warms up and flowers begin to bloom, the colony is
in fact at the peak of its capacity and ready to produce a new hive.

In this respect, each bee swarm has to face two challenges: it first needs to identify a
suitable new location using a process of community site selection and then it has to move
towards the chosen destination. Entering in more details, when the migrating bees leave
the original hive they first temporarily settle on a tree branch a few meters away from the
old nest. There, they cluster around the queen, and a small fraction of bees (called scouts)
starts exploring the surrounding area. Specifically, the latter represent only the 3%−5%
of the whole swarm, i.e. the swarming process relies on the guidance of very few informed
bees. These individuals inspect possible locations for the new nest to assess their quality,
in terms of volume, aspect, size and height of entrance, and presence of structures left by
other bee colonies [87, 89]. Then, they return to the rest of the population and perform a
waggle dance to broadcast information on the characteristics of the explored sites. Nest
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Figure 3.1 Bees congregate on a tree branch after swarming from their hive,
waiting for a new nest to be found by the scout bees. Picture taken from
http://sciamiapi.blogspot.com/2015/03/recupero-sciami-di-api.html

proposals coming from the scout bees may be different but, after some hours (sometimes
days), an agreement is finally found.

The whole swarm finally takes off and compactly flies towards the chosen destina-
tion, following the guidance of the informed/scout individuals. In this respect, various
assumptions have been proposed to account for the migration mechanisms underlying
this leader-follower system. First, it was hypothesized that the scout bees can guide the
cloud of insects to the new home by producing the Nasonov pheromone, [2]. However,
a subsequent experimental study revealed that such a chemical substance is not really
involved in the flight guidance process, while it is crucial to help the uninformed/follower
individuals to find the entrance of the new nest [6].

A different family of possible explanations instead involves selected visual signals.
For instance, the streaker hypothesis is based on the empirical observations experienced
by Lindauer. Specifically, in 1955 he suggested that the scout insects can transmit the
direction of movement by a characteristic flight through the swarm [73]. In particular, such
informed bees are observed to streak at high speed from the back of the swarm to its front.
However, once they have reached the front of the cloud, their behavior is still unknown.
In this respect, in [85, 87], two possible dynamics are suggested: (i) they may slowly fly
back towards the rear edge of the swarm or (ii) they may stop and wait to be passed by the
rest of the groupmates. In both cases, the scout bees then start again to streak towards the
leading edge of the insect cloud and the process is iterated. How the follower individuals
acquire the information of the correct migration direction under the scout guidance is
debated as well. More specifically, each different hypothesis on their flight synchronization
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Figure 3.2 Schematic view of the flight patterns of bees in a swarm flying to the right.
Lindauer reported the presence of streaker bees flying within the swarm cloud, [87].

mechanism involves the alignment with a distinct set of groupmates, composed, e.g., by
faster individuals, or by closer individuals, or only by informed individuals. The First
Part of this Thesis aims to mathematically investigate these aspects in order to elucidate
individual behaviour underlying this interesting collective migration.



Chapter 4

General modeling framework

This chapter will introduce the modeling framework that will be employed to describe bee
swarming with particular emphasis on the math notation.

4.1 Bee representation and characteristics

Swarm dynamics is constantly modeled in two-dimensional domains Ω ⊆ R2, whose
dimensions will be specified later on. We indeed consider a planar section, parallel to the
ground, of a typical bee swarm, see Fig. 4.1. The target destinations of the insects are then
assumed to be constituted by subregions of the domain. Each insect i = 1, ...,N, being N
the total number of individuals, is an autonomous discrete agent, represented by a material
point with concentrated mass. In particular, the generic i-th bee is uniquely defined by the
following set of variables:

(xi(t),vi(t),si(t)) ∈ Ω×R2 ×S. (4.1)

Specifically, the vectors xi(t) and vi(t) denote individual position and velocity, respectively,
whereas si(t) is a state variable which defines the role that the insect of interest has within
the swarm, e.g. U(’uninformed’), L(’leader’) or F(’forager’), being S the set containing
all its possible specifications.
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Figure 4.1 The virtual population of bees is modeled in a two-dimensional domain Ω ⊆ R2,
i.e., we are taking into account a planar section of a typical swarm. The aim of the insect
population is to reach a new nest, which is constituted by a subregion of the domain. The
domain may represent a large open-space or it may account for environmental elements,
such as trees or buildings.

4.2 Bee dynamics

The dynamics of a generic bee i can be described starting from a general second-order
particle model:

mi
d2xi

dt2 (t)+λi
dxi

dt
(t) = Fi(t), (4.2)

where mi is the individual mass and λi a friction coefficient. Fi denotes instead the resultant
of the forces that affect insect behavior. However, it is worth to notice that bees (such as
most living entities, e.g., from cells and bacteria to big animal species and humans) are not
passively prone to the Newtonian laws of inertia. They are in fact intelligent individuals
able to actively develop behavioral strategies, which depend both on intrinsic stimuli and
on the interactions with the surrounding environment. For instance, bees can control their
movement without undergoing inertial effects: in other words, they can suddenly decide
to stop and change direction of motion, at least for reasonable speeds. These concepts
allow to neglect the inertial term in Eq. (4.2), i.e., to assume, in mathematical terms, that
λi >> mi and to obtain

mi

λi︸︷︷︸
→ 0

d2xi

dt2 (t)+
dxi

dt
(t) =

Fi(t)
λi

⇒ dxi

dt
(t) =

Fi(t)
λi

= ṽi(t)︸︷︷︸
bee

velocity

. (4.3)
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Eq. (4.3) gives the so-called overdamped force-velocity response relation, which states
that the velocity of an individual, and not his/her acceleration, is proportional to the acting
forces: it is employed in a number of discrete/IBM approaches (see [23, 29, 41, 86] and
references therein for comments) and allows to describe selected bee behavior by a direct
phenomenological postulation of the velocity contributions, i.e., by a first-order model.

Remark. The choice of a more general second-order model would imply greater persistence
of particle motion with respect to a first-order description. In fact, the inertial term would
have the effect of smoothing the trajectories, e.g. of preventing particles to carry out a
right angle bend; rather they perform a parabolic curve. As a consequence, in the presence
of inertia, the agent-based system would need a larger time to reach the asymptotic
configurations.

The individual velocity ṽi has then to be characterized by a realistic modulus, i.e.
subjected to physical constraints and limitations, and an orientation. In this respect, the
equation of motion of the generic bee i is finally assumed to be

dxi(t)
dt

= ṽi(t) = min
{

vsi(t)
max(t), |vi(t)|

} vi(t)
|vi(t)|

, (4.4)

where vsi(t)
max denotes the maximal speed of the i-th individual according to its actual status,

avoiding also unrealistically high speeds. The velocity of each individual is defined by the
superposition of different possible velocity contributions, i.e.,

vi(t) = vdir
i (t)︸ ︷︷ ︸

individual strategy

+vrep
i (t)+vattr

i (t)+valign
i (t)︸ ︷︷ ︸

social interactions

+vrand
i (t)︸ ︷︷ ︸
noise

+ . . .︸︷︷︸
other behaviors

(4.5)

The first term in Eq. (4.5) describes the strategic behavior of each bee (e.g., the attempt
to reach a target destination while minimizing the effort, covering the shortest possible
path at a comfort speed, but other strategies may of course be taken into account). The
social contribution results from different individual behaviors. Specifically, the repulsive
component vrep

i models the tendency of the generic i-th bee of staying sufficiently far away
from its neighbours, typically in order to avoid physical collisions, while maintaining a
minimal comfort space within the swarm. The third contribution in Eq. (4.5) implements
the desire of each individual to keep a connection with the groupmates, i.e., to be close
enough to the rest of the population. Finally, the social velocity term valign

i describes the
alignment process of bees, i.e., the adaptation and synchronization of their movement with
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at least a given part of the swarm. Finally, the random fluctuation term implements the
impossibility of an individual to apply the ideal set of rules, e.g., to take the correct and
productive decision in a very short time. Other behavioural contributions may be easily
added to the model framework.

Entering in more details, the repulsive/attractive behavior of the i-th bee is described by
proper kernels Hrep

i j ,Hattr
i j : R2 ×R2 7−→ R2, which define its pairwise interaction instances

with the generic j-th individual falling within a given neighbourhood, say N rep
i and N attr

i ,
respectively. We then assume that (i) the above-introduced kernels do not depend on the
specific couple of bees, i.e., Hrep

i j = Hrep and Hattr
i j = Hattr for any (i, j), (ii) the resulting

velocity contributions have an effect on the direction ideally connecting the interacting
insects and (iii) they depend on individual relative distance. In this respect, we can write:

vrep
i (t) = ∑

j∈N rep
i (t)

Hrep(x j(t),xi(t)) = ∑
j∈N rep

i (t)

hrep(|ri j(t)|)
ri j(t)
|ri j(t)|

; (4.6)

vattr
i (t) = ∑

j∈N attr
i (t)

Hattr(x j(t),xi(t)) = ∑
j∈N attr

i (t)

hattr(|ri j(t)|)
ri j(t)
|ri j(t)|

, (4.7)

where ri j(t) := x j(t)−xi(t) and the continuous and Lebesgue integrable functions hrep,hattr :
R+ 7−→ R are such that

hrep(|ri j(t)|)≤ 0; (4.8)

hattr(|ri j(t)|)≥ 0, (4.9)

for all pairs of bees (i, j) and corresponding positions (xi,x j). In this perspective, in
Eqs. (4.6) - (4.7) the notation j ∈ N •

i (t) has to be intended as j : x j(t) ∈ N •
i (t), where

• ∈ {“rep”, “attr”}.

The alignment contribution in the dynamics of the generic i-th bee results instead
from a mean over the velocity of a given set of its neighbours that, as we will see in the
following, has to be specified according to biological assumptions.

The proposed approach is intrinsically multiparametric. In particular, the model
coefficients can be classified in two groups: those that have a direct and measurable
biological meaning (e.g., speed values) and those that are more technical, i.e., that only
subsume experimental dynamics, such as the interaction coefficients. We will indeed
derive a composite parameter setting, obtained by observations and data present both in
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the experimental and in the theoretical literature and, when necessary, by preliminary
numerical realizations.

Given the above-described general math framework, in the next Chapters we will study
different hypotheses on the individual bee movement. In particular, we will test different
assumptions on the velocity terms included in Eq. (4.5), in order to elucidate selected
biological mechanisms underlying bee swarming behavior.



Chapter 5

Analysis of the collective dynamics of a
swarm guided by a single leader

In this Chapter, we will test combinations of alternative assumptions related to flight
alignment mechanisms and bee pairwise interactions. The obtained theoretical results will
be also used to reduce the free space of possible parameter variations.

Entering in more details, the rest of this Chapter is organized as follows. In Section
5.1, we clarify the assumptions on which our mathematical approach is based and we
present the model components. Section 5.2 deals with different assumptions underlying
flight synchronization mechanisms. In particular, we focus either on an Euclidean metric-
based or on a topological neighborhood metric-based alignment process within the swarm.
In this respect, we discuss how these two mutually exclusive hypotheses impact on the
repulsion/attraction velocity contributions (which in turn have to satisfy a stability condition
to assure a realistic crystalline patterning of the particle system). Different series of
numerical realizations then analyze the swarm behavior in different parameter regimes
and show that our approach is able to capture selected experimentally-observed swarm
phenomenology (e.g., flight synchronization and productive motion). After discussing in
Section 5.3 the effect of the inclusion of random contributions on the particle system, we
review in Section 5.4 the results obtained in this Chapter.



18 Analysis of the collective dynamics of a swarm guided by a single leader

x

Ωi
vis(t)

xi(t)

y

dvis

vi(t)

Figure 5.1 Each bee i is represented as a material point. Given its actual position xi(t)
and velocity vi(t), for each insect we define a visual region Ωvis

i (t), i.e., a round area
determined by the bee visual depth dvis. The inclusion of a visual field implies that each
bee is not able to see and therefore to interact with the entire set of their groupmates (see
the individual indicated by the green arrow). For representative purposes, hereafter the
virtual bees will be indicated by rigid disks centered at their actual position.

5.1 Modeling details

Bee characteristics. In this case the domain Ω coincides with the entire space R. The
simulated swarm accounts for a leader bee that guides the rest of follower individuals, i.e.
the status set is given by

S = {U(‘uninformed’);L(‘leader’)} (5.1)

We further define, for each insect i, a proper visual/perception region, as reproduced in Fig.
5.1:

Ω
vis(t) =

{
y ∈ R2 : |y−xi(t)| ≤ dvis

}
. (5.2)

It is a round region centered at xi(t) with radius dvis, that represents the bee vision depth.

Bee dynamics. The group of insects behaves following the system (4.4). For simplicity, we
set vU

max = vL
max = vmax, i.e., as first modeling step we assume that the maximal speed does

not depend on the bee status. In particular, the differentiated, i.e., status-dependent, rules
of motion read as

v1(t) = vtarg
1 (t)+vrep

1 (t)+vattr
1 (t), with s1(t) = L (5.3)

vi(t) = valign
i (t)+vrep

i (t)+vattr
i (t), with si(t) =U, ∀ i = 2,3, . . . ,N. (5.4)
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Eqs. (5.3)-(5.4) state that all bees are characterized by repulsive/attractive interactions.
Further, only one bee, identified with the index 1 and with the leader status is set to have a
target velocity component, i.e., it is the only one informed of the destination of the entire
swarm (e.g., of the location of the new nest). The presence of a small group of leader bees
within a swarm, which are able to guide the rest of the population is widely known from
the ecological literature [87]. Entering in more details, assuming xnest as the target point,
we set

vtarg
1 (t) = vmax

xnest −xi(t)
|xnest −xi(t)|

, (5.5)

i.e., the leader bee aims to cover the shortest possible path towards the destination at the
possible maximal speed. On the opposite, all the other individuals undergo alignment
process. Specifically, this contribution is given by a mean over the velocity of a given set
of its neighbours, i.e., for the i-th follower

valign
i (t) =< v j(t)> j∈N align

i (t), (5.6)

where the notation j ∈N align
i (t) stands for j : x j(t) ∈N align

i (t).

5.2 Social velocity components: Assumptions and simu-
lations

We now test different hypotheses on the alignment velocity component, in particular on the
synchronization region N align, which impact also on the repulsive/attractive contributions.

5.2.1 Euclidean metric-based alignment mechanism

We first assume that the alignment mechanism, as well as the individual repulsive/attractive
behavior, relies on Euclidean metric arguments, i.e., for any i = 1, . . . ,N, it involves all the
bees j = 1, . . . ,N, with i ̸= j, whose distance from the i-th insect falls within a given range.
In particular, we identify three concentric regions such that each of them characterizes one
of the social velocity components (see Fig. 5.2, left panel):

N rep
i (t) =

{
j = 1, . . . ,N, j ̸= i : x j(t) ∈ Ω

vis
i (t),0 < |ri j(t)| ≤ drep

}
; (5.7)
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N align
i (t) =

{
j = 1, . . . ,N, j ̸= i : x j(t) ∈ Ω

vis
i (t),drep < |ri j(t)| ≤ dalign

}
; (5.8)

N attr
i (t) =

{
j = 1, . . . ,N, j ̸= i : x j(t) ∈ Ω

vis
i (t),dalign < |ri j(t)| ≤ dattr

}
, (5.9)

where Ωvis
i (t) is the actual visual field of the i-th bee, as defined in Eq. (5.2) and again

ri j(t) := x j(t)−xi(t).

To completely determine individual dynamics, we have finally to define the interaction
kernels. In this respect, although there are several possible options, we take advantage of
some published results [24, 25] and set, for each couple of bees (i, j):

hrep(|ri j(t)|) =

 frep

(
1

drep
− 1

|ri j(t)|

)
, if 0 < |ri j(t)| ≤ drep;

0, otherwise;
(5.10)

hattr(|ri j(t)|) =

 −
4 fattr (|ri j(t)|−dattr)(|ri j(t)|−dalign)

(dattr −dalign)2 , if dalign < |ri j(t)| ≤ dattr

0, otherwise.
(5.11)

For instance, such Newtonian-type short-range hyperbolic kernel has been used by Diwold
and coworkers to reproduce the collective flight of red dwarf honeybees (cf. [39], Eq.
(1)) and by Chen and Kolokolnikov to study predator-swarm interactions (cf. [19], Eq.
(1.1) and the references below). Repulsive kernels with similar trends (i.e., which go
to infinity as |ri j|α , with α < 0, when |ri j| → 0, being |ri j| the distance between two
interacting agents) have been implemented also in the case of discrete approaches for
zebrafish embryogenesis [38] and endothelial patterning on polymers [60]. Further, we
do not use linear Hooke-like attraction laws, such as those introduced in some of the
previously cited works dealing with swarming, e.g., [19, 39], since we hypothesize that
the attractive stimulus is negligible when two bees are very close and, after a maximum, it
decreases again to zero at dattr, which is taken to be the margin of the visual field. Finally,
according to us, it is plausible that pairs of insects falling substantially apart one from each
other do not have a significant mutual influence. Analogous attraction functions has been
used in the case of other particle models relative to bee and cell dynamics, see [23–25] and
references therein.

The functions defined in Eqs. (5.10)-(5.11), and plotted in Fig. 5.2 (right panel),
are intrinsically multiparametric, since they are characterized by the following set of
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coefficients:
(drep,dalign,dattr, frep, fattr) ∈ R5

+.

To decrease the complexity of the problem, we can reduce the dimension of the free
parameter space with phenomenological arguments and observations. First of all, drep

can be intended as the comfort distance that each bee tends to preserve in order to fly
without colliding with other components of the swarm. According to several experimental
measurements, we estimate drep = 0.3 m [87]. On the opposite, dattr is the extension of the
long-range attraction, i.e., of the desire of each individual to remain sufficiently close to
the rest of the population. In this respect, it is consistent to assume dattr = dvis = 10 m, i.e.,
each bee is attracted by the groupmates that it is able to see (and that do not fall within
the alignment and repulsion regions). In this respect, given the estimated extension of the
three interaction neighborhoods, we have that

N rep
i (t)∪N align

i (t)∪N attr
i (t) = Ω

vis
i (t),

for each insect i and time t, see again Fig. 5.2 (left panel).

The above considerations allow us to reduce the parameter space of the problem to

(dalign, frep, fattr) ∈ [drep,dattr]×R2
+.

Given the form of hattr(r), fattr ∈ [0,vmax] can be interpreted as the maximal attraction
speed, whereas frep > 0 determines the slope of the hyperbolic part of hrep(r) (cf. Fig. 5.2,
right panel).

Further, the swarm has to maintain a realistic crystalline configuration during the
collective flight. In this respect, it has been shown that the large-time asymptotic collective
pattern of discrete particle systems depends on the stability characteristics of the potential
relative to individual pairwise interactions [84]. In particular, we use and extend to our
case the criterium introduced in [13], applied to the case of cell aggregates in [14], in order
to identify the regions of the free parameter space that assure the H-stability of a particle
system. We can indeed prove:

Theorem 5.2.1. If the following parametric relation

frep

fattr
>

2(dattr −dalign)

5(drep)2

(
3(dalign)

2 +4dattrdalign +3(dattr)
2
)

(5.12)
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Figure 5.2 Euclidean metric-based alignment mechanism. Left panel: Representation of the
three interaction regions: the repulsive neighborhood N rep

i (t) (see Eq. (5.7)), the alignment
neighborhood N align

i (t) (see Eq. (5.8)), and the attractive neighborhood N attr
i (t) (see Eq.

(5.9)). In particular, assuming dattr = dvis, we have that the three interaction regions
entirely cover the visual field of each animal, i.e., N rep

i (t)∪N align
i (t)∪N attr

i (t) = Ωvis
i (t).

Right panel: Plot of the pairwise interaction kernel hint : R+ 7−→ R given by the sum
of the repulsive and attractive functions defined in Eqs. (5.10)-(5.11), i.e., hint(r) =
hrep(r)+hattr(r).

holds, the potential related to the pairwise interaction kernel hint(r) = hrep(r)+hattr(r),
with r = |ri j(t)|= |x j(t)−xi(t)|, defined in Eqs. (5.10)-(5.11) is H-stable. As shown in
[13, 18, 40], for a finite number of agents, as in the case of our interest, this implies that,
at each time t ∈ R+, there exist two finite and positive quantities dmin(t) = min

i, j=1,...,N
i ̸= j

|xi(t)−

x j(t)| and dmax(t) = max
i, j=1,...,N

i ̸= j

|xi(t)−x j(t)| such that dmin(t)≤ |xi(t)−x j(t)| ≤ dmax(t) for

all pairs (i, j) of bees, i.e., at each time t ∈ R+ the swarm does not collapse nor explode.
In particular, for t →+∞, the minimal relative distance between bees dmin(t) tends to the
limit value d∞, whereas the maximal relative distance dmax(t) (which also represents the
diameter of the swarm) tends to the value D∞: in other words, the particle population
asymptotically organizes in a stable crystalline-like pattern.

Proof. Following the analytical study in [13] and the calculations introduced in [14], we
have first to define a potential uint : R 7−→ R associated to our pairwise interaction kernels,
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i.e.,

uint(r) =
∫

hint(r)dr =
∫

hrep(r)dr+
∫

hattr(r)dr =

=



frep

(
r

drep
− logr

)
+C1,

if 0 < r ≤ drep;

C2,

if drep < r ≤ dalign;

−
2 fattr

(
2r3 −3(dattr +dalign)r2 +6dattr dalign r

)
3(dattr −dalign)2 +C3,

if dalign < r ≤ dattr;

C4,

otherwise,

where the constants C1,C2,C3,C4 have to satisfy the following conditions

C1 = C2 − frep
(
1− logdrep

)
;

C2 = C3 −
2 fattr

(
2(dalign)

3 −3(dattr +dalign)(dalign)
2 +6dattr (dalign)

2)
3(dattr −dalign)2 ;

C3 = C4 +
2 fattr

(
2(dattr)

3 −3(dattr +dalign)(dattr)
2 +6(dattr)

2 dalign
)

3(dattr −dalign)2 ,

to assure its continuity. To fully apply the characterization of H-stable potentials given in
[13], uint has to be essentially negligible for large interparticle distances (i.e., lim

r→∞
uint(r) =

0). Without loss of generality, we indeed assume C4 = 0. As a consequence, with simple
algebraic calculations, we have that

C3 = −
2 fattr(dattr)

2 (dattr −3dalign
)

3(dattr −dalign)2 ;

C2 = − 2
3

fattr (dattr −dalign);

C1 = − 2
3

fattr (dattr −dalign)− frep
(
1− logdrep

)
.
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The pairwise interaction potential therefore rewrites in the following explicit form

uint(r) =



frep

(
r

drep
− log

(
r

drep

)
−1
)
− 2

3
fattr (dattr −dalign),

if 0 < r ≤ drep;

− 2
3

fattr (dattr −dalign),

if drep < r ≤ dalign;

−
2 fattr

(
2r3 −3(dattr +dalign)r2 +6dattrdalignr+(dattr)

2 (dattr −3dalign
))

3(dattr −dalign)2 ,

if dalign < r ≤ dattr;

0,
otherwise.

(5.13)

Now, recalling Definition 1.1 in [13], we can say that uint (and consequently hint) is H-stable
if ∫ +∞

0
uint(r)r dr >

1
2

lim
r→+∞

uint(r) = 0.

