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A B S T R A C T

In any living organism, metabolic processes provide cells with cofactors
that store energy reducing power, and molecules that are needed as precur-
sors for the synthesis of all structural and functional components. At the
intracellular level, metabolic processes are represented by an intricate net-
work of thousands biochemical reactions. The huge number of reactions,
the fast time scale of their activity and the high volatility of metabolites
hugely complicate experimental procedures, thus rising their costs, and ulti-
mately limiting the data availability. Owing to this complexity, the behavior
of metabolic systems is inherently hard to study with traditional experimen-
tal and analytical tools, a situation that calls for new approaches. The im-
portance of mathematical models in systems biology has grown in recent
years, as their ability to understand, predict and manipulate biological sys-
tems has been successfully demonstrated in many cases. A wide range of
useful modeling techniques has been already developed and published. The
choice of the most appropriate among them should depend on the model
goals, and on the experimental data and biological knowledge available for
the phenomena under study.

The three-years work described in this thesis started with the review of the
biggest challenges that modeling metabolism currently poses. Constraint-
based models(CBMs) and kinetic models represent the two main classes of
approaches used so far to model metabolism. While the former assumes
a goal-directed nature of intracellular metabolism to predict reaction fluxes
at the steady state, the latter exploits available mechanistic information and
aims to describe the integrated dynamic response of the system to changes in
the environment. Focusing more specifically on kinetic models composed of
Ordinary Differential Equations (ODEs), we developed new computational
methods that try to address their main limitations. As for many biologi-
cal systems, metabolic responses are highly conditioned by many regulatory
processes. Metabolic regulation can be schematically divided into two lay-
ers: the layer of fast adjustments in metabolite concentration and reaction
fluxes, and the level slower modifications of enzyme expression. These reg-
ulatory processes are highly complex and have been poorly studied so far.
Commonly, kinetic models of metabolism are built with bottom-up proce-
dures, in which information on the structure and the kinetic parameters of
each individual reaction is collected from different sources in the literature.
While lots of detailed information can be found for central metabolic path-
ways like glycolysis, the same is not true for less studied reactions. Moreover,
the available data is often produced by experiments performed on different
cell types and in standard in-vitro conditions, where, for instance, effects of
pH, temperature, unknown allosteric regulators, and kinetic differences in
isoenzymes are always neglected. Hence, indetermination and uncertainty
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constantly arise as major issues of the modeling phase. In order to clarify net-
work interactions and kinetic parameters, approaches of reverse engineering
and parameter estimation have been adopted in many situations. The perfor-
mances of these techniques, however, strongly depend on the availability of
high quality data, which often represents a limiting factor. In our work, we
tried to move away from these approaches and to consider the problem from
a different perspective. Acknowledging data scarcity, we chose to exploit the
empirical knowledge of experimentalists to guide some modeling assump-
tions. After we define the system of metabolic reactions we are interested in,
indeed, we choose to divide them into two categories: determined reactions,
for which both the structure and the kinetic parameters are considered to
be known and not affected by uncertainty, and undetermined reactions, for
which we consider to have just partial information. Secondly, we assume
an experimentalist can help us to define a specific objective function of the
metabolic system. While this is conceptually similar to objective functions
used in CBM, here we use it for optimization processes that are executed re-
currently over the course of the simulation. These optimizations are meant
to calculate, for each undetermined reaction, some time varying coefficients
that replace the missing information and allow to reproduce the dynamic
behavior of the system.

In a second work thread, we focused on baseline enzyme concentrations,
and how their expression in different tissues impacts model behavior. Aim-
ing to increase the specificity of our models for a tissue of interest, we de-
veloped a new method that exploits high-throughput biological data. In
specific, a kinetic model which is fully parametrized for a reference condi-
tion, together with gene expression data from the same condition, can be
used to generate a kinetic model specific for a new condition of interest, if
gene expression data for this condition are available. These data are thus
manipulated to adjust kinetic parameters related to enzyme concentrations
and can effectively improve model performance for the new condition.

Besides intracellular metabolism, the main research interests of our group
are related to cancer. One topic become important in recent years is tumor
metabolic heterogeneity. Growing evidences support the idea that subpopu-
lations of cancer cells with different metabolic traits coexist in the same tu-
mor mass. This motivated us to move our attention to the study of metabolic
events that happen at a mesoscopic scale and to consider inter-cellular metabolic
interactions. With this aim, we worked on multi-scale models of cancer
metabolism that link tumor growth to intracellular metabolic events. This
represents also the main focus of our ongoing research efforts.

Across different sections of this thesis, we show the potential of computa-
tional approaches originally defined in the field of computer science to facili-
tate the modeling phase. Petri Nets are bipartite directed graphs, a high level
graphical formalism which has been extensively used for various modeling
purposes since its formalization. Here we show how their timed formula-
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tion, Stochastic Petri Nets, and their colored variant, Stochastic Symmetric
Nets, can ease modeling efforts, helping the modeler to represent metabolic
reactions and characteristics of indetermination and heterogeneity present
in the system.
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1 I N T R O D U C T I O N

Metabolism can be considered a tightly regulated engine that provides
essential cellular components such as energy equivalents, redox cofactors,
biomass building blocks and precursors for chemical modifications of pro-
teins or DNA. Metabolism is thus strongly connected with any other intra-
cellular processes and has a great impact on cell growth.
Scientific dissertations regarding cancer metabolism always start from the
definition of the Warburg Effect [137]. In his pioneering work in the 1920s, The Warburg Effect

the German scientist Otto Warburg showed that all of the cancer cells he
investigated avidly ferment glucose, secrete lactate, and suppress oxidative
phosphorylation, and that this behavior emerges even in the presence of oxy-
gen. This contrasts with the Pasteur effect that normal cells display, which
consists in the observation that O2 is able to inhibit fermentation.
Warburg interpreted tumor lactate secretion as an indication that oxidative
metabolism was damaged [263]. His assertion that “respiration of all cancer
cells is damaged” has been long debated, since Warburg himself and his co-
workers, as well as contemporary investigators, had experimental evidences
that contradicted it. [87].
Today, we understand that the relative increase in glycolysis under aerobic
conditions was mistakenly interpreted as evidence for damage to respira-
tion. Several proofs that cancer cells have functional mitochondria have in
fact been collected since then [38]. At the present moment, the topic of the
relevance of fermentative versus oxidative pathways remains still open and
debated, but it is widely believed that in most cancer cells cultures ATP
synthesis is split roughly equally between glycolysis and oxidative phos-
phorylation, rather than the greater than 90% attributable to the latter in
most cells. As the ATP yield from aerobic glycolysis amounts to 2 ATP per
molecule of glucose, while it adds up to more than 30 ATP/glucose for ox-
idative phosphorylation, this implies that cancer cells have a high rate of
glucose utilization. This feature is indeed daily exploited to localize tumors
with PET scans, as the tracer 18F-deoxyglucose is strongly uptaken by the
tumor [262, 39].
An additional consideration concerns the interesting similarity between metabolic
traits in cancer cells and highly proliferating non-transformed cells. When
these cells enter a high proliferative state, they tend to express glucose trans- Similarities between

cancer and highly
proliferating normal
cells

porters and glycolytic enzymes out of proportion to the machinery required,
displaying high fermentation of glucose with suppressed oxidative phospho-
rylation. As this phenomenon is directly linked to proliferation, some au-
thors are prone to believe that the Warburg effect might reflect proliferation-
associated changes in metabolism rather than a unique feature of malig-
nancy [262].
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Another short-term reversible phenomenon that resembles the Warburg ef-
fect, the Crabtree effect , has been observed in cell cultures . In metabolicallyThe Crabtree effect

adapted cell lines that are grown in hypoxic/anaerobic conditions, when
glucose concentration in the media surpasses a threshold value, the cells
have a reduced need for oxidative phosphorylation by the TCA cycle and
rapidly switch to glycolysis as their major source of energy. Some authors
indeed proposed that this short-term reversible phenomenon might repre-
sent an advantage of cancer cells in vivo, as it would allow them to adapt
their metabolism to the rather heterogeneous microenvironments in malig-
nant solid overgrowths.

