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Abstract 

Taste perception is a complex and multi-layered process which involves several 
components from the molecular level up to subcellular, cellular, and tissue levels. 
At the molecular scale, taste perception is triggered by interactions between food 
compounds and taste receptors located on the tongue's papillae. Taste is the primary 
driver of food intake since the five basic taste sensations, i.e. sweet, bitter, umami, 
sour and salty, are related to specific nutritional needs or control strategies. 
Understanding the molecular features and mechanisms that determine the activation 
of taste receptors and the resulting gustatory sensation is crucial to comprehend 
why specific substances are perceived with a particular taste and how food 
consumption is regulated. Moreover, due to the interconnected relationship between 
food intake and health status, the investigation of the molecular effects of food 
tastants on secondary actors involved in specific diseases or interested functions 
appears particularly fascinating. In a broader context, this comprehensive 
knowledge has the potential to pave the way towards, for example, designing the 
taste of foods, creating ingredients that are less harmful to health, controlling food 
quality, improving the intake of drug treatments by enlightening their taste, or 
engineering personalized diets coupled with traditional pharmacological treatments 
to target molecular types of machinery involved in specific diseases. 

In recent years, molecular modelling and machine learning have emerged as 
fundamental methodologies for elucidating the molecular properties that underlie 
specific macromolecular functions. In the context of this doctoral thesis, we have 
applied these methodologies to investigate taste-related molecular actors. 
Molecular modelling has been employed herein to establish a computational 
framework aimed at characterizing the interactions between a receptor and its 
agonist and search for similar binding pockets in protein databases of interest. We 
applied our methodology to a human bitter taste receptor bound with its agonist to 
screen the complete repertoire of solved human proteins for potential off-targets 
that possess similar binding sites. Starting from the methodology just mentioned, 
we subsequently explored the effects of natural compounds on the molecular 
structure and dynamics of specific proteins implicated in neurodegenerative 
diseases. Conversely, machine learning has been employed within a ligand-centred 
perspective to comprehend the physiochemical properties of food tastants that 
underlie their taste. To this end, we have developed specialized machine learning-
based tools to predict three fundamental taste modalities, namely umami, bitter, and 
sweet, of a given molecule based on its molecular structure. These findings have 



 

been or will soon be incorporated into the web platform (https://virtuous.isi.gr) 
which has been developed as a component of the VIRTUOUS project 
(https://virtuoush2020.com). The project, funded by the European Union (EU), 
strives to establish a comprehensive platform that amalgamates various levels and 
methodologies of investigation to predict the organoleptic profile of Mediterranean 
ingredients based on their chemical composition. This project aims to advance our 
comprehension of how the chemical structure of food influences our perception of 
taste, encompassing both the molecular realm and intricate sensory encounters that 
contribute to the overall taste profile. 

In summary, employing a computational approach that integrates molecular 
modelling and machine learning, the current doctoral thesis has yielded insights 
into the molecular foundations of taste perception and its potential impact on 
secondary targets. This work serves as a foundational step towards a 
comprehensive, multi-level, and interdisciplinary exploration of taste, with the 
overarching goal of unravelling the intricate processes that link taste perception, 
food intake, and overall health status. 
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Chapter I 

Introduction 

1.1 Taste Perception, Food Intake & Uptake, and the 
VIRTUOUS Project 

Taste is a multifaceted experience that involves the gustatory, olfactory, and 
trigeminal systems, and plays a critical role in regulating food intake by assessing 
its nutritional value and potential harm. The five primary tastes - sweet, umami, 
bitter, sour, and salty - serve precise purposes in this system. Sweet taste indicates 
the presence of sugars and carbohydrates, umami is linked to protein content, bitter 
typically signals potentially harmful substances, sour detects acids and prevents the 
ingestion of spoiled food, and salty controls mineral intake necessary for proper 
bodily function. However, taste perception is also an extraordinarily composite and 
multiscale process that involves molecular, subcellular, cellular, and tissue-level 
actors of the gustatory system. At the molecular level, taste perception starts 
through the interaction of chemical substances from the ingested foods dispersed in 
saliva with specific proteins, called taste receptors, located on gustatory papillae on 
the tongue. Specific signal transduction pathways exist for each taste type and are 
mediated by taste receptors, which trigger the activation of taste receptor cells. 

Besides, food intake and uptake are crucial concepts in the field of nutrition, and 
the relationship between these two concepts is complex and multifactorial. Food 
intake refers to the amount and type of food that an individual consumes, while 
food uptake refers to the process by which nutrients are absorbed and utilized by 
the body. The uptake of nutrients mainly occurs in the gastrointestinal tract, which 
is a highly dynamic and complex system that is influenced by many factors, 
including genetics, gut microbiota, and lifestyle choices. The process of food uptake 
involves several steps, including absorption, transportation, and metabolism of 
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nutrients. These steps are regulated by a range of factors, including hormones, 
enzymes, and transporters. For example, the hormone insulin plays a critical role in 
the uptake of glucose by cells, while bile acids facilitate the absorption of fats and 
fat-soluble vitamins. Understanding the mechanisms of food uptake and the factors 
that influence it is essential for developing effective strategies to prevent and 
manage nutrition-related diseases. Advances in technology and research have led 
to a better understanding of the mechanisms of food uptake, and new approaches, 
such as personalized nutrition, are being developed to optimize food intake and 
uptake for optimal health outcomes. Personalized nutrition is an emerging field that 
aims to develop tailored dietary interventions based on an individual's unique 
genetic, metabolic, and lifestyle factors. This approach has the potential to improve 
the uptake of nutrients and reduce the risk of nutrition-related diseases, such as 
obesity, type 2 diabetes, and cardiovascular diseases. In summary, food intake and 
uptake are critical concepts in the field of nutrition, and understanding the 
mechanisms that regulate these processes is essential for promoting optimal health 
outcomes. Advances in technology and research are providing new insights into the 
complex interactions between diet, metabolism, and health, and personalized 
nutrition is emerging as a promising approach for optimizing food intake and 
uptake.  

Investigating the molecular mechanisms underlying taste perception is critical to 
understanding the complex relationship between food uptake and intake. Taste 
perception is a multifaceted process that involves various molecular receptors, 
enzymes, and signalling pathways, which play a crucial role in determining an 
individual's food preferences and, consequently, their food intake. Understanding 
the molecular basis of taste perception can offer insights into the factors that 
influence food uptake and intake, such as the impact of genetic variation on taste 
perception or environmental factors on food preferences. Moreover, such research 
can inform the development of new strategies to enhance nutrient uptake by 
modifying the taste and sensory properties of foods, such as creating low-sugar 
alternatives to sweet foods. The emerging field of bioengineering has a vital role in 
nutrition research, providing innovative solutions to enhance the nutritional value 
and sensory properties of foods. For example, by using novel technologies to create 
functional foods that can deliver specific nutrients and bioactive compounds more 
efficiently, we can modify the taste and texture of foods to make them more 
appealing to consumers and potentially increase their intake of essential nutrients. 
Therefore, understanding the molecular mechanisms of taste perception is of 
significant interest as it can enable the design and development of innovative food 
products that promote optimal nutrition and health outcomes. This view is the 
foundation of an EU-funded project, named VIRTUOUS 
(https://virtuoush2020.com/), aimed at developing a virtual tongue as an integrated 
computational framework to screen among selected natural compounds and food 
ingredients of the Mediterranean diet (e.g., olive oil or wine) for compounds able 
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to target taste receptors. More in detail, the proposed intelligent computational 
platform, by integrating drug discovery techniques, machine learning classifiers, 
algorithms for big data, cloud computing, and experimental data will predict the 
organoleptic profile of a selected type of food based on its chemical composition. 
The outcomes of this project will increase the understanding of the mechanisms 
driving the information transfer from the chemistry level, where food molecular 
constituents bind taste receptors, toward the cascade of molecular, supramolecular, 
and cellular events emerging as an elaborated sensation which strongly contribute 
to the food organoleptic profile. 

1.2 Thesis Aim and Outline 

The present PhD Thesis is inserted in the framework of the previously mentioned 
VIRTUOUS project and specifically aims at investigating the molecular level of 
taste perception. We considered molecular modelling and machine learning as the 
main methodologies able to unravel the molecular features and modes of action of 
the actors involved in the taste perception process. On one hand, we employed 
molecular modelling to investigate the interactions between tastants and small 
natural compounds linked to the diet with different taste receptors and proteins. On 
the other hand, we take advantage of machine learning-based methodologies to 
develop specific tools to predict the taste of a query molecule from its chemical 
structure.  

In greater detail, the thesis is divided into the following chapters:  

• Chapter I, i.e. the present chapter, aims at introducing the main topics, the 
overall organisation and the scientific rationale of the thesis.  

• Chapter II is dedicated to the molecular modelling investigation of the taste 
perception actors. After a comprehensive review of the major scientific 
advances in the field, two novel studies are presented. First, we describe a 
novel computational pipeline, named VirtuousPocketome, to screen the 
human proteome for binding sites similar to the one of a query protein-
ligand complex, which in our case was one of the bitter taste receptors bound 
to a bitter compound. Subsequently, we evaluated the role of natural 
compounds on off-targets not involved in the taste prediction by 
investigating their impact on the structure of amyloid aggregates.  

• Chapter III is devoted to the analysis of machine learning in the field of 
taste prediction. We started reviewing the main scientific works in this field 
to retrieve state-of-the-art databases of tastants, pinpoint the most used ML-
based methods and highlight the major open issues and unmet needs. Two 
novel algorithms, i.e. VirtuousUmami and VirtuousSweetBitter, to predict 
the umami and the sweet/bitter tastes respectively are then presented.  



4 Introduction 

 

• Chapter IV collects the conclusions of the present thesis, summarising the 
major achieved results and the future perspectives.  

• Chapter V contains the list of the scientific references cited in the present 
thesis.  

• Chapter VI is the Appendix of the Thesis, containing additional or 
supplementary information for the previous chapters.  

• Chapter VII is the PhD Portfolio providing a summary of the main results 
achieved and activities carried out throughout the PhD period. 



  

 

Chapter II 

Molecular Modelling for 
Investigating Taste Perception and 
Beyond 

This chapter deals with molecular modelling applied to the field of taste perception. 
In the first section, we summarised the recent scientific advances in the field, with 
specific attention to the modelling and simulation of the main taste receptor 
candidates and their interactions with relative tastants or other small compounds. 
Based on these premises, we were also interested in understanding whether other 
proteins or receptors not involved in taste perception shared similar binding sites 
with those exhibited by the main taste receptor candidates to investigate possible 
roles of tastants beyond the mere taste perception and to identify relevant 
secondary or off-targets modulated by food ingredients or natural compounds. This 
holds significant importance in the broader comprehension of the route of food in 
the body, spanning from intake to uptake and its subsequent impacts on health. 
While the molecular interactions between taste receptors and their corresponding 
tastants dictate the consumption of specific foods, we were also interested in 
predicting the trajectory of food ingredients within the body by evaluating their 
possible interactions with secondary targets. Therefore, in section 2.2, we 
introduced a novel computational pipeline to screen the human proteome for 
similar binding sites compared to a query protein-ligand complex. The proposed 
workflow was applied to a recently solved human bitter taste receptor, namely 
TAS2R46, bound to a bitter agonist to pinpoint proteins not directly involved in the 
gustatory system and sharing a similar binding site. In addition to the identification 
of possible off-targets, we were also interested in evaluating how specific protein 
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structures and dynamics are influenced by tastants or food-related compounds. 
Therefore, in section 2.3, molecular modelling and dynamics were employed to 
investigate the impact of small compounds on proteins not involved in taste 
perception. As a case study, we considered the S-shaped polymorphism of the Aβ42 
amyloid fibril, and we employed molecular docking and dynamics to characterise 
the destabilising action of 57 natural ligands on its structure. 

2.1 Molecular basis of taste perception 

The present section is based on the following scientific publication:  

Pallante, L., Malavolta, M., Grasso, G., Korfiati, A., Mavroudi, S., Mavkov, B., Kalogeras, 
A., Alexakos, C., Martos, V., Amoroso, D., di Benedetto, G., Piga, D., Theofilatos, K., & 
Deriu, M. A. (2021). On the human taste perception: Molecular-level understanding 
empowered by computational methods. Trends in Food Science & Technology, 116, 445–
459. https://doi.org/10.1016/j.tifs.2021.07.013  

Author’s contribution to the publication: Pallante L. contributed to every stage of the 
study, from its conceptualization to the rationalisation of the data, up to the drafting and 
revision of the manuscript.  

The perception of taste is a prime example of complex signal transduction at the 
subcellular level, involving an intricate network of molecular machinery, which can 
be investigated to great extent by the tools provided by Computational Molecular 
Modelling. The present section summarises the current knowledge on the molecular 
mechanisms at the root of taste transduction, in particular involving taste receptors, 
highly specialised proteins driving the activation/deactivation of specific cell 
signalling pathways and ultimately leading to the perception of the five principal 
tastes: sweet, umami, bitter, salty and sour. The former three are detected by similar 
G protein-coupled receptors, while the latter two are transduced by ion channels. 
The main objective of the present section is to provide a general overview of the 
molecular structures investigated to date of all taste receptors and the techniques 
employed for their molecular modelling. In addition, we provide an analysis of the 
various ligands known to date for the above-listed receptors, including how they 
are activated in the presence of their target molecule. In the last years, numerous 
advances have been made in molecular research and computational investigation of 
ligand-receptor interaction related to taste receptors. This section aims at outlining 
the progress in scientific knowledge about taste perception and understanding the 
molecular mechanisms involved in the transfer of taste information. 

2.1.1 Introduction 

Taste is a complex phenomenon described as a gustatory sensation related to the 
perception of flavours, which are defined by the combination of sensations coming 
from the olfactory, gustatory, and trigeminal systems. Taste is one of the most 
critical control systems able to regulate substance intake, evaluating the healthiness 
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and nutritional content of food and preventing the ingestion of harmful or toxic 
elements 1. The five basic commonly recognised tastes are sweet, umami, bitter, 
sour and salty, each associated with an essential bodily function. Sweet taste 
identifies the presence of sugars and carbohydrates, i.e. energetic food. Umami, 
described as savoury (the taste of cooked meat and broths), is linked to the food’s 
protein content. Bitter taste is generally associated with unpleasant flavour and 
substances potentially dangerous to the body, such as spoiled food or poisons. 
However, bitter taste represents a very complex sensation, also associated with 
substances not harmful to the body, such as coffee, untreated olives, unsweetened 
cocoa, citrus peel, etc. Sour recognises acids and prevents ingestion of spoiled 
foods. Salty taste controls sodium and other minerals intake, which play a central 
role in maintaining the body water balance and blood circulation.  

Taste perception is an extraordinarily composite and multiscale process that 
involves molecular, subcellular, cellular, and tissue-level actors of the gustatory 
system. Taste arises from chemical substances dissolved in saliva interacting with 
specific proteins, i.e. taste receptors, which trigger the activation of taste receptor 
cells (TRCs) located on gustatory papillae, modified epithelial cells distributed 
throughout the oral mucosa, especially on the tongue. Specific signal transduction 
pathways, mediated by taste receptors, exist for each taste type: sweet, umami and 
bitter are determined by organic molecules, and their receptors are G protein-
coupled receptors (GPCRs), while sour and salty tastes arise from the presence of 
ions, detected by ion channels 2. The activation of the taste receptor cells triggers a 
specific and taste-related cascade of events reaching the nervous system and 
ultimately leading to taste perception. In this context, investigating how ligand-
protein interactions may drive molecular events (e.g. protein conformational 
changes) related to activation/deactivation of taste receptors is a crucial step 
towards a deeper comprehension of the biological nature of taste perception and 
more in general human nutrition. In this context, molecular modelling, due to a 
detailed atomistic resolution, represents a powerful tool to shed light on the 
molecular mode of action of different tastants and the structure-to-function 
relationships driving the signal transduction at the receptor level. Molecular 
modelling includes several theoretical and computational methods aimed at 
representing or mimicking the behaviour of biomolecules, including proteins, 
DNA, small ligands and polymers 3. Molecular modelling methods are based on an 
atomistically-resolved description of the molecular systems, which can best be 
defined by direct experimental techniques. However, if the structure of interest is 
not already experimentally solved, it is necessary to employ some predictive 
method to derive a plausible molecular structure. To this end, homology modelling 
(HM) presents a widely-employed method to predict the 3D structures of a specific 
protein, called the target, starting from its amino acid sequence. This technique 
requires a solved 3D structure, the template, of a similar macromolecule to model 
the desired structure. The method accuracy depends on the sequence identity 
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between the target sequence and the template, as well as the sequence alignment 4. 
Furthermore, Molecular Dynamics (MD) is a well-known in silico technique to 
investigate molecular systems’ conformational dynamics. The time evolution of the 
system is obtained by the numerical solution of classical Newtonian dynamics, 
providing information on the thermodynamic and dynamic properties of the 
investigated system  5. Due to this atomistic resolution, MD is a crucial tool for 
characterising the relationship between the molecular structure of an atomistic 
system and its function to shed light on important molecular processes and 
mechanisms, including protein-ligand binding, protein folding, conformational 
changes driving receptor activation/inhibition, etc. 5–9. Along with MD simulations, 
several computational methods, including molecular docking, structure- or ligand-
based virtual screening, virtual mutagenesis, machine learning-based methods, etc.,  
have been developed and widely applied specifically to elucidate protein-ligand 
binding processes and characterise ligand properties and affinity for a specific 
receptor 10,11. 

In the context of investigating taste receptors through molecular modelling, the first 
issue to be addressed is the receptors’ atomistic structure definition, mainly due to 
the challenging nature of the experimental purification of GPCRs. Indeed, only 89 
out of the ~800 GPCRs in the human genome have been solved 12. This lack is 
usually compensated through HM, and good models can be obtained for template 
sequence identities higher than 30% 4. Nevertheless, literature studies highlighted 
that transmembrane proteins display strong conservation of structures even at low-
sequence identity (below 20%), thus suggesting that it is possible to get accurate 
3D models of the TM regions by HM even in these cases 13. In this context, several 
recently developed conformational and sampling prediction models have been 
released and customised for the GPCR structure prediction 14,15.  

Apart from the wider-known databases for proteins and ligands, data concerning 
atomistic models related to taste are collected in many dedicated databases, such as 
BitterDB 16, containing both bitter receptors and relative ligands, SuperSweet 17 or 
SweetenersDB 18, collecting sweet compounds. 

As previously mentioned, each taste is mediated by a specific receptor, expressed 
on specific taste cells: sweet and umami are transduced by class-C GPCRs, bitter 
by class-A/class-F GPCRs, whereas sour and salty are both detected by ion channels 
19. Table 2.1 summarises the primary taste receptors involved in taste transduction 
and example of tastants. The table also includes information regarding available 3D 
structures and taste cells expressing a specific receptor. The schematic 
representation of the main receptor candidates for each taste is shown in Figure 2.1. 

Table 2.1. Summary of mammalian taste receptors 

 CELL  
TYPE RECEPTOR(S) AVAILABLE 3D 

STRUCTURES EXAMPLES OF TASTANTS 
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*Taste cells dedicated explicitly to salty taste perception are not clearly determined. In the 
past, several studies highlighted the absence of the ENaC expression in taste cells II and III 
20, thus leading to the hypothesis that salty taste cells belong to type I 21. However, other 
studies demonstrated type I cells are not-excitable and their major role is a support function 
22. Therefore, further investigations are needed to clarify the specific type of salty taste 
cells.  

SW
E

E
T

 

II TAS1R2 + TAS1R3 No 

Natural sugars (glucose, sucrose, sucralose, maltose) 

Artificial sweeteners (aspartame, neotame, monellin) 

Sweet proteins (brazzein, monellin, thaumatin, 
curculin)  

D-amino acids (D-Phenylalanine, D-alanine, D-
serine) 

U
M

A
M

I 

II 

TAS1R1 + 
TAS1R3, 

brain-mGluR1, 
brain-mGluR4, 

taste-mGluR1, taste-
mGluR4, GPRC6A, 
CaSR and GPR92 

No 

Amino acids (aspartate, L-glutamate, L-AP4, glycine, 
L-amino acids) 

Dipeptide and tripeptide (short peptides) 

Nucleotide enhancer (IMP, GMP, AMP)  

Organic acids (lactic, succinic, propionic acids) 

B
IT

T
E

R
 

II 25 TAS2Rs 
BitterDB 

(HM) 

Diphenidol, Lupolon, Quinine, Benzoin, Arborescin, 
Noscapine, Quassin, Artemorin, Caffeine, Arglabin, 
Absinthin, Cucurbitacin B, Coumarin, 
Chlorpheniramine, Papaverine, Adlupolone and 
polyphenolic compounds (Vescalagin, Castalagin, 
protocatechuic acid). 

SA
L

T
Y

 

I* ENaC, CALHM1/3 
RCSB 

ENaC: 6WTH 
Sodium chloride (NaCl), lithium chloride (LiCl) 

SO
U

R
 

III OTOP1 

RCSB 

6NF4, 6NF4, 
6O84 

Acids (e.g. citric acid, tartaric acid, acetic acid, 
hydrochloric acid) 
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Figure 2.1. Schematic representation of the main receptor candidates for each taste, (a) sweet 
(TAS1R2-TAS1R3, GPCR of class C), (b) umami (TAS1R1-TAS1R3, GPCR of class C), (c) bitter 
(TAS2Rs, GPCR of class A/class F), (d) salty (αENaC), (e) sour (OTOP1).   

The present review aims at providing a comprehensive picture of recent molecular 
modelling efforts related to the main taste receptor candidates. Data regarding 3D 
atomic models and main findings from molecular modelling investigations will be 
reported and rationalised for each receptor candidate. It is worth mentioning that 
discussed receptors cover only a limited range of possible receptors, transducers, 
and proteins essential to taste perception. 

2.1.2 Sweet taste receptor 

Sweet taste receptor is a heterodimer of TAS1R2 and TAS1R3, encoded by genes 
tas1r2 and tas1r3. This receptor belongs to the C family of GPCR. Its structure 
includes seven transmembrane helices (TMD), a large extracellular N-terminus 
composed of a Venus flytrap module (VFTM) and a cysteine-rich domain (CRD) 
connected to the transmembrane domain 19,23 (Figure 2.2a).  
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Figure 2.2. (a) 3D molecular representation of the sweet receptor, in purple the TAS1R2 and blue 
the TAS1R3. The structure consists of the Venus flytrap module (VFTM) with the two lobes (LB1 
and LB2), the cysteine-rich domain (CRD) and the transmembrane domain (TMD). (b) 
Representation of the main binding sites of the sweet taste receptor. The figure at the bottom right 
is the representation of the activation process of the sweet taste receptor. The receptor evolves from 
(c) the resting state (open-open conformation) to (d) the active one (close-close conformation) after 
the binding of the sweet tastants (green) in the VFTM binding pocket. 

This receptor responds to many compounds, including natural sugars, such as 
glucose, sucrose, fructose and sugar alcohols, glycosides, e.g. stevioside and 
glycyrrhizin, the D-amino acids, e.g. D-tryptophan and D-phenylalanine, peptides, 
proteins (monellin and brazzein among the most known sweet proteins) and 
artificial chemical compounds, such as sucralose, aspartame, neotame, saccharin 
and cyclamate 24,25. The sweet receptor has an active site in the VFTM, also called 
the orthosteric site, into which small sugars and different sweeteners are suggested 
to bind 25,26. Artificial sweeteners, such as stevioside and aspartame, preferentially 
bind to the VFTM of the TAS1R2 subunit, whereas natural sugars, such as glucose 
and sucrose, bind to both VFTMs of TAS1R2 and TAS1R3 19,27,28. There are also 
allosteric binding sites within the transmembrane nucleus of the TAS1R3 subunit 
that can enhance sweet ligands’ activity in the orthosteric site 29,30. The location of 
the different binding sites is schematically represented in Figure 2.2b. It is worth 
mentioning that sweet proteins, such as brazzein, monellin and thaumatin, exhibit 
a different mechanism of action if compared to small, sweet ligands. More in detail, 
the CRD of TAS1R3 has a crucial role in the interaction with brazzein and 
thaumatin, and mutations in this region affect also receptor activity toward monellin 
31–34.  

Receptor 3D structure and conformational dynamics 
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The first molecular models of sweet taste receptors came out at the beginning of the 
21st century. In 2002, Temussi predicted the structure of human TAS1R2-TAS1R3 
receptor starting from the free form II of a metabotropic glutamate receptor of 
subtype 1 (mGluR1, PDB ID: 1EWV) 35 and showed a stabilising effect of the 
active form of the receptor by docking three different sweet proteins, i.e. brazzein, 
monellin, thaumatin 36. From these first results, several groups attempted to 
improve the HM process’s reliability and obtain higher quality structures. In 2010, 
Zhang and colleagues employed the HM to predict the molecular structure of the 
TAS1R2-VFTM using several crystal structures of mGluR1, mGluR3, and mGluR7 
(PDB IDs: 1EWK, 1EWT, 1EWV, and 3KS9 for mGluR1; 2E4U, 2E4V, 2E4W, 
2E4X, and 2E4Y for mGluR3; and 2E4Z for mGluR7) 30. Masuda and co-workers 
constructed the VFTM structures for the TAS1R2-TAS1R3 structure, both 
considering the active (glutamate-bound) and inactive (glutamate-unbound) forms 
of a mGluR1 (PDB: 1EWT and 1EWK, respectively) 25. The active form of the 
heterodimer was constructed selecting the closed and the open forms for TAS1R2 
and TAS1R3 respectively, whereas the open form of the crystal structure of 
mGluR1 was used to construct the inactive form of TAS1R2 and TAS1R3. 
Moreover, sweet small ligands were docked into the ligand-binding cleft of the 
TAS1R2 model in the same spot where the glutamate was in the mGluR1. 
Shrivastav and colleagues compared different HM and threading based methods 
(SWISS-MODEL, CPHmodels, Modeller, Geno3D, EsyPred 3D, HHpred, LOOPP, 
Phyre, I-TASSER, and Prime) 37. The best tools were I-TASSER, CPH Model, 
SWISS-MODEL and Prime. In 2015, Maillet et al. built human TAS1R2-TAS1R3 
VFTMs (open/closed and closed-open forms) by HM with MODELLER 38 starting 
from the mGluR1-VFTM crystal structure (PDB ID: 1EWK) 35 39. They generated 
missing loops with MODELLER and imposed the disulfide bonds selected from the 
mGluR1 structure (C67-C109, C378-C394, and C432-C439). In 2017, Kim and 
colleagues predicted the 3D structure of the full-length TAS1R2-TAS1R3 
heterodimer, including the Venus flytrap module (VFTM) in the closed–open (co) 
active conformation, the cysteine-rich domains (CRDs), and the transmembrane 
domains (TMDs) at the TM56/TM56 interface 27. To determine the TMD structure 
of the sweet receptor, they predicted the ensemble of 25 stable structures for the 
TMD of all TAS1R1s, -2s, and -3s, and constructed the TMD heterodimer for 
TM45/TM45 and TM56/TM56 interfaces based on GPCR dimers from crystal 
structures of class A mu-opioid receptor (PDB ID: 4DKL). For the VFTM they used 
the structure of a mGluR1 bound to glutamate (PDB ID: 1EWK) as a template of 
the closed-open (co) active state and predicted the binding pose of different agonists 
(sucrose and stevioside). Finally, to construct the full-length heterodimer receptor, 
they positioned the VFDs/CRDs on top of the TMD heterodimer and coupled the 
bonds. In the same year, with a similar approach, Chéron et al. built a full-length 
sweet receptor using X-ray structures of mGluR VFD (PDB IDs: 1EWT and 
1EWK), open and closed receptor states, and the mGluR1 TMD (PDB ID: 4OR2) 



Molecular basis of taste perception 13 

 

as templates 40. In 2017, the Medaka fish TAS1R2-TAS1R3 sweet taste receptor 
(PDB ID: 5X2M) was solved by x-ray diffraction, thus providing a new, more 
realistic template for the VFTM 41. In 2019, Kashani-Amin et al. introduced a new 
enhanced model of the full-length sweet receptor based on the most recent 
templates 42. More in detail, the Medaka fish structure was chosen for the VFTM 
model, ensuring better models than the other tested mGluR templates, whereas PDB 
entry 5K5T (human calcium-sensing receptor) and 4OR2 (mGluR1) were selected 
for the CRD and TMD, respectively. In the same year, Perez-Aguilar and colleagues 
constructed and characterised a full-length structural model of the 
TAS1R2−TAS1R3 receptor, including both the transmembrane (TM) and 
extracellular (EC) domains of the heterodimer, using comparative modelling and 
extensive all-atom molecular dynamics simulations 43. Models of the VFTM for the 
TAS1R2 receptor were generated by HM using the structures of the metabotropic 
glutamate receptors 1 (PDB ID: 1EWK) and 3 (PDB ID: 2E4U) as well as the 
GABAB1b and GABAB2 receptors (PDB ID: 4MS4), whereas the metabotropic 
glutamate receptor 3 (PDB ID: 2E4U.pdb) was used for the cysteine-rich domain. 
Several crystallographic structures from different GPCRs were used (PDB IDs: 
4GPO, 4OR2, 3ODU, 4DKL) for the transmembrane domain. It is worth 
mentioning that the full-length dimer structure of mGluR5 and CaSR for different 
activations states have recently been solved, paving the way towards more detailed 
and high-quality models for modelling full-length sweet taste receptors 44,45.   

The atomistic resolution of the above-mentioned molecular modelling techniques 
can be straightforward to shed light on the molecular mechanisms driving the 
activation of the taste receptors. After ligand binding into the VFTM orthosteric 
binding sites, the receptor undergoes a series of conformational changes evolving 
from an inactive/resting state to an active one. In the resting state, the VFTM 
domains are both in an open configuration (no ligand docked in), resulting in the 
so-called open-open conformation. On the other hand, in the active conformation, 
at least one sweet compound is docked into one orthosteric binding site, resulting 
in its closure: if both the VFTM domains are docked to the ligands (e.g. in the case 
of natural sugars), the active state is characterised by the closed-closed 
conformation; otherwise, if only one VFTM is docked to the sweet tastant (e.g. in 
the case of artificial sweeteners), the receptor structure is called closed-open 
conformation 25. The transition from the resting state to the active one in the VFTM 
leads to the approach of the VFTMs of the two monomers, especially in the ligand-
binding (LB) domain 2, and then propagates through the cysteine-rich domain to 
the transmembrane module. This process ultimately leads to the approaching of the 
TMs, which trigger the activation of the coupled G protein and the subsequent 
intracellular pathway 27. The activation process of the sweet taste receptor, which 
is fairly similar to all GPCR of class C, is schematically represented in Figure 
2.2c,d. Masuda and co-workers using molecular dynamics and molecular docking 
to characterise the modes of binding between human sweet taste receptor and low-
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molecular-weight sweet compounds suggesting a similar activation mechanism to 
that of mGluR1: the interaction at the core of lobes LB1 and LB2 appears to be 
essential for reception of all the sweeteners, and the interaction at the entry of LB1 
and LB2 would reinforce the formation of the closed structure of the receptor for 
activation 25. Kim and colleagues highlighted that the agonist binding into the 
orthosteric site of the VFTM domain of TAS1R2 leads to major conformational 
changes, during which the transmembrane domain (TMD) transforms from the 
TM56 interface to the TM6 interface, as similarly suggested for class C mGluRs 27. 
After the ligand binding, the bottom part of the VFTM of the TAS1R3 is pushed 
toward the bottom part of the VFTM of the TAS1R2, transmitting these changes up 
to the TAS1R3 TMD (coupled to the G protein). Interestingly, fixing the atoms of 
either VFTM of TAS1R3 or CRD of TAS1R3 prevents this activation, whereas 
fixing CRD of TAS1R2 has no effects. Therefore, this study clarified the allosteric 
influence of the main structural changes of the TAS1R2 VFTM on the TAS1R3 
TMD, putatively coupled to the G protein. Similarly, Perez-Aguilar and colleagues 
remarked that the protomers rotate respectively to each other (clockwise from the 
extracellular perspective), reducing the distance between the TM6 helices, 
especially at the extracellular helical segment 43. However, the authors also pointed 
out the importance of protein-protein contacts from each protomer’s TM5 helices. 
Interestingly, a similar transition from the inactive state mediated by TM4 and TM5 
to the TM6-driven interface in the active state was highlighted in previous literature 
regarding similar class C GPCRs (mGluRs) 46, and in a recently characterised 
mGluR5 structure 44. It is worth mentioning that Perez-Aguilar and co-workers also 
suggested that, contrary to the mGluRs where full activation is proposed to be 
reached only when both subunits in the homodimer are bound to an agonist 47, the 
heterodimeric receptors only require the agonist binding in one of the protomers for 
their full activation, according to previous literature on other class C GPCRs 43,48  

Ligand-protein interaction investigations 
The VFTM contains an orthosteric site for ligand recognition, and sweet tastant can 
bind both TAS1R2 and TAS1R3 with distinct affinities and structural 
rearrangements 28. Liu et al. identified crucial residues (S40, V66, I67, and D142 in 
the human model) for the species-dependent response of two artificial sweeteners, 
aspartame and neotame 49. It is worth mentioning that partially overlapping results 
were obtained by Zhang and co-workers, which indicated seven key residues for 
the sucrose and sucralose binding (S40, Y103, D142, D278, E302, P277, and R383) 
30. In line with these results, Masuda et al. conducted mutagenesis studies for 
screening the residues responsible for sweeteners recognition, highlighting 10 
remarkable residues (Y103, D142, S144, S165, P277, D278, E302, D307, E382, 
and R383) 25. The proposed model uses five acidic residues (D142, D278, E302, 
D307, or E382) for agonists recognition: aspartame, D-Trp, and sucralose share 
LB1 residues (Y103 and D142) and LB2 residues (D278, E302, and D307) for 
binding, but specific supplementary residues are required for ligand-specific 
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interaction with the receptor (S144 for aspartame and P277 for sucralose). It is 
worth mentioning that E302 and S144 have also been previously reported as 
essential residues for aspartame (and neotame) recognition 50. In 2015, Maillet and 
co-workers ultimately identified 11 critical residues in the TAS1R2 VFTM (S40, 
Y103, D142, S144, S165, S168, Y215, D278, E302, D307, and R383) in and 
proximal to the binding pocket that is pivotal for ligand recognition and activity of 
aspartame 39. More recently, Chéron et al. investigated the orthosteric and allosteric 
binding sites by computing the volume of TAS1R2 and TAS1R3 binding pockets 
and providing a list of key residues for sweeteners interactions 40. More in detail, 
they remarked that the orthosteric binding pockets in the open form are big enough 
to allow the binding of small as well as large sweeteners and that both the TAS1R2 
and TAS1R3 cavities are hydrophilic. They also identified a secondary cavity close 
to the main pocket, which is similar to a pocket found on mGluR4 51. On the other 
hand, they highlighted in the TAS1R3 TMD a principal binding pocket and a 
smaller one in the TAS1R2 model. This finding elucidated why some sweeteners, 
including small ligands such as lactisole and cyclamate, can fit into the TAS1R3 
binding pocket but not into the TAS1R2. In the same year, Kim et al. identified the 
VFTM orthosteric binding sites of sucrose and stevioside, underlining strong 
hydrogen bonds to nearby hydrophilic residues D142 and E302, in line with the 
aforementioned studies. They also remarked a much stronger binding for stevioside 
than for sucrose, perhaps explaining why stevioside is 210–300 times sweeter than 
sucrose 27.  

Besides orthosteric ligands, positive allosteric modulators (PAMs), targeting 
different sites, influence taste receptors functions. These molecules are generally 
tasteless ligands, which bind to the periphery of the orthosteric binding sites with 
high selectivity, thereby changing the receptor’s spatial conformation and 
enhancing receptor agonism by its activators. Hence, PAMs might be exploited to 
reduce dietary sugar intake or create high-intensity sweeteners 29,30. In this context, 
Yamada et al., using a massive high-throughput screening campaign boosted by 
molecular docking, pointed out the ability of a novel class of compounds, namely 
unnatural tripeptide-PAMs, to enhance the sweetness of sucrose 52. On the other 
hand, several studies focused their attention on the main receptor domains 
specifically dedicated to the recognition of possible modulators or allosteric 
regulators.  Particular attention has been paid to the binding sites for cyclamate and 
lactisole, which are sweet agonist and antagonists, respectively. Jiang et al., using 
both experimental and computational techniques, including chimaeras, directed 
mutagenesis and molecular modelling, identified key residues within the 
transmembrane domain of TAS1R3 that determine responsiveness to lactisole and 
cyclamate, interestingly finding that the two revealed binding sites are substantially 
overlapped 53,54. Moreover, Chéron et al. characterised the structure and dynamics 
of the allosteric binding pocket of the TAS1R3 sweet taste receptor both in the 
absence and presence of cyclamate. Molecular dynamics simulations revealed 
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significant variations in a network of conserved residues not directly implicated in 
the ligand-binding but unequivocally involved in the receptor function and the 
allosteric signalling mechanism 55. These works suggested a critical role of the 
TAS1R3 transmembrane domain in receptor activation. Interestingly, Winning et 
al. also remarked the role of the heptahelical domain of human TAS1R3 for the 
activation of the sweet receptor by neohesperidin dihydrochalcone, which was 
shown to bind in the same binding sites as the sweetener cyclamate and the inhibitor 
lactisole. Residues involved in the ligand-binding are also implicated in the binding 
of allosteric modulators in other class C GPCRs, suggesting common architecture 
and function of the heptahelical domains of class C GPCRs 56. Finally, Nakagita et 
al. characterised the molecular mechanism underlying the sweet taste inhibition of 
lactisole and a few of its derivatives against the TAS1R3 transmembrane domain 
57. The higher inhibitory potency of investigated inhibitors was mainly due to 
stabilising interactions in the ligand pocket of the TAS1R3 transmembrane domain 
and increasing the hydrophobic contacts. On the other hand, Zhao et al. underlined 
the crucial role of the heptahelical domain of TAS1R2 in mediating the species-
dependent sensitivity to sweet regulators, such as the amiloride 58. Moreover, Zhang 
et al. investigated the functional domains of sweet taste receptor for the interaction 
with enhancer molecules 30. Their molecular modelling and mutagenesis studies 
revealed the ligand-binding pocket and the binding mode of two sweet taste 
enhancers, SE-2 and SE-3, into the TAS1R2 VFTM. They identified critical 
residues near the lips of the lobes involved in lobe-to-lobe interactions or lobe 
enhancer interactions and underlined a similar action mechanism to that of the 
umami taste enhancers. Interestingly, they remarked a cooperative binding between 
orthosteric and allosteric molecules: sweeteners bind near the LB1-LB2 interface, 
leading to an initial closure of the VFTM domain, whereas enhancer molecules bind 
near the opening of the pocket and further stabilise the closed conformation by 
strengthening the hydrophobic interactions between the two lobes. Furthermore, 
Koizumi and colleagues investigated the unique behaviour of Miraculin, a 
homodimeric protein isolated from the red berries of Richadella dulcifica, which is 
tasteless at neutral pH but demonstrates an acid-induced sweetness: at neutral pH, 
Miraculin works as an antagonist, whereas the switching towards acidic pH changes 
the molecule into an agonist, triggering the sweet sensation 59. The taste-modifying 
activity to convert sour stimuli to sweetness was revealed by chimeric receptors and 
molecular modelling methods, which indicated a major role of the amino-terminal 
domain of the TAS1R2 for the ligand binding. 

2.1.3 Umami taste receptor 

The first time that the word umami was used was in 1908 by a Japanese chemist, 
DR. Kikunae Ikeda, who discovered that glutamic acid evokes a unique taste 
sensation. Therefore, he created the new word umami by combining two words: 
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umai, delicious or savoury, and mi, taste 60. Only in 2002, the umami taste was 
recognised as the fifth basic taste. 

Initially, only the class C GPCR heterodimer TAS1R1-TAS1R3 was considered as 
the umami taste receptor, but nowadays eight different types of receptors are 
accounted as umami taste receptor candidates 61. Among these receptors, several 
class C GPCR homodimers have been proposed, such as metabotropic glutamate 
receptors, including brain-mGluR1, brain-mGluR4, taste-mGluR1 and taste-
mGluR4, the GPCR group 6 subtype A (GPRC6A) and the calcium-sensing receptor 
(CaSR). Finally, a non-dimeric structure, namely the GPR92, a class A GPCR, was 
also indicated. Since most of the above receptors belong to class C GPCRs, we 
decided to focus our discussion on class C GPCRs in the following.  

The first molecule found to have an umami taste was monosodium glutamate 
(MSG); later, it was found that other amino acids such as aspartic acid and theanine 
also exhibit the same taste. At the end of the twentieth century, researchers observed 
that even small peptides could improve food taste. To date, there are 98 peptides 
identified as bearing umami taste, usually divided based on their number of amino 
acid residues 61. A significant discovery was that nucleotides also represent 
significant mediators of typical umami taste, particularly inosine monophosphate 
(IMP) and guanosine monophosphate (GMP), which are mainly found in meat and 
vegetables, respectively. However, the latter two act synergistically with MSG 62.  

The putative binding site for these ligands is located in the extracellular part of the 
umami receptor. In detail, two binding sites have been distinguished: an orthosteric 
one, located in the TAS1R1 VFTM, and multiple allosteric binding sites that are 
located in the VFTM and CRD of both chains. For instance, IMP and GMP simply 
have the role of enhancing taste perception by creating a synergistic action with 
MSG.  

Receptor 3D structure and conformational dynamics 
Just like all receptors belonging to class-C GPCRs, they feature the same 3D 
architecture, comprising the VFTM, the CRD and the TMD, and also the same 
structure-activity relationship, switching from an active state in which the receptor 
is in a conformation known as ‘closed-open’, to an inactive state in which the 
receptor is in a conformation known as ‘open-open’. The 3D molecular 
representation of the umami taste receptor is shown in Figure 2.3. 
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Figure 2.3. 3D molecular representation of one of the main umami receptor candidates, in green 
the TAS1R1 and blue the TAS1R3. The structure consists of the Venus flytrap module (VFTM) with 
the two lobes (LB1 and LB2), the cysteine-rich domain (CRD) and the transmembrane domain 
(TMD). 

TAS1R1-TAS1R3 Heterodimer 
Concerning the TAS1R1-TAS1R3 heterodimer, the only available structures of the 
human umami taste receptor stem from HM, as no crystallographic structure of this 
receptor exists to date. Kunishima et al. were the first to create a model of the 
receptor’s VFTM domain from the free-form II structure of a metabotropic 
glutamate receptor of subtype 1 (mGluR1, PDB ID: 1EWK). The reference 
structure is not human and has an identity of around 17% to both TAS1R1 and 
TAS1R3 35. Many authors in the wake of these studies have continued to use 
mGluR1 as a reference structure; Zhang et al. have also used other metabotropic 
glutamate receptor subtypes such as subtype 3, mGluR3 (PDB ID: 2E4U), and 
subtype 7, mGluR7 (PDB ID: 2E4Z), in both open and closed forms 63. The identity 
is 20% and 23% respectively. Despite low identity, the authors used the mGluR1 
template since their hypothesis assumes that not only does the position of glutamate 
in the binding site, in the VFTM domain, between LB1 and LB2, remain the same, 
but also the pocket residues are conserved between the TAS1Rs and mGluRs family 
of proteins. 
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As the crystallographic structures of the extracellular part of the fish sweet receptors 
(PDB ID: 5X2P 41) were already present, in 2019, Liu and co-workers used this 
template to create the umami model receptor. Unlike glutamate receptors, this 
template has a higher percentage of identity, around 33% 64.  

However, all the mentioned models only include homology models of the 
extracellular part, i.e. the VFTM. Thus, no complete model of the best-known 
umami receptor, the TAS1R1-TAS1R3 heterodimer, exists to this date. 

mGluR1 (brain and taste isoform) and mGluR4 (brain and taste isoform) 
These two metabotropic glutamate receptors, the mGluR1 and the mGluR4, belong 
to two different groups of mGluRs, based on their activity and structure: group I 
and group III, respectively. The two types of isoforms are a little different from 
each other; the taste isoform does not have the same typical opening that all other 
models have, indeed the VFTM part is truncated and therefore has a slightly lower 
affinity to L-glutamate than other receptors. This receptor’s crystallographic 
structures are plenty and have been used to create the TAS1R1-TAS1R3 
heterodimer structure. 

CaSR and GPRC6A 
Like TAS1R1-TAS1R3, these two receptors belong to class-C GPCRs, and are 
identical in structure to the umami receptor; the only difference is that they are 
homodimers, so the two chains are identical. Bystrova and co-workers have shown 
that these two receptors also respond to different ligands, including L-amino acids 
and peptides. Geng et al., in 2016 released the crystallography structure of human 
calcium receptor comprising only the extracellular part in both the active (PDB ID: 
5K5S) and inactive (PDB ID: 5K5T) forms 65. More recently, the precise crystal 
structure of CaSR was determined for each activation states, i.e. closed-closed, 
open-closed, and open-open 45. CaSR was found in different tissue, including the 
parathyroid gland and kidney 66. 

Ligand-protein interaction investigations 
Generally, in humans, the umami receptor is activated by monosodium L-glutamate 
(MSG). However, other amino acids can also be stimulated, such as aspartate, or 
by some organic acids, including lactic, succinic, and propionic acids. On the other 
hand, esters such as guanosine 5'-monophosphate (GMP) and inosine 5'-
monophosphate (IMP) can increase the taste 67. 

As in the case of the sweet receptor, the umami receptor features an orthosteric 
binding site located in the VFTM of both chains, TAS1R1 and TAS1R3, as well as 
an allosteric binding site in the TMD and CRD, following the same scheme of the 
sweet receptor in Figure 2.2b. When umami-enhanced peptides bind in the allosteric 
sites, they cause a conformational rearrangement in the receptor, which amplifies 
the orthosteric transduction pathway by increasing the active sites’ affinity for the 
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umami tastants. For example, Töle and colleagues reported how allosterically 
bound cyclamate enhances the receptor activation by L-glutamate bound in the 
VFTM orthosteric site 19. Also, IMP and GMP are capable of binding in the 
allosteric site and improving taste signal transduction by stabilising the closed 
conformation of TAS1R1 62. Moreover, Toda et al. showed that methional, a typical 
taste of cheeses, could potentially bind at two distinct sites in the transmembrane 
domain of TAS1R1 and served as a positive allosteric modulator (PAM) of the 
human umami receptor, but as a negative allosteric modulator (NAM) in mice 68.  

As for the chain of conformational events beginning with ligands binding in the 
VFTM and ultimately leading to downstream signal transduction, different models 
have been proposed: Zhang et al. reported that the closure of the  VFTM of TAS1R1 
and TAS1R3 occurs as a two-stage process, starting with the initial positioning of 
glutamate in the VFTM LB1, occurring in µs timescales, followed by further 
positional optimisation inside the cleft, requiring ms timescales 63. Cascales and his 
colleagues have shown with MD simulations that the closure mechanism, thus the 
activation of the umami receptor, is achieved by Form 1 in which the TAS1R1 chain 
has a closed conformation while TAS1R3 has an open conformation, as previously 
described 69. 

2.1.4 Bitter taste receptor 

Bitter taste receptors are members of another family of GPCRs called the taste 2 
receptor family (TAS2Rs) 70. Many discussions have been carried out regarding 
their belonging to a specific class of GPCRs: some authors place them within the 
class F of GPCRs, consisting of frizzled and smoothened proteins; others place 
them in the broader class A of GPCRs, rhodopsin-like and, recently, the online 
database GPCRdb (https://gpcrdb.org/) even created a new sub-family called class 
T for these receptors. Due to their functional principles and the position of the 
binding site, they resemble those of class A GPCRs to which visual and odorant 
sensory receptors also belong, but this is not the case for their sequence similarity 
19,71. Its structure includes short extracellular N-terminus and intracellular C-
terminus, seven transmembrane helix (TMD) which are connected by three 
Extracellular Loops (ECLs) and three Intracellular Loops (ICLs) 72.  The most 
conserved component between class A GPCR and bitter receptors is the 7 TMD 
bundle which forms the structural core, binds ligands in the extracellular (EC) 
region and permit the transduction of information due to the intracellular (IC) 
region 73. The comparison shows that important class A motifs and highly 
conserved disulfide bridge that facilitates GPCRs structure stabilisation are 
missing. On the other hand, the TAS2Rs specific conserved residue may have an 
essential role in stabilising the inactive conformation of bitter receptors. 

The number of TAS2R genes varies largely across species 16,74. Among the different 
species, not only does the number of genes coding for the bitter receptor change, 
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but there are also differences on where the genes that encode TAS2Rs are; in 
humans, they are coded by chromosomes 5, 7 and 12 while in mice by 2, 6 and 15. 
The number of bitter compounds that humans can perceive is much larger than the 
number of human genes; this makes us understand that every bitter receptor 
responds to more than one ligand 23,74. TAS2Rs constitute an interesting subgroup 
of GPCR because they have many known agonists and few antagonists. Besides, 
this ligands’ activity is usually in the micromolar range, higher than the typical 
nanomolar ranges of most GPCR ligands 73.  

Due to the large number of TAS2Rs, the large quantity of naturally occurring bitter-
tasting substances and the presence of three generalist receptors - TAS2R10, 
TAS2R14 and TAS2R46 - recognising about one-third of all bitter compounds, 
heterodimerization of bitter taste receptors may not be necessary to extend their 
already great receptive capacity 75. However, in vitro experiments revealed that 
TAS2Rs bitter taste receptor form oligomers (approximately 325 homodimeric and 
heterodimeric receptors), but it is not yet known if TAS2Rs heteromeric receptors 
contribute to a broader detectable agonist spectrum 76.  

Moreover, some authors noticed that some bitter compounds could both activate 
the TAS2R receptor and be able to interact with the cell membrane’s ion channels, 
so they may also function as bitter receptors 23. Additionally, studies have shown 
that TAS2Rs are not only in the taste buds but also expressed in extra-oral tissue, 
including heart, skeletal and smooth muscle 77. The distribution of TAS2Rs is 
variable in different kinds of muscle cells, but TAS2R3, TAS2R4, TAS2R5, 
TAS2R10, TAS2R13, TAS2R19 and TAS2R50 are always present in a moderate 
way, while TAS2R14 is highly expressed in all the human body. Moreover, 
previous literature pointed out the expression of TAS2Rs on human airway smooth 
muscle 78 and smooth muscle tissue along the mouse gut and in human gastric 
smooth muscle cells, suggesting a possible role of TAS2Rs as targets to alter 
gastrointestinal motility and hence hunger sensation 79. Moreover, TAS2Rs are also 
related to muscles contraction or relaxation in other organs such as the bladder 80. 
Bitter molecules are usually considered poisonous substances, yet there are non-
toxic ones with beneficial effects on the human body. For this reason, a better 
understanding of the bitter taste receptor transduction may lead to the design of 
specific drugs with an acceptable taste and having an essential role in muscle-
related diseases. 

Receptor 3D structure and conformational dynamics 
At present, one of the major obstacles for the molecular modelling of bitter taste 
receptors is the lack of experimentally solved structures representing the 25 bitter 
receptors. As a matter of fact, only the molecular models by homology modelling 
have been developed for 23 out of 25 human bitter receptors. Those models are 
publicly available in the BitterDB 16 which also provides information concerning 
bitter receptors and related ligands. Only two receptors, the TAS2R45 and 



22 Molecular Modelling for Investigating Taste Perception and Beyond 

 

TAS2R19, are not included in the database. The 3D molecular representation of 
TAS2R3 is shown in Figure 2.4a and a detailed list of all the human bitter taste 
receptors along with alternative names is reported in Table A - 6.2.1. 