In this respect, let us calculate the value of the integral of interest:∫ +∞

0
uint(r)r dr =

=
∫ drep

0

(
frep

(
r2

drep
− r log

(
r

drep

)
− r
)
− 2

3
fattr(dattr −dalign)r

)
dr

−
∫ dalign

drep

(
2
3

fattr(dattr −dalign)r
)

dr

−
∫ dattr

dalign

(
2 fattr

(
2r4 −3(dattr +dalign)r3 +6dattrdalignr2 +(dattr)

2 (dattr −3dalign
)

r
)

3(dattr −dalign)2

)
dr

=
frep(drep)

2

12
− fattr

30
(dattr −dalign)

(
3(dalign)

2 +4dattrdalign +3(dattr)
2
)
,

which is non-negative (assuring indeed the H-stability of the system) if the parametric
relation in Eq. (5.12) holds.
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Figure 5.3 Euclidean metric-based alignment mechanism. Different views of the permitted
parameter region, i.e., where hint is H-stable. The space of free model coefficients is given
by (dalign, frep, fattr) ∈ R3

+. In particular, biological considerations allows the following
restrictions: dalign ∈ [drep,dattr] and fattr ∈ [0,vmax]. The H-stability criterium in Eq. (5.12)
further reduces the possible variations of parameter values to the region above the grey
surface. Of the remaining combination of coefficients, we focus on the six sets Mk, where
k = 1, ...,6, since they are sufficiently distributed, thereby covering large enough parameter
regimes.

Theorem 5.2.1 allows to better identify the parameter space, that is drawn in Fig. 5.3 (for
the sake of clarity, we recall that dattr = 10 m and that drep = 0.3 m). Specifically, only the
points above the plotted surface are able to satisfy both experimental observations and the
relation (5.12) (that assures the H-stability of the system). Each point of this area leads, in
principle, to a different system evolution.

In this respect, we now turn to analyze swarm dynamics upon permitted variations
of the model coefficients, i.e., within the region of H-stability. In particular, we study
the behavior of a population formed by N = 100 bees, with 99 followers and 1 leader,
according to the following classification of the particle system evolution:

Definition 5.2.2. The population of uninformed bees has a time asymptotic collective
swarming behavior (with respect to the informed individual) if the following condition is
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Figure 5.4 Initial spatial configuration of the swarm. The red disk denotes the position of
the informed (leader) bee, while the follower individuals are represented by yellow disks.
The target destination xnest =(10 m, 2.5 m) is here represented by a triangle.

Table 5.1 Model parameters and corresponding references.

Parameter Description Value [Unit] Reference

dvis bee visual depth 10 [m] estimated
drep repulsion range 0.3 [m] [87]
dattr attraction range 10 [m] estimated
vmax bee maximal speed 9.4 [m/s] [87]
N number of bees 100

satisfied:

lim
t→∞

Vswarm(t) = lim
t→∞

√
N

∑
i=2

|vi(t)−v1(t)|2 = 0. (5.14)

The swarm undergoes a collective productive motion if the following condition is satisfied:

lim
t→∞

Xswarm(t) = lim
t→∞

∣∣∣∣∑N
i=2 xi(t)
N −1

−xnest

∣∣∣∣= 0, (5.15)

i.e., if the population of uninformed individuals (in terms of barycenter displacement)
approaches the target destination. Representative sketches of the distinct behavior of the
bee population are given in Figs. 5.5 - 5.6.

The swarm is initially arranged in an almost round pattern of radius equal to 2 m and
centered at (2.5 m,2.5 m), i.e., we initially account for a reasonable density of ≈ 8 bees/m2

[87] (see Fig. 5.4).

The parameter values used in the simulations are summarized in Table 5.1.
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Figure 5.5 Representative evolution of the bee population in the case of swarming and
productive movement. Left panels show the position of the insects at selected different
times, right panels show also their direction of motion (i.e., the unit vector of their velocity,
indicated by the orange arrow) at the same instants. It is possible to see that the bee
cloud first undergoes crystallization (i.e., t1 → t2) and then flight alignment and productive
movement, i.e., behind the leader individual towards the target destination (i.e., t3 → t4).
Such a representative system evolution is obtained with the parameter combination M6:
however, it is completely consistent for all the other analogous cases.

Among the possible combinations of the free model parameters dalign, frep, and fattr, we
hereafter focus on six representative sets, which are indicated in Fig. 5.3 by the points Mk
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Figure 5.6 Representative evolution of the bee population in the case of uncorrelated and
non productive behavior. Left panels show the position of the insects at selected different
times, right panels show also their direction of motion (i.e., the unit vector of their velocity,
indicated by the orange arrow) at the same instants. It is possible to see that the bee
cloud still organizes in a crystalline pattern (i.e., t1 → t2), however the insect velocities do
not align: therefore, the bee cloud almost fluctuates around the initial position (compare
the position of the insects at the final time t4 here and in the previous Fig. 5.5). Such a
representative system evolution is obtained with the parameter combination M4: however,
it is completely consistent for all the other analogous cases.

(where k = 1, ...,6): they are in fact sufficiently distributed and allow the classification of
swarm dynamics in large enough parameter regimes.

We first observe that in all cases the swarm organizes in a crystalline-like configuration:
as shown in Fig. 5.7, dmin, i.e., the measure of the distance between pairs of first closest
bees, in fact quickly stabilizes to the asymptotic threshold d∞ = 0.3 m, which results in
a overall swarm diameter of about D∞ = 3.75 m. Such values are consistent with drep,
i.e., the approximated extension of the comfort space that each insect desires to maintain
during its flight, as commented in the experimental literature [87]. In this respect, we
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Figure 5.7 Euclidean metric-based alignment mechanism. Time evolution of the minimal
distance between pairs of bees, i.e., dmin(t), observed in selected combinations of para-
meters. We can first notice that, in all cases, dmin converges to d∞ = 0.3 m, the swarm
constantly organizes in a crystalline-like configuration. This is consistent to the fact that all
sets of coefficients satisfy the criterium in Eq. (5.12) for the H-stability of the system. The
specific parameter values instead affect the convergence dynamics: for instance, comparing
the cases M1 and M2, it emerges that higher values of frep increase the time needed by the
swarm to stabilize in the crystalline pattern.

further observe that increments in frep result in increments in the time needed to the particle
system to reach the stable configuration (see, for instance, the cases M1 and M2 in Fig.
5.7). This behavior, which is independent from the specific value of the other model
parameters, is due to the enhanced role of the repulsive force which, at the initial stages
of the system evolution, i.e., when the bee cloud is more compact, overcomes the other
velocity contributions, pushing away the insects one from each other and therefore delaying
the achievement of a stable pattern. In this respect, we remark that the obtained asymptotic
crystalline configuration of the swarm is consistent with, and predicted by, the analytical
results of Theorem 5.2.1, given that the sets of parameter values employed in this series of
simulations satisfy relation (5.12), which assures the H-stability of the pairwise interaction
kernels and therefore of the overall particle system.

We then turn to analyze the migratory determinants of the swarm. From Fig. 5.8, it is
possible to observe that, regardless of the values of frep and fattr, the bee cloud undergoes
swarming with productive motion (i.e., towards the target destination) only if the extension
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Figure 5.8 Euclidean metric-based alignment mechanism. Time evolution of Vswarm (top
panel) and Xswarm (bottom panel), introduced in Eqs. (5.14-5.15), observed in selected
combinations of parameters. It is possible to notice that the bee population undergoes
swarming and productive motion only in the cases M1, M2, M5, and M6, which are
characterized by a sufficiently large dalign, i.e., larger than D∞ = 3.75 m.

of the alignment region, i.e., dalign, is sufficiently large (see the parameter settings M1,
M2, M5, and M6). Otherwise, the insect cloud is characterized by uncorrelated individual
movement (see the parameter settings M3 and M4). Entering in more details, let us
compare Figs. 5.7 and 5.8: it is straightforward to notice that the flight synchronization
process starts at t ≈ 0.01, i.e., just after the stabilization of the bee configuration. In this
perspective, our simulations point out that a value of dalign not smaller than the asymptotic
diameter of the insect cloud D∞ = 3.75 is needed to have swarming and productive motion,
i.e., it is necessary that each bee has, at the same time, almost the rest of the groupmates
(included the leader) within its flight synchronization region.

We can indeed conclude that, under our first hypothesis on the alignment process, the
swarm is characterized by two-steps dynamics: in the first stages, the bee cloud organizes
in a crystalline configuration (regardless of the parameter values, provided the H-stability
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condition); in the later phases, if dalign is large enough (i.e., ≥ D∞), the component insects
synchronize their velocity and the overall population undergoes productive directional
movement.

5.2.2 Topological neighborhood metric-based alignment mechanism

In our second hypothesis, the alignment mechanism of bees involves a topological neigh-
borhood metric. In more details, the i-th insect tracks and synchronizes its movement with
the a-th seen closest individuals, regardless of their position, and not with all (or only) the
individuals placed within a given alignment region. In this respect, we set

N align
i (t) =

{
j : x j(t) ∈ Ω

vis
i (t) and j is one of the a-th closest neighbors of i

}
, (5.16)

where a can be interpreted as a sort of interindividual communication rate.

On the opposite, the repulsive/attractive velocity components still rely on an Euclidean
metric, i.e., they involve the couples of bees whose relative distance falls within a given
range. In particular, the interaction regions slightly differ from the previous case (see Fig.
5.9, left panel):

N rep
i (t) =

{
x ∈ Ω

vis
i (t) : 0 < |x−xi(t)| ≤ drep

}
; (5.17)

N attr
i (t) =

{
x ∈ Ω

vis
i (t) : drep < |x−xi(t)| ≤ dattr

}
. (5.18)

The interaction kernels, in particular the adhesive part, have then to adapt to the new
hypothesis as well (see Fig. 5.9, right panel):

hrep(|ri j(t)|) =


frep

(
1

drep
− 1

|ri j(t)|

)
, if 0 < |ri j(t)| ≤ drep;

0, otherwise;

(5.19)

hattr(|ri j(t)|) =


−

4 fattr (|ri j(t)|−dattr)(|ri j(t)|−drep)

(dattr −drep)2 , if drep < |ri j(t)| ≤ dattr;

0, otherwise,

(5.20)
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Figure 5.9 Topological neighborhood metric-based alignment mechanism. Left panel:
Representation of the attractive and repulsive regions, defined in Eqs. (5.17)-(5.18), and of
the alignment set, introduced in Eq. (5.16). In particular, assuming dattr = dvis, we have
that N rep(t)∪N attr(t) = Ωvis

i (t) for all bees i = 1, ...,N and for any t. Right panel: Plot
of the pairwise interaction kernel hint : R+ 7−→ R given by the sum of the repulsive and
attractive functions defined in Eqs. (5.19)-(5.20), i.e., hint(r) = hrep(r)+hattr(r).

where again drep = 0.3 m and dattr = dvis = 10 m. In this case we have indeed that
N rep

i (t)∪N attr
i (t) = Ωvis

i (t) for each insect i and time t.

Remark We underline that, according to our second hypothesis, the social behavior of a
bee can simultaneously involve alignment and attractive (or repulsive) stimuli due to the
presence of the same groupmates. On the opposite, in the case of our first hypothesis, the
j-th animal was only permitted to affect one of the social velocity contributions of the
i-insect (i.e., j could fall within only one of the interaction regions of i), compare Figs. 5.2
and 5.9 (left panels).

According to the second type of assumptions, the space of free parameters regulating bee
dynamics now reads as

( frep, fattr,a),

where frep ∈R+, fattr ∈ [0,vmax], and a∈ {1, ...,N−1}, being N the total number of insects.
In this respect, the assumption of H-stability of the system allows to have a functional
relation between the coefficients frep and fattr, as stated by the following
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Theorem 5.2.3. If the following parametric relation

frep

fattr
>

2(dattr −drep)

5(drep)2

(
3(drep)

2 +4dattrdrep +3(dattr)
2
)

(5.21)

holds, the potential related to the pairwise interaction kernel hint(r) = hrep(r)+hattr(r),
with r = |ri j(t)|= |x j(t)−xi(t)|, defined in Eqs. (5.19)-(5.20) is H-stable. As shown in
[13, 18, 40], for a finite number of agents, as in the case of our interest, this implies that, at
each time t ∈ R+, there exist two finite and positive quantities dmin(t) = min

(i, j)∈{1,...,N}
i ̸= j

|xi(t)−

x j(t)| and dmax(t) = max
(i, j)∈{1,...,N}

i ̸= j

|xi(t)−x j(t)| such that dmin(t)≤ |xi(t)−x j(t)| ≤ dmax(t)

for all pairs (i, j) of bees, i.e., at each time t ∈ R+ the swarm does not collapse nor explode.
In particular, for t →+∞, the minimal relative distance between bees dmin(t) tends to the
limit value d∞, whereas the maximal relative distance dmax(t) (which also represents the
diameter of the swarm) tends to the value D∞: in other words, the particle population
asymptotically organizes in a stable crystalline-like pattern.

Proof. The proof closely resembles the one of Theorem 5.2.1 which, as already explained,
relies on the analytical study in [13] and on the calculations firstly introduced in [14] to
the case of cell aggregates. Entering in more details, the potential uint : R 7−→ R associated
to the pairwise interaction kernels defined in (5.19)-(5.20) has the form

uint(r) =
∫

hint(r)dr =
∫

hrep(r)dr+
∫

hattr(r)dr =

=



frep

(
r

drep
− logr

)
+A1,

if 0 < r ≤ drep;

−
2 fattr

(
2r3 −3(dattr +drep)r2 +6dattr drep r

)
3(dattr −drep)2 +A2,

if drep < r ≤ dattr;

A3,

otherwise,
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where the constants A1,A2,A3 have to satisfy the following conditions

A1 = A2 −
2 fattr

(
2(drep)

3 −3(dattr +drep)(drep)
2 +6dattr(drep)

2)
3(dattr −drep)2

− frep(1− logdrep);

A2 = A3 +
2 fattr

(
2(dattr)

3 −3(dattr +drep)(dattr)
2 +6(dattr)

2drep
)

3(dattr −drep)2 ,

to assure its continuity. As done for Theorem 5.2.1, let us now assume that uint(r)→ 0
when r → ∞ and set A3 = 0. We have indeed that

A2 = −
2 fattr(dattr)

2 (dattr −3drep
)

3(dattr −drep)2 ;

A1 = − 2
3

fattr(dattr −drep)− frep(1− logdrep).

The particle interaction potential is therefore given by

uint(r) =



frep

(
r

drep
− log

(
r

drep

)
−1
)
− 2

3
fattr (dattr −drep),

if 0 < r ≤ drep;

−
2 fattr

(
2r3 −3(dattr +drep)r2 +6dattrdrepr+(dattr)

2 (dattr −3drep
))

3(dattr −drep)2 ,

if drep < r ≤ dattr;

0,
otherwise.

(5.22)
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Figure 5.10 Topological neighborhood metric-based alignment mechanism. The space
of free model coefficients is given by ( frep, fattr,a) ∈ R2

+×{1, ...,N − 1}, being N the
total number of insects. In particular, biological considerations allows also the following
restriction: fattr ∈ [0,vmax]. The H-stability-related criterium in Eq. (5.21) further reduces
the possible variations of parameter values to the white region of the plane ( frep, fattr).
a can instead vary without affecting the system stability. Of the remaining combination
of coefficients, we focus on the sets T k, where k = 1, ...,5, since they are sufficiently
distributed, thereby covering large enough parameter regimes.

Recalling again the criterium given in [13], the potential uint defined in (5.22) is H-stable if
the already-introduced relation

∫+∞

0 uint(r)r dr > 0 holds. In this respect, let us calculate

∫ +∞

0
uint(r)r dr =

=
∫ drep

0

(
frep

(
r2

drep
− r log

(
r

drep

)
− r
)
− 2

3
fattr(dattr −drep)r

)
dr+

−
∫ dattr

drep

(
2 fattr

(
2r4 −3(dattr +drep)r3 +6dattrdrepr2 +(dattr)

2 (dattr −3drep
)

r
)

3(dattr −drep)2

)
dr

=
frep(drep)

2

12
− fattr

30
(dattr −drep)

(
3(drep)

2 +4dattrdrep +3(dattr)
2
)
,

which is non-negative (assuring indeed the H-stability of the system) if the parametric
relation defined in Eq. (5.21) is satisfied.

With respect to Theorem 5.2.1, the criterium given in (5.21) involves only frep and fattr

and not the third free model coefficient a, which can instead independently vary without
affecting the H-stability of the system. Recalling that drep = 0.3 m and dattr = 10 m, the
permitted region of the parameter space is represented in Fig. 5.10. As in the previous
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Figure 5.11 Topological neighborhood metric-based alignment mechanism. Time evol-
ution of the minimal distance between pairs of bees, i.e., dmin(t), observed in selected
combinations of parameters. We notice that, in all cases, dmin converges to d∞ = 0.3 m,
i.e., the swarm constantly organizes in a crystalline-like configuration. This is consistent
to the fact that all sets of coefficients satisfy the criterium in Eq. (5.21) for the H-stability
of the system. Interestingly the asymptotic spatial configuration of the insect is exactly
the same obtained in the case of an Euclidean metric-based alignment velocity. This is
indicative of the fact that the characteristic dimensions of the large-time pattern are solely
determined by the repulsive component of bee dynamics, which is not affected by the
variation of the hypothesis underlying the flight synchronization process.

Section, we then focus on the swarm behavior in selected parameter settings, labeled by
T k, where k = 1, ...,5, and chosen to span the entire region of interest of the coefficient
values. In particular, in the following numerical realizations, we maintain the domain
configuration, as well as the initial conditions and the differentiated bee behavior (i.e., a
leader insect which guides the rest of uninformed individuals), of the simulation proposed
in the previous Section (see Fig. 5.4). The only modification is that the social velocity
components are now determined by the interaction sets introduced in Eqs. (5.16)-(5.17)-
(5.18) while the repulsive/attractive dynamics are defined in Eqs. (5.19)-(5.20). Also in
this case, we neglect a random contribution in bee behavior, whereas the parameter values
used in the simulations can be found in Table 5.1. The resulting swarm dynamics are
classified according to Definition 5.2.2 as well.

As shown in Fig. 5.11, we observe that the swarm constantly reaches a stable crystalline
configuration, regardless of the values given to the set of free parameters (provided that
frep and fattr satisfy the condition given in Eq. (5.21)). In particular, the characteristic
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Figure 5.12 Topological neighborhood metric-based alignment mechanism. Characteristic
time evolution of Vswarm (top panel) and Xswarm (bottom panel) observed in the representat-
ive parameter setting T 1 in the case of swarming and productive motion (i.e., obtained with
a = 4) or not (i.e., for a = 5). Exactly the same dynamics results in the other parameter
combinations T k, with k = 2, ...,5.

stable dimensions of the particle system are, in all cases, d∞ = 0.3 m and D∞ = 3.75 m.
These values, as well as the range of time needed for the patterning, are the same obtained
in the previous Section, i.e., with the assumption of an Euclidean metric-based alignment
mechanism. In this respect, we can speculate that the asymptotic spatial organization
of the particle system is completely determined by the repulsive part of the pairwise
interaction kernel (and by the relative coefficient drep, see also comments in [13]). The
hypothesis underlying the flight synchronization process, as well as the resulting variation
of the attractive velocity component, does not instead have an effect on the patterns of the
large-time insect distribution. By comparing Figs. 5.7 and 5.11, it is also possible to notice
that, in the first case, the specific set of parameter values have an effect on the temporal
dynamics of stabilization, whereas in the second case, i.e., in the case of a topological
neighborhood metric-based alignment mechanism, the evolution of dmin coincides for all
the combination of coefficients taken into account.
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Figure 5.13 Topological neighborhood metric-based alignment mechanism. For any
representative parameter setting T k (with k = 1, ...,5), the plot shows the threshold value of
the communication rate a, i.e., ā, leading to a transition between an uncorrelated individual
movement to a swarming behavior with productive motion. It is straightforward to observe
that different ratios frep/ fattr result in different ā. In particular, increments in the ratio
frep/ fattr result in increments in ā.

Fig. 5.12 shows the system migratory determinants in the case of the parameter setting
T 1: in particular, for representative purposes, we plot the evolution of Xswarm and Vswarm

resulting from a = 4 (i.e., no swarming nor directional flight) and a = 5 (i.e., swarming and
directional flight). We can observe that, also in the case of this second assumption on bee
alignment, the productive motion (indicated by a drop of Xswarm) substantially starts after
the stabilization of the bee configuration. Exactly the same dynamics have been replicated
in the cases of the other coefficient combinations T k, with k = 2, ...,5.

In contrast to the assumption investigated in Section 5.2.1, we can however observe
that the topological neighborhood metric-based synchronization hypothesis results in the
fact that the migratory behavior of the swarm depends on the value of all the free model
parameters (and not only to the one relative to the alignment velocity itself). As shown in
Fig. 5.13, the threshold value of a, say ā, needed to have swarming and productive motion
in fact depends on the ratio frep/ fattr. In particular, increments in the ratio frep/ fattr result
in increments in ā.
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Figure 5.14 Comparison of the time evolution of Vswarm observed in a single representative
parameter setting deriving either from the Euclidean or from the topological neighborhood
metric-based alignment assumption. The former case is the coefficient combination M6,
the latter the parameter setting T 1 with a = 5. By comparing the two curves, it is possible
to observe that the complete alignment of the bee population is significantly delayed in the
case of the topological neighbourhood metric-based synchronization hypothesis, which
involves a gradual diffusion of information within the insect cloud rather then a sudden
and simultaneous flight alignment.

Further, it is interesting to notice that, regardless of the value of frep/ fattr, the phase
transition of the insect collective migratory behavior dynamics (i.e., swarming vs. no
swarming) is obtained by substantially low values of the communication rate a (i.e.,
ā ≤ 13), i.e., significantly lower than the total amount of component individuals, see again
Fig. 5.13. In this respect, we are observing a diffusion of information within the swarm:
the knowledge of the direction towards the target destination in fact first passes from the
leader to its closest a-th individuals and then gradually to the rest of the population. This
is in contrast with respect to what happens in the previous set of simulations, where a
productive collective motion required that dalign ≥ D∞, i.e., that all bees simultaneously
align to almost the rest of the groupmate (included the leader).

The different swarm phenomenologies resulting from the two alignment hypotheses
reflect also on the characteristic time of the insect migratory dynamics. As shown in
the representative plot in Fig. 5.14, the complete alignment of the bee population (i.e.,
given by Vswarm = 0) is significantly delayed in the case of a topological neighbourhood
metric-based synchronization hypothesis. This observation is a further confirmation that,
in the hypothesis investigated in this Section, the information of the direction of movement
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gradually diffuses within the population, whereas in the other case, there is simultaneous
flight synchronization, which involves almost all individuals at the same time.

5.3 Inclusion of random contributions

The numerical results proposed so far have been obtained by neglecting the random term
in Eq. (4.5): we have indeed constantly assumed that all bees completely apply the given
rules of motion. However, unconscious fluctuations may characterize individual behavior.

