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BOUNDED HEIGHT IN PENCILS OF SUBGROUPS OF

FINITE RANK.

F. AMOROSO, D. MASSER AND U. ZANNIER

Abstract. In a recent paper we proved some new bounded height re-
sults for equations involving varying integer exponents. Here we make
a start on the problem of generalizing to rational exponents, which cor-
responds to the step from groups that are finitely generated to groups
of finite rank. We discover two unexpected obstacles. The first is that
bounded height may genuinely fail in the neighbourhood of certain expo-
nents. The second concerns vanishing subsums, which seem to be much
harder to deal with than in classical situations like S-unit equations.
But for certain simple and natural equations we are able to clarify the
first obstacle and eliminate the second. The proofs are partly based on
our earlier work but there are also new considerations about successive
minima over function fields.

1. Introduction

In 1997 Beukers [4] proved a new kind of result about the equation

(1.1) tl + (1− t)l = 1.

Namely that if l ≥ 2 is an integer, then the absolute height (see below) of
any solution t0 to (1.1) is bounded above independently of l. More explicitly,
his Lemma 3.5 (p. 100) implies that

(1.2) h(t0) ≤ log 216

for the standard logarithmic Weil height. He was motivated by certain
finiteness problems (see below) and irreducibility. Even before that, notably
in Silverman’s paper [19] from 1983, the importance of Bounded Height for
more general problems has been recognized and developed, as in the work
of Habegger (see for example [11]); see below for more on this.

In our own paper [2] of 2017 we obtained a broad extension of (1.2) to
systems of equations with any number of exponents and any number of
terms. For example we proved the existence of similar height bounds when

(1.3) tl + (1− t)m = 1 (l ≥ 1,m ≥ 1, l +m ≥ 3)

or

(1.4) tl + (1− t)l + (1 + t)l = 1 (l ≥ 1)

(which were made explicit by Denz [9]). The general theme of the present
paper is to allow exponents that are not only integral but also rational.

To see why this is natural let us first state the main result of [2].
Let C be a projective smooth curve defined over Q, with function field

denoted F = Q(C) and choose in the usual way a height function h on C(Q).
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2 F. AMOROSO, D. MASSER AND U. ZANNIER

In [2] we said that a subgroup Γ of Gr
m(F) is constant-free if its image Γ′

by any surjective homomorphism Gr
m → Gm satisfies Γ′ ∩Q∗ = Γ′tors (which

is the assumption of Theorem [6, Theorem 1’]). But we may note that
if the homomorphism is not surjective then this trivially holds for Γ′ and
so the surjectivity here is irrelevant. That implies for example that any
homomorphic image of something constant-free is also constant-free.

Theorem 1.1 ([2], Theorem 1.3, p. 2601). Let Γ ⊂ Gr
m(F) be a finitely

generated constant-free subgroup and let V be a subvariety of Gr
m defined

over F. Then the height of the points P ∈ C(Q), such that for some γ ∈ Γ\V
the specialization γP is defined and lies in the specialization VP , is effectively
bounded above in terms of C,Γ, and V .

Here it is clear that the excluded points γ in V are necessary, for otherwise
we could deduce that γP lies in VP for all P .

Thus with C as affine A1 and F as Q(t) we may take r = 2, Γ generated
by (t, 1− t), and V defined by x1 +x2 = 1 to get (1.1). And Γ generated by
(t, 1), (1, t−1) leads to (1.3). Similarly r = 3, (t, 1−t, 1+t) and x1+x2+x3 =
1 give (1.4).

Our rational exponents will then correspond to the division group Γdiv of
Γ consisting of all γ for which there exists a positive integer n with γ′ = γn

in Γ.
Now several classical diophantine results for finitely generated groups nat-

urally extend without significant change to groups of finite rank such as Γdiv.
This holds for example with the finiteness of solutions to S-unit equations
when formulated in terms of groups. However the analogues for abelian vari-
eties instead of Gr

m do not go so simply; for example just for Γ the result [10]
of Faltings implies the Mordell Conjecture, and the extension to Γdiv follows
from the earlier work [12] of Hindry using non-trivial Kummer Theory.

Here at least we can easily define specializations γP of γ as follows. We
choose n as above minimal; and then γP is any solution of γnP = γ ′P . So
there is an indeterminacy involving roots of unity ω with order dividing n.

For example with Γ generated by t in Q(t) the specializations of t1/n are

ωt
1/n
0 for any fixed choice of t

1/n
0 and all such ω. But also if ω1 has order

exactly n then (ω1t)
n is in Γ and so the specializations of ω1t are all ωt0.

By making n large we get new results without really leaving Γ, for example
height boundedness for ω1t

l + ω2(1 − t)l = 1 independent of the roots of
unity ω1, ω2.

But now the literal extension of our Theorem 1.1 to Γdiv is false, even in
the very special case C = A1,F = Q(t), r = 1 and Γ generated by t. Here
the determinations for any λ ∈ Q of tλ0 correspond to n as the denominator
of λ. Thus with V = {2} and the example

tλ0 = 2

we have

h(t0) =
log 2

|λ|
which is not bounded above as λ→ 0.
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Actually if λ is small then tλ is in some geometric sense close to η = 1,
and now

(1.5) γP η
−1
P η ∈ V.

For the V treated in this paper we will see that this is an important ob-
struction to bounded height.

Similarly for the rational analogue of (1.1) there is an obstruction near
λ = 0, although this is not quite so obvious (see Lemma 6.1). Nevertheless it
is relatively easy to extend Beukers’s result to rational exponents, where we
define tλ0 , (1− t0)λ as above with γ = (t, 1− t). More precisely, if λ = m/n
with coprime n ≥ 1 and m, we say that t0 is a solution of the equation
tλ + (1− t)λ = 1 if there exist u, v with

un = tm0 , vn = (1− t0)m, u+ v = 1

(compare also (B.2) and the equation immediately preceding it).

Theorem 1.2. For any ε ∈ (0, 1) there is an effective C, depending only on
ε, such that for any rational λ with |λ| > ε and λ 6= 1 the solutions t0 ∈ Q
of tλ + (1− t)λ = 1 satisfy h(t0) ≤ C.

More precisely, for any positive rational λ 6= 1 the solutions of the equation
above satisfy

h(t0) ≤ 100 max(1, λ−1).

One cannot expect bounded height when λ > 0 is small, as a consequence
of a well-known result of Zhang-Zagier (see Lemma 6.1).

In Appendix A we prove a more general result (Theorem A.1) which deals
with the equation αtλ + β(1 − t)λ = 1 with α, β fixed non-zero algebraic
numbers.

For the rational analogue of (1.3) we have

Theorem 1.3. For any ε ∈ (0, 1) there is an effective C, depending only on
ε, such that for any rationals λ, µ with max{|λ|, |µ|} > ε and (λ, µ) 6= (1, 1)
the solutions t0 ∈ Q of tλ + (1− t)µ = 1 satisfy h(t0) ≤ C.

Again we cannot expect bounded height when λ > 0 and µ > 0 are small
(also see Lemma 6.1).

And for the rational analogue of (1.4) we have

Theorem 1.4. For any ε ∈ (0, 1) there is an effective C, depending only
on ε, such that for any rational λ with |λ| > ε the solutions t0 ∈ Q of
tλ + (1− t)λ + (1 + t)λ = 1 satisfy h(t0) ≤ C.

Once more one cannot expect bounded height when λ > 0 is small, this
time by an explicit lower bound of Warin (see Lemma 6.2).

These results will be deduced in section 6 from our main result, which we
now state.

Given f = (f1, . . . , fr) in Fr, we use the affine geometric height

(1.6) hAgeo(f) = −
∑
P

min{0, ordP (f1), . . . , ordP (fr)} ≥ 0
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in Z, and extend in the usual way to Fr. It vanishes precisely on Qr
. Given

f , f1, f2 ∈ Gr
m(F) we use the obvious notations f−1 and f1f2 for the group

operations.
For a single f ∈ Gm(F) we have hAgeo(f

−1) = hAgeo(f) by the product
formula

∑
P ordP (f) = 0 and it follows for g = (g1, . . . , gr) that

(1.7) dist(f ,g) = hAgeo(f1g
−1
1 ) + · · ·+ hAgeo(frg

−1
r )

defines a distance on Gr
m(F)/Gr

m(Q). Note that for f ∈ Fr we have hAgeo(f) ≤∑r
i=1 h

A
geo(fi) ≤ rhAgeo(f). Thus hAgeo(fg

−1) ≤ dist(f ,g) ≤ rhAgeo(fg−1).

Our main theorem below concerns for technical reasons varieties V defined
over Q. And for reasons connected with vanishing subsums, which are well-
known to cause problems for example in the study of S-unit equations, we
shall restrict further to linear hypersurfaces V . For α = (α1, . . . , αr) and
x = (x1, . . . , xr) we denote the scalar product α1x1 + · · ·+αrxr by α.x, and
we shall normalize V so that it is defined by

α.x = 1

for α in Gr
m(Q). Thus a vanishing subsum gives rise in particular to a

vanishing subsum on the left-hand side.
Now for γ,η ∈ Γdiv and P ∈ C(Q) such that γP ,ηP are defined, we have

an analogue

(1.8) γPη
−1
P η ∈ V

of (1.5). Notice that we may specialize (1.8) to get γP ∈ VP = V so that it
is contained in the set we are interested in.

Theorem 1.5. Let Γ ⊂ Gr
m(F) be a constant-free finitely generated sub-

group. Let α be in Gr
m(Q) and ε ∈ (0, 1). Then there is an effective

Bε = B(C,Γ,α, ε), an effective C = C(C,Γ) and an effective finite sub-
set H = H(C,Γ) of Γdiv with the following property. The height of points
P ∈ C(Q), such that for some γ ∈ Γdiv the value γP is defined and

(1.9) α.γP = 1

with non-vanishing subsums, is bounded above by Bε, except possibly for the
pairs (P,γ) with hAgeo(γ) ≤ C and

(1.10) α.(γPη
−1
P η) = 1

for some η in H with dist(η,γ) < ε.

Remark 1.6. The presence of the non-specialized η in (1.10) gives a good
possibility to go further by “descent”. Indeed this is how we shall complete
the proof of Theorem 1.4 in Appendix B.

Note that the assumption on vanishing subsums is necessary, as the fol-
lowing example shows. Consider the equation

(1.11)
1

2
tλ+µ − tλ +

1

2
tµ = 1

with Γ generated by (t, t, 1), (t, 1, t). It has a solution t0 = 2n corresponding

to λ = n and µ = 1/n so γ = (tn+1/n, tn, t1/n) in Γdiv and h(t0) → ∞ as
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n → ∞. If Theorem 1.5 were applicable, we would deduce hAgeo(γ) ≤ C;

but already hAgeo(γ) ≥ hAgeo(t
n) = n. This contradiction comes from the

vanishing subsum

1

2
t
n+1/n
0 − tn0 =

1

2
tn0 (t

1/n
0 − 2) = 0.

It means that any extension of Theorem 1.5 to general V will not be straight-
forward.