 
Figure 2.4. (a) 3D homology model of the TAS2R3 bitter receptor (PDB from BitterDB 16. (b) 
Schematic representation of the bitter taste receptor, including the extra- and intra-cellular loops 
(ECLs and ICLs), the transmembrane (TM) helices, and the main structures involved in the ligand 
binding. 

The 3D structure of the TAS2R14 bitter receptor stored in the BittterDB was 
modelled using the β2 adrenergic receptor (PDB ID: 3SN6), another class-A GPCR, 
as a template. This model was subsequently used as a template for the other 
receptors, which were built using MEDELLER 81 and then manually adjusted. 
Other groups followed similar homology modelling strategies using other 
experimental templates: Pydi et al. built the TAS2R4 receptor using Rhodopsin 
(PDB ID: 1U19) and opsin (PDB ID: 3DQB) as templates, in their active and 
inactive conformation respectively; Wang and co-workers modelled the TAS2R7 
receptor using the serotonin receptor template (PDB ID: 6BQC) 82,83. Similarly to 
previous literature 82, bovine rhodopsin and opsin were employed as templates to 
model TAS2R4 and TAS2R1, whereas Squid rhodopsin (PDB ID: 2Z73) was 
chosen as the template for TAS2R14 84. Moreover, in line with the homology 
modelling strategy used for BitterDB, other groups used the β2 adrenergic receptor 
(PDB ID: 3SN6) as the template to model the TAS2R16 85 and, coherently with the 
GPCRdb homology modelling pipeline, TAS2R5, TAS2R7, TAS2R14, and 
TAS2R39 were modelled starting from the β2 adrenergic receptor (PDB ID: 3SN6), 
the serotonin 2B receptor (PDB ID: 5TUD), and the mu-opioid receptor (PDB ID: 
5C1M) 86. 
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The aforementioned models were used as starting point for structure-to-function 
molecular studies aimed at exploring the conformational behaviour of bitter taste 
receptors and highlighting crucial residues/structures involved in receptor 
activation. For example, a multipoint stimulation model, similar to the one 
previously proposed for the sweet receptor 87, has been suggested for the activation 
of bitter receptors by steviol glycosides (SG) and other water-soluble molecules: at 
the beginning, ligands stimulate extracellular residues and, subsequently, the 
allosteric modulation of the transmembrane site is triggered 84. Furthermore, crucial 
residues, i.e. H94 in helix 3 and E264 in helix 7, for the activation of the receptor 
driven by metallic ions, have been remarked 83. 

Ligand-protein interaction investigations 
Although all bitter taste receptors are characterized by one single binding site for 
bitter ligands, the high number of TAS2R receptors allow for the recognition of a 
huge number of bitter compounds 74. More in detail, bitter taste receptors are 
activated by a wide variety of chemically different agonists. This affinity toward a 
huge range of chemical structures may be achieved with various interaction types 
between different ligands in the binding pocket 71. Bitter taste receptors can be 
divided into promiscuous, activated by a multitude of chemically different 
compounds, and selective, activated by few chemicals 74. Examples of promiscuous 
receptors are the TAS2R10, TAS2R14 and TAS2R46. Each TAS2R receptor has 
specific patterns for the recognition of related bitter substances, but numerous 
compounds can activate several TAS2Rs 74. The selectivity and promiscuity profile 
of bitter taste receptors and their ligands has been recently explored by 
chemoinformatics approaches 88. More in detail, results highlighted that almost all 
selective bitter receptors are activated only by promiscuous compounds, i.e., those 
ligands targeting more than one TAS2R. Instead, promiscuous receptors are 
activated by both promiscuous and selective binders 88. The relevance of the ligand 
promiscuity investigation lies primarily in the possibility of a rational ligand design 
specifically aimed at modifying their chemical structure according to specific 
needs. On the other hand, characterisation of the molecular features defining 
receptor promiscuity may be pivotal for understanding the ability of bitter receptors 
to identify the huge variety of bitter tastants. The receptor promiscuity can be 
accessed with the so-called promiscuity index (PI), i.e. the number of bitter 
compounds that activate the receptor divided by the total number of molecules 
considered. On the other hand, the diversity of the ligand set can be measured with 
another promiscuity index, namely the PINUS, calculated as the number of unique 
scaffolds (NUS) for each receptor divided by the total number of NUS 88,89. 
Previous literature on class A GPCR identified a correlation between the binding 
site characteristics and the variety of antagonists. In particular, the number of 
unique scaffolds, that measures the number and variability of antagonists, was 
demonstrated to be correlated to the exposure and hydrophobicity of the binding 
site and opposed to the number of hydrogen bond donors 89. Interestingly, despite 
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the lack of structural data that limits a full investigation of TAS2Rs, Di Pizio et al. 
suggested that the aforementioned properties of the binding site correlate also with 
the TAS2R-promiscuity 88.  

The ability of the bitter receptors to detect a huge variety of ligands is made possible 
by single-point mutations in the binding pocket that can improve or reduce affinity 
towards a specific ligand 90. Despite the raised hypothesis that bitter receptors could 
have more than one binding site to accept the huge variety of bitter agonists, Slack 
and colleagues demonstrated the existence of a unique binding pocket 91. Several 
studies were also performed to identify the binding pocket of bitter receptors 
through the use of point mutations on TAS2R16. These studies highlighted the 
binding site involves seven residues belonging to TM III, V and VI and in particular 
at least three of them interact directly with salicin 92. This prediction was also 
confirmed by experimental studies and functional analyses on mutant receptors that 
led to the identification of residues responsible for the agonist selectivity and 
activation of TAS2R46, TAS2R43, and TAS2R31 71. Most structure-function 
studies involving bitter taste receptors have confirmed the binding pocket of 
TAS2Rs is located in the extracellular side of the TM bundle, between TMs III, V, 
VI and VII (as shown in Figure 2.4b), which is the canonical site of class A GPCRs. 
Indeed, several investigations on TAS2R14, TAS2R10 and TAS2R46, the most 
examined receptors, experimentally confirmed the involvement of residues present 
in the above mentioned TMs 71,90,93, but also suggested an involvement of TM II for 
TAS2R14 and TAS2R46 receptors, which might be explained by the more spacious 
pocket shape, as already reported for TAS2R14 94. It is worth mentioning that the 
residue composition of the above-mentioned binding site is highly different in every 
TAS2Rs, suggesting the possibility of the detection of different ligands with a 
variety of agonist-specific interactions patterns 90. Several investigations 
highlighted that residues belonging to the ECL2, the longest loop in the 
extracellular side of the receptor, significantly contribute to ligand binding and 
activation of TAS2Rs: Liu and colleagues demonstrated that residues N167, T169 
and W170 could influence ligand binding in TAS2R7 95, and previously Karaman 
et al. showed that residues N163 and N172, located in ECL2, present the same 
function in TA2R14 94. Moreover, computational studies highlighted the type of 
interactions between the receptors and some ligands and major conformational 
changes related to ligand-driven activation. For example, Chen and colleagues 
investigated the possible activation mechanism of TAS2R16 in the presence of its 
agonist and antagonist, i.e. salicin and probenecid respectively, docked into its 
active pocket 85. Acevedo and co-workers investigated steviol glycosides (SG), 
non-caloric sweeteners derived from plants, which demonstrated in in in vitro 
studies a specific affinity towards TAS2R4 and TAS2R14. This ability makes these 
compounds able to generate, in addition to their sweetening effect, also an 
unpleasant bitter taste 84. They showed that SGs have only one site for orthosteric 
binding and SGs only bind to TAS2R4 and TAS2R14 and not to TAS2R1. 
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Moreover, they remarked a negative correlation between protein-ligands binding 
energies and bitterness intensity, but again not for TAS2R1. Therefore, this research 
pointed out that the binding site of TAS2R1, mainly inserted in the transmembrane 
region, is not tailored for this type of sweeteners and other water-soluble molecules, 
e.g. caffeine or quinine. They also observed a crucial role of the ligand size 
compared to the dimension of the binding site, underlining that SGs with more 
sugars have less affinity for bitter taste receptors. Moreover, steered molecular 
dynamics simulations highlighted a major difference in affinity between stevioside 
and rebaudioside A: the former is characterised by stronger interaction with the 
receptor if compared to the latter due to the formation of more hydrogen bonds at 
the binding site of both receptors 84. Other bitter ligands particularly important for 
their nutritional properties are polyphenols, which are present for example in coffee, 
wine, or red fruits. Soares and his colleagues investigated the bitterness of different 
classes of 16 polyphenolic compounds through the activation of TAS2Rs and 
pointed out their stimulation on bitter taste receptors. They also noticed that the 
condensed tannins, a subclass of the flavonoids/flavanols, specifically activates the 
TAS2R5, whereas the hydrolyzable tannins, in particular the ellagitannins, triggers 
the TAS2R7 86.  

In literature, it is reported that bitter receptors may have only one binding site for 
agonists and antagonists, due to the type of interactions with a selected residue 
depending on the ligand nature 95. However, some studies suggest that there may 
be an additional vestibular binding site located in the extracellular part of the 
receptor. Sandal and co-authors proposed that agonists can transiently occupy this 
site and be prefiltered before the introduction into the canonical binding site and 
that these two sites may have a role in discrimination of different agonists of 
TAS2R46 96.  

The interaction between TAS2Rs and bitter tastants also depends on several factors, 
e.g. type of ligands, membrane lipids and movements of TMs and ECLs. Indeed, 
Pydi et al. suggested cholesterol sensitivity of T2Rs and remarked a crucial role of 
cholesterol in the cell membrane for the interaction between amino acid 97. 

2.1.5 Sour taste receptor 

Sour sensing is particularly important in the taste system for monitoring the 
functional state of body fluids. Even if a lot of progress has been made in the 
studying and discovery of the molecular mechanisms behind sweet, bitter and 
umami tastes, sour taste is still poorly understood 98. Sour taste is detected by 
type III cells and it is essential in regulating the intake of H+ ions 1.  

During the past decades, several membrane ion channels have been proposed as 
sour taste transducer, including epithelial sodium channel (ENaC), Acid-Sensing 
Ion Channel (ASIC), two-pore domain potassium (K2P) channels, H+ gated calcium 
channels. In the recent past, the polycystic kidney disease 2-like1 ion channel 
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(PKD2L1) was identified as a putative sour taste receptor 98–100. However, a direct 
role for PKD2L1 or its partner, the PKD1L3, in sour transduction was not supported 
by subsequent studies on knocked out mice 101. Nevertheless, PKD2L1 is still 
considered a useful marker for sour taste cells (type III cells) 102. 

More recently, a tremendous breakthrough was achieved from Tu and co-workers, 
who have discovered that transduction of sour taste in mice involves permeation of 
H+ through a proton selective ion channel, a protein named Otopetrin1 (OTOP1) 
103. OTOP1 is specifically expressed in type III taste cells, it generates a proton 
current across the membrane in response to extracellular acidification, and it is 
sensitive to Zn2+, which is a crucial factor for the proton current related to sour 
perception 103. Using PKD2L1 as a molecular identifier for sour-responsive taste 
cells, different research groups 104,105 confirmed OTOP1 as the necessary 
transduction channel underlying sour taste. OTOP1 belongs to the Otopetrins 
family, which also comprises two other ortholog proteins, i.e. OTOP2 and OTOP3 
103. Human OTOP1 (hOTOP1) forms a channel with similar properties to murine 
OTOP1, and murine OTOP2 and OTOP3 share 30 to 34% amino-acid identity with 
murine OTOP1103. 

Receptor 3D structure and conformational dynamics 
Only a few 3D atomistic structures are currently available in the RCSB database 
for the Otopetrin family. As far as we know, the main structures are the zebrafish 
OTOP1 and the chicken OTOP3 (PDB entries: 6NF4 and 6NF6) 106, and the 
Xenopus Tropicalis OTOP3 (PDB entry: 6O84) 107. 

 
Figure 2.5. Frontal (a) and top (b) views of the 3D molecular structure of OTOP1 (PDB entry: 
6NF4). Each subunit is formed by two structurally homologous domains, i.e. the N domain (light 
shade) and C domain (dark shade). 
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Recently, Chen et al. characterised the first molecular structure of the OTOP family 
due to the cryo-EM experimental determination of the Xenopus Tropicalis OTOP3 
(XtOTOP3) (PDB entry: 6O84) 107. They highlighted that XtOTOP3 adopts a 
unique two-pore architecture forming a homodimer: each subunit is composed of 
12 transmembrane helices divided into two structurally homologues halves 
representing the C and the N domains, which surround a highly hydrophobic tunnel 
filled with lipids. It is worth mentioning that, from Wheatley,  half of the plasma 
membrane, both subunits contain solvent-accessible cavities that are enclosed by 
TMs 2–6 (N-pore) and TMs 8–12 (C-pore), respectively.  

Subsequent studies analysed and compared zebrafish OTOP1 (zfOTOP1) and 
chicken OTOP3 (chOTOP1), which are 30% identical to each other by sequence 
and share 44% and 59% identity with human OTOP1 and OTOP3, respectively 106. 
Their results were achieved due to the direct analysis on the full-length OTOP1 
(PDB entry: 6NF4), represented in Figure 2.5a and Figure 2.5b, and OTOP3 (PDB 
entry: 6NF6) 106. Observed structures are very close to the ones highlighted by Chen 
et al, thus suggesting a common topological organisation to all Otopetrin family 
members.  

The receptor function allowing the proton transfer across the membrane is still 
under debate. It is supposed that protons can flow through a ‘hopping’ mechanism 
along a hydrogen-bonded network made by water molecules and/or amino acid 
side-chain moieties. Two structurally analogous vestibule-shaped openings in each 
OTOP1 and OTOP3 subunits could represent loci for proton permeation, one 
housed by the N domain and the other by the C domain 106. Interestingly, the same 
pattern is shared by XtOTOP3 107. Both domains contain numerous polar and 
charged residues: the region of hydrophobic residues could potentially be a 
hydrophobic plug that regulates water/ions accessibility. Another feature of the 
putative permeation pathways within the N and C domains is the constriction triads 
composed of glutamine–asparagine–tyrosine, which we abbreviate as the QNY 
triad. Respectively for the N- and the C-pore, they are formed by residues:  

• Q174/N204/Y268 and Q433/N528/Y571 in zfOTOP1  

• Q175/N205/Y266 and Q429/N503/Y546 in chOTOP3  

• Q232/D262/Y322 and Q558/N623/Y666 in XtOTOP3 

Their side chains are sufficiently close to interact directly or through intervening 
waters. The function of these triads is uncertain, but a role in proton transfer seems 
possible considering it is conserved in both N and C domains for both zfOTOP1 
and chOTOP3 106.  In XtOTOP3, instead, even if both pores could potentially 
function as proton permeation pathways, the C-pore constriction triad could 
probably be more crucial in determining channel activity and proton permeation in 
XtOTOP3 107. Further investigations are needed to clarify the specific role of each 
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triad in both pores and to possibly depict a general working mechanism for all the 
otopetrin family members.   

Another aspect to be considered deals with water permeation from the extracellular 
milieu through the N and C domain vestibules. During MD simulations, the 
presence of water is continuously observed at the intrasubunit interface of the N 
and C domains in zfOTOP1 and chOTOP3, but not at the intersubunit interface, 
where water permeation through the central tunnel was completely blocked by the 
cholesterol molecules 106. Similar behaviour was also reported for the XtOTOP3 
107. The stochastic formation of a water wire during molecular dynamics simulation 
suggests also that proton conduction could occur through a water-hopping 
mechanism 106. 

In conclusion, molecular dynamics simulations shed light on the molecular 
mechanisms for proton conduction, pointing to three main possible mechanisms: 
aqueous vestibules in the N and C domains, and the intra-subunit interface 106. 
However, it is still unclear which of these three pathways or their combination allow 
the flux of proton currents. 

2.1.6 Salty taste receptor 

Salty taste controls sodium and other mineral intakes, which play a central role in 
maintaining the body water balance and blood circulation. In this context, the 
sodium ion (Na+) is an essential mineral regulating the osmolality of the 
extracellular fluid and takes part in many physiological processes. Since Na+ is 
constantly excreted from the body, it is paramount to properly integrate the ion’s 
loss to effectively maintain the bodily balance through the diet. Na+ specifically 
elicits the salty taste sensation, which guides the intake of this important mineral 
108. Salty perception may trigger both attraction and repulsion towards the source. 
At high concentrations, saltiness usually results in a negative reaction, whereas at 
low to moderate concentrations, saltiness is attractive 109. Chemically, the salt that 
is usually regarded as the main trigger of a salty perception is sodium chloride 
(NaCl) and other salts also feature more compound gustative footprints, for 
example by triggering also bitter or sour sensations.   

In mice, the attractiveness of salty sensation is selectively triggered by sodium and 
inhibited by amiloride. Since amiloride is a potent inhibitor of the ENaC, it has been 
proposed as a crucial component of the salty receptor machinery 109,110. The 
expression of ENaCs in humans is mostly on the apical surface of epithelial tissues 
throughout the body. ENaC belongs to the ENaC/Degenerin (DEG) family, which 
include also well-known ASIC. These receptors are characterised by subunits that 
consist of short intracellular N- and C-termini, two membrane-spanning helices, 
and a large cysteine-rich extracellular domain (ECD) that can form homo- or 
heterotrimeric ion channels 111,112. The ENaC receptor has three homologous 
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subunits α, β and γ or δ 113. This ion channel allows the passage of Na ions, 
maintaining the right concentration of salt and water in the body.  

In mice, the salty attraction is mediated by the α subunit of the epithelial sodium 
channel (α-ENaC) 20 and exhibiting sensitivity to amiloride 114. Therefore, in 
rodents, attraction to low sodium is blocked by amiloride, and knockout mice lose 
this attraction 20. On the other hand, appetitive salty taste is not sensitive to 
amiloride in humans 114, and an additional ENaC gene, the δ gene, is found in their 
genomes, leading to the expression of both the amiloride-sensitive α- and the less 
sensitive δ-ENaC subunits in human taste cells 115. Moreover, in rodents’ model, 
ENaC should be found at the apical membrane of taste cells 116, whereas some 
pieces of evidence suggest that only the δ-subunit localises to the taste pore region 
in human taste buds and other ENaC subunits seem to be segregated in the 
basolateral compartment, thus suggesting the δ-subunit as a possible salty taste 
receptor. In light of these considerations, it is still under debate if all the subunits 
are required to form a functional sodium receptor 117. In conclusion, the ENaC is 
probably involved in human sodium detection, but no certain evidence has defined 
in which stage of the perception process. The lack of the amiloride effect 114 and 
the presence of α-, β-, and γ-subunit only in the basolateral portion of taste buds 115 
seem to favour a role for ENaC downstream of the initial receptive events 108. 

Very recently, Nomura et al. showed that sodium taste signalling in mice is 
independent of Ca2+ concentration (in contrast to the taste perception mediated by 
type II and type III cells) and only voltage-dependent 118. This study demonstrates 
that the Na+ entry through ENaC leads to depolarization, driving the subsequent 
generation of the action potential by voltage-gated ion channels. Interestingly, the 
authors showed that the co-expression of the voltage-gated neurotransmitter-release 
channel (CALHM1/3) and ENaC, both required for amiloride-sensitive salty taste 
transduction, is essential to identify salty taste cells. These findings represent a big 
step forward in the salty taste pathway perception, notwithstanding ENaC has still 
to be proven as the principal sensor for salty taste in humans 114,115,119 and the 
apparent insensitivity to amiloride of salty taste in humans has not been explained 
yet 120.  

Receptor 3D structure and conformational dynamics 
The first crystal structure of ENaC was solved by cryo-electron microscopy (cryo-
EM) at a nominal resolution of 3.9 Å (PDB entry: 6BQN). The ion channel is 
composed of a large extracellular domain and a narrow transmembrane domain, 
characterised by a 1:1:1 stoichiometry of α:β:γ subunits arranged in a counter-
clockwise manner (Figure 2.6) 112.  
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Figure 2.6. Representation of the 3D molecular structure of the trimeric ENaC (PDB entry: 6WTH), 
comprising the α:β:γ subunits arranged in a counter-clockwise manner.  

The same group recently solved the molecular structure of ENaC by cryo-EM at 3 
Å (PDB entry: 6WTH), showing that the α subunit has a primary functional module 
consisting of the finger and the Gating Release of Inhibition by Proteolysis (GRIP) 
domains, which strongly separate the behaviour of this receptor from close relative 
ASICs. The module is bifurcated by the α2 helix dividing two distinct regulatory 
sites: Na+ and the inhibitory peptide. Removal of the inhibitory peptide perturbs the 
Na+ site via the α2 helix highlighting the critical role of the α2 helix in regulating 
ENaC function 121. However, the experimental resolution of the transmembrane 
domain (TMD) and the cytosolic domain (CD) is still missing. Future 
improvements on the above-mentioned structures might pave the way towards the 
full-length channel and gain fruitful insight to understand the mechanistic link 
between the removal of inhibitory peptides in the cysteine-rich extracellular domain 
(ECD) and channel gating.  

2.1.7 Conclusions 

In this work, we provided a comprehensive review of the main findings in the 
molecular modelling of taste receptors. The work is focused on the main candidates 
commonly discussed in the literature, i.e. GPCRs for sweet (TAS1R2-TAS1R3), 
umami (TAS1R1-TAS1R3) and bitter (TAS2Rs), OTOP1 for sour and ENaC for 
salty. It is worth mentioning that discussed receptors cover only a limited range of 
possible receptors, transducers and proteins essential to the taste perception process. 
Just to name a few, sugars are also transduced by sugar transporters 122, the salty 
taste has amiloride-sensitive and amiloride-insensitive components 118, and sour 
taste most certainly involves mechanisms other than OTOP1, such as intracellular 
acidification and blockage of KIR2.1 102. The presence of other key players, as well 
as the identification of other possible basic tastes, makes the understanding of the 
taste perception still incomplete and lacking, and a lot of work is still needed to get 



Molecular basis of taste perception 31 

 

to a more granular and comprehensive knowledge. Interestingly, the existence of a 
sixth taste quality linked to fat perception has been recently highlighted 123–125. In 
addition, some studies have remarked that the ability to detect fatty acids is reduced 
in response to a high-fat diet 126. In this context, the fat taste seems pivotal for the 
connection between fat intake and health status, specifically linked to overweight 
or obesity. Therefore, further studies related to fat taste may provide new bases for 
controlling the development of obesity, one of the main causes of global disease 
burden, including cardiovascular diseases, cancer and diabetes 127. 

At present, the main findings on the receptor function come from computational 
and/or combined computational/experimental studies focusing on the structure-to-
function relationships and ligand-protein binding investigations. We deeply 
discussed the need for developing high-quality molecular structures as a crucial step 
in molecular modelling and described the most recent experimentally-solved and in 
silico-derived structures for each taste receptor candidate. Out of the mentioned 
players of taste transduction, the only available experimental structure is the VFTM 
domain of the sweet receptor of the medaka fish, which represents a fundamental 
starting point for most computational investigations of sweet taste transduction 
mechanisms 41. Conversely, umami and bitter receptors have been studied through 
HM relying on experimental templates sharing some degree of sequence similarity. 
Homology models for bitter receptors are publicly available from BitterDB. Of 
note, the comparably low reported sequence identities for these models to their 
respective templates, compared to other HM applications, are not detrimental to the 
quality of the reported studies, due to the nature of the involved receptors. Lastly, 
some experimentally obtained molecular structures of both human and non-human 
salty and sour receptors are currently available in the RCSB, and pioneered many 
computational studies investigating their molecular mechanisms.  

A better comprehension of taste receptor molecular behaviour and ligand-driven 
activity modulation is a crucial scientific challenge in the wider research concerning 
the complex mechanisms that drive toward the cascade of supramolecular, cellular, 
and tissue-level events emerging as an elaborated taste sensation. The molecular-
scale investigation is a first, irreplaceable step and computational molecular 
modelling, due to its atomistic resolution, represents a powerful tool to explore 
receptor structure-to-function relationships and to elucidate ligand roles in driving 
taste receptor activity. This type of investigation allows to quantitatively 
characterize the ligand-binding process, thermodynamics and kinetics of the 
binding mechanism, binding modes, and ligand-target interaction properties, along 
with quantitative measures of receptor activation/inhibition, local and global 
protein rearrangements, correlations between receptor domains, transition 
pathways between active-resting conformations, etc. Ligand-receptor binding 
investigations allow the evaluation of food molecular constituents in terms of 
specificity, selectivity and multi-target features and shed light on the natural role of 
taste receptors in preserving life by discriminating between healthy and dangerous 
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foods. Despite the enormous progress made in recent years, especially in molecular 
research and in the computational investigation of ligand-receptor interaction 
related to taste receptors, the scientific knowledge remained rather granular and 
unable to explain the latter in a holistic fashion. Thus, it remains of crucial interest 
to correctly frame the mechanisms involved in the transfer of taste information from 
the chemistry level, where food molecular constituents bind taste receptors, to 
molecular-, supramolecular- and cellular-level events, which ultimately manifest as 
a composite perception strongly linked to the food organoleptic profile.  
 

  



VirtuousPocketome 33 

 

2.2 VirtuousPocketome 

The present section is based on the manuscript under preparation: 

 Pallante, L. †, Cannariato, M. †, Androutsos, L., Zizzi, E.A., Hada, X., Mavroudi, S., 
Grasso, G., Theofilatos, K., & Deriu, M. A. (2023). VirtuousPocketome: A Computational 
Tool for Screening Protein-ligand Complexes to Identify Similar Binding Sites. 
† Lorenzo Pallante and Marco Cannariato contributed equally to this study. 

Author’s contribution to the publication: Pallante L. supervised and wrote all the python 
codes underlying the pipeline, contributed to the design of the framework, conducted the 
molecular dynamics simulations, analyzed the results, wrote, and revised the manuscript.  

Based on the pieces of literature reported in the previous section, we were interested 
in defining a computational protocol to analyse the specific protein-ligand 
interactions between taste receptors and tastants underlying the protein activation. 
Starting from this information, we desired to design an automatic pipeline to 
retrieve other proteins outside the gustatory system sharing similar residues patterns 
in their binding pockets compared to taste receptors to highlight possible off-targets 
potentially triggered by food tastants. In this section, we present a computational 
pipeline, named VirtuousPocketome, able to analyse a protein-ligand complex and 
screen the entire currently solved human proteome for proteins sharing similar 
binding sites.  

Protein residues in a binding pocket define the spectrum of ligands that can 
effectively bind the protein structure and eventually modify its function. Different 
proteins involved in different functions can share similar binding pockets and can 
be triggered by similar ligands. Therefore, recognizing structural similarities in 
proteins can be a valuable strategy for gaining insights into protein function and 
activation mechanisms. The characterization of amino acid arrangements of a 
binding pocket and the identification of similar patterns in different structures can 
increase our understanding regarding specific protein-ligand interactions, predict 
off-target effects, and facilitate the development of more selective and effective 
therapeutic agents. Several computational methods quantifying the global or local 
similarity of protein cavities have been developed in the past years. Nonetheless, 
the utilization of these methodologies is substantially hindered by their intricate 
nature, the inherent impracticality of automating the search for amino acid patterns, 
and the inability to evaluate the dynamics of the protein-ligand systems under 
scrutiny. Here, we present a general and automatic computational pipeline, named 
VirtuousPocketome, aimed at screening huge databases of proteins for similar 
binding pockets starting from an interested protein-ligand complex. The proposed 
pipeline can automatically detect the most important protein residues involved in 
ligand binding, also form a molecular dynamics trajectory, and screen for similar 
binding sites in the solved human proteome, evaluating the accessibility and 
reliability of the retrieved pockets. We demonstrate the pipeline's potential by 
exploring a recently solved human bitter taste receptor, i.e. the TAS2R46, 
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complexed with strychnine, screening the entire solved human proteome for similar 
binding sites. The application of this kind of analysis on receptors involved in taste 
perception appears particularly interesting, considering the close connection 
between diet and the maintenance of homeostasis or the onset of diseases, such as 
cardiovascular disorders and diabetes. Therefore, VirtuousPocketome was here 
employed to investigate the potential roles of food molecules within domains not 
directly related to the gustatory system and identify the most similar targets. We 
pinpointed 145 proteins sharing similar binding sites compared to the analysed 
bitter taste receptor and the functional enrichment analysis highlighted the main 
biological processes, molecular functions and cellular components related to the 
retrieved proteins. This work represents the foundation for future studies aimed at 
understanding the effective role of tastants outside the gustatory system: this will 
pave the way towards the rationalization of the diet as a supplement to standard 
pharmacological treatments and the design of novel tastants-inspired compounds to 
target proteins involved in specific diseases or disorders. The proposed pipeline will 
be released soon as a publicly accessible webserver, can be applied to any protein-
ligand complex, and could be easily expanded in the future to screen any database 
of protein structures.  

2.2.1 Introduction 

In the field of structural biology, it is widely recognized that there is a strong 
relationship between the three-dimensional structure of a protein and its function 
128. Therefore, the recognition and analysis of structural similarities in proteins can 
represent a valuable strategy to gain insights into protein functions. In particular, 
the importance of characterizing specific amino acid arrangements of a binding 
pocket and identifying similar patterns in different structures lies in its potential to 
improve the understanding of protein-ligand interactions, predict off-target effects, 
and facilitate the development of more selective and effective therapeutic agents. 
By identifying binding pockets with similar amino acid patterns, researchers can 
predict potential off-target proteins for a given ligand, which can help in the design 
of drugs with minimal side effects. Additionally, the characterization of amino acid 
arrangements in binding pockets can contribute to the development of structure-
based drug design methods to engineer drugs targeting specific protein families or 
selective ligands for individual proteins. This level of selectivity can be essential in 
the treatment of diseases, particularly when multiple proteins share similar 
functions but are involved in distinct physiological processes. As an example, we 
recently employed an embryonic version of the workflow presented here to 
understand the druggability of a query-binding site searching for similar motifs in 
proteins able to bind ligands of interest 129.   

In the past years, several computational methods quantifying the global or local 
similarity of protein cavities have been developed. All these methods share three 
general methodological steps: (i) three-dimensional analysis of the structures of 
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interest; (ii) structure comparison; (iii) quantification of similarity through a metric 
(a scoring function). Many different representations of a given binding site are 
possible with varying degrees of retained information, e.g. the type of amino acid 
residues that interact with the ligand, or representing the binding site through a 
surface onto which the physical-chemical characteristics are projected, and even 
considering protein-ligand interactions. The first two methods can be regarded as 
structure-based, i.e. they stem from observing the structure of the protein. As far as 
the actual comparison strategies are concerned, these can be (a) graphical-
theoretical approaches, where the maximum common subgraph is searched; (b) 
fingerprint approaches, where the shapes involved in the binding site are 
considered; (c) approaches based on labelled 3D points and geometric hashing, i.e. 
3D transformations that align pairs of structures. Furthermore, comparison 
algorithms may or may not depend on the alignment of the structures of interest. 
Comparison methods that rely on residues can use graphs, fingerprints, or 
alternative approaches. In particular, the comparison reveals the similarity between 
the residues, the type of residues, and the atomic composition; also, such methods 
perform well where the sequence and atomic position of the structure of interest are 
well preserved. Those that rely on surfaces can instead use graphs or labelled 3D 
points for comparison. These methods are particularly used when dealing with 
binding sites in proteins that do not show significant conservation in residues, 
atomic composition, orientation, or folding, but show considerable selectivity 
towards common ligands. Indeed, in these cases, the distribution of the properties 
on the surface of the binding site and the shape of the binding site are determining 
factors for the selectivity of the ligands. And finally, methods that rely on 
interactions can use graphs or fingerprints for comparison 130. A summary of the 
main similarity search methods available in the literature is reported in the 
Supplementary Information (Table A - 6.3.1).  

The possibility of screening a high number of proteins for similar binding pockets 
can be particularly helpful and fruitful for those complex mechanisms and processes 
which may involve similar receptors and ligands for very different functions. In this 
context, we decided to turn our attention and use the proposed pipeline to explore 
some of the main actors involved in taste perception, due to the strong relationship 
between food intake and homeostasis regulation, disease onset, immune response 
and metabolism. The sense of taste is a sensory modality that plays a fundamental 
role in discriminating ingestible substances and nutrients from potentially harmful 
substances that must be avoided, especially in omnivorous species given the range 
of their feeding strategies 131. Humans, in particular, can perceive five primary taste 
qualities, i.e. sweet, umami, bitter, salty, and sour, through the interaction of 
molecules contained in food and specialized proteins, namely taste receptors, 
located on the papillae of the tongue. However, taste receptors are also expressed 
in other tissues besides the oral cavity, including the skin 132,133, brain 134, pancreas 
135,136, heart 137,138, urethra 139, airway 78 and gastric 79 smooth muscle cells. 
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Moreover, taste receptors are not only involved in the gustatory function, but they 
participate in other regulatory activities, such as regulation of metabolic activity 
140,141, innate immune response and bronchodilatation 140,142, diabetes and obesity, 
glucose level maintenance, appetite regulation, as well as hormone release 143, and 
muscle contraction/relaxation 80.  

In the present work, we decided to focus our attention on the bitter taste perception 
and relative actors, given the high scientific output produced in recent years 
concerning this specific taste sensation. Bitter taste receptors are the proteins 
responsible for the recognition of bitter foods, normally associated with potentially 
harmful substances. From a structural point of view, bitter taste receptors are 
GPCRs belonging to the taste 2 receptor family (TAS2Rs) 70 and are characterized 
by seven transmembrane helices (TMD) connected by three Intracellular Loops 
(ICLs) and three Extracellular Loops (ECLs) 72. The structural core of the 7 TMD 
bundle is conserved across class-A GPCR and TAS2Rs. This core plays a 
fundamental role in the ligand binding in the extracellular (EC) region and 
information transduction in the intracellular (IC) region 73. Bitter taste receptors can 
be activated by a multitude of different agonists through various interaction types 
in their unique orthosteric binding pocket 71,144. Based on the chemical 
heterogeneity of their agonists, TAS2Rs have been distinguished into promiscuous, 
such as TAS2R10, TAS2R14, and TAS2R46, which are activated by a variety of 
chemically diverse compounds, and selective, activated instead by a limited number 
of similar compounds 74.  

Herein, we propose an automated pipeline, named VirtuousPocketome, to screen 
databases of protein structures to identify amino acid patterns that are similar to the 
ones forming the ligand binding site of a query receptor. Compared to previous 
literature, the novelty of this work resides in three main aspects: (i) the proposed 
pipeline accounts for the dynamics of the protein-ligand interaction by considering 
multiple binding site configurations obtained from a molecular dynamics (MD) 
trajectory; (ii) the identification of the crucial protein-ligand binding interactions is 
completely automatic; (iii) the results of the similarity search are filtered using an 
ad-hoc multi-step filtering process to exclude patterns unlikely to bind the ligand of 
interest. The algorithm builds structural motifs of the target binding site of the query 
receptor-ligand complex after clustering a molecular dynamics trajectory and then 
searches for similar patterns inside a specific protein database using the ASSAM 
code 145 followed by additional ad-hoc filtering steps. We applied our 
computational pipeline to screen the currently solved human proteome for proteins 
that exhibit a highly similar local amino acid pattern to the one lining the strychnine 
binding site in the human TAS2R46 bitter taste receptor. The rationale of the work 
is to explore the taste transduction pathway with a proteomic perspective to 
elucidate the possible role of tastants beyond the mere taste perception and to 
investigate whether other classes of proteins have a conserved ability to recognize 
such ligands, with possible implications in nutrition, homeostasis, and disease. 
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2.2.2 Materials and Methods 

VirtuousPocketome Workflow 
Overall Workflow 

The proposed computational pipeline requires as mandatory inputs the coordinates 
(PDB file) of a protein-ligand complex and the chain label(s) uniquely identifying 
the receptor(s) and the ligand in the provided structure. Additionally, the user can 
provide the molecular dynamics trajectory (GROMACS xtc/trr/pdb file) of the 
complex system and additional custom parameters (details in the following).  

At present, the code is limited to the screening of the entire human proteome, but it 
can be easily expanded to any PDB-like database. 

The overall workflow of the algorithm designed in the present work is divided into 
four main steps, each of which will be described in detail in the following 
paragraphs:  

1. Motifs Creation 
2. Similarity Search 
3. Multi-step Filtering 
4. Functional Enrichment and Signalling Pathway Analyses  

The main output consists of a txt file collecting the PDBs of the identified proteins 
sharing similar accessible binding site(s) compared to the query receptor-ligand 
complex. Additionally, the code provides as output the list of unique UniProt ids 
related to the retrieved proteins, plots summarising the main results (see the Results 
section), and visualisation states of the molecular system under investigation.  

The overall workflow is represented in Figure 2.7 in a flow chart representation.  
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Figure 2.7. Flow chart of the overall workflow of VirtuousPocketome. 

For the implementation of this workflow, we mainly used GROMACS 
functionalities 146, MDAnalysis modules 147, and pdb-tools 148. The ASSAM source 
code was kindly provided by Prof. M. Firdaus Raih from the Molecular Function 
Regulation Lab (http://mfrlab.org). 

Step 1 - Motifs Creation 
Starting from the provided PDB input file and the MD simulation (if present) of the 
protein-ligand complex, a list of residues defining the binding site is retrieved based 
on the distance between the ligand and the receptor. The default distance threshold 
is set to 10 Å, but this can be overridden with a custom value provided by the user 
as an additional parameter. If the user only provides a single PDB file of the protein-
ligand complex, a single binding site is defined according to the chosen distance 
threshold between the ligand and the protein. Conversely, if the user provides also 
the MD trajectory, the obtained subset of coordinates from each frame of the 
simulation identifying the ligand and the residues of the protein binding site are 
clusterized using the K-Means algorithms implemented in MDAnalysis 147. The 
user can set the desired number of clusters (k), otherwise, the optimal number of 
clusters is retrieved using the silhouette method ranging from a minimum of 2 
clusters up to a maximum of 12 clusters. The silhouette method, as provided by the 
built-in scikit-learn function (sklearn.metrics.silhouette_score), is an example of an 
evaluation metric to indicate if clusters are well-defined. This method computes the 
mean distance between a sample and all other points within the same class (a) and 
the mean distance between a sample and all other points in the nearest neighbouring 
cluster (b). The Silhouette Coefficient, s, for a single sample, is then calculated as 
reported in Equation (2.1: 
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 (2.1) 

Then, the total Silhouette Coefficient is calculated as the mean of the Silhouette 
Coefficient for each sample. A higher Silhouette Coefficient score is indicative of 
denser and well-separated clusters, aligning with the conventional understanding of 
a cluster. It suggests that the samples within each cluster are tightly packed and 
distinct from samples in other clusters. This reflects a higher degree of cohesion 
within clusters and a greater separation between them. Therefore, the algorithm 
calculates the silhouette coefficient for different numbers of clusters (from 2 to 12) 
and then chooses the optimal number of clusters according to the best-achieved 
silhouette coefficient score. The subsequent centroids of the clusters are saved. 

Starting from the previously defined binding sites, the subset of residues forming 
the binding site is further refined, highlighting those residues involved in non-
covalent interactions with the ligand. These interacting residues are retrieved using 
the Protein-Ligand Interaction Profiler (PLIP) software 149, which detects hydrogen 
bonds, hydrophobic contacts, pi-stacking, pi-cation interactions, salt bridges, water 
bridges, metal complexes, and halogen bonds between ligands and targets. This two 
steps analysis allows the definition of the most relevant protein residues for the 
interaction with the ligand. This subset of residues will be defined as motifs in the 
following. If only the PDB file is passed by the user, a single motif will be created; 
if also an MD trajectory is provided, a motif will be produced for each centroid of 
the binding site. 

Step 2 - Similarity Search 
In the second step, the similarity search for each extracted motif is carried out using 
the ASSAM software. The fundamental principles underlying the search 
methodologies of ASSAM are described in previous literature 150,151. In brief, the 
protein structure is represented as a graph, where nodes represent individual amino 
acid side chains and the geometric relationships between nodes form the edges of 
the graph. Each node is composed of two pseudo-atoms, which generate vectors 
that correspond to the nodes in the graph. The positions of these pseudo-atoms are 
strategically chosen to emphasize the functional portion of the corresponding side 
chain. The geometric relationships between pairs of residues are defined by 
distances calculated between their corresponding vectors, and these relationships 
are represented as the edges of the graph. If we let S, M and E denote the start, 
middle and end of a vector, the edges of the graph encompass five components: SS, 
SE, ES, EE, and MM distances, although only a subset of these distances is typically 
used to specify a query pattern. ASSAM employs a maximal common subgraph 
(MCS) approach using the Bron and Kerbosch MCS algorithm to enumerate all 
possible correspondences with similar protein patterns152. After an extensive 
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analysis of the available methods from previous literature (see also Table A - 6.3.1), 
ASSAM was chosen as the most appropriate for the present work for the following 
reasons: (i) the simplicity in defining the binding site to be searched, i.e. a 
coordinate file containing the residues of interest in PDB format, (ii) the possibility 
to screen against any desired database in PDB format, (iii) the comparably fast time 
to solution, and (iv) the possibility of considering and preserving both right-handed 
and left-handed orientations of the alpha-helices to retrieve the superpositions. A 
left-handed α-helical bundle superimposed onto a right-handed one is not 
equivalent, particularly concerning the handedness of the two groupings of amino 
acids. However, when it comes to chemical activity, two groupings of amino acids 
may exhibit the same behaviour despite having different handedness. The crucial 
factor, in this case, is the distance between the individual residues 145. Thanks to the 
source code kindly provided by the ASSAM developers, the proposed pipeline does 
not rely on the ASSAM web-based analysis tools and runs entirely offline on-
premises.  

The output of the ASSAM search is formatted as a list, in which each row 
corresponds to a hit protein found in the screened protein database, along with its 
PDB accession ID, which presents a match with the residues of the input motif, also 
referred to as query. The matching residues between the query and the hit are also 
indicated, as well as the root-mean-square deviation (RMSD) value between query 
residues and hit residues after alignment. Finally, additional pieces of information 
are retrieved, namely the number of the initial conformation from which the query 
motif was created, and further information on the hit protein obtained from the 
RCSB Protein Data Bank site, such as the DOI of the corresponding publication 
and the EC classification. 

Step 3 - Multi-step Filtering 
To further refine the output from the previous steps and select only the protein hits 
with accessible and high-affinity binding sites, two additional filtering steps, i.e. (i) 
the SASA and (ii) the docking filters, have been implemented.  

The first step involves the calculation of the Solvent-Accessible Surface Area 
(SASA) using GROMACS 146. In detail, for each hit protein, the SASA, evaluated 
in nm2, is calculated by measuring the value for all the residues matching the 
residues of the query protein’s motifs. Values equal to zero indicate that the cleft 
identified by the residues is not solvent-exposed but is rather buried in the structure 
of the protein and therefore likely inaccessible for the solvent or the ligand. Values 
that are greater than zero, on the other hand, indicate that the cleft formed by the hit 
residues is on the surface of the corresponding protein and therefore might allow 
for ligand binding. Only hits with the binding site having a SASA greater than a 
predefined threshold of the SASA value of the corresponding query motif are 
retained. The SASA criterion is summarised by equation (2.2):  
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 ,-,-!"# > ,-,-$%&'( ∗ ,-,-)*'&+*,-. (2.2) 

Where SASAHIT corresponds to the calculated SASA value of the given hit motif, 
!"!"!"#$% is the SASA value of the corresponding motif of the query protein-
ligand complex, and !"!"&'$#(')*+ is the threshold to select only hits with the 
desired SASA. !"!"&'$#(')*+ is set to 75% by default, but the user can specify a 
custom value in the additional input parameters. The selection of this threshold was 
imposed as a compromise to obtain a reasonable number of protein hits that could 
be effectively and rationally considered, while retaining targets with motifs that are 
solvent-exposed and prone to ligand docking. The decision to set as default a high 
SASA threshold is based on the importance of solvent-accessible surface area 
(SASA) in assessing the capability of a protein binding site to accommodate 
ligands. Considering only SASA values considerably lower than the original protein 
binding site could compromise the algorithm's ability to retain only those binding 
sites most similar to the reference complex and thus more prone to ligand binding. 
Setting the SASA threshold to higher values, on the other hand, may lead to the 
exclusion of potentially promising binding sites and protein hits. As a result, users 
have the flexibility to adjust this threshold based on their screening objectives.  

The second filtering step relies on the molecular docking of the original ligand in 
the query complex onto the retrieved hits from the previous steps. The docking 
procedure was implemented using SPORES and PLANTS 153,154. PLANTS 
software was chosen since it exhibited excellent performance in terms of pose 
prediction and time to solution compared to other molecular docking software155,156 
and since it has been already successfully used for molecular docking and virtual 
screening campaigns on GPCRs157–161. These qualities make PLANTS particularly 
well-suited for the present work. Only hits with binding sites exhibiting a docking 
score (DSCORE) below a specified docking threshold are retained, thus only 
preserving binding sites with high affinity for the investigated ligand. The docking 
threshold is set by default as 10% of the original protein-ligand complex, if only a 
PDB is provided as input, or the 10% of the average PLANTS docking scores 
between the centroids of the original protein-ligand complex, if also the MD 
trajectory was specified. The docking filtering criterion is therefore defined by 
equation (2.3): 

 0,1234!"# < 0,123466666666666$%&'( + 80,123466666666666$%&'(8 ∗ 0,1234)*'&+*,-. (2.3) 

Step 4 - Functional Enrichment and Signalling Pathway Analyses 
In this step, functional enrichment and signalling pathway analyses were performed 
to collect information regarding roles, functions, distributions, expressions, and 
pathways in which the identified targets from the previous steps are involved. The 
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pipeline automatically retrieves the unique UniProt IDs of the protein hits (since 
several PDB codes can correspond to the same protein) and searches for related 
genes using the DAVID functional annotation program 162,163. We decided to focus 
our attention on the Gene Ontology (GO) terms 164 related to the Cellular 
Components (CC), Biological Processes (BP) and Molecular Functions (MF). The 
resulting GO terms were used to identify significantly enriched functional 
categories, using a statistical approach that considers the size of the protein list, the 
number of genes associated with each GO term, and the background gene set. We 
also performed pathway analysis using the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and the Reactome databases to identify the most represented 
pathways 165–167. GO terms and KEGG pathways with corrected p-value < 0.1 were 
considered to be significantly enriched. The correction of the p-values was 
performed using the Benjamini-Hochberg FDR adjustment method 168. The pipeline 
automatically generates separate plots with the above-mentioned analysis. 

Database Curation 
The developed tool can screen a database of target proteins in the PDB format for 
binding pocket similarities against a query protein-ligand complex. For the present 
work, we have collected and refined all the experimentally-solved PDB structures 
belonging to the human proteome. We first retrieved all the solved PDB codes 
belonging to homo sapiens from the NCBI database 169 using a dedicated python 
API (Bio.Entrez package), and obtained a total of 60159 entries (1st February 2023). 
We downloaded all the found queries from the RCSB database 
(http://www.rcsb.org/) 170, reaching a total of 59267 structures (892 PDBs were not 
available). Then, the database was cleaned by removing (i) the chains in the PDBs 
not belonging to the human organism (such as in the case of protein chimaeras), (ii) 
multiple models from each PDB, (iii) ANISOU and HETATM lines, (iv) alternative 
locations of the atoms in the PDB by preserving the ones with the highest 
occupancy. At the end of this cleaning protocol, we ended up with 58972 PDB files. 

Molecular Modelling and Dynamics 
The previously described workflow was applied to search for proteins sharing 
similar binding pockets with a human bitter taste receptor. We employed the 
recently-solved TAS2R46 human bitter taste receptor bound with an agonist bitter 
compound, named strychnine (PDB ID: 7XP6) 171. We first removed undesired 
molecules and structures from the PDB, preserving only the bitter taste receptor and 
strychnine. Since the receptor structure presents some missing residues (157-172), 
we downloaded the relative model (sequence P59540 of Homo Sapiens hTAS2R46) 
from the AlphaFold Protein Structure Database 172. The AlphaFold model was then 
aligned to the receptor in the 7XP6 PDB. Missing residues in the original 
experimental structure were then built by homology modelling with MOE 
(Molecular Operating Environment) software 173 using the relative portion of the 
AlphaFold model as a template, thus filling the gap in the original experimental 
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structure. Then, the structure of strychnine was refined using MOE, assigning the 
correct protonation at neutral pH and salt concentration of 0.15 M.  

The obtained complex was embedded into a POPC membrane using the 
CHARMM-GUI web server 174. The receptor was aligned with the membrane 
bilayer using the OPM web server included in the CHARMM-GUI preparation 
protocol. The final number of POPC lipids (165) was set by a trial-and-error 
approach to creating a box large enough to meet the minimum image convention 
for the protein during the MD simulation: the final box size was set to 8.36 x 8.36 
x 11.47 nm, with the z direction perpendicular to the cell membrane plane. The 
system box was filled with water and neutralized using NA+ and CL- ions at 0.15 
M physiological concentration.  

We used the AMBER forcefield to describe the molecular system: in detail, we used 
the Lipid-21 forcefield 175 for lipids, the AMBER19SB 176 for the protein, ions and 
water and the General Amber Force Field (GAFF2) forcefield 177 to obtain the 
topology for strychnine, as implemented directly in the CHARMM-GUI suite.  

The simulation workflow suggested by CHARMM-GUI was followed during 
minimisation, equilibration with position restraints and final simulation production. 
First, the system was energy-minimized using the steepest descent algorithm for 
5000 steps. Then, six equilibration steps were performed gradually reducing the 
position restraints on the lipids and protein-heavy atoms (from 1000 to 0 kJmol-

1nm-1 for lipids, from 4000 to 50 kJmol-1nm-1 for the protein backbone and from 
2000 to 0 kJmol-1nm-1 for protein side-chain heavy atoms). The system was 
equilibrated in the NVT ensemble for 250 ps with a conservative timestep of 1 fs, 
using the Berendsen thermostat 178 with a coupling time constant of 1 ps and a 
reference temperature of 303.15 K, which is above the phase-transition temperature 
for POPC, and subsequently in the NPT ensemble for 125 ps with the same 1 fs 
timestep, followed by a further simulation of 375 ps with a 2 fs timestep, using the 
Berendsen thermostat with the same parameters as before and the Berendsen 
barostat 178 with semi-isotropic pressure coupling at 1 atm with a coupling time 
constant of 5 ps. Overall, the systems underwent 750 ps of equilibration.  

The TAS2R46 bitter taste receptor system was then simulated for 400 ns without 
position restraints with a 2-fs time step in the NPT ensemble. Temperature coupling 
was done with the Nose-Hoover algorithm 179, whereas, pressure coupling with the 
Parrinello-Rahman algorithm 180. The PME algorithm was used for electrostatic 
interactions with a cut-off of 0.9 nm. A reciprocal grid of 72 x 72 x 96 cells was 
used with 4th-order B-spline interpolation. A single cut-off of 0.9 nm was used for 
Van der Waals interactions. LINCS (LINear Constraint Solver) algorithm for h-
bonds 181 was applied in each simulation step. 