Also the idea that cancer cells rely only on glucose as a energy source
has changed, in favor of a much more heterogeneous substrate utilization
. Our view of repertoire of substrates that cancer cells are able to metabo-Differential

substrate utilization lize is still expanding. Importantly, these findings reinforce the thesis that
cancer mitochondria are functional. After glucose, glutamine was the first
carbon source to be recognized as a preferential nutrient source for cancer.
In is in fact referred as a “glutamine addiction” to describe the observation
that glutamine deprivation induces starvation and cell death in-vitro. Ac-
etate and other fatty acids, lactate, branched chain amino acids, serine, and
glycine represent additional fuels for many cancers [36, 263]. These comple-
ment glucose to sustain the core metabolic functions of cancer cells: energy
formation, biomass assimilation, and redox control.

Despite this accumulation of significant experimental evidences, we need
to be aware that metabolic processes are highly voluble, and depend on the
specific context of observation. Hence,regarding the relevance of many of
these experimental findings, it still has to be fully understood how many of
those that were obtained in-vitro can be used to draw conclusions on cancer
cells actual in-vivo behavior.

At present the research on cancer metabolism is taking several different
perspectives to try to uncover the factors and mechanisms that are respon-
sible for these metabolic alterations. A few of these research directions are
here briefly described.

Metabolic control Multiple bidirectional feedback and control mechanisms
between metabolism and cellular regulation guarantee cellular and phys-
iological homeostasis. While in the past the classical perspective was to
consider metabolic alterations the result of genetic mutations, now the com-
munity is much more aware that the influences between the genome, the
transcriptome proteome and metabolome are bidirectional, with many regu-
latory loops connecting the different layers. It has been shown, for instance,
that specific concentrations of metabolites like serine, arginine and leucine
are able to influence some key intracellular regulators, namely mTOR, AMPK
and p53 [118].
These mechanisms of auto-regulation, however, are so complex that cannot
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be clarified by single experiments. For this reason, studies on the distribu- Identification of
enzymes whose
activity is
fundamental for the
emerging metabolic
alterations

tion of control over the network have so far mostly focused on the identi-
fication of enzymes whose altered activity produces changes in the whole
system. In [263] Vander Heiden and DeBernardinis categorize metabolic
activities based on whether they are transforming, enabling or neutral with
respect to cell transformation and tumor progression.

• Transforming activities are those activities that are able to initiate car-
cinogenesis. Blocking them might prevent the occurrence of cancer
in susceptible patients and slow disease progression. Only very few
metabolic activities can be considered as transforming based on ge-
netic evidences

• Enabling activities carry out conventional metabolic tasks such as sup-
porting energetics, generating macromolecules, and maintaining redox
state and are required for tumor progression

• Neutral activities are dispensable for tumor growth and are not rele-
vant to be considered as therapeutic targets

In cancer the activity of an enzyme can be altered for several reasons: a
mutation conferring new properties to the enzyme, a mutation altering its
kinetics, or an alteration in the abundance of the enzyme functional form.
In [66] the authors reported an accurate review of the known altered enzyme
activities in of glucose metabolism in cancer cells. Here we report a few of
these findings:

• Glucose transporters (GLUTs). GLUT1, a glucose transporter with an
elevated affinity for glucose, is often found overexpressed in human
cancers. hypoxia-inducible transcription factor HIF-1 and signalling
molecules c-myc and Akt. By contrast, the GLUT4 transporter, which
is sensitive to the presence of insulin, is normally down-regulated. Ad-
ditional gates for glucose uptake are guaranteed by the Na+-coupled
glucose transporter SGLT1.

• Hexokinases (HKs). Additionally to HK-1, tumor cells express HK-
2, which is able to promote glycogen synthesis and to divert glucose
6-phosphate towards the oxidative Pentose Phosphate Pathway (PPP)

• Phosphofructokinases (PFKs). PFK is a tetrameric enzyme known to
be conditioned by a high number of allosteric regulators. It is thus
believed that anomalous concentrations of these regulators, like ATP
and citrate, may be crucial to promote the Warburg phenotype.

• Phosphofructokinase-2/Fructose-Biphosphatases (PFK-2/FBPase).Four
isoforms (PFKFB1 to PFKFB4) have been identified for this enzyme. In
specific, the synthesis of PFKFB3 is induced by several factors known
to be implicated with carcinogenesis and cancer progression, like HIF-
1, cMyc, Ras. Indeed, it was found that rapidly proliferating cancer
cells constitutively express PFKFB3.
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• Phosphoglicerate Mutase (PGM). The three PGM isozymes found in
mammalian cells result from the combination of two subunits: muscle
M and brain B. PGM-M, in specific, is known to be upregulated in
many cancers.

• Pyruvate Kinase (PK) has two isoforms, PK-M and PK-L. It has been
seen that cancer cells, and fast-growing cells in general, selectively ex-
press the M2 isoform (PK-M2). PK-M2, thanks to its kinetic properties,
is able to redirect the flux of glucose carbons to the Pentose Phosphate
Pathways and other biosynthetic pathways.

• A few mutations in the Trycarboxylic Acids (TCA) Cycle have recog-
nized tumorigenic effects. Mutations in both succinate dehydrogenase
(SDH) and fumarate hydratase (FH) have in fact been shown to result
in paragangliomas and pheochromocytomas. FH was found moreover
mutated in renal cell cancers. The mechanism by which this occurs
seems to be linked to a stabilization of the hypoxia-inducible factor
HIF-1.

• Consistent evidences support the belief that several alterations in en-
zymes of the glycolytic and PPP pathways promote a redirection of the
carbon flux towards ribose 5-phosphate synthesis in tumor cells.

Regarding the available information on tumor-specific metabolic enzymes,
it is important to underline that the majority of studies focused on gene
expression analyses, while detailed enzyme-kinetic studies and metabolic
flux quantifications are still rare [66].

Spatial factors In [266] the authors focused their work on cytoplasm sol-
vent capacity and proposed an explanation for the apparently counterintu-
itive preference of cancer cells for fermentative pathways with low ATP yield.
Considering that enzyme molecules have a finite volume and the total sum
of their volumes cannot exceed the cell volume, they speculated that glycol-
ysis, which produces low yields, is preferred as it is more efficient in terms
of the required solvent capacity.

Intratumoral metabolic heterogeneity The discussion about the use of pref-
erential substrates and pathways (glycolytic versus oxidative) requires to in-
troduce the topic of metabolic heterogeneity in cancer. According to results
produced in many studies, cancer appears to be a variegate disease also for
its metabolic aspects. For example, many cancer cells do not show a War-
burg effect under all conditions, and slowly proliferating tumor cells rely
more on oxidative phosphorylation than rapidly growing cells.
Many experimental evidences recently collected come out in favor of a vi-
sion of cancer metabolism that is more and more linked to the microen-
vironment [5]. Within the tumor microenvironment lots of different cell
types coexist and interact, and these interactions are conditioned by contin-
uously changing gradients of pressure, concentrations and pH. It has been
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finally recognized that cancer microenvironment needs to be studied as a
complex ecosystem, in which all phenomena, including the metabolic phe-
nomena, represent emergent properties of the system that cannot be gen-
erated by any isolated component. In a recent exhaustive review on can-
cer metabolism [123], it was proposed that cross-feeding relationships exist
among cancer cells and tumor stroma, as well as among different metabolic
subtypes of cancer cells. Cancer cells which strongly rely on glycolysis as
the major energy producing pathways display the well known Warburg phe-
notype, characterized by the high production of lactate. Lactate, which is
the waste product of these highly glycolytic cells, seems to represent instead
a valuable source of energy for other metabolic subtypes of cancer cells, that
mostly rely on the oxidative phosphorylation pathway. According to the
authors, these mutualistic interactions, observed also between cancer and
stromal cells, can ultimately promote aggressive and treatment resistance
phenotypes.