On the other hand in Γ instead of Γdiv this kind of obstacle disappears,
thanks to Theorem 1.1. For example with the integral analogue

1

2
tl+m − tl +

1

2
tm = 1

of (1.11), then because any solution t0 satisfies (tl0 + 1)(tm0 − 2) = 0 we still
have vanishing subsums but this does not invalidate bounded height h(t0) ≤
log 2. This suggests that the problem of vanishing subsums may be different
from that of the S-unit situation, which shows the same phenomenon for
Γdiv as for Γ.

In Theorems 1.2, 1.3, 1.4 (and even in the example (1.5) above) the set
H of Theorem 1.5 consists only of the identity in Gr

m (besides what may
be called the functional solutions). But this does not always happen. An
example is x + 2y = 1 with Γ generated by (t, 1), (1, 1 − t) as in Theorem
1.3. For λ = 1 and µ 6= 1 there is a solution

(x, y) = (t0, (1− t0)µ)

with t0 = 1 − 2−1/(µ−1). Here h(t0) → ∞ as µ → 1. Thus H must contain
(t, 1 − t), because such (λ, µ) near (1, 1) must be avoided (but not (1, 1)
itself).

In [2] we derived Theorem 1.1 from [2, Proposition 6.1, p. 2639] which
deals with a variety defined by a single linear equation and with a rank one
subgroup. Since every variety is the intersection of hypersurfaces, we first
reduced to a single hypersurface. By means of a morphism we have then
supposed that this hypersurface was defined by a linear equation, and finally
we reduced to rank one subgroups. Here too we could have made a similar
deduction, following the first two steps, but at the price of a too technical
statement, as the above example might suggest.

When the height of the relevant γ is large, the proof of Theorem 1.5
follows closely the reduction to rank one subgroups mentioned before. For
the reader’s convenience, we shall give all details in section 3. It is here that
we need the assumption on non-vanishing subsums.

For γ of small height the proof is entirely new. It is postponed to section 5.
We approximate γ with an element v ∈ Γdiv of bounded “denominator”. We
then consider the successive minima of the geometric height on the vector
space v⊥ of g ∈ Fr such that gv ∈ V . If their heights are of the same mag-
nitude, we simply use the so-called height machine (see Lemma 2.1 below).
Otherwise, there is a bounded η in Γdiv which is close to γ (with respect
to the distance (1.7)) and such that γPη

−1
P η ∈ V as in (1.8). The relevant

tools needed for this construction are developed in section 4, devoted to a
close analysis on the behaviour of these successive minima.
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In section 6 we deduce from Theorem 1.5 the first assertion of Theo-
rem 1.2 on Beukers’s equation with rational exponents, as well as Theorem
1.3. We also deduce Theorem 1.4 on Denz’s equation with rational expo-
nents, except for possible pathological solutions near λ = 1 which cannot be
excluded from our main theorem. Appendix A is devoted to prove the more
precise statement of Theorem 1.2 and more generally to study the solutions
of αtλ + β(1− t)λ = 1 with α, β fixed non-zero algebraic numbers. Finally
in Appendix B we eliminate these pathological solutions of Denz’s equation.
As in Remark 1.6 this requires a sort of “descent procedure” and then some
arguments involving more delicate properties of heights.

In connexion with the broader importance of Bounded Height mentioned
earlier, we should point out that Theorem 1.1 for r = 1 and V = {1} implies
a 1999 result [6, Theorem 1’] of Bombieri, Masser and Zannier on a single
multiplicative relation. In the same paper they prove some new finiteness
results (Theorem 2) when there are two multiplicative relations. Already
Theorem 4.1 (p. 101) of Beukers [4] implies something of the same type for
(1.1), namely that if t0 is a solution of

(1.12) tl + (1− t)l = 1, tm + (1− t)m = 1

for different l ≥ 2,m ≥ 2, then t0 must be 0, 1 or one of the two primitive
sixth roots of unity. It would be interesting to have a finiteness result in the
context of Theorem 1.5 or even just for

(1.13) tλ + (1− t)λ = 1, tµ + (1− t)µ = 1.

2. Notation, auxiliary results and reduction.

Recall the geometric height hAgeo from the introduction and the two arith-
metic heights h (the height on the curve C and the standard affine Weil

height on Q). We need moreover the affine height on Qr
, which we denote

with hA to emphasis his affine nature.
We shall use a functorial relation between them, which is an easy conse-

quence of “Weil’s Height Machine” (compare for instance [2], Lemma 3.3,
p. 2610:

Lemma 2.1. Let f = (f1, . . . , fr) ∈ Fr and P ∈ C(Q), not a pole of
f1, . . . , fr. Then

hA(fP ) = hAgeo(f)h(P ) +O(1 + h(P )1/2)

where the implied constant may depend on f but not on P .

The next result is an estimate familiar in problems of multiplicative depen-
dence, but we could not find a precise reference. We noted that hAgeo(fg) ≤
hAgeo(f)+hAgeo(g) on Gr

m(F); but we have only hAgeo(f
−1) ≤ rhAgeo(f). It follows

easily that

(2.1) hAgeo(f
b1
1 · · · f

bm
m ) ≤ r(|b1|hAgeo(f1) + · · ·+ |bm|hAgeo(fm))

for b1, . . . , bm in Z; and it extends at once to b1, . . . , bm in Q by raising to a
suitable power.

Given f1, . . . , fm in Gr
m(F) we define their relation group modulo constants

as the set of (a1, . . . , am) in Zm such that fa11 · · · famm is in Gr
m(Q).
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From now on we assume that the value groups of the various ordP in (1.6)
are Z.

Lemma 2.2. Suppose m ≥ 2 and f1, . . . , fm in Gr
m(F) have relation group

modulo constants of rank 1. Then there is a generator (a1, . . . , am) whose
non-zero coordinates satisfy

(2.2) |ai| ≤ (rm)m−1
∏
j 6=i

hAgeo(fj).

Proof. We can more or less imitate the arguments of Lemma 7.19 (p. 222)
of [20] in the situation when Gr

m(F) is replaced by Gm(K) for a number field
K. But we use also ideas from [7] and the “zero height group” (p. 454).

If some fi, say fm, is already in Gr
m(Q) then the others cannot be, and then

(0, . . . , 0, 1) is the required generator because 1 ≤ hAgeo(f1) · · ·hAgeo(fm−1). So

we can assume that none of the fi are in Gr
m(Q).

Next by induction onm we can suppose that there is a generator (a1, . . . , am)
with all coordinates non-zero.

Now θ = fa11 · · · famm is in Gr
m(Q). In particular am 6= 0 and we can suppose

am ≥ 1. We use Minkowski’s First Theorem to find q, p1, . . . , pm in Z, not
all zero, such that∣∣∣∣q aiam − pi

∣∣∣∣ < ci (i = 1, . . . ,m− 1), |q| ≤ cm

provided the positive real numbers c1, . . . , cm−1, cm satisfy

(2.3) ci ≤ 1 (i = 1, . . . ,m− 1), c1 · · · cm−1cm = 1.

Then ri = qai − piam has |ri| < amci (i = 1, . . . ,m− 1). Now

θq = fa1q1 · · · famqm = f r1+p1am1 · · · f rm−1+pm−1am
m−1 famqm

so that β = fp11 · · · f
pm−1

m−1 f qm satisfies βam = θqf−r11 · · · f−rm−1

m−1 . Thus by (2.1)

amh
A
geo(β) ≤ r(|r1|h1 + · · ·+ |rm−1|hm−1) < ram(c1h1 + · · ·+ cm−1hm−1)

where hi = hAgeo(fi) ≥ 1 by our assumption about proper subsets.
We choose

ci =
1

r(m− 1)hi
(i = 1, . . . ,m− 1)

and then cm = (r(m − 1))m−1h1 · · ·hm−1 in accordance with (2.3). We get
hAgeo(β) < 1 so β lies in Gr

m(Q).
Because of the generator property, there is an integer k 6= 0 such that

(p1, . . . , pm−1, q) = k(a1, . . . , am−1, am).

We deduce

|am| ≤ |kam| = |q| ≤ cm = (r(m− 1))m−1h1 · · ·hm−1,
in accordance with (2.2) for i = m. The other inequalities follow by sym-
metry. �

We now prove a Northcott Finiteness Property for hAgeo on Γ (of course it

does not hold on the full Gr
m(F), due to Gr

m(Q) and zero height). It may be
useful in other contexts to use a property weaker than constant-free (which
however is not homomorphism stable).
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Lemma 2.3. Suppose Γ in Gr
m(F) is finitely generated with

(2.4) Γ ∩Gr
m(Q) = Γtor.

(a) For any γ1, . . . ,γn in Γ which are multiplicatively independent there is
a constant c = c(γ1, . . . ,γn) > 0 such that

(2.5) hAgeo(γ
a1
1 · · ·γ

an
n ) ≥ cmax{|a1|, . . . , |an|}

for any (a1, . . . , an) in Zn.
(b) For any real N there are at most finitely many γ in Γ with hAgeo(γ) ≤ N .

Proof. We remark straightaway that because of (2.4) multiplicative depen-
dence in Γ is the same as multiplicative dependence modulo Gr

m(Q).
For (a) we can assume that a1, . . . , an are not all zero; and by induction

that they are all not zero. We apply Lemma 2.2 to γ0,γ1, . . . ,γn with

γ0 = γa11 · · ·γann . No n of these are dependent; for example if γb00 γ
b1
1 · · ·γ

bn−1

n−1
is in Gr

m(Q) then our hypothesis (2.4) would show that it is torsion. Then
eliminating γ0 would give anb0 = 0. Here b0 = 0 is impossible and an = 0
has been excluded. Clearly (−1, a1, . . . , an) is a generator in the sense of
Lemma 2.2, and we deduce that

|ai| ≤ (rn)n+1hAgeo(γ0)
∏
j 6=i

hAgeo(γj) (i = 1, . . . , n).

This is a more explicit version of (2.5).
For (b) we simply apply (a) to basis elements of Γ/Γtors, so that γ =

µγa11 · · ·γann for torsion µ. We deduce that the exponents are bounded in
terms of N (and Γ), and the result follows. �

3. Proof of Theorem 1.5. I. Large γ.

In this section we prove that there exists C = C(C,Γ,λ) such that the
height of points P ∈ C(Q) such that, for some γ ∈ Γdiv with

(3.1) hAgeo(γ) > C

the value γP is defined and satisfies (1.9) with non-vanishing subsums is
bounded above. Thus there is no need for H and η as in (1.10). The proof
follows closely the pattern of the deduction of [2, Proposition 6.1, p. 2639]
from [2, Theorem 1.5, p. 2603] (see [2, p. 2639–2640]). Note that in the
present situation the full property of constant-free is not needed, only (2.4)
suffices.

For the reader’s convenience, we recall the statement of [2, Theorem 1.5],
in a non-homogeneous version which is more convenient for us.

Theorem 3.1. Let r ≥ 1 and f1, . . . , fr ∈ F be non-zero rational functions
such that fi is non-constant for some i. Then there exists a positive real
number C1 depending only on f1, . . . , fr, having the following properties. Let
α = (α1, . . . , αr) ∈ Gr

m(Q). Consider, for a natural number n, a solution
P ∈ C(Q) of the equation

(3.2) α1f1(P )n + · · ·+ αrfr(P )n = 1.
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Then, if n ≥ C1 and if there are no vanishing subsums, we have

(3.3) h(P ) ≤ r + 1

n
hA(α1, . . . , αr) + C1.