Three simulation replicas were performed to ensure the reproducibility of the 
simulations and to enlarge the simulation statics. All Molecular Dynamics (MD) 
simulations were performed using GROMACS 146 and the Visual Molecular 
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Dynamics (VMD) package was employed for the visual inspection of the simulated 
systems 182.  

2.2.3 Results  

Conformational Dynamics 
To ensure the convergence of the MD simulations, we evaluated the RMSD and the 
cluster analysis as measures of simulation equilibrium for all the MD replicas. In 
detail, we calculated the RMSD of the protein backbone and the number of clusters 
during the last 50 ns using the linkage method with an RMSD cutoff of 0.15 nm. 
The RMSD trends reached a plateau (Figure A - 6.3.1) and only a single cluster was 
obtained during the last part of the simulation for all the replicas. The last 50 ns of 
each simulation replica were therefore considered as structural equilibrium and 
were concatenated to obtain a final 150 ns-long trajectory representing the ensemble 
of protein conformations. These concatenated trajectories were used for the 
subsequent analysis and to search for similar binding pockets within the human 
proteome through the pipeline described herein. 

Motifs Creation 
In the first step of the proposed pipeline, the motifs composed of the most important 
protein residues interacting with strychnine were identified. In particular, starting 
from the above-mentioned ensemble trajectory, residues within 10 Å from the 
position of the ligand have been extracted and their conformations clustered using 
the K-Means algorithm from MDAnalysis 147. Three clusters were identified as the 
optimum number through the silhouette method. After extracting the motif cluster 
centroids, we used PLIP to narrow down the most important non-covalent 
interactions which define the final three motifs. In all three of them, the ligand 
formed a salt-bridge interaction with residue GLU2657.39 and two hydrophobic 
interactions with residues TYR853.29 and TRP883.32, highlighting the stability of 
these contacts throughout the MD simulation. Furthermore, additional hydrophobic 
interactions were found with residues THR692.64, PHE2526.58, and PHE2617.35 for 
motif 0 and with VAL612.56, and VAL2496.55 for motif 2 (Figure 2.8). The three 
defined motifs were used for the subsequent similarity search step with ASSAM. 
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Figure 2.8. Main interactions defining the three motifs for the bitter taste receptor interacting with 
strychnine. (A) Representative snapshot of the bitter-ligand complex, (B) PLIP interaction analysis 
identifying Hydrophobic Interaction (HI) and Saltbridge Interaction (SB), (C, D, E) site views of the 
three motifs identified. The bitter taste receptor is represented in grey, the strychnine in blue and 
the interacting residues in green (hydrophobic interactions) and purple (salt bridges). 

Similarity Search and Multi-step Filtering 
The similarity search against the entire human proteome consisting of 58972 
structures (see the Step 4 - Functional Enrichment and Signalling Pathway Analyses 
section) resulted in a total of 6718 hits using the ASSAM code. The subsequent 
steps, i.e. the SASA and docking filtering steps, yielded a total of 1852 and 257 hits 
respectively (Figure 2.9A). In detail, we adopted a SASA threshold of 0.75, thus 
preserving all protein hits having a SASA in the binding pocket of at least 75% of 
the SASA of the original query binding site; on the other hand, we chose a docking 
threshold equal to 0.1, thus keeping the hits whose docking score would not differ 
by more than the 10% from the docking score of the query protein/ligand complex. 
The best hit in terms of docking score after the multi-step filtering process, namely 
PDB 3A4S, is represented in Figure 2.9B, highlighting the correspondence between 
the original motifs in the bitter taste receptor and the relative matching residues in 
the identified protein.  
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Figure 2.9. (A) Number of total structures in the original human proteome database and number of 
selected hits from the similarity search and the subsequent multi-step filtering. (B) Binding site view 
of the strychnine bound to the best hit (PDB: 3A4S) according to the docking score at the end of the 
multi-step filtering process. Protein is rendered in grey, strychnine in blue, residues in the original 
motif of the bitter taste receptor in red and matching residues in the 3A4S structure in violet.  

The pipeline automatically generated a report file which includes the list of all the 
hits at the end of the screening process with additional information, such as PDB 
ids with doi of the relative publication, protein classes, shared residues between hits 
and query, SASA and Docking Scores. The complete list of the 257 retrieved 
protein hits is reported in Table A - 6.3.2.  

Functional Enrichment and Signaling Pathway Analyses 
VirtuousPocketome retrieved 145 unique Uniprot IDs relative to the previously 
identified hits, meaning that multiple PDBs at the end of the multistep filtering 
process corresponded to the same protein. The DAVID software was then employed 
to analyse the Gene Ontology terms and the signalling pathways data as described 
in the Material and Methods section.  

The functional enrichment analysis revealed that the input genes were significantly 
enriched for a total of 16 GO terms in the Cellular Components category, 10 terms 
in the Biological Processes category and 14 terms in the Molecular Functions 
category, based on the corrected p-value. In addition, 0 KEGG and 0 Reactome 
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pathways were found to be significantly enriched at the same p-value threshold. 
The best 5 GO terms for each of the above-mentioned categories are represented in 
Figure 2.10, whereas all the significantly retrieved GO terms are represented in the 
Supplementary Information (Figure A - 6.3.2 and Figure A - 6.3.3). Regarding the 
Biological Processes (BP), most of the retrieved genes are related to metabolic 
processes (40.9%), including organic substance, cellular and nitrogen compound 
metabolic processes. Besides, the most represented Molecular Functions (MF) are 
related to the binding of different species, such as proteins, small compounds or 
ions, and to enzyme activity, such as transferase, hydrolase, and oxidoreductase. 
Finally, regarding the last analysed GO term, the most represented Cellular 
Components (CC) are cytoplasm and membrane (39.0%).  

 
Figure 2.10. Bar plots representing the best 5 retrieved GO terms for each category in the third 
level of the GO hierarchy relative to Biological Processes (BP), Molecular Functions (MF) and 

Cellular Components (CC).  

2.2.4 Discussion 

Herein, we developed a novel computational pipeline, named VirtuousPocketome, 
to screen a desired database for proteins sharing similar binding sites with a specific 
protein of interest. VirtuousPocketome is based on four major steps: (i) the motifs 
creation step, which identified the most important residues involved in the 
interaction of the protein-ligand complex under investigation; (ii) the similarity 
search step, in which the human solved proteome is screened for similar motifs 
compared to the ones retrieved in the previous step; (iii) the multi-step filtering step, 
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which preserves only the protein hits with binding sites effectively accessible and 
with a certain docking affinity for the query ligand; (iv) functional enrichment and 
signalling pathway analyses, which identifies the most relevant cellular 
components, molecular functions, biological processes and signalling pathways 
related to the protein hits identified in the previous steps. VirtuousPocketome takes 
as input the molecular structure (and eventually also the molecular dynamics 
trajectory) of a protein-ligand complex and gives as output a list of PDB structures 
sharing similar binding sites. The developed protocol is automatic and can be 
applied to any protein-ligand complex.     

To evaluate the developed code and prove its potential, we here selected the human 
TAS2R46 bitter taste receptor bound to a bitter ligand, i.e. strychnine and we 
screened the entire human proteome to search for similar structural motifs. The 
choice for this molecular system was driven by the recent experimental 
determination of the TAS2R46-strychnine complex structure 171, as well as the fact 
that strychnine is experimentally known to target not only TAS2R46 71 but also 
other bitter taste receptors, such as TAS2R10 183, and even other proteins 184. 
Moreover, bitter taste receptors have been widely investigated also by means of 
computational molecular modelling in past years, ensuring enough data for 
comparison and evaluation of some of the results of the platorm 144,183,185–188.  
Furthermore, the strong relationship between food intake and the health status, 
including the regulation of homeostasis and metabolism, makes the chosen 
molecular machinery a particularly intriguing and relevant testbed for our 
computational screening pipeline to pinpoint possible secondary targets outside the 
gustatory system for food-related tastants.  

The first step of the proposed pipeline, i.e. the motifs creation step, applied to the 
TAS2R46 bitter taste receptor bound to strychnine pinpointed three major motifs 
of residues mostly involved in the ligand binding. In particular, all three motifs 
shared a salt-bridge interaction with residue GLU2657.39 and two hydrophobic 
interactions with residues TYR853.29 and TRP883.32, whereas the first motif 
comprised also hydrophobic interactions with residues THR692.64, PHE2526.58, and 
PHE2617.35 and the third motif with VAL612.56, and VAL2496.55 (Figure 2.8). 
Interestingly, some of these residues have already been suggested by previous 
literature to be important interactions for ligand binding of bitter taste receptors. In 
detail, GLU2657.39 and TRP883.32 were demonstrated to be pivotal in TAS2R46 
activation by strychnine 171. Moreover, mutagenesis studies have reported the 
importance of residue GLU2657.39 for agonist responsiveness of TAS2R46 71 and 
the same position has been also linked to ligand binding for similar receptors, 
including hydroxytryptamine (5-HT) receptors 189,190, adrenergic receptors 191,192, 
purinergic receptors 193,194, and cholecystokinin-B (CCK-B)/gastrin receptor 195. 
Moreover, residue TRP883.32 is widely conserved among TAS2Rs and was found 
to be crucial in the activation of TAS2R43, TAS2R30 and TAS2R46 71,196. The 
importance of residue in position 3.29 (TYR85 for TAS2R46) was confirmed also 
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for TAS2R10, which shows a similar binding site to TAS2R46 and is also activated 
by strychnine 183. These pieces of the literature confirmed the reliability of the 
motifs creation step of the proposed pipeline to pinpoint the most important and 
relevant residues involved in the ligand binding. It is worth mentioning that the 
possibility of analysing a molecular dynamics trajectory allows the identification of 
multiple motifs, three in the present case, one for each identified cluster centroid, 
ensuring a more exhaustive sampling of the protein-ligand interactions. 

Starting from the identified motifs, similar amino acid patterns were searched in the 
entire currently solved human proteome, consisting of 58972 structures. The 
similarity search using the ASSAM code resulted in 6718 hits. Then, the multi-step 
filtering reduced the number of detected sites to a total of 257 PDB structures, 
which represent 0.44% of the original database and 3.83% of the structures in 
ASSAM code output (Figure 2.9A). Therefore, the presented approach was 
revealed to be effective in discarding a high number of spurious proteins whose 
matching motifs were unlikely to bind strychnine, due to insufficient solvent 
exposure or low predicted affinity obtained from molecular docking. 

The functional enrichment analysis allowed us to pinpoint the main biological 
processes, molecular functions, and cellular components related to the gene 
expressing the retrieved hit proteins at the end of the VirtuousPocketome pipeline 
(Figure 2.10). Most of the biological processes highlighted are connected to 
metabolic processes, which seems an intriguing result considering the strong 
relationship between taste perception, food intake and metabolism. Indeed, these 
results might indicate that strychnine has not only the ability to activate the 
TAS2R46 bitter taste receptor and elicit the bitter taste sensation, but it should be 
also the potential trigger or modulator of proteins directly involved in the metabolic 
processes. Moreover, the protein hits are mainly involved in molecular functions 
related to the binding of proteins or other small compounds and are localized mainly 
in the cytoplasm and membrane. These results seem reasonable considering that 
TAS2R46 is a transmembrane protein and a promiscuous bitter taste receptor, able 
to bind a wide spectrum of chemical compounds.  In light of these results, it is worth 
mentioning that strychnine is known to bind also glycine and acetylcholine 
receptors 184, which are membrane proteins involved in transport and signalling 
functions. Therefore, the presented pipeline was able to detect similar binding sites 
in receptors with the same localization and biological function of known strychnine 
targets. In addition, strychnine is a rather promiscuous ligand with also anti-
plasmodial and anti-cancer activity and other yet-unresolved molecular targets 197.  

2.2.5 Conclusions 

In the present work, we developed a novel, general and automatic pipeline for 
identifying proteins sharing similar binding pockets with a query receptor-ligand 
complex by screening the entire solved human proteome. The developed pipeline 
will be soon released as a webserver service and will be easily expanded in the 
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future to other protein databases, such as the AlphaFold Protein Structure Database 
172. We used the TAS2R46-strychnine complex as a testbed for the proposed 
method to investigate if other proteins except the taste receptors might share similar 
binding pockets for the recognition of tastants. The proposed methodology allows 
for a deep investigation of the TAS2R46-specific residues needed for the strychnine 
binding to pinpoint other human proteins sharing similar binding pockets and 
investigate the potential roles that this tastant could play in contexts beyond the 
gustatory system. The retrieved proteins could be further analysed to predict 
whether the interaction with the compound of interest results in their activation or 
modulation. This will increase our understanding of possible secondary effects of 
tastants beyond the mere taste perception and their impact on the biological 
processes and molecular functions in which the retrieved hit proteins are involved. 
This approach can also assist the design of specific foods and ingredients to develop 
personalised treatments able to target desired proteins or receptors involved in 
specific processes or diseases with the ultimate goal of accessing the potential of 
the diet as a supplement to traditional pharmacological treatments. 
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2.3 The Impact of Natural Compounds on S-Shaped Aβ42 
Fibril 

The present section is based on the following scientific publication:  

Muscat, S. †, Pallante, L.†, Stojceski, F., Danani, A., Grasso, G., & Deriu, M. A. (2020). 
The Impact of Natural Compounds on S-Shaped Aβ42 Fibril: From Molecular Docking 
to Biophysical Characterization. International Journal of Molecular Sciences, 21(6), 
2017. https://doi.org/10.3390/ijms21062017 
† Stefano Muscat and Lorenzo Pallante contributed equally to this study. 

Author’s contribution to the publication: Pallante L. performed all the molecular 
dynamics simulations, analyzed, and rationalized the data, wrote, commented, and revised 
the manuscript.  

In the previous section, we presented a novel computational pipeline to identify 
possible off-targets sharing similar binding sites compared to a query protein-ligand 
complex. The proposed approach is particularly interesting since it allows us to 
understand if an investigated ligand can potentially bind also other receptors besides 
its primary one. However, the proposed methodology does not evaluate the 
molecular influence of the compound on the target protein. Hence, in this section, 
our focus lay in comprehending the molecular foundation and evaluating the 
influence of small ligands on targets associated with specific pathologies. In this 
context, we used molecular modelling to assess the impact of selected natural 
compounds on a specific polymorphism of amyloid fibrils. The focus on natural 
compounds has been driven by their growing popularity for treating diseases or for 
being coupled to conventional pharmacological treatments, as well as their 
association with the diet, particularly the Mediterranean one, which fits perfectly 
with the objectives of this doctoral thesis work as well as those of the VIRTUOUS 
project. Given that natural compounds have inherent efficacy in influencing some 
pathological conditions, a thorough understanding of their molecular features that 
underlie their actions and their trajectory in the human body can ultimately aid in 
the rational design of diets and strategies to selectively target disease-specific 
proteins. 

The pursuit of effective strategies inhibiting the amyloidogenic process in 
neurodegenerative disorders, such as Alzheimer’s disease (AD), remains one of the 
main unsolved issues, and only a few drugs have been demonstrated to delay the 
degeneration of the cognitive system. Moreover, most therapies induce severe side 
effects and are not effective at all stages of the illness. The need to find novel and 
reliable drugs appears therefore of primary importance. In this context, natural 
compounds have shown interesting beneficial effects on the onset and progression 
of neurodegenerative diseases, exhibiting a great inhibitory activity on the 
formation of amyloid aggregates, and proving to be effective in many preclinical 
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and clinical studies. However, their inhibitory mechanism is still unclear. In this 
work, ensemble docking and molecular dynamics simulations on S-shaped Aβ42 
fibrils have been carried out to evaluate the influence of several natural compounds 
on amyloid conformational behaviour. A deep understanding of the interaction 
mechanisms between natural compounds and Aβ aggregates may play a key role to 
pave the way for the design, discovery and optimization strategies toward an 
efficient destabilization of toxic amyloid assemblies. 

2.3.1 Introduction 

Alzheimer's disease (AD) is one of the most common forms of dementia. The 
mechanism of Alzheimer’s onset and progression is still unclear, and several 
hypotheses have been proposed. One of the most accredited theories is the amyloid 
cascade hypothesis 198, which identifies as the main cause of AD progression the 
misfolding and the extracellular aggregation of Amyloid-β (Aβ) peptides from the 
cleavage of amyloid precursor protein (APP), as well as the intracellular deposition 
of the misfolded tau protein in neurofibrillary tangles. The Aβ aggregation leads to 
the formation of oligomeric toxic species, which can further aggregate in more 
ordered structures, called fibrils or fibres 199, up to the formation of extracellular 
senile plaques 200,201. Among different lengths of Aβ peptides, senile aggregates are 
mostly made by the Aβ40 fibrils, but the most toxic species are the Aβ42 ones, due 
to their intrinsic tendency to self-assembly 202. The stability of these structures is 
strongly linked with the progression and severity of the disease, and in the last years, 
many efforts have been made to characterize the molecular stability of amyloid 
aggregates 203–211. 

In the past, several strategies have been developed to reduce or prevent Aβ 
production and to destabilize Aβ aggregates, including immunotherapeutic 
vaccines 212,213, antibodies 214,215, peptides 216,217, nanoparticles 218–220 and 
compounds targeting Aβ secretases 221,222 and Aβ aggregation 223–228. However, 
some of these approaches have shown serious side effects 229,230 and poor 
permeability through the blood-brain barrier (BBB) 231. In this context, small 
molecules based on natural compounds are promising inhibitors with minimal side 
effects and increased BBB permeability 232. Several in vitro and in vivo studies have 
highlighted the potential therapeutic effects of natural compounds against 
neurodegenerative diseases, including AD 233–239. However, their effects affect 
several aspects associated with AD, and their molecular mechanism of action is still 
not clear, consequently reducing the percentage of compounds at the clinical trial 
stage 200. Hence, deep characterization of the molecular structure of amyloid 
aggregates and their interactions with promising compounds, such as natural ones, 
is of primary importance for the design of new efficient strategies against 
neurodegenerative diseases 240. 
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In this regard, computational methods, such as molecular dynamics (MD) 
simulations, thanks to a detailed molecular resolution, could represent a powerful 
tool to shed light on the molecular mechanisms characterizing physiological and 
pathological phenomena 241. Thanks to these methods, several small molecules have 
been proposed as amyloid anti-aggregating agents 242. A promising inhibitor, 
referred to as wgx-50, has shown destabilizing effects against Aβ fibrils and 
inhibition of neural apoptosis and apoptotic gene expression 243–245. Moreover, 
polyproline chains have demonstrated a conversion mechanism of the Aβ secondary 
structure from beta-sheet to random coil, highlighting the stabilizing role of 
amyloid C-terminal residues 246. Sharma et al. have evaluated the stoichiometric 
ratio of caffeine to the Aβ-derived switch-peptide by a combination of experimental 
and computational approaches, observing the peptide disaggregation when the 
caffeine stoichiometric is ten times higher than the peptide one 247. Furthermore, 
curcumin-like compounds have been synthetized and tested on Aβ40 showing two 
binding sites, one in the 17–21 region and one near the Met35 248, which have been 
previously observed by experimental and computational works 249,250. Finally, the 
interactions between homotaurine, scyllo-inositol and the Aβ42 peptide at the 
monomer level have been extensively investigated by very long replica exchange 
MD with solute tempering simulations of 160 µs for each system, showing 
conformational changes of the Aβ42 monomer through a nonspecific binding 
mechanism 228. 

In this context, it is worth mentioning that molecular modelling investigations have 
focused mostly on a specific Aβ42 polymorphic structure, called U-shaped fibril 251. 
However, the Aβ42 may arrange also in other polymorphic structures, such as the 
S-shaped structural rearrangement 252. Interestingly, recent works have indicated 
that the S-shaped structure is characterized by superior conformational and 
mechanical stability with respect to the U-shaped one, suggesting a correlation 
between structural stability and toxicity 208,209,253. 

Based on the above-mentioned premises, this research work investigates the 
binding and action mechanisms of 57 natural compounds targeting the S-shape Aβ42 
fibril by ensemble docking and molecular dynamics (MD) simulations. Ligands 
were selected starting from previous literature, and in particular in vivo or in vitro 
data showing their effect on the onset and progression of several neurological 
diseases, including AD 200,237,254–256. Our results revealed the ligand’s specific 
mechanisms of action on amyloid aggregates. More in detail, ligands can be 
distinguished based on their ability to disrupt or preserve the ordered 
conformational structure of the amyloid fibril. 

2.3.2 Materials and Methods 

Molecular Dynamics Setup 
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The atomistic structure of the S-shape Aβ42 fibril was obtained from solid-state 
NMR (PDB ID: 2MXU 251). Only five of the twelve chains of Aβ42 were extracted 
as previously done in the literature 208. Water molecules were added to a periodic 
cubic box with sides of 8 nm. The total system charge was neutralized adding Na+ 
and Cl- ions at a concentration of 150 mM. The AMBER99-ILDN force-field 257 
and TIP3P model 258 were employed to define protein and water molecule 
topologies, respectively. A time step of 2 fs was used together with the LINCS 
constraints algorithm 259. All subsequent operations were performed three times 
obtaining three different replicas in order to increase the statistics of the MD data. 
The systems were minimized using the steepest descent method and then simulated 
with position restraints on protein heavy atoms for 200 ps in NVT ensemble using 
the V-rescale coupling method 260 to maintain a temperature of 300 K. We further 
simulated the system with the above-described position restraints in NPT ensemble 
for 400 ps using the V-rescale thermostat 260 and isotropic Berendsen barostat 261 to 
maintain temperature (300 K) and pressure (1 bar), respectively. Finally, MD 
simulations were performed without any restraints for 200 ns under NPT ensample, 
using the V-rescale 260 and Parrinello-Rahman 262 coupling methods. The short-
ranged Van der Waals (VDW) interactions were cut off after 1 nm and long-ranged 
electrostatic interactions were calculated using the Particle Mesh Ewald (PME) 
method 263. All simulations were carried out by GROMACS 2018 software package 
264, while the Visual Molecular Dynamics (VMD) package was employed for the 
visual inspection of the simulated systems 265. 

Molecular Docking Protocol 
For each of the above-mentioned replicas, a cluster analysis was performed during 
the last 50 ns using linkage method 264 and a RMSD cut-off of 0.1 nm, as done 
previously in the literature 266. The centroid of the most populated cluster for each 
replica was assumed as the starting receptor configuration (see Figure A - 6.4.1). 

Structures of the 57 investigated ligands were downloaded from the PubChem 
database 267 and their protonation state was computed using Molecular Operating 
Environment software (MOE). The complete list of chosen natural compounds with 
their physiological charge was reported in the Supporting Information (Table A - 
6.4.1). Then, ligand topologies were obtained with Antechamber 268,269 using the 
General Amber Force Field (GAFF) 268 and AM1-BCC charge method 270, as 
applied in previous studies 245,271–274. 

Due to the lack of experimentally known binding sites for the Aβ42 fibril, we opted 
for a blind docking approach. In this approach, the docking search is not confined 
to predefined binding sites but is extended to the entire protein and uses a higher 
exhaustiveness compared to standard docking protocols to ensure a more 
exhaustive exploration of the conformational space and a more accurate 
representation of the ligand's binding modes. More in detail, molecular docking was 
carried out by AutoDock Vina 275 using 64 as exhaustiveness and a search box of 9 
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nm x 9 nm x 12 nm, located at the centre of the protein and able to cover the entire 
protein surface. AutoDock Vina, widely recognized as one of the most popular 
molecular docking software among the scientific community, was selected for its 
simplicity and flexibility in defining the search space without the need for a 
predefined binding site. Additionally, AutoDock Vina offers the advantage of 
allowing for increased exhaustiveness in the search, which is especially 
advantageous for blind docking applications like the one conducted in this study. 
Each ligand was docked to the three different centroid configurations and only the 
best mode in terms of Vina binding affinity was selected, obtaining 57 receptor–
ligand complexes. 

Binding Energy Estimation and Protein-Compounds Conformational Dynamics 
Each receptor–ligand complex system was followed by solvation, neutralization, 
energy minimization, position-restrained MD and a short MD production of 1 ns, 
with the same setup described in the molecular dynamics setup section. Then, the 
receptor–ligand binding energy was estimated by the MM–GBSA method 276 using 
parameters from previous literature 277–279. 

The ten best ligands in terms of binding energy were further characterized by a MD 
simulation of 150 ns, in order to highlight the conformational changes of the 
amyloid fibril induced by the presence of natural compounds. Finally, the three 
starting receptor configurations were simulated using the above-mentioned protocol 
for 150 ns in order to compare the structural effects in the absence of ligands. Three 
replicas for each system were performed to check the reliability of the results. A 
simulations summary is reported in the Supporting Information (Table A - 6.4.2). 

Order Parameter 
The Aβ42 fibrils were characterized by a regular shape, repeated in each chain. In 
order to estimate the structural order of the pentamer, an order parameter (ordP) 
was calculated similarly to previous works 208,210,211,280: 
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Here, the arrow represents the connecting vector of the centre of mass (CoM) 
position and alpha carbon (Cα) position of the n-th residue and of the c-th chain. 
The ordP is the dot product averaged along the observation time interval, the 
number of residues (NR) and the number of the chains (NC). Values of ordP close 
to 1 indicated an alignment close to the initial structure, i.e., aligned fibres along 
the fibril axis z. Values of ordP lower than 1 indicated a gradual structure distortion. 
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2.3.3 Results 

We first performed long MD simulations of the compound-free Aβ42 pentamer in 
order to obtain a representative structure for the docking protocol. The 
conformational stability of the three independent replicas of Aβ42 was demonstrated 
by the RMSD in the Supporting Information (Figure A - 6.4.1). The MM–GBSA 
binding energy estimation of the 57 ligand–receptor complexes was computed 
during 1 ns of MD simulation, as previously done in the literature 279, and the results 
are reported in the Supporting Information (Table A - 6.4.1). The best ten 
compounds, characterized by the lowest values of binding energy, were selected 
(Figure 2.11) and further characterized by long MD simulations of 150 ns. Docking 
poses of the best compounds and their interaction maps are reported in the 
Appendix (Figure A - 6.4.3 and Figure A - 6.4.4). See the Materials and Methods 
section for further details. 

 
Figure 2.11. The ten best natural compounds that exhibited the lowest MM–GBSA binding energies 
for the selected S-shape amyloid fibril. 

The MD simulations have pointed out three different mechanisms of action on the 
structural stability of the amyloid fibril. More in detail, (I) 6-shogaol and oleuropein 
were able to dock between adjacent receptor chains, inducing a considerable 
destabilizing effect on the whole protein; (II) curcumin, gossypin and piceatannol 
disrupted the ordered structure of the amyloid fibril after binding into a pocket 
formed by the protein S-shape; and (III) the remaining compounds, i.e., salvianolic 
acid A, beta-carotene, piperine, rosmarinic acid and withanolide A, did not result 
in remarkable protein conformational changes, thus suggesting a binding pocket 
stabilization. Representative snapshots of the three different mechanisms of action 
are reported in Figure 2.12. 
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Figure 2.12. Representative snapshots of the three different mechanisms of action of selected natural 
compounds: interchain destabilization, pocket distortion and pocket stabilization. For each 
mechanism, the (A) starting configurations after the docking protocol and the (B) final structures 
after 150 ns of molecular dynamics (MD) simulation are shown. The ligands are represented in red, 
while the amyloid fibrils and their residues within 0.35 nm from the ligand are represented in grey 
and yellow, respectively. 

In order to quantify the effects of the investigated compounds on the structural order 
of amyloid aggregates, three parameters were calculated on the last 25 ns of the MD 
simulations: (1) the beta-sheet structure probability; (2) the order parameter, 
calculated as described in Materials and Methods; and (3) the inter-chain interaction 
area, which measured the average contact surface between adjacent protein chains 
with a distance cut-off of 0.35 nm. All the above-mentioned analyses have been 
computed for the wild type protein, i.e., the ligand-free structure, and for all ligand–
receptor complexes (Figure 2.13). 

In Figure 2.13A, the beta-sheet probability is shown. The Aβ42 wild type was 
characterized by a beta structure percentage of 37.9% ± 3.6% and each compound 
exhibited different effects on the protein conformational stability. Among the 
investigated compounds, only oleuropein, gossypin, piceatannol, curcumin and 6-
shogaol proved to remarkably reduce the amyloid beta structure content. Similar 
trends were obtained for both the geometric order parameter and the inter-chain 
interaction area (Figure 2.13B,C). Therefore, oleuropein, gossypin, piceatannol, 
curcumin and 6-shogaol showed destabilizing effects by inducing a reduction in 
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terms of (i) the protein beta sheet structure content, (ii) the fibril order (quantified 
by the estimated order parameter) and (iii) the inter-chain interaction surface. On 
the above-mentioned three indicators, all the other investigated compounds 
demonstrated a negligible impact on the amyloid structure. 

 
Figure 2.13. (A) Beta-sheet structure probability, (B) order parameter and (C) inter-chain 
interaction area for the wild-type amyloid fibrils and all the receptor-ligand complexes. 

From the visual inspection of the ligand-receptor binding mechanisms, it was 
evident that different compounds interacted with different areas of the protein, 
making contact with distinct residues. Hence, to better quantify these differences, 
the ligand-receptor contact probability was evaluated. For each MD trajectory 
frame, the distance between all Aβ42 residues and the considered compound was 
calculated, and the contact was counted if this distance was below a cut-off of 0.35 
nm. The contact probability was then defined as the total number of contacts divided 
by the total number of simulation frames. The contact probability between each 
ligand and protein residue is reported in Figure 2.14. It should be noted that we have 
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not distinguished between the same residues of different protein chains, and 
therefore the obtained heatmap underlines the probability of interaction of a specific 
residue with the considered compound. This method was chosen since the original 
structure of the fibrillar aggregate is formed by the repetition of identical laterally 
bound chains. Therefore, the only noteworthy information is the residue type 
involved in the interaction and not the chain that it belongs to. Furthermore, it is 
worth noticing that 6-shogaol detached from its binding site during the simulation. 
Therefore, its contact probability was estimated only for the frames in which the 
compound was effectively docked into the binding site. In detail, the contact 
probability map identified two main binding areas: residues E11–F19 and residues 
I32–L34. Residues mainly involved in the binding process are mostly non-polar 
(50%) and basic (25%), suggesting that these properties are of primary importance 
for an effective ligand binding. Moreover, it is important to mention that 6-shogaol 
and oleuropein interacted less with the above-mentioned residues, since they were 
docked between adjacent protein chains. In particular, 6-shogaol was shown to 
mostly interact with the H14–G25 region, whereas oleuropein was found mainly 
bound to the V18–V24 and N27–I31 ones. The other compounds, instead, were 
buried into the binding pocket identified by the amyloid fibril S-shape and 
interacted with similar residues. However, rosmarinic acid expressed a slightly 
different behaviour, mostly interacting with the chain edge and showing a tendency 
to not penetrate into the binding pocket. 

 
Figure 2.14. Contact probability between the selected natural compounds and the amyloid residues 
during the MD simulations. 

In order to better characterize ligand properties, which are at the basis of their 
mechanisms, pharmacophore modelling was performed using LigandScout 
software 281. This method allowed the definition of shared features among the 
properties of a series of compounds. More in detail, Figure 2.15A represents the 
common features between 6-shogaol and oleuropein, which were able to dock 
between adjacent chains (mechanism I). Otherwise, Figure 2.15B shows the 
common features between the ligands that led to the pocket distortion (mechanism 
II). All destabilizing compounds share six common features, i.e., three H bond 
acceptors (HBA), one H bond donor (HBD), one aromatic ring (AR) and one 
hydrophobic interaction (H). It is worth mentioning that the first shared features 
model was characterized by one more hydrophobic feature than the second one. 
Hence, this property can probably be related to the ability of 6-shogaol and 
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oleuropein to interpose between protein chains. Moreover, adding any one of the 
compounds that exhibited lower or no destabilizing effects (mechanism III), the 
shared pharmacophore model lost at least one “H bond acceptor” feature. For this 
reason, this characteristic seems crucial in the definition of the ligand destabilizing 
activity on the protein conformation. 

 
Figure 2.15. Pharmacophore model based on shared features between (A) 6-shogaol and oleuropein 
and (B) curcumin, gossypin and piceatannol. HBA identifies a hydrogen bond acceptor, HBD a 
hydrogen bond donor, AR an aromatic ring and H a hydrophobic interaction. 

2.3.4 Discussion 

Among several neurological disorders, AD is one of the most common forms of 
dementia. Even though the causes of the Alzheimer’s onset and progression are still 
under debate, according to the amyloid cascade hypothesis 198, the amyloidogenic 
process that leads to the formation of extracellular aggregates of Aβ peptides is 
considered one of the main markers of Alzheimer’s occurrence and severity. Until 
now, only two strategies are used to provide symptomatic relief to AD patients: 
acetylcholinesterase inhibitors, to maintain the level of acetylcholine in the brain, 
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and N-methyl-D-aspartate receptor antagonists, to prevent excitotoxicity 282. 
Unfortunately, serious side effects and poor effectiveness in some phases of the 
disease have been detected 237,283,284. Between different lengths of ordered and 
disordered amyloid peptides, the Aβ42 fibril is known to be the most toxic due to its 
tendency to self-assembly into ordered structures 202. Moreover, this structure 
presents two different structural rearrangements, S-shaped and the U-shaped 251,252. 
In the last years, several studies have investigated the different behaviour of these 
polymorphisms and the S-shaped form has demonstrated greater conformational 
and mechanical stability than the U-shaped form 208,209,253. Therefore, the S-shaped 
structure represents the primary target for pharmacological treatments, aimed to 
reduce the amyloidogenic process and interfere with the amyloid aggregates’ 
stability. In this context, the search for destabilizers of Aβ fibrils may provide 
fruitful insights in the open research for treatments targeting AD. Natural 
compounds have shown promising effects, proving to be effective in many in vitro 
and in vivo studies with minimal side effects and increased blood brain barrier 
permeability 232. However, the molecular mechanism of action of these compounds 
is still unclear and several computational studies have tried to characterize their 
effects on different amyloid aggregates 228,240,242–244,246–250. In this work, a 
combination of ensemble docking and MD simulations has been applied to evaluate 
the influence of 57 promising compounds on preformed S-shape Aβ42 fibrils 
200,237,254–256. We identify three different mechanisms of action for the best ten 
natural compounds: (I) inter-chain destabilization, (II) pocket distortion and (III) 
pocket stabilization. In particular, 6-shogaol and oleuropein (mechanism I) are able 
to disrupt the protein ordered structure docking between adjacent fibril chains; 
curcumin, gossypin and piceatannol (mechanism II) dock into a binding pocket 
identified by the amyloid S-shape, affecting the whole protein conformation; the 
other ligands (mechanism III), instead, preserve or slightly influence the 
conformational state of the amyloid fibril. In this way, we find out that only 6-
shogaol, oleuropein, curcumin, gossypin and piceatannol appreciably affect the 
protein stability, reducing the percentual content of beta sheets, the order parameter 
value and the inter-chain interaction area if compared to the wild type structure. It 
is worth remarking that the ligands belonging to mechanisms I and II have 
demonstrated similar conformational effects on the amyloid fibril, inducing similar 
reductions of beta-sheet structure content, order parameter and inter-chain 
interaction area. Therefore, all the identified destabilizing compounds, i.e., 6-
shogaol, curcumin, gossypin, oleuropein and piceatannol, are underlined for further 
investigations. Moreover, compound shared features may be used for determining 
a pharmacophore model to rationally design novel compounds, hopefully 
characterized by a more effective destabilizing strength on Aβ toxic assemblies. To 
remark on the importance of the selected compounds’ chemical features, it is worth 
mentioning that brazilin, a modulator of the amyloid fibril conformation 285, shares 
five common features with the here characterized destabilizing ligands belonging 
to classes I and II (see also Figure A - 6.4.5). 
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The remaining compounds seem to stabilize the binding pocket, maintaining an 
ordered structure of the amyloid aggregate. Concerning previous literature 
228,245,248,286, the present research expresses some aspects of novelty. In particular, 
this work considers the S-shaped polymorphism as the ligand target. Previous 
computational works have mostly studied a different amyloid polymorphism, 
namely the U-shaped one 244,245,248, which might be less stable than the S-shaped 
one 208,209. Moreover, this work also provides a comprehensive comparative 
investigation on a considerable number of natural inhibitors, investigating their 
binding and action mechanisms. 

Most of the selected compounds have shown antioxidant and anti-inflammatory 
properties in vivo 200,287–290. Recent studies have remarked the destabilization action 
of curcumin on Aβ40 and Aβ42 

291, also with advanced amyloid accumulation 286,292. 
Furthermore, it has been observed that oleuropein acts against the formation of toxic 
oligomer and amyloid fibrils, favouring the formation of non-toxic aggregates and 
improving cognitive functions 200,288,293–295. It is worth mentioning that mechanism-
III compounds have proven beneficial effects on AD onset and progression. 
Therefore, their mechanism of action probably alters the fibril structure in a 
different stage of the pathology or mostly affects other important factors of the 
disease, including the oxidative stress, the tau hyperphosphorylation, the α-
secretase expression and the β-secretase activity. 

Most ligands, except for 6-shogaol and oleuropein, interact with common residues 
in two main binding areas, identified by residues E11–F19 and I32–L34. Therefore, 
these residues seem crucial for the definition of the binding pocket and for the 
effective binding of the investigated compounds. Similar regions have been 
identified by previous studies about curcumin-like compounds in a complex with 
the U-shape polymorphism 248,296. Moreover, in vitro studies have shown the key 
role of F19 and F20 for efficient Aβ42 polymerization 297. Finally, the 
pharmacophore modelling highlights common features between the destabilizing 
compounds, outlining the presence of an additional hydrophobic characteristic for 
the mechanism-I compounds. This feature could probably be related to the ability 
of 6-shogaol and oleuropein to fit between protein chains. All ligands share 
aromatic characteristics that have been seen to be important for interacting with 
amyloidogenic aggregates 298. Moreover, the presence of three H-bond acceptor 
features is common to all the destabilizing compounds, but not for the other ones, 
suggesting that this could be an important characteristic for an effective binding to 
the amyloid fibril and for the activity of the investigated chemicals. 

As a limit of the present research, it is worth mentioning that molecular simulations 
employed in this work cannot represent the entire amyloidogenic process and the 
present study is focused on the action of natural compounds on preformed amyloid 
fibrils. Only experimental studies may access the proper time and length scales to 
correctly describe the whole fibrillogenic process. However, the present research 
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represents a meaningful comparative investigation with atomic resolution, which 
helps the ligand screening workflow by elucidating binding and action mechanisms 
of a considerable number of existing natural compounds already considered in the 
AD research field. Future developments might consider combinations of different 
compounds, as well as the effect of different compound concentrations to better 
clarify potential cooperative or competitive mechanisms. 

2.3.5 Conclusions 

In this work, molecular modelling techniques were employed to screen 57 natural 
compounds. Five ligands, i.e., 6-shogaol, oleuropein, curcumin, gossypin and 
piceatannol, showed a remarkable destabilizing activity on the Aβ42 S-shape 
polymorphism. Two different destabilizing modes of action of the inspected ligands 
were revealed. Finally, throughout pharmacophore modelling, the main common 
features of the highlighted ligands have been identified. These chemical features 
can be considered for further rational search/design of amyloid destabilizing agents. 
For greater detail, future studies may expand the database of the investigated 
compounds, including possible other interesting natural ligands characterized by 
shared chemical features with respect to those identified in this work. Moreover, 
further works may consider the effects of ligand concentration, combinations of 
destabilizing compounds or the presence of different species of metal ions involved 
in the ligand-target binding mechanism. 



  

 

Chapter III 

Taste Prediction Empowered by 
Machine Learning 

Taste perception is determined at the molecular level by the interaction of specific 
tastants with their relative taste receptors. The chemical structure of food 
ingredients is the primary driver for their recognition and the subsequent activation 
of the molecular and supra-molecular processes that ultimately lead to taste 
perception. For this reason, the present chapter aims at understanding the 
molecular features underlying specific taste sensations: for this purpose, machine 
learning methods were considered and applied in the field of taste prediction. First, 
we provided a comprehensive overview of the main taste-related databases and 
ML-based models to predict the taste of molecules available from previous 
literature. Building upon these scientific foundations, our investigation centred on 
forecasting three fundamental taste sensations: umami, bitter, and sweet. This 
selection was predicated on the abundance of comprehensive data pertaining to 
these three basic tastes and their perception, which is driven by the interactions 
between tastants and G protein-coupled receptors (GPCRs). In contrast, the 
mechanisms underlying the perception of the remaining two tastes, namely sour 
and salty, are still subject to debate within the scientific community, as they appear 
to involve a broader range of factors, which hinder the simple development of 
ligand-based taste predictors. In section 3.2, we developed a novel ML-based tool 
to predict the umami taste, whereas, in section 3.3, a sweet/bitter taste predictor is 
presented.  
To facilitate the reading of this chapter for those who may not be highly experienced 
in the field of machine learning, a brief introduction to the topic, specifically 
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focusing on the methods used in the novel works presented in this chapter, is 
provided in the Appendix (Section 6.1). 

3.1 Machine learning for Taste Prediction 

The present section is based on the following scientific publication:  

Malavolta, M., Pallante, L., Mavkov, B., Stojceski, F., Grasso, G., Korfiati, A., Mavroudi, 
S., Kalogeras, A., Alexakos, C., Martos, V., Amoroso, D., Di Benedetto, G., Piga, D., 
Theofilatos, K., & Deriu, M. A. (2022). A survey on computational taste predictors. 
European Food Research and Technology, 248(9), 2215–2235. 
https://doi.org/10.1007/s00217-022-04044-5.  

Author’s contribution to the publication: Pallante L. contributed to every stage of the 
study, from its conceptualization to the rationalisation of the data, up to the drafting and 
revision of the manuscript.  

Taste is a sensory modality crucial for nutrition and survival since it allows the 
discrimination between healthy foods and toxic substances thanks to five tastes, i.e. 
sweet, bitter, umami, salty and sour, associated with distinct nutritional or 
physiological needs. Today, taste prediction plays a key role in several fields, e.g. 
medical, industrial or pharmaceutical, but the complexity of the taste perception 
process, its multidisciplinary nature and the high number of potentially relevant 
players and features at the basis of the taste sensation make taste prediction a very 
complex task. In this context, the emerging capabilities of machine learning have 
provided fruitful insights in this field of research, allowing to consider and integrate 
a very large number of variables and identifying hidden correlations underlying the 
perception of a particular taste. This section aims at summarizing the latest 
advances in taste prediction, analysing available food-related databases and taste 
prediction tools developed in recent years. 

3.1.1 Introduction 

Taste is a crucial sense involved in the perception of food and is a sensory modality 
that participates in the regulation of the intake of substances, avoiding indigestible 
or harmful ingredients and identifying safe and healthy nutrients. Taste is 
determined by the gustatory system and participates in the overall perception of the 
flavour together with smell (olfactory system) and touch (trigeminal system) 299. 
Chemicals derived from food ingestion trigger the taste perception process, starting 
in the oral cavity, where they bind specific proteins placed on the taste buds of the 
tongue 19. The five principal tastes are bitter, sweet, sour, umami and salty, with 
each one being detected by specific receptors. Other tastes, such as fat taste, might 
be considered basic ones since they arise from the combination of somatosensory 
and gustation perceptions 124,125.  Each taste is linked to a vital somatic function. In 
general, the sweet taste is associated with the presence of energy-rich food; the 
bitter taste is usually linked to potentially dangerous compounds and unpleasant 
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flavour; umami is connected with the protein content in food; sour helps in the 
detection of spoiled food and acid tastants in general; lastly, salty taste monitors the 
intake of sodium and other minerals 1. Moreover, taste is also supported by the sense 
of smell in the evaluation of foods or substances, and chemosignal detection is used 
by animals and humans to identify threats 300,301. As an example, repulsive odours 
to humans, such as the ones generated from cadaverine, putrescine and other 
biogenic diamines, indicate the presence of bacterial contamination 302. Taste 
sensation relies on the affinity of taste compounds for taste receptors depending on 
their structure. Since small variations in tastant chemistry result in drastic 
modifications of perceived taste, ligand-based methods, merging molecular 
descriptors and taste information, represent powerful data-driven tools to 
effectively implement machine learning (ML) algorithms with the capacity to 
predict taste. Such methods can be applied, for example, to screen huge databases 
of small compounds (e.g. ZINC15, DrugBank, ChEMBL) to select promising 
tastants or to rationally drive the design of novel compounds with specific 
functional properties and the desired taste. 

Nutritious foods usually have an appetitive taste, e.g. sweet, umami, and lower 
concentrations of sodium and acids, whereas toxic substances generally present an 
unpleasant flavour such as bitter tastants, high concentrations of sodium and sour 
taste stimuli. Moreover, a healthy diet, such as the Mediterranean one, has been 
associated with beneficial impacts on human health status 303,304. Taste prediction 
is therefore of paramount importance not only for the food industry but also for the 
medicine, pharmaceutical and biotechnology sectors. Regarding the industrial food 
sector, sensory evaluation is commonly applied to access the flavour of foods. 
Usually, it involves the measurement and evaluation of the sensory properties of 
foods and other materials 305,306. The type of analysis role is crucial to address 
specific consumers' needs or market demands, evaluate food products, ensure high-
quality products and establish the minimum shelf life of a product, food 
obsolescence or spoilage 307. However, traditional methods cannot evaluate 
investigated food in a precise quantitative way, but only in a qualitative manner 308. 
Moreover, the sensory evaluation typically requires many sensory professionals to 
reach a more objectiveness, with consequent problems generated by intra- and inter-
operator variability, long lead times and high costs 305,308. Thus, it is crucial to 
develop rational, fast and cost-effective methods to assess the food quality and its 
related properties, including taste. Moreover, concerning the nutritional and health 
field, the sweetness prediction might point out novel promising sweeteners with 
low caloric value to reduce the caloric intake derived from the ingestion of naturally 
occurring or added sugars, in line with the recommendations of the World Health 
Organization 309. Indeed, the excessive consumption of added sugars is normally 
linked to an increase in body weight 310, obesity 311,312, and severe pathologies, such 
as diabetes or cardiovascular disease 313,314. Other examples linked to the 
importance of taste prediction include bitter masking molecules. Indeed, the bitter 
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taste is one of the main problems for pharmaceutical industries due to its unpleasant 
taste, which represents one of the main barriers to taking medications, especially 
for children and the elderly population 315. Furthermore, a change in taste perception 
might be caused by the onset of other pathologies, such as in the case of the loss 
and/or impairment of taste function after COVID-19 infection 316. 

This work aims to summarise the main recent efforts in the in-silico taste prediction, 
starting from an overview of the major taste or food-related molecules databases 
and the implemented ML-based prediction tools.  

3.1.2 Taste and Food-Related Databases 

The first essential step for the implementation of ML-based tools is the definition 
of reliable and as comprehensible as possible databases (DBs) with information 
concerning the taste of each entry. In the past years, several databases of small 
compounds related to their specific taste sensations in foods have been developed. 
In this section, the authors pinpoint the major databases and their characteristics, 
which are summarised in Table 3.1. 
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Table 3.1. Summary of the main taste databases with weblinks, present tastes, the relative number 
of molecules and the possibility to download data. 

Reference Link Taste No. Download 

SuperSweet 17 / Sweet 8000 No 

SweetenersDB 18 https://bit.ly/32fG9af Sweet 316 No 

BitterDB 16 https://bit.ly/3FinsB6 Bitter 1041 Yes 

BTP640 317 https://bit.ly/3pogTrj 
Bitter 

Non-Bitter 

320 

320 
Yes 

Rodgers Database 318 / Bitter 682 / 

Umami Database https://bit.ly/3FhePa1 Umami 800 No 

UMP442 319 https://bit.ly/3yK6EAk 
Umami 

Non-Umami 

104 

304 
Yes 

TastesDB 320 / 

Sweet 

Bitter 

Tasteless 

435 
81 
133 

/ 

Fenaroli’s Handbook of Flavor 
Ingredients 321 

/ 

Sweet 

Bitter 

Tasteless 

426 

33 

3 

/ 

In Table 3.2, other databases, that do not contain precise information regarding the 
taste associated with each element but are related to food ingredients and widely 
used in taste prediction, are reported. 

Table 3.2. Summary of the main databases related to food or commonly used by taste prediction 
tools, with weblinks, the number of compounds collected in each DB and the possibility to download 
data. 

Reference Link No. Download 

FooDB https://foodb.ca/  28 k Yes 

Super Natural II 322 
https://bioinf-
applied.charite.de/supernatural_new/  

326 k No 

FlavorDB 323 https://cosylab.iiitd.edu.in/flavordb/  ~26 k No 

PhytoHub http://phytohub.eu/ 1863 Yes 
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Phenol-Explorer 324 http://phenol-explorer.eu/  501 Yes 

BIOPEP-UWM 325 https://biochemia.uwm.edu.pl/  4321 No 

ChEMBL 326 https://www.ebi.ac.uk/chembl/  ~17 M Yes 

DrugBank 327 https://go.drugbank.com/  ~500 k Yes 

ZINC15 328 https://zinc.docking.org/  230 M Yes 

PhytoLab https://www.phytolab.com/en/  ~1300 Yes 

Natural product atlas 329 https://www.npatlas.org/  ~24 k Yes 

 

Most used and tested databases (DBs) are described in detail in the following 
paragraphs. 

a. SuperSweet 
SuperSweet (https://bioinformatics.charite.de/sweet/) contains more than 8000 
artificial and natural sweet compounds 17. The dataset includes the number of 
calories, the physicochemical properties, the glycemic index, the origin, the 3D 
design, and other information regarding molecular receptors and targets. Sweet-
tasting chemicals were taken from the literature and freely accessible data sets. The 
web server interface offers a very user-friendly search and a sweet tree which 
groups the sweet substances into three main families, (carbohydrates, peptides and 
small molecules).  

b. SweetenersDB 
SweetenersDB (http://sebfiorucci.free.fr/SweetenersDB/) is a database of 316 
sugars and sweeteners from 17 chemical families. Compounds were aggregated 
with their 2D structure or with a 3D structure using Marvin Sketch (ChemAxon) 
and the protonation state was defined at a pH of 6.5, according to the common pH 
value found in the saliva. Two natural compounds of the SweetenersDB are also 
present in Super Natural II (entries: 105.620, 325.102) 18. 

Each sweetener has also an assigned sweetness value, indicated as logS. This value 
is the logarithm of the ratio between the concentrations of the considered compound 
and sucrose, used as a reference. In this way, this value reflects the relative 
sweetness of a specific compound if compared to sucrose. From a physicochemical 
analysis of the database, an intense sweetener has low molecular weight and a 
hydrophobic core. Natural sweeteners are the molecules with the highest molecular 
weight, and they are capable of forming more hydrogen bonds than all the 
sweeteners in the SweetenersDB.  

c. BitterDB 
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BitterDB (http://bitterdb.agri.huji.ac.il/dbbitter.php) is a free source containing 
information about bitter taste molecules and their receptors 330. In 2019, an upgrade 
of the database was made with an increase in the number of compounds (from the 
initial 550 to 1041) and the insertion of new features, including for example data 
belonging to different species rather than humans (mouse, cat, chicken).  
BitterDB contains now about 1041 molecules collected from over 100 publications. 
For each compound, the DB provides different information, such as molecular 
properties, identifiers (SMILES, IUPAC name, InChIKey, CAS number and the 
primary sequence of proteins), cross-links, qualitative bitterness category (i.e. 
bittersweet, extremely bitter, slightly bitter etc.), origin (from a natural source or 
synthetic), and different file formats for download (SDF, image, smiles, etc.). 
Furthermore, toxicity data were added from the Acute Oral Toxicity Database when 
available, reporting experimental rat LD50 values as described in previous literature 
331.  