Thanks to these results and to the ongoing improvement of experimental
procedures, the interest of the scientific community for phenomena related
to cancer metabolism is witnessing a renaissance. The observations here
synthetically reported make us aware of the fact that metabolic systems play
an eminent role in any cellular process. On the other hand, metabolic sys-
tems, even just at the intracellular scale, include highly complexes networks
of molecular interactions that so far have been characterized just in small
proportion.

In situations where phenomena are highly relevant, in which we aim to
make predictions, but for which we have limited experimental tools at our
disposal, mathematical modeling becomes essential. Computational models
of cancer metabolism have gained more and more attention in recent years,
in parallel with the successes achieved in the larger field of bioinformatics
and systems biology. Differently from traditional “wet lab” experiments,
computational models are now increasingly used to integrate experimental
findings and to give back verifications, predictions and suggestions to the
experimentalists.

In this thesis we will present the work done during a 3-years PhD project.
The next chapters are organized as follows: In chapter 2, we will give an
overview of the general process that has to be followed in order to build
computational models of metabolism, describing its main steps with higher
detail. For each of these steps the major obstacles and objectives that model-
ing poses will be discussed and the most important computational method
proposed in the literature will be briefly mentioned. Some of the most re-
markable results that computational models achieved in the most recent
years will be cited as well. In chapter 3 we will present the computational
approaches that we developed. Chapter 4 will be used to illustrate the ex-
perimental results achieved applying these methods and to discuss their ac-
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curacy and limitations. In chapter 5 we will summarize our work and we
will provide some insights on the research directions that are focus of our
current and future efforts. Some of the concepts and approaches that will
be exposed in this thesis have already been presented in two publications
produced by our group, namely “Dealing with indetermination in biochem-
ical networks” [250] and “Overcoming the lack of kinetic information in
biochemical reactions networks” [249].

xiv



2 B A C KG R O U N D

1 modeling
Even if a scientific model, like a car, has only a few years to run before

it is discarded, it serves its purpose for getting from one place to another.
David L. Wingate,“Complex Clocks", Digestive Diseases and Sciences, 1983,
28:1139.

In recent years, the computational methods that modelers use to interpret
biological phenomena have been continuously updated with new techniques.
Although the array of available tools is in a phase of rapid expansion, mod-
eling biological systems, and more specifically metabolic systems, remains a
hard challenge.

A successful modeling process should follow some fundamental steps.
Starting from a review of the scientific evidences and the available data,
the model goals and some modeling hypotheses should be defined. This
first step helps researchers to clarify the uncertainty that affects the system
under study and to accordingly choose the most appropriate modeling tech-
nique. Then, through the specification of its structure and parameters, a
draft of the model is created. Iterative processes of validation and refine-
ment, in which model predictions are tested and new experimental data are
integrated, help scientists to produce the final version of the model. Some a
posteriori analyses should finally be used to quantify the uncertainty associ-
ated with model components.

1.1 Preliminary steps

As already anticipated, before the model is actually built, a series of pre-
liminary modeling steps need to be carried out. Modeling means represent-
ing an abstraction of reality in a simpler but still meaningful way. Modeling
requires a balance between complexity and accuracy. If we are studying an
actual biological system, we do not want our representation to be too ab-
stract and superficial: we would miss the goals it was meant to achieve. On
the other hand, for a higher precision, we may be tempted to describe the
system with as many details as possible. However, “the more the details,
the more the precision” does not work as a general rule. The precision, in
fact, might remain illusionary. We need to be aware that every time we add
details, we also introduce errors, and the complexity of our representation
increases.

1



1 modeling

Following these considerations a careful balance should be applied when we
choose how wide is the network of processes we are representing, and how
grained is the representation of each of these.
These choices should be oriented by several factors: the goals of the user, the
type and amount of experimental data available, the presence of previous
similar efforts in the literature, the computational costs that can be afforded.
Each of these preliminary analyses and decisions conditions the others and
is tightly influenced by the others, so a specific order does not have to be
necessarily followed.
Ultimately, these steps support the choice of the best modeling approach. If,
on the contrary, we disregard the context of these factors, no modeling tech-
nique can be defined as superior or more adequate with respect to the others.

Model goals

A computational model uses a mathematical language to reproduce some
experimental finding. Reproducing observations represents then the first,
and necessary, step of any modeling effort. In order to prove its utility,
a model should shed light on the system under study and offer a deeper
understanding of its behavior. It should then help users to formulate hy-
potheses around the mechanisms that generated the observed phenomena,
or to predict new phenomena that were not used in the process of model
building.
If we refer to metabolic systems, a model can be used to understand, predict
or manipulate their behavior.
So far, computational models of metabolism have been extensively used in
the field of metabolic engineering, with the intent to predict which genetic
modifications are able to create cellular strains with a phenotype of indus-
trial interest. In parallel, they have also been interrogated to answer more
fundamental questions. In the most recent years the scope of metabolic mod-
els has expanded towards biomedical questions and applications. New chal-
lenges have been posed, and new modeling approaches now seek to identify,
for instance, which molecular target a drug should better address to impact
metabolism [16] [54]. Related to cancer research, computational models can
pinpoint which enzymes would deserve to be silenced in in-vitro cell lines as
a way to affect cellular energy production.
A clear and rigorous definition of modeling goals is paramount. This deci-
sion should in fact influence the kind of output we want the model to pro-
duce, and thus the modeling approach we need to choose and the modeling
process we need to follow.

Size of the system and level of abstraction

A schematic overview of the main modeling approaches, is given in Fig-
ures 1 and 2, including a list of their principal dichotomic features. We re-
port here the distinction, proposed elsewhere [223, 23], between interaction-

2



1 modeling

based, constraint-based and mechanism-based models. Cybernetic models,
here not included, will be discussed separately in section 1.1. In order to
choose wisely the best approach for our specific scientific question we need
to define both the size of the system and the level of abstraction we intend
to use in the model.

Metabolic phenomena can be observed and studied at different levels, at
the level of the organism, of an organ, of a tissue, at the level of a cell or
of a group of reactions. More generally, metabolic networks can, on one Size of the network

side, include just intracellular reactions, while on the other side, they can be
expanded to comprehend environmental metabolic processes, i.e. all those
occurring outside the cells. So far, the greatest part of metabolic models has
concentrated on intracellular metabolic networks. These are composed of
thousands of reactions compartmentalized in different organelles. Limiting
to intracellular models, the size of the network they describe can help us
to divide them into genome-scale (GS) models, if they include all intracel-
lular metabolic reactions, core models, if they consider some of the main
metabolic pathways, and toy models, in case they highlight some major fea-
ture of the system transcending the effects of single reactions.

The level of abstraction able to formally describe the functioning of the sys-
tem should be identified taking into account the known biochemical, physi-
cal or regulatory properties of system components. This level of abstraction
can be considered either fine-grained, in the case of mechanism-based mod- Level of abstraction

els, or coarse-grained, as for interaction-based or constraint-based models.
The size of the system and the level of abstraction are closely linked: mechanism-
based or cybernetic approaches are normally applied for toy or core models,
while the interaction-based and constraint-based approaches are more suited
for the analysis of genome-scale or core models.
A more extensive description of these different categories of approaches is
reported in paragraph 1.1.