To deduce Theorem 3.1 from [2, Theorem 1.5, p. 2603], we replace therein
r by r + 1, Γ by Γ× {1} and we take αr+1 = −1, fr+1 = 1.

Write Γ = Γtors ⊕ Γfree and 1 = (1, . . . , 1). Let f ∈ Γfree be constant.
Then f ∈ Γ∩Gr

m(Q) = Γtors by (2.4). Since Γfree∩Γtors = {1} we get f = 1.
Thus

(3.4) f ∈ Γfree\{1} =⇒ fi /∈ Q for some i.

Since Γfree is finitely generated and torsion free, it is freely generated by,
say, a1, . . . ,aκ.

Let γ ∈ Γdiv of sufficiently large height such that the value γP is defined
and satisfies (1.9). We write

γ = ωaλ11 · · ·a
λκ
κ .

for some (uncontrolled) torsion ω and λ1, . . . , λκ ∈ Q. Generally let r1, . . . , rκ ∈
Q. Since hA(x) ≤

∑
hA(xi) and hA(xν) = |ν|hA(x), applying Lemma 2.1

with r = 1 and f1 = aji we get

(3.5) hA((ar11 · · ·a
rκ
κ )P ) ≤

∑
i,j

|rj |h
(
(aji)P

)
≤ c1(max |rj |)h(P )

(assuming h(P ) ≥ 1 as we may), where c1 depends only on a1, . . . ,aκ. We
set

(3.6) Q := [4(r + 1)c1] + 1.

Let A := maxj |λj |. By Dirichlet’s Theorem on simultaneous approximation
(or Minkowski as in the proof of Lemma 2.2), there exists a positive integer
q ≤ Qκ and integers pj such that∣∣∣∣qλjA − pj

∣∣∣∣ < 1

Q

for j = 1, . . . , κ. Let n = [A/q] + 1. We set rj = λj − npj and

ρ =
κ∏
j=1

a
rj
j ∈ Γdiv, f =

κ∏
j=1

a
pj
j ∈ Γfree.

Let α′ = αωρP . Since γ = ωρfn, equation (1.9) takes the shape (3.2), with
α replaced by α′ therein.

By definition of A there is an index j0 such that λj0 = ±A and thus
pj0 = ±q 6= 0. Since a1, . . . ,aκ is a basis of Γfree we have f 6= 1. By (3.4), fi
is non-constant for some i. This is one of the conditions we need to apply
Theorem 3.1. We still need to show that n ≥ C1 where C1 = C1(f) is the
constant appearing in Theorem 3.1.

We have

(3.7) |pj | ≤
∣∣∣∣qλjA

∣∣∣∣+
1

Q
≤ q +

1

Q
≤ 2Qκ.
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Thus, f1, . . . , fr belong to a finite set, depending only on Γ. Moreover

(3.8) |rj | =
∣∣∣∣Aq
(
q
λj
A
− pj

)
−
(
n− A

q

)
pj

∣∣∣∣ ≤ n

Q
+ 2Qκ.

So by (3.5) we have
(3.9)

hA(α′) = hA(αωρP ) ≤ hA(α) + hA(ρP ) ≤ hA(α) + c1

(
n

Q
+ 2Qκ

)
h(P ).

Let C1 = C1(f) be the constant appearing in Theorem 3.1. This constant
depends on the rational functions fi, which by (3.6) and (3.7) belong to a
finite set, depending in turn only on Γ. Thus C1 ≤ c2 where now c2 depends
only on Γ. We choose

C = C(C,Γ) = rκQκ max(c2, 8(r + 1)c1Q
κ)
∑
j

hAgeo(aj).

By assumption (3.1) and (2.1)

C ≤ hAgeo(γ) = hAgeo(a
λ1
1 · · ·a

λκ
κ ) ≤ rκmax

j
|λj |

∑
j

hAgeo(aj).

Thus A = maxj |λj | ≥ Qκ max(c2, 8(r + 1)c1Q
κ). Since q ≤ Qκ, we then

have

(3.10) n = [A/q] + 1 ≥ A/Qκ ≥ max(c2, 8(r + 1)c1Q
κ).

In particular, n ≥ c2 ≥ C1. Now all the hypotheses of Theorem 3.1 are
fulfilled. By (3.3) of this theorem and by the inequalities (3.9), Q ≥ 4(r+1)c1
(compare (3.6) above) and n ≥ 8(r + 1)c1Q

κ (compare (3.10) above),

h(P ) ≤ r + 1

n
hA(α′) + C1

≤ r + 1

n
hA(α) + (r + 1)c1

(
1

Q
+

2Qκ

n

)
h(P ) + c2

≤ r + 1

n
hA(α) +

h(P )

2
+ c2.

Thus h(P ) ≤ 2(r+ 1)hA(α) + 2c2. This concludes the proof of Theorem 1.5
when the height of γ is large.

4. Functional results.

In order to prove Theorem 1.5 for the elements γ ∈ Γdiv of small geometric
height, we need first some auxiliary results.

Recall that F = Q(C) is the function field of a curve C. The following
observation is the analogue in function fields of [1, Lemma 3.2, p. 606] and
of a result of Rémond (see [15, Lemma 2.1, p. 3]). In it we shall have to
leave the safety of Gr

m(F) for its affine closure Fr (for us an unfamilar step).
Here products (but not inverses) are still well-defined.

Lemma 4.1. Let Γ be a finitely generated constant-free subgroup of Gr
m(F).

Then there are effective C2 = C2(C,Γ) > 0 and an effective integer n =
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n(C,Γ) ≥ 1 with the following property. Suppose w ∈ Fr and v ∈ Γdiv are
such that hAgeo(wv−1) < C−12 . Then

(4.1) wn ∈ Qr
Γ.

Proof. Suppose first that w is in Gr
m(F). With a1, . . . ,aκ as basis elements

for the free part of Γ, there are integers q ≥ 1, b1, . . . bκ with vq = ab11 · · ·abκκ .
Write u = wv−1 and t = uq ∈ Gr

m(F), so that

(4.2) tw−qab11 · · ·a
bκ
κ = 1.

Thus the relation group modulo constants of t,w,a1, . . . ,aκ has rank ρ ≥ 1.
If ρ = 1 then (4.2) must correspond to a generator because there is an

exponent 1. As q ≥ 1 we get from Lemma 2.2

(4.3) q ≤ (r(κ+ 2))κ+1hAgeo(t)h
A
geo(a1) · · ·hAgeo(aκ).

As hAgeo(t) = qhAgeo(u) we deduce hAgeo(u) ≥ C−12 for

C2 = (r(κ+ 2))κ+1hAgeo(a1) · · ·hAgeo(aκ).

This contradicts a hypothesis; and it follows that ρ ≥ 2.
So we can eliminate t from the relations to see that w,a1, . . . ,aκ are mul-

tiplicatively dependent modulo constants. So the rank of this new relation
group modulo constants is at least 1. But it cannot be bigger, otherwise
the further elimination of w would show that a1, . . . ,aκ are multiplicatively
dependent modulo constants. However we have already noted that this is
equivalent to plain multiplicative dependence in the constant-free Γ.

So the new rank is 1. A generator (n, c1, . . . , cκ) must have n 6= 0, and
Lemma 2.2 shows that

|n| ≤ (r(κ+ 1))κhAgeo(a1) · · ·hAgeo(aκ).

We can suppose n ≥ 1, and this gives wn ∈ Gr
m(Q)Γ slightly stronger than

required.
We now proceed by induction on r. If w = (w1, . . . , wr) is not in Gr

m(F)
then some coordinates are zero. Say for simplicity that wr = 0 but no others.
We project to Gr−1

m to get w′ = (w1, . . . , wr−1) and also Γ′ in Gr−1
m (F) and v′

in Γ′div. Note that Γ′ is also constant-free. Then hAgeo(w
′v′−1) = hAgeo(wv−1)

and so if this is small as above, then w′n ∈ Gr−1
m (Q)Γ′ for some n ≥ 1

bounded as above. Thus w′n = (θ1, . . . , θr−1)γ
′ for some θ1, . . . , θr−1 in Q∗

and γ′ = (γ1, . . . , γr−1) in Γ′. There is γr in F with γ = (γ1, . . . , γr−1, γr) in

Γ, and now finally wn = (θ1, . . . , θr−1, 0)γ is in Qr
Γ as required. �

We define a projective geometric height hgeo on Fr+1 \ {0} by

(4.4) hgeo(f) = −
∑
P

min{ordP (f1), . . . , ordP (fr), ordP (fr+1)} ≥ 0

for f = (f1, . . . , fr, fr+1); and then extend to Fr+1 \ {0}. Note that for

f ∈ Fr+1
with fr+1 = 1 we have

hgeo(f) = hAgeo(f) = hAgeo(f1, . . . , fr).
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Thus for x, y ∈ Gr+1
m ∩ {xr+1 = 1} we also have, by definition (1.7) and by

the remark that follows it,

(4.5) dist(x,y) ≤ rhAgeo(xy−1) = rhgeo(xy
−1).

Given a non-zero vector x ∈ Fr+1
we consider the r-dimensional F-vector

space x⊥ in Fr+1
of vectors g orthogonal to x, that is, g.x = 0.

Lemma 4.2. Let Γ1 ⊂ {xr+1 = 1} be a finitely generated constant-free

subgroup of Gr+1
m (F). Let v ∈ (Q∗)r+1Γdiv

1 ∩{xr+1 = 1}, g ∈ v⊥ with g ∈ Fr

non-zero, and consider the vector space U ⊆ Fr+1
spanned over F by the

conjugates (gv)σ for σ ∈ Gal(F/F). Then Uv−1 is a subspace of v⊥ with a
basis of vectors of height hgeo(g).

Moreover, if hgeo(g) < C−13 for some C3 = C3(C,Γ1) ≥ 1, there exist

n = n(C,Γ1) ∈ N and η ∈ Γ
1/n
1 ∩ {xr+1 = 1} with

dist(η,v) ≤ C3hgeo(g)

such that Uη−1 is defined1 over Q.

Proof. Write for simplicity u = gv. We prove the first assertion. We have

u.1 = u.(v−1v) = (uv−1).v = g.v = 0

with u = (1, . . . , 1). Thus also

0 = (u.1)σ = uσ.1 = uσ.(v−1v) = (uσv−1).v

so uσv−1 ∈ v⊥.
Also there is a positive integer q with vq ∈ (Q∗)r+1Γ. Thus vσ = ζσv for

torsion ζσ. Therefore

uσv−1 = (gv)σv−1 = gσ(vσv−1) = gσζσ

has height hgeo(g); and a basis of Uv−1 can be selected from these as as-
serted.

We now prove the second assertion. We assume hgeo(g) < C−13 for C3 to

be determined shortly. Let d be the F-dimension of U . Note that d ≥ 1 since
g is non-zero and d ≤ r since Uv−1 is a subspace of v⊥. It is easy to see
that this is the F-dimension of the space spanned over F by the coordinates
of u and that U has a F-basis in Fr+1, consisting of say u(1), . . . ,u(d).