Most of the SMILES were taken from PubChem and the remaining ones were 
generated through the CycloPs server, after drawing the molecules on ChemSketch 
or ChemAxon. Regarding the other identifiers, the ones not available in PubChem 
were processed using RDKit (http://www.rdkit.org). 

d. BTP640 
BTP640 collects 320 experimentally confirmed bitter peptides and 320 non-bitter 
peptides. Bitter peptides were retrieved from various literature and peptides 
including ambiguous residues (e.g. B, X, Z and U) or duplicated peptide sequences 
were discarded. Since few experimental data concerning non-bitter peptides are 
available, the negative dataset was built starting from BIOPEP dataset, which 
contains biologically active peptide sequences (4304) widely used in the food and 
nutrition field (Minkiewicz et al., 2019). From this dataset, 320 peptides were 
randomly extracted to build the negative dataset. 

e. Rodgers Database 
This database was collected from previous literature and patents, including 
researches in BIOSIS, Food Science and Technology Abstracts, databases of 
internal reports at Unilever and Derwent World Patents Index (WPIDS) 318. 
Structures were obtained from SciFinder, where possible, or constructed with 
ChemDraw. After the removal of synthetic analogues, the final database contains 
649 bitter molecules. It is worth mentioning that additional 33 molecules were then 
considered by the authors and made public in the original paper, whereas the other 
649 remain non-public. Unfortunately, no webserver or online data repository is 
available for this database.  

f. Umami Database 
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The Umami Database (https://www.umamiinfo.com/umamidb/) is developed by 
the Umami Information Center, founded with the support of the Umami 
Manufacturers Association of Japan in 1982. The Umami Database was created 
with the idea of providing information about the umami taste in foods and, 
currently, about 800 items are listed in the database. Amino acids in foods are 
mainly of two types, i.e. ones joined together to form proteins and free amino acids, 
that have a more pronounced flavour. In this context, free glutamate has a 
remarkable umami taste. Umami Database reports also the score of free glutamate 
and other free amino acids which affect food taste. In addition, there are inosinate 
and guanylate scores, which synergistically increase umami perception. Sources for 
the Umami Database include public academic papers and scores analysed by a 
research laboratory upon request of the Umami Information Center.  

g. UMP442 
This dataset was constructed for the development of the iUmami prediction tool 319. 
The umami set merges several experimentally validated umami peptides from the 
literature 61,332–336 and the BIOPEP-UWM database 325. On the other hand, the non-
umami peptides dataset is made by the bitter peptides from the positive set of 
BTP640 337. After removing peptides with non-standard letters and redundant 
sequences, the final UMP442 database collects 140 umami and 304 non-umami 
peptides. The dataset was made publicly available on GitHub 
(https://github.com/Shoombuatong/Dataset-Code/tree/master/iUmami). 

h. TastesDB 
TastesDB is an experimental database comprising 727 chemicals, with their 
respective experimental taste class, retrieved from several scientific publications 
320. Since all incorrect molecules or those with problematic molecular structures 
were removed, the final TastesDB contains 649 molecules, specifically 435 sweet, 
81 bitter and 133 tasteless. For each entry of the database, the DB provides the 
commercial name, the SMILE, the tasting class (sweet, tasteless, bitter) and the 
literature reference.  

3.1.3 Existent Machine Learning-based Predictors 

In the past years, several studies have developed ML-based algorithms to predict 
the taste of specific molecules starting from their chemical structure. In this section, 
we will review in detail the main recent literature in the field of taste prediction. 
Where no precise name has been defined for the tools discussed, we have decided 
to use the first author’s name of the reference publication for simplicity (Table 3.3). 

Table 3.3. Summary of the main recent taste prediction tools, including methods, datasets and 
molecular descriptors employed (see also Table A - 6.5.1  for further information). 

Reference Method Taste No. Descriptors 
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Chéron Sweet Regressor 18 Sweet Regressor 
(RF, SVR) 

Sweet 316 Dragon 

Rojas Sweet Predictor 320 Sweet Classifier 
(QSTR) 

Sweet 

Non-Sweet 

435 

214 
ECFP, Dragon 

Goel Sweet Regressor 338 Sweet Regressor 
(GFA, ANN) 

Sweet 487 Material Studio 

e-Sweet 339 

[https://bit.ly/3wFy4ER]  

Sweet Classifier 
(KNN, SVM, GBM, RF, 

DNN) 

Sweet 

Non-Sweet 

530 

850 
ECFP 

Predisweet 340 

[https://bit.ly/3reop7a] 
Sweet Regressor 
(AB) 

Sweet 316 

Dragon, 
RDKit, 
Mordred, 
ChemoPy 

BitterX 341 

[https://bit.ly/3wJYa9O] 
Bitter Classifier  
(SVM) 

Bitter 

Non-Bitter 

539 

539 

342 

BitterPredict 343 

[https://bit.ly/3igrzmQ] 
Bitter Classifier (AB) 

Bitter 

Non-Bitter 

691 

1952 

Canvas 
(Schrödinger) 

e-Bitter 344 

[https://bit.ly/3epWzQq] 
Bitter Classifier (KNN, 

SVM, RF, GBM, DNN) 

Bitter 

Non-Bitter 

707 

592 
ECFP 

iBitter-SCM 317 

[https://bit.ly/2VGyXAg] 
Bitter Peptides Classifier 
(SCM) 

Bitter 

Non-Bitter 

320 

320 

Dipeptide 
composition 

(DPC) 

BERT4Bitter 345 

[https://bit.ly/2WecTxf]  
Bitter Peptides Classifier 
(BERT) 

Bitter 

Non-Bitter 

320 

320 

Dipeptide 
composition 
(DPC) 

iBitter-Fuse 346 

[https://bit.ly/3BmC547] 

Bitter Peptides Classifier 
(SVM) 

Bitter 

Non-Bitter 

320 

320 

DPC, AAC, 
PAAC, 
APAAC, AAI 

BitterIntense 347 
Bitter Intensity Classifier 
(XGBoost) 

VB 

NVB 

246 

404 

Canvas 
(Schrödinger) 

iUmami-SCM 319 

[https://bit.ly/3hJs9uf] 
Umami Classifier (SCM) 

Umami 

Non-Umami 

140 

304 

Dipeptide 
composition 
(DPC) 

BitterSweetForest 348 
Bitter/Sweet Classifier 
(RF) 

Sweet 

Bitter 

517 

685 

RDKit (Binary 
fingerprints) 
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BitterSweet 349 

[https://bit.ly/3rd7Att] 

Bitter/Sweet Classifier 

(AB, RF) 

Bitter 

Non-Bitter 

Sweet 

Non-Sweet 

Non-Umami 

918 

1510 

1205 

1171 

304 

Canvas, 
Dragon, ECFP, 
ChemoPy 

VirtualTaste 350 

[https://bit.ly/2UfVFPi] 
Multi-taste classifier 
(RF) 

Sweet 

Bitter 

Sour 

2011 

1612 

1347 

not reported 

In the following, each of the aforementioned tools is examined in detail, dividing 
the discussion into a brief introduction, the “Data preparation and model 
construction” section and the “Model performance” section. 

Sweet Prediction 
a. Chéron Sweet Regressor 

In this work, a Sweet Predictor was created using a new QSAR model 18. This 
model, also applied to external datasets (SuperSweet and SuperNatural II), allowed 
to point out the main physio-chemical features of sweeteners related to their 
potency. 

Data preparation and model construction 
The curated dataset of sweet compounds resulted in the creation of the 
SweetenersDB, which is constituted of 316 compounds with known sweetness 
values relative to sucrose (see Taste and Food-Related Databases chapter for 
further details). The compounds' SMILES were firstly collected in a 2D database, 
and subsequently, 3D representations were created using Marvin, ChemAxon 
(https://www.chemaxon.com), choosing the three with the lowest energy. The 
protonation state was set at the physiological salivary pH value (6.5). 

Dragon descriptors (http://www.talete.mi.it/products/dragon_description.htm) 
were calculated for both the 2D and 3D databases. All features with a correlation 
greater than 0.9 were removed, obtaining 244 descriptors for the 2D molecules and 
265 descriptors for the 3D structures. Finally, all descriptors were normalised. 

The dataset was randomly divided with a 70:30 ratio and the leave-one-out method 
was used for the cross-validation. Support Vector Regression (SVR) and Random 
Forest (RF) were optimised on the training set and the test set was used for the 
model performance evaluation. 

Model performance 
Performance evaluation was obtained using the squared of the correlation 
coefficient (R2). Notably, the SVR reached a slightly better performance than RF 
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on the test set. It is worth mentioning that the models on 2D and 3D datasets reached 
similar performances, suggesting the 2D approach as the best option for fast 
screening since it is much less time-consuming. More in detail, the RF 2D, SVR 
2D, RF 3D and SVR 3D models obtained correlation coefficients on test sets of 
0.74, 0.83, 0.76, 0.85, respectively. 

To evaluate the model applicability domain, SweetenersDB was compared with 
SuperSweet and SuperNatural II. Interestingly, 99.5% of the molecules from 
SuperSweet are similar to structures in SweetenersDB, whereas only about 34% of 
the SuperNatural II database belong to the chemical space defined by 
SweetenersDB. This analysis confirmed the importance of associating an 
applicability domain to a prediction model to measure the reliability of the 
prediction.  

b. Rojas Sweet Predictor 
The present Quantitative Structure-Taste Relationship (QSTR) model is a specialist 
framework created to foresee the pleasantness of synthetic compounds 320. It can 
likewise be utilized to gain a comprehensive understanding between atomic design 
and pleasantness and defining novel sugars. This sweetness prediction model is the 
first QSTR model that considers both molecular descriptors and extended 
connectivity footprints, performing a structure similarity analysis in combination 
with the model prediction. 

Data preparation and model construction 
The starting dataset is TastesDB (see also Taste and Food-Related Databases 
chapter for further details). The dataset includes 649 molecules: 435 sweet, 81 bitter 
and 133 tasteless; the latter two classes were combined into a non-sweet class. 
Extended-connectivity fingerprints (ECFPs) 351 and classical molecular descriptors, 
i.e. Dragon 7 (3763 total descriptors) (https://chm.kode-solutions.net/pf/dragon-7-
0/), were used to describe the molecules of the dataset. In all cases, the 2D 
representation was preferred to the 3D one, to get a conformation-independent 
molecular representation.  

Exploration of the data and similarity analysis was performed using the 
Multidimensional Scaling (MDS), whereas the Partial Least Squares Discriminant 
Analysis (PLSDA) and N-Nearest Neighbors (N3) were employed as classifiers. 
Finally, the V-WSP unsupervised variable reduction method and the Genetic 
Algorithms-Variable Subset Selection (GA-VSS) technique were used as 
dimensionality reduction techniques to retrieve the most informative molecular 
descriptors.  

The dataset was divided into three parts, maintaining the proportion of the classes: 
the training set consisting of 488 compounds (161 non-sweet and 327 sweet 
molecules), the test set consisting of 161 molecules (53 non-sweet and 108 sweet 
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molecules), and finally, the last part was used as an external dataset. Moreover, a 
5-fold CV was employed for the GA-VSS and the Monte Carlo (leave-many-out) 
random sub-sampling validation of the system. These methods iteratively and 
randomly divided the molecules into training (80%) and evaluation (20%) sets. 

Model performance 
Specificity (SP), sensitivity (SN) and non-error rate (NER), which is more efficient 
in the case of unbalanced datasets, were used as performance metrics. The two final 
models, made with six molecular descriptors, were chosen based on the NER 
classification parameter. Since PLSDA and N3 are based on distinct methods and 
descriptors, a consensus analysis was employed to improve prediction 352. 
Therefore, a molecule was classified if both models showed the same result and not 
classified otherwise.  

Performance in calibration (SE = 79.2%, NER = 85.2%, SP = 91.3%, not assigned 
= 33%), in cross-validation (SE = 77.2%, NER = 83.1%, SP = 89.0%, not assigned 
= 32%), in the Monte Carlo validation (NER = 88.7%, SE = 92.7, SP = 84.8%, non-
assigned = 20.5%) and in the 161 test molecules (NER = 84.8%, SE = 88.0%, SP = 
81.6%, non-assigned = 19.3%) confirm the model stability. The consensus analysis 
improved the overall performance of the model. Notably, the model calibration was 
performed only on a cluster of the complete dataset, that was derived from the MDS 
analysis. The remaining part of the original dataset was classified using similarities 
scores combined with the aforementioned models.   

c. Goel Sweet Regressor 
The present Sweet Regressor tool is a QSAR model able to estimate the relative 
sweetness level of a test compound with respect to the sweetness of sucrose 338. 
This tool can act as a pre-processing step in the design of new sweeteners by 
pointing out their crucial structural requirements. 

Data preparation and model construction 
The dataset was collected from several publications 353–357, resulting in 487 unique 
molecules with relative sweetness compared to sucrose (ranging from −0.699 to 
5.334) calculated as described for the SweetenersDB (see also the Taste and Food-
Related Databases chapter). Compounds SMILE were converted to 3D structures 
and Material Studio v6.0 was used to calculate 564 molecular descriptors. After 
performing a correlation analysis, only 61 descriptors were maintained and, after 
removing outliers, the remaining 455 molecules were randomly divided between 
the training and test sets (70:30 ratio). 

Two QSAR models were developed using Artificial Neural Network (ANN) and 
Genetic Function Approximation (GFA) algorithms. 

Model performance 
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Performance was assessed using the correlation coefficient for the training set, 
leave-one-out method and test set (Rtraining

2, Rcv
2 and Rtest

2), Mean Absolute Error 
(MAE), Mean Absolute Percentage Error (MAPE) and Mean Square Error (MSE). 
Statistical parameters of ANN (Rtraining

2 = 0.889, Rtest
2 = 0.831) and GFA with linear 

spline (Rtraining
2 = 0.864, Rtest

2 = 0.832) were comparable and both QSAR models 
demonstrated a reasonable prediction accuracy. GFA allows the development of 
numerous models, autonomously selecting features and broadening the number of 
terms used in model construction and easily interpreting the data. On the other hand, 
ANN can further explain hidden relationships between complicated data and depict 
patterns and trends, but it lacks interpretability.  

d. e-Sweet 
e-Sweet is a free tool to predict the sweet taste of analysed chemicals and their 
relative pleasantness (RS) 339. 

Data preparation and model construction 
The entire dataset includes 1380 compounds, divided into sweet and non-sweet. 
Sweet compounds are 530 sugars curated from SuperSweet, SweetenersDB and 
previous literature 320,348, while 850 non-sweet comprise 718 entries from BitterDB 
and 132 recovered from the literature 320.  

The 80:20 data splitting scheme was adopted, resulting in 883 compounds for 
training and internal 5-fold CV and 221 compounds for the test. Features were built 
using Extended-connectivity Fingerprints (ECFP) 351 and subsequently selected by 
their importance in a trained RF model. Implemented algorithms comprised KNN, 
SVM, GBM, RF and DNN with different splitting procedures (19 different splits 
for the former four models and 3 different splits for DNN) to reduce the bias yielded 
by specific splits. A total of 1312 models were first assessed individually and 
subsequently combined to form a pool of 4 Consensus Models (CM), that leverage 
the combination of individual models to improve overall classification 
performance. 

Model performance 
Model performance was assessed based on widely used metrics (F1-score, 
specificity, sensitivity, accuracy, precision, Matthews Correlation coefficient 
(MCC), Non-Error Rate (NER)). F1-score metric was chosen as the final algorithm 
selection criterion and, subsequently, a Y-randomization test was performed for a 
direct assessment of model robustness. 

The split-averaged performance of the best CM on the test set reached 91% of 
accuracy, 90% precision, 94% specificity, 86% sensitivity, F1-score of 88%, MCC 
of 81%, and 90% NER, all with 95% confidence intervals of ± 1%.  

e. Predisweet  
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Predisweet is a free-available web server 
(http://chemosimserver.unice.fr/predisweet/) capable of predicting sweet taste and 
the relative sweetness (in logarithmic scale) of compounds 340. The applicability, 
reliability, and decidability domains have been used to estimate the quality of each 
prediction. 

Data preparation and model construction 
The tool is based on the SweetenersDB, collecting 316 compounds with their 
relative sweetness (see also Taste and Food-Related Databases chapter) 18. Two 
other databases, namely Super-Natural II database 322 and the phyproof catalogue 
from PhytoLab (https://www.phytolab.com/en/), were considered as an external 
dataset (4796 natural compounds). 

Each compound was collected as SMILE and sanitized using RDKit 
(https://www.rdkit.org/). The protonation state was predicted using ChemAxon 
(http://www.chemaxon.com/) at the physiological pH of saliva (pH=6.5). 
Molecules were standardized using the flatkinson standardiser 
(https://github.com/flatkinson/standardiser) and further processed with a Python 
package, removing salts and applying specific rules to normalize the structures. 
Molecular descriptors were calculated using Dragon v6.0.38, RDKit, Mordred 358 
and ChemoPy 359 packages. Descriptors from the latter three methods (506) were 
defined as “open source” descriptors, as opposed to Dragon ones (635). 

The Sphere Exclusion clustering algorithm divided the SweetenersDB into the 
training set (252 compounds) and the test set (64 compounds).  

Several regression algorithms were tested, including Support Vector Machine 
(SVM), k-Nearest Neighbors (KNN), Random Forest (RF) and Adaptative 
Boosting with a Decision Tree base estimator (AB), and the 5-fold CV was 
employed to avoid asymmetric sampling and overfitting.  

Model Performance 
Predictive performance is assessed through Golbraikh and Tropsha criteria 360 and 
the AdaBoost Tree was considered the best method for both models. The obtained 
models reach R2 higher than 0.6 (0.74 for the Open-source and 0.75 for the Dragon 
model) and Q2 higher than 0.5 (0.84 for the Open-source and 0.79 for the Dragon 
model) for both models. Notably, since less information was available regarding 
potent sweeteners, developed models perform worst for high sweetness values. The 
open-source and the Dragon models reached similar performances showing good 
prediction on the test set. Therefore, the open-source version was used for the 
webserver (http://chemosimserver.unice.fr/predisweet/) implementation of the 
algorithm.  

The quality of the prediction for each query is evaluated based on three metrics: (i) 
the applicability domain, which measures if the investigated compound is in the 
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range of descriptors of the training set, (ii) the reliability domain, which considers 
the density of information around the compound, and (iii) the decidability domain, 
which is the confidence of the prediction. The resulting quality of the prediction is 
also reported for the user when using the webserver platform.  

Bitter Prediction 
a. BitterX 

BitterX is a web-based platform (http://mdl.shsmu.edu.cn/BitterX/) available for 
free 341. This tool implements two different models, i.e. the bitterant verification 
model, which allows the identification of a bitter compound, and the TAS2R 
recognition model, which predicts the possible human bitter taste receptors, among 
the 25 known TAS2Rs. Such predictions were validated experimentally. 

Data preparation and model construction 
The interaction between the TAS2Rs and bitter compounds were curated from 
PubMed and BitterDB. A total of 539 bitter compounds were obtained to constitute 
the positive set, and their molecular structures were achieved from Pubchem. The 
negative set included 20 true non-bitterants (in-house experimental validation) and 
519 molecules from the Available Chemicals Directory (ACD, 
http://www.accelrys.com). The final dataset contained 1078 compounds, equally 
divided into positive and negative bitter molecules. Molecular structures were 
obtained from PubChem and processed with in-hose program Checker and 
ChemAxon’s Standardizer (http://www.chemaxon.com). On the other hand, the 
initial dataset for the TAS2R prediction model was taken from the literature and 
includes 2379 negative and 260 positive bitterant-TAS2R interactions. Due to the 
huge difference between the two dataset sizes, all the 260 non-redundant 
experimentally verified bitterant-TAS2R interactions were considered, while just 
260 bitterant-TAS2R couples were selected as negatives to balance the dataset. 

Physiochemical descriptors for compounds were chosen based on the Handbook of 
Molecular Descriptors 342, resulting in 46 and 20 descriptors for the bitterant 
verification and TAS2R recognition models, respectively. Moreover, 15 descriptors 
were used for the TAS2R representation in the TAS2R recognition model. The 
descriptors were chosen using a Feature Selection (FS) method based on a Genetic 
Algorithm (GA).  

BitterX employs the support vector machine (SVM) classifier: the training was 
divided into two categories (+1 and -1) that represent the classification between 
bitter and non-bitter (and the bitterant-TAS2R interaction or not). The SVM + 
sigmoid method was implemented to value the probability that a molecule is bitter 
in the bitterant authentication and the probability of a bitterant binding to TAS2Rs 
in the TAS2R recognition model.  
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Data for algorithm training and test were used by adopting an 80:20 splitting 
strategy. For the bitterant verification model, this results in 862 and 216 compounds 
for training and test, respectively. To avoid any error derived from a particular data 
splitting, the other two partitions were made randomly from the general database, 
always following the equipartition between bitter and non-bitter molecules. 
Similarly, the TAS2R recognition dataset was also divided with a 4:1 ratio. Lastly, 
a 5-fold CV ensured the robustness of the classification algorithm. 

Model performance 
To evaluate and compare the model, four indices were calculated: precision, 
accuracy, sensitivity and specificity. Furthermore, the trade-offs between SE and 
SP were assessed by performing the ROC curve and calculating the AUC value.  

Considering both the training (5-CV) and test sets, the bitterant verification model 
reached specificity, precision and sensitivity values above 90%, AUC above 94% 
and accuracy above 87%, whereas the TAS2R recognition model reached above 
76% for the accuracy, above 75% for precision and specificity, above 78% for 
sensitivity and above 81% for AUC. 

b. BitterPredict 
BitterPredict is a bitter prediction tool published in 2017 343. This work is developed 
in the commercial MATLAB environment and the code is available on GitHub 
(https://github.com/Niv-Lab/BitterPredict1). The users should provide an Excel or 
CSV file with calculated properties by the commercial Schrödinger software and 
QikProp package.  

Among random molecules screened by the tool, a high percentage is represented by 
bitter compounds. These include many synthetic molecules (66% of drugs are 
bitter) and natural compounds (up to 77%). It is worth mentioning the relatively 
high percentage of bitter food (38%), considering the natural aversion of humans 
towards the bitter taste. 

Despite its great functionality, high accuracy (~80%) and the ability to screen a 
general chemical space, this tool presents some limitations, including (i) the 
prediction of only molecules in defined chemical space, named Bitter Domain, (ii) 
the inability to discriminate between weakly and strong bitter compounds, (iii) an 
unbalanced dataset (positive set three times smaller than the negative set).  

Data preparation and model construction 
The dataset was processed using Maestro, Epik and LigPrep (Schrödinger), 
removing uninterested structures and assigning the correct protonation state 
according to pH 7.0 ± 0.5. Then, non-neutralised molecules and molecules with 
identical descriptors were removed from the dataset to allow the calculation of the 
QikProp descriptors and obtain a non-redundant dataset. The whole prediction was 
made within a restricted chemical space called Bitter Domain to identify a region 



80 Taste Prediction Empowered by Machine Learning 

 

in which 97% of the bitter molecules is included. This domain is defined by a 
hydrophobicity (AlogP) range of −3 ≤ AlogP ≤ 7 and a molecular weight MW ≤ 
700. This preparation procedure was applied to each database considered to build 
the final dataset.  

Bitter Set (positive set) includes all molecules considered as bitter (691): 632 
structures from BitterDB and 59 molecules from literature 361. On the other hand, 
the Non-Bitter Flavors set (negative set) consisting of 1917 non-bitter molecules: 
“probably not bitter” compounds gathered from Fenaroli’s handbook of Flavor 
ingredients (1451), sweet (336) and tasteless (130) molecules from Rojas et al. The 
validation set consisted of Bitter New, i.e. 23 molecules stored recently from 
several publications to increase BitterDB, UNIMI set, i.e. 56 synthesized 
molecules, and the Phytochemical Dictionary, consisting of 26 non-bitter and 49 
bitter compounds inside the Bitter Domain. Moreover, a set of data was collected 
for the sensory evaluation. 1047 molecules were retrieved from the Sigma-Aldrich 
flavours and fragrances catalogue 
(https://www.sigmaaldrich.com/IT/it/applications/food-and-beverage-testing-and-
manufacturing/flavor-and-fragrance-formulation). After data curation, 264 entries 
were selected as the Bitter Domain. Finally, a data set for prospective prediction 
was collected merging DrugBank approved drugs, FooDB, Natural Products 
Dataset from ZINC15 and ChEBI. Compounds in the Bitter Domain from these 
widely used DBs were 1375, 13588, 27474 and 27015, respectively.  

Molecular descriptors (59) were calculated with Canvas (Schrödinger) and QikProp 
(Schrödinger).   

The final input dataset was divided into 30% (test set) and 70% (training set) 
randomly, following the hold-out method and preserving the original proportions. 
To avoid overfitting, models were optimised by evaluating their performance only 
in the hold-out test.  

The algorithm implemented by BitterPredict is AdaBoost. The ensemble method 
models used are Fitensemble and TreeBagger, which combines the outcomes of 
several decision trees, decreasing the impacts of overfitting and enhancing the 
generalization ability of the model.  

Model performance 
The two parameters applied to evaluate the classification models were sensitivity 
(SE) and specificity (SP). For the training set, the SE was 91% and SP 94%, for the 
test set SE was 77% and SP 86%. Furthermore, a model evaluation based only on 
the non-bitter datasets was made among sweet, tasteless and non-bitter flavours. In 
this context, the dataset that shows a better specificity was the non-bitter flavours, 
with a value of 86%. 
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The BitterPredict study also analyzed the impact of diverse descriptors estimating 
their contribution in reducing the error. Notably, the most important descriptor was 
the total charge and most of the bitter molecules were positively charged presenting 
an ammonium ion at physiological pH. Moreover, QikProp descriptors linked to the 
compound toxicity seems to have a greater impact on the model if compared to 
general properties descriptors. 

The validation of BitterPredict was performed in three phases, as follows. 

(i) Validation using external sets (see Data preparation and model construction 
for further details) tested the algorithm on datasets never seen before by the 
algorithm to avoid overfitting. Excellent performance was achieved, with a 
specificity of 69%-85% and sensitivity of 74%-98%. 

(ii) Validation by literature mining consisted of a selection of 60 compounds from 
a DrugBank set of FDA approved drugs, half of which with the best and half 
of which with the worst score of bitter prediction according to BitterPredict. 
The results from literature research indicated that almost 60% of the top 30 
bitter molecules were declared to have a bitter taste, while only 20% of the 30 
non-bitter molecules had a probable indication of a bitter taste. 

(iii) For the validation by taste tests (sensory evaluation), 12 participants were 
selected to evaluate the taste of 6 compounds predicted as non-bitter by 
BitterPredict among the 264 compounds taken from fragrances catalogue and 
Sigma-Aldrich flavours (see also Data preparation and model construction 
section). None of the six compounds differed in bitterness from the control 
(water) with the Dunnett test (alpha = 0.05), whereas the Quinine (established 
bitter molecule) demonstrate a considerably higher bitterness compared to 
water.  

The three validation protocols indicated that BitterPredict allows obtaining reliable 
and satisfactory performance both for the bitter and non-bitter prediction.  

Finally, the BitterPredict classifier was applied to DrugBank approved, FooDB, 
Natural Products Dataset from ZINC15 and ChEBI datasets (see also see Data 
preparation and model construction). The results highlight that the percentages of 
bitter molecules are respectively 65.94%, 38.36%, 77.21% and 43.71%. 

c. e-Bitter 
Developed by the same research group that created e-Sweet  339, e-Bitter is a free 
graphic program published in 2018 for bitter prediction, which natively implements 
the ECFP fingerprint and the analysis of the structural features 344. Differently from 
other works 341,343, e-Bitter considers only experimentally confirmed non-bitterants, 
i.e. 592 compounds comprising tasteless, sweet and non-bitter chemicals. e-Bitter 
code is publicly available 
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(https://www.dropbox.com/sh/3sebvza3qzmazda/AADgpCRXJtHAJzS8DK_P-
q0ka?dl=0).   

Data preparation and model construction  
The dataset contains experimentally confirmed 707 bitter compounds, derived 
mostly from BitterDB 16 and literature research 318,320, and 592 non-bitter 
compounds (132 tasteless, 17 non-bitter and 443 sweet). Sweet compounds were 
obtained from SweetnersDB, SuperSweet and previous literature 361,362. The same 
compounds but with a different taste or from different datasets, or compounds such 
as salts or ions, were excluded, while all structures containing common elements 
were retained. e-Bitter uses Extended-Connectivity Fingerprints (ECFPs) as 
molecular descriptors 351. Similarly to e-Sweet 339, the implemented algorithms 
were KNN, SVM, GBM, RF and DNN. Models were tested both with and without 
feature selection 363.  

The splitting of the dataset follows the same criterion as previously described in e-
Sweet: 1030 compounds (556 bitter and 474 non-bitter), i.e. 80% of the initial 
dataset, were employed as training data and for internal validation while the 
remaining ones, consisting of 259 compounds (141 bitter and 118 non-bitter) were 
used for performance testing. 

Model performance 
The metrics employed to assess the model performance include precision, 
Matthews correlation coefficient (MCC), sensitivity, accuracy, specificity, F1-
score and ΔF1 – score (difference between the F1-score in cross-validation and the 
test set). Moreover, the reliability of the developed models was accessed using the 
Y-randomisation test, as for the e-Sweet model. Finally, an applicability domain 
based on the Tanimoto similarity was implemented to avoid non-reliable 
predictions on compounds highly diverse from compounds in the dataset.  

Starting from an initial set of 1312 models, 96 averaged models (over adopted data 
partitioning schemes), and 9 consensus models were tested. Best performance was 
obtained by top average models trained with DNN3 (ACC = 92.0%, SP = 80.8%, 
SE = 98%, MCC = 82.3%, F1-score = 94.1%). 

d. iBitter-SCM 
The iBitter-SCM tool is the first computational model that provides a prediction of 
the peptides’ bitter taste starting with their AA sequence independently from 
structural and functional information 317. iBitter-SCM is freely available as a web 
server (http://camt.pythonanywhere.com/iBitter-SCM) and all codes and datasets 
are also on GitHub (https://github.com/Shoombuatong2527/Benchmark-datasets). 

Data preparation and model construction 
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The dataset BTP640 (see also Taste and Food-Related Databases chapter for 
further information) includes 640 molecules equally divided between bitter and 
non-bitter (training set 80% and test set 20%).  

Features representation was realized using the dipeptide composition (DPC). 
iBitter-SCM is based on the scoring card method (SCM), which enabled robust 
protein and peptide function prediction and analysis without any information 
regarding their structure and relying instead on so-called propensity scores of 
individual peptides and amino acids. More in detail, after preparing a training 
dataset and an independent dataset, the workflow started by determining the initial 
propensity scores (init-DPS) of dipeptides using statistics and subsequently 
applying Genetic Algorithms (GAs) to refine and optimize the score to the so-called 
optimized dipeptide propensity score (opti-DPS). Finally, the individual amino acid 
propensity score was again extracted by statistical methods enabling the final 
discrimination between bitter and non-bitter peptides employing a weighted sum 
with opti-DPS. In a nutshell, these scores represent the link between peptide 
composition and function, by directly quantifying the contribution of individual 
amino acids on the physical-chemical characteristics. Furthermore, informative 
physicochemical properties (PCPs) of individual amino acids, i.e. their direct 
involvement in fundamental biological reactions and pathways, were taken from 
the amino acid index database (AAindex) 364.  

Model performance 
The model was assessed with several performance metrics: accuracy (ACC), 
specificity (SP), sensitivity (SE) and Matthew coefficient correlation (MCC) and 
AUC.  
The performance of the opti-DPS and the init-DPS were compared using the 10-
fold cross-validation and the independent test. The best model (opti-DPS) was 
chosen based on the best performance on the 10-fold CV and independent test sets 
(ACC = 84.38%, SE = 84.38, SP = 84.38, MCC = 68.8%, AUC = 90.4%). Notably, 
the best opti-DPS outperforms init-DPS with enhancements on ACC, SN, SP and 
MCC and iBitter-SCM, compared with other traditional ML models (KNN, NB, 
DT, SVM, RF), demonstrated better performance and greater robustness.  

e. BERT4Bitter 
After creating iBitter-SCM, the same research group developed BERT4Bitter, a 
similar tool for the classification of bitter peptides 345. BERT4Bitter dataset is 
publicly available and the developed model is freely accessible through a user-
friendly web server interfacehttp://pmlab.pythonanywhere.com/BERT4Bitter.  

Data preparation and model construction  
The dataset used to develop the BERT4Bitter model is the same used for the iBitter-
SCM method, i.e. the BTP640 317 (see also Taste and food-related databases 



84 Taste Prediction Empowered by Machine Learning 

 

chapter for further details). Using the same 80:20 splitting ratio, the BTP640 dataset 
was randomly divided for training and testing.  

The peptide sequence featurization was achieved through the natural language 
processing (NLP) techniques, specifically using Pep2Vec 365 and FastText 366. Each 
of the 20 amino acids is considered as a word and each peptide sequence was 
translated into a sentence (an n-dimensional word vector). In the same framework, 
the importance of each amino acid in the analyzed sequences was evaluated with 
the TFIDF method 367. 

Three different deep-learning-based models, i.e. convolutional neural network 
(CNN), long short-term memory (LSTM) neural network and BERT-based model, 
were implemented using different numbers of layers (6, 5, 12, respectively) and 
rationally compared.  

Model performance 
Model evaluation was accessed both in the 10-fold CV and independent test-set. 
According to the cross-validation performance, the BERT model outperformed the 
CNN and LSTM ones in all the evaluation metrics (ACC = 0.86, AUC = 0.92, SP 
= 0.85, SE = 0.868, MCC = 0.72).  

Notably, considering the independent test-set performance, BERT4Bitter 
outperformed the iBitter-SCM tool with ACC and MCC of 0.92 and 0.84, 
respectively, demonstrating a stronger predictive ability in discriminating bitter and 
non-bitter peptides. 

f. iBitter-Fuse 
After the development of iBitter-SCM and BERT4Bitter, the same research group 
implemented an improved bitter/non-bitter peptides predictor, called iBitter-Fuse 
346. This model overcomes some of the main drawbacks of the previous ones, 
including the generalization capability linked to the feature representation, over-
fitting, redundancy and the overall performance. Exploiting several feature 
encoding schemes and customized algorithms to identify the most informative 
features, iBitter-Fuse outperformed both iBitter-SCM and BERT4Bitter, 
establishing itself, at the moment, as the best tool for the prediction of bitter 
peptides.  

Data preparation and model construction  
BTP640 was again used as starting dataset as done for iBitter-SCM and 
BERT4Bitter and the same 80:20 partition scheme was applied to effectively 
compare their performance. 

Five feature encoding methods, including dipeptide composition (DPC), pseudo 
amino acid composition (PAAC), amino acid composition (AAC), physicochemical 
properties from AAindex (AAI) and amphiphilic pseudo amino acid composition 
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(APAAC), and a merged feature (DPC + PAAC + AAC + AAI + APAAC), were 
calculated to consider both composition and physicochemical properties.  The 
model is based on an SVM algorithm and the feature selection was performed using 
a customised GA algorithm using self-assessment-report (GA-SAR) 368.  

Model performance 
The fused feature allows obtaining the best performance (ACC, MCC, AUC) on the 
cross-validation, outperforming the other five feature encoding methods. To reduce 
the number of fused features (994), the GA-SAR was applied and 36 features were 
consequently maintained. 

Performance evaluation demonstrated that iBitter-Fuse outperformed the previous 
tools for predicting the bitterness of peptides, i.e. iBitter-SCM and BERT4Bitter, 
suggesting that it is a more reliable and accurate tool. More in detail, the present 
SVM-based model reached ACC, SE, SP, MCC and AUC of 93.0%, 93.8%, 92.2%, 
85.9% and 93.3%, respectively.  

g. BitterIntense 
BitterIntense is a unique tool able to quantify the bitter intensity of a query 
molecule, discriminating between two classes, i.e. “not very bitter” (NVB) and 
“very bitter” (VB) 347. This tool is paramount not only for food research but also for 
pharma and biotechnology industries: the ability to predict the level of bitterness 
during the drug discovery process represents a promising opportunity for reducing 
delays, animal use and financial costs. In fact, the intensely bitter taste is often 
associated with difficulties in taking medication, especially for children and elderly 
people. BitterIntense, published at the end of 2020, was also applied to widely 
known databases, such as DrugBank, and specific COVID-19 drug candidate 
datasets, highlighting interesting considerations regarding bitter intensity and 
toxicity.  

Data preparation and model construction 
The screening of bitter compounds was performed employing the rat brief-access 
taste aversion (BATA) model, obtaining 34 compounds. The dataset collects 
BitterDB and AnalytiCon’s repository of natural compounds and counts about 180 
molecules with a specified bitter intensity. The bitter recognition threshold is 0.1 
mM: below this concentration, the molecules were considered “very bitter” (VB), 
whereas above this value “not very bitter” (NVB). Molecules without quantitative 
information were assigned to VB/NVB classes according to the taste descriptions. 
A non-bitter database of 152 randomly selected compounds from the negative set 
of BitterPredict was added to NVB class. 

Moreover, external datasets have been screened using the optimized model. 
Toxicity data includes the FocTox dataset, i.e. extremely hazardous compounds and 
FAO/WHO food contaminants, and the CombiTox dataset, i.e. a combination of 
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DSSTox-the Distributed Structure-Searchable Toxicity Database and Toxin and 
Toxin-Target Database version 2.0 (T3DB) 331. Hepatotoxicity data was retrieved 
from FDA’s DILIrank dataset 369. Finally, external datasets include DrugBank 327, 
consisting of approved and experimental drugs, COVID 19 drugs and their targets 
retrieved from ‘‘Coronavirus Information. IUPHAR/BPS Guide to Pharmacology” 
and Natural products atlas (NPatlas, version 2019_08) 329. 

SMILES were processed using Maestro (Schrödinger) (3D reconstruction, 
protonation at pH 7.0 ± 0.5, removal of additional molecules and generation of 
conformers). Molecular descriptors were calculated using Canvas (Schrödinger) 
and were divided into three groups, i.e. Physicochemical, Ligfilter and QikProp. 
Compounds not having one of these were excluded. Feature selection was 
performed using the feature importance gain score, obtaining a total of 55 features 
(from the starting 235).  

The dataset was randomly divided into a training set (169 VB and 324 NVB), a test 
dataset (43 VB and 80 NVB) and the hold-out set for an external evaluation (31 VB 
and 74 NVB).  

The algorithm used was the Extreme Gradient Boosting (XGBoost). Logarithmic 
loss and binary classification error rate were selected to monitor step by step the 
algorithm performance and stop it when the improvement subsides. Parameters of 
the models were tuned through a 10-fold CV.  

Model performance 
Performance evaluation was made for the three different datasets, i.e. training set 
(with 10 fold CV), test set and hold-out set, and for each of them accuracy (ACC), 
precision, sensitivity (SENS) and F1 score were calculated (ACC over 80% in all 
sets, PRC: 80%, 71%, 63%; SE: 85%, 86%, 77%; F1-score: 82 ± 5%, 78%, 70%, 
respectively). From these results, there are more false positives than false negatives, 
indicating the maximization of the identification of very bitter compounds. 

From the analysis of the feature importance, the algorithm pointed out the role of 
the molecule’s size and molar refractivity (a measure of polarizability) in 
determining the bitterness level, suggesting also a correlation between molecule 
size and bitter intensity.  

BitterIntense applied to toxic databases, i.e. FocTox and CombiTox datasets, 
revealed that only a small portion (about 10%) of toxic substances are intensively 
bitter. The use of the BitterIntense model to the DILIrank dataset allows the 
evaluation of the correlation between bitterness level and hepatotoxicity, showing 
that most of the drugs (729) were classified as NVB. Then, approved and 
experimental compounds from Drugbank database (10170 compounds) and natural 
compounds from NPatlas (24805 compounds) were screened, showing that almost 
half of microbial natural products, but only 23.7% of drug candidates are predicted 
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as VB. Finally, 34 potential drug candidates against COVID-19 retrieved from 
“Coronavirus Information – IUPHAR/BPS Guide to Pharmacology” were 
classified, showing that 41.2% of them are likely VB, thus significantly higher than 
the percentage of VB drug compounds from Drugbank, suggesting a possible 
involvement of the bitter taste and bitter receptors in this disease. 

Umami Prediction  
a. iUmami-SCM 

iUmami-SCM is the first umami taste predictor based on umami peptide primary 
sequence information 319. iUmami-SCM is a webserver 
(http://camt.pythonanywhere.com/iUmami-SCM) and related datasets are available 
on GitHub (https://github.com/Shoombuatong/Dataset-Code/tree/master/iUmami). 

Data preparation and model construction  
The dataset, known as UMP442, contains 140 proved umami peptides and 304 
bitter structures taken from iBitter-SCM as negative samples (see also Taste and 
food-related databases for further details). Interestingly, the peptide length of both 
positive and negative samples is less than 10 amino acid residues. UMP442 was 
divided randomly into two parts keeping the unbalancing between the positive and 
negative data: the training set, made up of 80% of the dataset, was employed for the 
generation of an initial scoring card with a statistical approach and its optimization 
through a GA algorithm and the independent set (UMP-IND), composed of 20% of 
the dataset, was employed for performance evaluation. Dipeptides propensity 
scores and informative physicochemical properties were employed as features in 
this model.  

Model performance 
Prediction performance depends on the optimal dipeptide propensity score (opti-
DPS), therefore 10 opti-DPS were evaluated with a 10-fold CV and compared with 
the initial dipeptide propensity score (init-DPS). Notably, compared to other 
traditional ML methods (DT, KNN, MLP, NB, SVM, and RF), iUmami-SCM 
demonstrated better performance.  

iUmami-SCM reached on the test set accuracy of 86%, MCC of 68%, AUC of 
89.8%, sensitivity of 71.4% and a specificity of 93.4%. All these reported 
performances were calculated on the opti-DPS. However, due to the reduced 
numbers of peptides used for the model construction, iUmami-SCM presents as a 
major shortcoming a limited ability to correctly generalise the prediction. 

Multi-Taste Prediction 
a. BitterSweet Forest 
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BitterSweetForest is an open-access model based on KNIME created in 2018. This 
machine learning classifier predicts the sweetness and the bitterness of chemical 
compounds using binary fingerprints 348. 

Data preparation and model construction  
The dataset contains 517 artificial and natural sweet compounds, derived from 
SuperSweet, and 685 bitter molecules, taken from BitterDB. Instant Jchem software 
was employed for molecules standardization. All duplicated molecules were 
removed. Four different binary fingerprints were calculated with RDKit node in 
KNIME: Morgan fingerprint, Atom pair fingerprints, Torsion fingerprint and 
Morgan Feat fingerprints. Training and test sets were obtained with an 80:20 
partitioning scheme, keeping the balance between the two classes. To avoid 
overfitting, a leave-one-out cross-validation (LOO) was performed. A Random 
Forest with Tree Ensemble Learner and Predictor nodes in KNIME 370 was 
implemented and a Bayesian-based features detection was applied to analyse the 
important and frequent features. 

Model performance 
The model was evaluated with several performances: accuracy, sensitivity, 
specificity, precision, F-score, ROC-AUC and Cohen’s kappa. The BitterSweet 
model reached accuracy of 96.7%, AUC of 98% and sensitivity of 91% and 97% 
for sweet and bitter prediction respectively. Bayesian-based feature detection 
emphasised the independence between the top 10 features of sweet and bitter 
molecules, despite the two molecule sets appearing to show similar characteristics.  

The performance was also calculated in an external validation set, which includes 
bitter, sweet and tasteless molecules. Despite tasteless molecules are not included 
in the training dataset, the model provided good results, and this suggests the 
features employed are specific for bitter and sweet prediction. Interestingly, the 
screening of SuperNatural II, DrugBank approved drug molecules and ProTox, 
including oral toxicity compounds, showed that most molecules exhibited bitter 
features and toxic substances are normally bitter. 

b. BitterSweet 
BitterSweet is a freely accessible tool created in 2019 to classify bitter-sweet 
molecules 349. To boost the progress in the knowledge of bitter-sweet taste 
molecular basis, the creators of this tool make all datasets, models and even end-to-
end software publicly available (https://cosylab.iiitd.edu.in/bittersweet/; 
https://github.com/cosylabiiit/bittersweet). 

Data preparation and model construction  
The dataset was created avoiding two problems observed in previous studies: the 
use of unverified flavour molecules in the training dataset, as happened in 
BitterPredict and BitterX, and the use of only experimentally verified data, leading 
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to a drastic reduction in the dataset size. The dataset contains around thousands of 
chemicals among bitter, non-bitter, sweet and non-sweet compounds retrieved from 
literature 318,320,343, pre-existing databases, i.e. SuperSweet, The Good Scents 
Company Database, BitterDB and books, i.e. Fenaroli’s Handbook of Flavor 
Ingredient And Biochemical Targets of Plant Bioactive Compounds. Moreover, as 
the control for bitter and sweet prediction, tasteless and contrasting taste 
compounds, derived from ToxNet, TastesDB and Fenaroli’s Handbook of Flavor 
Ingredient, were introduced in the dataset. The canonical SMILES were extracted 
through OpenBabel 371. Duplicate structures, peptides, molecules with only three 
atoms and salt ions were removed, while only the lowest energy conformer for each 
molecule was retained. The chirality of the molecule was preserved. The 3D 
conformation and protonation state at physiological pH (7 ± 0.5) were carried out 
using Epik 372 and LigPrep (Schrödinger). 

The training dataset for bitter/non-bitter prediction included 813 bitter molecules as 
positive data and 1444 sweet and tasteless molecules as the negative set, while for 
sweet/non-sweet prediction it consisted of 1139 sweet molecules as the positive set 
and 1066 bitter and tasteless compounds as the negative set. The test dataset was 
formed by 105 bitter and 66 non-bitter structures in the bitter prediction and 108 
sweet and 53 bitter/tasteless molecules in sweet prediction. Moreover, a 5-fold 
stratified CV was performed to assess the model parameters.  

A five-set of molecular descriptors, both commercial and open-source, was 
employed to create an exhaustive set of features: Physicochemical and ADMET 
descriptors from Canvas, Extended Connectivity Fingerprints (ECFP), 2D 
Molecular Descriptors and 2D/3D Molecular Descriptors from Dragon 2D and 
Dragon 2D/3D and 2D Topological and Structural Features from ChemoPy. Due to 
the high number of molecular descriptors, the Boruta algorithm 373 was employed 
to remove irrelevant features and principal component analysis (PCA) to get the 
maximum variance. Three different ML-based models were employed, i.e. Random 
Forest (RF), Ridge Logistic Regression (RLR) and Adaboost (AB). For each 
algorithm and each prediction, the five-set of molecular descriptors were evaluated 
separately. 

Model performance 
BitterSweet model performance was evaluated employing several metrics, 
including the Area Under the Precision-Recall Curve (PR-AUC), ROC-AUC, F1-
score, sensitivity and specificity. The models that best discriminate the sweet non-
sweet dichotomy were AB and RF trained after the Boruta algorithm, while PCA 
performed better than the Boruta algorithm only when coupled with RLR. In 
contrast, the algorithm that best predicts bitter taste was RLR, while the RF 
performed well across all molecular descriptor sets. Furthermore, PCA would seem 
to perform better than the Boruta algorithm. The best descriptors for the sweet 
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prediction were Dragon 2D features, whereas the open-source ChemoPy performed 
better for bitter prediction. 

In conclusion, the best BitterSweet model (with AB algorithm after the Boruta 
feature selection and Dragon 2D/3D features) achieved these performances: ROC-
AUC of 88.3%, PR-AUC of 95%, the sensitivity of 79%, the specificity of 88% and 
the F1-score of 86%. However, in their online tool, they employed ChemoPy 
descriptors with the RF-PCA algorithm as the performance of open-source 
descriptors were comparable to those obtained through proprietary software. The 
results achieved with the BitterSweet model: ROC-AUC of 84% and 88%, PR-
AUC of 93% and 93%, the sensitivity of 59% and 79%, the specificity of 94% and 
85% and the F1-score of 73% and 84%, all the results were reported for sweet and 
bitter prediction, respectively. 

The BitterSweet model was also applied to several specialized chemical databases, 
i.e. SuperSweet, FlavorDB, FooDB, DSSTox, SuperNatural II and DrugBank, 
revealing that the majority of natural, toxic, and drug-like molecules are bitter, 
whereas for food molecules there was the same amount of bitter and sweet 
molecules. 

In conclusion, despite the high accuracy of the BitterSweet open-source predictors, 
its utility is limited to individual compounds, and not for different compounds when 
present in a mixture. 

c. Virtual Taste 
VirtualTaste platform is the first freely available web server able to predict three 
taste qualities (sweet, bitter and sour), thanks to three dedicated tools, i.e. 
VirtualSweet, VirtualBitter and VirtualSour, respectively 
(http://virtualtaste.charite.de/VirtualTaste/)350. The input of the web-based platform 
is the two-dimensional structure of the chemical compound and the output is the 
prediction of the chemical’s taste profile and the targeted TAS2R receptors in case 
of a bitter prediction.  

Data preparation and model construction  
The dataset contains 2011 sweet compounds, collected from the SuperSweet 
database and BitterSweetForest tool, 1612 bitter molecules derived from the 
BitterDB database and BitterSweetForest tool, and 1347 sour compounds obtained 
from ChEMBL 326 and manually edited from literature sources 374. Furthermore, the 
bitter receptor data contains 356 ligands that interact with TAS2Rs receptor 
extracted from BitterDB, ChEMBL and literature. Different structures were 
removed from the database, such as ambiguous compounds, salt and inconclusive 
entries, and then standardised through RDkit in KNIME 370. Each dataset was split 
into two parts, preserving the positive/negative ratio: the training set made up of 
80% of each set of molecules, i.e. 1068 molecules for sweet, 1289 compounds for 
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bitter and 1214 structures for sour, and the remaining chemicals were employed for 
the external validation set. The inactive dataset used in each model were different: 
bitter and tasteless compounds were used as inactive compounds for the sweet 
prediction and sweet and tasteless compounds were employed as inactive 
compounds for the bitter prediction, while the sour prediction used a ligand-based 
approach due to the pH and acid influence present in foods. Moreover, a 10-fold 
CV was applied for model optimisation, keeping the ratio of active and inactive 
structures constant.  

Each VirtualTaste model was based on an RF algorithm, following 
BitterSweetForest, the previous tool developed by the same research group 348. To 
deal with the negative effect of the unbalanced dataset, different data sampling 
methods were applied: the Synthetic Minority Over-Sampling Technique-using 
Tanimoto Coefficient (SMOTETC) technique for VirtualSweet, the Synthetic 
Minority Over-Sampling Technique-using Value Difference Metric 
(SMOTEVDM) method for VirtualBitter and the Augmented Random Over 
Sampling (AugRandOS) method for VirtualSour 375. A similarity-based method 
was employed for the prediction of bitter receptors 376: the similarity between the 
query molecule and known bitter compounds is evaluated using the Tanimoto 
Coefficient and the relative target bitter receptor is then consequently predicted.  

VirtualSweet and VirtualBitter models were also used for taste prediction of 
approved drugs and natural compounds - 1969 chemical compounds from 
DrugBank database and 326000 from SuperNatural II. 