Moving from the coarse-grained (interaction-based, constraint-based) to
the fine-grained (cybernetic, mechanism-based) approaches, models vary
with respect to:

• the maximum tractable size of the system

• the computational costs that the analysis of the model requires

• the type of description of the system provided, either qualitative to
quantitative

• the type of data they encompass and produce: static or dynamic

While mechanism-based models are in principle the most informative and
what any modeler would aim for, in practice, due to their limitations, constraint-
based models represent the standard technique of choice.

3
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Interaction-based approaches highlighted the existence
of modules, that is, of semi-autonomous units performing
distinct functions in cellular systems [15]. Modularity
could greatly facilitate a system-level understanding
because one can study sub-systems in isolation, and
investigate their interactions without having to include
all detail of lower levels [16,17]. A topological analysis of
metabolism in 43 organisms suggested metabolic net-
works to be composed of a hierarchy of modules [18!].
Likewise, a large number of studies focused on single
levels of cellular regulation [15]. Recent analysis of highly
integrated datasets on cellular networks provided more
global evidence for hierarchical modularity [19,20].

At a detailed level, Alon and co-workers [21!!] proposed
simple, statistically overrepresented interaction patterns
in the transcriptional network of E. coli (motifs) as its
elementary functional units. Subsequent investigations
into transcriptional regulation and/or protein–protein
interactions in yeast corroborated this view [22,23].
The potential of motifs, for instance, specifically to speed
up transcriptional responses [24], and evolutionary con-
servation in network motifs [25] provided independent
evidence for a functional role. Moreover, aggregation of
motifs in higher-order structures [26] concurs with the
big picture of hierarchical modularity as revealed by

‘top–down’ studies. Exact definitions and unambiguous
assignments of modules, however, are largely unresolved
issues [2].

Topological analysis also tries to exploit the fact that the
architecture constricts the function and reflects the evo-
lution of networks. Graph theory suggested a ‘scale-free’
global topology of cellular networks that parallels the
structure of complex engineered systems: few highly
connected hubs hold the network together, while most
nodes have only few connections (Figure 1a). The net-
works were proposed to be of a ‘small-world’ type with
short average path lengths between the components.
These characteristics have been associated with robust
operation and efficient communication [7]. Several recent
studies, however, question the intuitively appealing
principles. Accounting for the conservation of mass in
the E. coli metabolic network increased the average path
length beyond the ‘small-world’ phenomenon [27!].
Metabolic networks including reaction reversibilities
and excluding currency metabolites exhibited bow-tie
structures with a dense core connected to ‘fans’ for inputs
and outputs, respectively. Scale-free topologies occurred
only in the species-specific cores [28]. Moreover, network
characterizations that are too coarse can distract from
differences between organisms in, for instance, path
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Figure 1: Schematic view of the computational approaches that can be used to
model metabolism. Figure taken from [223].

topology, but different interaction strengths could display
qualitatively different signal processing capabilities [49].
There, modeling of the perceived module using standard
approaches proved insufficient, presumably because side
effects on protein degradation were unaccounted for [50].
Other factors such as intertwined control circuits or cel-
lular heterogeneity could be important in the general
case. Modularity, thus, may enable quantitative model
building from the genomic to the cellular level, but this
crucially depends on module identification.

Bacterial chemotaxis serves as a popular example system
for mechanistic modeling since Barkai and Leibler [51]
demonstrated that robust adaptation to an unchanged
environment results from the network’s wiring diagram.
A recent comparative study of chemotaxis in E. coli and
Bacillus subtilis [52!!] revealed that homologous proteins
form regulatory networks with different interaction pat-
terns in the two organisms, yet establish the same core
control strategy. This logic of ‘integral feedback control’
is necessary and sufficient for robust adaptation [53].
Moreover, Rao et al. [52!!] showed that additional feed-
back loops in B. subtilis increase the system’s robust-
ness to perturbations. Comparative model-based analysis,
hence, can elucidate principles of cellular regulation
resulting from evolutionary processes constrained by
the need for robust performance.

Mechanistic mathematical modeling, in addition, makes
it possible to ‘play’ with hypotheses on cellular functional
or design principles in the computer, and to investigate
the effects of alternatives. An intriguing theoretical study

dealt with the question of how temporal control of gene
expression in metabolic pathways should be designed to
achieve fast responses to changing environmental condi-
tions, given a limited amount of enzyme synthesis [54!].
Later experimental and theoretical analysis demonstrated
that the predicted type of wave-like expression program
is widely employed by biosynthetic pathways of E. coli,
thereby establishing optimal production pipelines for
biomass components [55!]. At least certain design prin-
ciples of microbial cells, hence, seem to be accessible
through appropriate assumptions on objectives of evolu-
tionary optimization, in particular, regarding the physiol-
ogical function and the cellular context of a subsystem.

Common themes and integration: modularity,
optimality and robustness
Roughly, systems biology envisions an understanding of
cellular function and behavior from interactions between
genome and environment. In the domain of mathematical
modeling, this translates to formal representations that
cover the entire network complexity while maintaining a
high level of detail and accuracy (Figure 2). Clearly, none
of the approaches discussed herein (and intermediate
methods not mentioned) currently has this capability.
Mechanism-based modeling is the most obvious candi-
date for achieving a system-wide understanding, yet not
by simple scaling to the genome level.

However, one could aim for a strategy that combines
the strengths of present modeling methods with the
biologically important themes and highly interconnected
issues of modularity, optimality and robustness [56!].
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Figure 2: Mathematical modeling: scope and interactions. Figure taken from [223].
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Modeling hypotheses

No model can be representative of any condition. A model can be either
very generic, as it adapts to many different experimental conditions, either
very specific.
Choosing between generality and specificity means to choose between mod-
els that are versatile in their use and models that are precise in their predic-
tion. Caution should assist the modeler to find the right balance between
extremes. The more assumptions are made, the more the model becomes
specific. By marking the area of validity of the model, assumptions highlight
model performances within those limits. However too many assumptions
would restrict the scope of the model, to an extent that the model would
then fail to represent experimental conditions of interest.
A tight discussion between modelers and experimentalists is arguable and
helpful to clarify model assumptions and promote the phase of model con-
struction

Data availability

experimental techniques Experimental data are necessarily the ele-
ment that make models realistic and meaningful. A model can represent
any type of processes, but again, its main goal is to reproduce some exper-
imental findings. Data thus act as a constraint that guide the modeler to
select the most appropriate modeling technique, as well as its specific struc-
ture and parameters. While for the great part of the last century the majority
of data on metabolic systems was produced by biochemical assays, in the last
decade all omics technologies have dominated the processes of data genera-
tion. As it is reasonable to think that these technologies will be pervading in
the near future, we will limit our descriptions to these

• Genomics. Explosive advances in next-generation sequencing tech-
nologies (NGS) and computational analyses have enabled exploration
of somatic protein-altered mutations in most cancer types. However,
there is limited information on somatic mutations in non-coding re-
gions, including introns, regulatory elements and non-coding RNA.
Whole genome sequencing (WGS) approaches can be used to compre-
hensively explore all types of genomic alterations in cancer and help
us to better understand the whole landscape of driver mutations and
mutational signatures in cancer genomes and elucidate the functional
or clinical implications of these genomic alterations. Whole exome
sequencing (WES) is nowadays the main platform for cancer genome
sequencing and vast amounts of mutational data in protein-coding re-
gions have been accumulated for all types of common and rare human
tumors.

• Transcriptomics is the large-scale study of RNA molecules by use of
high-throughput techniques. It examines the abundance and makeup
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of a cell’s transcriptome. In contrast to DNA, which is largely identical
across all cells of an organism, the actively transcribed RNA is highly
dynamic, reflecting the diversity of cell types, cellular states and regula-
tory mechanisms. Because a transcriptome profile can be regarded as a
signature or snapshot of the underlying cell state, the experimental pro-
filing of samples and specimens can provide insights into their unique
biology [27]. Classical methods such as Northern blotting and RT-PCR
allowed the steady state measurement of selected transcripts. Micro-
arrays and Affymetrix chips followed, but are now progressively being
replaced by deep sequencing technologies. Next-generation sequenc-
ing methods provide with the mapping and quantification of several
thousands of transcripts in single experiments[121].