Given a multi-index i = (i1, . . . , id) with 1 ≤ i1 < · · · < id ≤ r + 1, let

wi =

∣∣∣∣∣∣∣∣
u
(1)
i1
· · · u

(1)
id

...
...

...

u
(d)
i1
· · · u

(d)
id

∣∣∣∣∣∣∣∣ ∈ F

formed with the coordinates of this basis (of course we are speaking of

grassmannians and wedge products). Let w = (wi)i ∈ FR with R =
(
r+1
d

)
.

Note that w 6= 0, since d = dimU . Without loss of generality we can assume
wR 6= 0 (in a suitable ordering). We consider the height hgeo on a subspace

1That is, it has a basis of vectors in Qr, or equivalently a set of defining linear equations
over Q.
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of Fr+1
, namely the projective, geometric height of the exterior product of

any basis of the subspace, see definition in [17, Chapter 1, §8, p. 28] for more
details. Then for every x ∈ Gr+1

m (F)

(4.6) hgeo(Ux) = hgeo(wΦ(x)),

where Φ = Φd is the homomorphism from Gr+1
m to GR

m defined by

Φ(x1, . . . , xr+1) = (xi1 · · ·xid)i.
In particular, hgeo(U) = hgeo(w) and hgeo(Uv−1) = hgeo(wv′−1) with v′ =
Φ(v). Moreover, since Uv−1 has a basis of vectors of height hgeo(g) by the
first assertion of this lemma,

(4.7) hgeo(wv′−1) = hgeo(Uv−1) ≤ dhgeo(g) ≤ rhgeo(g).

We pause to note that

(4.8) hgeo(x) ≤ rhgeo(Φ(x))

for x = (x1, . . . , xr+1) in Gr+1
m (F); for example

hAgeo(x1/x2) = hAgeo((x1x3 · · ·xd+1)/(x2x3 · · ·xd+1))

= hgeo(x1x3 · · ·xd+1, x2x3 · · ·xd+1) ≤ H

for H = hgeo(Φ(x)). Similarly for any xi/xj . Thus

hgeo(x) = hAgeo(x1/xr+1, . . . , xr/xr+1)

≤ hAgeo(x1/xr+1) + · · ·+ hAgeo(xr/xr+1) ≤ rH,

giving (4.8).
We want to apply Lemma 4.1 to a suitable subgroup of GR

m. By assump-

tion, there exists α ∈ (Q∗)r+1 such that α−1v ∈ Γdiv. Thus Φ(α−1)v′ =
Φ(α−1v) ∈ Φ(Γdiv

1 ) = Φ(Γ1)
div. We de-homogenize taking the map ψ from

FR\{xR 6= 0} to FR defined by ψ(y1, . . . , yR) = (y1/yR, . . . , yR−1/yR, 1). We

let Γ̃ = Γ̃d = (ψ ◦Φ)(Γ1), also finitely generated and constant-free. We also
define

w̃ = ψ(Φ(α)w) ∈ FR, and ṽ = ψ(Φ(α−1)v′) ∈ Γ̃div.

(remember that wR 6= 0). By assumption hgeo(g) < C−13 . If C3 ≥ rC2(C, Γ̃),
then by (4.7),

hAgeo(w̃ṽ−1) = hgeo(Φ(α)w · Φ(α−1)v′) = hgeo(wv′−1) < C2(C, Γ̃)−1.

By Lemma 4.1, w̃n ∈ QR
Γ̃ for some integer n = n(C, Γ̃) ≥ 1. Since Φ(α) ∈

(Q∗)R, this gives, after (slowly) re-homogenizing,

wn ∈ F∗QR
Φ(Γ1).

Since Γ1 ⊂ {xr+1 = 1} there is η ∈ Γ
1/n
1 ∩ {xr+1 = 1} such that

(4.9) (wΦ(η−1))n ∈ F∗QR
.

Taking powers, we can replace n by n(C,Γ1) = lcm1≤d≤r n(C, Γ̃d); and simi-

larly we can assume C3 ≥ rmax1≤d≤r C2(C, Γ̃d). By (4.6) and (4.9),

hgeo(Uη
−1) = hgeo(wΦ(η−1)) = 0
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which shows that Uη−1 is defined over Q. Moreover, again by (4.9) and
by (4.7),

hgeo(Φ(η)v′−1) = hgeo(wv′−1) ≤ rhgeo(g).

Hence, by (4.5) and (4.8) we get

dist(η,v) ≤ rhgeo(ηv−1) ≤ r2hgeo(Φ(ηv−1)) = r2hgeo(Φ(η)v′−1)

≤ r3hgeo(g).

�

Let v ∈ Fr+1 ∩ {xr+1 = 1}. We consider the successive infima

µ1 ≤ µ2 ≤ · · · ≤ µr
of hgeo on v⊥. The next proposition contains some useful information on

these infima, when v ∈ (Q∗)r+1Γdiv
1 ∩ {xr+1 = 1} for some finitely gener-

ated constant-free subgroup Γ1 of Gr+1
m (F) ∩ {xr+1 = 1}. To simplify the

statement and the proof, we assume that the µi are attained. Given a k-
vector space V and v1, . . . , vl ∈ V we define as usual Spank(v1, . . . , vl) as
the k-vector subspace spanned by v1, . . . , vl.

Lemma 4.3. Let Γ1 ⊂ {xr+1 = 1} be a finitely generated constant-free
subgroup of Gr+1

m (F). Let

v ∈ (Q∗)r+1Γdiv
1 ∩ {xr+1 = 1}.

Denote by µ1 ≤ µ2 ≤ · · · ≤ µr the successive infima of hgeo on v⊥. Then

there exists a basis g(1), . . . ,g(r) of v⊥ with hgeo(g
(i)) = µi and integers

0 = d0 < d1 < · · · < dk = r such that

(4.10) µ1 = · · · = µd1 ≤ µd1+1 = · · · = µd2 ≤ · · ·
≤ µdk−1+1 = · · · = µdk = µr

with the following properties. Let C3 = C3(C,Γ1) and n = n(C,Γ1) ∈ N as
in Lemma 4.2. If for some j with 1 ≤ j ≤ k we have

µdj−1+1 < (2nC3)
−1,

then there exists η ∈ Γ
1/n
1 with dist(η,v) ≤ C3µdj−1+1 such that

SpanF(g(1), . . . ,g(dj))vη−1

is defined over Q.

Proof. We first construct a basis g(i) of v⊥ and integers dj satisfying (4.10),
such that the following additional assertion is satisfied.

(1) For j = 1, . . . , k, let U (j) be the vector space spanned by (g(dl)v)σ for

l = 1, . . . , j and σ ∈ Gal(F/F). Then SpanF(g(1), . . . ,g(dj)) = U (j)v−1.

Let g(1) ∈ v⊥ realize the first minimum and let U (1) be the vector space
spanned by (g(1)v)σ. We denote by d1 its dimension. By the first as-

sertion of Lemma 4.2, U (1)v−1 is a subspace of v⊥ and there exists a F-
basis g(1), . . . ,g(d1) of U (1)v−1 consisting of vectors of height µ1. Thus
µ1 = · · · = µd1 .

If d1 = r we have finished with (1). Otherwise, let g(d1+1) realize µd1+1

and let U be the vector space spanned by the (g(d1+1)v)σ (σ ∈ Gal(F/F)).
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By the first assertion of Lemma 4.2, Uv−1 is a subspace of v⊥ and there
exists a F-basis of Uv−1 consisting of vectors of height µd1+1. Let U (2) =

U (1) + U and d2 = dim(U (2)). Thus we can complete g(1), . . . ,g(d1) to

a basis of U (2)v−1 with vectors g(d1+1), . . . ,g(d2) of height µd1+1. Hence
µd1+1 = · · · = µd2 .

Continuing in this way we define integers 0 = d0 < d1 < · · · < dk = r and
a basis g(1), . . . ,g(r) satisfying (1).

We now prove

(2) If µ1 < C−13 , there exists η ∈ Γ
1/n
1 with dist(η,v) ≤ C3µ1 such that

SpanF(g(1), . . . ,g(d1))vη−1 is defined over Q.
(3) Let us assume µdj−1+1 < (2nC3)

−1 for some j with 2 ≤ j ≤ k. Let η as

in (2) 2. Then SpanF(g(1), . . . ,g(dj))vη−1 is defined over Q.

which clearly imply our claim.
To prove (2) we simply use (1) with j = 1 and the second part of

Lemma 4.2. By this lemma there exists η ∈ Γ
1/n
1 with

dist(η,v) ≤ C3hgeo(g
(1)) = C3µ1

such that U (1)η−1 = SpanF(g(1), . . . ,g(d1))vη−1 is defined over Q.

Let us now prove (3) when j = 2. Let, as in proof of (1), U be the

vector space spanned by (g(d1+1)v)σ so that U (2) = U (1) + U by (1) with
i = 1. Let us assume µd1+1 < (2nC3)

−1. Thus µ1 ≤ µd1+1 < C−13 and, by

(2) and (1) with i = 1, there exists η ∈ Γ
1/n
1 with dist(η,v) ≤ C3µ1 such

that U (1)η−1 is defined over Q. By Lemma 4.2 there exists η′ ∈ Γ
1/n
1 with

dist(η′,v) ≤ C3hgeo(g
(d1+1)) = C3µd1+1 such that Uη′−1 is defined over Q.

The triangular inequality gives

dist(η′,η) ≤ dist(η′,v) + dist(v,η) ≤ C3µd1+1 + C3µ1 ≤ 2C3µd1+1 <
1

n
.

On the other hand, by the remark which follows (1.7),

dist(η′,η) ≥ hAgeo(η′η−1) ∈
1

n
Z,

since (η′)n, ηn ∈ Γ1 ⊂ Gr+1
m (F). Thus dist(η′,η) = 0 and η′η−1 ∈ Qr+1

.

Therefore also Uη−1 is defined over Q. Since U (1)η−1 is again defined over Q
and U (2) = U (1) +U , we deduce that U (2)η−1 = SpanF(g(1), . . . ,g(d2))vη−1

is defined over Q. Thus does j = 2. The proof of (3) when j > 2 follows the
same lines. �

We also need the following lemma.

Lemma 4.4. Let U be a F-vector subspace of Fr+1
with basis u(1), . . . ,u(d)

on which x1 + · · · + xr+1 = 0. Let Γ1 ⊂ {xr+1 = 1} be a finitely generated
subgroup of Gr+1

m (F). We assume Uψ−1 defined over Q for some ψ ∈ Γdiv
1 ∩

{xr+1 = 1} so that the specialization UP is defined as Uψ−1ψP .

2By assumption µ1 ≤ µdj−1+1 < C−1
3 , which is the condition we need to apply (2).
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Then for all P ∈ C with at most finitely many exceptions, UP (Q) has a

Q-basis u
(1)
P , . . . ,u

(d)
P .

Further, if φ ∈ Qr+1
Γdiv
1 ∩ {xr+1 = 1} is such that φP ∈ UP , then

(φPψ
−1
P ).ψ = 0.