In this respect, for each insect i we add a fluctuation velocity component, given by
a vector vrand

i , whose modulus and direction are, at any time t, random variables which
uniformly fall within the ranges of values [0,vrand] (with vrand ≤ vmax) and [0,360◦),
respectively. The individual velocities now read as

v1(t) = vtarg
1 (t)+vrep

1 (t)+vattr
1 (t)+vrand

1 (t), with s1(t) = L

vi(t) = valign
i (t)+vrep

i (t)+vattr
i (t)+vrand

i (t), with si(t) =U, ∀ i = 2,3, . . . ,N.

As it is possible to see by comparing the plots in Fig. 5.15, which describe the swarm
patterning and migratory determinants in the representative cases M6 (left panels) and T 1
with a = 5 (right panels), the inclusion of random fluctuations in bee dynamics does not
have an effect on the swarm organization in a stable crystalline pattern. However, when the
maximal possible modulus of the random velocity component is large enough, i.e., vrand =

vmax, the insect cloud undergoes uncorrelated (and therefore not productive) movement. In
contrast, if vrand ≪ vmax, the collective dynamics of the swarm are still characterized by
fluctuations, which however do not have a dramatic effect on the asymptotic behavior of
the system, in term of collective synchronized flight.

The obvious rationale underlying such a phenomenology is that, when vrand = vmax,
the fluctuation term vrand

i almost overcomes the other velocity contributions in Eq. (5.23)-
(5.23), thereby preventing the normal behavior of the swarm. However, too large values
of vrand are not reasonable, since they only have to implement unconscious individual
deviations from the exact application of the set rules of flight.
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Figure 5.15 Comparison of the time evolution of dmin (top panels) and of Vswarm (bottom
panels), observed in representative parameter settings (i.e., M6 for the Euclidean metric-
based alignment assumption and T 1 with a = 5 for the topological neighborhood metric-
based alignment assumption), in the case of addition of the random velocity term vrand

i in
Eq. (4.5), for each bee i = 1, ...,100. As it possible to see, the inclusion of fluctuations
does not have an effect on the patterning of the bee swarm, but only on its flight dynamics.

5.4 Conclusions

In this Chapter, the above-presented general model for bee dynamics has been used to test
some assumptions underlying insect social behavior. In particular, we have focused either
on an Euclidean metric-based or on a topological neighborhood metric-based alignment
mechanism, which impact also on the definition of the attraction/repulsion velocity com-
ponents. In more details, we have analyzed, in each of the two cases, the model behavior
in different regions of the parameter space.

In this respect, given the intrinsic multiparametric nature of the model components, we
have taken advantage of some theoretical studies on the H-stability of particle interaction
kernels, discussed in [13, 40], and here extended to the proposed velocity functions,
following the calculations proposed in [14] in the case of cell systems. The concept of
H-stability was introduced in statistical mechanics [84] and it is closely related to the
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asymptotic configuration of discrete systems. More specifically, from the above-cited
works, we can recall the following theoretical results: given a population of N agents,
whose dynamics are determined by a pairwise interaction potential, say u, we have that:
(i) if u is not H-stable (or catastrophic), then the minimal interparticle distance at the
equilibrium collapses to 0 when the total amount of individuals N goes to infinity; (ii) if u
is H-stable, then the minimal interparticle distance at the equilibrium is bounded by finite
strictly positive values, regardless the number of individuals N. In this last case, if N goes
to infinity, the system distribution explodes.

Since this Chapter has been focused on swarming phenomenology, which are charac-
terized by a finite number of agents with a well-defined spacing maintained within the
bee cloud during flight, it has been necessary to avoid catastrophic situations where the
minimal interparticle distance at the equilibrium collapses to 0, i.e., to assure the H-stability
of the attractive/repulsive kernels employed to describe insect behavior. Such an analytical
approach, in conjunction with empirical observations, has been able also to restrict the
range of value variations of the free model parameters, which have to assure a realistic
crystalline configuration of the swarm.

Our results have first shown that, in the case of the Euclidean metric-based alignment
process, the asymptotic distribution of bees within the cloud is independent from the
specific set of parameter values (provided the condition for the H-stability of the interaction
kernels). On the opposite, the collective migratory determinants dramatically and entirely
rely on the extension of the synchronization region, which has to be in the range of the
asymptotic dimensions of the bee cloud to have swarming and collective behavior.

We have then turn to analyze swarm phenomenology in the case of a topological
neighborhood metric-based alignment mechanism. We have observed that the asymptotic
configuration of the swarm remains unaltered with respect to the previous modeling
assumption. This is indicative of the fact that the characteristic dimensions of the stable
pattern are entirely determined by the repulsive part of the interaction kernel. The set of
simulations proposed in Section 5.2.2 have also shown that the migratory dynamics of
the bee population depend both on the ratio frep/ fattr and on the communication rate a,
i.e., on the values of the three free model parameters. However, in all the analyzed cases,
the threshold number of individuals that each bee has to consider to have a productive
swarming is substantially small (i.e., ā ≤ 13), in contrast to the case of an Euclidean metric-
based synchronization mechanism, where the alignment region had to include almost the
entire cloud to observe an effective directional flight. A topological neighborhood metric-
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based migratory assumption indeed results in a gradual diffusion of information within the
bee population: this has been also confirmed by the greater time needed by the swarm to
completely align with respect to the case of the Euclidean metric-based synchronization
hypothesis. We have also discussed the role of possible random fluctuations in bee velocity.

It is finally interesting to notice that in our study we have not observed hybrid swarm
phenomenologies (e.g., swarming without productive motion or vice versa), which are in
principle possible and have been captured by other similar models [18].



Chapter 6

Analysis of the collective dynamics of a
swarm guided by a group of leaders

In this Chapter we will further investigate the guidance mechanisms at the basis of bee
swarming towards a new nest as well as different individual rules within the group. In this
respect, we will here first introduce anisotropy in insect behavior by the definition of a more
realistic visual region, i.e., not completely round. Then, we will include an experimentally
observed bee differentiated behavior. In this respect, we will again distinguish between
leader individuals and follower insects. However, we will here test different combinations
of hypotheses relative (i) to the characteristic movement of the scout/informed bees and
(ii) to the alignment strategy of the follower/uninformed individuals. In more details, each
uninformed bee will be assumed to synchronize its movement to a given set of groupmates
not only upon considerations on their mutual distance (as in the previous Chapter) but also
taking into account their status and actual velocity.

Once the most reasonable assumptions resulting in a correct collective swarming
of the insect population is found out, our second objective will be to demonstrate that
the obtained behavioral rules are sufficient to reproduce realistic migratory dynamics in
complex real-world scenarios, involving domains with structural elements and obstacles.

The rest of this Chapter is organized as follows. In Section 6.1, we will present the main
model components. More specifically, we will first explain the characteristic representation
of the virtual bees and their possible status/role within the population; then, we will
introduce the relative velocity contributions. In particular, we will clarify the biological
and experimental considerations each term is based on. Section 6.2 will provide a detailed
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description of the parameter estimate employed in our theoretical framework. In Section
6.3, selected series of numerical realizations will analyze swarm dynamics under different
combinations of the proposed behavioral hypotheses of the insect colony. A study on the
influence of the fraction of scout individuals on the swarming process will be performed
as well. After presenting in Section 6.3.2 the phenomenology of the bee cloud in more
realistic situations, we will review in Section 6.4 the results obtained in this Chapter.

6.1 Modeling details

Bee characteristics and status transitions. The swarming honeybees are here modeled in a
two-dimensional close domain Ω ⊂ R2, with boundary ∂Ω. We further assume that the
new nest, i.e. the target destination of the bee cloud, is constituted by a subregion of the
domain boundary, hereafter denoted by ∂Ωnest (⊂ ∂Ω), refer to Fig. 6.1. According to the
biological considerations presented in Chapter 3, for each bee i, si falls in the set

S = {U (‘uninformed’); S (‘streaker’); P (‘passive leader’)}. (6.1)

More specifically, scout individuals are set to have a streaker role when flying in the
direction of the nest. Otherwise, they are defined as passive leaders. In this respect, we
now introduce possible insect status transitions, which are summarized in Fig. 6.1.

Of course, an uninformed bee can not become informed, so it can not change role
and just follows the rest of the swarm. Status transitions instead occur within the set
of scout insects. In particular, let us first define for any point of the domain x ∈ Ω

the signed distance function lnest(x) : Ω → R+∪{0}, which is evaluated by solving the
two-dimensional eikonal equation:

|∇lnest(x)|= 1 ∀ x ∈ Ω (6.2)

with boundary conditions
lnest(x) = 0, ∀ x ∈ ∂Ωnest;

∂ lnest(x)
∂n

= 0, ∀ x ∈ ∂Ω\∂Ωnest,

(6.3)
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Figure 6.1 The bees within the swarm can have the following roles: U (“uninformed”), S
(“streaker”), or P (“passive leader”). An uninformed bee does not change its status, i.e., it
is not able to become a scout. Status transitions instead occur within the set of informed
insects. More specifically, they are set to have a streaker role while flying towards the
nest: in this respect, once reached the front edge of the cloud, they are assigned a passive
leader role and turn direction of flight (in the case of hypothesis L1) or stop waiting for the
passage of the rest of the insect cloud (in the case of hypothesis L2). Eventually, when
a passive leader finds itself at the trailing edge of the swarm, it acquires again a streaker
status and move towards the target destination as well.

where n is the unit vector locally normal to the domain boundary. It is useful to underline
that, in other words, lnest(x) measures the length of the minimal path between any x∈Ω and
any point belonging to ∂Ωnest. Coherently with the previous experimental considerations,
a streaker bee, say i, becomes a passive leader when it finds itself at the extreme frontal
edge of the population, i.e., if, in mathematical terms,

lnest(xi(t))< min
k=1,...,N;k ̸=i
xk(t)∈Ωvis

i (t)

{lnest(xk(t))},

being Ωvis
i the visual region of individual i (see below). On the opposite, a passive leader,

say again i, switches back to a streaker status if it finds itself at the trailing edge of the
group of insects, i.e., if

lnest(xi(t))> max
k=1,...,N;k ̸=i
xk(t)∈Ωvis

i (t)

{lnest(xk(t))}.
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Figure 6.2 For each generic insect i, we define a visual region Ωvis
i (t). It is a round section

determined by the visual depth dvis and the half visual angle θvis, which symmetrically
extends from the gazing direction of bee i, defined by the unit vector gi(t) (which, for the
sake of simplicity, will be constantly aligned to the velocity vi(t)). The inclusion of an
anisotropic visual field implies that each bee is not able to see and therefore to interact
with the entire set of their groupmates (see, for instance, the individual k and h). For
representative purposes, hereafter the virtual bees will be indicated by rigid disks centered
at their actual position.

As most animal species, bees typically move and behave influenced by visual signals,
captured by their large visual field, that covers almost the entire surrounding space. For
the i-th insect (regardless of its status), we indeed denote by the unit vector gi(t) ∈ B2

1

(denoting by B2
1 the unit 2-D ball) its actual gazing direction and by

Ω
vis
i (t) =

{
y ∈ Ω : |y−xi(t)| ≤ dvis,

y−xi(t)
|y−xi(t)|

·gi(t)≥ cosθvis

}
(6.4)

its visual region, being dvis and θvis the visual extension and the half visual angle, respect-
ively (see Fig. 11.1). For the sake of simplicity, we hereafter assume that the gaze of each
bee is constantly aligned to its velocity, i.e.,

gi(t) =
vi(t)
|vi(t)|

, for i = 1, . . . ,N. (6.5)

However, individual gazing direction may also evolve slightly independently from the
direction of flight: therefore, a proper evolution equation for gi may be included as well, as
done for instance in [23].
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Bee dynamics. Each insect behaves according to its role within the swarm, however
its dynamics has to follow the general model (4.4). For the sake of simplicity, we set
vU

max = vS
max = vP

max = vmax, i.e., as in the previous Chapter we assume that the maximal
speed does not depend on the bee status.

We now define three different velocities, each relative to an individual status. All
of them are the sum of a given set of contributions, which can be in common for the
entire population or characteristic of a single subgroup (and underlined in the following
equations). In particular, for the generic i-th bee, we have

vi(t) = vrep
i (t)+vattr

i (t)+vboundary
i (t)+vrand

i (t)+valign
i (t), if i : si(t) = U;

vi(t) = vrep
i (t)+vattr

i (t)+vboundary
i (t)+vrand

i (t)+vstreak
i (t), if i : si(t) = S;

vi(t) = vrep
i (t)+vattr

i (t)+vboundary
i (t)+vrand

i (t)+vpassive
i (t), if i : si(t) = P.

(6.6)

We now comment each term in Eq. (6.6), starting from those active for all individuals.

As introduced in Chapter 4, for the generic i-th insect, regardless of its status, both the
repulsive and attractive behaviors are described by proper kernels Hrep

i j ,Hattr
i j : R2 ×R2 7−→

R2, which define its pairwise interaction instances with the generic j-th individual here
belonging to one of the following interaction sets:

N rep
i (t) = { j = 1, ...,N, j ̸= i : x j(t) ∈ Ωvis

i (t),0 < |ri j(t)| ≤ drep};
N attr

i (t) = { j = 1, ...,N, j ̸= i : x j(t) ∈ Ωvis
i (t),drep < |ri j(t)| ≤ dattr},

(6.7)

where we recall ri j(t) := x j(t)−xi(t). Exactly as in the previous chapter, drep is a measure
of the comfort space that each insect tries to preserve, whereas dattr is assumed to be equal
to dvis, i.e., the bees tend to keep a connection with the groupmates within their visual
region, see Fig. 11.2.

In principle, as already mentioned in the previous Chapter, there are many possible
forms for the above-introduced interaction kernels. In this respect, such interaction
kernels are chosen exactly as in Eqs. (5.19) and (5.20) of Section 5.2.2 (see comments
therein). However, we remark that the introduction of anisotropy in the definition of the
perception region directly affects the characterization of the interaction sets in (6.7). The
overall repulsive/attractive velocity terms thus slightly differ from the ones proposed in the
previous Chapter.

The pair of coefficients frep and fattr have a clear mathematical meaning but not a direct
and measurable experimental counterpart. In this respect, a detailed parameter study is
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Figure 6.3 Representation of the spatial extension of three interaction regions. The repulsive
and attractive sets of the i-th bee, i.e., N rep

i and N attr
i , are in fact given by the insects that i

sees and whose distance falls in the ranges (0,drep] and (drep,dattr], respectively. Finally,
alternative assumptions are set for the flight synchronization mechanism of uninformed
bees. However, in all cases, the insects taken into account by the i-th follower individual
have to locate within a distance of dalign ∈ (drep,dattr).

needed to provide their estimate which is not the same as in the previous Chapter due to
the model differences, as we will see in the next Section. It is finally useful to underline
that, according to the kernels hrep and hattr, and to the corresponding interaction sets N rep

and N attr, two individuals do not interact (i) when they do not see each other and (ii) when
they are exactly at the comfort distance drep.

We then include a velocity term that implements the intention of bees to remain
sufficiently distant from the domain boundary (which may represent, e.g., architectural
structures or natural obstacles). In accordance to the case of pedestrians [23], such a
migratory contribution enters the picture when the i-th individual (regardless of its status)
is close enough, i.e., at a maximal distance hereafter defined with the coefficient dboundary,
to a boundary:

vboundary
i (t) =



aboundary exp
(

dboundary − lboundary(xi(t))
bboundary

)
nboundary(xi(t)),

if lboundary(xi(t))< dboundary;

0, otherwise,

(6.8)
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where

nboundary(xi(t)) =
∇lboundary(xi(t))
|∇lboundary(xi(t))|

(6.9)

is the unit vector directed from the nearest point of the domain boundary to the actual
position of the insect i. lboundary(xi(t)) : Ω → R+ ∪{0} is in fact the distance function
resulting from the following eikonal equation and relative boundary conditions:

|∇lboundary(x)|= 1 ∀ x ∈ Ω;

lboundary(x) = 0, ∀ x ∈ ∂Ω\∂Ωnest;

∂ lboundary(x)
∂n

= 0, ∀ x ∈ ∂Ωnest.

(6.10)

We here remark that, despite the term defined in Eq. (6.8), proper boundary conditions
are needed. More specifically, we hereafter assume that when a bee touches a part of the
domain not occupied by the nest, it stops, whereas it is taken out from the simulation when
reaches a point of the target nest.

For each insect i, a fluctuation velocity term is added as well. It is given by a vector
vrand

i , whose modulus and direction are, at any time t, random variables which uniformly
fall within the ranges of values [0,vmean/10] and [0,360◦), respectively (see below for the
meaning of vmean).

We now turn to describe the velocity components characteristic of the different bee
subgroups. First, valign

i is an alignment term typical of the following individuals which,
being uninformed of the position of the new nest, are only able to synchronize their flight
with selected sets of mates. In this respect, for the i-th follower insect we define

valign
i (t) = vmean

< v j(t)> j∈N align
i (t)

|< v j(t)> j∈N align
i (t) |

, (6.11)

where vmean denotes the characteristic speed of uninformed bees and

< v j(t)> j∈N align
i (t)=

1

#N align
i (t)

∑
j∈N align

i (t)

v j(t) (6.12)
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is the mean of the velocities of the groupmates falling within the alignment set N align
i (t),

denoting by # its cardinality. In this respect, we propose four alternative definitions of
N align

i , in accordance with the different experimental hypotheses:

HP A1 - the i-th uninformed bee synchronizes its flight with the follower and the streaker
individuals that are sufficiently fast and close to its position. This results in

N align
i (t) = { j = 1, . . . ,N, j ̸= i : s j(t) ∈ {U, S}, x j(t) ∈ Ωvis

i ,

0 < |ri j(t)| ≤ dalign, |v j(t)|> |vi(t)|},
(6.13)

where again ri j(t) := x j(t)−xi(t);

HP A2 - the i-th uninformed bee aligns to the faster groupmates, regardless of their status,
provided that they are close enough, i.e.,

N align
i (t) = { j = 1, . . . ,N, j ̸= i : x j(t) ∈ Ωvis

i ,

0 < |ri j(t)| ≤ dalign, |v j(t)|> |vi(t)|};
(6.14)

HP A3 - the i-th uninformed bee synchronizes its flight to all insects falling within a given
neighborhood, regardless of their status and speed. In mathematical terms:

N align
i (t) = { j = 1, . . . ,N, j ̸= i : x j(t) ∈ Ωvis

i ,

0 < |ri j(t)| ≤ dalign},
(6.15)

HP A4 - the i-th uninformed bee synchronizes its flight with the follower and the streaker
individuals that fall within a given region, regardless of their velocity:

N align
i (t) = { j = 1, . . . ,N, j ̸= i : s j(t) ∈ {U,S}, x j(t) ∈ Ωvis

i ,

0 < |ri j(t)| ≤ dalign}.
(6.16)

In all cases, dalign defines the extension of the alignment region. As discussed in the
following, dalign ∈ (drep,dattr), i.e., the flight synchronization set of an individual intersects
those relative to its pairwise interactions with the groupmates. This assumption implies
that each uninformed bee can simultaneously align to and avoid or be attracted by another
individual, see Fig. 11.2. Further, we remark that, in the case of hypotheses A1 and A4,
the passive leaders are not taken into account by the follower bees, as assumed in the
biological literature [85, 87]. However, it is useful to underline that the explanation of such
a phenomenon is far to be understood. For instance, it is hypothesized that the passive
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leaders make themselves invisible to their groupmates by flying either close to the ground
or backlight with respect to the sun or hidden in the middle the rest of the cloud (see again
[85, 87]). In this respect, given the absence of detailed experimental evidence and in order
to avoid further model overcomplications, we here opt to focus only on the typology of
the flight of the informed insects (i.e., “back-and-forth” vs. “go-and-stop”) and not on
the zones of the swarm where such characteristic movements are performed. This issue
would require further empirical investigations and, from a mathematical point of view,
the introduction of three-dimensional settings. However, planar domains to describe bee
swarming, including the dynamics of the leader individuals, are consistently employed
across the theoretical literature (refer, for instance, to [18, 39]).

In Eq. (6.6)2, vstreak
i describes the characteristic motion of the scout bees with a streaker

status, i.e., when they fly at high speed in the direction of the nest thereby behaving as
guidance leaders for the rest of the swarm. In particular, for the i-th streaker insect (i.e.,
i : si(t) = S), we set:

vstreak
i (t) =−vmax

∇lnest(xi(t))
|∇lnest(xi(t))|

, (6.17)

where ∇lnest has been introduced in (6.2), respectively. Equation (6.17) implies that each
streaker individual performs a flight that, at each time instant t, is aligned to the direction
minimizing the distance between its position and the target nest, i.e., it moves along the
optimal trajectory, consistently to the single leader of the previous Chapter. In this respect,
we here remark that the use of eikonal equations is usually employed in methods related to
the computation of optimal paths. More specifically, Eq. (6.17) has the advantage that it
can be used regardless the complexity of the domain, with straightforward extension to
the case of non-planar geometries. Further comments on this aspect can be found in [23],
where different approaches for evaluating individual minimal trajectories to a given target
are discussed as well.

We then propose two alternative hypotheses for the characteristic behavior of scout
bees when they take a passive leader role:

HP L1 - on one hand, they are assumed to slowly fly back towards the rear edge of the swarm,
in order to slightly affect the movement of the rest of the groupmates. In this respect,
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for the i-th passive leader bee, we set

vpassive
i (t) = vmean

xk̄(t)−xi(t)
|xk̄(t)−xi(t)|

+
∇lnest(xi(t))
|∇lnest(xi(t))|∣∣∣∣ xk̄(t)−xi(t)

|xk̄(t)−xi(t)|
+

∇lnest(xi(t))
|∇lnest(xi(t))|

∣∣∣∣ , (6.18)

where k̄ is such that

lnest(xk̄(t)) = max
k :sk(t)=U

xk(t)∈Ωvis
i (t)

lnest(xk(t)),

i.e., k̄ is the uninformed insect farthest from the target nest;

HP L2 - on the other hand, we hypothesize that the passive leaders stop and wait for the
passage of the rest of the population. For the i-th passive leader, we indeed set

vpassive
i (t) = 0. (6.19)

6.2 Parameter estimate

The half visual angle θvis, which symmetrically extends from the individual gazing direc-
tion, is taken equal to 156.5◦, according to the biological measures presented in [91]. We
here remark that a visual field determined by such an angle θvis (i.e., < 180◦) introduces
anisotropy in the behavior of bees although, with respect to most animal species, they
are characterized by a substantially limited blind area behind them. As far as we know,
in the experimental literature there is instead no study that explicitly defines the depth
of the bee visual field. We therefore opt to set dvis = 20 m, which is a value that allows
each insect to perceive the presence of all groupmates when the swarm is sufficiently
compact and not dispersed. The proposed estimate takes also into account the domain
characteristic dimensions, such as the distance of the nest from the initial position of the
insect population: in this respect, dvis is set small enough to avoid that the target destination
falls within the visual field of the uniformed individuals at the beginning of the observation
time.

In our model two characteristic bee speed values are taken into account. The maximal
admissible velocity vmax = vU

max = vS
max = vP

max is common to all subgroup of the population
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and set equal to 9.4 m/s in accordance with [87]. The mean speed of the uninformed
insects, defined in Eq. (6.11), is instead fixed equal to 6.7 m/s, again coherently with the
experimental literature [49]. Here, we underline that vmax is also used in the case of the fast
fly of the streaker bees towards the nest, whereas vmean for the slower backward movement
of the passive leader towards the trailing edge of the swarm. The difference between the
speed of streakers and of the uninformed individuals has been empirically demonstrated.