In particular, transcriptome-wide gene expression profiling has proved
useful to better understand the molecular mechanisms underlying prog-
nosis and drug sensitivity, also for the study of cancer. Cancer cells are
characterized by altered protein function and aberrant transcriptional
patterns, which are the consequence of somatic mutations and epi-
genetic alterations. More recently, RNA editing, post-transcriptional
modifications and various non-coding RNAs have represented essen-
tial aspects of transcriptomics. Of particular relevance to cancer, the
base-pair resolution and coverage of modern techniques enabled the
detection of expressed somatic mutations, including single nucleotide
variants (SNVs) and gene fusions. As we will outline more specifically
in section 1.5, several methods to integrated gene expression data in
metabolic models have been developed.

• Proteomics. A qualitative proteomic analysis is focused on the study
of proteins present in various types of biological materials, in particu-
lar to identify their functions, structures, and interaction sites or post-
translational modifications. On the other side, comprehensive quan-
titative descriptions of biological systems at protein levels are more
recent. In fact, the fast-evolving Mass Spectrometry (MS) techniques,
the identification, and quantification of all of the proteins in a biologi-
cal system are still an experimental challenge. Proteomics allows ones
to unravel disease-related molecular mechanisms and to identify new
disease biomarkers to be used in clinical applications for diagnosis, for
evaluation of therapy outcomes and for follow-up analyses. Clinical
proteomics, in fact, enables the quantitative and qualitative profiling
of proteins and peptides that are present in clinical specimens like
body fluids, cells, and tissues. Concerning proteins of metabolic inter-
est models, the availability of public dataset reporting concentrations
of metabolic enzymes is still limited [71].

• Metabolomics, the youngest of the omics technologies, is able to con-
currently identify thousands of metabolites. Considering that the dif-
ferent amounts of metabolites obtained under perturbed experimental
conditions reflect the changes in enzyme activity, metabolomics pro-
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vides a biochemical snapshot of the physiological and pathological
state of a cell or an organism. Metabolic profiling provides a com-
plete functional picture a particular phenotype, derived from the in-
tegration of information stored in the genome and decoded via tran-
scription and translation, together with information coming from the
environment. Thanks to this comprehensive representation of cellu-
lar phenotypes metabolomics has recently found a valuable use in the
clinical field to identify new biomarkers in neurological, cardiovascular
and oncological diseases [206, 253, 269, 23]. Caution should be how-
ever used when we interpret metabolomics data. Studying and mea-
suring metabolic processes occurring inside the human body is in fact
an inherently hard challenge. Metabolites, due to their small molecular
weight, are highly volatile compounds that can be easily and quickly al-
tered. Metabolic reactions, on their side, occur at a very fast time scale,
so their activity can change quickly with changes in the surrounding
environment. Despite its limitations, metabolomics holds the promise
to be the technique most widely employed for the overcoming years to
study metabolic phenomena in vitro and in vivo.

• Fluxomics. Fluxomics is the determination of the actual reaction rates
within metabolic networks. Extracellular fluxes between cells and their
environment can be easily derived from time-dependent changes of
extracellular metabolite concentration. By contrast, intracellular fluxes
are not directly measurable but can be inferred from 13C-isotope tracer
experiments. When cells are grown on a 13C-enriched substrate, 13C
atoms propagate through the metabolic network according to the metabolic
pathways and their activity. The 13C labeling patterns of metabolic in-
termediates and cellular components thus depend on the intracellular
fluxes. Significant progress in the development of high-throughput
fluxomics made in the last few years has contributed to deepening our
understanding of cellular metabolism.

public databases In the process of model building, both the structure
and the parameters need to be defined. Besides the experimental data, dif-
ferent types on biochemical information, both qualitative and quantitative,
needs to be assembled and integrated in the model. To store and access this
scientific information, a large number of open on-line databases have been
created during the last years. We report here a synthesis of the fully detailed
overview proposed in [29] and illustrated in figure 3:

• Pathways databases. Currently, there exist a vast number of databases
containing information on biochemical reactions. MetaCyc [21] con-
tains descriptions on large metabolic pathways and regulatory informa-
tion. The KEGG database [76] includes reaction records that are linked
to metabolic enzymes, genes and also to functional categories like path-
ways. The BIGG database [199] was instead constructed to store cu-
rated genome-scale metabolic reconstructions with a standard nomen-
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clature, exportable in Systems Biology Markup Language (SBML), thus
facilitating the comparison between different organisms.

• Experimental data repositories. The availability of experimental data
is a fundamental requirement to build kinetic models. For this purpose,
curated databases with metabolomics and/or fluxomics are essential.
The experimental metabolite concentrations, flux data and enzyme lev-
els are comprehensively collected from the literature in KiMoSys [30].
ArrayExpress [154] incorporates genomics data from high-throughput
functional genomics experiments and PRIDE archive [181] includes
proteomics data, including protein and peptide identifications [29].

• Kinetic information databases. The SABIO-RK [284] database includes
kinetic parameters as well as associated mechanistic rate laws for a
large collection of reactions and an automated service which offers the
possibility to export this information with annotations in SBML format.
The BRENDA [202] database is the main collection of enzyme func-
tional data available to the scientific community. All these databases
are linked to external sources such as UniProt [258], NCBI taxonomy
and PubMed ID [198] to provide further semantic annotations. When
we make use of these parameter values, we should always be aware
that these depend on the conditions in which they were measured,
and that these conditions are not always reported in the databases.

• Model repositories. Curated and reusable models describing biologi-
cal systems can be found in publicly available on-line repositories such
as BioModels database [106], JWS online model database [146] and the
Physiome Model Repository (PMR2) [297].
The BioModels database is probably the most well-known web source
to store published curated models of biological systems. It provides
a large variety of standard formats, including the SBML, and model
entities are annotated with cross references to external databases such
as ChEBI [37], KEGG [76] and UniProt [258].

Choice of modeling technique

Once the goal is set, the system is identified, experimental hypotheses
are formulated, data availability is assessed, and the level of abstraction is
chosen, we have collected enough information to select the computational
technique that best suits our needs. As we anticipated, we expanded the
classification proposed in [23], and we choose to organize the multitude of
computational models that can be built to describe metabolic systems into
four main categories that differ for the level of abstraction used: Interaction-
based models, constraint-based models, cybernetic models and mechanism-
based models. Each of them will be presented in the next paragraphs.
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qualitative models

Interaction-based models Interaction-based models are built with pro-
cesses of network reconstruction and contain only structural information.
They are qualitative maps of the system, that disregard quantitative details
of the stoichiometry of reactions. Interaction-based models are normally
exploited to study topological properties of the network with methods of
network analysis.
In a given network, several topological features can be investigated: the de-
gree distribution (statistical indexes on the number of arcs connecting nodes),
centrality measures (indexes that indicate the relative importance of nodes
and arcs), and the presence of hubs (highly connected components), motifs
(repeated architectures), and clusters (portions of the network with a high
node density) [4, 23]. These analyses unraveled that in metabolic networks
most of the nodes have few edges and only a few nodes are hubs. This fea-
ture can be described mathematically as a degree distribution of nodes that
follows a power-law. Networks of this kind, defined scale-free networks,
prove to be robust if nodes or edges are randomly removed, but very frag-
ile if hubs are disconnected. Also, metabolic networks show a small-world
character, that is, any two metabolites in the network can be connected by
paths that follow a relatively short number of reactions [45, 23].

quantitative models All quantitative modeling approaches have in com-
mon a process of network reconstruction. Reconstructing a metabolic net-
work means to list all the reactions present in the system and to specify the
reactants and the products for each of them. This structural information can
be stored in a matrix, namely the stoichiometric matrix. The number of The stoichiometric

matrixrows in the stoichiometric matrix corresponds to the number of metabolites
present in the system while the number of columns equals the number of
reactions in the system. The non-zero elements of each row represent the
stoichiometric coefficients of the related metabolite in the reaction indicated
by the column. If the metabolite is substrate of the reaction, the stoichio-
metric coefficient would have a negative sign; otherwise, if it is a product,
the stoichiometric coefficient would have a positive sign. The stoichiometric
matrix is generally a sparse matrix as the number of metabolites involved in
each reaction tends to be much smaller than the number of reactions in the
system.