Proof. The first part is standard reduction theory. As for the second part,

the space Uψ−1 is defined by equations of the form a.x = 0 for a ∈ Qr+1
. So

U is defined by the (aψ−1).x = 0. Thus UP is defined by the (aψ−1P ).x = 0.
Therefore

0 = (aψ−1P ).φP = a.(ψ−1P φP )

showing that ψ−1P φP ∈ Uψ
−1 so u = ψ−1P φPψ ∈ U . Now

0 = u.1 = (ψ−1P φPψ).1 = (φPψ
−1
P ).ψ

as required. �

5. Proof of Theorem 1.5. II. Small γ.

In this section we prove Theorem 1.5, assuming further that γ ∈ Γdiv

satisfies hAgeo(γ) ≤ C for some C = C(C,Γ). We shall introduce along the
proof constants c1, . . . , c5 ≥ 1 depending only on C, Γ, α and ε (but not on
γ).

Instead of proving that η lies in the set H, we will show that it lies in
a subgroup Γ1/n of Γdiv consisting of all ζ with ζn in Γ. Here the positive
integer n = n(C,Γ) will be effective. As hAgeo(γ) ≤ C and dist(η, γ) < ε < 1

we deduce hAgeo(η
n) ≤ n(C + 1). So by Lemma 2.3 (b) there are at most

finitely possibilities for ηn and therefore also η itself, thus yielding our H.
Let P ∈ C(Q), such that the value γP is defined and lies in V . We

homogenize replacing Γ with Γ1 = Γ×{1} and γ by (γ, 1) ∈ Γdiv ∩{xr+1 =
1}. Then, after changing the signs of the coefficients αi in (1.9), this equation
reads

(5.1) α.γP = α1(γ1)P + · · ·+ αr(γr)P + αr+1(γr+1)P = 0.

with αr+1 = 1 so α gets replaced by (α, 1). Given a ∈ Γ1 and λ ∈ Q, we
choose from now on aλ ∈ Γdiv

1 ∩ {xr+1 = 1}.
We write Γ1 = Γtors⊕Γfree where Γfree is freely generated by, say, a1, . . . ,aκ ∈

Gr+1
m ∩ {xr+1 = 1}. We have

(5.2) c−11 max |rj | ≤ hAgeo(a
r1
1 · · ·a

rκ
κ ) ≤ c1 max |rj |

where the second inequality is trivial and the first is Lemma 2.3. Since
hA(x) ≤

∑
hA(xi) and hA(xr) = |r|hA(x), applying Lemma 2.1 with r = 1

and f1 = aji we get

(5.3) hA((ar11 · · ·a
rκ
κ )P ) ≤

∑
i,j

|rj |h
(
(aji)P

)
≤ c2(max |rj |)h(P )

(assuming h(P ) ≥ 1 as we may). We write

γ = ωaλ11 · · ·a
λκ
κ .
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where ω ∈ (Q∗tors)r+1 ∩ {xr+1 = 1} and λ1, . . . , λκ ∈ Q. Since hAgeo(γ) ≤ C,
by the lower bound in (5.2) we have

(5.4) |λj | ≤ c1C, j = 1, . . . , κ.

Let q ∈ N and p1, . . . , pκ ∈ Z defined by

(5.5) q := 1 + [(4nc2C3 + rc1)/ε], pj := [qλj ]

where C3 = C3(C,Γ1) and n = n(C,Γ1) are as in Lemma 4.2. Thus

(5.6)

∣∣∣∣λj − pj
q

∣∣∣∣ < 1

q
for i = 1, . . . , κ.

We consider the vector

v = αa
p1/q
1 · · ·apκ/qκ ∈ (Q∗)r+1Γdiv

1 ∩ {xr+1 = 1}.

By (5.5) and (5.4) we have

q ≤ 1 + (4nc2C3 + rc1)/ε,

|pj | ≤ q|λj |+ 1 ≤ (1 + (4nc2C3 + rc1)/ε)c1C + 1, j = 1, . . . , κ.

Thus v belongs to a finite set depending only on C, Γ, ε and α. By (4.5),
by the upper bound in (5.2) and by (5.6),

(5.7) dist(v,γ) ≤ rhAgeo(vγ−1) = rhAgeo
(
a
p1/q−λ1
1 · · ·apκ/q−λκκ

)
≤ rc1/q.

We denote by µ1 ≤ µ2 ≤ · · · ≤ µr the successive infima of hgeo on v⊥. By [16,

Theorem 2.2], µ1 + · · · + µr ≤ hgeo(v
⊥). On the other hand a standard

argument shows that we have indeed equality. Moreover, by well-known
facts on the height of subspaces (see [17, §8, p. 28]), hgeo(v

⊥) = hgeo(v).
Thus

(5.8) µ1 + µ2 + · · ·+ µr = hgeo(v).

To simplify the proof, we assume from now on that the µi are attained.
Then Lemma 4.3 gives us integers 0 = d0 < d1 < · · · < dk = r and a F-basis
g(1), . . . ,g(r) of v⊥ such that hgeo(g

(i)) = µi. The g(1), . . . ,g(r) belong to a
finite set depending only on C, Γ, ε and α. They are linearly independent
over F. It is easy to see that outside a finite set of P in C(Q) (depending

only on C, Γ, ε and α), their specializations g
(1)
P , . . . ,g

(r)
P remain linearly

independent over Q (for example consider maximal minors of the matrix of
coordinates). Similarly vP 6= 0, so v⊥P remains of dimension r over Q. So

g
(1)
P , . . . ,g

(r)
P are a Q-basis for v⊥P . Let

β = ω
(
a
λ1−p1/q
1 · · ·aλκ−pκ/qκ

)
P
∈ Qr+1 ∩ {xr+1 = 1}.

By the upper bound in (5.3) and by (5.6),

(5.9) hA(β) ≤ c2 max
j

∣∣∣∣λj − pj
q

∣∣∣∣h(P ) ≤ c2
q
h(P ).

Note that

(5.10) βvP = αγP ,
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hence β.vP = α.γP = 0 by (5.1). Thus β is a (non-zero) vector in v⊥P . We

get a basis of v⊥P from β,g
(1)
P , . . . ,g

(r)
P by discarding a vector g

(i)
P for some

i ∈ {1, . . . , r}. More precisely, let3

(5.11) j′ = largest integer 0 ≤ j ≤ k s.t. β 6∈ SpanQ(g
(1)
P , . . . ,g

(dj)
P ).

Note that j′ is well-defined and < k since β is a non-zero vector in v⊥P .

By (5.11) we get a basis from β,g
(1)
P , . . . ,g

(r)
P by discarding a vector g

(i′)
P for

some i′ with

(5.12) dj′ + 1 ≤ i′ ≤ r.

We now denote by h and h2 the projective height on Qr+1
defined on choos-

ing respectively the L∞ and the L2-norm at the infinite places. We also
denote by the same letter h2 the height on Q-subspaces (see [17, §8, p. 28]).

Note that h(x) ≤ h2(x) ≤ h(x)+ 1
2 log(r+1) for x ∈ Qr+1

and h(x) = hA(x)
if moreover xr+1 = 1. By well-known facts (see again [17, §8, p. 28])

(5.13)

h(vP ) ≤ h2(vP ) = h2(SpanQ(vP ))

= h2(v
⊥
P )

≤ h2(β) +
∑
j 6=i′

h2(g
(j)
P )

≤ hA(β) +
∑
j 6=i′

h(g
(j)
P ) + c3.

By the projective version of Lemma 2.1 and taking into account that g(j)

belongs to a finite set depending only on C, Γ, ε and α, we find

h(g
(i)
P ) ≤ hgeo(g(i))h(P ) + c4(1 + h(P )1/2)

= µih(P ) + c4(1 + h(P )1/2)

for i = 1, . . . , r. Thus, by (5.8),∑
i 6=i′

h(g
(i)
P ) ≤ (hgeo(v)− µi′)h(P ) + rc4(1 + h(P )1/2).

Inserting (5.9) and this last inequality in (5.13) we get

h(vP ) ≤
(
c2
q

+ hgeo(v)− µi′
)
h(P ) + rc4(1 + h(P )1/2).

On the other hand, again by the projective version of Lemma 2.1 and since
v belongs to a finite set depending only on C, Γ, ε and α,

h(vP ) ≥ hgeo(v)h(P )− c5(1 + h(P )1/2).

Comparing the upper bound and the lower bound for hA(vP ) we get:(
µi′ −

c2
q

)
h(P ) ≤ (rc4 + c5)(1 + h(P )1/2).

3With the convention SpanQ(g
(1)
P , . . . ,g

(d0)
P ) = {0}.
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If µi′ ≥ 2c2
q the height of P is uniformly bounded. Thus we can assume

µi′ <
2c2
q
.

Since dj′ + 1 ≤ i′ by (5.12) and since q ≥ 4nc2C3 by (5.5), we have

(5.14) µdj′+1 <
2c2
q
≤ (2nC3)

−1.

Let U = SpanF(g(1), . . . ,g(dj′+1))v. Then U is a non-zero subspace on which
x1 + · · ·+ xr+1 = 0. By Lemma 4.3 (with j = j′ + 1), and by (5.14), there

exists η ∈ Γ
1/n
1 ∩ {xr+1 = 1} with

dist(η,v) ≤ C3µdj′+1 ≤
2c2C3

q

such that Uη−1 is defined over Q. By the triangular inequality and by (5.7),

dist(η,γ) ≤ dist(η,v) + dist(v,γ) ≤ 2c2C3 + rc1
q

.

Since q > (2c2C3 + rc1)/ε (again by (5.5)), we get

dist(η,γ) < ε.

By (5.10) and by definition (5.11) of j′ we have

αγP = βvP ∈ SpanQ(g
(1)
P , . . . ,g

(dj′+1)

P ) · vP .

We shall apply Lemma 4.4 to U with ψ = η. Since all the quantities there
now depend only on C, Γ, ε and α, the space on the right-hand side of the

displayed formula can assumed to be UP . Thus (αγPη
−1
P ).η = 0 in Fr+1

,

which on descending to Fr is what we want in Theorem 1.5. This concludes
the proof for γ of small height.

6. Proofs of Theorems 1.2, 1.3, and 1.4.

As Theorem 1.2 is considerably sharpened in the Appendix A, we shall
present here only a brief deduction of the first assertion of that theorem
from Theorem 1.5. In fact we carry this out for the stronger Theorem 1.3.

As mentioned in the introduction, we take C = A1 and F = Q(t), with
Γ generated by (t, 1), (1, 1 − t), and α = (1, 1). Trivially, we do not have
vanishing subsums. We obtain effective C and an effective finite subset H of
Γdiv such that for P = t0 and γ = (tλ, (1− t)µ), the height h(t0) is bounded
by a function of ε unless hAgeo(γ) ≤ C and there is η ∈ H with

dist(η,γ) < ε, α.(γPη
−1
P η) = 1.

We write η = (ta, (1− t)b) for rational a, b and get the equations

max{|λ|, |µ|} ≤ C, max{|λ−a|, |µ−b|} < ε, tλ−a0 ta+(1−t0)µ−b(1−t)b = 1

identically in t. It is easy to see that there are β1, β2 ∈ Q∗ with β1t
a +

β2(1− t)b = 1 if and only if (a, b) = (0, 0) and β1 + β2 = 1 or (a, b) = (1, 1)
and β1 = β2 = 1. The first case is ruled out because max{|λ|, |µ|} > ε and
in the second case t0 or 1− t0 is a root of unity because (λ, µ) 6= (1, 1).
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This completes the proof of Theorem 1.3 and so of the first part of The-
orem 1.2.