All bees, regardless of their status, are characterized by repulsive/attractive interactions.
According to the measure reported in [87], the insects tend to preserve a minimal mutual
distance, here denoted by drep, equal to 0.3 m. The extension of the alignment region dalign

is taken equal to 2 m. Since this value can not be empirically measured, its estimate is
obtained referring to the modelling literature. The ratio drep/dalign used in this work falls
in fact in the middle of the range of analogous quantities tested by Couzin and colleagues
[28]. A dattr = dvis is instead set since we assume that each insect aims to maintain a
connection with all individuals within its visual region.

As already commented, from a mathematical point of view, frep (with units m2/s) gives
the slope of the hyperbolic repulsive kernel hrep, whereas fattr (with units m/s) establishes
the maximum of the parabolic-type attraction behavior of bees, described by function hattr.
Both positive parameters indeed do not have a clear and direct experimental counterpart
and therefore their estimate is not straightforward as also commented in Chapter 5. In
particular, due to the model extensions added in Section 6.1 we can not take advantage
of the previous estimate. However, a numerical study, supported by selected empirical
evidences, facilitated in this respect. In particular, we first took into account the following
considerations: (i) upon attrative/repulsive stimuli only (in the absence of directional,
alignment, and random dynamics), the computational swarm has to stabilize in a realistic
crystalline configuration, characterized by optimal interparticle spacing ≈ drep (i.e., we
have to avoid unrealistical situations such as the collapse or the explosion of the insect
cloud); (ii) the specific flight of the informed bees has not to be affected by other velocity
contributions, in the case of both assumptions L1 and L2.

To account for observation (i), we run a series of numerical realizations varying the
interaction parameters frep and fattr in the case of a swarm formed by N = 500 bees (480
of them with a follower role and the remaining 20 with an initial streaker status), which
are assumed to be subjected only to repulsive/attractive stimuli, i.e.,

vi(t) = vrep
i (t)+vattr

i (t), (6.20)
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for all i = 1, ...,N, where the interaction velocity components are again defined as in the
previous Section, Eqs. (5.19) and (5.20). Within a rectangular domain [0,200]× [0,200]
m2 Ω, the swarm is initially arranged in an almost round area centered at (100 m, 100 m)
of radius equal to r0 = 4 m, where the positions of the insects are randomly assigned. In
this respect, we account for a reasonable density of ≈ 8 bees/m2 [87]; also the percentage
of informed individuals, i.e., 4 % of the entire population, is in agreement with the
experimental literature [88, 90, 98]. The initial gazing direction gi(0) of each generic i-th
bee is randomly generated as well. The obtained dynamics are then classified according to
the following asymptotic quantities:

dmin(tf) = min
i, j=1,...,N

i ̸= j

|xi(tf)−x j(tf)|; (6.21)

dmax(tf) = max
i, j=1,...,N

i̸= j

|xi(tf)−x j(tf)|, (6.22)

being tf an observation time sufficiently large to allow the insect cloud to reach a stable
equilibrium configuration. These measures already introduced in Theorems 5.2.1 and 5.2.3
have clear empirical meanings: dmin(t) is in fact the minimal interparticle distance, whereas
dmax(t) defines the extension of the overall swarm. As shown by the representative cases
reported in Fig. 6.4, almost all pairs of coefficients ( frep, fattr) such that frep/ fattr ≥ 106

resulted in realistic swarm pattern, as dmin is very close to the experimentally measured
bee comfort space drep. In these cases, also the swarm overall diameter dmax is consistent
with the empirical observations relative to the spatial density of bees [87]. On the opposite,
if frep/ fattr < 106 the insects are observed to stabilize unrealistically close one to another,
as dmin ≪ drep. Such simulation outcomes are indeed able to give a first restriction of
the possible variations of the interaction coefficients frep and fattr. Interestingly, the
resulting permitted interaction parameters fall within the H-stability region1 of the space
of interaction parameters ( frep, fattr) that would characterize pairs of attractive/repulsive
interaction kernels analogous to hrep and hattr, with the same coefficients drep and dattr,
if we neglected the asymmetry introduced by the anisotropic visual region of bees (cf.
Hypothesis 3 in [13] is not satisfied in our case). In fact, referring to the series of works
by Carrillo and colleagues [12–14, 16–18] (in particular, [18] deals with particle-based
models of swarming), and to the calculations proposed in Section 5.2 of the previous

1 As discussed in the previous chapter, from statistical mechanics [84], a system of mutual interacting
particles is said H-stable if, for any arbitrarily large number of agents, the microscopic agents will not
collapse onto themselves and a typical distance between individuals will be well defined.
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Figure 6.4 Dependence of the stable configuration of the bee cloud, subjected only to
attractive and repulsive dynamics, upon variations in the values of the interaction paramet-
ers frep and fattr. The quantities dmin and dmax represent the minimal interagent distance
and the overall diameter of the swarm at a observation time tf sufficiently large to have
a stabilization of the system, as defined in Eqs. (6.21) and (6.22), respectively. The grey
area in each panel indicates the H-stability region that one would have in the case of the
same interaction kernels by assuming a isotropic visual region of bees.

Chapter, we have that the H-stability region for the swarm of our interest in the case of
fully isotropic hypotheses (i.e., if the bees had a round visual field) would be given by the
following parametric relation:

frep

fattr
>

2(dattr −drep)

5(drep)2

(
3(drep)

2 +4dattrdrep +3(dattr)
2
)
= 1.0719164 ·105, (6.23)

which is indicated by the grey-shadowed area in Fig. 6.4 that contains the couples of
permitted parameters found by the above numerical investigation. However, despite the
consistence between these analytical results and the obtained computational outcomes, it is
useful to underline that a theoretical analysis of the H-stability properties of an agent-based
system in the case of asymmetric attractive/reulsive kernels is far to be provided and
therefore would require further investigations.

Having reduced the range of values of the interaction parameters, we then use the
above-cited observation (ii) to have a further estimate. In this respect, we now vary the
coefficients frep and fattr in the case of a simulation setting involving a swarm formed again
by 480 follower individuals and 20 streaker bees. Given the same domain Ω and initial
conditions described above, the insect population is assumed to behave according to the
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following rules:

vi(t) = vrep
i (t)+vattr

i (t), if i : si(t) = U;
vi(t) = vrep

i (t)+vattr
i (t)+vstreak

i (t), if i : si(t) = S;
vi(t) = vrep

i (t)+vattr
i (t)+vpassive

i (t), if i : si(t) = P,
(6.24)

for i = 1, ...,500, being the velocity contributions defined exactly as in Section 6.1 (in
particular vpassive

i was set to take the form either of Eq. (6.18) or of Eq. (6.19)). With
respect to the complete model, we indeed neglect alignment mechanisms and random
contributions. Our choice is justified by the fact that the aim of the study was to find the
values of the attraction/repulsion parameters that do not affect the characteristic motion
of the informed bees, under the assumptions L1 and L2. As summarized in Figs. 6.5 and
6.6, we observe that, in both cases, too large values of fattr disrupt the hypothesized flight
of the informed bees, regardless of the value given to frep. In more details, the group of
following bees constantly stabilize into a crystalline configuration but, for fattr > 10−3, the
following dynamics arose:

• in the case of assumption L1, the scout individuals are not able to reach any edge of
the fixed cloud (see the bottom-right panel of Fig. 6.5);

• in the case of assumption L2, the informed insects are not able to rest at the leading
front of the population (where they have to remain since the follower bees are
not allowed to have a directional movement and therefore to pass the scouts), as
reproduced in the bottom-right panel of Fig. 6.6.

The underlying rationale involves two competing mechanisms: on one hand, a too large
attraction strength fattr makes the group of follower individuals almost a rigid disk which
is difficult to be flown across; on the other hand, it causes the scout bees to perform an
abnormal movement.

Within the remaining set of permitted interaction parameter values, we finally opt to
fix frep = 1 m2/s, i.e., we opt for a classical equilateral hyperbolic repulsive kernel as
done, for instance, by Kolokolnikov and Chen in the already cited work [19] dealing with
predator-prey swarming dynamics. An fattr = 10−6 m/s is consequently set to avoid further
increments in the difference between the order of magnitude of the two parameters.

As seen, a repulsive velocity component from the domain boundary, given by a negative
exponential function, has been set for each bee. In this respect, the insects perceive and
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Figure 6.5 Dependence of the dynamics of the informed bees upon variations in the values
of the interaction parameters frep and fattr, in the case of assumption L1. As it is possible
to observe the hypothesized “back-and-forth” flight can be obtained only for fattr < 10−3,
regardless of the values of coefficient frep (provided that the pair ( frep, fattr) leads to
crystalline equilibrium configurations upon attractive/repulsive interactions only). Too
large values of fattr in fact result in a disrupted behavior of the informed insects, which
remain stuck within the bee cloud (represented by the yellow shadow), as reproduced in
the corresponding representative bottom panel.

react to the presence of the boundaries from a distance of dboundary, whereas aboundary and
bboundary determine the exact form of vboundary

i . In the absence of pertinent experimental
measurements, a reasonable estimate of such triplet of coefficients is obtained with a series
of preliminary simulations, i.e., in order to avoid unrealistic dynamics such as swarm
collapse at the domain boundary or deflection from the optimal flight trajectory at too large
distances from the domain edge. In particular, the found values of aboundary and bboundary

are analogous to their counterpart employed in a particle model reproducing pedestrian
behavior [23]. For the sake of completeness, we illustrate in Fig. 6.7 some pathological
system evolutions in the case of rejected sets of values of dboundary, aboundary and bboundary.

Finally, the modulus of the random velocity vectors falls within the range [0,vmean/10]:
in particular, we set such an upper threshold to avoid unrealistically large fluctuations
in bee flight, taking also advantage of the study and relative observations performed in
Section 5.3 of the previous Chapter.
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Figure 6.6 Dependence of the dynamics of the informed bees upon variations in the values
of the interaction parameters frep and fattr, in the case of assumption L2. As it is possible
to observe the hypothesized “go-and-stop” flight can be obtained only for fattr < 10−3,
regardless of the values of coefficient frep (provided that the pair ( frep, fattr) leads to
crystalline equilibrium configurations upon attractive/repulsive interactions only). Too
large values of fattr in fact result in a disrupted behavior of the informed insects, which are
not able to stop at the leading edge of the bee cloud (represented by the yellow shadow)
being dragged within the population, as reproduced in the corresponding representative
bottom panel.

The entire model parameter setting used in the following simulations is summarized in
Table 6.1.
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Figure 6.7 Unrealistic bee swarming in the cases of representative rejected sets of para-
meters relative to the velocity component vboundary. (a) The bee swarm collapses on the
domain structural element being unable to react to its presence. This phenomenology can
be obtained, for instance, with a too low value of dboundary and a too high value of bboundary.
(b) The insect population deforms at an implausibly high distance from the obstacle. This
system behavior is instead the result of too high values of dboundary and aboundary.

6.3 Numerical results

The numerical results proposed in this Section will be divided in two parts. In the first
Section 6.3.1, we will test different combinations of the alternative assumptions relative
to the alignment mechanism of the uninformed bees and to the behavior of the passive
leaders. By considering swarm dynamics within a simple rectangular domain, we will look
at the rules of motion that result in a realistic migration of the insect cloud, which has to fly
compactly and productively towards the nest. The effect of variations in the percentage of
informed bees will be analyzed as well. Section 6.3.2 will be instead devoted to reproduce
the collective phenomenology of the bee population in more complex environments, which
involve domains with different obstacles.
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Table 6.1 Model parameters.

Par. Description Value [Unit] Reference

dvis depth of visual field 20 [m] biological evidences
θvis half visual angle 156.5 [deg] [91]
vmean mean velocity of uninformed bees 6.7 [m/s] [49]
vmax bee maximal admissible speed 9.4 [m/s] [87]
drep extension of the avoidance region 0.3 [m] [87]
dalign extension of the alignment region 2 [m] coherent with [27]
dattr extension of the attractive region 20 [m] biological evidences
frep avoidance coefficient 1 [m2/s] parametric analysis
fattr attraction coefficient 10−6 [m/s] parametric analysis
dboundary extension of boundary repulsion 4.0 [m] parametric analysis
aboundary coeff. of the boundary repulsion 0.18 [m/s] parametric analysis
bboundary coeff. of the boundary repulsion 1.0 [m] parametric analysis

6.3.1 Swarming in a large open-space domain

In this first set of simulations, we use an open-space (without structural elements) rectan-
gular [0,200]× [0,200] m2 domain Ω (exactly the same domain has been chosen for the
simulations supporting the estimate of parameters frep and fattr in the previous Section)
where the target destination is constituted by the boundary segment y ∈ [95,105] on the
right side of the domain, see Fig. 11.4. The measure of ∂Ωnest is larger than the dimension
of a real nest, since we here intend to describe the behavior of the swarm while approach-
ing the new home and not the subsequent entrance mechanisms, that are driven by other
processes (e.g., pheromone cues). The insect population is formed by N = 500 individuals
(we recall that we are dealing with a planar section of a larger three-dimensional swarm).
In particular, 480 of them are uninformed followers, whereas the remaining ones are
scouts with an initial streaker role, i.e., si(0) = S for i ∈ {481, ...,500}. We here recall that
uninformed bees are not allowed to change status, whereas the informed insects can switch
between the streaker and the passive leader role. The initial conditions are left unchanged
from the previous Section, see Fig. 11.4.

The objective of the swarm is to reach the target destination. In this respect, the
numerical realizations are stopped as soon as the last insect touches a point of ∂Ωnest, i.e.,
at a time denoted with tF. The dynamics of the bee population resulting from different
combinations of the individual behavioral hypotheses outlined in Section 6.1 are classified
according to the following criteria:
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Figure 6.8 The sets of simulations proposed in Section 6.3.1 are employed in a rectangular
[0,200]× [0,200] m2 domain Ω, where the target destination is constituted by the boundary
segment ∂Ωnest = 200× [95,105] (indicated by the green line). The swarm is initially
arranged in an almost round area centered at (110 m, 100 m) of radius equal to r0 = 4
m, where the positions of the insects are randomly assigned. In particular, we account
for N = 500 bees, with 480 follower individuals and 20 scouts. All the informed bees are
initially assigned a streaker status. For representative purposes, the virtual insects will be
hereafter indicated by rigid disks centered at their actual position. More specifically, we
will use yellow circles for uninformed individuals, red circles for streaker scouts and blue
circles for passive leader scouts.

Definition 6.3.1. The swarm undergoes a directionally productive motion towards the nest
if

Eswarm = lim
t→∞

lnest(xswarm(t)) = 0, (6.25)

where xswarm(t) =
∑

N
i=1 xi(t)

N
is the center of mass of the bee cloud and lnest is the distance

function introduced in Eq. (6.2).

The swarm undergoes a coherent and collective flight if

Cswarm = max
t>0

aswarm(t)
aR

< 2, (6.26)

where aswarm(t) is a measure of the space extension2 of the bee cloud at time t and aR is
equal to π(r0)

2, i.e., the area of the round region initially containing all individuals.

2The spatial extension of the swarm is evaluated by the Matlab (the MathWorks®) function boundary.
More specifically, this function returns the area enclosed by the single conforming 2-D boundary containing
of a given set of discrete particles. For further details, we refer to Matlab manuals and tutorials.
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The swarm undergoes a collective and productive flight towards the nest if both conditions
(11.13) – (6.26) are satisfied.

The quantity defined in Eq. (6.26) is able to give an indication of the presence of dispersed
insects, i.e., of bees unable to correctly synchronize their movement with the rest of the
group. In fact, our simulation results have consistently shown that if, at a given time t, the
surface of the insect cloud is twice the reference initial area aR (or even more), then there
is at least a follower bee that actually has no groupmate within its alignment set which
means that it has lost.

Figs. 11.5 – 6.11 summarize the results obtained by the different combinations of the
individual behavioral hypotheses. In particular, for each pair of assumptions, we have run
10 independent numerical realizations, given the presence of randomness both in the initial
position of the bees and in their dynamics due to the velocity term vrand. We can observe
that in all cases the distance lnest(xswarm(t)) between the swarm center of mass and the
nest decreases almost linearly (see also the inset graph in Fig. 11.5 (a)). In particular, it
becomes null in a finite time (< 14 seconds), as Eswarm is zero. However, as shown in
the plot of Cswarm in Fig. 11.5 (b), only under hypotheses (A3, L1), (A3, L2) and (A4,
L2), the flight of the insect population is completely synchronized and therefore collective
in all realizations. In the other cases, as also shown in the representative snapshots in
Figs. 11.6 and 6.11, at least one uninformed bee does not correctly align to the rest of the
swarm, flying away from the groupmates. In these situations, the scout bees have to take
time to reach/wait for the dispersed individual(s) and to guide it (them) towards the nest:
the experimentally-observed compactness of the insect cloud is therefore not maintained.
From the graph in Fig. 11.5 (b), it can be further noticed that bee dispersion is more
significant in the case of assumptions (A2, L1) and (A2, L2), i.e., when the uninformed
bees align to the faster groupmates, regardless of their status.

Taking all the results together, we can state that in our model alignment mechanisms
involving a control over groupmate velocity do not certainly imply directionally productive
and collective swarm dynamics. An efficient and coordinate flight is instead reproduced if
the follower individuals synchronize their movement (i) to all insects sufficiently close to
their position, regardless of their status and of the behavior of the passive leaders, or (ii)
only to close enough uninformed and streaker groupmates, provided the fact that the passive
leaders stop upon reaching the front of the cloud. In particular, it is somehow worth to
remark that, in the case of hypotheses A1 and A4, passive leader bees are not considered for
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Figure 6.9 (a) Plot of Eswarm, defined in Eq. (11.13), in the case of 10 independent
numerical realizations for each combination of bee behavioral assumptions. It is worth to
notice that, in all cases, the swarm undergoes a productive movement, in terms of center
of mass displacement. For the sake of completeness, in the inset graph, we represent the
evolution in time of the distance of the center of mass of the insect cloud from the nest. (b)
Plot of Cswarm, defined in Eq. (6.26), in the case of 10 independent realizations for each
combination of bee behavioral assumptions. A consistent (i.e., in all realizations) absence
of bee dispersion is only obtained in the case of hypotheses (A3, L1), (A3, L2) and (A4,
L2).

the alignment mechanism: however, they determine the flight of the follower groupmates
by affecting the other velocity components (e.g., collision avoidance and attraction).

We now turn to describe and compare in more details selected characteristics of swarm
dynamics under the plausible combinations of behavioral assumptions. In this respect,
Fig. 6.12 shows the time-evolution of the amount of bees belonging to each subpopulation
in the different cases. As it is possible to observe, the number of follower individuals
remains obviously constant whereas, transitions between streaker and passive leader states
continuously occur. In particular, under the coupled hypotheses (A3, L1), the amount of
streaker insects remains substantially higher than the number of passive leaders during
the entire migration (the former falling within the range 14-20, the latter within the range
0-6). On the opposite, in the case of assumptions (A3, L2) and (A4, L2) (i.e., when the
passive leaders are assumed to stop and wait for the rest of the colony), the fluctuations
in the cardinality of two subgroups of scout bees are more significant: for instance, the
amount of streakers can drop and be almost equal to the number of passive leaders.

Fig. 6.13 finally compares the trajectories of representative scout bees under the
different assumptions resulting in realistic swarm dynamics. In particular, under the
coupled hypotheses (A3, L1), it is straightforward to notice the short-time backward
movement of the informed individual during its passive leader status. It is also interesting
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Figure 6.10 Representative evolutions of the bee population in the case of combinations
between the hypothesis L1 (relative to the behavior of the passive leader scouts) and the
alternative assumptions on the alignment mechanism of the follower insects. It is possible
to notice that, in all cases, the swarm reaches the target destination, but only for the pair
(A3, L1) without bee dispersion. We recall that yellow disks represent follower bees,
red circles represent streakers, and blue disks represent passive leaders. For each scout
individual, we finally indicate by a colored arrow its velocity.

to observe that under the assumptions (A3, L2) and (A4, L2), the scout bees, when passive
leaders, do not completely stop but rather still move as a consequence of the velocity
components which are still active (i.e., those relative to attractive/repulsive interactions
and to random fluctuations).

Variations in the percentage of scout bees. As seen, the collective migration of bee swarms
is guided by few informed individuals, that are able to diffuse information on the nest



66 Analysis of the collective dynamics of a swarm guided by a group of leaders

Figure 6.11 Representative evolutions of the bee population in the case of combinations
between the hypothesis L2 (relative to the behavior of the passive leader scouts) and the
alternative assumptions on the alignment mechanism of the follower insects. It is possible
to notice that, in all cases, the swarm reaches the target destination, bee dispersion is
not observed for the pairs (A3, L2) and (A4, L2). We recall that yellow disks represent
follower bees, red circles represent streakers, and blue disks represent passive leaders. For
each scout individual, we finally indicate by a colored arrow its velocity.

location within the rest of the population. An interesting question is indeed relative to
the consistency of the flight directional efficiency upon variations in the ratio between the
number of individuals having the different roles within the colony.

In this respect, we now study the dynamics of insect clouds characterized by different
numbers of scouts and of overall components. In particular, we employ the same domain
of the previous Section and the rules of motion defined in Section 6.1: however, only the



6.3 Numerical results 67

Figure 6.12 Evolution in time of the number of bees belonging to each subpopulation in
the case of hypothesis combinations resulting in directionally productive and collective
swarming. For clarity purposes, we plot the outcomes of a single numerical realization for
each setting, since we do not observe large variances in the case of multiple independent
simulations.

Figure 6.13 Representative trajectories of scout bees during swarming, in the case of the
three combinations of behavioral assumptions resulting in a directionally productive and
collective insect flight.

combinations of assumptions that have resulted in a plausible system phenomenology are
hereafter used, i.e., the pairs (A3, L1), (A3, L2), and (A4, L2). As initial data, the bees
are again randomly disposed in round regions, whose radius is chosen, in each case, to
maintain the density of 8 bees/m2. All scout individuals have a streaker status whereas the
initial bee gazing direction is randomly assigned.

As it is possible to observe in Fig. 6.14, for a given group size, i.e., for a fixed N, the
directionally productive component of swarm movement increases (i.e., Eswarm decreases)
as the percentage of informed individuals increases. Furthermore, still from the same plot,
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Figure 6.14 Relationships between the directional efficiency of swarm flight (in terms of
Eswarm, defined in Eq. (11.13)) and the percentage of informed bees, in the case of different
sizes of the colony (i.e., of overall number of components N). To avoid redundancy, we
plot the outcomes obtained from a single realization in the case of coupled hypotheses (A4,
L2): however, these results have been obtained also with assumptions (A3, L1) and (A4,
L1) and are robust in the case of independent simulations.

we can notice that the higher the overall number of bees is, the smaller the proportion of
informed individuals necessary is in order to have an efficient migration towards the nest.
In particular, substantially large swarms require a very small set of scout bees to reach the
target destination.