Model performance 
Five performance metrics both in the 10-fold CV and in the external evaluation set 
were utilized. VirtualSweet reached on the external validation 95% for ROC-AUC, 
89% for the accuracy, 92% for specificity, 86% for sensitivity and 88% for F1-
score; VirtualBitter 96% for ROC-AUC, 90% for the accuracy, 97% for specificity, 
88% for sensitivity and 88% for F1-score; VirtualSour 99% for ROC-AUC, 97% 
for the accuracy, 99% for specificity, 80% for sensitivity and 84% for F1-score. In 
conclusion, VirtualTaste is the first tool able to predict with reliable results three 
different taste qualities and achieve comparable or better performance compared to 
similar tools. 

 

3.1.4 Discussion 

In this section, a detailed comparison between all the above-described taste 
prediction tools is provided. The performance of the classification and regressor 
models is summarized in Table 3.4 and Table 3.5, respectively. It is noteworthy that 
these comparative results were not obtained on the same datasets and different 
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evaluation metrics were used in each analysed work. Data in the tables refer to 
performance on the test set. 

Table 3.4. Performance on the test set of the taste prediction classification tools. 

Taste Tool 
Performance (%) 

AUC SE SP ACC PRC NER F1 MCC 

Sweet 

Rojas Sweet Predictor / 88 82 / / 85 / / 

eSweet / 86 94 91 90 90 88 81 

Bitter 

BitterX 95 92 91 92 91 / / / 

BitterPredict / 77 86 / / / / / 

e-Bitter / 98 81 92 / / 94 82 

iBitter-SCM 90 84 84 84 / / / 69 

BERT4Bitter 96 94 91 92 / / / 84 

iBitter-Fuse 93 94 92 93 / / / 86 

BitterIntense / 86 81 83 71 / 78 / 

Bitter-
Sweet 

BitterSweet Forest 98 91 97 97 / 94 92 / 

BitterSweet (Sweet) 84 59 94 / / 77 73 / 

BitterSweet (Bitter) 88 79 85 / / 82 84 / 

Umami iUmami-SCM 90 71 93 87 / / / 68 

Sweet-
Bitter-
Sour 

VirtualSweet 95 86 92 89 / / 88 / 

VirtualBitter 96 88 97 90 / / 88 / 

VirtualSour 99 80 99 97 / / 84 / 

 

Table 3.5. Performance on the test sets of the sweet prediction regression tools. 

Tool 
Performance 

R2 MAE MSE 

Chéron Sweet Regressor 0.85 / / 
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Goel Sweet Regressor 0.83 0.39 0.23 

Predisweet 0.74 0.50 0.44 

 

At present, it is evident that there is a net prevalence of tools for predicting sweet 
and bitter tastes. It is worth noting that only one example to predict the umami taste 
(iUmami-SCM) and one for the sour taste (VirtualSour in VirtualTaste) exist, and 
no tools for predicting the saltiness have been released, as far as the authors know. 
Moreover, the definition of a regression algorithm was possible only for the sweet 
taste (Chéron  Sweet Regressor, Goel Sweet Regressor and PrediSweet) since, to 
date, no database for other taste sensations provides quantitative data concerning 
the level of the perceived taste. However, BitterIntense, despite being a 
classification algorithm, discriminates between “very bitter” and “non very bitter” 
compounds, thus accessing the level of bitterness of query molecules.  

Despite all prediction tools employ a different methodology, a common structural 
features can be noticed among all of them, which is typical of most ML workflows: 
(i) the definition of a compound database also including the respective taste, 
preferably experimentally validated; (ii) the compound featurization, i.e. the 
derivation of effective molecular descriptors; (iii) the dataset splitting into training 
and test sets (and in some cases also a validation set); (iv) the choice of the ML 
method for the classification/regression; (v) performance evaluation and validation. 
It is worth mentioning that most of the discussed algorithms followed the guidelines 
defined by the Organization for Economic Co-operation and Development 
(OECD), which indicates the strategies for correct development and validation of 
robust QSAR models: (i) a defined endpoint; (ii) an unambiguous algorithm; (iii) a 
defined domain of applicability; (iv) appropriate measures of goodness-of-fit, 
robustness and predictivity; (v) a mechanistic interpretation, if possible 377. 

Several tools and methods, both proprietary and open-source, were used to derive 
molecular descriptors, including Dragon, Canvas (Schrödinger), Extended-
connectivity Fingerprint (ECFP), RDKit, Mordred and ChemoPy. It is important to 
note that open-source descriptors (RDKit, Mordred, ChemoPy) have been shown 
not to remarkably affect the performance of the PrediSweet model and to reach 
similar results if compared to results obtained with Dragon descriptors 340. 
Similarly, in BitterSweet the best descriptors for the sweet prediction were Dragon 
2D features, but the open-source ChemoPy performed better for bitter prediction 
349. This represents a very important achievement in making these tools available to 
a wide audience and in broadening the horizons of research in this field. 
Furthermore, 2D molecular descriptors are less time-consuming to be computed 
and less subject to variations caused by slightly different molecules 3D 
conformations. On the other hand, 3D descriptors can also account for specific 
molecule conformations, such as different conformers/isomers, and spatial 
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properties. Therefore, the possibility to obtain very good results also using 2D 
descriptors allows designing faster tools suitable for screening very large databases. 

Several algorithms have been applied for taste prediction, including RF, SVM, 
SVR, QSTR, GFA, ANN, KNN, GBM, DNN, AB, SCM, XGBoost. Multiple 
Linear Regression (MLR) and Support Vector Machine (SVM) are among the first 
models for binary classification. These models were exceeded by tree-based 
models, i.e. Random Forest (RF) or AdaBoost (AB), and Neural Network (NN), 
which support multiclass classification and work very well in the non-linear range 
if they have a sufficiently large number of database elements. Generally, NN and 
SVM perform better with continuous and multidimensional features but they need 
a large sample size to increase their prediction accuracy 378. Even though NNs, and 
in particular ANNs and DNNs, are being widely employed in taste prediction, they 
are characterised by difficulties in optimising parameters, a high computational cost 
and are less explainable. Moreover, probabilistic methods, i.e. Naive Bayes, are not 
widely used in taste prediction. These methods work well with less training data 
but would be better employed when the features are mutually independent.  

To enhance model performance and to increase the understanding of the model, a 
feature selection was normally applied, such as the V-WSP unsupervised variable 
reduction method and genetic algorithm-based technique 320,341,346, feature 
importance obtained from the RF 339,344, the Boruta algorithm and the PCA 349. 
However, none of these approaches consider the multi-objective nature of the 
dimensionality reduction techniques and thus fail to balance between the objectives 
of optimizing prediction performance measured in multiple classifications and 
regression metrics, minimizing the number of selected features and maximizing the 
overall interpretability/explainability of the derived prediction models. Moreover, 
not only feature selection but also normalisation/standardisation can further 
improve model performance, such as in the case of the flatkinson standardisation 
method 340, as well as modern techniques to handle the class imbalances in the data 
such as SMOTE 379. Finally, all existing methods lacked a strict definition of 
negative datasets with most of them using random compounds as negative datasets 
and thus jeopardizing the prediction performance and generalization properties of 
the models. 

As also defined by the OECD guidelines, another relevant aspect in the 
development of the prediction tool is the definition of the applicability domain 
(AD), which indicates the reliability of the prediction evaluating if investigated 
compounds are within the chemical space of the training data. In this context, 
PrediSweet, along with an applicability domain, developed a reliability domain, 
which considers the density of information around the compound, and a decidability 
domain, which evaluates the confidence of the prediction. The PrediSweet chemical 
space of the dataset used (SweetenersDB) was compared with the most 
comprehensive sweet database (SuperSweet): more than 99.5% of the compounds 
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in SuperSweet are structurally similar to a representative structure in the 
SweetenersDB, suggesting the large sweeteners spectrum covered by the 
SweetenersDB. e-Bitter and e-Sweet used the ECFP based Tanimoto-similarity 
between the query and the five closest neighbouring molecules in the training set. 
Similarly, the Rojas Sweet Predictor developed an AD using a threshold on the 
Jaccard-Tanimoto average distance between the query molecule and the compounds 
in the dataset. BitterPredict AD, known as Bitter Domain, includes molecules with 
molecular weight MW ≤ 700 and hydrophobicity -3 ≤ AlogP ≤ 7: all used datasets 
were previously filtered using this domain to ensure the reliability of the prediction. 
In BitterSweet, a query molecule is considered inside the applicability domain, if 
its median Euclidean distance from similar compounds in the training set is below 
a selected threshold. Interestingly, BitterSweet covered a remarkably wider 
applicability domain than the Rojas Sweet Predictor while achieving similar 
performance.  

One of the main advantages of the reported prediction tools is their ability to fast 
screening huge databases of compounds and to estimate the number of compounds 
associated with a specific taste. A granular and detailed screening was performed 
by BitterPredict on DrugBank approved (1375 compounds), FooDB (13588 
compounds), Natural Products Dataset from ZINC15 (27474 compounds) and 
ChEBI (27015 compounds) datasets, showing that the percentages of bitter 
molecules within the Bitter Domain found in these databases are 65.94%, 38.36%, 
77.21% and 43.71%, respectively. Moreover, since bitter taste is associated with 
toxic compounds or compliance problems, the same authors used their subsequent 
tool, namely BitterIntense, to screen toxic databases, i.e. FocTox, CombiTox 
datasets and DILIrank, experimental compounds from DrugBank database (10170 
compounds), natural compounds from NPatlas (24805 compounds) and 34 potential 
drug candidates against COVID-19 retrieved from “Coronavirus Information – 
IUPHAR/BPS Guide to Pharmacology”. Interestingly, only a small portion of toxic 
compounds are intensively bitter, but 41.2% of COVID-19 candidate drugs were 
predicted as very bitter (VB). Moreover, BitterSweet was applied to several 
specialized chemical databases (SuperSweet, FlavorDB, FooDB, DSSTox, 
SuperNatural II and DrugBank), revealing that most natural, toxic, and drug-like 
chemicals are bitter, whereas the same amount of bitter and sweet molecules are 
present in foods. BitterSweet Forest was applied on SuperNatural II, DrugBank 
approved drug molecules and ProTox, and showed that toxic substances are 
typically bitter. In line with the previous results, VirtualSweet and VirtualBitter 
models were applied on approved drugs from DrugBank and natural compounds 
from SuperNatural II: notably, most of the approved drugs and most of the natural 
compounds were predicted as bitter and only a small portion of these databases was 
classified as sweet.  
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3.1.5 Conclusions 

The present review aims at summarising the main scientific advances in the field of 
taste prediction supported by ML-based algorithms. We discussed the main 
available database containing food-related compounds and molecules with known 
taste, the main tools employed to predict the taste.  

From the analysis of the databases, we pointed out two specific databases for the 
sweet taste, i.e. SuperSweet, which is the most comprehensive DB for sweeteners, 
and SweetenersDB, which collects 316 sweeteners with a relative value of 
sweetness. For the bitter taste, BitterDB represents the most granular and complete 
database, with a very intuitive and user-friendly web server that allows the 
download of more than a thousand bitter compounds. BitterDB, as well as 
BitterPredict and BitterIntense, was developed by the Niv Lab (https://biochem-
food-nutrition.agri.huji.ac.il/mashaniv), which provided incredible progress in the 
comprehension of the bitter taste in recent years. A lot of effort has been made to 
develop methods specifically for the prediction of bitter peptides and another 
research group has continuously improved its tools publishing three consecutive 
works, namely iBitter-SCM, BERT4Bitter and iBitter-Fuse, in the last few years. 
These tools are paramount for the fast and reliable classification of huge databases 
of bitter peptides and for their rational de novo design, especially considering the 
emerging role of this class of compounds in the drug and nutritional research field. 
Furthermore, the UMP442 database developed during the implementation of 
iUmami-SCM is probably the most complete and ready-to-use database of umami 
and non-umami molecules since it is available from GitHub. In this context, the 
Umami Database seem a very promising source of information, but the availability 
of data is limited, it is impossible to obtain data from the webserver and no umami 
prediction tool which uses this source has been found in previous literature. It would 
be incredibly valuable to have access to the resources of such a database in the 
future. Finally, as far as the authors know, no publicly available databases for sour 
and salty tastes are available and the only attempt to generate a sour dataset was 
made in the development of VirtualTaste. However, the used sour dataset has not 
been made public. To date, the multiplicity and diversity of sources make it very 
complex to obtain a unified DB collecting a huge amount of compounds for each 
taste sensation. The authors insist also on the need for developing complete 
databases that include all the relevant information for each entry (SMILES, InChI, 
IUPAC nomenclature, etc.) to avoid any possible error in compound processing. 
Moreover, the definition of exhaustive databases would be essential for a correct 
definition of the molecular descriptors to be employed, due to the great number and 
variety of both open-source and proprietary descriptors. 

Similarly to the taste databases, prediction tools for sweet and bitter have been more 
developed during the last years. Among several examples of sweet and bitter 
classification tools, some proposed methods can even predict the level of sweetness 



Machine learning for Taste Prediction 97 

 

(Chéron Sweet Regressor, Goel Sweet Regressor, PrediSweet) and BitterIntense 
can discriminate between “very bitter” and “non very bitter compounds”. Only a 
few reported tools were able to discriminate more than one taste sensation. 
BitterSweet and BitterSweet Forest are interesting examples of tools able to 
consider the dichotomy of sweet and bitter tastes 349. These tools can be pivotal for 
the detection of natural and synthetic compounds with a pleasant taste and without 
adverse effects. Furthermore, VirtualTaste is the only available tool able to predict 
three taste sensations (sweet, bitter and sour) and the only one able to predict the 
sour taste (VirtualSour). 

Among the 16 reported taste prediction tools, BitterX, BitterSweet, PrediSweet, 
iBitter-SCM, BERT4Bitter, iBitter-Fuse, iUmami-SCM and VirtualTaste provide 
web server applications, which allow the taste prediction using the SMILE/Fasta 
format, directly drawing the molecule or by uploading a file. On the other hand, 
eSweet, eBitter and BitterPredict only provide freely accessible code available from 
Dropbox or GitHub. From the authors' point of view, the development of a web 
interface represents a considerable strength, since it allows the tool to be used even 
by people who are not experts in the use of these applications. Finally, 
BitterSweetForest, Rojas Sweet Predictor, Goel Sweet Regressor, Chéron Sweet 
Regressor and BitterIntense do not have any web server or code publicly available.   

It is worth mentioning that in addition to the five basic tastes, other taste qualities 
may be important and related to specific food ingredients. In this context, some 
recent publications suggested the fat taste as another basic taste quality 123–125. 
Interestingly, fatty acid detection seems to decrease as a consequence of a fat-rich 
diet and with a great impact on obesity disease 126. Therefore, the prediction of fat 
taste would represent a groundbreaking objective for future tools, considering the 
impact of fat intake on human health status.  

Furthermore, the use of methods capable of predicting the molecular interactions of 
tastants and relative taste receptors could lead to significant improvements in the 
predictive capabilities of these tools and to great strides in understanding the 
physicochemical characteristics and mechanisms underlying taste perception. 
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3.2 VirtuousUmami 

The present section is based on the following scientific publication:  

Pallante, L., Korfiati, A., Androutsos, L., Stojceski, F., Bompotas, A., Giannikos, I., 
Raftopoulos, C., Malavolta, M., Grasso, G., Mavroudi, S., Kalogeras, A., Martos, V., 
Amoroso, D., Piga, D., Theofilatos, K., & Deriu, M. A. (2022). Toward a general and 
interpretable umami taste predictor using a multi-objective machine learning approach. 
Scientific Reports, 12(1), 21735. https://doi.org/10.1038/s41598-022-25935-3.  

Author’s contribution to the publication: Pallante L. worked on data preprocessing, 
developing a python library for preprocessing molecules and calculating molecular 
descriptors, and implementing the applicability domain. He also took part in the 
conception of the work, the analysis of the results, their critical discussion, the writing of 
the manuscript and its revisions.  

Starting from the recent advances in the field of taste prediction reported in the 
previous section, we present herein a novel ML-based tool, named VirtuousUmami, 
to predict the umami taste of a query compound starting from its molecular 
structure. Umami taste is one of the five basic taste modalities normally linked to 
the protein content in food. The implementation of fast and cost-effective tools for 
the prediction of the umami taste of a molecule remains extremely interesting to 
understand the molecular basis of this taste and to effectively rationalise the 
production and consumption of specific foods and ingredients. However, the only 
examples of umami predictors available in the literature rely on the amino acid 
sequence of the analysed peptides, limiting the applicability of the models. In the 
present study, we developed a novel ML-based algorithm, named VirtuousUmami, 
able to predict the umami taste of a query compound starting from its SMILES 
representation, thus opening the possibility of potentially using such a model on 
any database through a standard and more general molecular description. Herein, 
we have tested our model on five databases related to foods or natural compounds. 
The proposed tool will pave the way toward the rationalisation of the molecular 
features underlying the umami taste and toward the design of specific peptide-
inspired compounds with specific taste properties.  

3.2.1 Introduction 

Umami taste is one of the five basic taste modalities and it is typically associated 
with the protein contents of foods. The term “umami” originates from a Japanese 
word that means “pleasant savoury taste”, “mouthfulness” or “delicious” 380. 
Umami has been linked for several years to the taste of Asiatic traditional foods or 
cheese and it was recognized as the fifth basic taste modality - along with sweet, 
bitter, salty and sour - only in 2002 to describe a pleasant or glutamate-like taste 381. 
Since the umami taste is commonly linked to the food protein content, it represents 
an interesting taste modality, especially for, but not limited to, food industries: 
considering the laboriousness of traditional experimental techniques, it is pivotal to 
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develop fast, reliable and cost-effective methodologies able to predict the taste of 
food ingredients or general compounds with the ultimate goal of identifying and 
characterizing their chemical profile. Several experimental methods, including 
MALDI-TOF-MS and reversed-phase high-performance liquid chromatography 
(RP-HPLC) analysis, are widely used to identify and characterize peptides with 
umami sensory properties 382,383. However, traditional experimental methods for 
characterizing and profiling from a chemical point of view the umami peptides are 
expensive, time-consuming, and arduous. In this context, the in-silico techniques 
have been pointed out as elicit methods to screen massive databases of compounds 
and retrieve specific information regarding their activity or properties through the 
employment of machine learning algorithms. Quantitative structure-activity 
relationships/quantitative structure-property relationships (QSAR/QSPR) methods 
aim at determining a relationship between the biological activity or the 
physicochemical property, respectively, and a set of descriptive features 
(descriptors) linked to the molecular structure of the investigated molecules 384. In 
this regard, the guidelines defined by the Organization for Economic Co-operation 
and Development (OECD) indicate the strategies for the correct development and 
validation of robust QSAR models: (i) a defined endpoint; (ii) an unambiguous 
algorithm; (iii) a defined domain of applicability; (iv) appropriate measures of 
goodness-of-fit, robustness and predictivity; (v) a mechanistic interpretation, if 
possible 377. 

Regarding the in-silico prediction of taste based on the molecular structure of 
compounds, a lot of advancements have been accomplished 385. For example, 
several publications deal with the prediction of the sweet taste 386–392, the bitter taste 
393–400, and the bitter/sweet dichotomy 401,402. However, as far as the authors know, 
there are few attempts made by the scientific community to predict the umami taste, 
which are represented by the iUmami-SCM 403 and the UMPred-FRL 404 predictors. 
The iUmami-SCM tool predicts the umami/non-umami taste of peptides based on 
their primary amino acid sequence employing a scoring card method (SCM) in 
conjunction with the propensity scores of amino acids and dipeptides. For its 
design, this tool is limited to the prediction of only peptides, which however 
represent the candidate par excellence of umami taste. Another effort again focused 
on umami peptide identification is the UMPred-FRL tool, which demonstrates a 
higher feature discriminative capability to capture the key information about umami 
peptides and superior performance compared to the iUmami-SCM. However, a 
method for screening databases of general molecules or predicting the taste of 
peptides with small chemical deviation from their original structures is needed to 
pinpoint the major physio-chemical properties related to the occurrence of the 
umami taste and allow the identification of umami-related compounds from bigger 
pools of potential compounds. The present work is therefore based on these 
premises and is devoted to developing an efficient tool to predict the umami/non-
umami taste of query molecules based on their chemical structure described using 
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the standard SMILES representation and commonly employed molecular 
descriptors. An ensemble dimensionality reduction and classification techniques 
were used to train and test the umami taste prediction model, minimizing the 
number of physicochemical features used as inputs and allowing the identification 
of the most important features related to the umami taste. The minimization of the 
inputs makes the prediction models simpler, reducing thus the risk of overfitting, 
and enables the incorporation of the prediction models in a web interface enlarging 
the ensemble of possible end-users. The developed tool, named VirtuousUmami, 
paves the way toward the possibility of analyzing different types of compounds and 
rationalising the chemical-physical characteristics at the basis of umami taste 
perception to design new ingredients and molecules with specific taste properties.  

3.2.2 Materials and Methods 

Data curation 
For an effective comparison with previous literature dealing with umami taste 
predictors, the UMP442 database, also used for iUmami-SCM319 and UMPred-
FRL404 predictors, was employed. The UMP442 dataset is freely accessible from 
GitHub https://github.com/Shoombuatong/Dataset-Code/tree/master/iUmami) and 
collects 442 peptides (140 umami and 302 non-umami): umami molecules are 
gathered from previous literature61,332–336 and the BIOPEP-UWM database325, 
whereas non-umami peptides are the bitter peptides from the positive set of the 
BTP640 database337 (see also Table A - 6.6.1). The peptides were gathered using 
their amino acid sequences and then converted into their SMILES representation 
using the RDKit package (http://www.rdkit.org). Then, they were processed with 
the ChEMBL Structure Pipeline 405 
(https://github.com/chembl/ChEMBL_Structure_Pipeline) to highlight possible 
issues in the retrieved molecular structure and to standardise the SMILES 
representation for the entire dataset. The latter protocol runs a molecule checker on 
the compound structure, standardizes chemical structures and generates the parent 
molecule representation based on a set of predefined rules.  

Among 442 umami (140) and non-umami (302) peptides available in the UMP442 
dataset, 352 ligands were used for training. The remaining 90 peptides were used 
for external testing to examine the generalization properties of the trained models. 
Of the 352 training samples, 240 were non-umami samples, and 112 were umami 
samples. Because there is an imbalance in the total number of samples of the two 
classes, we oversampled the umami class, creating synthetic data to boost the 
umami class. These synthetic data were created by selecting random samples from 
the umami class and duplicating them, a method of random oversampling for the 
minority class. The resulting training dataset had 240 non-umami samples and 240 
umami samples. Of the 90 testing samples, 62 were non-umami samples, and 28 
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were umami samples. The summary of the final dataset is also reported in Table A 
- 6.6.2. 

Molecular descriptors and dimensionality reduction 
The calculation of the features for each one of the molecules was achieved using 
1613 2D Mordred descriptors. The dataset was pre-processed to be used as input to 
the machine learning model. In particular, features with a high percentage of 
missing values (>30%) were filtered, while the remaining missing values were 
imputed using the kNN-impute method with k=20 406. Then, data were 
arithmetically normalized to the interval of [0-1]. Given the huge number of total 
features, i.e. 1613, compared to the size of the training dataset, an initial univariate 
filtering approach was deployed. The statistical analysis was performed on the 
umami vs non-umami peptides of the training set with the limma eBayes method 
407, and correction of p-values for multiple testing was performed using the 
Benjamini-Hochberg FDR adjustment method 408 to calculate q-values. For both p- 
and q- values a threshold of 0.05 was applied. We used also four different feature 
selection methods, i.e. the Wilcoxon Rank Sum Test409, kBest, JMIM410 and 
MRMR411, to further reduce the dimensionality of the training dataset. These 
methods were iteratively tested using an in-house evolutionary optimization 
algorithm (50 individuals and 100 generations) which identified the best 
combination of feature selection techniques among the above-mentioned 
alternatives. The results of these methods are used at every generation of the 
evolutionary algorithm for every individual to reduce the features in the training 
process. In this way, we are confident that at each run we select the most important 
features for our problem. 

Data preprocessing, statistical analysis and the generation of additional plots, such 
as ROC curves and bean plots, were performed using the InSyBio Biomarkers Tool 
(see also the reference Manual for further details at 
https://www.insybio.com/biomarkers.html). 

Model construction and performance evaluation 
The classification models were generated with the hybrid combination of heuristic 
optimization and nonlinear machine learning classification methods incorporated in 
the InSyBio Biomarkers tool (https://www.insybio.com/biomarkers.html). 
Specifically, we used an ensemble dimensionality reduction technique employing 
a heuristic multi-objective Pareto-based evolutionary optimization algorithm 412 to 
(a) identify the optimal feature subset to be used as input to the classifiers, (b) select 
the most appropriate classifier among Support Vector Machines (SVM) and 
Random Forests and (c) select the optimal parameters for the classifier, namely C 
and gamma of SVM and number of trees for Random Forests. This approach allows 
both an unbiased and an optimized selection of the classification method and its 
parameters. The multi-objective Pareto-based approach was deployed to handle the 
multiple objectives of maximization of predictive performance, minimization of 
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selected features and simplicity of the classification model, revealing all the non-
dominated solutions of the above-stated optimization goals. The weights used for 
the goals were Selected Features Number Minimization 5, Accuracy (ACC) 10, F1 
score 5, F2 score 1, Precision (PRC) 1, Recall (REC) 10, ROC-AUC (AUC) 1, 
Number of SVs or Trees Minimization 1, which enable better handling of the 
imbalanced nature of our classification problem. The outcomes are multiple models 
performing equally well (namely, the Pareto set of optimal solutions) on the user-
defined goals. After having defined the best models in terms of performance 
metrics, we developed ensemble models (EMs) to further improve the prediction 
performance. In greater detail, an ensemble model is built by combining two 
different single models: the final prediction probabilities of the ensemble model for 
the positive and negative classes is the average of the prediction probabilities 
coming from the two combined models. The final predicted class is therefore the 
one with the highest probability score. 

A population of 50 individuals was used for the evolutionary algorithm and a 
maximum number of 100 generations was used as the termination criterion. To deal 
with the stochastic nature of the proposed algorithm, five different runs were 
conducted and the results presented are the average performance of these runs. 
Convergence of the algorithm (average performance less than 5% different to best 
performing individual) was noted after 30 generations for each independent run 
demonstrating that the maximum number of generations used was adequate for this 
problem. Additional parameters of the evolutionary algorithm were set to their 
default values as suggested by the InSyBio Biomarkers tool user manual (arithmetic 
crossover probability: 0, mutation probability: 0.01, two-point crossover 
probability: 0.9). Stratified 10-fold cross-validation was used to train and test the 
prediction models. To deal with the class-imbalanced nature of our data, in each 
cross-validation iteration, we applied random oversampling of the minority class in 
the 9 folds which were used to train the models. Further details on the 
implementation of the trained models and a summary of the performance metrics 
used are available in the Supplementary Information.   

Applicability domain 
In the present work, following the guidelines defined by the Organization for 
Economic Co-operation and Development (OECD) 377, we developed an 
applicability domain (AD) to provide information regarding the reliability of the 
prediction. We used an average-similarity approach already employed in previous 
recent literature in the taste prediction field 389,395. More in detail, the AD was built 
as follows: (i) the Morgan Fingerprints (1024 bits, radius 2) were calculated using 
RDKit for all the compounds in the training set; (ii) a similarity score was then 
evaluated between each molecule in the training and test sets and the previously-
defined fingerprints using the Tanimoto similarity index from RDKit; (iii) then the 
average similarity score was computed by averaging the similarity scores of the 5 
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most similar couple of compounds. The distribution of the average similarity scores 
for the training and test sets was used to identify a similarity threshold to 
discriminate between query compounds inside or outside the domain of 
applicability of the developed model. The AD check is performed every time before 
running the model to assess the reliability of the prediction and the output of the 
AD control is given to the user.  

External Datasets 
Several external datasets have been considered for testing the usability of the 
developed umami predictor. In particular, we chose some databases related to foods 
or natural products: 

1. FooDB (https://foodb.ca/) is the world’s largest and most comprehensive 
resource on food constituents, chemistry and biology (more than 70k 
compounds). 

2. FlavorDB (https://cosylab.iiitd.edu.in/flavordb/) comprises 25595 flavour 
molecules. For the present work, we considered only 2939 molecules related 
to natural ingredients. 

3. PhenolExplorer (http://phenol-explorer.eu) collects a comprehensive 
database of polyphenols contained in foods. We considered only 
compounds having composition data (SMILES), i.e. 489 compounds. 

4. Natural Product Atlas (https://www.npatlas.org/) includes microbially-
derived natural products published in peer-reviewed primary scientific 
literature. We downloaded 32552 natural compounds.  

5. PhytoHub (https://phytohub.eu/) is a freely available electronic database 
containing detailed information about dietary phytochemicals and their 
human and animal metabolites. We downloaded 2110 compounds. 

Each database was first checked for missing SMILES or data, standardised with the 
ChEMBL Structure Pipeline and, finally, the Mordred descriptors were calculated 
as done for the starting umami/non-umami dataset. Before running the model 
prediction, each dataset was screened to access the portion inside the model 
applicability domain and the prediction was then performed only in the above-
mentioned portion. 

 

3.2.3 Results 

Dimensionality reduction 
As described in the Methods section, the statistical analysis to reduce the number 
of employed molecular descriptors was performed on the training set with the 
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limma eBayes method 407. Moreover, the correction of p-values for multiple testing 
to get q-values was applied using the Benjamini-Hochberg FDR adjustment method 
408. Setting the q-value threshold to 0.05, we identified 324 statistically significant 
differentiated features. This analysis is shown in Figure 3.1 in a volcano plot 
representation with the log2 of the Fold Change (log2FC) on the x-axis and the 
negative value of the logarithm of the p- or q-values on the y-axis. The log2FC was 
calculated for each feature by applying the log base 2 to the ratio between the 
average value of the feature for the umami class and the average of the non-umami 
class. P-values (Figure 3.1a) and q-values (Figure 3.1b) less than or equal to 0.05 
denoted statistically significant differences between umami and non-umami 
samples, whereas positive log2FC values denote upregulated features, i..e features 
with higher values in umami than non-umami compounds, and negative log2FC 
values indicate downregulated features. In this view, the most informative features 
in the volcano plots are located at the top and far from the zero value of the x-axis. 
The detailed list of the prioritized molecular descriptors is available in the GitHub 
repository (https://github.com/lorenzopallante/VirtuousUmami) within the “data” 
folder (“umami_prioritized_list_of_descriptors.csv”).  

 
Figure 3.1. Volcano plots of the statistical analysis of the descriptors on the umami versus non-
umami samples for the training set (a) with the standard limma eBayes method using p-values and 
(b) with correction of p-values using the Benjamini-Hochberg FDR adjustment method to calculate 
q-values. Only the 5 most upregulated and 5 most downregulated features are labelled for the sake 
of clarity. 

Model performance 
We developed 5 different SVM models with a specific number of selected features 
and support vectors (see also Table A - 6.6.3). After accessing the performance of 
the single SVM models (Table A - 6.6.4), we developed 10 ensemble models (EMs) 
by taking all the possible combinations between the SVM models (1 and 2; 1 and 
3; 2 and 4; etc..) and evaluated the relative performance (Table A - 6.6.5). The EM3-

5, i.e. the ensemble model created combining SVM models 3 and 5, achieved the 
best performance and was selected as the final model. A summary of the model 
performance for the EM3-5 is reported in Table 3.6 and the relative ROC curves are 
represented in Figure 3.2. 
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Table 3.6. Summary of model performance using the ensemble model EM3-5 obtained from the 
combination of SVM models 3 and 5. For the training set and the 10-fold cross-validation mean 
values and standard deviations are presented. The test set comprises the 90 left-out samples not 
used for training. 

 ACC Spec Sens F1 F2 AUC 

10-fold 
CV 95.86%±1.89 96.70%±2.91 95.07%±1.06 95.73%±1.81 95.28%±0.88 0.96±0.02 

Test 87.64% 91.80% 78.57% 79.31% 80.99% 0.85 

 

 

Figure 3.2. Receiver Operating Characteristic Curve of the umami versus non-umami classification. 

Feature Importance  
The selected features on which the predictions rely are 12 and include ATSC1m, 
Xch_6d, Mi, SaaCH, SMR_VSA1, JGI1, FilterItLogS, JGT10, AATSC0m, 
AATSC0v, Mp, fragCpx. The selected features are summarized in Table 3.7 also 
reporting the level of importance evaluated with the calculation of the SHAP values 
413. The distributions of the 12 features for the umami and non-umami samples are 
represented in Figure A - 6.6.1 and Figure A - 6.6.2.  

Table 3.7. Features selected according to the best model. SHAP values represent the contribution 
of each feature to the prediction. The greater the value, the higher the contribution. 

ID Name Module Class Description SHAP 
importance 

1 ATSC1m Autocorrelation 
Centered moreau-broto autocorrelation of 

lag 1 weighted by mass 
0.1090 
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2 AATSC0m Autocorrelation 
Averaged and centered moreau-broto 

autocorrelation of lag 0 weighted by mass 
0.0821 

3 AATSC0v Autocorrelation 

Averaged and centered moreau-broto 

autocorrelation of lag 0 weighted by vdw 

volume 

0.0416 

4 JGI1 TopologicalCharge 1-ordered mean topological charge 0.0331 

5 JGT10 TopologicalCharge 10-ordered global topological charge 0.0323 

6 SMR_VSA1 MoeType MOE MR VSA Descriptor 1 (-inf < x < 1.29) 0.0296 

7 Mi Constitutional 
Mean of constitutional weighted by 

ionization potential 
0.0264 

8 FilterItLogS LogS Filter-it™ LogS 0.0176 

9 Mp Constitutional 
Mean of constitutional weighted by 

polarizability 
0.0174 

10 SaaCH Estate Sum of aaCH 0.0170 

11 Xch-6d Chi 
6-ordered Chi chain weighted by sigma 

electrons 
0.0122 

12 fragCpx FragmentComplexity Fragment complexity 0.0083 

Among the 12 selected features, the most frequent descriptor class represents 
internal autocorrelation properties (ATSC1m, AATSC0m, AATSC0v), calculated 
by the so-called Autocorrelation of a Topological Structure (ATS), which describes 
how a property is distributed along with the topological structure. In particular, the 
autocorrelation descriptors were computed using the Moreau-Broto autocorrelation 
weighted by mass (ATSC1m and AATSC0m) or Van der Waals volume 
(AATSC0v). Interestingly, the three autocorrelation properties were also retrieved 
among the first eight prioritized features from the initial univariate filtering. The 
Xch-6d descriptor belongs to the Chi descriptors family, which are topological 
indexes based on the molecular connectivity approach 414. Molecular connectivity 
methods quantify molecular structures based on the topological and electronic 
characters of the atoms in the molecule. The molecule is represented by the 
hydrogen-suppressed graph (molecular skeleton) and the key feature in the 
quantitation of the graph is the characterization of the atom in the molecular 
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skeleton. The molecular graph may be decomposed into fragments called 
subgraphs, such as a skeletal bond, a pair of adjacent bonds, etc., that determine the 
possibility of defining different orders of the indexes: thus, the order of the Chi 
index is the number of edges in the corresponding subgraph. Mi and Mp are instead 
the mean of constitutional properties, i.e. the ionization potential and the 
polarizability, respectively. SaaCH descriptor is an Electropological State (Estate) 
index 415, which is a combination of electronic, topological and valance state 
information. In particular, this descriptor is calculated for specific atoms types: in 
this case, SaaCH stands for the sum of E-state indices for the CH in an aromatic 
ring. The SMR_VSA1 descriptor is a MOE type descriptor that uses a combination 
of the Wildman-Crippen Molar Refractivity (MR) 416, which is a measure of the 
total polarizability of a mole of a substance, and the Van der Waals surface area 
contribution. Two other descriptors, namely JGI1 and JGT10, deal instead with the 
compounds’ topological charge considered at the first and 10th orders, respectively. 
FilterItLogS descriptor is derived from a program designed for filtering out 
molecules with unwanted properties. The program is packaged with several pre-
programmed molecular properties that can be used for filtering, including (i) 
physicochemical parameters, such as logP, topological polar surface area criteria, 
number of hydrogen bond acceptors and donors, and Lipinski’s rule-of-five; (ii) 
graph-based properties, including ring-based parameters and rotatable bond 
criteria; (iii) selection criteria through smarts patterns; (iv) Similarity criteria; (v) 
three-dimensional distances between user-definable fragments 
(https://github.com/silicos-it/filter-it). Finally, the fragCpx descriptor is a fragment 
complexity descriptor which is calculated as:  

 fragCpx = |?/ − -/ + -| +
@

100
 (3.1) 

where A is the number of atoms, B is the number of bonds, and H is the number of 
heteroatoms 417. 

Hierarchical clustering of the selected features allows grouping of the 12 features 
in three subgroups, i.e. (i) AATSC0v, ATSC1m, Mp, (ii) fragCpx, SMR_VSA1, 
AATSC0m, SaaCH, Xch-6d, (iii) JGI1, JGT10, Mi, FilterItLogS (see also Figure 
A - 6.6.3). 

To represent the dataset’s chemical space and underline the role of the feature 
importance analysis in simplifying the discrimination between the umami and non-
umami, we used the tSNE dimensionality reduction technique 418 on the starting 
dataset taking into account all descriptors and only the best 12 above-mentioned 
features (Figure 3.3).  
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Figure 3.3. tSNE applied to the umami and non-umami samples for the whole dataset taking into 
account (a) all molecular descriptors (1613 features) and (b) the best 12 selected descriptors derived 
from the feature selection process. The selected feature subset (b) results in a remarkably better 
ability in discriminating between umami and non-umami compounds. 

Applicability Domain (AD) 
To effectively define the applicability domain (AD) of the model, we evaluated the 
average similarity scores of both training and test sets compared to the training sets 
fingerprints, as described in the Material and Methods section. The analysis 
reported in Figure 3.4 allowed us to establish a correct average similarity threshold 
(i.e. 0.4) to effectively determine if a query compound falls inside or outside the 
AD based on the average similarities of the employed dataset. In particular, if the 
average similarity score of a query compound is below the imposed threshold, then 
the query compound is considered outside the AD; otherwise, the compound is 
considered within the AD. 
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Figure 3.4. Histograms of average similarity scores of training and test sets. The average similarity 
score is derived by averaging the Tanimoto similarity score between the five most similar 
compounds in the training set. The light grey histogram represents the distribution of the average 
similarity scores for all the compounds composing the training set, whereas the dark grey histogram 
the distribution for the test set. The lower limit of the above-mentioned distributions allows for 
determining the similarity threshold of the applicability domain. 

External datasets 
The external datasets, i.e. FlavorDB, FooDB, NPAtlas, PhenolExplorer and 
PhytoHub, were processed as reported in the Materials and Methods section. 
Results are summarised in the following. 

1. FlavorDB. After removing 380 compounds with issues from the ChEMBL 
structure pipeline, we got 2599 compounds. Checking the AD of the umami 
model, we pointed out that only 0.92% (24/2599) of the FlavorDB molecules are 
inside the umami AD. Our model predicted 9 of the 24 compounds (36%) as 
umami.  

2. FooDB. Among the 70k chemicals included in the dataset, we preserved 69309 
molecules after removing missing SMILES, duplicate compounds, and 
molecules with structure errors according to RDKit import functionality and 
high issues based on the ChEMBL Structure Pipeline. Only 1.09% (757/69309) 
of these molecules fall inside the AD of the model. 48% of these molecules 
(366/757) were then predicted as umami.  

3. Natural Product Atlas. After running the ChEMBL structure pipeline, we 
preserved 32491 compounds. 1.52% (495/32491) of the molecules are inside the 
AD of the model and 17.3% of these molecules (86/495) were then predicted as 
umami.  

4. PhenolExplorer. We first removed 3 compounds with issues according to the 
ChEMBL structure pipeline, obtaining 489 compounds. According to the AD, 
only 0.61% (3/489) of the PhenolExplorer molecules are inside the AD of the 
model. None of these molecules was predicted as umami.  
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5. PhytoHub. From the original dataset of 2110 compounds, we removed 
compounds with missing SMILES (294) or high issue scores from the ChEMBL 
structure pipeline (70), resulting in a database of 1746 molecules. Only a small 
percentage, i.e. 1.03% (18/1746), of the PhytoHub molecules are inside the 
applicability domain of the umami model. Just one molecule among the 18 
compounds (5.5%) was predicted as umami.   

Predicted umami compounds for each of the external DBs are available in the 
GitHub repository (https://github.com/lorenzopallante/VirtuousUmami) within the 
“data” folder.  

Virtuous Umami Platform 
The developed umami predictor was embedded into a web-based interface, namely 
the Virtuous Umami platform (https://virtuous.isi.gr/#/umami). This is a graphical, 
user-friendly interface for running analyses for chemical compounds expressed in 
various notations, including SMILES, FASTA format, InChI, SMARTS or 
PubChem compound name. If the PubChem name is provided by the user, the 
algorithm queries the database for the requested compound retrieving the relative 
canonical SMILES to run the umami prediction model. The platform is built using 
open-source programming solutions and is divided into two main components, i.e. 
the front-end and the back-end. The front-end is the part of the application that is 
visible to the users and runs on their devices. It provides them with the option to 
type compounds directly to an input field or to upload a text file containing each 
compound in a different line. After the analysis takes place, the results are presented 
in a tabular form that reports the query compound SMILES, its 2D molecular 
representation, the verification of the domain of applicability (True/False), the 
result of the umami prediction (Yes/No) and two buttons allowing the user to 
download the databases collecting all the calculated Mordred molecular descriptors 
or the best 12 on which the prediction relies. For developing the front-end, the Ionic 
framework was selected because it offers a wide variety of UI components that can 
be used to create user-friendly applications suitable both for browsers and mobile 
devices. The second main component, the backend, consists of a web service that 
runs on the cloud and is implemented using the lightweight yet powerful Flask 
micro-framework. It is responsible for receiving the input sent by the front-end, 
running the Virtuous Umami Analyser and returning the results to the front-end. To 
enable the aforementioned exchange of information, it provides a RESTful API that 
accepts and transmits data in the form of JavaScript Object Notation (JSON). 

3.2.4 Discussion 

Machine Learning methods have proven to play a key role in the development of 
prediction tools and digital support systems in a variety of application areas, 
including nutrition and agri-food research419–426. In this context, here, we developed 
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a novel machine-learning-driven umami taste predictor, named VirtuousUmami, to 
identify umami/non-umami compounds based on the SMILES representation. The 
classification model was generated with the hybrid combination of heuristic 
optimization and nonlinear machine learning classification methods, allowing both 
an unbiased and an optimized selection of the classification method and its 
parameters.  

Starting from the UMP442 database 319, which collects 442 peptides, we used the 
Mordred molecular descriptors to obtain the features: the Mordred library is open 
source and demonstrated high computational efficiency and stability 358. Moreover, 
we decided to only compute 2D molecular descriptors to avoid the impact of 
compound optimization and parameters related to the three-dimensional properties 
of molecules. The exhaustive list of the employed Mordred descriptors is available 
at https://mordred-descriptor.github.io/documentation/master/descriptors.html. 
The 2D Mordred descriptors provide information on compounds, such as basic 
information about molecules (molecular weight, number of individual types of 
atoms, types of bonds, degree of hybridization, spectral diameter, detour index, 
number of hydrogen donors and acceptors, molecular distance edge between 
different types of atoms, polarizability of atoms and bonds, and topological polar 
surface) and other features derived from symbolic representations (Zagreb index, 
adjacency matrix descriptors, Moreau–Mroto descriptors, Moran coefficients, 
Geary coefficients, and descriptors describing the Burden matrix and Barysz 
matrix) 427. It is worth mentioning that other previous works successfully obtained 
good results in the field of taste prediction using only 2D molecular descriptors 
387,402: this represents a great step forward since 2D molecular descriptors are less 
expensive from a computational point of view and not affected by variations in the 
three-dimensional molecular structures. 

Since the number of molecular descriptors (1613) was extremely higher than the 
number of compounds in the dataset (442), the limma eBayes statistical analysis 
was employed to reduce the total number of descriptors to 324, boosting the 
performance of the subsequent refined model. The best performance obtained from 
an ensemble of models in terms of accuracy (ACC), specificity (Spec), and 
sensitivity (Sens) scores are in good agreement with the state of the art 403,404. In 
this context, to provide a comparison with previously developed umami prediction 
tools, iUmami-SCM403 and UMPred-FRL404 were assessed with the 
VirtuousUmami test set (Table A - 6.6.6). Comparing the evaluated metrics, the 
three algorithms showed overall similar performance, in terms of accuracy (ACC), 
specificity (Spec), sensitivity (Sens), F1 and F2 scores with all values roughly in 
the range of 80%-90%. Moreover, one of the major novelties of VirtuousUmami 
relies on its generalizability and applicability. In greater detail, its ability to process 
several types of molecular structure notations, including SMILES, FASTA, InChI, 
SMARTS or PubChem name allows screening for any type of compound, thus 
opening up the possibility to screen a wide range of molecular databases for 
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detecting umami compounds. In this context, we employed the VirtuousUmami 
predictor on five different external databases related to food or natural compounds, 
i.e. FlavorDB, FoodDB, Natural Product Atlas, PhenolExplorer and PhytoHub, 
highlighting compounds with umami character. Another important advantage of the 
proposed model relies on its explainability.  

The usage of general molecular descriptors from the Mordred library and the 
employment of dimensionality reduction algorithms, such as statistical significance 
analysis and the SHAP feature importance, allowed the definition of a reduced 
number of interpretable features on which the model relies: in this case, the best 
model was able to achieve the above classification scores with only 12 features. 
Figure 3.3 graphically remarks on the importance of the feature selection procedure: 
the selected feature subset (Figure 3.3b) can discriminate remarkably better 
between umami and non-umami taste if compared to the tSNE analysis taking into 
account all the descriptors (Figure 3.3a). Despite the remarkable reduction in the 
number of features, it still remains complex to intuitively highlight the chemical 
and physical properties of umami/non-umami compounds related to the 12 most 
important features. In this sense, it will be very important in future studies to be 
able to use simpler descriptors in order to improve the explainability of the model. 
The definition of a small subset of important molecular features profoundly 
differentiates the approach proposed by previously developed methods, such as 
iUmami-SCM403 and the UMPred-FRL404, which based their predictive models 
only on the peptide sequences. While the possibility of optimising a predictive 
model on the peptide sequence alone is a great advantage in terms of model 
simplification, it also makes it very complicated to pinpoint the chemical-physical 
characteristics underlying molecules' properties and thus explain the model 
prediction coming from the machine learning black box. 

Moreover, following the guidelines defined by the Organization for Economic Co-
operation and Development (OECD) 377, we also developed an applicability domain 
(AD) to provide information regarding the reliability of the prediction. From this 
analysis, we pointed out that the distribution of the average similarities of training 
and test sets are similar in shape, denoting that the dataset is homogeneous and 
correctly repartitioned between training and test sets (Figure 3.4). The distribution 
of the average similarity scores towards elevated values suggests a high similarity 
among the compounds composing the dataset and, therefore, a quite narrow 
chemical space of the umami database. In this context, the development of an 
applicability score ensures reliable predictions for compounds within the above-
mentioned domain. The above-mentioned limited spectrum is a direct consequence 
of the limited number of umami/non-umami compounds available from previous 
literature and composing our training dataset. In particular, the limited number of 
positive samples in the dataset (only 28 umami compounds in the test set and 112 
in the training set) limits the accessible chemical space of the umami samples in the 
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training phase and the subsequent prediction ability of the model on the positive 
class, causing differences in the sensitivity scores in the test (78.6%) and training 
(roughly 95.1%) sets. In this case, the model sensitivity was particularly affected 
by the considerably few positive samples in the test set. The reduced number of 
compounds in the employed dataset, i.e. UMP442,  is an important limitation of the 
present as well as previously developed umami predictors: likely, a larger size of 
the umami dataset will result in higher performance. Nevertheless, it is worth 
mentioning that the VirtuousUmami sensitivity (78.6%) is in the agreement or 
higher than the ones of UMPred-FRL2 (78.6%) and iUmami-SCM1 (71.4%) 
respectively, when tested against the VirutousUmami test set (see also Table A - 
6.6.6). In conclusion, future extensions in available experimental data concerning 
umami/non-umami compounds will be pivotal to enlarging the investigated 
chemical space and the applicability of ML-driven methodologies, such as 
VirtuousUmami. Furthermore, the absence of non-peptide compounds within the 
validation dataset used to assess the model's performance represents a limitation in 
understanding the generalization capability of VirtuousUmami beyond peptides. In 
conclusion, future extensions in available experimental data concerning 
umami/non-umami compounds will be essential for enlarging the investigated 
chemical space to increase the predicting performance, extend the applicability and 
test the generalization ability of the VirtuousUmami tool. 

Finally, the development of a user-friendly web interface 
(https://virtuous.isi.gr/#/umami) stems from the idea of making the umami 
prediction model usable even for users not experienced or familiar with the use of 
technical python codes (also available in the GitHub repository at 
https://github.com/lorenzopallante/VirtuousUmami).  

In summary, VirtuousUmami will be a powerful tool to fast screen any compound 
database for the discovery of a wide range of candidate compounds with potential 
umami sensory properties. In a broader view, it is worth mentioning that the method 
developed within this work is fully generalizable to the prediction of other taste 
sensations since it is based on the SMILES format, a standard description and 
widely used by the scientific community: the present tool, therefore, lays the 
foundations for the creation of a general tool for the prediction of the five basic 
tastes.  
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3.3 VirtuousSweetBitter 

The present section is based on the following scientific publication:  

Maroni, G., Pallante, L., Di Benedetto, G., Deriu, M. A., Piga, D., & Grasso, G. (2022). 
Informed classification of sweeteners/bitterants compounds via explainable machine 
learning. Current Research in Food Science, 5, 2270–2280. 
https://doi.org/10.1016/j.crfs.2022.11.014.  

Author’s contribution to the publication: Pallante L. worked on data preprocessing, 
developing a python library for preprocessing molecules and calculating molecular 
descriptors, and implementing the applicability domain. He also took part in the 
conception of the work, the analysis of the results, their critical discussion, the writing of 
the manuscript and its revisions.  

Similar to the umami taste in the previous section, we present here the development 
of a new ML-based predictor for the prediction of sweet and bitter tastes. Among 
all the taste perceptions, the dichotomy of sweet and bitter tastes has been the 
subject of several machine learning studies for classification purposes. While 
previous studies have provided accurate sweeteners/bitterants classifiers, there is 
ample scope to enhance these models by enriching the understanding of the 
molecular basis of bitter-sweet tastes. Towards these goals, our study focuses on 
the development and testing of several machine learning strategies coupled with the 
novel SHapley Additive exPlanations (SHAP) for a rational sweetness/bitterness 
classification. This allows the identification of the chemical descriptors of interest 
by allowing a more informed approach toward the rational design and screening of 
sweeteners/bitterants. To support future research in this field, we make all datasets 
and machine learning models publicly available and present an easy-to-use code for 
bitter-sweet taste prediction. 