We next show that we do not have uniformly bounded height for the
solutions of tλ+(1−t)λ = 1 when λ→ 0 and even the analogue for Theorem
1.3.

Lemma 6.1. For rational λ > 0, µ > 0 let t0 ∈ Q be a solution of tλ + (1−
t)µ = 1. If tλ0 is not 0, 1, or 1

2 ±
i
2

√
3, then

h(t0) ≥
1

4 max{λ, µ}
log
(1 +

√
5

2

)
− 1

2
log 2.

Proof. Put α = tλ0 . By assumption, α 6= 0, 1, 12 ±
i
2

√
3. By a result of

Zagier [22] (which makes explicit in this very special setting the toric case of
Bogomolov’s conjecture, now a theorem of Zhang [23]), h(α) +h(1−α) ≥ c,
where c = 1

2 log(1+
√
5

2 ) (this constant is best possible). We have h(α) =
λh(t0), h(1 − α) = µh(1 − t0) and h(1 − t0) ≤ h(t0) + log 2. Putting all
together we get the desired result. �

Note that such t0 really do exist. To see this we observe that for any
positive integer n there is a polynomial Pn(t) which for any s1, s2 with
sn1 = t, sn2 = 1 − t is the product of ω1s1 + ω2s2 − 1 over all roots of unity
ω1, ω2 of order dividing n. We take any n divisible by 6, and using the
Puiseux expansions

s1 = t1/n, s2 = ζ(t− 1)1/n = ζ(t1/n + · · · ) (ζ = eπi/n)

at t = ∞ we check that Pn has degree n2/n = n (note that ω1 + ζω2 6= 0

because Euler’s φ(2n) = 2φ(n) > φ(n)). And using s1 = t1/n, s2 = 1 + · · ·
at t = 0 we check that ordt=0Pn = 1; and similarly ordt=1Pn = 1.

Thus Pn has a zero t0 6= 0, 1, which is then a solution of tλ + (1− t)µ = 1
for λ = µ = 1/n. And tλ0 cannot be 1 or a sixth root of unity 1

2 ±
i
2

√
3

because t0 6= 1. So t0 is as in Lemma 6.1. And if n varies we see from the
lower bound there that we get infinitely many t0 in this way.

It may be interesting to note that if we choose this n such that the lower
bound is bigger than log 216 in (1.2), then the resulting t0 cannot satisfy
tm + (1− t)m = 1 for any integer m ≥ 2 (compare (1.12) and (1.13)).

Now we turn to Theorem 1.4. If we have vanishing subsums in tλ0 + (1−
t0)

λ + (1 + t0)
λ = 1, we find easily t0 = ±i which we can exclude. Then a

similar argument leads to bounded h(t0) unless there is a rational a with

λ < C, |λ− a| < ε, tλ−a0 ta + (1− t0)λ−a(1− t)a + (1 + t0)
λ−a(1 + t)a = 1

identically in t. The last now forces a = 0, 1, 2. As above a = 0 is ruled out.
If a = 2 then we must have

tλ−20 = −1, (1− t0)λ−2 =
1

2
, (1 + t0)

λ−2 =
1

2
.

Here λ = 2 is impossible, and then we see again that t0 is a root of unity.
Finally a = 1 leads to the pair

(6.1) tλ−10 − 2(1− t0)λ−1 = −1, tλ−10 + 2(1 + t0)
λ−1 = 1
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with |λ − 1| < ε. We shall show in the Appendix B that these equations
have no solutions. This completes the proof of Theorem 1.4.

We notice that again we do not have uniformly bounded height for the
solutions of tλ + (1− t)λ + (1 + t)λ = 1 when λ→ 0.

Lemma 6.2. For rational λ > 0 let t0 ∈ Q be a solution of tλ + (1− t)λ +
(1 + t)λ = 1. If tλ0 , (1− t0)λ, (1 + t0)

λ are all not 0 or 1, then

h(t0) ≥
1

6λ
log
(1 +

√
5

2

)
− 2

3
log 2.

Proof. Warin obtained the following explicit version of another special case
of Zhang’s result. Namely his Theorem III.1 (p. 23) of [21] says that if α, β, γ

are in Q∗ and all not 1 with α+ β + γ = 1 then

h(α) + h(β) + h(γ) ≥ c

for the same c as above (also here best possible). We take α = tλ0 , β =
(1− t0)λ, γ = (1 + t0)

λ, none of which are 0, 1, and argue as before. �

Also as before we can show that such t0 exist, this time by considering
the product Qn of ω1s1+ω2s2+ω3s3−1, with s1, s2 as above and sn3 = 1+t.
We can check, now for n prime to 6, that Qn has degree n2 (here we use
ω1−ω2+ω3 6= 0). And Qn(0) 6= 0 (here ω2+ω3−1 6= 0) as well as Qn(1) 6= 0

(here ω1+ω32
1/n−1 6= 0 because 21/n has degree n > φ(n)) and Qn(−1) 6= 0

(here −ω1 + ω22
1/n − 1 6= 0 similarly). Thus Qn has a zero t0 6= 0, 1,−1.

For λ = 1/n it follows that tλ0 , (1− t0)λ, (1 + t0)
λ are not 0, 1 and so t0 is as

in Remark 6.2. Again by varying n we get infinitely many t0.

Appendix A. Beukers’ equation with a rational exponent

In this appendix we prove the following theorem which generalizes Theo-
rem 1.2 stated in the introduction.

Theorem A.1. Let α, β be non-zero algebraic numbers and let λ ∈ Q be
positive. Let t0 ∈ Q\{0, 1}. We fix determinations of tλ0 and of (1 − t0)λ.
Let us assume

αtλ0 + β(1− t0)λ = 1

and

(αtλ−10 , β(1− t0)λ−1) 6= (1, 1).

Then

h(t0) ≤ 100 max(1, λ−1) + 121λ−1(h(α) + h(β)).

The special algebraic numbers t0 such that αtλ−10 = β(1 − t0)
λ−1 = 1

trivially satisfy the equation αtλ + β(1 − t)λ = 1. They can be directly
handled as we explain after the proof of the theorem. Thus Theorem 1.2
follows from Theorem A.1; see again the discussion after the proof for details.

Our theorem extends the following result of Beukers and Schlickewei
which deals with even integers λ, and will be deduced from it.
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Theorem A.2 ([5], Lemma 2.3). Let a, b, A, B ∈ Q∗ such that

A+B = 1 and aA2n + bB2n = 1

for some integer n ∈ N. Then4 H(A,B) ≤ 6
√

3 · 21/nH(a, b)1/n.

Proof of Theorem A.1. Let λ > 0 be a rational parameter and let t0 ∈ Q
which satisfies αtλ0 + β(1− t0)λ = 1 and such that

(αtλ−10 , β(1− t0)λ−1) 6= (1, 1).

We shall prove:

(A.1) h(t0) ≤



8λ−1 + 10λ−1(h(α) + h(β)), if λ ≤ 1/6;

100λ−1 + 121λ−1(h(α) + h(β)), if 1/6 ≤ λ ≤ 1;

100 + 20(h(α) + h(β)), if 1 ≤ λ ≤ 6;

8 + 9λ−1(h(α) + h(β)), if λ ≥ 6.

Theorem A.1 follows after a simple computation.

The strategy of the proof of (A.1) is the following. We distinguish three
cases: for λ ≥ 6 we apply Theorem A.2 choosing for n the integer part of
λ/2. For λ ∈ [1, 6) we simply use the relations between roots and coef-
ficients. Finally, we reduce the case λ ∈ (0, 1] to the previous ones by a
duality argument involving exponent 1/λ.

First case: λ ≥ 6. Let n be the integer part of λ/2. By assumption

n ≥ 3. Let a0 = tλ−2n0 , b0 = (1 − t0)λ−2n and a = αa0, b = βb0. Thus
at2n0 + b(1− t0)2n = 1. By Theorem A.2,

H(t0, 1− t0) ≤ 6
√

3 · 21/nH(a, b)1/n

≤ 6
√

3 · 21/nH(α : β : 1)1/nH(a0, b0)
1/n.

Since λ− 2n ≥ 0,

H(a0, b0)
1/n = H(t0, 1− t0)(λ−2n)/n.

Since λ < 2(n+ 1) and n ≥ 3 we have

1− λ− 2n

n
> 1− 2

n
≥ 1

3

and 21/n ≤ 21/3. Thus

H(t0, 1− t0) ≤ (6
√

3 · 21/3)3H(α : β : 1)3/n.

We have 3 log(6
√

3 · 21/3) ≤ 8 and n > λ/2− 1 ≥ λ/3 (since λ ≥ 6). Thus

h(t0) ≤ hA(t0, 1− t0) ≤ 8 + 9λ−1hA(α, β) ≤ 8 + 9λ−1(h(α) + h(β)).

Second case: 1 ≤ λ ≤ 6. Note that we can find a rational p/q with
gcd(p, q) = 1 and q = 1 or q = 2 such that

ε :=
∣∣∣λ− p

q

∣∣∣ ≤ 2

5q2

4We denote by H = exp(h) the affine non-logarithmic Weil’s height.
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(indeed, if the fractional part {λ} is ≤ 0.4 or ≥ 0.6, then the inequality holds
with q = 1; otherwise |{λ} − 1/2| ≤ 0.1 and it holds with q = 2). Since

λ ≥ 1 and ε < 1 we have p 6= 0. Let a0 = t
λ−p/q
0 , b0 = (1 − t0)λ−p/q and

a = αa0, b = βb0. Thus

bat
p/q
0 + b(1− t0)p/q = 1

which means that there exists s0 ∈ Q such that sq0 = t0 and 1 − asp0 =

b(1− sq0)p/q. Taking q powers, we see that s0 is a root of the polynomial

f := (1− asp)q − bq(1− sq)p ∈ Q[s].

Fact. f 6= 0.

Proof. We have

(1− asp)q = 1− qasp + higher terms,

bq(1− sq)p = bq − pbqsq + higher terms.

Assume first (p, q) 6= (1, 1). Since gcd(p, q) = 1 we have p 6= q. We also
recall that p, q ≥ 1. Comparing the two expansions above, we deduce that
bq = 1. Moreover, if q < p then bq = 0, which is clearly impossible. But
a 6= 0 since α 6= 0, a 6= 0. Thus (p, q) = (1, 1) and f = (1 − b) + (b − a)s
which is = 0 if and only if a = b = 1, that is

αtλ−10 = β(1− t0)λ−1 = 1

which we have excluded in our assumption. �

We now recall a classical relation between the height of the roots of a
polynomial and the height of its coefficients. Let K := Q(a, b). Given a place
v of K we denote by Mv(f) the Mahler measure of fσ, if v is archimedean
and corresponds to the immersion σ : K ↪→ Q. If v is non-archimedean, we
let Mv(f) be the maximum of the v-adic absolute values of the coefficients
of f . We then define the normalized height of f as

ĥ(f) =
1

[K : Q]

∑
v

dv logMv(f)

where v runs over the places of K and where dv denote the local degree. It
is well known that ĥ(f) =

∑
s h(s) for s running over the roots of f , counted

with multiplicities. Thus hA(s0) ≤ ĥ(f) and we have to estimate this last
quantity.