These results are observed for all the tested combinations of behavioral assumptions
(even if for clarity we represented only the case relative to the pair (A4, L2), being
completely robust also in the case of independent simulations in the different settings (in
each case, the standard deviation deriving from 10 simulations is < 1% and therefore not
represented in the graphs). We also remark that in the cases of full productive swarming
(i.e., when Eswarm ≈ 0) no bee dispersion occurs (i.e., Cswarm < 2), in agreement with the
outcomes presented in the previous subsection.

As it will be commented in more details in the conclusive part of the Chapter, analogous
quite surprising results have been obtained in the works by Couzin et al. [27] and by Fetecau
and Guo [44], where similar microscopic/discrete models have been employed to describe
collective swarming.
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6.3.2 Swarming in more realistic situations

Finally, we turn to asses the applicability of our model in real-world situations by means
of representative numerical results involving more complex environments.

In particular, referring to Figs. 6.15 and 6.16, we deal with domains characterized either
by a structural obstacle or by a bottleneck, placed in between the initial position of the
swarm and the target destination. Such environmental elements may represent architectural
buildings or trees that the insect cloud has to avoid during its migration. Hereafter, the
bee population is still assumed to be composed of N = 500 individuals, which are initially
subdivided into 480 uninformed insects and 20 streakers. As usual, the initial configuration
of the swarm consists of a circle of radius r0 = 4 m with bee position and gazing direction
randomly assigned. Again we test the coupled hypothesis (A3, L1), (A3, L2), and (A4,
L2). The center of the nest is located at the same y-coordinate of the initial center of mass
of the insect cloud.

As it is possible to observe in Figs. 6.15 and 6.16, in both situations, the swarm has to
slightly deflect its direction of movement and to deform to pass the structural elements
and reach the target destination. In particular, in the case of the square obstacle, the bees
located at the bottom part of the population are pressed towards the center of the swarm
by the repulsive velocity vboundary. We indeed have an increasing density of insects in the
center of the cloud. However, the productive direction of flight is still maintained. Once
passed the structural element, the compressed area of the swarm slightly relaxes and an
almost homogeneous density of bees is recovered.

Referring to Fig. 6.16, when approaching the bottleneck, the swarm is instead sub-
stantially stretched horizontally and compressed vertically, i.e., it switches from a round
shape to a ellipsoidal geometry, with shorter axis along the y-direction of the domain.
Interestingly, after passing the bottleneck, there is only a slight relaxation of the insect
cloud, which does not acquire again a fully-round configuration. The underlying rationale
is that, even when the colony has an elongated shape, the component bees are at a sufficient
(but not excessive) distance one from another and therefore there is no reason to spend
energy to further reorganize.

In both domain configurations, the swarm finally redirect again its coordinate flight to
reach the target destination.
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Figure 6.15 Bee swarming in the case of more complex environments. Representative
evolutions of the bee population placed within a domain characterized by a square obstacle
between its initial position and the new nest, whose center is located at the same y-
coordinate of the initial center of mass of the insect cloud, in the case of the sets of
plausible behavioral assumptions (A3, L1), (A3, L2), and (A4, L2). The insect population
is assumed to be composed of N = 500 individuals, which are initially subdivided into
480 uninformed insects and 20 streakers. The initial configuration of the swarm consists
of a circle of radius r0 = 4 m with bee position and gazing direction randomly assigned.
It is possible to observe that the swarm autonomously deflects its motion and undergoes
morphological reorganization in order to pass the structural element and compactly reach
the target destination. We recall that yellow disks represent follower bees, red circles
represent streakers, and blue disks represent passive leaders. For each scout individual, we
finally indicate by a colored arrow its velocity.
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Figure 6.16 Bee swarming in the case of more complex environments. Representative
evolutions of the bee population placed within a domain with a bottleneck between its
initial position and the new nest, whose center is located at the same y-coordinate of the
initial center of mass of the insect cloud, in the case of the sets of plausible behavioral
assumptions (A3, L1), (A3, L2), and (A4, L2). The insect population is assumed to be
composed of N = 500 individuals, which are initially subdivided into 480 uninformed
insects and 20 streakers. The initial configuration of the swarm consists of a circle of
radius r0 = 4 m with bee position and gazing direction randomly assigned. It is possible
to observe that the swarm squeezes to pass through the structural element. We recall
that yellow disks represent follower bees, red circles represent streakers, and blue disks
represent passive leaders. For each scout individual, we finally indicate by a colored arrow
its velocity.

The above-described phenomenologies are observed under the three tested coupled
hypotheses, with slight differences in the morphological transitions of the swarm. However,
we remark that, in all settings, there is no bee dispersion.
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The results presented in this Section allow us to conclude that the behavioral rules of
bees (A3, L1), (A3, L2), and (A4, L2) give a realistic swarming not only in open-space
simple domains but also in more complex scenarios. In particular, our model, under such
plausible hypotheses, is able to capture autonomous morphological reorganizations and
changes of flight direction of the insect cloud, necessary to preserve its compactness and
to reach the target destination.

6.4 Conclusions

The aim of this Chapter has been indeed to test alternative assumptions both on the flight
synchronization mechanism of uninformed individuals and the characteristic dynamics of
the scout insects in order to find out those resulting in realistic swarming phenomenologies.
To do this, we employed the discrete modeling framework introduced in Chapter 4. Taking
advantage of the study of the alignment process carried out in the previous Chapter, here
we have explored different possible definitions of the alignment set (the specificity of
individuals involved). On the other hand, we have developed the modeling description
of the leader dynamics. Their movement is defined according to the alternation of two
behavioral status, i.e. streaker and passive leader. Specifically, they fly at the maximum
velocity from the back to the front of the swarm (streaker status). Once they reach the
front of the bee cloud, they switch to a passive leader status. For the latter, we have
implemented both the hypotheses proposed by Seeley, [87]: under the first hypothesis they
slowly come back to the rear edge of the swarm; under the second one, they stop and wait
the passage of the rest of the migrating population. The three subgroups of bees have
then in common some general rules of motility, such as the tendency to remain within the
population while keeping a comfort distance from the other components as well as from
the domain boundary.

The resulting model has been used to test combinations of alternative assumptions
underlying the synchronization mechanisms of uninformed bees and the individual be-
havior of passive leader bees. In particular, our results have shown that a productive
collective flight of the swarm is only possible if the uniformed individuals synchronize
their movement (i) to all insects sufficiently close to their position regardless of their
status and velocity and of the dynamics of the passive leaders (i.e., coupled assumptions
(A3, L1) and (A3, L2)) or (ii) only to close enough follower and streaker groupmates,
provided the fact that the passive leaders stop upon reaching the front of the swarm (i.e.,
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coupled assumptions (A4, L2)). Other sets of hypotheses have produced the unrealistic
phenomenon of bee dispersion, i.e., at least one follower individual is not able to synchron-
ize its movement with the rest of the swarm during the entire flight, thereby flying away
and affecting the migration of the informed bees and eventually of the entire population.

Once the most plausible behavioral assumptions have been identified, we have turned
to analyze the effect of variations in the number of scout bees. Interestingly, we have found
that larger swarms require fewer scout individuals to compactly reach the target destination.
This quite surprising outcome is in agreement with the results obtained by similar models
[27, 44]. However, it is useful to remark that from experimental observations it is known
that, regardless the size of the population, the fraction of informed insect typically falls
in the range 3%-5%. In this respect, we can speculate that, although in principle the
percentage of scout bees could decrease, their amount may be established also by other
social dynamics of the swarm not involving migration issues. For instance, a sufficiently
high number of scout bees could be necessary to explore the environment to find a new
home in a substantially short time.

With the last set of simulations, we have finally provided the fact that our model,
with the selected combinations of bee behavioral assumptions, is able to capture swarm
dynamics in more complex scenarios, that may require morphological rearrangements of
the insect cloud to pass structural elements and significant changes of flight directions.



Chapter 7

Analysis of the collective dynamics of a
swarm subjected to conflicting flight
information

In the previous Chapter, both hypotheses proposed by M. Lindauer (back-and-forth flight
and go-and-stop flight) have been mathematically investigated in combination with distinct
assumptions for the set of individuals involved in the synchronisation process of uniformed
bees. The numerical results have allowed us to exclude that follower individuals consider
only fast-flying bees and to identify three combinations of assumptions related to scout
behaviour and alignment mechanism that results in an efficient and coherent swarming.
Specifically, both M. Lindauer hypotheses result in a compact and productive swarm
dynamics when we assume that the follower insects align to all groupmates falling within
a given neighbourhood; on the opposite, only the go-and-stop hypothesis results realistic
under the assumption that followers do not consider the presence of the scouts in their way
back to the rear edge of the swarm.

The goal of this Chapter will be to further investigate these three plausible combinations
of behavioral assumptions accounting for the empirical evidences provided by T. Latty and
coworkers in [71], who studied if and how the migration of real swarms is affected by the
presence of a fast-flying traffic line of honeybees pointing towards a different destination.
Specifically, they made different artificial swarms, constituted by the queen bee and about
6000 workers per swarm, located in a tree-less field. The swarms were divided in two
treatment groups: test swarms and control swarms. To reach the nestbox, test swarms had
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to fly through a traffic area of fast flying bee foragers headed in a wrong direction, while
control swarms were allowed to migrate towards the new nest in absence of bee foragers.
To set up the traffic area affecting the dynamics of test swarms, eight honeybee colonies
were placed in a row not far from the swarm mount, while a large lucerne field was located
on the other side of the minimum path that would lead the swarm to the nest box. As a
result, compact and productive navigation of swarms were essentially disrupted whenever
they were exposed to a traffic area of fast moving bees headed in a wrong direction. It
revealed that the presence of honeybee foragers (whose mean velocity is in the range of
streakers mean speed) confused the transmission of flight information provided by the
scout bees and leads to noticeable effects of disrupted guidance, as dispersion of the group
and, in most cases, failing to approach the selected nest site.

In this respect, in Section 7.1, we propose an extended version of the model presented
in the previous Chapter to describe the dynamics of both the informed and non-informed
individuals that collectively fly towards a new nest, and of the group of honeybee foragers
who individually move to provide food to their hives. In Section 7.2, we test the above-
cited hypotheses on honeybee behaviour by performing proper numerical simulations
specifically designed to reproduce the experimental scenarios considered in [71]. The
possible coherence between the experimental and the modeling outcomes would reveal
which are, according to the proposed model, the most reliable assumptions underlying the
swarm dynamics, thereby pointing out the consistency of the proposed approach. Finally,
some conclusive considerations are reported in Section 7.3.

7.1 Modeling details

Bee characteristics. The dynamics of the migrating swarm and of the group of fast-moving
foraging bees is here described in the overall plane Ω = R2. The nest site selected by
scout bees, i.e., the target of the migrating colony, is represented by a dimensionless point
xnest ∈ R2. Moreover, we denote by xhive

h ∈ R2, with h = 1, . . . ,8, and Ωfood ⊂ R2, the
centers of the eight hives and the food source, respectively, that have been used by T. Latty
and coworkers to produce the highway of fast flying bees.
In order to model both the migrating swarm and the bee foragers involved in the exper-

iments described in [71], the set of possible values of the status variable si is defined as
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Figure 7.1 Representative initial condition reproducing the experimental setting. Yellow
and red dots respectively denote the uninformed individuals and the scout bees with a
streaker role. Dashed lines define the domain portion represented in Figure 7.4.

follows

si(t) =


‘U’, if i is a uninformed bee;
‘S’, if i is a scout with a streaker role;
‘P’, if i is a scout with a passive role;
‘F’, if i is a bee forager,

(7.1)

where the first three values characterize the individuals constituting the migrating colony
(according to the modeling description presented in Chapter 6), and the last one denotes
honeybee foragers. Like the uninformed bees, also the foraging individuals never change
their role. In fact, according to the biological observations in [71, 87], bee foragers do
not join the migrating swarms. The streaker-passive leader status transition as well as the
introduction of the gazing direction, and, consequentially, the definition of the individual
perception region Ωvis are kept the same as in the previous Chapter. Further, we remark that
the distance function lnest(x) : Ω → R+∪{0} involved in the latter modeling description
here reduces to the Euclidean distance from the nest, being the domain Ω coincident with
the two-dimensional space R2, i.e. lnest(x) = |x−xnest|, for all x ∈ R2. In this respect, the
conditions regulating the scout status transitions read as follows. A streaker bee maintains
its status until it reaches the leading edge of the swarm, then as soon as its position satisfies
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the condition
|xi(t)−xnest|< min

k ̸=i : sk(t )̸=F

xk(t)∈Ωvis
i (t)

|xk(t)−xnest|, (7.2)

it becomes a passive leader. On the other hand, when a passive leader approaches the
trailing edge of the bee cloud, i.e., in mathematical terms

|xi(t)−xnest|> max
k ̸=i : sk(t )̸=F

xk(t)∈Ωvis
i (t)

|xk(t)−xnest|, (7.3)

it turns again to have a streaker role.

Bee dynamics. In order to reproduce the biological experiment by Latty and coworkers, we
add here the conflicting directional information provided by the fast traffic line of forager
bees to the mathematical framework proposed in the previous Chapter. Referring again to
the system of ODEs (4.4), the velocity of each individual is defined by the superposition
of the following velocity contributions

vi(t) = vrep
i (t)+vattr

i (t)+vrand
i (t)+valign

i (t), if i : si(t) = U;

vi(t) = vrep
i (t)+vattr

i (t)+vrand
i (t)+vstreak

i (t), if i : si(t) = S;

vi(t) = vrep
i (t)+vattr

i (t)+vrand
i (t)+vpassive

i (t), if i : si(t) = P;

vi(t) = vrep
i (t)+vattr

i (t)+vrand
i (t)+vforager

i (t), if i : si(t) = F.

(7.4)

Equations (7.4)1, (7.4)2 and (7.4)3 describe the dynamics characteristic of the swarming
honeybees: we find the same contributions in Eq. (6.6). However, here we neglect the
repulsion from the domain boundary since, according to the experimental setting, we
reproduce the empirical tests in the open-space R2.

The interaction velocity contributions vrep
i and vattr

i are left unaltered from Section 6.1.
The impact of the random velocity term vrand

i is here specified according to the speed of
each population subgroup. This choice finds its reason in the fact that here, in accordance
to the experimental measurement in [71], we set different values for vmax depending on
the individual status variable, i.e., in particular vU

max = vP
max < vS

max = vF
max. Specifically,

the modulus and the direction of this velocity component are here assumed to be random
variables which uniformly vary within the ranges of values [0,vsi(t)

max/10] and [0,360◦),
respectively.

In order to complete the description of the model, we now discuss the last velocity terms,
identifying the individual strategy of each insect involved in the simulated experiment.
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The directional velocity component of uninformed individuals valign
i is left unchanged

with respect to Eq. (6.11). Specifically, accounting for the empirical suggestions and the
numerical results reported in Chapter 6 and reference therein, we consider two possible
definitions of the alignment set of a given uninformed individual:

HP N1 - the i-th uninformed bee aligns its flight to all insects falling within a given neigh-
bourhood, regardless of their status, i.e.,

N align
i (t) = { j ̸= i : x j(t) ∈ Ω

vis
i , 0 < |ri j(t)| ≤ dalign}; (7.5)

HP N2 - the i-th uninformed bee synchronises its flight to all surrounding individuals that fall
within a given region, except passive leaders, i.e.,

N align
i (t) = { j ̸= i : x j(t) ∈ Ω

vis
i , 0 < |ri j(t)| ≤ dalign,s j(t) ∈ {U,S,F}}, (7.6)

being ri j(t) := x j(t)−xi(t) and dalign the depth of the alignment region. In this respect,
comparing (7.5) and (7.6) to (6.15) and (6.16), we observe that the alignment assumptions
N1 and N2 coincide with A3 and A4 in the previous chapter except for the fact that here
both the alignment hypotheses N1 and N2 involve the forager bees.

The characteristic dynamics of the informed individuals as well as the behavioral
assumptions on the passive leader movement is here maintained the same as those in
Chapter 6, see Eq. (6.17), (6.18) and (6.19). In this respect, the latter can be simply
formulated in terms of the Euclidean distance instead of the distance funcion lnest, as
already commented in the text. Specifically, scout bees with a streaker role are assumed to
fly at high speed pointing towards the target nest, i.e., in mathematical terms it reads as

vstreak
i (t) = vS

max
xnest −xi(t)
|xnest −xi(t)|

. (7.7)

On the other hand, for the passive leaders, we consider the two possible behaviours
proposed by T.D. Seeley in [87].

HP L1 - Passive leaders slowly fly back towards the rear edge of the swarm, in order to
slightly influence the movement of the uninformed swarming bees. In this respect,
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for the i-th passive leader bee, we define

vpassive
i (t) = vP

max

xk̄(t)−xi(t)
|xk̄(t)−xi(t)|

− xnest(t)−xi(t)
|xnest(t)−xi(t)|∣∣∣∣ xk̄(t)−xi(t)

|xk̄(t)−xi(t)|
− xnest(t)−xi(t)

|xnest(t)−xi(t)|

∣∣∣∣ , (7.8)

where k̄ denotes the uninformed insect farthest from the new nest according to the
following relation

|xnest −xk̄(t)|= max
k :sk(t)=U

xk(t)∈Ωvis
i (t)

|xnest −xk(t)|. (7.9)

HP L2 - Passive leaders stop and wait to be passed by the rest of the groupmates. For the i-th
passive leader, we indeed set

vpassive
i (t) = 0. (7.10)

Finally, bee foragers individually move back and forth between their original hive and
a food source. In particular, it has been experimentally observed that bees pointing to a
desirable source of food fly at a speed comparable to that of the fast-flying streakers, so we
can assume vF

max = vS
max. We then state that, at regularly spaced instant times, a bee forager

i leaves a randomly selected hive, identified by the number hi ∈ {1, . . . ,8}, and begins to fly
fast towards a point in the lucerne field, said xfood

i ∈ Ωfood, which is randomly selected as
well. Once reached the food source, foragers change their desired travel direction to come
back home. In this respect, given the initial condition xi(0) = xhive

hi
, si = F, the velocity

contribution vforager
i is given in mathematical terms by

vforager
i (t) =



vF
max

xfood
i −xi(t)

|xfood
i −xi(t)|

, 0 ≤ t ≤ t̃

vF
max

xhive
hi

−xi(t)

|xhive
hi

−xi(t)|
, t̃ < t ≤ T̄ ,

(7.11)

where xhive
hi

is the hive from which bee i flies away. Further, t̃ and T̄ respectively are the
time instants when the bee i reaches the food field, i.e. xi(t̃) = xfood

i , and the bee i gets
back home, i.e. xi(T̄ ) = xhive

hi
. The frequency of the foragers’ liftoff is set according to the

experimental amount of bee traffic nF recorded in [71], i.e., the number of bees leaving the
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hives over 1 min. Finally, it is worth to stress that we neglect the dynamics of bee foragers
within the hives, since it does not affect the behaviour of the migrating swarm.

7.2 Numerical results

The aim of the simulations proposed in this Section is to point out the sets of assumptions
relative to the behaviour of the passive leaders and the alignment mechanism of the
uninformed bees that are able to reproduce the empirical results presented by T. Latty and
coworkers in [71]. In this perspective, we design two simulation settings that reproduce
the dynamics either of “control swarms”, which fly towards a target nest in the absence of
other bees, or of “test swarms” exposed to a flux of fast-moving bees. In both scenarios,
we will test the three different combinations of the proposed hypotheses (N1, L1), (N1,
L2), and (N2, L2). As a remark, we here discard the set of assumptions (N2, L1), since
proper numerical results presented in Section 6.3 of the previous Chapter demonstrated
that it is not able to reproduce the coordinated and productive migration of a swarm even
in the absence of other bees.

Simulation details. In all simulations, we consider a migrating colony of 500 individuals.
As commented above, we are indeed dealing with a planar section of the larger control/test
swarm. The initial swarm configuration is left unchanged from Chapter 6. Specifically,
as shown in Figure 7.1, these bees are initially randomly distributed within a round area
of radius 4 m centered at (10 m,30 m), leading to a realistic density of about 8 bees/m2

[87]. The initial gazing direction gi(0) of each individual is randomly generated. In
agreement with the experimental literature [90], we assume that 4% of the migrating
individuals are informed of the location of the new nest, while the remaining 480 bees
are uninformed. In particular, all scouts initially have a streaker role, i.e., si(0) = S, then
they are able to undergo status transitions according to the evolution of the system, as
defined in Equations (7.2)-(7.3). We here recall that uninformed bees are conversely
not able to change status. The nestbox constituting the target of the migrating colony is
located 100 m far from the initial position of the swarm, i.e., at xnest = (110 m,30 m).
The eight hives from where bee foragers start flying to provide food for their colony, are
respectively located at xhive

1 = (22 m,5 m), xhive
2 = (22.5 m,5 m), xhive

3 = (23 m,5 m),
xhive

4 = (23.5 m,5 m), xhive
5 = (24 m,5 m), xhive

6 = (24.5 m,5 m), xhive
7 = (25 m,5 m)

and xhive
8 = (25.5 m,5 m), according to the experimental scenario. Finally, the food

source is represented by the rectangle area Ωfood = [30,60]× [50,60] m2. According to



7.2 Numerical results 81

the experimental scenario, the hives and the food site are located on the opposite sides of
the straight path connecting the initial position of the swarm and the nest site, see again
Figure 7.1.

Table 7.1 Model parameters.

Par. Description Value [Unit] Reference

θvis half visual angle 156.5 [deg] [91]
dvis depth of visual field 20 [ m] biological data
vmean mean velocity of uninf. bees 3 [ m/s] [71]
vU

max maximal speed of uninformed bees 3 [ m/s] [71]
vS

max maximal speed of streakers 9.4 [ m/s] [6, 71, 87]
vP

max maximal speed of passive scouts 3 [ m/s] [85, 87]
vF

max maximal speed of foragers 9.4 [ m/s] [71]
nF bee traffic 25−85 [ bees/min] [71]
drep extension of the avoidance region 0.3 [ m] [87]
dalign extension of the alignment region 2 [ m] [27, 28]
dattr extension of the attraction region 20 [ m] biological data
frep avoidance coefficient 1 [ m2/s] see Ch. 6
fattr attraction coefficient 10−6 [ m/s] see Ch. 6

The entire model parameter setting used in all numerical simulations is summarized in
Table 7.1. These values have been set by taking advantage of the empirical measurements
reported in the literature of the field and of the parameter estimation performed in Section
6.2 of the previous Chapter. The bee visual region already introduced in Equation (6.4) is
characterized by setting the half visual angle θvis = 156.5◦ and the visual depth dvis = 20 m.
The former is a measure provided in [91]. The latter estimate allows each insect to
potentially see all groupmates (provided that the swarm is not completely dispersed) and
it is small enough to avoid that the target destination initially falls within the visual field
of uninformed individuals. The maximal flight speeds introduced in Equation (4.4) are
estimated according to the empirical measurements reported in [71] and reference therein.
Specifically, the flight of uninformed individuals in the swarm do not exceed vU

max = 3 m/s
[71], while scouts in the streaker role are able to fly up to vS

max = 9.4 m/s [6, 71, 87]. The
maximal speed of passive leaders is assumed to be equal to that of uninformed individuals,
i.e., vP

max = vU
max, according to the biological hypothesis that scouts in a passive role become

almost invisible to the followers, see [85, 87]. As a remark, the measurements performed
in [71] allow us to estimate the maximal speed of honeybee foragers equal to that of scouts
in the streaker role, i.e., vF

max = vS
max = 9.4 m/s. Plausible values for the outbound bee
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traffic nF fall in the range [25,85] bees/min, so that the resulting ratio between the number
of scouts and nF is consistent with the quantities recorded in [71].