3.3.1 Introduction  

Bitter and sweet tastes along with umami, saltiness, and acidity represent the 
fundamental taste senses428, which are linked to specific biological and survival 
needs. For example, the bitter taste has evolved to protect organisms from the 
consumption of potentially poisonous substances, whereas the sweet taste is 
normally associated with the energetic and caloric content of foods. Both sweet and 
bitter molecules are recognized by G-protein coupled receptors (GPCR), but while 
taste receptors type 2 (TAS2Rs) are primarily responsible for detecting bitter 
tastants, the TAS1R2/TAS1R3 heterodimer belonging to class-C GPCR is known 
to be involved in the sensation of sweetness429. These receptors are located on apical 
membranes of taste receptor cells located in the taste buds. Human gustatory 
systems are characterized by the dichotomy between sweet and bitter tastes with an 
innate preference for sweet tastes and an aversion to bitter tastes. The sensation of 
bitter-sweet taste is an emerging property arising from complex molecular 
interactions of a compound with these receptors. Besides the oral cavity, taste 
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receptors are also present in other body parts such as the urethra 139, skin 132,133, 
brain 134, heart 137,138, and pancreas 135,136. As well as their primary role in taste 
perception (in the oral cavity), such receptors are also implicated in diabetes and 
obesity by virtue of their roles in nutrient perception, glucose level maintenance, 
appetite regulation, as well as hormone release 143. 

As a food additive for a long time, sweeteners have been widely used in the food 
industry 430. There are lots of controversies and challenges relating to the sweetener 
industry in recent years, though improvements in technologies have greatly 
accelerated its development. When developing sweeteners, not only do they need 
to taste sweet, but they also need to have no harmful side effects, which increased 
the demand for the development of new sweeteners in the food industry. Within this 
framework, finding compounds with a pleasant gradient of bitter-sweet flavor may 
lead to the development of low-calorie sweeteners and bitter masking molecules.  

The design and development pipeline of sweeteners usually follows the following 
pathway: extraction, separation, and identification of potential molecules from 
natural plants and synthesis. The previously-mentioned procedures are highly 
expensive and require complex chemical or biological characterization of the 
samples. Within this view, it is clear that computational prediction and simulation 
of potential compounds in the early stage could accelerate the design and 
development process of sweetener molecules431. 

In silico methodological approaches for the bitterant prediction include structure-
based, ligand-based and machine-learning methods432,433; of particular interest for 
the present study are these latter approaches. Naive Bayes approach and circular 
fingerprint have been carried out in literature to classify bitterness by using a dataset 
of about 600 bitterants taken from a proprietary database and more than 10000 non-
bitterants randomly selected from the MDL Drug Data Repository (MDDR)434. The 
model was characterized by accuracy, precision, specificity, and sensitivity of 88, 
24, 89, and 72% respectively in the five-fold cross-validation. Although the 
previously mentioned study reports the first bitterant prediction algorithm based on 
a quite large dataset, the work didn't provide a prediction tool that can be used by 
users to test their molecules. Huang et al. addressed this issue by developing the 
first online toolkit of bitterness prediction called “BitterX”. The web application 
uses a Support Vector Machine (SVM) approach 435 on physicochemical descriptors 
436. In their study, the dataset is composed of 539 publicly available bitterants and 
539 non-bitterants taken from the Available Chemicals Directory (ACD) database. 
The computational model offers remarkable accuracy and precision of more than 
91% and sensitivity within the range of 91-94% on the test set. However, several 
small molecules considered as the non-bitterants are still not experimentally tested. 
The adaptive ensemble machine-learning method “Adaptive Boosting” (AdaBoost) 
was applied in another study to build a bitterness classifier called “BitterPredict”437. 
The model was trained on 12 basic physicochemical descriptors and 47 Schrödinger 
QikProp descriptors 437. The BitterDB438,439, in combination with the data from 
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Rojas et al.440 was used to identify bitterants, while most of the non-bitterants (1,360 
non-bitter flavours) were still hypothetical 441. The prediction model gives the 
accuracy (83%), precision (66%), specificity (86%), and sensitivity (77%) on the 
test set. Recently, the consensus voting strategy based on multiple ML models has 
been used in literature to perform the bitterant classification task considering a 
dataset of experimentally confirmed bitterants and non-bitterants441. 

Regarding the bitter/sweet dichotomy and the in-silico taste prediction, three major 
examples have been recently published, i.e., BitterSweetForest442, BitterSweet443 
and VirtualTaste444. BitterSweetForest and VirtualTaste are based on the random 
forest classification algorithm and Morgan molecular fingerprints, whereas 
BitterSweet is based on Dragon molecular descriptors and relies on the Adaboost 
method. BitterSweetForest was able to reach incredibly high predictive 
performance (e.g., AUROC of 0.98 both in cross-validation and external 
validation), but with a relatively low number of compounds in the dataset (517 
artificial and natural sweet compounds and 685 bitter molecules). On the other 
hand, BitterSweet remarkably enlarged the bitter/sweet dataset collecting positive 
sets of 813 bitter and 1139 sweet molecules but achieving lower performance 
compared to BitterSweetForest. Virtual Taste extends the previous work of the 
same authors, BitterSweet Forest, with a richer dataset and develops three models 
based on the random forest algorithm, Morgan molecular fingerprints and different 
data sampling methods for bitter/non-bitter prediction (VirtualBitter model 
achieving AUROC values of cross-validation and external validation of 0.97 and 
0.96, respectively), sweet/non-sweet prediction (VirtualSweet model achieving 
AUROC values of cross-validation and external validation of 0.97 and 0.96, 
respectively) and sour/non-sour prediction (VirtualSour model achieving AUROC 
values of cross-validation and external validation of 0.97 and 0.99, respectively). 
In VirtualTaste and BitterSweetForest the authors train different models on 
different families of descriptors so that the final subset of features is the one that 
provides the best performing model. Finally, to understand which features 
contribute the most to the change in the expected class a Bayesian-based feature 
analysis was employed in which the relative frequency of important features for 
each class was calculated taking the feature position and occurrence within the class 
and the relative feature frequency of that particular feature with respect to the other 
classes. In BitterSweet, on the other hand, a feature selection method and a feature 
compression method were compared, in the first relevant features for bitter-sweet 
prediction were identified using the Boruta algorithm445, in the second Principal 
Component Analysis (PCA) was used to reduce the dimensionality of the feature 
space. Finally, to explain the most impacting features of the model, a global feature 
ranking based on random forest relative feature importance with a mean decrease 
in Gini impurity was used. 

The present study focuses on the development and testing of several machine 
learning strategies for sweetness/bitterness classification starting from the 
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collection of compounds from several datasets available in the literature. 
Compound features were computed by using molecular descriptors from open-
source libraries starting from the SMILES representations. The main contributions 
lie in the methods used for the feature selection and the interpretation of the 
resulting models. Previously discussed model explanation approaches based on 
random forest impurity-based feature importance provide only global 
interpretations in the form of feature relevance ranking for the model, furthermore 
they suffer from known disadvantages such as underestimation of the relative 
importance of features due to multicollinearity, and bias towards high cardinality 
features446 . In this work, in order to improve the interpretability of the final model, 
we propose a method of sequential selection of relevant and uncorrelated or weakly 
correlated features based on hierarchical clustering on the feature's Spearman rank-
order and two-sample Kolmogorov - Smirnov test. As a method of explanation, we 
propose to use the novel SHapley Additive exPlanations (SHAP) 447 approach 
which, in addition to having a solid mathematical background, provides a wider 
range of both global interpretation tools, such as feature importance graphs, 
summary and partial dependence plots, and local interpretation tools such as 
visualizations of the contribution of each single features in the bitter/sweet 
prediction of a single molecule in the dataset. This allows the identification of the 
chemical descriptors of interest by allowing a more informed approach to the design 
and screening of sweeteners/bitterants. 

3.3.2 Materials and Methods 

 Database and data curation 
The employed dataset collects compounds from several previous pieces of 
literature. In particular, we gathered compounds from (i) Biochemical Targets of 
Plant Bioactive Compounds by Gideon Polya 448, (ii) BitterDB 439, (iii) Fenaroli 
Handbook of Flavor Ingredient 449, (iv) DB by Rodgers et al. 434, (v) DB by Rojas 
et al. 450, (vi) SuperSweet 451, (vii) The Good Scents Company Database 
(http://www.thegoodscentscompany.com/), (viii) DB by Wiener et al. 437, (ix) 
SweetenersDB 452. The resulted starting database collected a total of 3130 
compounds (1764 sweet and 1366 bitter) with their SMILES description. We then 
checked all the SMILES using the RDKit library (http://www.rdkit.org), removing 
compounds with incorrect SMILES, searching for the relative correct SMILES in 
the PubChem database and removing duplicates. Then, the SMILES were processed 
with the ChEMBL Structure Pipeline 453 
(https://github.com/chembl/ChEMBL_Structure_Pipeline) to highlight possible 
issues in the retrieved molecular structure and to standardize the SMILES 
representation for the entire dataset. The latter protocol runs a molecule checker on 
the compound structure, standardizes chemical structures and generates the parent 
molecule representation based on a set of predefined rules. At the end of this 
preprocessing pipeline, we obtain a final dataset of 2686 compounds (1415 sweet 
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and 1271 bitter). A summary of the final collected compounds from each of the 
above-mentioned databases is reported in Table A - 6.7.1. It is worth mentioning 
that a similar approach to dataset creation was adopted in previous literature 443. We 
added some new compounds from new sources or updated version of the selected 
DBs. compared to the previous work, we increased the total number of compounds 
by 500, adding 168 sweet compounds and 355 bitter compounds. 

Molecular descriptors  
Starting from the SMILES representations, compound features were computed by 
using molecular descriptors from open-source libraries, i.e. RDkit 
(http://www.rdkit.org), pybel 454 and Mordred 455. In detail, we decided to focus on 
2D molecular descriptors, using 208 descriptors from RDKit, 25 from pybel and 
1826 from Mordred, obtaining a total of 2059 molecular features per molecule. We 
focused our attention only on the 2D molecular descriptors to avoid the impact of 
compound optimization and parameters related to the three-dimensional properties 
of molecules. The 2D descriptors provide fundamental chemical information in 
terms of molecular weight, number of individual types of atoms, types of bonds, 
degree of hybridization, spectral diameter, detour index, number of hydrogen 
donors and acceptors, molecular distance edge between different types of atoms, 
the polarizability of atoms and bonds, and topological polar surface. Moreover, 
other features derived from a symbolic representation were also considered such as 
the Zagreb index, adjacency matrix descriptors, Moreau–Mroto descriptors, Moran 
coefficients, Geary coefficients, and descriptors describing the Burden matrix and 
Barysz matrix 427. It is worth mentioning that other previous works successfully 
obtained good results in the field of taste prediction using only 2D molecular 
descriptors 431,443: this represents a great step forward since 2D molecular 
descriptors are less expensive from a computational point of view and not affected 
by variations in the three-dimensional molecular structures. However, 2D 
descriptors are not able to catch variations in the molecular three-dimensional 
arrangements of investigated molecules. This could be potentially important in the 
bitter/sweet taste prediction field, since some compounds can elicit both taste 
sensations depending on modifications in their 3D structural properties, including 
isomerism 456 457,458 459–462. Nevertheless, to avoid any possible misclassification for 
the above-mentioned type of compounds and employ only the 2D molecular 
descriptors, as also mentioned in the Data Cleaning section, we have not considered 
70 compounds with identical 2D descriptors but different tastes. The inclusion of 
also 3D descriptors might be considered in the future to include compounds able to 
trigger sweet or bitter taste depending on their three-dimensional rearrangements. 

Data cleaning 
The resulting raw dataset, consisting of 2686 samples and 2060 columns (2059 
features + 1 target column) was cleaned with the following procedures. First, 713 
duplicate rows (or groups of more than 2 identical rows) were identified. 643 of 
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them had the target variable duplicated, while the remaining 70 had a different 
target variable. Of the former, only one sample per group of duplicate rows was 
kept in the dataset, while the latter were entirely removed from the dataset to avoid 
ambiguity. Afterwards, all columns with a percentage of missing values greater than 
or equal to 95% have been removed from the dataset along with all columns with 
zero or almost zero variance, i.e., constant or near-constant columns such that for 
99% or more of the samples the same numerical value is present in the dataset. 
Finally, all the columns with duplicate values (or groups with more than 2 identical 
columns) have been collapsed into a single column to avoid redundancy. Bitter and 
sweet classes have been replaced with the numeric values of 0 and 1, respectively. 
The cleaned dataset was thus reduced to 2195 samples and 1403 columns (1402 
numerical features + 1 binary target column). 

 Validation strategies and evaluation criteria 
Stratified 5-fold cross-validation was used for training and hyper-parameter tuning. 
Stratification allows for the preservation of the classes’ proportion in the created 
folds. Repeated 10-times 10-fold stratified cross-validation using different 
randomization of the data at each repetition was used for statistical comparison of 
modelling results and model selection. Models were evaluated using as primary 
evaluation criteria threshold-independent metrics such as Area Under Receiver 
Operating Characteristic Curve (AUROC) and Area Under Precision-Recall Curve 
(AUPRC), along with F1-score, Precision, and Recall. 

Modelling  
We tested: 

• two conventional statistical approaches, namely, a parametric logistic 
regression model and a non-parametric k-nearest neighbours algorithm;  

• two tree-based machine learning models, namely a random forest and a 
gradient boosting machine (LightGBM implementation); 

• a deep learning model, i.e., multilayer perceptron (MLP).  

A brief description of each model is provided in the following. 

Logistic regression provides the probability of a certain class, where the log-odd is 
a linear combination of the input features. As a consequence, the class decision 
boundary is a linear function of the inputs.  Linearity makes the estimation 
procedure simple and the results easy to understand and interpret. However, the 
correctness of the model depends on strong assumptions about the data including 
normality, independence, linearity and homoscedasticity. In a k-nearest neighbours 
classification algorithm, a new sample is assigned to the most common class among 
its k nearest neighbours. In random forest and gradient boosting machines, the 
prediction of the target variable is given as the result of an ensemble of weak models 
which are typically decision trees. A random forest fits several decision tree 
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classifiers on various sub-samples of the dataset in parallel and then combines the 
trained classifiers to improve predictive accuracy and control over-fitting. In a 
Gradient Boosting model, decision trees are trained consecutively in a forward 
stage-wise fashion, where each new tree is fitted to the predecessor’s (pseudo) 
residual error, allowing sequential optimization of an arbitrary differentiable cost 
function through gradient descent. Artificial neural networks (ANNs) are 
computing systems characterized by elementary units (called neurons) 
interconnected through edges with adjustable weights. Such neurons are organized 
in layers that perform different types of mathematical transformations at their 
inputs. Typically, the weights of a neural network are adjusted through variants of 
the gradient descent algorithm, with gradients computed using the backpropagation 
algorithm. A multi-layer perceptron (MLP) is an ANN with multiple layers between 
the input and output layers. The MLP used in the study has a basic architecture of 
2 fully connected layers with 100 neurons and ReLu activation functions. Adam 
optimizer463 was used to optimize the weight parameters.  

Training of all the models mentioned above was implemented in Python 3.9.7, with 
scikit-learn 1.0.1 and LightGBM 3.3.1 libraries. 

 Statistical analysis 
To evaluate statistically significant differences between the performance of the 
models, we compared their AUROC scores by running a statistical test. To 
statistically compare the performance of a pair of models, we used the Nadeau and 
Bengio's corrected t-test464. This test takes into account the non-independence of 
the 100 AUROC scores of the individual models, obtained by evaluating the models 
on the same folds with repeated 10-times 10-fold stratified cross-validation. Finally, 
for pairwise comparison of all models, we ran the same statistical test multiple times 
by applying a Bonferroni correction to the computation of the p-values. The 
significance level was set to p<0.05. 

Feature selection 
Initially, the models are trained using all the 1402 input features, and the best 
learning algorithm is selected for further analysis. Indeed, the overall objective of 
this work is to build a model as accurate and interpretable as possible. Thus, it was 
necessary to select a small subset of features sufficiently informative to have an 
accuracy comparable to the one achieved by using all the 1402 input features. 
Furthermore, in order to increase interpretability and prevent underestimation of the 
relative importance of features due to multicollinearity465 the selected features 
should be ideally uncorrelated or weakly correlated to each other. To achieve this, 
we used sequential feature selection combined with hierarchical clustering 466 on 
some features’ correlation index. In this work, we used the Spearman rank-order 
index to take into account non-linear relationships between pairs of features. This 
allowed us to construct a small subset of uncorrelated or weakly correlated features 
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by choosing a given number of clusters and keeping a single feature from each 
cluster.  

Different strategies can be used to select one representative feature from a particular 
cluster, either through automated methods or domain expert knowledge. In this 
work, we used an automated strategy. For each cluster, features have been ranked 
according to their univariate predictivity of the target variable and the most 
predictive one was picked. The predictivity of a feature was estimated with a two-
sample Kolmogorov – Smirnov test467 which empirically measures the distance 
between the two distribution functions of the considered feature, one referring to 
sweet and the other referring to bitter instances. The greater the distance between 
these two empirical distributions, the greater the probability that the sweet and bitter 
samples are drawn from different distributions, and the greater the univariate 
capability of the considered feature in predicting the target variable. 

Feature importance analysis 
To measure and rank the importance of each variable and explain their contribution 
to the individual predictions of the best performing model, we used SHAP (SHapley 
Additive exPlanations) values447, a recent model-agnostic explanation methodology 
with a solid theoretical foundation and desirable properties. The SHAP explanation 
method computes Shapley values from the coalitional game theory conceptualized 
by the economist Lloyd Shapley, hence the name. The feature values of a sample 
act as players in a coalition and Shapley values tell us how to fairly distribute the 
resulted prediction among the features. An important feature is that the Shapley 
values are calculated as an addictive feature attribution method. For machine 
learning models, this means that SHAP values of all the input features will always 
sum up to the difference between baseline (expected) model output and the current 
model output for the prediction being explained. Furthermore, SHAP values are 
consistent, which means that features that are unambiguously more important are 
guaranteed to have a higher SHAP value. Operationally, for a single instance 7	, 
given a model 8	that outputs a prediction value 9:, SHAP decomposes this prediction 
into the sum of a baseline value with the contributions that each feature has to the 
prediction, that is: 

 CD  =  C01+& + F(G2) + F(G/) + F(G3) + ⋯ (1) 

where 923(# =  <[8(>)] is the expected value of the predictions of all the training 
data >	 and @A74B is the SHAP value corresponding to the j-th feature. In our study, 
positive SHAP values @A74B > 0  implies a positive contribution to the sweetness 
of the molecule, while negative SHAP values imply a positive contribution to the 
bitterness of the molecule. E@A74BE gives the magnitude of the contribution. The 
specific formula for the calculation of @A74B is given by the following expression: 
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FIG4J = K

|,|! (M − |,| − 1)!

M!
[O5(, ∪ {R}) − O5(,)]

6⊂8∖{4}
 (2) 

where 3	is the set of all input features with ,	its dimension, !	is a subset of 3	of 
dimension |!|, 85(!) = <[ 8(>) ∣∣ >6 = 76 ] is the expected value of the predictions 
conditioned on the subset !	 of input features with known values 76and 85(! ∪ {J}) 
is the same but with feature J	 added to subset !. Finally, the SHAP value for feature 
J	is computed as a weighted average over all possible feature subsets !	 that don’t 
include feature J	already. 

A comparison between the different models investigating the bitter/sweet 
dichotomy is reported in Table A - 6.7.2, highlighting the sources used for the 
construction of the dataset, the employed molecular descriptors for features 
computing, and the methods/approaches used for features selection, model building 
and model interpretation.  

Applicability domain  
In the current work, we developed an applicability domain (AD) to provide 
additional information about prediction reliability. An average-similarity approach 
already employed in previous recent literature in the taste prediction field 441,468 was 
considered. The AD was created considering a random 90:10 dataset partitioning 
into training and validation sets according to the 10-fold cross-validation employed 
in the model development. (i) the Morgan Fingerprints (1024 bits, radius 2) were 
calculated using RDKit for all the compounds in the dataset set; (ii) a similarity 
score was then evaluated between each molecule in the training and validation sets 
and the previously-defined fingerprints using the Tanimoto similarity index from 
RDKit; (iii) then the average similarity score was computed by averaging the 
similarity scores of the 5 most similar couple of compounds. The distribution of the 
average similarity scores for the training and validation sets was used to identify a 
similarity threshold to discriminate between query compounds inside or outside the 
domain of applicability. 

3.3.3 Results and Discussion 

Data pre-processing and missing values handling 
Different strategies for data pre-processing and imputation of missing values were 
used according to the different learning models employed. For logistic regression, 
k-nearest neighbours, and multi-layer perceptron the outliers were treated with 90% 
winsorization, i.e., each variable was clipped at its 5th and 95th percentile, then 
each feature was scaled with min-max normalization. For gradient boosting and 
random forest, only 90% of winsorization was applied. The missing values were 
particularly severe for the molecular distance edge descriptors and the atom type e-
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state descriptors, respectively 60.8% and 40.4% of missing values on average 
between the descriptors. These were generated due to chemical or structural 
characteristics of the molecule that makes the computation of a particular descriptor 
not possible, thus resulting in missing not at random (MNAR) values. For this 
reason, missing values have been imputed with a constant out-of-distribution value, 
namely: -1 for logistic regression, k-nearest neighbours and multi-layer perceptron; 
and -99999 for the random forest. For gradient boosting the missing values were 
automatically handled by the LightGBM implementation.  

Model performances 
The complete performances of the tested models, computed with repeated 10-times 
10-fold stratified cross-validation and averaged on the folds, are summarized in 
Figure 3.5A-B, and the receiver operating characteristic (ROC) curve and 
precision-recall (PR) curve are shown in Figure 3.5C-D. Gradient boosting 
achieved an AUROC of 0.950 (95% CI [0.930, 0.970]); random forest achieved an 
AUROC of 0.942 (95% CI [0.916, 0.968]); MPL achieved an AUROC of 0.934 
(95% CI [0.906, 0.962]); logistic regression and k-nearest neighbours classifier 
achieved an AUROC of 0.924 (95% CI [0.894, 0.954]) and (95% CI [0.880, 0.944]), 
respectively.  
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Figure 3.5. (A) Average model performance. (B) Pairwise comparison of all model performance 
with Nadeau and Bengio's corrected t-test and Bonferroni correction. (C) Solid lines and shaded 
areas represent the average receiver operating characteristics curves and their 95% confidence 
intervals. (D) Solid lines and shaded areas represent the average precision-recall curves and their 
95% confidence intervals. Abbreviations: GB, gradient boosting, RF, random forest, LR, logistic 
regression, MLP, multi-layer perceptron, K-NN, k-nearest neighbours. 

A direct comparison between our approach and the literature in this field is not 
completely fair, as performance evaluation is not performed on the same testing 
data. However, we provide in the following useful overview to contextualize the 
results achieved by our approach compared to the ones available in the literature 

Model AUROC AUPRC Precision Recall F1 score 
Gradient boosting 0.950 0.943 0.866 0.893 0.883 
Random forest 0.942 0.930 0.863 0.869 0.871 
Logistic regression 0.924 0.905 0.838 0.877 0.860 
Multi-layer perceptron 0.934 0.917 0.848 0.868 0.862 
K-nearest neighbors 0.912 0.879 0.791 0.875 0.830 

 

Model 1 Model 2 t-statistic p-value 
Gradient boosting Random forest 3.095 0.013 
Gradient boosting Logistic regression 6.828 <0.001 
Gradient boosting Multi-layer perceptron 4.789 <0.001 
Gradient boosting K-nearest neighbors 8.602 <0.001 
Random forest Logistic regression 4.747 <0.001 
Random forest Multi-layer perceptron 2.394 0.093 
Random forest K-nearest neighbors 6.867 <0.001 
Logistic regression Multi-layer perceptron -2.556 0.061 
Logistic regression K-nearest neighbors 2.527 0.065 
Multi-layer perceptron K-nearest neighbors 4.668 <0.001 

 

(A)

(B)

(C) (D)



VirtuousSweetBitter 125 

 

and to give an indication of the performance achievable for this type of 
classification problem. BitterSweetForest442 achieved higher metrics (AUROC = 
0.98, F1 = 0.92-0.95, ACC = 0.97), but with a remarkably lower number of samples 
in the database (517 artificial and natural sweet compounds and 685 bitter 
molecules), limiting the exploration of the bitter/sweet chemical space. 
BitterSweet443 obtained different performances for the sweet/non-sweet and the 
bitter/non-bitter predictions. In particular, for the sweet/non-sweet prediction, 
BitterSweet achieved AUPRC of 0.93, AUROC of 0.85, F1 score of 0.77 and 
regarding the bitter/non-bitter prediction AUPRC of 0.93, AUROC of 0.88, F1 
score of 0.86.  

Feature selection 
To select a small subset of uncorrelated or weakly correlated informative features, 
we used sequential feature selection combined with hierarchical clustering on the 
feature’s Spearman rank-order correlations, as described in the following steps.  

i. First, the feature correlation matrix was constructed using Spearman rank-order 
correlations and, for each feature, the predictive capacity of the target variable 
was estimated through a two-sample Kolmogorov – Smirnov test. In Figure 2A 
(first line), the variables piPC4 (conventional bond order ID number of order 
4), GATS1d (Geary autocorrelation coefficient of lag 1 weighted by sigma 
electrons) and MPC5 (molecular path count of order 5) are shown, characterized 
by high values of the Kolmogorov – Smirnov statistic and high separation 
between the empirical distributions of samples with sweet target and samples 
with the bitter target. The second line of the same figure shows the variables 
CIC1 (1-ordered complementary information content), MATS7are (Moran 
autocorrelation coefficient of lag 7 weighted), and AATSC7s (Broto 
autocorrelation of lag 7 weighted by intrinsic state) characterized by low 
Kolmogorov – Smirnov statistic values and high overlap between the empirical 
distributions of sweet and bitter samples. The variable with the highest 
estimated predictive capacity (piPC4) was selected and used to train a 
LightGBM model. The resulting performances were computed with 5-fold 
cross-validation and stored. 

ii. After converting the correlation matrix to a distance matrix, hierarchical 
clustering using Ward’s linkage was performed and two clusters were selected. 
From these, the 2 most representative features were picked based on their 
estimated predictive capacity and used to train a LightGBM model and compute 
cross-validation performances, together with the intra-cluster mean absolute 
correlation of the features.  

iii. The process described in step (ii) is repeated for 3, 4, … clusters, until each 
cluster is atomic i.e., it contained a single feature. 
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The results of this procedure are shown in Figure 3.6B, where we can observe that 
with a limited number of features it is still possible to approach the performance of 
the reference model trained with the entire set of features, which reinforces the fact 
that groups of features are redundant. 

Finally, we have arbitrarily chosen 29 features as a good compromise between 
model performance (AUROC = 0.944), simplicity and interpretability. Figure A - 
6.7.1 shows the correlation matrix of the selected features and the absolute values 
of the feature’s Spearman rank-order correlations with an average absolute 
correlation between the variables of 0.19. This shows that the implemented 
procedure allowed us to develop a model with weakly correlated features as inputs.  
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Figure 3.6. (A) Kernel density estimation of the sweet vs bitter molecules empirical distributions for 
features with high Kolmogorov – Smirnov statistic (first row) and low Kolmogorov – Smirnov 
statistic (last row). (B) Feature selection algorithm results. Average AUROC values (blue left y-
axis) and average absolute intra-cluster correlation (red right y-axis) as the number of clusters 
increases. The zoom represents the progress of the algorithm until the first 50 clusters are reached. 

Global interpretation 
The SHAP explanation method aims to explain the prediction of a single instance 
by estimating, for each feature, its contribution to the prediction, called SHAP value 
(in this study the prediction associated with a molecule corresponds to the 
probability predicted by the model that that molecule is sweet). By combining 
SHAP values computed for each sample of the dataset, we obtain a matrix with one 
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row per sample and one column per feature. From the analysis of this matrix, it is 
possible to obtain global explanations of the entire model. The SHAP feature 
importance bar plot shown in Figure 3.7A reports the features in descending order 
of importance computed as the average across the data of the absolute SHAP values. 
BCUTi-1h (first highest eigenvalue of Burden matrix weighted by ionization 
potential) and MINdO (the minimum value of the atom type E-state descriptor469 
linked to the presence of the atom group double bonded with Oxygen) have been 
identified as the most impacting features, followed by ATSC5c (centred Moreau-
Broto autocorrelation of lag 5 weighted by gasteiger charge), MATS2s (Moran 
autocorrelation coefficient of lag 2 weighted by intrinsic state), MINssO (the 
minimum value of the atom type E-state descriptor469 linked to the presence of the 
-O- atom group, MDEC- 13 (molecular distance edge between all primary and 
tertiary carbons), MPC5 (molecular path count of order 5), GATS2v (Geary 
autocorrelation of lag 2 weighted by van der Waals volumes) and GATS1d (Geary 
autocorrelation coefficient of lag 1 weighted by sigma electrons). All other features 
were considered less impacting on predictions. In the SHAP summary plot of Figure 
3.7B, in which each sample is depicted as a point where the position on the x-axis 
represents the impact on the prediction in the form of SHAP value and the colour 
represents the intensity (blue for low values to red for high values) of the value 
assumed by a feature, feature importance is combined with the directional 
relationship between values assumed by a feature and impact on predictions. 
Among the most impacting variables, ATSC5c, MATS2s and GATS2v are 
positively correlated with the sweetness of a molecule, while BCUTi-1h and 
MINdO are positively correlated with the bitterness of a molecule. 

The empirical form of the relationship between feature values and impact on model 
predictions can be studied for each feature with the SHAP dependence plots, where 
each data instance is represented by a point with a position on the x-axis the value 
assumed by the feature and the position on the y-axis the corresponding Shapley 
value. The SHAP dependence plots for the 4 most representative features are 
presented in Figure 3.8. 

 



VirtuousSweetBitter 129 

 

 
Figure 3.7. SHAP feature importance plots. (A) The left bar plot represents a ranking of the 
importance of the variables with their average impact on model prediction. (B) The right dot plot 
represents each data point with the signed contribution of each variable to the model prediction: 
blue colour indicates low values for a variable whereas red colour indicates high values. 
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Figure 3.8. SHAP dependence plots of the 4 most representative features. (A) BCUTi-1h, (B) 
MINdO, (C) ATSC5c, (D) MATS2s. For discrete and mixed variables, values are plotted with a 
scatter plot and box plots with whiskers enclosing points belonging to different levels (A). For 
continuous variables, values are plotted with a scatter plot and an orange regression line with 
shaded 95% confidence intervals (B, C, D). A red diamond marks a cut-off point of the feature. 
Empirical distributions of feature and SHAP values are represented with histograms on the top and 
right of each plot. 

Local Interpretation 
Finally, in this paragraph, we report a local interpretative analysis of the final model 
using as case studies six representative molecules (Figure 3.9A and Figure A - 
6.7.3):  

• thre sweet molecules, i.e., Sucrose, Glucose, and Aspartame;  

• three bitter molecules, i.e., Propanolol, Caffein, and Denatonium. 
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Figure 3.9A shows the out-of-sample predictions of the entire dataset obtained in 
cross-validation and ordered according to the prediction ranking. The considered 
four reference molecules are highlighted in the plot with their sweet/bitter target 
correctly predicted by the model.  

The SHAP profiles of the representative molecules are shown in the left panel of 
Figure 3.9B-C and Figure A - 6.7.3A-D. The most impacting features for the 
prediction are shown on the y-axis and the corresponding SHAP values are 
displayed through coloured arrows with their cumulative value reported on the x-
axis. Positive SHAP values, represented with red arrows, indicate a positive 
contribution to the predicted sweetness of the molecule, while negative SHAP 
values, represented with blue arrows, indicate a positive contribution to the 
predicted bitterness of the molecule. Empirical distributions of the most impacting 
features are reported in the right panels of Figure 3.9B-C and Figure A - 6.7.3A-D. 
The orange colour distributions correspond to the sweet molecules in the dataset, 
while the blue ones correspond to the bitter molecules. The vertical solid red lines 
highlight the value assumed by the feature in the corresponding molecule. If the 
value is missing, the feature is skipped. For these molecules, the most impacting 
features contribute with the same sign to the prediction. Moreover, the most 
impacting feature is unanimously BCUTi-1h (first highest eigenvalue of Burden 
matrix weighted by ionization potential). For bitter molecules, other common 
impacting features are MINdO (the minimum value of the atom type E-state 
descriptor469 linked to the presence of the atom group double bonded with Oxygen) 
and MPC5 (molecular path count of order 5), while for sweet molecules they are 
GATS2v (Geary autocorrelation of lag 2 weighted by van der Waals volumes) and 
GATS1d (Geary autocorrelation coefficient of lag 1 weighted by sigma electrons).  
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Figure 3.9 Prediction rank for the molecules of the entire dataset (x-axis) vs out-of-sample predicted 
sweetness probability (y-axis). Reference molecule prediction are highlighted. SHAP profiles of two 
representative molecules: Sucrose (B) and Propanolol (C). For each figure, SHAP values are shown 
in the left panel and impacting feature distributions in the right panel, with values assumed by the 
features highlighted with solid red lines. 

3.3.4 Conclusion 

The sweet-bitter dichotomy is an extremely fascinating aspect of taste perception: 
while the sweet taste is commonly associated with a pleasant sensation linked to the 
energetic content of foods, bitter is a complex control system normally related to 
the ability to avoid toxic or possibly harmful substances. In this work, we have 
further investigated this attractive mechanism to shed light on the molecular 
features determining the taste of a specific molecule. Therefore, we developed a 
machine-learning-based classifier able to discriminate between the bitter and sweet 
tastes of a query compound based on its molecular structure. The implemented tool 
is based on the widely used SMILES representation and employs open-source 
molecular descriptors to calculate the features on which the model relies. Thanks to 
statistical analysis methods, feature selection and analysis techniques, we were able 
to pinpoint a reduced number of molecular features determining the bitter or sweet 
taste and, together with the SHAP explainability method, we underlined the impact 
of the selected features, providing an informed and interpretable classification. In 
the process of designing new molecules, it is difficult to make use of the selected 
features as they are not intuitive. This issue, however, is not related to the selection 
of features, but rather to the use of molecular features in 2D. This point could be 
adequately addressed not only by simplifying the input molecular features, which 
will inevitably reduce algorithm performance, but also by taking advantage of a 
number of scientific studies focused on machine learning decoders able to 
reconstruct the chemical information starting from the 2D features of the 
molecule.  Additionally, a generative model could be added to the computational 
pipeline to suggest appropriate chemical changes to achieve the desired taste. 
Addressing the previously-mentioned challenges represent the future development 
of this work, and we hope that our study will provide a starting point for potential 
studies in this field. The developed model will therefore pave the way toward the 
rational design and screening of sweet/bitter molecules through the molecular 
understanding of the physical and chemical characteristics underlying the 
perception of these tastes. To ensure the reproducibility of the results and to allow 
the usage of the developed model, we publicly release the Python scripts, along 
with the employed datasets and supplementary material on GitHub 
(https://github.com/gabribg88/VirtuousSweetBitter). The sweet/bitter classifier 
will be also implemented into a user-friendly webserver to allow its usage even to 
non-expert or technical users. In a broader view, this tool will be integrated into the 
framework of an EU-funded project, named VIRTUOUS (64), which aims at 
creating an intelligent computational platform by integrating molecular modelling 
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methods, drug discovery techniques, machine learning classifiers, algorithms for 
big data, cloud computing, and experimental data to predict the organoleptic profile 
of selected types of food based on their chemical composition. In conclusion, the 
present work represents a crucial starting point in the definition of a virtual tongue 
able to predict the taste of specific ingredients and general compounds with the 
ultimate goal of shedding light on the mechanisms and hidden relationships at the 
basis of the taste perception process.  

 



  

 

Chapter IV 

Conclusions 

Taste perception is a complex experience that involves the gustatory, olfactory, and 
trigeminal systems, and serves to regulate food intake by assessing its nutritional 
value and potential harm. The gustatory system recognizes the five primary tastes - 
sweet, umami, bitter, sour, and salty - which each have specific functions. Taste 
perception is a multi-level process that involves molecular, subcellular, cellular, 
and tissue-level actors within the gustatory system. At the molecular level, taste 
perception is initiated by the interaction between chemical substances from ingested 
foods and specific proteins known as taste receptors, which are located on the 
gustatory papillae of the tongue. Each taste type has its signal transduction pathway 
that is mediated by taste receptors, leading to the activation of taste receptor cells. 
Investigating the molecular mechanisms of taste perception is crucial in 
illuminating the complex interplay between food uptake and intake and developing 
strategies to optimize nutrition and health outcomes. 

This vision is embraced by the EU-funded project, VIRTUOUS 
(https://virtuoush2020.com/), within which this doctoral thesis is embedded. The 
primary goal of this project is the development of a virtual tongue as a 
comprehensive computational framework to screen selected natural compounds and 
food ingredients from the Mediterranean diet, such as olive oil or wine, for their 
ability to target taste receptors. The proposed platform should be able to integrate 
drug discovery techniques, machine learning classifiers, algorithms for big data, 
cloud computing, and experimental data to predict the organoleptic profile of a 
given food type based on its chemical composition. Through this project, a greater 
understanding of the mechanisms driving the transfer of information from the 
molecular level, where food constituents bind to taste receptors, to the cascade of 
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molecular, supramolecular, and cellular events that lead to an elaborated sensation 
contributing to the food's organoleptic profile will be achieved. 

The present PhD Thesis is focused on the investigation of taste perception from its 
molecular-level perspective. The primary methodologies considered and employed 
were molecular modelling and machine learning. Molecular modelling was utilized 
to investigate the interactions between tastants or small natural compounds found 
in the diet with various taste receptors and off-target proteins. On the other hand, 
machine learning-based methodologies were considered to predict the taste of a 
molecule only based on its chemical structure. The scientific core of the present 
thesis consists of Chapter II and Chapter III which are respectively dedicated to the 
discussion and application of molecular modelling and machine learning-based 
methodologies to the above-mentioned scopes. In the following, a summary of the 
main results and conclusions from each chapters’ sections, together with a critical 
discussion of the overall achievements, is provided.  

In 2.1 - Molecular basis of taste perception, we reviewed the major scientific 
advances in the molecular modelling of taste receptors and their interactions with 
specific tastants. This section focuses on the primary candidates discussed in the 
literature for taste receptors, including GPCRs for sweet, umami, and bitter, OTOP1 
for sour, and ENaC for salty. However, these receptors cover a limited range of 
possible receptors, transducers, and proteins essential to the taste perception 
process. The presence of other key players and the identification of other possible 
basic tastes suggest that the understanding of taste perception is still incomplete and 
lacking, and further research is needed to achieve granular and comprehensive 
knowledge. Currently, computational and/or combined 
computational/experimental studies focusing on the structure-to-function 
relationships and ligand-protein binding investigations provide the main findings 
on taste receptor function. The need for developing high-quality molecular 
structures is a crucial step in molecular modelling, and the section described the 
most recent experimentally solved and in silico-derived structures for each taste 
receptor candidate. Among the players of taste transduction, only a few structures 
have been experimentally solved and most of the computational works rely on 
models coming from computationally-predicted structures. This section remarked 
that understanding the molecular behaviour and activity modulation of taste 
receptors is a crucial scientific challenge in research on the complex mechanisms 
that lead to the emergence of a taste sensation at the supramolecular, cellular, and 
tissue levels. In this context, this section provided pieces of evidence that 
computational molecular modelling is a powerful tool due to its atomistic resolution 
and enables the exploration of receptor structure-to-function relationships and 
ligand roles in taste receptor activity. This type of investigation allows for the 
quantitative characterization of the ligand-binding process, thermodynamics and 
kinetics of the binding mechanism, binding modes, and ligand-target interaction 



VirtuousSweetBitter 137 

 

properties, among others. Ligand-receptor binding investigations can evaluate food 
molecular constituents in terms of specificity, selectivity, multi-target features, and 
the natural role of taste receptors in discriminating between healthy and dangerous 
foods. Despite significant progress in molecular research and computational 
investigation of ligand-receptor interactions related to taste receptors, the scientific 
knowledge remains rather incomplete and unable to explain the mechanisms 
holistically. Therefore, it remains crucial to accurately frame the transfer of taste 
information from the chemistry level, where food molecular constituents bind to 
taste receptors, to molecular-, supramolecular-, and cellular-level events that 
ultimately contribute to the composite perception strongly linked to the food's 
organoleptic profile. 

In 2.2 - VirtuousPocketome, we were interested in understanding which are the taste 
receptors’ residues needed for the effective tastant recognition and to understand if 
other proteins outside the gustatory systems share some similarities and might be 
considered as possible secondary target for food tastants. In this section, we 
therefore presented a novel computational pipeline, named VirtuousPocketome, to 
screen the human-solved proteome for similar binding sites to a query protein-
ligand complex of interest. We applied the proposed framework to a recently solved 
human bitter taste receptor, namely the TAS2R46, complexed with a bitter taste 
compound, i.e. the strychnine. Starting from different molecular dynamics 
simulations, VirtuousPocketome was able to identify crucial important residues in 
the binding pocket of the bitter taste receptor needed for strychnine binding. The 
retrieved amino acidic patterns were used for the subsequent screening for similar 
proteins of the entire solved human proteome, consisting in 58972 structures at the 
time of work development, finally selecting 145 protein hits. The functional 
enrichment analysis allowed us to pinpoint the main biological processes, molecular 
functions, and cellular components related to the gene expressing the retrieved hit 
proteins. Most of the highlighted biological processes are connected to metabolic 
processes, which is an intriguing finding given the well-established relationship 
between taste perception, food intake, and metabolism. These results suggest that 
strychnine may not only activate the TAS2R46 bitter taste receptor and induce a 
bitter taste sensation, but it may also have the potential to trigger or modulate 
proteins that are directly involved in metabolic processes. Furthermore, the 
identified protein hits are mainly associated with molecular functions related to 
protein or small compound binding and are predominantly located in the cytoplasm 
and membrane. These findings are reasonable considering that TAS2R46 is a 
transmembrane protein and a broad bitter taste receptor that can bind a wide range 
of chemical compounds. Notably, it is experimentally known that strychnine can 
bind other membrane proteins besides the bitter one and exhibit also other types of 
activity besides the gustatory sensation, suggesting a reasonable functioning of the 
proposed pipeline. Further analysis of the retrieved proteins could involve 
predicting whether interaction with the compound of interest results in their 
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activation or modulation. This would enhance our understanding of potential 
secondary effects of tastants beyond their primary taste perception, and how they 
can impact the biological processes and molecular functions that the retrieved hit 
proteins are involved in. This approach can also aid in the design of tailored foods 
and ingredients to create personalized treatments that can target specific proteins or 
receptors involved in particular processes or diseases.  

In 2.3 - The Impact of Natural Compounds on S-Shaped Aβ42 Fibril, we used 
molecular modelling to evaluate the impact of a set of natural compounds on some 
off-targets not directly involved in the taste perception process. In detail, we 
assessed the role and the molecular mode of action of 57 natural compounds on the 
structural stability of S-shaped Aβ42 amyloid fibrils. Five ligands, namely 6-
shogaol, oleuropein, curcumin, gossypin, and piceatannol, demonstrated significant 
destabilizing activity on the Aβ42 S-shape polymorphism, with two distinct 
destabilizing modes of action. This type of investigation highlighted the main 
common chemical features to be considered in the rational design of specific, 
naturally inspired compounds for targeting and destabilizing amyloid aggregates. 

Section 3.1 - Machine learning for Taste Prediction summarised the main scientific 
works in taste prediction using machine learning algorithms. The available 
databases containing food-related compounds and molecules with known taste, as 
well as the main tools employed to predict the taste, are discussed, highlighting 
specific sources for the different basic tastes. We insisted on the necessity for 
developing complete databases comprising all the relevant information for each 
entry (SMILES, InChI, IUPAC nomenclature, etc.) to avoid any possible error in 
compound processing. A correct specification of the molecular descriptors to be 
used would also require the development of extensive databases due to the large 
number and variety of both open-source and proprietary descriptors. We found out 
that most of the taste predictors developed in recent years were designed 
specifically for bitter and sweet tastes and interestingly some pieces of literature 
worked on the bitter/sweet dichotomy by developing prediction tools able to 
classify both sensations. On the other hand, only a few and limited attempts were 
made to predict the umami taste and no specific tools for the prediction of sour and 
salty tastes have been retrieved. Within this section, we have highlighted how the 
development of taste prediction tools is still incomplete and yet unstructured: at 
present, there is no tool capable of predicting all five main taste sensations, and few 
attempts are publicly accessible and usable by a broad spectrum of users, and the 
possibility of developing solutions capable of indicating the physio-chemical 
characteristics underlying a specific taste sensation remains an unsolved issue. 

In section 3.2 - VirtuousUmami, a novel machine learning-based umami taste 
predictor is presented. The developed tool, named VirtuousUmami, can predict the 
umami taste of a query compound based on its chemical structure. The molecular 
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structures are featurized using 2D molecular descriptors using an open-source 
program. The final classification model was created using a hybrid of nonlinear 
machine learning and heuristic optimisation techniques, enabling both an unbiased 
and optimised choice of the classification technique and its parameters. 
VirtuousUmami generalizability and applicability are one of its main novelties. 
More specifically, the developed tool can screen for any sort of chemical and can 
analyse a variety of molecular structure notations, including SMILES, FASTA, 
InChI, SMARTS, or PubChem name. This makes it possible to check a variety of 
molecular databases for umami compounds, such as the ones screened in this 
section (FlavorDB, FoodDB, Natural Product Atlas, PhenolExplorer, and 
PhytoHub), that are connected to food or natural chemicals. The explainability of 
the suggested paradigm is another key benefit: the application of dimensionality 
reduction strategies, such as statistical significance analysis, and the use of SHAP 
feature importance highlighted the most important molecular features on which the 
model relies, opening the way towards an interpretable model. However, the 
complexity of some of the molecular descriptors used still makes the model not 
easy to understand and future work will be needed to optimise models based on 
easily interpretable features to facilitate the definition of the chemical 
characteristics underlying umami perception. In conclusion, VirtuousUmami will 
be an effective tool for quickly screening any database of chemical compounds for 
the identification of a variety of candidate compounds with possible umami sensory 
qualities. In a broader sense, it is important to note that the method created in this 
work is completely generalizable to the prediction of other taste sensations because 
it is based on the SMILES format, a widely accepted molecular description in the 
scientific community. The current tool, therefore, lays the groundwork for the 
creation of a general tool for the prediction of the five basic tastes. 

Section 3.3 - VirtuousSweetBitter described the development of an ML-based tool 
to predict the sweet or bitter tastes, which are commonly associated with opposite 
sensations, i.e. a pleasant sensation linked to the energetic content of foods and an 
unpleasant taste related to the toxic or harmful substances, respectively. Similar to 
the previous section, we used open-source molecular descriptors to translate the 
molecular structure into a machine learning-readable form and statistical analysis 
coupled with the SHAP feature importance method to pinpoint the most important 
and informative features. The final model, optimised accessing the performance of 
several machine learning-based algorithms (logistic regression, non-parametric k-
nearest neighbours’ algorithm, random forest, gradient boosting machine, 
multilayer perceptron), relies on only 29 molecular descriptors and achieved 
performance in line with similar tools in the literature.  

The two above-mentioned tools, i.e. VirtuousUmami and VirtuousSweetBitter, 
have been conceived with a very similar structure to be easily integrated in the 
future into a unified tool able to predict the three taste sensations (sweet, bitter, and 
umami) at the same time. In this context, the recent release of a new database of 
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compounds collecting sweet, bitter, umami, sour, salty and tasteless compounds 
opens the way to the possibility of developing a novel ML-based tool able to predict 
the taste of a query compound or tastant among the five basic taste sensations 470. 
Moreover, VirtuousUmami and VirtuousSweetBitter have been already embedded 
into a user-friendly webserver interface (https://virtuous.isi.gr/) to allow their use 
by the public. The platform was designed according to the VIRTUOUS project 
goals, with particular attention to its usability and accessibility to a wide spectrum 
of users. The platform is currently composed of three main tools: (i) VirtuousFoods 
(https://virtuous.isi.gr/#/foods), which allows for a dynamic exploration of the 
FooDB (https://foodb.ca/) giving the possibility of predicting the taste of all its 
compounds using the Virtuous taste prediction tools; (ii) VirtuousUmami 
(https://virtuous.isi.gr/#/umami) and (iii) VirtuousSweetBitter 
(https://virtuous.isi.gr/#/sweetbitter), which can be executed analysing single 
entries typed directly on the web interface or a text file submitted by the user. It is 
worth mentioning that VirtuousPocketome described in 2.2 will be inserted as a 
fourth tool inside the platform, allowing its use by a wide range of users even non-
experts in the field.      

In summary, the present PhD thesis deals with the molecular-level perspective of 
taste perception. Molecular modelling has been considered and exploited to explore 
the structure and dynamics of taste receptors (section 2.1), characterise their 
specific ligand-receptor interactions and retrieve off-targets sharing similar patterns 
in the binding sites (section 2.2), and evaluate the impact of specific small 
molecules on the structure of proteins not directly involved in taste perception 
(section 2.3). Conversely, machine learning methods have been applied in this field 
to develop novel classifiers able to predict the taste of a query molecule from its 
molecular structure (sections 3.2 and 3.3). This level of investigation allowed us to 
reveal some of the molecular features and modes of actions enabling food tastants 
to target taste receptors and exhibit a specific taste sensation. Despite the 
remarkable scientific advances made in recent years in the field of taste perception, 
a lot of work is still needed to fill the gaps in our knowledge related to the molecular 
mechanisms underlying taste perception. 

Therefore, the present PhD thesis represents only the first step toward a 
comprehensive and granular understanding of taste perception from its molecular 
perspective. In particular, we are currently working on the molecular modelling and 
dynamics of all the main taste receptor candidates and on the definition of a more 
general and interpretable taste predictor able to discriminate among the five basic 
taste sensations and give information relating to the level of perception for a specific 
taste. These future steps will be included in the holistic view of the VIRTUOUS 
project with the ultimate goal of making its platform increasingly precise and 
granular. Increasing the understanding of the molecular basis of taste perception 
will help in determining the individual’s food preferences and improving the intake 
of specific nutrients by altering the taste of specific foods consequently. The 
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possibility to design ingredients with specific tastes might also impact the health 
outcomes, for example, designing novel sweeteners with less caloric content, 
developing enriched foods with specific functional or nutritional content, or 
coupling pharmacological treatments with a personalised diet according to user 
demand. It is therefore totally reasonable that the molecular investigation of taste 
perception should play a fundamental role in future years in the fields of nutrition, 
precision medicine, the food market and beyond.
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Chapter VI 

Appendix 

6.1 Introduction to Machine Learning  

Machine learning (ML) is a branch of artificial intelligence (AI) that empowers 
computers to learn from data and algorithms, mimicking the way humans learn. It 
is closely related to computational statistics, which focuses on using computers to 
make predictions, and mathematical optimization, which connects models to the 
field of statistics. ML is particularly suited for real-world problems that involve 
high complexity and large amounts of data. 

Learning, whether by humans or machines, involves acquiring new knowledge or 
modifying existing behaviours. While humans learn from experience, machines rely 
on data. ML enables computers to automatically improve their performance by 
learning from data and adjusting their actions accordingly. Through this process, 
ML models continuously enhance their capabilities and solve complex problems. 