Network reconstructions are typically created in a bottom-up fashion based Network
reconstructionon genomic and bibliomic data. As already mentioned, network reconstruc-

tions can vary in size, from genome-scale networks to smaller core and toy
models. The generation of networks derived from top-down approaches (in-
ference of component interactions based on high-throughput data) will be
instead discussed in section 1.2. Because of their extension and complex-
ity, genome-scale (GS) metabolic network reconstructions result many years
of collaborative work among different groups. As extensively described
in [240], in order to speed up this procedure, automated strategies are typ-
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ically exploited to aid the creation of an initial draft network starting from
the genome sequence or annotations of an organism. In most of the cases ad-
ditional process of manual curation and refinement are needed. This phase
can also be supported by semi-automated procedures, that for instance can
be used to identify missing reactions in the network [23].

To date, the most successful efforts to reconstruct a GS model of human
metabolism is represented by Recon 1 and its successive extensions (Recon
2 [241], 2.2 [233] and 3D [18]). The initial reconstruction exploited an accu-
rate human genome sequence annotation and from these genes, by taking
into account the protein-gene relationships, it was possible to identify the
metabolic enzymes and hence the reactions that they catalyze. These reac-
tions were carefully formulated considering the stoichiometry of reactants
and products, the substrate specificity, their directionality and reversibility
and account for the conservation of mass and charge-based metabolite ion-
ization. Moreover, metabolites in Recon 1 were correctly compartmentalized
to properly consider transport and exchange reactions in the model. The
entire reconstruction process consisted of various rounds of refinement and
validation, supported by the review of online databases, primary articles,
and textbooks.

After the network of the system is identified, a quantitative models of
metabolism can be built to represent some characteristics of the system, like
biochemical concentrations and reaction velocities. Due to their complexity
and variability, biological processes are inherently difficult to model quan-
titatively. This stochastic behavior, indeed, can be only be represented by
means of stochastic models. A few fundamental concepts of stochastic sim-
ulation are outlined in section 3.
Specific characteristics of metabolic systems allow modelers to exploit the
so called fluid approximation, further described in 3 and to build a deter-
ministic description of the system, based on Ordinary Differential Equations
(ODEs), that well approximates the behavior of a stochastic model.
A quantitative description of a metabolic system is thus usually given as

dm

dt
= S · v m(0) = m0

that evidences how metabolite concentrations, m, and reaction velocities,
v, are the object our focus. S, the stoichiometric matrix, defines how the
changes in metabolite concentrations, dmdt , depend on the values of v.

Constraint-based models Both constraint-based models and cybernetic
models, considerably different in their approach, share a common perspec-
tive of intracellular metabolism that requires to introduce the term teleon-
omy, defined for the first time by the evolutionary biologist Ernst Mayr to
describe the apparently end-directed behavior of biological systems. In con-
trast to the philosophical concept of teleology, teleonomy explains these
goal-directed behaviors as the expression of genetic programs. A teleonomicTeleonomy

view of nature hence considers that genomes of all living organisms store
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information acquired during a long history of natural selection, and thus
that only genomes encoding phenotypes with optimal performances have
been selected [292]. Alternatively rephrased, teleonomy considers that the
direction of evolutionary pressures define the functioning of intracellular
metabolic systems and, even though cells do not concretely maximize a spe-
cific metabolic task, starting from this assumption offers a description of
intracellular metabolism that well approximates its real behavior.

Flux Balance Analysis (FBA) was the first method formalized in these Flux Balance
Analysis (FBA)group. The goal of flux balance analysis is to compute the distribution of

reaction fluxes in a metabolic system at the equilibrium. The equilibrium,
or steady state, is a situation that follows each perturbation, and in which
metabolite pools remain constant, with no more net production or consump-
tion over time. The transient period occurring after each perturbation of the
system is, instead, neglected. Mathematically, the intracellular steady state
is expressed as:

dm

dt
= S · v = 0 (1)

where m is the vector of intracellular metabolites, and v is the vector of
reaction fluxes we seek to identify.

Creating a FBA model consists in defining an optimization problem and
solving it with linear programming algorithms. Thus, FBA requires a pro-
cess of network reconstruction, with the creation of the stoichiometric matrix,
the definition of an objective function, and of some equality and inequality
constraints that define the space of feasible solutions explored in the opti-
mization process.

FBA output, a vector of reaction fluxes at the equilibrium, corresponds to
the left null space of the matrix S. This null space, in geometrical terms, is a
convex polyhedral cone which in the context of metabolic network analysis
is called the flux cone [85]. Equation 1.1 defines a system at the steady state,
as it consists of a list of equality constraints that express the fact that the net
production or consumption of each metabolite has to be zero.
Since metabolic networks typically include more reactions than metabolites,
these equality constraints constraints alone leave the system under-determined.
The space of all feasible solutions is further reduced adding inequality con-
straints that specify the minimum and maximum value of each reaction
flux. These bounding values are defined according to some experimental
evidences reported in the literature.
Flux balance analysis then retrieves the distribution of fluxes that maximizes,
or minimizes, the value of an objective function J. This is defined on the The objective

function
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user’s choice and classically takes the form of a linear weighted sum of reac-
tion fluxes like:

J =

N∑
k=1

ckvk = cTv,

where c is a vector of coefficients that weight the contribution of each reac-
tion to the objective function.
Supported by its large applicability in the field of Metabolic engineering,
the maximization of biomass is the objective function most frequently used.
Maximization of ATP or minimization of intracellular fluxes have been also
successfully used to reproduce metabolic phenotypes [176, 23]. In all these
cases the objective function expresses what is believed to be a physiological
behavior of the cell.
Alternatively, the objective function can be defined as the maximization of
the production of a specific metabolite. In this case flux balance analysis
does not aim to describe the real behavior of the system but it is used to
explore the metabolic capabilities of the cell. In a classical FBA formula-
tion the objective function and the constraints are linear with this respect to
the variables. When this is the case, the optimization problem can be solved
with linear programming algorithms. FBA variants with non-linear objective
functions or constraints have been proposed, and are reported in [68, 23].
In the solution of a linear programming problem, a unique maximum value
of the objective function often does not coincide with unique solutions of
the optimization problem. When this is the case, multiple flux distributions
show equally optimal values of the objective function. Several techniques,
that further explore the solution space, have addressed the issue of indistin-
guishability between optimal solutions, like the decomposition of the flux
distribution into Elementary Flux Modes (EFM), or Flux Variability Analysis
(FVA).

Elementary Flux Modes EFMs are minimal pathways that connect the in-Elementary Flux
Modes puts with the outputs of the model. In mathematical terms, minimal path-

ways are support-minimal vectors of the flux cone. EFM are then formally
defined as the nonzero, support-minimal vectors of the flux cone. Impor-
tantly, every steady-state flux distribution of the system can be represented
as linear combination of EFMs [300, 85]. Thanks to their properties, EFMs
have become useful in the analysis of medium-scale metabolic networks for
the following applications, among others [85]:

• to identify minimal conversion routes in metabolic networks

• to predict enzyme and reaction essentialities

• to characterize equally optimal steady state flux distributions

• to investigate metabolic trade-offs

Flux Variability Analysys (FVA) is another method used to identify equallyFlux Variability
Analysys optimal solutions. In this case the algorithm disregards the entire flux space,
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and instead focuses on one reaction at time to identify the range of flux val-
ues that does not alter objective function optimality.