The model parameters that characterize honeybee mutual interactions (affecting all indi-
viduals regardless their status) and the alignment mechanism (regulating the behaviour
of uniformed insects only) are set exactly as in Chapter 6. Specifically, the minimal
comfort distance between individuals drep is fixed at 0.3 m, according to the measurements
reported in [87]. The extension of the alignment region dalign is assumed to be equal to
2 m, accounting for the values of the ratio drep/dalign tested by Couzin and colleagues in
[28, 27]. We further set dattr = dvis, assuming that each bee tends to maintain a minimal
connection with any other individual it sees. The technical coefficients frep and fattr are
finally settled at 1 m2/s and 10−6 m/s, respectively, following the parametric estimation
proposed in Chapter 6. In particular, in Section 6.2, we ran a series of numerical realiza-
tions looking for pairs of parameters that (i) result in a crystalline equilibrium configuration
of the swarm without superposition of individuals, when the evolution of the system is
regulated by attractive/repulsive stimuli only; and (ii) allow the specific flight of scouts
through the swarm under either hypotheses L1 and L2, when the evolution is regulated
by the complete dynamics. On one hand, the numerical results reported in Section 6.2
show that requirement (i) is satisfied if the parametric relation frep/ fattr ≥ 106 holds. To
account for requirement (ii), we have to verify that the interaction parameter values used
in Chapter 6 are still admissible even though we here opt for a different value of vmean and
of the maximal speed of uniformed bees. In fact, in order to mathematically reproduce the
experiments performed by T. Latty and coworkers, we here set vmean and vU

max rispectively
equal to the empirically estimated value reported in [71], i.e., both equal to 3 m/s, rather
than vmean = 6.7 m/s and vU

max = 9.4 m/s as in Chapter 6. In this respect, we analyze the
motion of the scout bees through the cloud of uninformed individuals by running two series
of computational tests involving a modified control swarm whose dynamics is regulated
only by the repulsive/attractive interactions and the characteristic motion of scouts, L1 and
L2, respectively. Specifically, with respect to the complete model in Equations (4.4)-(7.4),
we neglect the alignment mechanisms and the random contributions. Figure 7.2 shows the
trajectories of a representative informed bee observed in the two cases: under hypothesis
L1 (left panel), the informed bee is actually able to streak and fly back repeatedly through
the swarm; under hypothesis L2 (right panel), once the scout bee reaches the leading edge
of the swarm, it stops waiting the passage of the rest of the colony. However, the cloud of
uninformed individuals (and, in turn, the entire swarm) substantially maintains its initial
position due to the absence of the alignment process. These numerical results clearly
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Figure 7.2 Trajectory of a representative bee scout upon either the back-and-forth hypo-
theses L1 (left panel) and the go-and-stop hypotheses L2 (right panel). The trajectory is
red when the scout has a streaker role, and it is blue when it has a passive role. The yellow
shadow represents the entire bee cloud.

demonstrate that the proposed variation in the model parameters do not disrupt the specific
behaviour of informed bees, i.e., the proposed set of parameters satisfies requirement (ii)
too.

Control and test swarms. We then turn to test the considered combinations of alternat-
ive hypotheses on the behaviour of leader scouts and on the alignment mechanism of
uninformed bees, i.e., (N1, L1), (N1, L2), and (N2, L2), looking for those able to repro-
duce the dynamics of both the control swarms and the test swarms described in [71]. By
considering the complete model defined in Equations (4.4)-(7.4), we run six series of sim-
ulations for each couple of assumptions. First, we deal with the control cases: by setting
nF = 0 bees/min, we show that, in absence of conflicting information, all proposed set of
hypotheses reproduce the coordinated and productive flight of honeybees towards their
new nest. Then, we look at the evolution of swarms exposed to five different levels of bee
traffic (test cases): specifically, nF is respectively set equal to 25;40;55;70;85 bees/min.

In order to identify the sets of assumptions able to reproduce the experimental outcomes
presented by T. Latty and co-workers, let us recall that in [71] they classify their empirical
results accounting for the fraction of the bees belonging to the swarm that actually enters
the nestbox. By considering that honeybees begin to coordinate their entrance in the nest
at about 10 m from the target [87], we record the number of insects that simultaneously
fall within the neighborhood Ωnest := [100,120]× [20,40] m2 around xnest, see Figure 7.1.
The dynamics of the bee population resulting from the considered set of assumptions are
then classified according to the following criterion.
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Figure 7.3 Representation of the mean number of bees that reach the nest, i.e., the mean of
Nnest defined in Equation (7.12), arising from 10 independent numerical realizations for
each combination of the bee behavioural assumptions and for each level of the traffic bees
nF . The error bars represent the variance obtained for each case.

Definition 7.2.1. The coordinated and productive flight of a swarm toward the nest is
disrupted if

Nnest = max
t∈[0,T ]

{
#
{

j : s j(t) ̸= ‘F’, x j(t) ∈ Ω
nest}}≤ 450, (7.12)

where # denotes the cardinality of a set and T is the period of observation of the realization.
Otherwise, the swarm successfully reaches the target nest.

All numerical tests are stopped at T = 1 min. By noticing that in control cases the
simulated swarm need about 35 sec to cover the straight path and reach the nest (see
Figure 7.4), it is clear that this choice of T allows to properly classify as disrupted the
dynamics of swarms that would arrive at the target nest after large deflections from the
straight path. Moreover, for each combination of assumptions and for each considered
amount of bee traffic (included the control case), we run 10 independent simulations to
account for the randomness present both in the initial distribution of the swarm and in
honeybee dynamics. The numerical results are then summarized in Figs. 7.3-7.5.

In particular, Figure 7.3 reports the mean value and the relative variance of Nnest character-
izing each case. These computational outcomes first highlight that all control cases are
characterized by Nnest = 500 (i.e., < Nnest >= 500, with zero variance), thereby pointing
out that the considered set of assumptions on bee behaviour equivalently reflect the empir-
ical outcomes obtained by T. Latty and co-workers in the absence of conflicting directional
information. In fact, as shown in the representative snapshots in Figure 7.4, in all cases
the honeybee swarm remains cohesive during all the dynamics and compactly reach the
target nest without large deviations from the straight path. This further confirms that the
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Figure 7.4 Control cases. Representative evolutions of the bee swarms in the absence of
fast-moving bee foragers upon the three hypotheses combinations (N1, L1), (N1, L2) and
(N2, L2). For each case, we here show only the portion of interest of the entire empirical
scenario represented in Figure 7.1. Yellow dots denote uninformed individuals, red dots
scout bees with a streaker role, and blue dots passive leaders.

proposed variation in the speed of uninformed bees w.r.t. Chapter 6, does not disrupt the
coordinated flight of honeybees, but only gets the swarm migration slightly slower.

Figure 7.3 further highlights that upon the coupled sets of assumptions (N1, L2) and
(N2, L2), the swarm productive navigation obtained in test cases is never disrupted by
the presence of conflicting directional information. In fact, regardless the level of the
traffic bees nF , the mean number of insects that reach the target upon the coupled set of
assumptions (N1, L2) and (N2, L2) is still < Nnest >= 500, with zero variance. In other
words, the coordinated flight of the bee cloud is not affected by crossing the traffic area
of fast moving foraging bees thereby reaching undisturbed the nest, i.e. exactly as in the
control cases. This suggests that the presence of passive leaders waiting to be passed by the
rest of swarm, i.e. assumption L2, prevents followers from synchronizing their movement
to fast moving forager bees and disrupting the coordinated flight of the migrating colony.
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However, these in silico outcomes do not reflect the experimental findings presented in
[71], and therefore lead us to discard both the assumptions (N1, L2) and (N2, L2).

On the contrary, honeybee dynamics obtained under the set of assumptions (N1, L1) are
consistent with the empirical outcomes presented in [71], as we have < Nnest >≪ 450,
with negligible variance, for any tested value of the bee traffic, see again Figure 7.3. In
particular, only 24% of the numerical tests we performed under the set of assumptions (N1,
L1) results in a coordinated and productive flight of the swarm. This is consistent with
the work of T. Latty and coworkers, which observed that only one of their six test swarms
(i.e., 16%) reaches the nest. Despite the discrepancy in these values, this is in fact a good
starting point with respect to the above discarded set of assumptions.

Furthermore, the swarm dynamics resulting under the coupled assumptions (N1, L1)
present clear signs of disturbance of the scout guidance, including splitting, deviated path,
and reclustering, in agreement with the experimental outcomes described by T. Latty and
coworkers in [71]. In this respect, representative snapshots of three selected in silico
experiments are provided in Figure 7.5. In the first row of Fig. 7.5, once the swarm
has passed the highway of bee foragers, some uninformed individuals at the rear of the
migrating group stop following the scouts and separate from the colony. According to
hypothesis L1, the scouts begin to follow these confused bees trying to keep compact
the swarm but, at the same time, they leave the rest of the uniformed individuals without
a guide. These latter then mutually align and wander in a randomly selected direction.
In the second row of Figure 7.5, as soon as the swarm bumps into the forager highway,
the uniformed bees begin to disperse, clearly confused by the presence of conflicting
directional information. In this case, scout bees are able to recluster the colony but not to
restore the productive migration of the swarm toward the nest, which therefore undergoes
large deviations from the optimal path. Finally, in the bottom row of Figure 7.5, the
migrating bee population initially seems to pass safely the traffic area where forager bees
go back and forth between their hives and the food source. The effect of the exposition of
the swarm to conflicting information in fact arises at about 20−30 sec with the separation
of the uninformed bees from the scouts individuals. However, the scout individuals result
able both to regroup the entire colony and to re-establish the swarm guidance conducting
all migrating bees to the nestbox. This is actually one of the few realizations in which, as
observed in a experimental test in [71], the simulated swarm reaches the nest in spite of
the interaction with bee foragers headed in a wrong direction.
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Figure 7.5 Test cases. Representative realizations of the dynamics of a swarm exposed to
conflicting flight information, upon the behavioural set of assumptions (N1, L1). Yellow
dots denote uninformed individuals, red dots scout bees with a streaker role, blue dots
passive leaders, and greed dots forager bees.
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7.3 Conclusions

The aim of this Chapter has been to clarify the mechanisms underlying both the swarming
process and the effect of conflicting directional information on the honeybee guidance.
In this perspective, we have proposed an extended version of the model presented in the
previous Chapter to test selected assumptions on bee behaviour, and to find out the rules of
motions that reproduce in silico the experiments presented by T. Latty and coworkers in
[71].

The numerical realizations described in the previous Section have shown that both
assumptions (N1, L2) and (N2, L2) are not able to successfully reproduce the experimental
findings. In these cases the bee cloud is in fact able to achieve the nest, by substantially
moving along the shortest straight path, even if it has to cross the traffic area of the
forager bees to reach the target. Conversely, scenarios comparable to the experimental
findings have emerged under the coupled hypotheses (N1, L1). In this case, in fact, the
introduction of the conflicting directionality of the fast-flying foragers had a strong impact
on the coordinated migration of honeybees and resulted in clear signs of disturbance of
the scout guidance, including splitting, deviated path, and reclustering. For these reasons,
we have been led to discard both the assumptions (N1, L2) and (N2, L2) in favor of
(N1, L1). In other words, this study suggested that the leading plausible assumptions
behind the swarming process, according to the proposed model, are the following: the
uninformed bees could acquire the travel route synchronising their movement to all the
insects sufficiently close to their position regardless of their status, provided that the passive
leaders slowly come back from the front to the rear edge of the bee cloud.

In more details, under the behavioural assumptions (N1, L1) none of the simulated
swarms presenting signs of disrupted guidance, steered in direction of the lucerne field,
nor towards the eight colonies, but they rather seemed to randomly redirect their flight
consistently with empirical evidences. This effect could be attributed to the fact that the
foragers alternatively moves back and forth, i.e., the bee highway does not include one
single preferential movement direction, but two opposite ones (i.e., from the colonies to
the field and viceversa). Therefore, it could be interesting to investigate in future works the
effect of a one-directional traffic flow on a flying swarm and, in this respect, to address
new sets of simulations to the question of how many misleading bees are necessary to
completely redirecting the swarm towards a different direction.
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In literature, several studies have analysed the mechanisms underlying the decision-
making process in presence of multiple conflicting movement information within groups
of both humans and animals, see, for instance, [27, 42, 100]. These studies highlight
that individuals generally tend to collectively select the direction adopted by the majority
of the informed individuals, thus following the largest group. Furthermore, the quorum
rule allows the naive individuals to neglect potentially incorrect information. Conversely,
in the experiments by T. Latty and coworkers, as well as in the model outcomes so far
presented, a small fraction of forager bees has caused the disruption of the swarm flight.
Honeybee swarms therefore appear more sensitive to conflicting information with respect
to the other groups studied in literature. As suggested in [71], this observation could be
related to the specific nature of the misleading information. In fact, in this experimental
scenario the disturbing traffic line of the foragers represent an external source of flight
information for the swarming bees while both in [27] and [42] divergent directional
information compete within the same group. Furthermore, we remark that the specific
streaker guidance mechanism itself could provide a minimum conflicting information
when the leaders come back to the rear edge of the swarm in order to streak again. These
considerations could explain the strong effect of the foraging bees on the swarming process.



Chapter 8

Future developments of the proposed
approach

The proposed model has investigated and tested different social behaviors underlying the
collective dynamics of a bee swarm. However, our approach can be improved in several
directions. First, it would be useful to have a better comparison with experimental data.
This would improve the quality of the work from two points of view: it could be possible
to derive a more precise parameter estimate and we could have a quantitative validation of
the predictive theoretical results.

Further, a three-dimensional extension of the computational setting would be a natural
development. In fact, it would allow to better describe the dynamics of the informed bees
which, when passive leaders, are also supposed to hide themselves along the top or the
bottom region of the swarm in order to not significantly affect the flight of the groupmates,
as hypothesized in the empirical literature [85, 87].

Another model improvement can be represented by the inclusion of a proper evolution
equation for the gazing direction, i.e., indeed considered a further degree of freedom. For
instance, it could take into account the head rotation of each insect with respect to its
direction of motion, due for example to environmental stimuli (e.g., sounds or light signals)
and/or due to unconscious fluctuations.

Finally, from a purely speculative point of view, our approach can be extended to larger
swarms, formed by thousands of individuals. In this respect, it would be interesting to test
if the results obtained by varying the alignment mechanisms (and the relative parameters),
as well as the leader movement rules, would apply also in the case of significantly increased
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numbers of bees. It is useful to remark, however, that the proportion between informed/non-
informed individuals set in the models proposed in this Thesis (i.e., 1/99 in Chapter 5 and
20/500 in Chapters 6 and 7) is in the range of values empirically measured (i.e., 300 to
400 leaders in a swarm of 10000 insects [87]). Obviously, a model extension involving
a huge number of particles would cause computational issues, i.e., mainly related to the
optimization of computing time. In this respect, a possible solution is represented by the
use of serial and parallel computing. High performance serial computing can be achieved
by using the same programming techniques employed in particle fluid-dynamic simulations.
Otherwise, parallel computing is possible, for example, using Message Passing paradigm
(MPI) or shared memory parallelization. In the first case, the computational domain would
be divided in subdomains that in turn would be assigned to a single processor. At each time
step, each processor should communicate the bees who leave its portion of domain and
enter the sub-domain of a neighboring node. In case of a shared memory parallelization
(e.g., on GPU devices), the computational domain and the data structure storing population
data would be shared among different threads, each of them updating the state of a sub-set
of individuals.



Chapter 9

A scan of the theoretical literature on
bee swarming dynamics

As explained in the Abstract and Chapter 2, the models presented in this Thesis belong to
the class of microscopic/discrete approaches dealing with collective dynamics of animal
populations. Of this group of methods, some are devoted to reproduce selected features
of bee swarming. It is indeed important to discuss their differences and similarities with
respect to our approach.

We first remark that most of the discrete models presented in the literature are based
on the already-introduced set of first principle of swarming [18], accounting for attrac-
tion/cohesion, avoidance, and flight alignment.

Entering in more details, in [44], Fetecau and Guo implement a second-order model,
where attraction and repulsion stimuli are described by a Morse potential, whereas the
alignment process of a given bee involves its two-fold faster neighbors (with an effect that
decreases with the mutual distance between the pair of interacting insects, according to a
quite complex, hyperbolic tangent-based, rule). Bee dynamics also account for a random
component, which is active only when the interaction of an individual with the rest of the
swam is low enough. The authors introduce a visual field for each bee, given by a planar
sector which is constantly aligned to the direction of motion and formed by two regions: a
central cone where the other individuals are set to be directly seen, and therefore assigned
a unit weight, and a peripheral area where the other individuals are set to be partially seen,
and therefore assigned a lower weight. In our model, a peripheral vision is not considered,
since it is known from biology that the compound eyes of bees cover most of the front and
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of the sides of their head, assuring an almost homogeneous vision. Fetecau and Guo finally
differentiate a subpopulation of leader bees, that do not interact with their groupmates and
are assigned an oscillatory motion. They in fact move faster towards the target destination
according to two alternative hypothesis: (i) they streak with a constant acceleration or (ii)
they fly with a constant speed. In both cases, when such informed individuals reach the
leading edge of the cloud, they come back to the rear of the population being substantially
invisible to the follower agents. The model by Fetecau and Guo is therefore based on
behavioral rules similar to the pairs (A1, L1) and (A2, L1) employed in our Chapter 6.
Interestingly, in both works, such hypotheses result in a directionally efficient swarming:
however, we have discarded the two combinations of assumptions as a consequence of the
lack of a consistent compactness of the insect cloud.

Attraction, repulsion, and alignment are also at the basis of the first order model
presented in [58]. Entering in more details, the cohesion velocity contribution is modeled
as a vector pointing from the position of the generic bee to the center of mass of the set
of neighboring insects which fall within its visual distance. In this respect, we have here
preferred to implement pairwise interaction kernels, since it is difficult to establish whether
a bee exactly knows the position of the barycenter of the rest of the groupmates. The
alignment rule employed by [58] instead relies on an Euclidean metric-based assumption,
namely each bee is set to synchronize its movement with all the seen groupmates (regardless
of their speed). This is quite similar to the assumption tested in Section 5.2.1 of Chapter 5,
even if in our case the region of attraction and alignment do not coincide. As in the case
of the work by Fetecau and Guo, also in [58], a set of leader bees is defined and assigned
a back-and-forward motion within the swarm, in order to diffuse the information on the
correct flight direction to the overall population.

In [39], the authors describe both the decision-making process used by the house-
hunting honeybees to find a new nest site and their guidance role within the rest of the
swarm. Focusing on the latter, we can notice that Diwold and colleagues employ a cohesion
term that makes each bee attracted by the barycenter of a set of fast enough individuals,
which are also involved in a topological metric-based alignment mechanism. Such an
assumption on flight synchronization is similar to the hypothesis tested in Section 5.2.2 of
Chapter 5, although we have there implemented different interaction velocity components.
The resulting model is then applied to compare the swarming of two different species
of honeybees, namely Apis Mellifera and Apis Florea. In particular, A. Mellifera is a
cavity-nesting species whereas A. Florea is an open-nesting one. This means that the
Apis Mellifera has to find a roomy and comfortable homesite, protected from cold winds
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and from predators. Conversely, A. Florea usually nests on a shaded branch, having less
constraints in finding a suitable location.

A more general (i.e., not strictly related to bee dynamics) model is proposed in [27].
The authors here focus on two aspects: how information is transferred within groups of
animals and how they can find an agreement when informed individuals suggest different
moving directions to rest of the population. Such an approach still relies on the classical
social principle of attraction/repulsion and alignment. As previously commented, one
of their main results deals with the relationships between the percentage of informed
individuals and the flight efficacy of population of different sizes. The same research group
also proposes a model that focuses on the pattern characteristic of animal groups, [28]. In
particular, their approach includes a Morse potential and two additional terms: accounting
for self-propulsion and friction. The balance between the different contributions establishes
the capability of the system to reach an asymptotic collective speed.

The dichotomy between topological vs. Euclidean metric-based interactions between
animals belonging to the same population, which has been here addressed in Chapter 5, is
the topic of a very interesting article by Ballerini and coworkers, who deal with flocking
events of European Starling swarms under external perturbations (e.g., predator attacks)
[3]. More specifically, these authors experimentally demonstrate, by an analysis of a
large amount of photographic data, that each individual interacts with a fixed number of
groupmates (6-7) and not with all neighbors falling within a given region. In other words,
the collective and coordinated migration of bird colonies is the result of topological inter-
actions, as also confirmed by the computational results proposed in the same work, which
are obtained with an agent-based model. The observations by Ballerini and colleagues
well fit with the arguments proposed in Chapter 5. In this respect, it would be interesting to
perform their empirical study in the case of bee colonies, in order to point out if topological
arguments are involved in bee swarming as well. In particular, it would be relevant (but
very difficult) to address two points: (i) if topological-based interactions underly only
attractive/repulsive insect behavior or also flight synchronization mechanisms and (ii) if
external conditions and/or the objective of migration affect the type of interindividual
interactions (e.g., a predator attack may stimulate topological metric-based interactions,
whereas exploring or feeding tasks may require Euclidean metric-based interactions).

By reviewing the different works commented so far, we can conclude that the main
features of a swarming phenomenology can be captured by minimal, i.e., two- or three-
component, models. In fact, reasonable configurations of swarms (where the agents
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stabilize at given and finite mutual distances) can be obtained only by taking into account
repulsive/attractive pairwise dynamics. The inclusion of alignment mechanisms is instead
needed to get effective directional flights. Such simple approaches have also the advantage
of being suitable for interesting analytical analysis and insights, e.g., on the properties of
the steady states of the system as done by different groups [16, 17, 45].

The addition of more sophisticated model ingredients, i.e., bee status differentiations
and relative transitions and flight rules, is therefore not essential to reproduce basic
collective dynamics of insect swarms. However, such model components have been here
introduced in order to be as close as possible to experimental evidences and to find out
reasonable assumptions at the basis of the still unknown bee swarming behavior, i.e., to
give our theoretical approach an experimentally predictive value.



Part II

A particle-based model analyzing
collective dynamics in both
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groups





Chapter 10

Introduction

In the Second Part of the Thesis we propose a slightly different particle-based approach
able to describe the collective dynamics of a generic group of animals, i.e. not necessarily
bees. As a relevant feature, this approach distinguishes between individual speed and direc-
tion of motion. The former is in fact typically established by the purpose of the movement
and/or by physiological limitations, the latter results instead from the competition between
different behavioral stimuli, mainly coming from the environment (e.g., attraction, repul-
sion and velocity alignment). In particular, each of these inputs is here simply defined by
an orientation and a weight, which is correlated to an individual preference. A constraint on
the sum of the weights is finally given to avoid simultaneous minimization/maximization
of all individual behavioral traits. The description of animal dynamics therefore does
not necessarily require the introduction of complex algorithmic rules or artificial laws of
motion. The proposed mathematical framework has the clear advantage to be based on
a minimal set of parameters (i.e., one per directional contribution), which first allows to
avoid computationally expensive sensitivity analysis. The interpretation of the results is
substantially facilitated as well, thanks to the fact that the few model coefficients have a
direct empirical meaning. In this respect, the description of animal dynamics does not ne-
cessarily require the introduction of artificial laws or functions (such as adhesion/repulsion
kernels), that usually, e.g. as in the models presented in Part I, involve strictly technical
parameters.