There are three main types of ML techniques: supervised learning, unsupervised 
learning, and reinforcement learning. In supervised learning, a model is trained 
using labelled data, where the desired outputs are already known. This trained 
model can then make predictions on new, unseen data. Unsupervised learning, on 
the other hand, involves training models without labelled data, aiming to discover 
patterns or relationships within the data. Lastly, reinforcement learning focuses on 
training models through a reward-based system, where the model learns optimal 
actions by interacting with an environment and receiving feedback on its 
performance. 

By leveraging these ML techniques, computers can autonomously learn from data, 
make predictions, and continually improve their performance, offering great 
potential for solving a wide range of real-world problems. 
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Supervised learning can be further divided into classification and regression tasks. 
Classification aims to predict the labels or categories of new instances based on 
previous observations. The predicted labels are categorical values that determine 
the membership of an instance in a specific group. Regression, on the other hand, 
deals with predicting continuous outcomes. In binary classification, the algorithm 
learns to distinguish between two possible classes. This decision function is learned 
by the supervised learning algorithm. In linear regression, the goal is to find a 
relationship between predictive variables and a continuous target variable to make 
predictions. Unsupervised learning, on the other hand, involves exploring the 
structure of data to extract meaningful information without the use of labels or a 
reward function. Clustering is a technique used in unsupervised learning to organize 
a large amount of information into meaningful subgroups called clusters, without 
any prior knowledge of their group memberships. Objects within the same cluster 
exhibit a certain level of similarity, while being distinct from objects in other 
clusters. 

Machine learning algorithms generally follow a common workflow structured in 
multiple phases. The pre-processing phase is an essential step because raw data is 
often not in the desired format or uniformity required for optimal operation of 
learning algorithms. This phase involves transforming features into a standardized 
range, such as [0,1], or into a standard normal distribution with a mean of zero and 
unit variance. Additionally, feature reduction techniques may be applied to 
eliminate redundant or highly correlated features, aiming to improve the 
performance of the model. During this phase, the data is typically divided into a 
training set and a test set. The training set is used to optimize the algorithm, while 
the test set is used to evaluate the generalization capability of the trained model. In 
the learning phase, different algorithms are compared based on their performance 
using a chosen metric. Cross-validation is often employed to further divide the 
dataset into training and validation sets, enabling the estimation of the model's 
generalization capabilities. Model tuning, involving the adjustment of 
hyperparameters, is also conducted during this phase to enhance the model's 
performance. Finally, the evaluation phase utilizes the test set to estimate the 
model's performance on unseen data. If the model demonstrates satisfactory 
performance, it can be deployed to predict new data. 

6.1.1 Pre-processing Phase 

When working with machine learning in real-life applications, it is essential to 
address the issue of missing values. Failure to handle missing data appropriately 
can lead to unpredictable outcomes. The simplest approach is to remove features or 
training examples with missing values from the dataset. However, this can result in 
the loss of valuable information and potentially diminish the effectiveness of the 
model. To mitigate this, imputation techniques are employed to estimate or fill in 
the missing values. For continuous features, a common method is to substitute the 
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missing values with the mean or median of the available data within the same 
feature. In the case of binary features, the missing values can be replaced with the 
most frequently observed value among the non-missing instances. By using these 
imputation techniques, missing data can be managed effectively, allowing for 
robust analysis and modelling. Nevertheless, it is important to acknowledge that 
imputation introduces some level of uncertainty and potential bias, as the missing 
values are estimated based on the available data. Therefore, careful consideration 
and evaluation of the chosen imputation approach are paramount. 

In the pre-processing stage, special consideration needs to be given to nominal 
characteristics, which are characterized by the absence of a specific order. Integer 
encoding alone is inadequate in handling such data, as it assumes a natural hierarchy 
among categories, leading to suboptimal performance. To avoid imposing a 
hierarchical order, the One-Hot Encoding technique can be employed. This 
encoding creates a binary feature for each possible category, assigning a value of 1 
to the corresponding feature for each sample in its original category. However, it is 
important to note that this encoding can introduce multicollinearity, which can 
cause issues for certain methods that rely on matrix inversion.  

Another crucial step in pre-processing is the partitioning of the dataset. The 
available dataset is divided into a training set and a test set. The model is trained 
using the training set, and then predictions are made on the test set to evaluate the 
model's performance on unseen data. Determining the appropriate size of the test 
set is a challenging decision, as a smaller test set may result in less accurate 
estimation of the model's generalization error. 

Feature scaling is also an essential step in the pre-processing phase. Scaling ensures 
that all features have a comparable range and distribution, which is particularly 
important for algorithms that are sensitive to differences in feature scales. Common 
scaling techniques include normalization or standardization, which transform the 
features to a common scale, such as [0,1] or a standard normal distribution with 
mean zero and unit variance. To ensure optimal performance of machine learning 
algorithms, except for decision trees and random forests, it is beneficial to have 
features that are on the same scale. This can be achieved through two common 
approaches: normalization and standardization. In the case of normalization, the 
aim is to scale the features within a specific range, typically [0,1]. The scaling 
process involves transforming the values of each feature column according to the 
following procedure: 

7.)$7
(9) =

7(9) − 779.
7735 − 779.

 

where 7(9) is a given example’s feature, 779. is the lowest value of the column of 
features and 7735 the highest one. 
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On the other hand, the standardization approach is particularly beneficial for linear 
models that initialize weights at zero. It involves centering the columns of features 
around zero and scaling them to have a standard deviation of one. This process aids 
in the updating of weights during the learning phase. The standardization procedure 
for each example is as follows: 

7(&+
(9) =

7(9) − µ5
σ5

 

where µ5 is the sample mean considering a certain column of features and σ5 is the 
related standard deviation.  

In the pre-processing phase, dimensionality reduction plays a crucial role in 
mitigating model complexity and preventing overfitting. Dimensionality reduction 
can be achieved through feature selection and feature extraction techniques. Feature 
selection involves selecting a subset of the original features. Sequential Backward 
Selection (SBS) is an approach where features are sequentially removed based on 
the least degradation in performance after their removal. This process continues 
until the desired number of features is reached. Another approach for selecting 
relevant features is feature importance, which can be evaluated using techniques 
like random forest. Feature extraction, on the other hand, involves creating a new 
subset of features by extracting information from the original dataset. This is done 
by projecting the data into a new feature space. Linear Discriminant Analysis 
(LDA) and Principal Component Analysis (PCA) are commonly used linear 
techniques for feature extraction. LDA is a supervised technique, while PCA is 
unsupervised. In the case of non-linear problems, Kernel Principal Component 
Analysis (KPCA) is employed. KPCA performs a non-linear mapping of the data 
into a higher dimensional space, and then PCA is applied in this new space to 
project the data into a lower-dimensional space, where a linear classifier can be 
applied. 

Class Imbalance Problem 
Real-world datasets often exhibit class imbalance, particularly in medical fields 
where the minority class represents positive events that are of significant interest. 
Handling class imbalance can be challenging when building an effective model. 
Although accuracy can appear high when the majority class is well classified, it 
may not provide a comprehensive performance evaluation. 

One approach to address class imbalance is through resampling techniques. Two 
common strategies are oversampling the minority class or undersampling the 
majority class. In the case of oversampling, the samples from the minority class are 
duplicated until the two classes have an equal number of samples. However, this 
method can be crude as it does not introduce new information to the model, 
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potentially leading to overfitting. Additionally, oversampling may identify similar 
and potentially overrepresented regions in the feature space. 

Another approach is data augmentation, which involves generating synthetic 
samples from existing ones. Synthetic Minority Oversampling Technique 
(SMOTE) is a widely used method in data augmentation. SMOTE operates in the 
feature space rather than the data space, unlike traditional resampling techniques. It 
selects an example from the minority class and randomly chooses one of its 
neighboring examples from the same class. The distance between the two examples 
is calculated and multiplied by a random number between 0 and 1. The result is 
added to the initial distance, generating a synthetic example. This process continues 
until the two classes have an equal number of examples, providing a more balanced 
dataset for training the model. 

6.1.2 Learning Phase 

Here we present the best practices for model optimization. The model is initially 
trained on a dedicated training dataset, and its performance is then evaluated on 
unseen data. One of the key challenges in this process is overfitting, where the 
model becomes overly complex (with a high number of parameters) and fails to 
generalize well to test data, resulting in high variance. On the other hand, 
underfitting is also a significant concern, where the model lacks the necessary 
complexity to effectively capture patterns in the training data, leading to high bias. 
Variance measures the variability of the model's predictions when trained on 
different datasets, while bias represents the systematic error unrelated to 
randomness. To strike a suitable balance between bias and variance, it is essential 
to assess the model's generalization capabilities using techniques such as the 
holdout method and k-fold cross-validation. With the holdout method, the dataset 
is divided into a training set and a test set. Ideally, it is recommended to further 
partition the data into three parts: a training set, a validation set, and a test set. The 
training set is used to configure various models, while the validation set is used to 
evaluate the model's performance repeatedly after training, considering different 
hyperparameter values. Once satisfactory hyperparameters are determined, the 
model's generalization performance is estimated on the test set, providing a more 
reliable estimate of its effectiveness. In k-fold cross-validation, the training dataset 
is randomly divided into k non-overlapping folds, without replacement. In each 
iteration, k-1 folds are used for training the model, while the remaining fold is used 
for performance evaluation. This process is repeated k times, resulting in k models 
and corresponding performance estimates. The average performance across the k 
models is then calculated, using independent test folds, to obtain a performance 
estimate that is less sensitive to the specific partitioning of the data. K-fold cross-
validation is a valuable technique for model optimization. Once the optimal 
hyperparameters are determined, the model is retrained on the entire training 
dataset, providing a final performance estimate using an independent test dataset. 
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This approach offers the advantage of ensuring that each example in the training 
dataset is used once for both training and validation, resulting in a low variance 
estimate of the model's performance. 

Optimal parameters for the model can be find also using the grid search technique, 
which is employed to find the optimal combination of hyperparameters from a 
predefined list, with the goal of maximizing the model's performance. However, a 
drawback of this technique is its computational cost, as it involves evaluating the 
performance of all possible combinations of hyperparameters. This process can be 
time-consuming and resource-intensive, especially when dealing with large 
hyperparameter spaces. 

Nested cross-validation is a technique that combines k-fold cross-validation with 
grid search to select the best machine learning algorithm among several options. It 
is particularly useful when choosing between different algorithms. The process 
involves an external k-fold cross-validation loop that splits the data into training 
and test folds. Within this loop, there is an internal loop that performs k-fold cross-
validation on the training fold to select the optimal model. The performance of each 
algorithm is evaluated and compared using the inner cross-validation loop, and the 
best-performing algorithm is selected based on the results. This nested approach 
helps prevent overfitting and provides a more reliable estimate of the model's 
performance on unseen data. 

6.1.3 Evaluation and Prediction Phases 

The evaluation phase aims to assess the effectiveness of the obtained model. It is 
important to select appropriate metrics based on the specific properties being 
analyzed. Merely calculating the metrics is insufficient; it is essential to ensure that 
the results align with the domain of interest. The interpretation of the results is a 
crucial aspect of this phase. Metrics are often grouped together to facilitate a 
comprehensive evaluation. 

In machine learning, one commonly consulted metric is the confusion matrix, which 
is a square matrix that presents the counts of true negatives (TN), true positives 
(TP), false negatives (FN), and false positives (FP). True negatives represent 
correctly identified negative cases, while true positives represent correctly 
identified positive cases. False negatives are positive cases identified as negative, 
and false positives are negative cases identified as positive. In medical contexts, a 
value of 1 is typically associated with positivity to an event. 

Accuracy is a metric that quantifies the overall mistakes made by the classifier and 
is defined as follows: 

"55O$P59 =
Q& + Q3

S& + S3 + Q& + Q3
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The complementary metric to accuracy is the error metric. The accuracy metric, 
however, fails to differentiate between false positives (FP) and false negatives (FN). 
While this lack of distinction is acceptable in datasets with a balanced distribution 
of both classes, it becomes problematic in unbalanced datasets. This is particularly 
relevant in medical classification, where the minority class represents positivity to 
an event. In the case of unbalanced datasets, the true positive rate (TPR) and false 
positive rate (FPR) metrics are more informative. These metrics are defined as 
follows: 

S&T =
S&

S& + Q3
	

Q&T =
Q&

S3 + Q&
 

	
Precision and recall are metrics that provide insights into the number of true 
positives (TP) and true negatives (TN). Precision evaluates how accurately the 
model classifies examples as positives, while recall assesses how effectively the 
model identifies the positive examples that should have been classified as such: 

&$U5VWV#X =
Q&

Q& + S&
 

TU5PYY = Q&T =
Q&

S3 + Q&
 

The receiver operating characteristic (ROC) curves are valuable tools for 
comparing and selecting models based on their performance. Specificity is one of 
the measures used in ROC analysis: 

!ZU5V8V5V[9 =
Q3

S& + Q3
 

 The ROC curve is obtained for binary classification by plotting the false positive 
rate (1-specificity) on the x-axis and the true positive rate (sensitivity) on the y-axis. 
These metrics are calculated for different threshold values in the range [0, 1].  

For example, if a threshold of 0.5 is used, samples with a predicted output greater 
than or equal to 0.5 are classified as positive, while samples with a predicted output 
less than 0.5 are classified as negative. This threshold value represents one point on 
the ROC curve. 

By varying the threshold, different points on the ROC curve are obtained, reflecting 
the trade-off between sensitivity and specificity. The ROC curve provides a visual 
representation of the model's performance across different threshold values, 
allowing for the comparison of different models and the selection of an optimal 
operating point.  
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Figure A - 6.1.1. ROC Curve, Ideal Classifier, Real Classifier, Random Guess 

Figure A - 6.1.1 illustrates the performance of different classifiers using the ROC 
curve. The random guess classifier (orange) represents the worst-case scenario, 
where the area under the curve (AUC) is 0.5. This indicates that the classifier 
performs no better than random chance. On the other hand, the ideal classifier (red) 
represents the optimal case, where there are no classification errors, and the AUC 
is equal to 1. This signifies perfect discrimination between positive and negative 
samples. Real classifiers (blue) should aim to achieve results that are closer to the 
ideal case or at least fall between the best and worst cases. The AUC values for 
these classifiers will lie between 0.5 and 1, indicating their performance relative to 
random guessing and the ideal classifier. 

6.1.4 Examples of Classifiers 

Several methods and classifiers have been proposed in the past years for machine 
learning applications. In this section, we will provide a brief overview of some of 
the most used machine learning classifiers. Table A - 6.1.1 provides a quick 
overview of most used ML algorithms, whereas following sections will describe 
more in detail some of the models used in the present PhD thesis.   
Table A - 6.1.1. Different ML algorithms 

Logistic 
regression 

Logistic regression is a commonly employed linear method, frequently 
utilized in medical applications. It predicts the probability of an object 
belonging to a specific class, making it suitable for binary classification 
tasks. Logistic regression is known for its ability to avoid overfitting, 
distinguishing it from other linear models, which predicts continuous 
values. The output of logistic regression is a probability score that 
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quantifies the likelihood of an object belonging to a particular class. This 
probability is obtained by applying a logistic function (sigmoid function) 
to a linear combination of the input features. The logistic function 
ensures that the predicted probabilities fall within the range of [0, 1], 
making it suitable for class probability estimation. 

K-nearest 
neighbours 

(KNN) 

K-Nearest Neighbors (KNN) is a supervised learning algorithm used for 
classification and regression tasks. It operates based on the principle that 
objects with similar characteristics tend to belong to the same class or 
have similar outcomes. When applying KNN, the algorithm considers the 
k nearest training examples in the feature space to the new test data. The 
distance between the query data and the training samples is calculated 
using a distance metric, commonly the Euclidean distance. KNN is 
known for its simplicity and ease of implementation, making it a popular 
choice in various domains. It can be applied to both classification and 
regression problems, where it predicts the class membership or the 
numerical value of a target variable, respectively. 

Support 
Vector 

Machine 
(SVM) 

Support Vector Machine (SVM) is a versatile algorithm for classification 
and regression tasks. It constructs hyperplanes to separate classes, 
maximizing the margin between them. SVM handles linear and non-
linear problems using different kernels. It's robust against noise and 
outliers, focusing on support vectors near the decision boundary. SVMs 
handle high-dimensional data effectively, even with more features than 
samples. They offer interpretability by examining support vectors. 
However, SVMs can be computationally expensive, requiring careful 
parameter tuning. Overall, SVMs provide accurate predictions, 
generalization, and insights into various data types. 

Random 
forest 

Random Forest is an algorithm that combines multiple decision trees by 
utilizing the bootstrap method. It constructs an ensemble of decision 
trees, where each tree is trained on a randomly selected subset of the 
original data. This process involves creating multiple examples of the 
same size as the original dataset through random sampling with 
replacement. Each decision tree in the Random Forest is built 
independently, making predictions based on a subset of features at each 
node. The final prediction is determined by aggregating the predictions 
of all the individual trees, either through majority voting (for 
classification tasks) or averaging (for regression tasks). Random Forest 
is known for its high accuracy and robustness. By combining the 
predictions of multiple trees, it reduces the risk of overfitting that can 
occur with a single decision tree. The ensemble nature of Random Forest 
allows it to capture complex relationships in the data and make accurate 
predictions. However, it is important to note that Random Forest can still 
be susceptible to overfitting, especially if the number of trees in the 
ensemble is too high or if the individual trees are allowed to grow too 
deep. Careful parameter tuning, such as limiting the depth of the trees or 
controlling the number of features used at each split, can help mitigate 
this issue. Overall, Random Forest is a powerful algorithm that provides 



222 Appendix 

 

a balance between accuracy and generalization. Its ability to handle high-
dimensional data and capture nonlinear relationships makes it a popular 
choice in various domains. 

Adaptive 
boosting 

(AdaBoost) 

AdaBoost, also known as Adaptive Boosting, is a statistical classification 
meta-algorithm that can be utilized in conjunction with other learning 
algorithms. Its main objective is to improve the predictive power of the 
model by focusing on training data samples that are most valuable for 
classification. Unlike traditional training methods that consider the entire 
dataset, AdaBoost selectively incorporates samples that contribute to 
enhancing the model's performance. By doing so, it optimizes the 
execution time by avoiding the calculation of irrelevant subsets of the 
original dataset. This selective approach allows AdaBoost to allocate 
more attention to the samples that are crucial for improving the overall 
accuracy of the model. By iteratively training weak learners and 
adjusting the weights assigned to each sample, AdaBoost effectively 
combines the outputs of multiple weak classifiers to create a stronger 
ensemble classifier. This iterative process ensures that the subsequent 
classifiers focus on the misclassified samples from previous iterations, 
resulting in a refined and more accurate final model. Overall, AdaBoost 
is a powerful technique that can significantly enhance the performance 
of learning algorithms by selectively utilizing informative samples, 
thereby improving execution time and predictive accuracy. 

Extreme 
Gradient 
Boosting 

(XGBoost) 

XGBoost (Extreme Gradient Boosting) is a powerful gradient boosting 
algorithm widely used for supervised learning tasks. It builds an 
ensemble of weak decision tree models in a sequential manner, 
optimizing a loss function through gradient descent. XGBoost excels in 
handling both classification and regression problems, demonstrating 
excellent predictive performance. It effectively handles missing data and 
supports various objective functions and evaluation metrics. XGBoost 
incorporates regularization techniques to prevent overfitting, such as 
shrinkage and column subsampling. It allows for parallel processing and 
offers flexibility in customizing the boosting process. Despite its 
computational complexity, XGBoost is known for its scalability and 
efficiency. It is widely regarded as a top-performing algorithm in various 
machine learning competitions and real-world applications. 

Probabilistic 
models 
(Naïve 
Bayes) 

Naïve Bayes is a probabilistic model commonly used for classification 
tasks. It operates based on the principles of Bayes' theorem and 
conditional probability. Naïve Bayes assumes that the features are 
conditionally independent given the class, which simplifies the 
modelling process. In the context of Naïve Bayes, the model 
demonstrates the existence of a specific type of mathematical object by 
showing that if objects are randomly selected from a certain class, the 
probability of obtaining an object of the desired type is significantly 
greater than zero. The model uses probability calculations to make this 
determination. It is important to note that even though probability is used 
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in the model, the conclusion reached by Naïve Bayes is considered 
certain and without error. This makes Naïve Bayes a powerful and 
reliable method for classification tasks. 

Deep 
learning 
(neural 

networks) 

Deep learning and neural networks are versatile statistical models 
inspired by the structure of biological neural networks. Composed of 
interconnected artificial neurons, it learns to extract complex patterns 
from data. With hierarchical representations, it captures simple to 
abstract concepts. It excels in image classification, language processing, 
and more. Deep learning models are trained using optimization 
algorithms to minimize prediction errors. They require labelled data and 
computational resources. Once trained, they make accurate predictions 
on new data. Deep learning has transformed fields like healthcare, 
finance, and robotics, achieving state-of-the-art performance. 
Advancements in hardware and algorithms continue to expand its 
capabilities in understanding and processing complex information. 

 

K-Nearest Neighbour 
The K-nearest neighbour (KNN) classifier is a straightforward machine learning 
algorithm known for its simplicity. It falls under the category of lazy learning 
systems, as it does not learn a specific decision function from training data. Instead, 
it relies on the proximity of labelled examples to make predictions. KNN is 
considered a non-parametric model since it doesn't have a fixed number of 
parameters and instead adapts based on the number of training data points. 
Specifically, KNN is classified as an instance-based learning model, a subset of 
non-parametric models. The main steps of KNN involve selecting a value for K, 
which represents the number of nearest neighbours to consider, and a distance 
metric, such as the Euclidean distance. Next, KNN identifies the K nearest 
neighbours to the subject being classified. The label of the subject is then 
determined through majority voting among its neighbours. Figure A - 6.1.2 
represents the classification method employed by KNN.  
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Figure A - 6.1.2. A practical example of classification by means of k-nearest neighbor classifier. 

The memorization-based approach of the K-nearest neighbor (KNN) classifier 
offers the advantage of immediate adaptation to new data. As new instances are 
collected, the classifier can readily incorporate them into its decision-making 
process. However, this approach also has its drawbacks. One such limitation is the 
computational complexity involved in classifying new instances. As the number of 
training samples increases, the time required for classification grows linearly, 
which can become a challenge for large datasets. Additionally, the space required 
to store the memorized training samples can become an issue, particularly in 
datasets with high dimensions. To mitigate these challenges, various 
implementations of KNN have been developed, some of which leverage efficient 
data structures like KD-trees471. 

Choosing the right value of K in K-nearest neighbour (KNN) classification is a 
crucial step in balancing the trade-off between underfitting and overfitting. A small 
value of K may result in overfitting, as the decision boundary becomes too sensitive 
to local variations in the training data. On the other hand, a large value of K may 
lead to underfitting, as it considers a broader neighbourhood and may overlook 
important local patterns. 

In addition to selecting the optimal K, choosing an appropriate distance metric is 
essential for accurate classification. The Euclidean distance is a commonly used 
measure in KNN, particularly for continuous feature spaces. It calculates the 
straight-line distance between two data points in a multidimensional space. 
However, it's important to note that the Euclidean distance assumes that all features 
are equally important, and that the data is linearly separable. 



Appendix 225 

 

225 

 

For datasets with different characteristics, alternative distance metrics such as 
Manhattan distance (city block distance) or Minkowski distance can be considered. 
These metrics allow for different degrees of emphasis on specific features or can 
handle specific data structures more effectively. It is crucial to evaluate the dataset's 
nature and domain knowledge to determine the most suitable distance metric for 
achieving optimal performance in the KNN classifier. 

K-nearest neighbor (KNN) algorithm can indeed be susceptible to overfitting, 
especially when the feature space becomes sparse and the nearest neighbors are 
located far apart, leading to instability in the estimation. One effective approach to 
mitigate this issue is to reduce the dimensionality of the feature space. 

Support Vector Machine  
Support Vector Machine (SVM) classifier can indeed be viewed as an extension of 
the perceptron algorithm, one of the earliest machine learning algorithms used for 
classification tasks. However, SVM introduces several important enhancements 
and concepts that differentiate it from the perceptron472,473. In contrast to the 
perceptron, which focuses solely on minimizing misclassification errors, SVM 
pursues a distinct optimization objective of maximizing the margin. The margin, 
denoting the separation between the decision boundary (hyperplane) and the nearest 
data points, referred to as support vectors, is a critical component in SVM. It is 
defined as the distance between the decision function and these support vectors. 
This emphasis on margin optimization enables SVM to effectively discriminate 
between classes and enhance generalization performance, making it particularly 
advantageous when seeking clear class separation. Figure A - 6.1.3 graphically 
shows the above-mentioned concept. 

 

Figure A - 6.1.3 Margin maximization of the SVM model   
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Decision functions characterized by large margins exhibit a reduced generalization 
error, whereas models featuring small margins are prone to overfitting. The positive 
and negative hyperplanes, aligned parallel to the decision function, can be 
elucidated as follows: 

\, +]
;^<=> = 1 

\, +]
;^?@A = −1 

If these functions are subtracted: 

]BA^<=> − ^?@AB = 2 

Normalizing the equation for w length, which is defined as follows: 

E|]|E = ab \4C
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4/0
 

we obtain: 

]BA^<=> − ^?@AB
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||]||
 

The left-hand side of the equation can be construed as the margin, representing the 
distance between the positive and negative hyperplanes, which is sought to be 
maximized. Hence, the objective function of the Support Vector Machine (SVM) 
transforms into the maximization of 2 divided by the magnitude of vector w, subject 
to the constraint that the samples are classified correctly. This constraint can be 
expressed as follows: 

\, +]
;^(D) ≥ 1	V8	9(9) = 1 

\, +]
;^(D) < −1	V8	9(9) = −1 

The two equations express the requirement that all negative samples should lie on 
one side of the negative hyperplane, while all positive samples should be positioned 
on the other side of the positive hyperplane. This condition ensures a clear 
separation between the two classes in the feature space. By defining such strict 
boundaries, the SVM classifier aims to maximize the margin between the 
hyperplanes, leading to improved classification performance and reduced 
misclassification errors. This formulation emphasizes the importance of achieving 
a distinct separation between the classes to enhance the discriminative power of the 
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SVM model. Practically, minimizing 
0
C
||]||C is simpler, by means of quadratic 

programming.  

In cases where the dataset proves to be particularly challenging, a nonlinear variant 
of the Support Vector Machine (SVM), known as kernel SVM, can be employed to 
address it. The underlying concept is that the original input space can always be 
transformed or mapped to a higher-dimensional feature space where the training set 
becomes separable. This mapping allows for the creation of new nonlinear 
combinations of the original features, enabling improved classification 
performance (Figure A - 6.1.4). 

 

Figure A - 6.1.4. Schematic representation of the kernel function, Φ, operation used for SVM 
classification. On the left, the original features space is represented, whereas, on the right, the 

new features space after kernel transformation is shown. 

In practice, the training dataset is effectively mapped to a higher-dimensional space 
using a kernel function Φ. This mapping is performed implicitly, meaning that the 
actual transformation is not explicitly computed, thereby minimizing the 
computational burden. The kernel functions enable the SVM algorithm to capture 
complex relationships and non-linear decision boundaries by introducing new 
features and representations. Once the dataset has been implicitly transformed, a 
linear SVM is trained on this new feature space. This training process aims to find 
an optimal linear decision boundary that effectively separates the classes in the 
transformed space. This linear SVM model can then be used to classify new, unseen 
data points by applying the same Φ transformation to these data points and using 
the trained SVM to make predictions. The choice of the kernel function is crucial 
and depends on the specific characteristics of the dataset and the problem at hand. 
There are various options available, such as the polynomial kernel, radial basis 
function (RBF) kernel, sigmoid kernel, among others. The RBF kernel, also known 
as the Gaussian kernel, is particularly popular due to its ability to capture complex 
and non-linear relationships effectively. 

SVM offers notable advantages for classification tasks. One key benefit is its robust 
kernel framework, which enables capturing complex relationships and non-linear 



228 Appendix 

 

patterns in data. This flexibility allows SVMs to effectively model various data 
distributions and decision boundaries. Moreover, SVMs demonstrate strong 
performance even with small training sets, as they heavily rely on support vectors, 
which contribute to their reliability and generalization. Nevertheless, there are 
limitations to consider. The computational cost of SVMs can be high for large-scale 
problems, necessitating substantial time and resources for training and 
classification. Additionally, parameter tuning for the chosen kernel function, such 
as determining the width of the Gaussian kernel in the case of RBF, can pose 
challenges. Finding the optimal parameter values often requires careful 
experimentation. 

In summary, SVMs provide powerful classification capabilities, particularly in 
capturing non-linear relationships. However, one must be mindful of the 
computational complexity and the careful selection of kernel parameters, which can 
impact performance. 

Decision Tree  
Decision tree (DT) classifiers are effective models for achieving interpretability and 

making decisions. They classify data by sequentially posing a series of questions 

and using the answers to guide the classification process. An illustrative example 

of a simple decision tree is depicted in  Figure A - 6.1.5. 

 

 Figure A - 6.1.5 Example of a simple decision tree 

Decision trees (DTs) exhibit a structure resembling a flowchart, consisting of nodes, 
branches, and leaves. Each node represents a test involving an attribute (i.e., a 
feature), while each branch emanating from a node signifies a possible outcome 
corresponding to a specific value of the attribute. The leaves of the tree denote 
nodes containing the final class label. Classification entails a sequential execution 
of tests, starting from the root node and terminating at a leaf node. To automatically 
construct DTs from data, induction methods are employed. One such approach is 



Appendix 229 

 

229 

 

the Top-Down Induction of Decision Trees, which encompasses a range of 
techniques for inducing DTs from a given dataset. Among these methods, ID3, 
developed by Quinlan, is an iterative algorithm that operates within a top-down 
framework. It facilitates the construction of DTs by recursively partitioning the 
dataset based on the most informative attributes. During the construction process, 
ID3 selects attributes that result in the greatest information gain, aiming to 
maximize the discriminatory power of the resulting tree. This iterative procedure 
generates a DT that effectively captures the patterns and relationships present in the 
training data, facilitating accurate classification of unseen instances. 

The pseudo-code to construct a DT (T) from a learning set (S) is: 

• If all examples in S belong to the same class C, then make a leaf labelled C; 

• Otherwise 

o Select the “most informative” attribute (A) 

o Partition S according to A’s values 

o Recursively construct subtrees T1, T2, … for the subsets of S (one 

for each value of A) 

Choosing the most informative attribute involves selecting the attribute that 
partitions the dataset into subsets that exhibit the greatest homogeneity in terms of 
class labels. The process of classification requires a certain amount of information 
(I), and after applying attribute A, only a residual amount of information (Ires) is 
necessary to classify the object. The information gain is defined as the difference 
between the initial amount of information and the residual amount: 

ePVX(") = f − f$#((") 

The most informative attribute is the one that maximizes the gain.  

Entropy is defined as the averaged amount of information needed to classify an 
object: 

f = −bZ(5)Y#gCZ(5)
E

 

where p(c) is the proportion of samples belonging to class c. When all samples in a 
dataset belong to the same category, the entropy is minimized and equals zero. On 
the other hand, if the samples are evenly distributed across multiple categories, with 
each category containing 1/c samples (where c is the number of classes), the entropy 
is maximized and equals one. After applying attribute A, the dataset S is partitioned 
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into subsets based on the different values (v) of attribute A. Residual information is 
equal to the weighted sum of the amounts of information for the subsets: 

f$#( = −bZ(h)
F

bZ(5|h)Y#gCZ(5|h)
1

 

One way to measure the homogeneity of attributes is through information gain, 
where the attribute with the highest gain is considered the most informative. 
However, a limitation of this approach is that it tends to favor attributes with a larger 
number of values, leading to a bias towards such attributes. To address this 
limitation, a corrected measure called information gain ratio is used. This measure 
is obtained by dividing the gain of attribute A by its intrinsic information. By using 
information gain ratio, a more balanced evaluation of attributes can be achieved, 
considering both their gain and their inherent information. 

ePVXTP[V#(") =
ePVX(")

f(")
=
f − f$#((")

f(")
 

Another sensible measure of impurity is Gini Index:  

eVXV = 	∑ Z(V)Z(J)9G4 , 

where p(i) is the proportion of examples of a class and i and j are the classes. Gini 
is the measure of the initial information. After applying the attribute A, the resulting 
Gini Index is:  

eVXVePVX(") = 	∑ Z(h)F ∑ Z(V|h)Z(J|h)9G4 , 

where p(i|v) is the information of a subset provided that a specific path has been 
followed. In summary, the measure of residual information in terms of GiniGain 
(A) is used to evaluate the attribute's contribution. Gain(A) is derived from entropy, 
while GainRatio (A) considers the heterogeneity between features. GiniGain (A) 
considers the probability of misclassifying an object.  

Decision trees (DTs) have several strengths, including their ease of implementation 
and understanding. However, they are prone to overfitting and require data 
discretization due to the generation of complex decision regions. These weaknesses 
should be taken into consideration when utilizing DTs in practice. 

Random Forest 
The Random Forest (RF) classifier is an ensemble method specifically designed for 
decision tree (DT) classifiers. The concept behind using an ensemble of learning 
methods is to combine multiple weak learners to create a stronger learner with 
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improved generalization and reduced susceptibility to overfitting. The RF algorithm 
follows these main steps: 

1. Randomly select n training set samples with replacement (bootstrap 
sample). 

2. Construct a decision tree from the bootstrap sample. At each node: 

a) Randomly select d features without replacement. 

b) Divide the node based on the feature that yields the best division, 
determined by the objective function. 

3. Repeat steps 1 and 2 k times. 

4. Combine the predictions from each decision tree and assign the final label 
using majority voting. 

In the second step, instead of evaluating functions on all features to determine the 
best split at each node, only a random subset of features is considered. While RFs 
may not offer the same level of interoperability as DTs, they provide significant 
advantages. Hyperparameter optimization is less demanding, and the model 
demonstrates resilience to noise.  

AdaBoost  
AdaBoost, short for Adaptive Boosting, is an ensemble method that falls within the 
category of classifiers. Ensemble methods are designed to combine multiple 
individual classifiers into a meta-classifier that provides superior generalization 
performance compared to each individual classifier on its own. 

 

Figure A - 6.1.6. Majority Voting in Ensemble Learning. 

Figure A - 6.1.5 illustrates the concept of majority voting, where the label of the 
class predicted by most of the classifiers is chosen. The ensemble can be constructed 
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using various classification algorithms or by configuring the same base algorithm 
with different subsets of the training data. AdaBoost, specifically, utilizes the 
boosting technique, which involves incorporating weak learning models into the 
ensemble. These models typically exhibit only a slight performance advantage over 
random selection. Boosting focuses on challenging training examples by allowing 
the weak learners to learn from misclassified examples in a staged manner, aiming 
to enhance the overall performance of the ensemble. The boosting procedure can 
be summarized as follows: 

1. Extraction from the training dataset i of a random subset from the training 
examples %0, without reinsertion, to train a weak learning system +0.  

2. Extraction from the training dataset of a second random training subset 
%C	without reinsertion and addition of the 50% of the examples that were 
previously misclassified to train a weak learning system +C. 

3. Identification of the training examples, %H, in the training dataset D on 
which +0	
and +C	did not agree to train a third weak learning system +H. 

4. Combination of the weak learning models +0, +C, +H	
by majority vote. 

AdaBoost is known for having low bias but a tendency to overfit the training data. 
In contrast to traditional boosting techniques, AdaBoost uses the entire training 
dataset to train weak learning models. At each iteration, the training examples are 
reweighted based on their classification performance, placing more emphasis on the 
misclassified examples. This iterative process allows AdaBoost to construct a 
strong classifier that learns from the errors made by the previous weak ensemble 
learning models. By continuously adjusting the weights of the training examples, 
AdaBoost focuses on improving its ability to correctly classify difficult instances, 
ultimately enhancing the overall performance of the classifier. In Figure A - 6.1.7, 
the process of training an AdaBoost classifier for binary classification is illustrated. 
In box 1, we start with a training dataset where all the examples have equal weights. 
The initial model is trained using this dataset. Moving to box 2, we assign higher 
weights to the examples that were misclassified by the previous model (depicted as 
circles), and lower weights to the correctly classified examples. This weighting 
scheme ensures that the subsequent training round focuses more on the difficult-to-
classify examples. In the next training round, box 3, we observe that the weak 
learning model misclassifies three different examples from the circle class. As a 
result, these misclassified examples are assigned higher weights. Considering an 
AdaBoost classifier with only three boosting rounds, we proceed to combine the 
three weak learning models trained on different training subsets. The combination 
is done using a weighted majority vote, as shown in box 4. The weights assigned to 
each weak model reflect their performance in classifying the training examples. By 
iteratively updating the weights and training new weak models, AdaBoost aims to 
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construct a strong ensemble model that can effectively handle difficult 
classification instances.  

 
Figure A - 6.1.7. AdaBoost weights update. 

XGBoost  
XGBoost, short for Extreme Gradient Boosting, is an implementation of the 
gradient boosted trees algorithm, which combines the concepts of decision trees and 
gradient boosting. This classifier is commonly employed for solving regression or 
classification problems using a supervised learning approach.  One of the notable 
advantages of XGBoost is its interpretability, attributed to the structure of decision 
trees. As depicted in Figure A - 6.1.8, decision trees consist of nodes, branches, and 
leaves. They enable a step-by-step decision-making process based on a series of 
questions. Starting from the root of the tree, the algorithm identifies the most 
informative feature that results in the highest information gain for data partitioning. 
This process of subdividing the data continues iteratively at each child node until 
the leaves of the tree contain only samples of a single class, ensuring purity. By 
iteratively training decision trees and optimizing the objective function through 
gradient boosting, XGBoost aims to create a powerful ensemble model that can 
effectively capture complex patterns and make accurate predictions. 
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Figure A - 6.1.8. Decision Tree Classifier Workflow. 

To facilitate the subdivision of nodes based on the most informative features, the 
objective function of the XGBoost algorithm is designed to maximize the 
information gain at each split. The information gain is a measure of how much the 
uncertainty or impurity of the data is reduced after a particular feature is used for 
partitioning. By selecting the feature that maximizes the information gain, XGBoost 
aims to create splits that result in the most significant improvement in the predictive 
power of the model. Maximizing the information gain allows the algorithm to make 
effective decisions at each node, ensuring that the subsequent splits result in more 
homogeneous subsets of data. This process helps in capturing the underlying 
patterns and relationships in the dataset, leading to improved predictive 
performance of the XGBoost classifier. 

The information gain is defined as: 

feAiE, 8B = fAiEB −b
34
3E

7

4/0

fAi4B	

where 8 is the feature used for the subdivision, iE and i4 are the datasets of the 

parent node and the j-th child node respectively, f is the measure of the impurity, 

3E is the total number of the parent node training examples and 34 is the number of 

the j-th child node training examples. However, it is frequently used the subdivision 

of each parent node in two child nodes identified by an information gain defined 

as: 

feAiE, 8B = fAiEB −
3*#I&
3E

fAi*#I&B −
3$9J'&
3E

fAi$9J'&B	
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In the final analysis, the information gain is the difference between the parent node 

impurity and the sum of the impurities of each child node. One way to measure the 

impurity is the entropy definition: 

fK([) = −bZ(V|[)Y#gC

1

9/0

Z(V|[) 

in which Z(V|[) is the proportion of the examples belonging to the V class for the [ 
When all the examples in a subset belong to the same class, the entropy is 
minimized and becomes zero. On the other hand, when the classes are uniformly 
distributed and there is an equal proportion of examples from each class, the entropy 
is maximized and reaches its highest value. 

XGBoost (Extreme Gradient Boosting) is a versatile machine learning algorithm 
widely acclaimed for its exceptional predictive accuracy. Its ability to handle 
complex relationships and capture nonlinear patterns in the data makes it a preferred 
choice for many applications. XGBoost offers the advantage of providing insights 
into feature importance, allowing users to identify influential variables. It 
incorporates regularization techniques, preventing overfitting and enhancing model 
generalization. Furthermore, XGBoost has built-in capabilities to handle missing 
data, reducing the need for extensive preprocessing. Despite its strengths, the 
complexity and computational requirements of XGBoost may pose challenges in 
terms of interpretability and training time for large datasets. 

Gaussian Naïve Bayes  
The Gaussian Naïve Bayes Classifier is a variant of the Naïve Bayes classifier that 
assumes a Gaussian (normal) distribution for continuous data. It is based on the 
Bayes Theorem, which is defined as: 

&("|n) =
&(" ∩ n)

&(n)
=
&(")&(n|")

&(n)
 

where: 

• &(") is the probability of A occurring 
• &(n) is the probability of B occurring 
• &("|n) is the probability of A given B 
• &(n|") is the probability of B given A 
• &(" ∩ n) is the probability of both A and B occurring 

Bayes' Theorem is built upon the assumption of strong independence among 
features. In the context of the Gaussian Naïve Bayes Classifier, the classifier 
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assumes that the continuous values associated with each class are distributed 
according to a normal distribution. This assumption simplifies the modeling process 
by allowing the estimation of parameters, such as mean and variance, based on the 
training data. By assuming the normal distribution, the classifier can calculate the 
probability of a given sample belonging to a particular class using the probability 
density function (PDF) of the normal distribution for each feature value. The class 
with the highest probability density, determined using Bayes' Theorem, is assigned 
to the sample. In Figure A - 6.1.9, calculation of distances between each point and 
the class mean is depicted. Specifically, the z-score is computed, which represents 
the distance of a point from the mean of its respective class divided by the standard 
deviation of that class. This calculation allows for a standardized measure of how 
far each point is from the center of its class distribution.  

 

Figure A - 6.1.9. Gaussian Naïve Bayes. 

 

6.2 Molecular basis of taste perception 

List of abbreviations 
• ASIC: Acid-Sensing Ion Channel 
• CALHM1/3: Voltage-Gated Neurotransmitter-Release Channel 
• CaSR: Calcium-Sensing Receptor  
• chOTOP1: Chicken OTOP3 
• CRD: Cystein Rich Domain 
• EC: Extracellular 
• ECL: Extracellular Loop 
• ENaC: Epithelial Sodium Channel  
• GMP: Guanosine 5'-Monophosphate 
• GPCR: G Protein-Coupled Receptor 
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• GRIP: Gating Release of Inhibition by Proteolysis  
• HM: Homology Modelling 
• ICL: Intracellular Loop 
• IMP: Inosine 5'-Monophosphate 
• LB: Ligand-Binding Domain  
• MD: Molecular Dynamics 
• mGluR1: Metabotropic Glutamate Receptor of subtype 1 
• MSG: Monosodium Glutamate 
• NAM: Negative Allosteric Modulator 
• NUS: Number of Unique Scaffolds 
• OTOP: Otopetrin 
• PAM: Positive Allosteric Modulator  
• PI: Promiscuity Index 
• PKD1L3: Polycystic Kidney Disease 1-Like3 Ion Channel  
• PKD2L1: Polycystic Kidney Disease 2-Like1 Ion Channel 
• PMD: Polycystic Mucolipin Domain  
• SG: Steviol Glycosides 
• TAS2R1: Taste receptor type 2 member 1 
• TLC: Three Leaf Cover 
• TM: Transmembrane  
• TMD: Transmembrane Domain 
• TPRML3: Transient Receptor Potential Cation Channel Mucolipin Subfamily Member 3  
• TRC: Taste Receptor Cell 
• TRPPs: Transient Receptor Potential Polycystin 
• TRPV1: Transient Receptor Potential Cation Channel, Subfamily V, Member 1 
• VFTM: Venus Flytrap Module 
• VSLD: Voltage Sensing-Like Domain  
• XtOTOP3: Xenopus Tropicalis OTOP3 
• zfOTOP1: zebrafish OTOP1 

Bitter receptors summary 
Table A - 6.2.1. Summary table of the 25 human bitter taste receptors, including possible alternative 
nomenclature. The provided information is taken from BitterDB. 

# NAME ALTERNATIVE NOMENCLATURE 
1 TAS2R1 TRB7 
2 TAS2R3 / 
3 TAS2R4 / 
4 TAS2R5 / 
5 TAS2R7 TRB4 
6 TAS2R8 TRB5 
7 TAS2R9 TRB6 
8 TAS2R10 TRB2 
9 TAS2R13 TRB3 
10 TAS2R14 TRB1 
11 TAS2R16 / 
12 TAS2R38 PTC, TAS2R61 
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13 TAS2R39 TAS2R57 
14 TAS2R40 TAS2R58, GPR60 
15 TAS2R41 TAS2R59 
16 TAS2R42 TAS2R55 
17 TAS2R43 TAS2R52 
18 TAS2R44 TAS2R31, TAS2R53 
19 TAS2R45 GPR59 
20 TAS2R46 TAS2R54 
21 TAS2R47 TAS2R30 
22 TAS2R48 TAS2R19, TAS2R23 
23 TAS2R49 TAS2R20, TAS2R56 
24 TAS2R50 TAS2R51 
25 TAS2R60 TAS2R56 

 

6.3 VirtuousPocketome 

6.3.1 Methods – Similarity Search methods in literature 
Table A - 6.3.1. Summary of the main methods for the similarity search of a protein binding site in 
previous literature with their relative type of representation of the binding site and strategy of 
comparison. 

Method Name Site 
Representation 

Strategy of 
Comparison 

SuMo (2003)474 Residue-based 3D Points 
PINTS (2003)475  Residue-based Other 
eF-seek (2004) 476   Surface-based Graphs 
TM-Align (2005) 477   Residue-based Other 
SiteEngine (2005) 478 Surface-based Graphs 
ContactMetricServer 479 (2006)  Residue-based Other 
PocketMatch (2008)480,481  Residue-based Other 
MultiBind MAPPIS (2008)482  Surface-based 3D Points 
PevoSOAR (2009) 483 Surface-based Other 
fPOP (2009) 484  Surface-based Fingerprint 
PESD-serv (2010) 485  Interaction-based Other 
SeSAW (2010) 486   Residue-based Other 
LabelHash (2010) 487 Residue-based Other 
FuzCav (2010) 488 Residue-based Fingerprint 
Pro-BIS ligand (2012) 489  Surface-based Graphs 
PoSSuM (2012) 490  Residue-based Other 
COFACTOR (2012) 491 Residue-based 3D Points 
SPRITE-ASSAM (2012) 145 Residue-based Graphs 
SiteComp lin (2012) 492 Interaction-based Other 
Iso-Cleft Finder (2013) 493 Residue-based Graphs 
CatSId (2013) 494 Residue-based Graphs 
IMAAAGINE (2013) 495  Residue-based Graphs 
Apoc (2013) 496 Residue-based Other 
ASSIST (2014) 497  Residue-based 3D Points 
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IsoMIF Finder (2015) 498,499 Interaction-based Graphs 
G-LoSA  (2016) 500  Residue-based Graphs 
Geomfinder (2016) 501 Residue-based Other 
PatchSearch (2019) 502  Residue-based Graphs 
Drugreposer ER (2019) 503  Residue-based Graphs 
DeeplyTough (2020) 504  Interaction-based Other 
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6.3.2 Results - Conformational Dynamics 

Structural equilibrium of the MD simulations of the bitter taste receptor bound with 
strychnine. 

 
Figure A - 6.3.1. RMSD of the bitter taste receptor for the three simulation replicas performed 
(colored in blue, red and violet, respectively). 

6.3.3 Results - Similarity Search and Multi-step Filtering 

The retrieved protein hits according to the docking score (DScore) after the multi-
step filtering process are reported in Table A - 6.3.2. 

Table A - 6.3.2. Protein hits according to the docking score (DScore) after the multi-step filtering 
process. 