EFMs analysis, as well as FVA, are however, computationally intensive
tasks that are normally difficult to handle for genome-scale models. Algo-
rithms that speed-up these computations have been however proposed.

The reliability of a FBA result eventually depends on the goodness of the
defined constraints and objective function. In fact, both flux constraints and
the coefficients of the objective function are parameters that are eligible to be
tuned. It is still debated how the most appropriate objective function should Choice of the most

appropriate objective
function

be defined. The choice of biomass maximization is normally motivated by
theoretical speculations around the evolutionary pressures the cells histor-
ically had to face. However, simply from a theoretical standpoint, many
counter arguments could be proposed. In the case of microorganisms in
natural environments, for instance, processes of environmental stress, explo-
ration, adaptation and selection always involve communities and not single
microorganisms. If we accept the concept of co-evolution, then it appears
clear how evolutionary pressures acting on the entire community would se-
lect for the fastest growing community rather than for the microorganism
that grows fastest in isolation.
In the case of multicellular organisms, like humans, the situation even over
complicates, as evolutionary pressures here act on the entire organism and
not at the level of single cells. While deep and fascinating, theoretical con-
siderations should in practice, and as more appropriate, leave space to more
empirical ones. If the modeler acknowledges this uncertainty about the def-
inition of the objective function, some educated guesses may help him to
identify the specific objective function that results in the metabolic pheno-
type that is closest to experimental data, like in a process of parameter esti-
mation.

FBA is the progenitor of many other techniques. Among these, dynamic
Flux Balance Analysis (dFBA) and its extensions provide a dynamic descrip- Dynamic Flux

Balance Analysistion of extracellular metabolites concentrations, while the intracellular net-
work is considered at the steady state.
In the literature, two slightly different implementations of dFBA can be
found. In a first one, proposed by Varma and Palsson [265], the bound-
aries of uptake reactions are dynamically adjusted as metabolites become
depleted in the extracellular environment, but no kinetic expression for up-
take fluxes are defined.
In a second formulation [120], a Dynamic Optimization Approach (DOA)
and Static Optimization Approach (SOA) were proposed.
DOA uses an optimization process over the entire time period of interest to
obtain time profiles of fluxes and metabolite levels. The dynamic optimiza-
tion problem is transformed to a non-linear programming (NLP) problem
and the NLP problem is solved once.
In contrast SOA requires that the total simulation time is divided into sev-
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eral time intervals and instantaneous optimization problems are solved at
the beginning of each time interval, followed by ODEs integration over the
interval. In SOA, the number of variables that have to be solved is far fewer
in comparison, and the optimization problem is an LP problem as opposed
to the NLP for DOA. The SOA version has thus received a much larger
appreciation from the scientific community. Many works like [67] uptake
fluxes are computed with mechanistic rate laws, starting from extracellular
concentrations. These values are used to dynamically adjust FBA constraints
at each simulation step.
Many other derivations and extension of FBA have been proposed recently.
For an overview of all FBA-related approaches, here not addressed, the
reader might refer to [64].

Cybernetic models The mathematician Norbert Wiener first coined the
term cybernetics to describe a scientific field of “control and communica-
tion theory, whether in the machine or in the animal”. He envisioned
that the fields of engineering systems and biological systems show inter-
esting commonalities with respect to regulatory processes. Also, he felt that
knowledges and approaches developed in one field could be transferred and
adapted to the other.
Building onto the definitions of cybernetics and teleonomy, in mid 80s Ramkr-
ishna and coworkers first defined cybernetic modeling as a way to describe
in mathematical terms the teleonomic principles of biologial systems. Sim-
ilarly to FBA in fact, cybernetic modeling assumes that metabolic systems
have been engineered by nature, through evolutionary forces acting for mil-
lennia, and thus show optimal performances. With a long series of artic-
ulated refinements, cybernetic models indeed proved how the approach of
optimal control theory, traditionally applied in engineering applications, can
help decipher intracellular metabolic phenomena [292].
In cybernetic models the state of the system is defined as a vector of concen-
trations of biochemimcal species, in specific metabolites y, subdivided into
extracellular s and intracellular m, enzymes e and the biomass component
c.

x =



y

e

c


 , y =

[
s

m

]

The dynamic behavior of the system is reproduced according to the follow-
ing set of equations:

ṡ = Ss diag(v)rc

ṁ = Sm diag(v)r− µm

ė = α∗ + diag(u)rE − diag(β)e− µe

ċ = µc

where Ss and Sm represent the rows of the stoichiometric matrix S corre-
sponding to s and m, respectively, and the “diag” operator forms a diagonal
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matrix from its vector argument [293]. The regulatory strategies that the
cell implements, like a rational controller maximizing its goals, are here de-
scribed by u and v, the vectors of the so-called cybernetic control variables.
The u vector mimics transcriptional and translational control of the rates
of enzyme synthesis. The v vector, instead, mimics the control exerted by
metabolite concentrations on enzyme activities, like the feedback inhibition
of the product of a pathway on an upstream enzyme that contributes to its
synthesis. The enzyme balance equation includes a constitutive synthesis
term α∗ that is necessary to maintain a basal level of each enzyme. A first-
order degradation term is also included in the enzyme balance, with rate
constants specified by the vector b. The specific growth rate µ is computed
by summing the net specific production rates of all intracellular components,

µ = hTSm diag(v)r

where the conversion factors contained in h are required to express each
metabolite concentration on a weight fraction basis. Unless otherwise noted,
the kinetic expressions used to evaluate the elements of r and rE are given
by

rj = kjej
∏

i∈I−(j)

yi
Kij + yi

rEj = αjb
∏

i∈I−(j)

yi
Kij + yi

where I−(j) is the set of metabolite indices associated with the substrates
of the jth reaction, I−(j) = i : Sij < 0. The multiplier b that factors into the
expression for rEj represents the fraction of biomass ascribed to the enzyme
synthesis machinery. Each model to be discussed includes balances on a B
pseudocomponent, which encapsulates all of the DNA, RNA, protein, lipid
and other core biomass constituents not explicitly considered in the remain-
der of the biochemical network. The factor b is then equivalent to the specific
concentration of B [293].

In order to solve the system equations just defined, the vectors of cyber-
netic variables u and v need to be calculated. This is done with the Match-
ing and Proportional Laws, whose definition [294] rely upon optimal control
heuristics. ∑

i

ui = 1

ui =
pi∑NS
i=1 pi

vi =
pi

maxi∈{1,2,...,Ns} pi

These laws state that the implementation of cellular metabolic strategies
should follow the economic principle of “return on investment”. This can be
explained intuitively as a policy by which the more a reaction contributes to
cellular growth, the more it is activated by the cell.
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Mechanism-based models Mechanism based the models have the poten-
tial to reproduce the dynamics of the system. After all metabolites enzymes
and reactions in the system are listed, a dynamic description of the system

dx

dt
= S · v(x,k) , x(0) = x0

can be produced starting from the following model elements: a scheme of
the mechanism of molecular interactions among biochemical components of
the system, a mathematical representation of these interactions, some spe-
cific values for the kinetic parameters appearing in this representation, and
a set of values for the biochemical concentrations at the beginning of the
simulation. All of these model elements have to be defined with caution,
starting from a review of the information available in literature.