The rest of this Part is organized as follows. Chapter 11 shows that our model is able
to reproduce and classify collective movement and patterning of an animal population
emerging from different individual behavioral preferences. It is then enriched to include
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Figure 10.1 Different collective dynamics of animal populations. (A) A small swarm of
seagulls undergoes chaotic group flight. (B) A large zebra herd coordinately migrates, as
all component individuals have a common direction of movement. (C) A school of fish is
dispersed by a shark, with the consequent formation of empty space around the predator.
(D) A group of bison individually runs away from an attacking cheetah. All the images are
courtesy of the Department of Life Sciences and Systems Biology, Universita’ degli Studi
di Torino (Italy), and have been modified by the authors of this paper.

more sophisticated scenarios and situations, such as the presence of a predator which
impacts on group dynamics. It also includes a coupled analytical/numerical study of the
equilibrium configurations of our animal system when subjected only to attractive and
repulsive interactions. An extensive comparison between our model and the pertinent
literature is finally provided in Chapter 12, in order to highlight similarities and differences
with respect to analogous approaches. In this respect, the proposed model combines and
modifies concepts and ingredients already present in the literature, however giving rise to
some quite distinct numerical and analytical results.



Chapter 11

A different modeling approach
distinguishing individual speed and
orientation

11.1 Mathematical model

A generic group of animals is described by a particle system within the d-dimensional
space Rd . In this perspective, the i-th agent (with i = 1, ...,N, N being the total number of
individuals) is represented by a material point with position xi(t). Individual dynamics are
then described by the following first-order model

dxi(t)
dt

= vi(t)
ωωω i(t)
|ωωω i(t)|

, (11.1)

which can be derived from a generic second-order Newtonian approach under the assump-
tion of overdamped force-velocity response (a consistent hypothesis for living entities, see
Section 4.2 of Chapter 4 for comments). Eq. (11.1) effectively decouples the magnitude
of the velocity of the i-th animal, given by the scalar vi(t) ∈ R+ (possibly, vi(t) ∈ [0,vmax]

to account for physiological limitations), from its direction, given by the unit vector
ωωω i(t)
|ωωω i(t)|

∈ Bd
1 ⊂ Rd (where Bd

1 denotes the d-dimensional ball with unitary radius). As a

relevant feature of the proposed model, these two quantities are assumed to be independent,
since they have distinct physical meanings. For instance, the individual speed vi(t) can be
determined by the intrinsic status of the agent (e.g., calm or in a hurry) as well as by the
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purpose of its movement and by physiological/physical limitations. On the other hand, the

velocity orientation of the particle,
ωωω i(t)
|ωωω i(t)|

, can be formally correlated to the competition

between different behavioral stimuli (triggered, for example, by environmental signals,
own preference or interactions with the surrounding agents). In this respect, the vector
ωωω i(t) can be determined by a weighted sum of proper contributions, i.e.,

ωωω i(t) = ∑
j∈Ji

α
j

i (t)w
j
i (t), (11.2)

where Ji is the set of behavioral inputs that influence the dynamics of i while the unit
vectors w j

i ∈ Bd
1 ⊂ Rd define the corresponding orientations. Finally, the coefficients α

j
i (t)

are weights that describe the relative importance of each stimulus with respect to the
others; they may also evolve in time due to variations of internal or external conditions,
e.g., visibility. In particular, to have comparable effects on agent dynamics and to avoid
simultaneous maximization/minimazion of all behavioral traits, we assume thatα

j
i (t) ∈ [0,1]; j ∈ Ji;

∑ j∈Ji α
j

i (t) = 1; ∀t ≥ 0,
(11.3)

for all i = 1, ...,N. In this respect, relation (11.2) is a linear combination of the directional
cues that affect the movement of the i-th agent.

Given the generical mathematical structure, we now recall that the majority of animal
groups undergoes collective motion mainly guided by interindividual social interactions. In
particular, three fundamental behavioral rules are classically identified, as explained in [66,
79, 83, 92] and in the First Part of this Thesis in the case of swarming honeybee populations.
First, a short-range repulsion describes the tendency of each animal to maintain a minimum
comfort space within the group: it is here implemented by a directional unit vector that
allows the i-th agent to move away from close enough neighbors:

wrep
i (t) =

∑
j∈N rep

i (t)

(xi(t)−x j(t))∣∣∣∣∣∣ ∑
j∈N rep

i (t)

(xi(t)−x j(t))

∣∣∣∣∣∣
, (11.4)

where
N rep

i (t) =
{

j = 1, . . . ,N, j ̸= i : 0 < |x j(t)−xi(t)| ≤ drep
}
, (11.5)
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Figure 11.1 (A) Schematic representation of the interaction regions of the generic i-th
member of the animal group. In particular, we recall that drep, dalign, dattr, and descape
measure the extensions of the repulsion, the alignment, the attraction and the escape areas,
respectively. In this respect, we have that N rep

i = /0, N align
i = { j}, and N attr

i = {h,k} (as
identified by the ellipsoid). (B) Schematic representation of the hunter predation zone,
whose extension is defined by dpred. As explained in the text, to obtain the corresponding
dimensionless values, lengths are scaled with drep. (C) The animal group is initially
arranged in a round configuration with random individual positions (indicated by the blue
dots) and velocities (indicated by the arrows). In the case of the heterogenous system, a
predator (the red diamond) is located at a significant distance from the cluster of individuals,
however with at least a prey within its hunting region.

drep being the extension of the avoidance region.

A middle-range alignment mechanism then reproduces the aim of each agent to syn-
chronize its movement, in term of orientation, with the groupmates falling within a given
surrounding area of radius dalign, i.e.,

walign
i (t) =

M(ωωω j(t)/|ωωω i(t)|) j∈N align
i (t)

|M(ωωω j(t)/|ωωω i(t)|) j∈N align
i (t)|

. (11.6)

In Eq. (11.6), M(ωωω j(t)/|ωωω i(t)|) j∈N align
i (t) denotes in fact the mean of the actual velocity

directions evaluated over the set of particles

N align
i (t) =

{
j = 1, . . . ,N, j ̸= i : drep < |x j(t)−xi(t)| ≤ dalign

}
. (11.7)

A long-range attraction finally enters the picture if the i-th animal falls too far apart from
the rest of the group and tries to reach again its mates: in mathematical terms, we have
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indeed

wattr
i (t) =

∑
j∈N attr

i (t)

(x j(t)−xi(t))∣∣∣∣∣∣ ∑
j∈N attr

i (t)

(x j(t)−xi(t))

∣∣∣∣∣∣
, (11.8)

with
N attr

i (t) =
{

j = 1, . . . ,N, j ̸= i : dalign < |x j(t)−xi(t)| ≤ dattr
}
. (11.9)

The extension of the attraction region, dattr, can be also interpreted as the visual distance of
the animal of interest as done for instance in the modeling descriptions presented in Part I.
A schematic representation of the different interparticle interaction areas is proposed in
Fig. 11.1 (A).

Putting the introduced velocity components in Eq. (11.2), ωωω i results specified as

ωωω i(t) = α
rep
i (t)wrep

i (t)+α
align
i (t)walign

i (t)+α
attr
i (t)wattr

i (t), (11.10)

being Ji = {rep, align, attr} and α
rep
i (t)+α

align
i (t)+α

attr
i (t) = 1 for any i = 1, ...,N. As

written, the proposed approach includes a minimal set of parameters: individual speeds
and extensions of interparticle interaction regions, that can be easily quantified for a
given animal species, as well as the intensities of the behavioral inputs, that need at least
a hierarchical estimate but have clear biological meaning. No other strictly technical
coefficients need to be introduced.

We finally propose a proper dimensionless form of the model, in order to facilitate its
application to any group of animals, regardless of their characteristic measures. For this
purpose, we scale lengths with the repulsion radius drep, velocities with the characteristic
speed of the agents of interest, say v, and times with drep/v. Trivial calculations allow then
to rewrite Eqs. (11.1) as

dxi(t)
dt

= vi(t)
ωωω i(t)
|ωωω i(t)|

= vi(t)
α

rep
i (t)wrep

i (t)+α
align
i (t)walign

i (t)+αattr
i (t)wattr

i (t)

|α rep
i (t)wrep

i (t)+α
align
i (t)walign

i (t)+αattr
i (t)wattr

i (t)|
,

(11.11)
where the dimensionless variables are overlined. In particular, the extensions of the
interaction regions scale as drep = 1, dalign = dalign/drep, and dattr = dattr/drep, so that dalign

and dattr measure the relative extension of the corresponding areas with respect to the
radius of the avoidance neighborhood.
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11.2 Simulation details and results

The proposed model is employed in a planar setting, i.e., d = 2. In all forthcoming simula-
tions, the animal population of interest is formed by N = 100 individuals. In particular,
as shown in Fig. 11.1 (C), they are initially arranged in an almost round configuration
with diameter equal to 6 (in non-dimensional terms) and randomly assigned positions. The
initial velocity direction of each generic i-th agent, i.e., ωωω i(t = 0) is randomly established
as well. Given that the proposed scaling results in a unitary dimensionless repulsion radius
drep = 1, we set the linear extension of the alignment and the attraction regions equal
to dalign = 8 and dattr = 30, respectively. The ratios between the depth of the different
interacting areas are consistent with the biologically plausible ranges explored by Couzin
and coworkers in [28] and also employed by Wood and Ackland in [104]. In this respect,
as commented also in the conclusive section, the application of the model to a specific
animal species would lead to a more proper parameter setting. We furthermore assume that
all individuals have a constant and common speed equal to the characteristic value v: this
implies a non-dimensional quantity vi(t) = 1, for any i and t. The weights αs are finally
hypothesized to be independent from both time and animal individuality, i.e., α

(·)
i (t) = α(·)

for any i and t, being (·) ∈ {rep, align, attr}. In particular, the resulting set of permitted
triplets (i.e., those satisfying constraint (11.3)) identifies the simplex S, identified by the
triangle in Fig. 11.2 (A).

We now analyse how individual behavioral preferences affect group dynamics. In more
details, our strategy is to vary the values of the α-coefficients and to numerically explore
the large-time states of the animal system. In this perspective, we introduce the following
classification for the simulation outcomes:

Definition 11.2.1. (i) The animal group has a time-asymptotic crystalline/non collapsed
configuration if the following condition is satisfied:

dmin = lim
t→∞

min
(i, j)∈{1,...,N}×{1,...,N}

i̸= j

|xi(t)−x j(t)| ∈ (drep − ε;drep + ε). (11.12)

(ii) The animal group has a time-asymptotic synchronized movement if the following
condition is satisfied:

σ = lim
t→∞

N− 1
2

√√√√√ N

∑
i=1

∣∣∣∣∣∣ ωωω i(t)
|ωωω i(t)|

−M
(

ωωω j(t)
|ωωω j(t)|

)
j=1,...,N

j ̸=i

∣∣∣∣∣∣
2

< σc, (11.13)
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where the overlines identify, as usual, dimensionless measures. Further, the notation
M(·) j=1,...,N

j ̸=i
indicates the mean of the velocity directions over the entire animal group.

These quantities are particularly suitable to describe the phenomenology of a set of
interacting particles, in term of both patterning and motion. In particular, condition
(11.12) assures that there is no large-time individual overlap. In fact, if the asymptotic
minimal interagent distance falls within the range (drep − ε;drep + ε), ε = 0.05 being
introduced to account for numerical errors in a multiparticle system, then all pairs of
animals have an equal or a larger spacing, i.e., they do not collapse. Condition (11.13)
instead assures that all individuals have almost the same direction of movement. In fact,
preliminary simulations have shown that standard deviations σ of the distribution of the
agent orientations smaller than the critical value σc = 2 imply a fully aligned animal
movement. Similar classifications have been used in the literature to differentiate the
evolutions of a wide range of multiagent populations, see for instance the case of swarming
birds in [18] and references therein.

Our numerical study allows indeed to subdivide the permitted parameter space S in
four disjointed regions, according to Definition 11.2.1. In particular, the subregion S1 is
characterized by triplets of coefficients resulting in the asymptotic collapse of the cluster of
particles, which also maintain an uncorrelated movement. The group of animals is instead
observed to have a large-time synchronized collective motion, however coupled with an
asymptotic collapse, when the intensities of the behavioral stimuli fall within S2. On the
other hand, α(·)-triplets belonging to the subregion S3 allow to avoid unrealistic animal
overlapping but the agent locomotion remains completely individual (i.e., no common
direction emerges). S4 is finally characterized by the triplets of α(·)s that result in an
asymptotic collective crystallization and alignment, i.e., all agents finally move in the same
direction keeping a comfort spacing.

To further support the above dissertation, for each subregion Si (i = 1, ...,4) of the per-
mitted parameter space we show in Fig. 11.2 (B) a representative asymptotic configuration
of the system and in Fig. 11.6 (A) the mean (with the corresponding standard deviation)
of the quantities introduced in Definition 11.2.1, evaluated over a set of 10 numerical
realizations resulting from randomly chosen α(·)-triplets.

By reviewing the simulation results summarized in Fig. 11.2 (A), we can also notice
that below a given value of the alignment parameter αalign (i.e., ≈ 0.2), a synchronized
movement of the animal group is not obtained regardless the intensity of the other stimuli.
On the opposite, a directionally collective movement is captured for any pair (α rep,αattr)
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Figure 11.2 (A) The set of permitted values of the weights α(·)s (i.e., those satisfying
constraint (11.3)) defines the simplex S, identified by the red triangle. It can be in turn
divided in four disjointed regions, i.e., Si (i = 1, ...,4), identifying different behavior of
the animal group, as captured by numerical realizations classified according to Definition
11.2.1. The red dots indicate the four triplets of α(·)s (one for each subregion) whose
resulting large-time, i.e., at t = 100, system pattern and dynamics are taken as representat-
ive, and shown in the (B) panels. In particular, coefficients dmin and σ are introduced in
Definition (11.2.1).

if αalign is larger than ≈ 0.6. Analogously, a lower threshold of the weight α rep (i.e., ≈
0.1) is necessary (but not sufficient) to avoid particle collapse, which is instead impossible
for any parameter setting involving α rep > 0.95. It is also interesting to notice that a
complete balance between the three weights (i.e., α rep = αalign = αattr) does not result in a
system crystallization nor in a synchronized movement. Region S4 is rather characterized
by a significant hierarchy of the intensity of the behavioral stimuli, with the alignment
coefficient that substantially overcomes the repulsive one, which is in turn one order of
magnitude larger than attraction parameter. In this respect, it is finally useful to remark that
(so far) we have not included the presence of elements that may cause dispersion of single
animals. Therefore, a small attraction stimulus is sufficient to avoid group scattering.
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Comparable classifications of groups dynamics, done in the case of similar models,
are obtained varying the extension of the interaction regions [28, 104] or the parameters
defining the magnitude and the shape of the individual velocity components [18, 50].

11.3 Asymptotic configurations of the particle system

In this Section, we discuss some theoretical results concerning the stationary states of the
agent based system. In particular, we provide an analytical study able to give a parametric
constraint sufficient to avoid asymptotic individual collapse. In this respect, we have
to neglect the alignment velocity contribution and to focus only on attractive-repulsive
dynamics to assure the existence of large-time equilibrium configurations. Under this
assumption, the individual velocity vector ωωω i(t), defined in (11.2), can be specified and
rewritten in the following form

ωωω i(t)=α
attr
i wattr

i (t)+α
rep
i wrep

i (t)= vi

N

∑
j=1
j ̸=i

hint (|x j(t)−xi(t)|
) x j(t)−xi(t)
|x j(t)−xi(t)|

i= 1, . . . ,N,

(11.14)
where α

rep
i +αattr

i = 1 (cf. Eq. (11.3)) and

hint (|x j(t)−xi(t)|
)
= hrep (|x j(t)−xi(t)|

)
+hattr (|x j(t)−xi(t)|

)
, (11.15)

with

hrep =

−α rep 0 < |x j(t)−xi(t)| ≤ drep

0 otherwise,
(11.16)

hattr =

αattr dalign < |x j(t)−xi(t)| ≤ dattr

0 otherwise.
(11.17)

It has been shown that the H-stability characteristics of the potential associated to the
interaction kernel hint, which will be hereafter denoted by uint, determine the large-time
spatial organization of the particle system. In particular, we recall that if uint is H-stable,
the minimal interparticle distance at the equilibrium is bounded below by a finite fixed
positive value (regardless of the total amount of particles N). In other words, if uint is
H-stable, the individuals do not asymptotically overlap. In this respect, a criterion to detect
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the H-stability of a scalar potential has been given in [13], and already applied to the
case of honeybee swarms in the First Part of this Thesis (see Theorems 5.2.1 and 5.2.3 in
Chapter 5). Accordingly, we can state the following:

Theorem 11.3.1. The interaction potential uint related to the pairwise interaction kernel
hint defined in Eqs. (11.15)-(11.17) is H-stable if the following parametric relation holds

d3
attr −d3

align

d3
rep +d3

attr −d3
align

< αrep < 1, or equivalently, 0 < α
attr <

d3
rep

d3
rep +d3

attr −d3
align

.

(11.18)

Proof. We have first to derive the potential uint : R → R associated to the kernel hint, i.e.,

uint(r) =



−α rep r+C1, if 0 < r ≤ drep;

C2, if drep < r ≤ dalign;

αattr r+C3, if dalign < r ≤ dattr;

C4, if r > dattr.

where r := |x j(t)−xi(t)|. The constants of integration C1, C2, C3, C4 ∈ R have then to be
estimated in order to guarantee (i) the continuity of the potential uint(r) and (ii) the fact
that it is essentially negligible for large enough interparticle distances (i.e., lim

r→0
uint(r) = 0).

Both conditions are in fact necessary hypotheses for Theorem 11.3.1, as clearly stated in
[13]. By simple algebraic calculations, we have that C4 can be taken equal to 0 and the
other constants result

C1 = α
attrdalign −α

attrdattr +α
repdrep;

C2 = α
attrdalign −α

attrdattr;

C3 = −α
attrdattr,

C4 = 0,
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so that the interaction potential rewrites as

uint(r) =



−α repr+αattrdalign −αattrdattr +α repdrep, if 0 < r ≤ drep;

αattrdalign −αattrdattr, if drep < r ≤ dalign;

αattrr−αattrdattr, if dalign < r ≤ dattr;

0, if r > dattr.

Recalling the Definition 1.1 in [13], we can affirm that uint is H-stable when∫ +∞

0
uint(r)r dr =

1
2

lim
r→0

uint(r)> 0.

In this respect, with some simple algebraic calculations, we obtain

∫ +∞

0
uint(r)r dr =

α repd3
rep +αattr(d3

align −d3
attr)

6
> 0,

which is non negative if
α rep

αattr >
d3

attr −d3
align

d3
rep

. (11.19)

Finally, recalling that α
rep
i +αattr

i = 1, we can rewrite (11.19) only in terms of the repulsive
(respectively, the adhesive) coefficient α

rep
i (respectively, αattr

i ):

d3
attr −d3

align

d3
rep +d3

attr −d3
align

< αrep < 1, or equivalently, 0 < α
attr <

d3
rep

d3
rep +d3

attr −d3
align

,

which is exactly the thesis of the Theorem.

Condition (11.18) allows to subdivide the segment s defining the permitted parameter
space (α

rep
i ,αattr

i ) into two parts, each resulting in a distinct stability characterization of
the interaction kernel hint, see Fig. 11.3. In particular, pairs of α-values falling within
the dashed part s2 of the segment satisfy Eq. (11.18) and assure an asymptotic non-
collapsed configuration of the system. For the sake of completeness, the non-dimensional
counterparts of constraints (11.18) reads as:

d
3
attr −d

3
align

1+d
3
attr −d

3
align

< αrep < 1, or equivalently, 0 < α
attr <

1

1+d
3
attr −d

3
align

. (11.20)
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Figure 11.3 (A-top panel) In the absence of the alignment velocity component, the set
of permitted values of the weights α(·)s (i.e., those satisfying constraint (11.3)) defines
the segment s, reproduced by the red line. (A-bottom panel) The H-stability condition of
the repulsive/attractive velocity contributions divides s in two segments, i.e., si (i = 1,2),
identifying distinct asymptotic behavior of the animal group, as provided by Theorem
11.3.1. In particular, if the values of αrep and αattr satisfy condition (11.18) (or its non-
dimensional counterpart (11.20)), then the system does not collapse but stabilizes in a large-
time equilibrium configuration characterized by finite and positive interindividual distances.
(B) Large-time system patterns (taken at t = 2000) resulting from two representative pairs
of coefficients α(·)s (one for each subregion). Again, the quantity dmin is introduced in
Definition (11.2.1).

The above analytical considerations can be supported by numerical results. In this respect,
we perform a pair of representative computational tests that reproduce the evolution of a
homogeneous population of N = 100 component individuals, whose dynamics are only
regulated by adhesive and repulsive stimuli. The values of the individual speed and of
the extension of the interaction regions, as well as the initial condition of the system, are
exactly the same as those employed in the previous Section. As shown in Fig. 11.3, if the
weights α(·)s do not satisfy the H-stability condition (i.e., fall within s1), then the particle
cluster asymptotically collapses, as confirmed by the corresponding dmin = 5×10−4. On
the other hand, if the values of the two coefficients satisfies the H-stability constraint (i.e.,
fall within s2), then the animal group stabilizes in a well-spaced configuration characterized
by the absence of individual overlap. Interestingly, in this case, the large-time minimal
interparticle distance dmin = 0.9639 falls within the range (drep − ε;drep + ε), introduced
in Definition 11.2.1 (recalling that drep = 1).
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The coupling between the analytical and the numerical results proposed in this Section
allows therefore to conclude that, in the absence of the alignment velocity component,
an asymptotic crystalline configuration of the system is a priori assured by H-stable
repulsive/attractive kernels, i.e., by pairs of weights (α rep,αattr) satisfying condition
(11.20). It is finally useful to remark that, as far as we know, a similar study has been never
done in the case of interaction potential characterized by constraints and interdependence
between the characteristic parameters.

11.4 Prey - predator dynamics: model and results

We now incorporate heterogeneity in the animal system by introducing the presence of a
single predator, labeled by the identification number i = 100 (so that the overall number
of agents remains unaltered). In this respect, the remaining set of individuals hereafter
constitutes a group of prey chased by the hunter. In nature, we can observe a wide variety
of predator-prey interactions: however, a common characteristic is the emergence of empty
space around the predator, due to the obvious tendency of the other individuals to move
away, as commented again in [19] and references therein and shown in Fig. 6.1 (C-D). This
behavior can be implemented in our model by the inclusion of a proper avoidance term in
the prey dynamical rules: in this respect, we have that Ji = {rep, align, attr, escape} and

ωωω i(t) = α
rep
i (t)wrep

i (t)+α
align
i (t)walign

i (t)+α
attr
i (t)wattr

i (t)+α
escape
i (t)wescape

i (t),
(11.21)

for i ∈ {1, ...,99}. In particular, the directional velocity contribution wescape
i reads as

wescape
i (t) =

xi(t)−x100(t)
|xi(t)−x100(t)|

, (11.22)

which is actually active if |xi(t)− x100(t)| ≤ descape, being descape set equal to dattr, see
again Fig. 11.1 (A). The term in (11.22) is indeed a long-range repulsive contribution
since it enters the picture as soon as the predator falls within the visual region of the i-th
prey. We in fact recall that the extension of the attraction region can be interpreted as
an individual gaze depth. The weights of the behavioral stimuli included in (11.21) have
finally to satisfy constraint (11.3), i.e.,

α
rep
i (t)+α

align
i (t)+α

attr
i (t)+α

escape
i (t) = 1 (11.23)
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for any particle i = 1, ...,99 and time t.