PDB Description RMSD SAS
A DScore 

3a4s SUMO-CONJUGATING ENZYME UBC9 1.07 2.215 -87.7711 
3b7r LEUKOTRIENE A-4 HYDROLASE 1.25 2.155 -87.065 
7bqz SPINDLIN-1 0.75 2.278 -86.6839 
2yg2 APOLIPOPROTEIN M 1.26 2.451 -86.1774 
3fhe LEUKOTRIENE A-4 HYDROLASE 1.27 1.589 -85.2467 
2zfh CUTA 1.36 1.936 -85.0248 
4dpr LEUKOTRIENE A-4 HYDROLASE 1.31 2.073 -85.0148 
2r3r CELL DIVISION PROTEIN KINASE 2 1.13 2.306 -84.9421 
6o5h LEUKOTRIENE A-4 HYDROLASE 1.3 2.348 -84.9287 
3fuk LEUKOTRIENE A-4 HYDROLASE 1.26 1.86 -84.7628 
3fu5 LEUKOTRIENE A-4 HYDROLASE 1.29 2.97 -84.591 
7av2 LEUKOTRIENE A-4 HYDROLASE 1.26 1.684 -84.3107 
3fh7 LEUKOTRIENE A-4 HYDROLASE 1.22 2.443 -84.2115 
6r2u ZINC-ALPHA-2-GLYCOPROTEIN 1.11 1.794 -84.1411 
6p5s HOMEODOMAIN-INTERACTING PROTEIN KINASE 2 1.16 2.097 -84.1008 
4r7l LEUKOTRIENE A-4 HYDROLASE 1.25 1.298 -84.0848 
4ms6 LEUKOTRIENE A-4 HYDROLASE 1.34 1.489 -83.9426 
2h2u SOLUBLE CALCIUM-ACTIVATED NUCLEOTIDASE 1 1.02 2.114 -83.8648 
3chp LEUKOTRIENE A-4 HYDROLASE 1.18 2.395 -83.3851 
7av1 LEUKOTRIENE A-4 HYDROLASE 1.29 1.685 -83.3388 
7kze LEUKOTRIENE A-4 HYDROLASE 1.33 1.91 -83.2739 
5bpp LEUKOTRIENE A-4 HYDROLASE 1.26 1.274 -82.9787 
3cho LEUKOTRIENE A-4 HYDROLASE 1.24 1.414 -82.8956 
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5ni4 LEUKOTRIENE A-4 HYDROLASE 1.26 2.004 -82.8657 
1hs6 LEUKOTRIENE A-4 HYDROLASE 1.26 2.677 -82.8356 
3ftv LEUKOTRIENE A-4 HYDROLASE 1.24 1.533 -82.6407 
5ni6 LEUKOTRIENE A-4 HYDROLASE 1.23 2.295 -82.4868 
2zi2 THROMBIN HEAVY CHAIN 1.16 2.086 -82.4733 
7auz LEUKOTRIENE A-4 HYDROLASE 1.28 1.45 -82.4511 
6end LEUKOTRIENE A-4 HYDROLASE 1.25 2.812 -82.2884 
3ftu LEUKOTRIENE A-4 HYDROLASE 1.25 2.925 -82.141 
3ful LEUKOTRIENE A-4 HYDROLASE 1.31 1.81 -82.1373 
7qg0 NAD(+) HYDROLASE SARM1 1.39 3.449 -81.9657 
4rsy LEUKOTRIENE A-4 HYDROLASE 1.26 1.774 -81.922 
7n3n SOLUTE CARRIER FAMILY 12 MEMBER 2 1.26 2.091 -81.8164 
2r24 ALDOSE REDUCTASE 1.37 1.567 -81.7647 
1gw6 LEUKOTRIENE A-4 HYDROLASE 1.24 2.231 -81.7538 
6enb LEUKOTRIENE A-4 HYDROLASE 1.28 1.961 -81.7255 
5kir PROSTAGLANDIN G/H SYNTHASE 2 1.43 2.149 -81.1718 
4l2l LEUKOTRIENE A-4 HYDROLASE 1.3 1.311 -81.1157 
3eq6 ACYL-COENZYME A SYNTHETASE ACSM2A 1.27 2.577 -80.8085 
3fu3 LEUKOTRIENE A-4 HYDROLASE 1.29 3.235 -80.7407 
2vqo HISTONE DEACETYLASE 4 1.06 2.148 -80.5489 
6p8z GTPASE KRAS 1.34 2.009 -80.5234 
3fty LEUKOTRIENE A-4 HYDROLASE 1.25 2.088 -80.4234 
3chs LEUKOTRIENE A-4 HYDROLASE 1.21 1.943 -80.4112 

6w9v TCR-BETA CHAIN, MAJOR HISTOCOMPATIBILITY COMPLEX 
CLASS I-RELATED GENE 

1.37 2.865 -80.3695 

2r3o CELL DIVISION PROTEIN KINASE 2 1.28 1.456 -79.8837 

6h0g PROTEIN CEREBLON, DNA DAMAGE-BINDING PROTEIN 1,DNA 
DAMAGE-BINDING PROTEIN 1, 

1.45 2.141 -79.6843 

7ure ISOFORM 2 OF PROTEIN-SERINE O-
PALMITOLEOYLTRANSFERASE 

1.22 1.97 -79.589 

4kfz ANTI-LMO2 VH 1.49 2.086 -79.5841 
3mph AMILORIDE-SENSITIVE AMINE OXIDASE 1.48 1.988 -79.4227 
6u3p ACETYLCHOLINESTERASE 1.5 1.988 -79.3888 
5fe7 HISTONE ACETYLTRANSFERASE KAT2B 1.42 1.618 -78.6233 

6nr8 T-COMPLEX PROTEIN 1 SUBUNIT GAMMA, T-COMPLEX PROTEIN 
1 SUBUNIT THETA 

1.47 1.547 -78.5151 

6m5o SERINE HYDROXYMETHYLTRANSFERASE, MITOCHONDRIAL 1.37 1.652 -78.2072 
5mw
3 

HISTONE-LYSINE N-METHYLTRANSFERASE, H3 LYSINE-79 
SPECIFIC 

1.36 1.407 -78.0836 

3d49 THROMBIN HEAVY CHAIN 1.16 1.609 -78.0821 
1msv S-ADENOSYLMETHIONINE DECARBOXYLASE PROENZYME 1.44 1.902 -77.9728 
5fe1 HISTONE ACETYLTRANSFERASE KAT2B 1.4 1.399 -77.9383 
3qrt CYCLIN-DEPENDENT KINASE 2 1.45 2.434 -77.9 
3qvv SULFOTRANSFERASE 1A1 1.45 1.562 -77.8891 
7zjp TRANSCRIPTIONAL ENHANCER FACTOR TEF-1 1.46 2.805 -77.8122 

4umo CALMODULIN, POTASSIUM VOLTAGE-GATED CHANNEL 
SUBFAMILY KQT MEMBER 1 

1.23 1.668 -77.6608 

7e9n HEAVY CHAIN OF 35B5 FAB 1.15 2.144 -77.4416 
6f5t LYSINE-SPECIFIC DEMETHYLASE 4D 1.45 1.785 -77.2974 
5m7t PROTEIN O-GLCNACASE 1.37 2.185 -77.279 
1sqm LEUKOTRIENE A-4 HYDROLASE 1.29 1.249 -77.1773 

8hkw PEPTIDE FROM TP53-BINDING PROTEIN 1, IMPORTIN SUBUNIT 
ALPHA-3 

1.47 1.519 -76.9298 

3lnz E3 UBIQUITIN-PROTEIN LIGASE MDM2 1.45 2.599 -76.7359 
4ek3 CYCLIN-DEPENDENT KINASE 2 1.22 1.817 -76.706 
3ibd CYTOCHROME P450 2B6 1.43 1.746 -76.7021 
2l12 CHROMOBOX HOMOLOG 7 1.25 3.816 -76.2799 
3rvh LYSINE-SPECIFIC DEMETHYLASE 4A 1.29 1.531 -76.2637 
6qnx COHESIN SUBUNIT SA-2, TRANSCRIPTIONAL REPRESSOR CTCF 1.18 2.616 -76.2505 
6hg4 INTERLEUKIN-17 RECEPTOR C 1.48 1.43 -75.8588 
4nst CYCLIN-DEPENDENT KINASE 12, CYCLIN-K 1.46 2.276 -75.8423 
4x0u ALPHA-AMINOADIPIC SEMIALDEHYDE DEHYDROGENASE 1.42 2.124 -75.8376 
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7bmk SERINE/THREONINE-PROTEIN KINASE/ENDORIBONUCLEASE 
IRE1 

1.38 3.453 -75.8372 

4bbm CYCLIN-DEPENDENT KINASE-LIKE 2 1.31 1.714 -75.8371 
2e8d BETA-2-MICROGLOBULIN 1.49 2.138 -75.811 
4xx1 FAB1 HEAVY CHAIN 1.32 1.994 -75.8052 
6yaf AP-2 COMPLEX SUBUNIT BETA 1.32 1.496 -75.7476 
6qpl SPINDLIN-1 1.45 2.241 -75.724 
4mzg SPINDLIN-1 1.41 2.286 -75.6688 
1gz8 CELL DIVISION PROTEIN KINASE 2 1.19 3.287 -75.6682 
6j0l BUTYROPHILIN SUBFAMILY 3 MEMBER A3 1.19 1.654 -75.6497 
6yah AP-2 COMPLEX SUBUNIT BETA 1.32 1.466 -75.5767 
6mid MONOCLONAL ANTIBODY ZIKV-195 HEAVY CHAIN 1.48 1.145 -75.4824 

6tel HISTONE-LYSINE N-METHYLTRANSFERASE, H3 LYSINE-79 
SPECIFIC 

1.33 2.339 -75.2809 

7rhl CGMP-GATED CATION CHANNEL ALPHA-1 1.15 2.253 -75.1955 

7zyf LEUCYL-CYSTINYL AMINOPEPTIDASE, PREGNANCY SERUM 
FORM 

0.94 2.367 -75.148 

3u84 MENIN 1.22 2.05 -75 

7qne GABA(A) RECEPTOR SUBUNIT GAMMA-2, GAMMA-
AMINOBUTYRIC ACID RECEPTOR SUBUNIT BETA-3 

1.41 1.498 -74.9855 

6xk9 PROTEIN CEREBLON, DNA DAMAGE-BINDING PROTEIN 1 1.38 1.429 -74.8752 
6vum STEROL O-ACYLTRANSFERASE 1 1.48 2.684 -74.8556 
7p9t 5'-NUCLEOTIDASE 1.45 2.011 -74.8448 
8csq 28S RIBOSOMAL PROTEIN S29, MITOCHONDRIAL 1.29 1.622 -74.8231 
1cly IGG FAB (HUMAN IGG1, KAPPA) 1.23 1.784 -74.6885 
4u9v N-ALPHA-ACETYLTRANSFERASE 40 1.31 2.191 -74.6182 
4ljp E3 UBIQUITIN-PROTEIN LIGASE RNF31 1.46 2.269 -74.4844 
2r3h CELL DIVISION PROTEIN KINASE 2 1 2.291 -74.3763 
7byi SERINE HYDROXYMETHYLTRANSFERASE, MITOCHONDRIAL 1.4 1.907 -74.2523 
7qoo CENTROMERE PROTEIN H, CENTROMERE PROTEIN I 0.72 2.216 -74.234 
7ocb SPINDLIN-1 1.44 3.322 -74.153 
6v8c ORNITHINE AMINOTRANSFERASE, MITOCHONDRIAL 1.34 1.647 -73.9414 

6in3 HISTONE-LYSINE N-METHYLTRANSFERASE, H3 LYSINE-79 
SPECIFIC 

1.33 3.301 -73.8186 

6wqz AUTOPHAGY-RELATED PROTEIN 9A 1.22 2.699 -73.707 
7r5s CENTROMERE PROTEIN H, CENTROMERE PROTEIN I 0.96 3.945 -73.6423 

7ttn TUBULIN BETA CHAIN, T-COMPLEX PROTEIN 1 SUBUNIT 
GAMMA 

1.34 1.756 -73.5768 

1grh GLUTATHIONE REDUCTASE 1.46 2.023 -73.4928 
1grg GLUTATHIONE REDUCTASE 1.46 1.613 -73.4914 
3vv0 HISTONE-LYSINE N-METHYLTRANSFERASE SETD7 1.19 1.978 -73.342 
5wbs FRIZZLED-7,INHIBITOR PEPTIDE FZ7-21 1.09 2.043 -73.3394 
3grs GLUTATHIONE REDUCTASE 1.46 1.35 -73.3385 
7m63 INDOLEAMINE 2,3-DIOXYGENASE 1 1.37 1.501 -73.2505 
4pvf SERINE HYDROXYMETHYLTRANSFERASE, MITOCHONDRIAL 1.37 2.059 -73.2492 
8dwt SPECKLE-TYPE POZ PROTEIN 1.33 2.068 -73.2317 
7omn JD1-1 VH DOMAIN 1.35 1.915 -73.2243 
7q29 ANGIOTENSIN-CONVERTING ENZYME 1.5 2.346 -73.2221 

6bly CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR 
SUBUNIT 1 

1.38 1.682 -73.1401 

6ba4 HISTONE ACETYLTRANSFERASE KAT8 1.4 2.132 -73.089 
5fpb LYSINE-SPECIFIC DEMETHYLASE 4D 1.32 1.492 -72.8148 
1grf GLUTATHIONE REDUCTASE 1.45 2.048 -72.7912 
2c8y THROMBIN HEAVY CHAIN 1.17 1.538 -72.7212 
6mbl HISTONE-LYSINE N-METHYLTRANSFERASE SETD3 1.04 2.258 -72.679 
2vtm CELL DIVISION PROTEIN KINASE 2 1.44 1.645 -72.5833 
7o7l ALPHA-2-MACROGLOBULIN 1.33 1.796 -72.5426 
1eak 72 KDA TYPE IV COLLAGENASE 1.43 1.489 -72.4855 
5ja7 CATHEPSIN K 1.09 1.968 -72.4568 
5z9w EBOLAVIRUS NUCLEOPROTEIN (RESIDUES 19-406) 0.83 1.86 -72.4313 
7lk0 ORNITHINE AMINOTRANSFERASE, MITOCHONDRIAL 1.35 2.123 -72.3516 
7fcp P5-22 ANTIBODY FAB FRAGMENT HEAVY CHAIN 1.5 1.196 -72.3062 
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6w3c SERINE/THREONINE-PROTEIN KINASE/ENDORIBONUCLEASE 
IRE1 

1.34 1.72 -72.2763 

5bnj CYCLIN-DEPENDENT KINASE 8 1.32 1.454 -72.2569 

6xdb SERINE/THREONINE-PROTEIN KINASE/ENDORIBONUCLEASE 
IRE1 

1.42 3.229 -72.2502 

7uvr ATP-DEPENDENT CLP PROTEASE PROTEOLYTIC SUBUNIT, 1.24 1.621 -72.2437 
6i8b SPINDLIN-1 1.44 2.006 -72.077 
7qdr WD REPEAT-CONTAINING PROTEIN 61 1.47 2.207 -71.9206 
7nvl T-COMPLEX PROTEIN 1 SUBUNIT ETA 1.25 1.451 -71.8865 
5jq8 CYCLIN-DEPENDENT KINASE 2 1.24 1.522 -71.813 
7a3g DIPEPTIDYL PEPTIDASE 8 1.47 2.615 -71.8083 
5fe6 HISTONE ACETYLTRANSFERASE KAT2B 1.35 2.409 -71.7955 
5fbh EXTRACELLULAR CALCIUM-SENSING RECEPTOR 1.34 1.521 -71.7642 
5fe2 HISTONE ACETYLTRANSFERASE KAT2B 1.34 1.605 -71.7247 
5mv7 UNCONVENTIONAL MYOSIN-VIIB 1.29 2.397 -71.6435 
5fy8 LYSINE-SPECIFIC DEMETHYLASE 4A 1.11 2.043 -71.6353 
6h4q LYSINE-SPECIFIC DEMETHYLASE 4A 1.25 3.312 -71.611 
4udw THROMBIN HEAVY CHAIN 1.23 2.865 -71.5643 
5y3r DNA-DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT 1.24 2.279 -71.5376 
2ypt CAAX PRENYL PROTEASE 1 HOMOLOG 1.31 2.139 -71.5061 
5ka8 TYROSINE-PROTEIN PHOSPHATASE NON-RECEPTOR TYPE 1 0.99 1.969 -71.4398 
2rhy LETHAL(3)MALIGNANT BRAIN TUMOR-LIKE PROTEIN 1.32 1.6 -71.4055 
8hik ANTI-BRIL FAB LIGHT CHAIN, ANTI-BRIL FAB HEAVY CHAIN 1.25 2.178 -71.4044 

5uwf CAMP AND CAMP-INHIBITED CGMP 3',5'-CYCLIC 
PHOSPHODIESTERASE 

1.38 2.096 -71.303 

8e3i CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR 
SUBUNIT 1 

1.38 1.756 -71.2577 

7sck EXOSTOSIN-2 1.11 2.409 -71.1007 
2wjy REGULATOR OF NONSENSE TRANSCRIPTS 1 1.37 1.534 -71.0623 

4p4h MITOCHONDRIAL ANTIVIRAL-SIGNALING PROTEIN, PROBABLE 
ATP-DEPENDENT RNA HELICASE DDX58 

1.24 1.584 -71.0279 

7ni5 SERINE-PROTEIN KINASE ATM 1.25 2.787 -71.0278 
5hnb CYCLIN-DEPENDENT KINASE 8 1.29 1.458 -71.0242 
5xez ANTIBODY, MAB1, HEAVY CHAIN 1.43 1.533 -71.014 
7nd4 COVOX-88 FAB HEAVY CHAIN 1.47 2.694 -70.9952 
4ifb BILE SALT SULFOTRANSFERASE 1.42 1.855 -70.8993 
7d0p HISTONE ACETYLTRANSFERASE KAT7 1.48 1.494 -70.899 
7nvn T-COMPLEX PROTEIN 1 SUBUNIT ETA 1.22 1.425 -70.8572 
6r7n COP9 SIGNALOSOME COMPLEX SUBUNIT 2, CULLIN-2 1.21 2.267 -70.8549 
4tw0 SCAVENGER RECEPTOR CLASS B MEMBER 2 1.42 2.458 -70.8325 
5q8h DCLRE1A 1.46 1.94 -70.8299 

3epa S-ADENOSYLMETHIONINE DECARBOXYLASE BETA CHAIN, S-
ADENOSYLMETHIONINE DECARBOXYLASE ALPHA CHAIN 

1.44 2.078 -70.8049 

1y1j C-ALPHA-FORMYGLYCINE-GENERATING ENZYME 1.28 1.745 -70.7845 

6u8w DNA (CYTOSINE-5)-METHYLTRANSFERASE 3B, DNA (CYTOSINE-
5)-METHYLTRANSFERASE 3-LIKE 

1.46 1.576 -70.7426 

7o7o ALPHA-2-MACROGLOBULIN 1.23 1.581 -70.7403 
6rnq GEM-ASSOCIATED PROTEIN 5 0.84 1.908 -70.736 
6h4u LYSINE-SPECIFIC DEMETHYLASE 4A 1.29 1.781 -70.6779 
4ayv THROMBIN HEAVY CHAIN 1.29 1.922 -70.6612 
7ted ORNITHINE AMINOTRANSFERASE, MITOCHONDRIAL 1.32 3.313 -70.6456 

3zmz LYSINE-SPECIFIC HISTONE DEMETHYLASE 1A, REST 
COREPRESSOR 1 

1.42 1.997 -70.5755 

4aw6 CAAX PRENYL PROTEASE 1 HOMOLOG 1.32 2.358 -70.5584 

8b6l TRANSMEMBRANE PROTEIN 258, DOLICHYL-
DIPHOSPHOOLIGOSACCHARIDE--PROTEIN 

1.32 1.701 -70.5459 

5lsp 107_A07 FAB HEAVY CHAIN, 107_A07 FAB LIGHT CHAIN 1.26 1.753 -70.5312 
5q8q DCLRE1A 1.49 3.285 -70.493 
2xiq METHYLMALONYL-COA MUTASE, MITOCHONDRIAL 1.45 1.836 -70.4676 

4msn CAMP AND CAMP-INHIBITED CGMP 3',5'-CYCLIC 
PHOSPHODIESTERASE 

1.44 2.813 -70.4675 

6s8l TUBULIN BETA-3 CHAIN 1.12 1.729 -70.4406 
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4ek9 HISTONE-LYSINE N-METHYLTRANSFERASE, H3 LYSINE-79 
SPECIFIC 

1.25 1.738 -70.4255 

7sid SERINE-PROTEIN KINASE ATM 1.37 2.352 -70.4108 
7k8s C002 FAB HEAVY CHAIN, C002 FAB LIGHT CHAIN 1.29 1.609 -70.3647 
5luq DNA-DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT,DNA- 1.05 1.73 -70.3546 
7xur SNRNA-ACTIVATING PROTEIN COMPLEX SUBUNIT 3 1.4 1.978 -70.3087 
7ni6 SERINE-PROTEIN KINASE ATM 1.3 2.067 -70.3043 
7m30 1-32 FAB HEAVY CHAIN 1.44 1.662 -70.2799 
5ffg INTEGRIN BETA-6, INTEGRIN ALPHA-V 1.31 2.065 -70.2695 
6dv5 HEAT SHOCK PROTEIN BETA-1 1.31 1.541 -70.2648 
7ye9 LIGHT CHAIN OF R1-32 FAB 1.18 2.219 -70.2502 
6d01 1210 ANTIBODY, LIGHT CHAIN, 1210 ANTIBODY, HEAVY CHAIN 1.24 1.737 -70.2299 
7q12 GLYCOGEN [STARCH] SYNTHASE, MUSCLE 1.44 3.126 -70.1953 
6ugq CARBONIC ANHYDRASE IX-MIMIC 1.24 1.4 -70.1773 
8aql SERINE HYDROXYMETHYLTRANSFERASE, MITOCHONDRIAL 1.32 1.257 -70.1732 
7m7d INDOLEAMINE 2,3-DIOXYGENASE 1 1.34 1.995 -70.1541 
3apw ALPHA-1-ACID GLYCOPROTEIN 2 1.43 2.657 -70.1114 
4ekz PROTEIN DISULFIDE-ISOMERASE 1.18 2.471 -70.0843 
1t2a GDP-MANNOSE 4,6 DEHYDRATASE 1.47 1.527 -70.0784 
3b9f PROTHROMBIN 1.1 2.144 -70.0644 
5q4w DCLRE1A 1.47 1.934 -70.0288 
2hi8 SULFATASE-MODIFYING FACTOR 1 1.29 1.953 -70.0168 
6vkg HUMAN CARBONIC ANHYDRASE IX MIMIC 1.34 1.914 -70.0096 

3vxp HLA CLASS I HISTOCOMPATIBILITY ANTIGEN, A-24 ALPHA 
CHAIN 

1.49 1.638 -69.9877 

6v63 ACTIN-HISTIDINE N-METHYLTRANSFERASE 0.96 3.151 -69.9484 
7nvm T-COMPLEX PROTEIN 1 SUBUNIT ETA 1.25 1.497 -69.9173 
2xij METHYLMALONYL-COA MUTASE, MITOCHONDRIAL 1.46 2.278 -69.8883 

7zsc PROLYL 4-HYDROXYLASE SUBUNIT ALPHA-2, PROTEIN 
DISULFIDE-ISOMERASE 

1.21 1.972 -69.7845 

8e3q CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR 
SUBUNIT 1 

1.45 1.685 -69.7186 

1h4r MERLIN 1.17 1.743 -69.6992 
7czx IG C168_LIGHT_IGKV4-1_IGKJ4,UNCHARACTERIZED PROTEIN 1.49 1.843 -69.6461 
6bnb PROTEIN CEREBLON, DNA DAMAGE-BINDING PROTEIN 1 1.45 1.865 -69.6368 
6oht 3-BETA-HYDROXYSTEROID-DELTA(8),DELTA(7)-ISOMERASE 1 1.92 -69.5843 
2ckj XANTHINE OXIDOREDUCTASE 1 2.287 -69.5344 

6mie POTASSIUM VOLTAGE-GATED CHANNEL SUBFAMILY KQT 
MEMBER 1 

1.34 2.218 -69.5254 

7fem ANGIOTENSIN-CONVERTING ENZYME 2 1.27 1.828 -69.5141 

6cqd MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE 
KINASE 1 

1.08 2.839 -69.4974 

2aii SULFATASE MODIFYING FACTOR 1 1.29 2.389 -69.4813 

2qrv DNA (CYTOSINE-5)-METHYLTRANSFERASE 3A, DNA (CYTOSINE-
5)-METHYLTRANSFERASE 3-LIKE 

1.43 2.655 -69.3916 

7v88 ANGIOTENSIN-CONVERTING ENZYME 2,ANGIOTENSIN-
CONVERTING 

1.09 2.18 -69.3707 

4liq MACROPHAGE COLONY-STIMULATING FACTOR 1 RECEPTOR 1.46 1.47 -69.3014 
6cxv INDOLEAMINE 2,3-DIOXYGENASE 1 1.44 2.39 -69.2881 
7rew ANTI-CYNO INTERLEUKIN 13 FAB HEAVY CHAIN 1.44 1.912 -69.2592 
7q3n UROMODULIN 1.32 3.582 -69.2552 
5vk0 E3 UBIQUITIN-PROTEIN LIGASE MDM2 1.29 2.35 -69.2364 
2rhu LETHAL(3)MALIGNANT BRAIN TUMOR-LIKE PROTEIN 1.31 3.016 -69.2313 
4x7t OMALIZUMAB-FAB HEAVY CHAIN 1.48 1.304 -69.226 
6bb2 L-LACTATE DEHYDROGENASE A CHAIN 1.04 2.177 -69.2087 
5j13 ANTI-TSLP FAB-FRAGMENT, HEAVY CHAIN 0.93 1.614 -69.1306 
5a7p LYSINE-SPECIFIC DEMETHYLASE 4A 1.11 2.043 -69.0758 

5l3c LYSINE-SPECIFIC HISTONE DEMETHYLASE 1A, REST 
COREPRESSOR 1 

1.38 1.651 -69.0717 

8d7w PROTEIN CEREBLON, DNA DAMAGE-BINDING PROTEIN 1 1.47 1.444 -69.0315 
1igr INSULIN-LIKE GROWTH FACTOR RECEPTOR 1 1.5 1.697 -68.9379 
3tiy CYCLIN-DEPENDENT KINASE 2 1.15 1.536 -68.9332 
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6v01 POTASSIUM VOLTAGE-GATED CHANNEL SUBFAMILY KQT 
MEMBER 1 

1.46 2.354 -68.9038 

3fz1 CELL DIVISION PROTEIN KINASE 2 1.12 2.286 -68.892 
6ohs PHOSPHOLIPASE D2 1.44 2.056 -68.8836 
3m17 IGG RECEPTOR FCRN LARGE SUBUNIT P51 1.44 2.255 -68.8318 
5fwe LYSINE-SPECIFIC DEMETHYLASE 4A 1.34 1.823 -68.8306 

4u7p DNA (CYTOSINE-5)-METHYLTRANSFERASE 3A, DNA (CYTOSINE-
5)-METHYLTRANSFERASE 3-LIKE 

1.45 2.049 -68.8292 

7wi0 XMA01 HEAVY CHAIN VARIABLE DOMAIN 1.44 2.458 -68.8238 
6b8z TYROSINE-PROTEIN PHOSPHATASE NON-RECEPTOR TYPE 1 0.89 2.064 -68.8222 
2f27 SIALIDASE 2 1.46 2.002 -68.7455 
3lfs CELL DIVISION PROTEIN KINASE 2 1.15 2.086 -68.699 
4btj TAU-TUBULIN KINASE 1 1.15 1.437 -68.6537 
7ul3 HISTAMINE H2 RECEPTOR 1.43 1.995 -68.6327 
4j9e TYROSINE-PROTEIN KINASE ABL1, P17 1.44 2.116 -68.6259 
5lvr HISTONE ACETYLTRANSFERASE KAT2B 1.42 1.542 -68.625 
3k3o PHD FINGER PROTEIN 8 1.08 2.144 -68.6182 
7frf TYROSINE-PROTEIN PHOSPHATASE NON-RECEPTOR TYPE 1 1.19 2.226 -68.6141 
4az2 THROMBIN HEAVY CHAIN 1.18 2.583 -68.5636 
3smt HISTONE-LYSINE N-METHYLTRANSFERASE SETD3 0.92 2.244 -68.5505 
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6.3.4 Results - Functional Enrich and Signal Pathway Analyses 

 
Figure A - 6.3.2.Bar plots representing the retrieved GO terms at the third level of the GO hierarchy 
relative to (A) Biological Processes (BP), (B) Molecular Functions (MF) and (C) Cellular 
Components (CC).  
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Figure A - 6.3.3. Dot plots representing the retrieved GO terms at the third level of the GO hierarchy 
relative to (A) Biological Processes (BP), (B) Molecular Functions (MF) and (C) Cellular 
Components (CC). The x-axis represents the GeneRatio, i.e. the proportion of genes in each GO 
term that are present in the retrieved gene list compared to the total number of genes in that GO 
term. The y-axis represents the statistically significant GO terms with an adjusted p-value < 0.1.  
The color of the dots represents the adjusted p-value (BH), red represents the smaller values, 
indicating higher statistical significance of the term, while blue represents larger values, indicating 
lower statistical significance. The size of the dots represents the number of enriched genes in the 
gene list associated with each GO term.  
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6.4 The Impact of Natural Compounds on S-Shaped Aβ42 
Fibril 

 

 
Figure A - 6.4.1. RMSD of the five chains of the 2MXU about the average structure during the last 

25 ns. The first replica is represented in black, the second one in red and the third one in green. 
All systems reach the structural equilibrium. 

 
Figure A - 6.4.2. Centroids of the most populated cluster for each independent replica. Each 
configuration is obtained by a cluster analysis on the last 50 ns of MD simulations, using linkage 
method and a RMSD cut-off of 0.1nm. 

 

Table A - 6.4.1. List of compounds with their relative binding energy and charge. 

Compound Binding Energy 
(kcal/mol) Charge 

Beta Carotene -55.81 0 

Oleuropein -42.63 -1 

Rosmarinic Acid -42.61 -1 

Gossypin -40.97 -1 

Piceatannol -39.75 1 

Withanolide A -39.02 0 

Salvianolic Acid A -37.78 -1 
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Piperine -35.75 0 

Curcumin -35.67 0 

6-Shogaol -34.57 -1 

EGCG -34.31 0 

Myricetin -34.28 -1 

Viniferin -34.27 -2 

Epicatechin -33.58 -1 

Fisetin -33.57 0 

Diosgenin -33.50 -1 

Rutin -33.42 -1 

Asiatic Acid -32.97 -1 

Puerarin -32.76 0 

Berberine -32.44 0 

Resveratrol -31.87 0 

α-Linolenic Acid -30.94 0 

Retinal -28.90 1 

ScylloInositol -28.54 0 

Vitamine D -28.08 -1 

Rhodosin -27.85 -1 

Retinol -27.19 0 

DHA -27.18 0 

Retinoic Acid -26.90 -2 

Naringin -26.89 -1 

LTheanine -26.61 0 

Caffeic Acid -26.41 0 

Honokiol -26.17 0 

Ellagic -26.11 0 

Hydroxytyrosol -24.82 0 

Vitamine E -24.16 0 

Apigenin -23.36 0 

Quercitin -22.33 0 

NDGA -22.01 0 

Osthole -21.97 -1 

Tetracycline -20.96 0 

Baicalein -20.91 0 

Melatonin -20.71 -1 

Kaempferol -19.98 0 

Oleocanthal -17.74 0 

Naringenin -16.60 -1 

Ferulic Acid -16.19 0 

Homotaurine -15.04 -2 

Caffeine -12.89 0 

Morin -12.50 -1 

Vanillic Acid -11.01 -1 

Lipoic Acid -9.98 0 

Huperizne A -9.53 -1 

EPA -9.19 0 

Vitamine C -7.52 0 

Glycine Betaine -0.29 0 

Gallic Acid -0.19 -1 
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Table A - 6.4.2. Summary of the simulated systems. 

System N. Replicas Simulation Time [ns] 
Configuration 1 – No Ligand 3 150 

Configuration 2 – No Ligand 3 150 

Configuration 3 – No Ligand 3 150 

Beta Carotene 3 150 

Oleuropein 3 150 

Rosmarinic Acid 3 150 

Gossypin 3 150 

Piceatannol 3 150 

Withanolide A 3 150 

Salvianolic Acid A 3 150 

Piperine 3 150 

Curcumin 3 150 

6-Shogaol 3 150 

 

 
Figure A - 6.4.3. Docking poses of the best ten compounds on the amyloid fibril. 
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Figure A - 6.4.4. Ligand interactions maps for the best ten investigated natural compounds. 
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Figure A - 6.4.5. (A) Brazilin ligand-based pharmacophore and (B) shared features pharmacophore 
between brazilin and mechanism I and II destabilizing compounds, i.e. 6-shogaol, oleuropein, 
curcumin, gossypin and piceatannol. 

6.5 Machine Learning for Taste Prediction 

Area under the curve (AUC) measures the two-dimensional area under the ROC curve. It 
provides an aggregate measure of performance by examining all possible classification 
thresholds. The AUC is scale-invariant and is an indicator of how well predictions are classified, 
rather than their absolute values. The value is included between 0 and 1, and it is expressed in 
percentage. The more the value is far from 1, the more the model predicts wrong. An area of 
0.5 corresponds to a random classifier. 

Sensitivity (SE) represents the true positive rate, the number of positive data correctly 
classified. 

!"#$%&%'%&( = 	
+,-"	./$%&%'"

+,-"	./$%&%'" + 123$"	4"52&%'" 

Specificity (SP) represents the true negative rate, the number of negative data correctly 
classified. 

!6"7%8%7%&( = 	
+,-"	4"52&%'"

+,-"	4"52&%'" + 123$"	./$%&%'" 

Accuracy (ACC) is the ratio of the number of correct predictions to the total number of input 
samples, it represents how well the ML algorithms correctly classify the samples. 

977-,27( = 	
+,-"	./$%&%'" + 	+,-"	4"52&%'"

+,-"	./$%&%'" + 123$"	./$%&%'" + 	+,-"	4"52&%'" + 123$"	4"52&%'" 

Precision (PRC), or Positive Predictive Value (PPV), represents the is the number of the real 
positive samples divided by the number of positive results predicted by the classifier. 

.,"7%$%/# = 	
+,-"	./$%&%'"

+,-"	./$%&%'" + 123$"	./$%&%'" 



Appendix 253 

 

253 

 

Non-Error Rate (NER) represents the arithmetic mean of Sensitivity and Specificity in binary 
classification. 

4/# − ;,,/,	<2&" = 	
!"#$%&%'%&( + 	!6"7%8%7%&(	

2  

Fβ-score allows weighting precision and recall, especially in an unbalanced dataset.  

1! − $7/,"	 = (1 +	@")	
.,"7%$%/# ∗ <"7233

@" ∗ .,"7%$%/# + <"7233 

For β = 1, F1-score (F1) is the Harmonic Mean between precision and recall. It tells how precise 
and robust your classifier is. High precision but lower recall means an extremely accurate 
classifier, but it misses a large number of instances difficult to classify. The range of the F1-
score is [0,1] and the greater it is, the better is the model performance. 

Matthew's correlation coefficient (MCC) is a single-value metric that summarizes the 
confusion matrix. This coefficient has a high value only if it classifies correctly both positive 
and negative elements. When the classification is perfect, MCC value is 1. 

CDD	 =
+. ∗ +4	– 	1. ∗ 14

F[(+.	 + 	1.) ∗ (+.	 + 	14) ∗ (+4	 + 	1.) ∗ (+4	 + 	14)]
 

 

Table A - 6.5.1. Summary of the main recent taste prediction tools, including the methods, the 
datasets and the molecular descriptors employed. 

Reference Method Dataset Molecular 
Descriptors Taste Source # 

Chéron Sweet Regressor 18 Sweet Regressor 
(RF, SVR) 

Sweet SweetenersDB 316 Dragon 

Rojas Sweet Predictor 320 Sweet Classifier 
(QSTR) 

Sweet Sweet 435 2D molecular 
descriptors (ECFP), 

Dragon) Non-Sweet 
Bitter 81 

Tasteless 133 

Goel Sweet Regressor 338 Sweet Regressor 
(GFA, ANN) 

Sweet Literature 353–357 487 Material Studio 

e-Sweet 339 
[https://bit.ly/3wFy4ER] 

Sweet Classifier 
(KNN, SVM, 

GBM, RF, DNN) 

Sweet 

SuperSweet 

530 
Extended-

connectivity 
Fingerprint (ECFP) 

SweetenersDB 
TasteDB 
BitterSweet Forest 

Non-Sweet  
BitterDB 718 
Tasteless 
(TastesDB) 

132 

Predisweet 340 
[https://bit.ly/3reop7a] 

Sweet Regressor 
(AB) 

Sweet SweetenersDB 316 

Dragon and open 
source (RDKit, 

Mordred, 
ChemoPy) 

BitterX 341 
[https://bit.ly/3wJYa9O] 

Bitter Classifier  
(SVM) 

Bitter BitterDB 539 Descriptors from 
the Handbook of 

Molecular 
Descriptors 

(Todeschini and 
Consonni, 2007) 

Non-Bitter 

In-house 
experiments 

20 

Available 
Chemicals 
Directory (ACD) 

519 

BitterPredict 343 
[https://bit.ly/3igrzmQ] 

Bitter Classifier 
(AB) 

Bitter BitterDB 632 Canvas 
(Schrödinger) TastesDB 59 
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Non-Bitter 

Fenaroli’s 
Handbook of 
Flavor ingredients  

1451 

Literature 35 
Sweet 320 336 
Tasteless 320 130 

e-Bitter 344 
[https://bit.ly/3epWzQq] 

Bitter Classifier 
(KNN, SVM, RF, 

GBM, DNN) 

Bitter 

BitterDB 

707 

Extended-
connectivity 

Fingerprint (ECFP) 

TastesDB 
Rodgers et al., 
2006 

Non-Bitter 

Tasteless 
(TasteDB) 

132 

Non-bitter 
(BitterX) 

17 

Sweet 
(SweetenersDB; 
SuperSweet; 320,362) 

443 

iBitter-SCM 317 
[https://bit.ly/2VGyXAg] 

Bitter Peptides 
Classifier (SCM) 

Bitter  

Literature 
(peptides w/ 
experimental 
bitterness) 

320 
Dipeptide 

composition (DPC) 

Non-Bitter Randomly from 
BIOPEP 

320 

BERT4Bitter 345 
[https://bit.ly/2WecTxf] 

Bitter Peptides 
Classifier (BERT) 

Bitter  

Literature 
(peptides w/ 
experimental 
bitterness) 

320 
Dipeptide 

composition (DPC) 

Non-Bitter Randomly from 
BIOPEP 

320 

iBitter-Fuse 346 
[https://bit.ly/3BmC547] 

Bitter Peptides 
Classifier (SVM) 

Bitter  

Literature 
(peptides w/ 
experimental 
bitterness) 

320 
DPC, AAC, PAAC, 

APAAC, AAI 

Non-Bitter Randomly from 
BIOPEP 

320 

BitterIntense 347 
Bitter Intensity 

Classifier 
(XGBoost) 

VB 

BATA model 

246 

Canvas 
(Schrödinger) 

BitterDB 
AnalytiCon’s 
repository  

NVB 

Random from non-
bitter of 
BitterPredict 

404 
BitterDB 
AnalytiCon’s 
repository  

BitterSweetForest 348 Bitter/Sweet 
Classifier (RF) 

Sweet SuperSweet 517 RDKit (Binary 
fingerprints) Bitter BitterDB 685 

BitterSweet 349 
[https://bit.ly/3rd7Att] 

Bitter/Sweet 
Classifier 
(AB, RF) 

Bitter 

TasteDB 

918 

Canvas 
(Physicochemical 

and ADMET) 
Dragon 7 
(Extended 

Connectivity 
Fingerprints, 2D 

Molecular 
Descriptors and 3D 

Molecular 
Descriptors) 

Rodgers et al., 
2006 
Fenaroli's 
Handbook of 
Flavor Ingredient 
Biochemical 
Targets of Plant 
Bioactive 
Compounds 
BitterDB 
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The Good Scents 
Company 
Database 

ChemoPy (2D 
Topological and 

Structural Features) 
BitterPredict 
(Phyto-Dict., 
Bitter-New, 
UNIMI) 

Non-Bitter 
Bitter Predict 
(Phyto-Dict., 
UNIMI) 

1510 

Sweet 

TastesDB 

1205 

Fenaroli's 
Handbook of 
Flavor Ingredient 
Biochemical 
Targets of Plant 
Bioactive 
Compounds 
SuperSweet 
The Good Scents 
Company 
Database 

Non-Sweet 

Tasteless 
(TasteDB, 
Fenaroli' s 
Handbook, 
ToxNet) 

1171 

Bitter molecules 

iUmami-SCM 319 
[https://bit.ly/3hJs9uf] 

Umami Classifier 
(SCM) 

Umami BIOPEP-UWM  140 
Dipeptide 

composition (DPC) Non-Umami Bitter: iBitter-
SCM 

304 

VirtualTaste 350 
[https://bit.ly/2UfVFPi] 

Multi-taste 
classifier (RF) 

Sweet  SuperSweet 2011 

not reported 
Bitter BitterDB 

1612 
BitterSweet Forest 

Sour Manually edited 
from ChEMBL 

1347 

 

6.6 VirtuousUmami 

6.6.1 Materials and Methods – Data curation 
Table A - 6.6.1. Summary of the starting dataset, i.e. the UMP442 database. 

Class Number References 

umami 140 
Previous literature61,332–336 and the BIOPEP-UWM 
database325 

non-umami 302 Bitter peptides from BTP640 database337 
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Table A - 6.6.2. Summary of the final dataset used in the present work. 

Set Class Number 

Training 
umami 240* 

non-umami 240 

Test 
umami 28 

non-umami 62 

*Since the non-umami class is oversampled in the training set, we created synthetic 
data by randomly duplicating some umami compounds to balance the training 
dataset 

 

6.6.2 Results - Model Construction and Performance 

The evaluation functions of maximization of predictive performance, minimization 
of selected features and simplicity of the classification model, which were used for 
guiding the optimization process are the following: 

 

• Selected Features Number Minimization (SFNM):  

!S3, =
1

1 + 3OpqU$	#8	WUYU5[U%	8UP[O$UW
 

• Accuracy (ACC):  

"++ =
QZ + QX

QZ + SZ + QX + SX
	 

 where Tp represents the true positives, Tn the true negatives, Fp the false 
positives and Fn the false negatives.  

 

• Precision (PRC):  

&T+ =
QZ

QZ + SZ
 

• Recall (REC):  

T<+ =
QZ

QZ + SX
 

• F1 Score (F1):  

S1 =
2 ∗ PRC ∗ REC

PRC	 + REC
 

• F2 Score (F2):  
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S2 =
5 ∗ PRC ∗ REC

4 ∗ PRC + REC
 

 
• ROC-AUC: Area Under the Receiver Operating Characteristic curve of 

Sensitivity/Specificity 
 

• Number of SVs or Trees Minimization: Number of Samples in Training 
Set/Number of Support Vectors of the trained Support Vector Regression 
Problem 

 

We developed 5 different models summarized in Table A - 6.6.3. 

Table A - 6.6.3. Summary of the 5 developed models, including the number of support vectors in the 
SVM implementation and the number and type of features selected by each model. 

Model 
#Support 
Vectors 

Selected Features 

1 340 7: AATSC0m, Mp, Mi, FilterItLogS, SMR_VSA1, JGI1, 
JGT10 

2 482 7: AATSC0m, Mi, SaaCH, fragCpx, FilterItLogS, 
VSA_EState7, JGI1 

3 148 8: ATSC1m, Xch_6d, Mi, SaaCH, SMR_VSA1, JGI1, 
FilterItLogS, JGT10 

4 340 10: ATSC1Z, AATSC0m, Mp, Mi, SaaCH, fragCpx, 
FilterItLogS, SMR_VSA1, JGI1, JGT10 

5 148 8: AATSC0m, AATSC0v, Mp, Mi, SaaCH, fragCpx, 
FilterItLogS, JGI1 

 

The model performance was evaluated on the test set for all models (Table A - 
6.6.4). 

Table A - 6.6.4. Performance of the 5 SVM developed models. 

Model ACC Spec Sens F1 F2 AUC 

1 73% 93.44% 28.57% 40% 32.26% 0.61 

2 77.53% 95.08% 39.29% 52.38% 43.65% 0.67 

3 85.39% 90.16% 75% 76.36% 75.54% 0.83 

4 73% 93.44% 28.57% 40% 32.26% 0.61 

5 86.52% 90.16% 78.57% 78.57% 78.57% 0.84 
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To improve the predictor’s performance, ten ensemble models (EMs) were built by 
combining two different SVM (1 and 2; 1 and 3; 2 and 4; etc..) out of the five ones 
developed in this work. A comparative performance analysis highlighted EM3-5 

(combination of SVM models 3 and 5) as the best ensemble model (Table A - 6.6.5) 

Table A - 6.6.5. Performance of the ensemble models (EMs) optimised by combining the 5 SVM 
models. The ensemble model EM3-5 (combination of SVM models 3 and 5) achieved the best 
performance.   

EM ACC Spec Sens F1 F2 AUC 

EM1-2 77.5% 93.44% 42.86% 54.55% 46.88% 0.68 
EM1-3 84.27% 88.52% 75% 75% 75% 0.82 
EM1-4 73.03% 93.44% 28.57% 40% 32.26% 0.61 
EM1-5 85.39% 88.52% 78.57% 77.19% 78.01% 0.84 
EM2-3 86.52% 90.16% 78.57% 78.57% 78.57% 0/84 
EM2-4 77.57% 93.44% 42.86% 54.55% 46.88% 0.68 
EM2-5 86.52% 90.16% 78.57% 78.57% 78.57% 0.84 
EM3-4 84.27% 88.52% 75% 75% 75% 0.82 
EM3-5 87.64% 91.80% 78.57% 79.31% 80.99% 0.85 
EM4-5 85.39% 88.52% 78.57% 77.19% 78.01% 0.84 

 

6.6.3 Results - Feature Importance 

The distributions of the 12 most significant features on which the prediction relies 
are represented in Figure A - 6.6.1 and Figure A - 6.6.2.  
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Figure A - 6.6.1. Distribution of the umami and non-umami data for the 12 most significant 

features 
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Figure A - 6.6.2. Violin plots showing the distribution of the 12 features in the umami and the non-
umami compounds. 
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Figure A - 6.6.3 represents the hierarchical clustering of the best 12 features, 
highlighting three major clusters.  

 

 
Figure A - 6.6.3. Hierarchical clustering of the selected features reveals 3 groups of features 

6.6.4 Discussion 
Table A - 6.6.6. Comparison between VirtuousUmami and state-of-the-art umami prediction tools 
on the VirtuousUmami test set. 

 ACC Spec Sens F1 F2 

iUmami-SCM 86.7 93.5 71.4 76.9 73.5 

UMPred-FRL 88.9 93.5 78.6 81.5 79.7 

VirtuousUmami 87.6 91.8 78.6 79.3 81.0 
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Results indicate that considered predictors have comparable performance when 
tested on the VirtuousUmami independent test set. In this context, it is worth 
mentioning that some of the compounds present in the VirtuousUmami independent 
test set may come from training sets used to develop iUmami-SCM and UMPred-
FRL. This could result in an unfavourable condition for the VirtuousUmami 
algorithm for which the test set is completely unknown. Despite this potential 
adverse condition, our algorithm demonstrates a predictive power at least 
comparable with its predecessors.  

6.7 VirtuousSweetBitter 

 

Table A - 6.7.1. Summary of the collected compounds from the selected taste databases. 

Reference Taste #  

Biochemical Targets of Plant Bioactive Compounds by Gideon Polya448 
Bitter 39 

Sweet 32 

BitterDB439 Bitter 1018 

Fenaroli Handbook of Flavor Ingredient449 
Bitter 16 

Sweet 419 

Rodgers et al. (2006) 434 Bitter 17 

Rojas et al. (2017)450 
Bitter 69 

Sweet 427 

SuperSweet451 Sweet 265 

The Good Scents Company Database 
Bitter 37 

Sweet 153 

Wiener et al. (2017)437 Bitter 75 

SweetenersDB452 Sweet 119 

  

Table A - 6.7.2. Comparison of the main bitter/sweet prediction models 

Reference Source Molecular 
descriptors 

Feature 
selection 

(Best) 
Modelling 
approach 

Interpretation  

BitterSweetForest442 
BitterDB and 
SuperSweet 

Morgan, 
Atom-Pair, 
Torsion and 
Morgan Feat 
fingerprints 
from RDkit 

Based on 
performance 

Random 
Forest with 
Morgan 
fingerprint 

Bayesian-based 
feature analysis 
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BitterSweet443 

Biochemical 
Targets of Plant 
Bioactive 
Compounds by 

Gideon Polya, 
BitterDB, 
SuperSweet, 
Fenaroli’s 
Handbook of 
Flavor Ingredients 
(5th Edition), 
Rodgers et al., 
Rojas et al., 
TOXNET, The 
Good Scents 
Company 
Database, Wiener 
et al. 

ChemoPy, 
Dragon 2D, 
Dragon 
2D/3D, 
Canvas and 
ECFPs 

Boruta 
feature 
selection 
algorithm 
and PCA 

Dragon2D/3D 

molecular 
descriptor and 
Boruta feature 
selection with 
Adaboost 
(sweet/non-
sweet), 
Dragon2D/3D 

molecular 
descriptor and 
PCA with 
Adaboost 
(bitter/non-
bitter) 

Random forest 
relative feature 
importance with 
mean decrease in 
Gini impurity  

VirtualTaste444 

BitterDB, 
SuperSweet and 
BitterSweetForest 
tool 

MACCS and 
Morgan 
fingerprints 
from RDkit 

\ 
Random 
Forest 

Bayesian-based 
feature analysis 

Ours 

Biochemical 
Targets of Plant 
Bioactive 
Compounds by 

Gideon Polya, 
BitterDB, 
SuperSweet, 
Fenaroli’s 
Handbook of 
Flavor Ingredients 
(5th Edition), 
Rodgers et al., 
Rojas et al., The 
Good Scents 
Company 
Database, Wiener 
et al., 
SweetenersDB 

2059 
molecular 
descriptors 
from RDkit, 
pybel and 
Mordred 
open-source 
libraries 

Sequential 
feature 
selection 
based on 
hierarchical 
clustering 
on the 
feature's 
Spearman 
rank-order 
and two-
sample 
Kolmogorov 
- Smirnov 
test 

Gradient 
Boosting 
(LightGBM) 

Global (feature 
importance, 
dependence 
plots) and local 
interpretation 
(features impact 
on individual 
predictions) 
based on SHAP 
values 
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Figure A - 6.7.1. Heatmap of the selected features correlation matrix computed with Spearman’s 

rank correlation in absolute value. 

  

6.7.1 Validation on non-bitter/non-sweet molecules 

This study is focused on the sweet/bitter dichotomy in order to isolate the most 
suitable variables capable of highlighting the differences between sweet and bitter 
compounds. However, it is also interesting to analyze the behavior of the model, 
fed only by the variables selected in this work, in the prediction of neither sweet 
nor bitter molecules. For this purpose, the original training dataset consisting of 
2686 compounds (1415 sweet and 1271 bitter) was augmented by 198 additional 
compounds classified in the literature as neither bitter nor sweet449,450,505 by 
converting the original binary classification problem into a multiclass problem with 
3 labels. The final LightGBM model was retrained on this augmented dataset and 
performance was assessed according to a stratified 5-fold cross-validation strategy. 
For each class, the ROC curves are computed through a one-vs-rest method 
(namely, performance of the considered class against the remaining two ones) and 
shown in Figure A - 6.7.2, along with the macro-average ROC curve, which equally 
weights each point of the single ROC curve. Also, for this 3-class problem, the 
predictive performance is satisfactory, with an average AUROC equal to 0.92. Note 
that the AUROC for the Non-bitter/sweet class is slightly worse than the average 
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(0.89). This was expected since the features used by the predictive model was 
chosen only considering bitter and sweet compounds.  

 

Figure A - 6.7.2. One-vs-rest ROC curves: bitter vs others (blue); sweet vs others (orange); not 
bitter/not-sweet vs others (green); macro-average ROC curves (dotted dark blue). 
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6.7.2 Local interpretation 

 
Figure A - 6.7.3. SHAP profiles of four representative molecules: Glucose (A), Denatonium (B), 
Aspartame (C) , and Caffeine (D). For each figure, SHAP values are shown in the left panel and 
impacting feature distributions in the right panel, with values assumed by the features highlighted 
with solid red lines. 

(A) (B)

(C) (D)
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7.3 Scientific Awards 
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course in Biomedical Engineering at Politecnico di Torino:  

• Biomechanical Design (ENG) – 28 hrs. 
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Course Name A.Y. Hours 

Computing@Polito Workshop – HPC/Big Data/Cloud for Research 2019-20 4 

Principles, materials and applications of robotics in biomedicine 2019-20 20 

Multiscale modelling and coarse-graining for flow and transport 
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Non-Extensive Statistical Mechanics 2020-21 10 
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Martini Workshop 2021 2020-21 18 
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Course Name A.Y. Hours 

Project Management 2019-20 5 
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The new Internet Society: Entering the Black-box of Digital 
Innovation 2020-21 6 

Public Speaking 2020-21 5 

Tme management 2020-21 2 

Thinking out of box 2020-21 1 

Research integrity 2020-22 5 

Navigating the hiring process 2020-22 2 

Personal branding 2020-22 1 

Responsible research and innovation, the impact on social challenges 2020-22 5 

Communication 2020-22 5 
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International Conferences and Workshops Contribution Year 

Virtuous Transfer of Knowledge (ToK) - First Workshop (oral) Oral Pres. 2020 

ICTP-SISSA-CECAM Workshop on Molecular Dynamics and its 
Applications to Biological Systems | (smr 3483)  Attendee 2020 

CancerTO  Nanoscience in Cancer Immunotherapy (oral + poster) Oral Pres. 2021 

26th Congress of the European Society of Biomechanics (oral) Oral Pres. 2021 

High Performance Molecular Dynamics Attendee 2021 

Plumed Masterclass Attendee 2021 

Martini Workshop 2021 Attendee 2021 

Virtuous Transfer of Knowledge (ToK) - Second Workshop (oral) Oral Pres. 2022 

8th Annual CCPBioSim Conference Frontiers in Biomolecular 
Simulation 2022 (poster and flash talk) Poster 2022 

AIDD 2022 Spring School Attendee 2022 

2022 Workshop on MDAnalysis/Machine Learning Attendee 2022 
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Period Host Institution Country 

12/2019 – 02/2020 Missing Tech Sagl.  Switzerland 
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05/2022 – 06/2022 Missing Tech Sagl.  Switzerland 

11/2022 – 12/2022 Missing Tech Sagl.  Switzerland 

 
* The periods abroad were inserted in the framework of the European H2020 project 
MSCA-RISE VIRTUOUS (GA. 872121) for scientific activities related to specific 
Work Packages (WP) of the project. 
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