Given a non-archimedean place of K we have

Mv(f) ≤ max{|a|v, |b|v, 1}q.

Let now v be an archimedean place, corresponding to the immersion σ : K ↪→
Q. Since the Mahler measure of a polynomial is bounded by the maximum
of the absolute value of the polynomial on the disk of radius 1, we have:

Mv(f) ≤ max
|s|=1
|(1− aσsp)q − (bσ)q(1− sq)p|

≤ (1 + |a|v)q + 2p|b|qv
≤ (2q + 2p) max{|a|v, |b|v, 1}q.
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Thus

ĥ(f) ≤ qhA(a, b) + log(2q + 2p) ≤ q(hA(α, β) + hA(a0, b0) + log(2 + 2p/q)).

By our choices of a0, b0 and ε,

hA(a0, b0) ≤ h(a0) + h(b0) = ε(h(t0) + h(1− t0)) ≤ 2εh(t0) + ε log 2

≤ 4h(t0)

5q2
+

2 log 2

5q2

and p/q ≤ λ+ ε ≤ 7. Thus, taking into account q ≤ 2,

h(t0) = qh(s0) ≤ qĥ(f)

≤ q2(hA(α, β) + hA(a0, b0) + log(2 + 2p/q))

≤ 4h(t0)

5
+

2 log 2

5
+ 4(log(2 + 27) + hA(α, β))

and so

h(t0) ≤ 2 log 2 + 5 · 4(log(2 + 27) + hA(α, β))

≤ 100 + 20(h(α) + h(β)).

Third case: λ ≤ 1. We reduce to the previous two cases. Note that
t′0 = αtλ0 is a solution of

α−λ
−1

(t′0)
λ−1

+ β−λ
−1

(1− t′0)λ
−1

= 1

and

h(t0) = λ−1hA(α−1t′0) ≤ λ−1hA(t′0) + λ−1h(α).

Since λ−1 ≥ 1 the results of the previous cases apply. Suppose first λ ≤ 1/6.
Then λ−1 ≥ 6 and

h(t0) ≤ λ−1h(t′0) + λ−1h(α)

≤ λ−1
(

8 + 9λh(α−λ
−1

) + 9λh(β−λ
−1

)
)

+ λ−1h(α)

≤ λ−1
(
8 + 9h(α) + 9h(β)

)
+ λ−1h(α)

≤ 8λ−1 + 10λ−1(h(α) + h(β)).

Suppose now 1/6 ≤ λ ≤ 1. Then 1 ≤ λ−1 ≤ 6 and

h(t0) ≤ λ−1h(t′0) + λ−1h(α)

≤ λ−1
(
100 + 20h(α−λ

−1
) + 20h(β−λ

−1
)
)

+ λ−1h(α)

≤ 100λ−1 + (20λ−1 + 1)λ−1(h(α) + h(β))

≤ 100λ−1 + 121λ−1(h(α) + h(β)).

�
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We remark that the duality trick which we have used in the third case is
only needed to get a better bound when λ is close to zero. We could indeed
modify the proof in the second case in order to get a result, depending on a
fixed ε ∈ (0, 1], which holds for ε ≤ λ ≤ 1.

As promised, we now study the special algebraic numbers t0 such that

(A.2) αtλ−10 = β(1− t0)λ−1 = 1.

Then t0 trivially satisfies the equation αtλ + β(1− t)λ = 1.
Let us first assume λ = 1. Then (A.2) is satisfied if and only if α = β = 1

and in this case the equation αtλ + β(1− t)λ = 1 becomes trivial. Thus we
do not have bounded height.

Let now suppose λ 6= 1. Since

(A.3) t0 = α−1/(λ−1) and 1− t0 = β−1/(λ−1)

we still have bounded height, but the bound seems to go to infinity as λ→ 1,
unless α, β are both roots of unity. However we have the additional equation

(A.4) α−1/(λ−1) + β−1/(λ−1) = 1

and it may be seen in several way that if α, β are not both roots of unity,
this equation determines at most finitely many values of λ 6= 1 in terms of
α and β.

For example, this is one of the few effective instances of the Skolem-
Mahler-Lech Theorem, which follows from linear forms in logarithms com-
bining [13, Theorem 1, p. 65] with Kummer theory. Or we could simply
apply Liardet’s Theorem (as made effective for example by Bérczes, Evertse
and Györy [3] Theorem 2.3); this possibility was mentioned in [6] pp. 1121-
1122.

In any case we get an effective bound h(t0) ≤ C(α, β).
Examples of (A.4) are

α = 2, βq =
2q

2q − 1
, λ = 1 +

1

q

for positive integer q with t0 = 2−q. Letting q → ∞ shows that such a
C(α, β) cannot be bounded as any function of h(α) + h(β).

In the special case α = β = 1, the solutions t0 of the equation (A.3)
are roots of unity, and thus, by the previous remarks, any solution of
tλ + (1 − t)λ = 1 with λ > 0 and λ 6= 1 satisfies h(t0) ≤ 100 max(1, λ−1).
This completes the proof of Theorem 1.2 stated in the introduction.

Appendix B. Exceptional solutions of the Denz equation.

We return to the system (6.1); this will finally settle the Denz equation
as in Theorem 1.4.

Proposition B.1. Suppose δ is rational with 0 < |δ| ≤ 10−330. Then there
is no t0 6= 0, 1,−1 for which the determinations satisfy

(B.1) tδ0 − 2(1− t0)δ = −1, tδ0 + 2(1 + t0)
δ = 1.
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We will need the following “two-circle” results, in which the adjectives
refer to their mode of intersection.

Lemma B.2. For complex z, w with |z| = |w| = 1 we have

|z2 − z + 1| ≤ 3|z + w − 1|.

Proof. With z = eiθ, w = eiφ this is equivalent (after squaring) to F ≥
0 (0 ≤ θ, φ ≤ 2π) with

F = F (θ, φ) = 12− 7 cos θ − 9 cosφ+ 9 cos(θ − φ)− cos 2θ.

We have
∂F

∂φ
= 9(sinφ+ sin(θ − φ))

which vanishes in the interior only for θ ≡ π + 2φ modulo 2πZ. At these
points F = G(cosφ) with

G(x) = 2(2 + x)(1− x)(1− 2x)2 ≥ 0

for −1 ≤ x ≤ 1. And on the boundary F (θ, 0) = F (θ, 2π) = H(cos θ) with

H(x) = 2(1 + x)(2− x) ≥ 0

and F (0, φ) = 4. This completes the proof. �

The constant 3 here is best possible, as the example z = −1, w = 1 shows.

Lemma B.3. For complex z, w with |z| = |w| = 1 we have

|z + 1| ≤ 2|z + 2w − 1|1/2.

Proof. With ε = |z + 2w − 1| we have

ε ≥ |2w| − |z − 1| = 2− |z − 1|
so |z − 1| ≥ 2− ε. If ε ≤ 2 then drawing a picture shows that

|z + 1| ≤
√

4− (2− ε)2 =
√

4ε− ε2 ≤ 2
√
ε.

And if ε > 2 then even
|z + 1| ≤ 2 <

√
2
√
ε

which completes the proof. �

The exponent 1/2 comes from tangency. The multiplying constant 2
cannot be replaced by anything smaller, as the example

z = −1 +
4ε− ε2

2
+ i

2− ε
2

√
4ε− ε2, w = 1− ε

2
− i1

2

√
4ε− ε2

with
|z + 1| =

√
4− ε|z + 2w − 1|1/2

and ε→ 0 shows.

Proof of Proposition B.1. To keep better track of the determinations
and their Galois conjugates, we write δ = r/q for integers q > 0, r 6= 0 and
consider the set Yrq in affine A4 defined by the equations

yq1 = yr, y2q2 = (1− y)2r, y2q3 = (1 + y)2r

(B.2) y1 − 2y2 = −1, y1 + 2y3 = 1
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(and y 6= 0, 1,−1). Note that this is a finite set in Q4
.

One checks that there is an involution on Yrq defined by sending (y, y1, y2, y3)
to

(B.3)

(
1

y
,

1

y1
,
y2
y1
,−y3

y1

)
.

Now a solution of (B.1) leads to a point

(y, y1, y2, y3) = (t0, t
δ
0, (1− t0)δ, (1 + t0)

δ)

on Yrq. So it suffices to show that Yrq is empty whenever

(B.4) 0 < |δ| ≤ 10−330.

Any element σ of Gal(Q/Q) acts on points (η, η1, η2, η3) of Yrq.

Case 0. For some σ we have

|σ(η)| ≥ 1

2
, |1− σ(η)| ≥ 1

2
, |1 + σ(η)| ≥ 1

2
, |σ(η)| ≤ 2.

We note that for any z with 1/2 ≤ |z| ≤ 3 we have∣∣∣|z|δ − 1
∣∣∣ =

∣∣∣∣∣
∞∑
n=1

δn(log |z|)n

n!

∣∣∣∣∣ ≤ |δ|
∞∑
n=1

| log |z||n

n!
= |δ|(exp(| log |z||)−1) ≤ 2|δ|.

Thus with z = σ(η), 1 − σ(η), 1 + σ(η) and corresponding s1 = σ(η1), s2 =
σ(η2), s3 = σ(η3), taking conjugates in (B.2) gives

s1 − 2s2 = −1, s1 + 2s3 = 1

and

||s1| − 1| ≤ 2|δ|, ||s2| − 1| ≤ 2|δ|, ||s3| − 1| ≤ 2|δ|
(note that sq1 = σ(η)r so |s1| = |σ(η)|δ, and similarly for |s2|, |s3|). As∣∣∣∣ w|w| − w

∣∣∣∣ = ||w| − 1| (w 6= 0)

we get for s′1 = s1/|s1|, s′2 = s2/|s2|, s′3 = s3/|s3| on the unit circle the
inequalities

|s′1 − 2s′2 + 1| ≤ 6|δ|, |s′1 + 2s′3 − 1| ≤ 6|δ|

(note that s′1 − 2s′2 + 1 = (s′1 − s1)− 2(s′2 − s2) and so on). By Lemma B.3
with z = −s′1, w = s′2 we get

|s′1 − 1| ≤ 2(6|δ|)1/2;

and then with z = s′1, w = s′3

|s′1 + 1| ≤ 2(6|δ|)1/2.

These contradict each other provided |δ| < 1/24, certainly guaranteed by (B.4).
Thus for every σ there are four possibilities coming from the failure of

Case 0, and we consider each in turn.
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Case 1a. For some σ we have

|1− σ(η)| < 1

2
.

We write σ(η) = 1− u so that |u| < 1/2. Now

σ(η1)
q = σ(ηq1) = σ(ηr) = σ(η)r = (1− u)r

so that σ(η1) is a determination of (1 − u)δ. There is a canonical such
determination b1 = 1− δv for

v = u− δ − 1

2
u2 +

δ − 1

2

δ − 2

3
u3 −+ · · · ,

and because ∣∣∣∣δ − kk + 1

∣∣∣∣ ≤ 1 (k = 1, 2, . . .)

we deduce

(B.5) |b1 − 1| ≤ |δ| |u|
1− |u|

≤ |δ|.