The dynamics of the predator are described by a first-order model as well, under
the assumption that it is only subjected to the hunting stimulus. In mathematical terms,
J100 = {pred} while, in the usual non-dimensional form, Eqs. (11.1)-(11.2) can be
rewritten as

dx100(t)
dt

= v100(t)α
pred
100 (t)wpred

100 (t), (11.24)

where obviously α
pred
100 (t) = 1 for any t. To specify the velocity contribution in Eq. (11.24),

we can observe that, in general, the predator is attracted and consequently oriented by the
group of prey: however, different hunting strategies can be identified. For instance, the
confused predator does not have the ability to identify and attack a single individual within
a set of agents [74, 59]. In this respect, its chasing direction points towards the center of
mass of the population of prey, where all of them are equally targeted (if seen). From a
modeling perspective, this amounts in defining:

wpred
100 (t) = wpred, conf

100 (t) =

∑
j∈N pred

100 (t)

(x j(t)−x100(t))∣∣∣∣∣∣ ∑
j∈N pred

100 (t)

(x j(t)−x100(t))

∣∣∣∣∣∣
, (11.25)

with
N pred

100 (t) =
{

j = 1, . . . ,99 : 0 < |x j(t)−x100(t)| ≤ dpred
}
, (11.26)

where dpred is the non-dimensional extension of the predation region, that can be assimilated
to the hunter visual depth, see also Fig. 11.1 (B).

In other cases (e.g., in other species of animals), the predator is not confused by the
presence of multiple prey, being it able to target a specific individual within the group and
to change strategy accordingly. For instance, it can chase the agent which, at a given time,
is the closest to its position, i.e.,

wpred
100 (t) = wpred, non conf

100 (t) =
x j∗(t)−x100(t)∣∣x j∗(t)−x100(t)

∣∣ , (11.27)

with
j∗ : |x j∗(t)−x100(t)|= min

j=1,...,99

j∈N pred
100 (t)

|x j(t)−x100(t)|.
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Simulation details and numerical results. Multispecies dynamics are located within the
planar space. The values of the non-dimensional parameters characterizing the behavioral
rules of the group of prey remain unaltered with respect to the Section 11.2, given their
independency from both time and individual specificity, i.e., vi = 1, drep = 1, dalign = 8 and
descape = dattr = 30 for any i = 1, ...,99 and t. For the sake of simplicity, we also assume
that the predator has the same physiological characteristics as its prey: we therefore fix
dpred = dattr = 30 and v100(t) = 1 for any t.

The group of prey is initially arranged within the same round area of diameter equal to
6 used in the previous set of simulations, with random positions and velocity directions.
The predator is initially placed at a significant distance from the cluster of individuals
however with at least a prey within its hunting region, i.e., N100(t = 0) ̸= /0. Furthermore,
the initial orientation of the hunter points to the center of mass of the group of targets,
see Fig. 11.1 (C). The predator is finally assumed to catch a target when their relative
non-dimensional distance drops below 10−2.

The dynamics of the heterogenous system are then numerically studied upon variations
of (i) predator hunting strategy and (ii) hierarchy of prey behavioral preferences which are
quantified, as seen, by the weights α(·), being (·) ∈ {rep, align, attr, escape}. In particular,
we hereafter focus on representative cases characterized by the fact that one (or more) prey
behavioral stimuli significantly overcome the others. With the terminology “significantly
overcome”, we arbitrarily mean that the corresponding α-value(s) is (are) at least two-fold
higher than the others. The resulting simulation outcomes are then analyzed qualitatively
(i.e., in terms of prey escape strategies) and quantitatively (i.e., in terms of time needed by
the predator to eventually reach a target individual, hereafter defined as tp).

As shown in Fig. 11.4, when the prey agents are mainly subjected to the escape
stimulus (i.e., αescape ≫ α rep = αalign = αattr), they are able to avoid the attack of both
confused and not confused predators. In particular, they quickly move away from the
approaching hunters without wasting time to organize in a crystalline configuration or to
align towards a preferred direction. In this respect, the group of prey randomly dissociates
in disorganized colonies of different sizes with the predators falling within the empty space
in between them and therefore being unable to reach any target, as shown also by the insets
i1 and i2 in Fig. 11.4.

Differentiated phenomenologies instead emerge if the prey group is in an attraction
regime (i.e., αattr ≫ α rep = αalign = αescape). The confused predator falls and oscillates
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Figure 11.4 Large-time (i.e., taken at t = 100) representative dynamics of the heterogenous
animal system for different hierarchies of prey behavioral stimuli and predator strategies
(confused vs. not confused). The panels of the right column reproduce zoomed views of
the selected insets. As usual, arrows indicate the actual velocity of both prey individuals
(blue dots) and predator (red diamond).

at the center of a ring of radially escaping individuals, which still maintain a collective
connection (see the left-middle panel in Fig. 11.4). The confused hunter is in fact unable to
choose an optimal direction of attack, lying at the center of mass of the set of prey locations.
Such an evasion pattern has been numerically captured and analytically constructed and
justified in a similar model [19]. The prey agents perform almost the same strategy in the
case of a not confused predator, organizing in a half-moon of escaping agents. However,
as shown in the center panel in Fig. 11.4, the tendency to remain in an almost compact
configuration delays their evasive manoeuvres: the hunter has therefore enough time to
catch at least one target. In this respect, Fig. 11.6 (B-left panel) shows that the predation
time tp decreases upon increments in the attraction stimulus of the prey (with respect to
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Figure 11.5 Large-time (i.e., taken at t = 100) representative dynamics of the heterogenous
animal system for different hierarchies of prey behavioral stimuli and predator strategies
(confused vs. not confused). The panels of the right column reproduce zoomed views of
the selected insets. As usual, arrows indicate the actual velocity of both prey individuals
(blue dots) and predator (red diamond).

the other behavioral inputs), until stabilizing around a non-dimensional threshold value
close to 4. Half-moon evasive patterns in the case of a predator pointing the center of the
target cluster has been obtained also in the work by Lee and colleagues [72] which will be
reviewed in more details in the conclusive chapter.
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Figure 11.6 Quantitative analysis of the dynamics of both the homogeneous and the
heterogeneous systems. (A) For each subregion Si (i = 1, ...,4) of the permitted parameter
space, the mean and the standard deviation of the asymptotic (i.e., taken at t = 2000)
quantities introduced in Definition 11.2.1 are evaluated over a set of 10 representative
numerical realizations resulting from randomly chosen α(·)-triplets. For the sake of
consistency throughout the text, notation M(a) defines in fact the mean of the quantity a,
with a ∈ {d̄min,σ}. (B) Time needed by the predator to reach a target upon variations in
the ratio between the magnitude of prey behavioral stimuli. Each curve is a natural cubic
spline interpolating numerical data.

A too large repulsion stimulus (i.e., α rep ≫ αalign = αattr = αescape) has a negative
effect in the case of not confused predator: in order to maintain a comfort space, some prey
may in fact turn back and go in the direction of the hunter, which is therefore facilitated
in its purpose (see the left-bottom panel in Fig. 11.4). Increasing differences between
prey preference for interagent avoidance and the other behavioral stimuli reduce the time
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needed by the predator to reach a target, as captured by the central plot in Fig. 11.6 (B).
Also in this case a threshold value for tp emerges, which is just below 3. The confused
predator is instead not able to take advantage of this prey phenomenology, as captured by
the inset i3 in Fig. 11.4.

The prey group safely moves away from both types of predator when they are able
to synchronize their movement, regardless of their spacing and escape stimulus (i.e.,
αalign ≫ α rep = αattr = αescape), see top panels in Fig. 11.5. In fact, as soon as some
individuals within the population are able to perceive the presence and the location of
the predator, they start to evade in the opposite direction: such an information is then
quickly transmitted to the rest of group and allows all animals to behave accordingly. Such
a collective phenomenology represents an example of coordinated defense mechanism.

A coupling between sufficiently high escape and attraction stimuli (i.e., αescape =

αattr ≫ α rep = αalign) is detrimental for prey in the case of not confused predator. The
tendency to remain somewhat compact in fact delays the evasive strategy: in particular,
some individuals fall behind the rest of the group and are unable to avoid the attack of
the focused hunter. In such a parameter regime, increments of the difference between
the pair of more relevant stimuli and the others lead to decrements of the predation
time tp, which finally stabilizes around a limit value close to 20, see right panel in Fig.
11.6 (B). This threshold is much larger than the corresponding quantities obtained in the
previous parameter setting: this is probably a consequence of the fact that in this case the
prey individuals are subjected also to a substantially high preservation stimulus. Such a
hierarchy of prey preferred behavior does not represent instead a sufficient advantage for
the confused predator, which is still unable to point out and chase any single agent.

The co-presence of significant alignment and escape stimuli (i.e., αescape = αalign ≫
α rep = αattr) is instead sufficient for the set of prey to avoid both confused and not confused
predators. In particular, the groupmates organize in more or less compact clusters, each
of them having a preferred direction of evasion. In this respect, the confused hunter
undergoes an almost uneffective Brownian motion, being unable to choose and follow a
single subgroup of prey (see the inset i4 in Fig. 11.5). On the other hand, the not confused
predator, after an initial crawling, opts to follow a single cluster of targets but it can not
reach the component individuals, which are already too far from its position (see the inset
i5 in Fig. 11.5).

Dispersion in small aggregates is also the prey’s successful strategy when mainly
guided by repulsion and escape tendencies (i.e., αescape = α rep ≫ αalign = αattr). It is
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however useful to notice that, in this case, prey agents belonging to the same (well-spaced)
cluster can undergo uncorrelated movement, as captured by the insets i6 and i7 in Fig.
11.5.

Summing up, we can conclude that confusion completely drops predator ability to
hunt its targets, regardless of their strategy, as also experimentally confirmed in [5, 59, 66].
From a prey perspective, alignment represents a significant strategic advantage. On the
other hand, excessive grouping stimuli are detrimental since they make it easier for the
predator to spot and attack prey, which proceed slowly to remain in visual-contact with the
mates. The tendency to maintain a comfort spacing is instead negative if not accompained
by a similar or a larger (in term of intensity) escape strategy. We finally remark, for the
sake of completeness, that prey and predator have the same speed. Of course, a different
hypothesis in this respect may result in variations of the simulation results.

11.5 Conclusive remarks

Populations of intelligent living entities are mainly characterized by the fact that the
component agents are not passively prone to external forces but rather undergo active
decision-based processes according to individual behavioral preferences and mutual inter-
actions.

In this respect, the description of the collective organization and motion of animal
groups has become of increasing interest also for the modeling community and treated
with different techniques (as specified in Chapter 2).

This topic has been here addressed with a microscopic particle approach able to
distinguish speed and orientation. In particular, the latter has been assumed to be the result
of competing stimuli, each of them simply weighted by a coefficient (α(·)) that defines a
sort of individual preference. The sum of the α-coefficients has been fixed equal to one in
order to account for a balance between individual movement traits while avoiding their
simultaneous minimization/maximization.

In the case of a homogeneous population of animals, a numerical analysis of the model
has then allowed to point out the hierarchy of behavioral inputs (i.e., attraction, repul-
sion and movement synchronization) eventually resulting in a large-time non-collapsed
configuration of the system and/or in fully aligned dynamics.
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Our approach has been then enriched to include the effect on collective dynamics of
the presence of predators. In this respect, a confused hunter, being unable to single out and
chase a preferred target, has been shown to constantly fail in its purpose (at least under the
assumption that it has the same physical characteristics as its prey, such as the speed). Such
simulation results are in agreement with experimental studies [5, 74, 59] and have been
also captured by similar mathematical approaches dealing with schools of fish [105] and
swarming prey [19, 69, 68, 78]. On the opposite, the search of an aligned movement has
been shown to represent an escape advantage for the prey group in the case of not confused
predator. Evasive manoeuvres are instead delayed and impeded by individual preference
towards cohesion. Interactions within heterogenous systems have been recently analyzed
in several other contexts, i.e., not strictly related to the animal world, including crowd
dynamics, in particular in the perspective of groups with leaders [29], and cell migration,
e.g., in the case the coexistence of different cell lineages and phenotypes [24, 103].

We here remark that, in principle, the computational results presented in this Chapter
depend on the initial condition of the particle system. However, we have observed that the
simulation outcomes obtained by keeping the same initial density of agents (i.e., the initial
number of animals and diameter of the population), while randomly varying individual
position and orientation, did not significantly differ. In this respect, the plots relative to the
predation time shown in Fig. 11.6 (B) are obtained from a single numerical realization
for each parameter setting. The absence of error bars in the figure, according to us, avoids
unnecessary graphical overcomplications as well.

Keeping fixed its basic structure, our model can be easily extended to include a possibly
large spectrum of individual behavioral rules: this would simply amount in adding the
proper contribution in Eq. (11.2). It would be also possible to deal with a variability in the
weights α . For instance, the prey’s escape stimulus, quantified by coefficient αescape, may
increase when the predator is sufficiently close, while it may decrease becoming negligible
when the hunter is substantially far. In this respect, interesting data can be obtained from
experimental works. For instance, Herbert and co-workers in [56] demonstrate that, in the
case of shoaling fish, the presence of a hunter increases the cohesion within the group,
while decreasing dispersion and interindividual spacing. Further, it seems that the tendency
and the intensity of the alignments processes are not affected. To employ these results in
our model, we would have to keep fixed αalign, while simultaneously decrease α rep and
increase αattr.
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Of course, in nature, predators of different species may have more or less sophisticated
hunting strategies, as they can have the ability to target a single prey according to a given
characteristic (e.g., age or physical limitations) and not only according to its distance.
This aspect can be introduced in the proposed modeling framework by defining a state
variable that, for each agent, describes the characteristic of interest, thereby introducing a
differentiation within the set of prey. Finally, the application to specific groups of animals
is straightforward, since it would only require the inclusion of proper empirical information
on individual speed, extension of the interaction regions, and relative behavioral preferences
(i.e., hierarchies of α values).



Chapter 12

Comparison with the pertinent
literature

We now discuss similarities and differences between our model and analogous published
discrete/microscopic approaches. The second-order model proposed by Cucker and Smale
in [31, 30] to study flocking phenomena only accounts for an alignment mechanism that
forces each individual to adjust its orientation to the groupmates. In particular, the tendency
to move in the same direction is set to be higher for close enough individuals, whereas it
decreases in the case of pairs of distant agents. An interesting extension of this approach
is discussed in [18] and deals with role differentiation within the animal population. In
particular, the emergence of some instantaneous leaders (defined as individuals whose
movement is not affected by others) can be observed by introducing anisotropy in the
synchronization process, i.e., by assuming that each animal interacts only with the group-
mates falling within a given visual cone. A further proposed model development is the
addition of stochastic perturbations in individual dynamics. As commented again in [18],
a noise contribution can be also included in the second-order particle model developed by
D’Orsogna and coworkers which, in its original version, accounts for a self propulsion
term, a friction contribution (following Rayleigh’s law) and a classical Morse potential for
attractive/repulsive pairwise interactions [40].

The analysis and classification of the collective motion of identical interacting particles
is the topic also of the well-known Vicsek’s model [97]. In particular, it assumes that
flocking phenomena are due to alignment mechanisms (described by a term similar to
our Eq. (11.6)), with uncertainties arising from a random contribution in individual
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velocity. This approach is then extended in [50] with the introduction of a Lennard-Jones-
type potential to represent repulsive and attractive dynamics. Interestingly, Gregoire and
colleagues weight each velocity contribution by a parameter that, at variance with our
work, can independently vary in R. Another difference with respect to our model relies in
the fact that the extension of the interaction regions are significantly smaller so that the
particles interact strictly locally.

The influence of a hunter on group collective dynamics is deeply investigated by
particle-based models as well. For instance, in [19], each prey is assumed to be subjected
to an increasingly linear attraction towards groupmates and to a hyperbolic repulsion
both towards groupmates and towards the predator. The cohesive term and the velocity
component relative to hunter avoidance are multiplied by coefficients varying in R+,
whereas the repulsion between prey individuals has a constant unitary weight. Predator
dynamics are then completely determined by an attraction term which has a hyperbolic or
a more than hyperbolic law. In particular, the hunter is simultaneously attracted by all prey,
i.e., it is confused according to our terminology. In the work by Chen and Kolokolnikov,
all velocity component finally rely on an Euclidean metric, i.e., they depend on the relative
distance between the pair of interacting agents.

In [72], predator-prey interactions are instead tackled by a second-order particle ap-
proach, eventually applicable to the case of birds attacking crabs and whales attacking
small fishes. In particular, Lee and coworkers assume that prey individuals are subjected to
alignment, attraction, repulsion, friction, and hunter escape forces. A random component
is also accounted for. Also in this case, each term has a distinct form. For instance, the
tendency of a generic agent to synchronize its movement with a groupmate is set to be
proportional to the inverse of the square of their mutual distance. Repulsive and attractive
behavior are instead given by a Morse-like potential (that depends on the relative position
of the pair of interacting particles). A friction force, proportional to the present individual
speed, is employed to prevent prey from moving too quickly (this is not necessary in our
approach since the speed is possibly limited by a threshold value). Finally, the escape
stimulus of each agent is modelled by an exp−1-based function accounting for the presence
of the predator within an given region. The hunter is finally set to point towards the center
of mass of the group of prey (i.e., it has a confused strategy).

The approaches reviewed so-far share with our model the main principles underlying
animal movement, i.e., repulsion, attraction, alignment and eventually predator avoidance.
However, some relevant differences emerge: in fact, in all these works, the speed closely
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depends on the modulus of the vector establishing the direction of motion and/or each
contribution taken into account has a substantially distinct mathematical law. These two
aspects make our work conceptually closer to the following group of microscopic models
dealing with group dynamics.

In 1987, Reynolds published a well-known agent-based approach to simulate flocking
phenomena of bird-like individuals (named with the acronym BOIDs) [83]. Therein,
each particle is moved by attraction, repulsion, and alignment stimuli. In particular, each
behavioral trait is mathematically given by an orientation unit vector multiplied by a weight
(as in our case, cf. Eq. (11.2)). However, in the BOID model, the weights are allowed to
independently vary, i.e., no constraint on their relationship (e.g., on their sum) is established.
An agent may therefore simultaneously maximise or minimize all its behavioral stimuli
which, according to us, is somehow unrealistic. Furthermore, in the approach by Reynolds,
the resultant velocity vector is not normalized: accordingly, its modulus gives the agent
speed, if a threshold values is not exceeded. In this perspective, speed and orientation
are not decoupled. The BOID model is then extended in [35] by including an additional
escape rule with the same mathematical structure as the other three classical contributions.
Further, Delgado-Mata and coworkers multiply each velocity component by a factor that
accounts for the emotional state of the animals (e.g., fear). Also in this case, the velocity
vector of each agent in not normalized thereby establishing its speed.

In the work by Couzin and colleagues [27, 28], the velocity of each individual is instead
established by a constant speed and an orientation unit vector, exactly as in our approach.
However, the direction of movement is determined in a slightly different way. In fact, a
generic agent, characterized by an anisotropic visual cone, is set to be subjected only to
repulsion if it detects another mate within its avoidance region. Otherwise, it is set to
be subjected to both attraction and alignment towards the groupmates falling within the
corresponding interaction areas: in this case the resultant orientation vector is given by
the mean of the two contributions. Perturbations are employed by modifying the direction
of movement at a randomly chosen extent: however, an agent is not allowed to undergo
a complete change in its orientation, due to a constraint on the turn-around angle. At
variance with our approach, Couzin and colleagues therefore do not weight individual
behavioral preferences; rather, repulsion is the primary stimulus, whereas alignment and
attraction equally affect animal dynamics.

Couzin and another group of coworkers perform and describe in [57] an interesting
experiment, where a predator bluegill sunfish is allowed to hunt mobile virtual targets in
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a controlled environment. In particular, the prey agents are assumed to move following
almost the set of rules defined in [27, 28]. Each agent is in fact subjected either to
repulsion or to the balance between three traits: it can align, ignore, and be attracted
by the groupmates. In this respect, the resultant direction of motion of a virtual prey, in
the absence of repulsion, is given by a weighted sum of the three contributions, where
the weights, as in our case, sum up to one. However, differently from our work, such
three behavioral inputs are simultaneously present within the same interaction region (for
instance, in our case the alignment and the attraction areas do not overlap). Predator
strategy is then analyzed upon variations in target type of motion, which ranges from
solitary random walk to the formation and the maintenance of aggregations, eventually
coupled with coordinated polarized movement. Their empirical evidence shows that the
predation risk is reduced in the case of prey exhibiting a balance between attraction and
orientation. Such outcomes are in partial agreement with our numerical results: they
are in fact consistent in highlighting the advantage given by a relevant synchronization
stimulus but fail to reproduce the disadvantages emerging from the tendency towards group
cohesion. A possible explanation of this discrepancy is due to the fact that in our model
the virtual prey individuals react to the presence of the predator. In [57], it is also observed
that the predator preferentially attaches small groups of targets and individuals located at
the edge of the prey aggregate.

The approaches by Couzin and colleagues are extended in [104] to describe escape and
foraging manoeuvres in a selfish herd. In particular, all agents are set also to move away
from the position of the predator and/or towards the location of a food source. Further,
Wood and Ackand multiply each velocity contribution by a weight, that is allowed to
freely and independently vary: this is an analogy with the Reynlods’ BOID model but
differently with respect to our approach. Therefore, also in this case, implausible situations
may in principle occur: e.g., a prey may simultaneously maximize the competing stimuli
of predator avoidance and food search. Finally, in the work by Wood and Ackland, the
predator points to the closest pray, i.e., it is non-confused. We finally remark that the
alignment term proposed in [27, 28, 57, 104] has exactly the same form as the one given
here in Eq. (11.6). However, in their works, the attraction and repulsion contributions
slightly differ from ours. In fact, they normalize each term of the sum of vectors at the
numerator (and at the denominator) of Eqs. (11.8) and (11.4). However, in all these works,
interparticle interactions are based on an Euclidean metric.

These second group of models share with our approach several ingredients. However, as
previously commented, some differences emerge as well. In this respect, we can conclude
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that our model combines and modifies at various extents concepts and ingredients already
present in the literature.

For the sake of completeness, we finally recall that spatial organization and collective
motion of systems of animals, also in the presence of escape stimuli, can be approached
with lattice-based models. This is the case, for instance, of the series of works by the group
of Kamimura (refer to [62, 61, 65, 75, 77] and of the so-called swarm Lattice-Gas Cellular
Automata (swarm LGCA) introduced by Deutsch in [36].
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