Thus σ(η1) = b1ζ1 for a root of unity ζ1.
(Almost) similarly σ(η3)

2q = (2 − u)2r and so there is a root of unity ζ
such that ζσ(η3) is a determination of (2− u)δ, and there is a canonical b3
with

(B.6) |b3 − 2δ| ≤ 2δ|δ|
(with of course the natural determination of 2δ). So σ(η3) = b3ζ3 for a root
of unity ζ3.

The second equation in (B.2) now leads to

(B.7) b1ζ1 + 2b3ζ3 = 1,

so that by (B.5) and (B.6) we get first |ζ1 + 21+δζ3 − 1| ≤ (21+δ + 1)|δ| and
then

(B.8) |ζ1 + 2ζ3 − 1| ≤ |2δ − 1|+ (21+δ + 1)|δ| ≤ 6|δ|.
Now Lemma B.3 gives

(B.9) |ζ1 + 1| ≤ 2(6|δ|)1/2.
The first equation in (B.2) gives 2σ(η2) = 1 + b1ζ1 = (b1− 1)ζ1 + (ζ1 + 1) so
we deduce

(B.10) |σ(η2)| ≤
1

2
(|δ|+ 2(6|δ|)1/2) ≤ 5|δ|1/2 < 1

by (B.5) and (B.9). Similarly σ(η1) + 1 = 1 + b1ζ1 leads to

(B.11) |σ(η1) + 1| ≤ 10|δ|1/2.
We may say that these σ(η1) cluster near −1. Also

(B.12) |σ(η1)− 1| ≤ 2 + 10|δ|1/2 < 3.

Now η2q2 = (1− η)2r gives |σ(η2)| = |1− σ(η)|δ. Thus

(B.13) δ =
log |σ(η2)|

log |1− σ(η)|
> 0
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by(B.10) and the basic assumption in this Case 1a.
We leave this case unresolved for the moment, and proceed straight to

Case 1b. For some σ we have

|1 + σ(η)| < 1

2
.

Here the same arguments with −b1ζ1 + 2b2ζ2 = 1 instead of (B.7) lead to

(B.14) |σ(η1)− 1| ≤ 10|δ|1/2

in place of (B.11), so clustering at 1, but also

(B.15) |σ(η1) + 1| < 3

as in (B.12), as well as

(B.16) δ > 0

as in (B.13). Again we jump to the next (somewhat critical)

Case 2a. For some σ we have

|σ(η)| < 1

2
.

Now subtracting the two equations in (B.2) and using σ(η2) = b2ζ2 with
|b2 − 1| ≤ |δ| and σ(η3) = b3ζ3 with |b3 − 1| ≤ |δ| leads to

|ζ2 + ζ3 − 1| ≤ 2|δ|
as in (B.8). By Lemma B.2 we deduce |ζ22 − ζ2 + 1| ≤ 6|δ| and then using
|σ(η2)− ζ2| ≤ |δ| also |σ(η2)

2 − σ(η2) + 1| ≤ 12|δ| and, multiplying by 4,

(B.17) |σ(η1)
2 + 3| ≤ 48|δ|.

Here we may say that these σ(η1) cluster near ±
√
−3.

In particular

(B.18) |σ(η1)|2 ≥ 3− 48|δ| > 1

and also

(B.19) |σ(η1)
−2 + 3| < 4.

Now we get

(B.20) δ =
log |σ(η1)|
log |σ(η)|

< 0.

Next we claim that η1 is a unit. Write p = −r > 0 so that δ = −p/q.
Pick any τ with τp = η−11 . Then τpq = η−q1 = ηp so η = ζτ q for a root of
unity ζ. Now 2η2 = η1 + 1 so

22q(1− ζτ q)−2p = 22q(1− η)−2p = (2η2)
2q = (η1 + 1)2q = (τ−p + 1)2q,

or as a polynomial in τ

(1− ζτ q)2p(1 + τp)2q = 22qτ2pq.
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Comparing highest and lowest coefficients we see that τ is a unit and there-
fore also η1 = τ−p as claimed (here it is crucial that δ < 0 and it is highly
unlikely that it works when δ > 0).

Before proceeding further we jump to the final

Case 2b. For some σ we have

|σ(η)| > 2.

This is |σ(η−1)| < 1/2, and according to (B.3) the point (η−1, η−11 , η2η
−1
1 ,−η3η−11 )

lies in Yrq. By Case 2a we get

(B.21) |σ(η−11 )2 + 3| ≤ 48|δ|

in place of (B.17), so clustering near ±1/
√
−3, as well as

|σ(η1)|−2 ≥ 3− 48|δ| > 1

as in (B.18), and also

(B.22) |σ(η1)
2 + 3| < 4

as in (B.19). Then

(B.23) δ < 0

as in (B.20). Also η−11 , so η1 too, is a unit.

Now let us sum up. As mentioned, we can ignore Case 0, so that every σ
falls into the other cases.

Suppose first that δ < 0.
Then Cases 1a and 1b are impossible by (B.13) and (B.16). We consider

the number

η′ = (η21 + 3)(η−21 + 3)

which is an algebraic integer.
In Case 2a we use (B.17) and (B.19) to see that

|σ(η′)| < 192|δ|.

And in Case 2b we use (B.21) and (B.22) to get the same inequality.

Thus we see that η′ has norm of absolute value at most (192|δ|)d′ for its
degree d′. So as soon as |δ| < 1/192 we deduce η′ = 0.

But this would imply that η1 = i
√

3 (say), so η2 = (1 + η1)/2 and η3 =
(1−η1)/2 are roots of unity so also 1−η, 1 +η which is impossible as η 6= 0;
and a similar argument works with say η1 = 1/(i

√
3) using η−1 6= 0. This

settles things when δ < 0.
It remains to deal with δ > 0.
Then Cases 2a and 2b are impossible by (B.20) and (B.23). But now we

no longer know that η1 is a unit (and probably it need not be), so we cannot
use this method.
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Instead we use Theorem A.1 on the equation η1 − 2η2 = −1. We note
that ηq1 = ηr so η1 is a determination of ηδ. Also η2q2 = (1− η)2r so there is
a root of unity ζ such that η2/ζ is a determination of (1− η)δ. Now

αη1 + β(η2/ζ) = 1

for α = −1, β = 2ζ. It follows from Theorem A.1 with λ = δ > 0 that

h(η) ≤ 100δ−1 + 121δ−1 log 2

(as long as we don’t have αηδ−1 = 1, in which case h(η) = 0 anyway).
Therefore

h(η1) = |δ|h(η) ≤ 100 + 121 log 2.

Now we consider η′ = η21 − 1, so that

(B.24) h(η′) ≤ 200 + 243 log 2.

In Case 1a we use (B.11) and (B.12) to get

|σ(η′)| < 30|δ|1/2.

And in Case 1b the same using (B.14) and (B.15).

If η′ 6= 0 the Product Formula gives 1 < (30|δ|1/2)d′ed′h(η′) which by

(B.24) is at most (30|δ|1/2e2002243)d′ . So as soon as

|δ| ≤ 1

302e4002486
= 10−322.972613...

(accounting for (B.4) above) we conclude η′ = 0, now easily seen to be
impossible. This settles things when δ > 0, thereby completing the proof of
the Proposition.

�
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[3] A. Bérczes, J.-H. Evertse and K. Györy, “Effective results for linear equa-
tions in two unknowns from a multiplicative division group”, Acta Arith-
metica 136 (2009), 331–349.

[4] F. Beukers, “On a sequence of polynomials.” In Algorithms for algebra. J.
Pure Appl. Algebra 117-118 (1997), 97–103.

[5] F. Beukers and F. Schlickewei, “The equation x+y = 1 in finitely generated
groups”. Acta Arithmetica 78 (1996), no. 2, 189–199.

[6] E. Bombieri, D. Masser, and U. Zannier, “Intersecting a curve with algebraic
subgroups of multiplicative groups”, Internat. Math. Res. Notices 1999, no.
20, 1119–1140.

[7] E. Bombieri, D. Masser, and U. Zannier, “Finiteness results for multiplica-
tively dependent points on complex curves”. Michigan Math. J. 51 (2003),
451–466.

[8] W. D. Brownawell and D. W. Masser, “Vanishing sums in function fields”.
Math. Proc. Cambridge Philos. Soc. 100 (1986), no. 3, 427–434.

[9] A. Denz, “Bounding the height of certain algebraic numbers”, Master The-
sis, University of Basel 2016.



32 F. AMOROSO, D. MASSER AND U. ZANNIER

[10] G. Faltings, “The general case of S. Lang’s conjecture”. Barsotti Symposium
in Algebraic Geometry (Abano Terme, 1991), 175–182, Perspect. Math., 15,
Academic Press, San Diego, CA, 1994.

[11] P. Habegger, “Intersecting subvarieties of Gnm with algebraic subgroups.”
Math. Ann. 342 no. 2, 449–466 (2008).

[12] M. Hindry, “Autour d’une conjecture de S. Lang”. Invent. Math., 94, 575-
603 (1988).

[13] M. Mignotte, T. N. Shorey and R. Tijdeman, “The distance between terms
of an algebraic recurrence sequence”. J. Reine Angew. Math. 349, 63–76
(1984).

[14] P. Philippon, “Sur des hauteurs alternatives. III.” J. Math. Pures Appl.(9)
74 no. 4, 345–365 (1995).

[15] L. Pottmeyer, “Fields Generated by Finite Rank Subgroups of Tori and
Elliptic Curves”. Int. J. Number Theory 17, no. 5, 1079–1089 (2021)

[16] D. Roy and J. Thunder, “An absolute Siegel’s lemma.” J. Reine Angew.
Math. 476 (1996), 1–26. Addendum and erratum: J. Reine Angew. Math.
508, 47–51 (1999).

[17] W. M. Schmidt, “Diophantine approximations and Diophantine equations”.
LNM 1467, Springer-Verlag, Berlin, 1991.

[18] W. M. Schmidt. “Heights of points on subvarieties of Gnm”. In“Number
Theory 93-94”, S. David editor, London Math. Soc. Ser., volume 235, Cam-
bridge University Press, 1996.

[19] J.H. Silverman, “Heights and the specialization map for families of abelian
varieties”, J. reine angew. Math. 342, 197–211 (1983).

[20] M. Waldschmidt, “Diophantine approximation on linear algebraic groups.
Transcendence properties of the exponential function in several variables.”
Grundlehren der mathematischen Wissenschaften, 326. Springer-Verlag,
Berlin, 2000.

[21] O. Warin, “On x + y + z + w = 1 and heights”. Master Thesis, University
of Basel 2012.

[22] D. Zagier, “Algebraic numbers close to both 0 and 1”, Math. Computation
61, 485–491 (1993).

[23] S. Zhang, “Positive line bundles on arithmetic surfaces”, Annals of Math.
136, 569–587 (1992).


	1. Introduction
	2. Notation, auxiliary results and reduction.
	3. Proof of Theorem 1.5. I. Large bold0mu mumu Am-Ma-Za.
	4. Functional results.
	5. Proof of Theorem 1.5. II. Small bold0mu mumu Po.
	6. Proofs of Theorems 1.2, 1.3, and 1.4.
	Appendix A. Beukers' equation with a rational exponent
	Appendix B. Exceptional solutions of the Denz equation.
	References