Interaction network The scheme of interactions among biochemical com-
ponents of the system is part of model structure, which thus, for mechanism-
based models, is not limited to the stoichiometry of the system. As a com-
plete knowledge regarding the interactions between an enzyme and the full
list of substrates, products, activators and inhibitors is rarely available, the
structure of mechanism based models is often affected by indetermination.
The assessment of model indetermination will be discussed in section 1.2

Reaction rate laws The values of reaction fluxes are computed with spe-
cific mathematical expressions. These are defined in accordance to some
reaction rate laws.
Reactions rate laws are classified in different categories, depending on the
level of accuracy of their description. An extensive and detailed summary
of the meaning and use of the most important rate laws is reported in [192].
Screening the literature, however, it can be noticed that authors still do
not fully agree on a unique classification of rate laws. The definition of
mechanism-based, fully parameterized, canonical, approximate rate laws are
all terms that in different papers take slightly different meanings.
In the absence of a terminology consistently and uniformly used by the com-
munity, in this thesis we will chose a less theoretical but rather practical
scheme of classification. The term “canonical”, for instance, which is used
to indicate that the definition of the rate law is purely based on the metabolic
interaction network and not on further assumptions, is here abandoned. We
are aware that this may appear a gross oversimplification of formal classifica-
tions, but we decided to give our own re-interpretation of this classification
to make it more affine to the concepts we will present in chapter 3

First of all, we consider that reaction rate laws are essentially mathematical
models that describe how the reaction velocity depends on the concentration
of the main biochemical entities involved. Thus, as for any other model, all
reaction rate laws are representations of a real behavior and, as such, include
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some level of approximation. From our perspective, it is more useful to
distinguish two levels or grades of this approximation, depending on the
process that generated it.

• In a first group, to which we will alternatively refer as fully detailed,
fully parameterized or mechanistic-based rate laws, we include all the
kinetic representations which depend on a enzyme-specific reaction
mechanism and are consistent with thermodynamic laws. Typically
these rate laws have been proposed and refined during decades of
research in biochemistry. In most of the cases, they require the values
of many kinetic parameters to be defined.

• In a second group, to which we will refer as simplified or approximate
rate laws, we include those expressions that, exploiting some assump-
tions and disregarding intentionally some level of detail, simplify a
fully detailed rate law.

The simplest and most widely used reaction rate law is the law of mass
action (LMA). LMA has been traditionally used to model the velocity of uni- Law of mass action

or bi-molecular reactions. These reactions are called elementary reactions, Fully
parameterized rate
laws

due to the fact that they each represent one single molecular interaction
and so they cannot be further decomposed into intermediate steps. The
simplest process by which an enzyme transforms a substrate into a product
can be seen as a sequence three elementary reactions: the binding between
an enzyme (E) and a substrate S into the enzyme-substrate complex (ES), the
backward dissociation of ES into E and S, and the dissociation of ES into free
E and the product P [192].

E+ S
k
1+

k1-

ES
k2→ E+ P (2)

The LMA representation of the elementary steps of synthesis and dissocia-
tion of the enzyme-substrate complex is the following:

v1 = k
+
1 E · S− k−1 ES (3)

The net flux through reaction v1 equals the difference between the two uni-
directional fluxes. Intuitively the law of mass action provides a relation
between reaction rates and molecular concentrations in a constant volume
assuming that molecules are equally distributed in the space.
It is clear that if all enzyme-catalyzed reactions in the system were decom-
posed into their elementary steps, the dimension and the complexity of the
model would explode. For this reason, it is normal practice in biochemistry
that all the elementary reactions participating in a single enzymatic reac-
tion are modeled with a unique mathematical expression. The first general
rate equation that describes enzyme-catalyzed reactions was derived in 1903

by Henri, and ten years later slightly modified by Michaelis and Menten,
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who confirmed Henri’s experimental work. Henri-Michaelis-Menten (HMM)
equation is defined as: Henri-Michaelis-

Menten rate
law

v =
k2E · S
Km + S

, vmax = k2E

Where E is the free enzyme and vmax is the maximum velocity that would
be observed when all the enzyme is present as ES. In order to derive this
equation, some specific assumptions had to be made. They limit the validity
of the use of HMM equation to the cases in which:

1. the enzyme acts as a catalyst

2. the enzyme and substrate react rapidly and form an enzyme substrate
complex

3. only a single S and a single ES complex are involved and the ES com-
plex breaks down directly into the free enzyme and P

4. E,S and ES complex are at the equilibrium; that is, the rate at which ES
dissociates into E + S is much faster than the rate at which ES breaks
down to form E+P

5. The concentration of S is much larger than the concentration of E so
that the formation of ES does not alter significantly the concentration
of S

6. the overall rate of the reaction is limited by the breakdown of ES to
form E and P, described as the catalytic step

7. the velocity is measured during the very early stages of the reaction so
that the reverse reaction is insignificant

The assumption that only the early components of the reaction (E,S and ES)
are at equilibrium is called a quasi equilibrium or rapid equilibrium as-
sumption.
HMM equation can be derived from the individual elementary steps mod-
eled with LMA. Thus, all the parameters that appear in HMM equation
result from the combination of multiple elementary reaction rates. Much of
the success earned by HMM equation is due to the fact that these aggregated,
or macroscopic, parameters can be easily retrieved by fitting the results of
enzymatic assays in standard conditions.

Since then, HMM equation has become the rate law most widely used
to compute reaction velocity starting from the concentrations of substrates
and products. We have to be careful that every time we use HMM equation
we are implicitly accepting all Henri’s assumptions. In particular, while in
biochemical practice the quasi-equilibrium is almost always assumed, this
choice should be accurately motivated by specific experimental conditions,
reviewed in [200]. Some works indeed have observed that, specifically in the
context of a human body, this does not necessarily hold true [242]. Consider-
ing that in any case this assumption has eventually fostered many successful
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modeling efforts, during our works we decided to not address these theoret-
ical considerations in detail and to exploit the assumption in the majority of
our models.

After its formalization, the HMM equation worked as a baseline model
upon which, during decades of biochemical studies, many more complex
formulations where defined. Progressively more complicated reaction mech-
anisms were modeled, involving multiple enzymatic subunits and different
types of regulators. Every time the reaction rate is modeled taking into
account all the known molecular interactions between the enzyme and all
substrates, products and allosteric regulators, we consider this reaction as
modeled with a mechanism-based, fully detailed and parameterized equa-
tion.

On the other side, a specific attention should be dedicated to approximate
rate laws. These are mainly aimed to provide generic and compact expres-
sions that can be be applied to compute any reaction flux in the system. Tak- Approximate rate

lawsing a “one-size-fit-all” approach, simplified kinetics introduce higher approx-
imations in the model, and thus rise the risk of providing erroneous model
behaviors. As a main advantage, however, they can be used to test more
easily the scalability of new computational methods to wider systems. Auto-
mated procedures and modular network structures can both be exploited to
make the use of simplified kinetics worth of exploration. The most success-
ful modeling frameworks based on approximate kinetics will be mentioned
later on in this paragraph.

Differently from what just seen, the LMA has been also used to represent
a complete enzyme catalyzed reaction:

2A
kf

kr
B v = kfA

2 − krB (4)

whereA and B are the substrate and product respectively and the exponents, Law of Mass Action

also called reaction orders, equal the stoichiometric coefficients related to the
specific biochemical compound. In this case both rate constants are propor-
tional to the concentration of the enzyme, which is not represented explicitly
in the expression. In this sense, the LMA is here considered an approximate
kinetics. Information about the mechanisms, in fact, are lost, but its formu-
lation can be derived from the sole interaction network. The equilibrium
Keq constant defining the ratio between the forward and reverse rates of a
bidirectional interaction, can be used to rewrite equation into

v = kfA
2 −

1

Keq
B , Keq = kf/kr (5)

where Keq. recapitulates the thermodynamic properties of the reaction, and
can be calculated with

∆G◦r = −RT ln(Keq)

where ∆G◦r is the Gibbs free energy, T is the temperature in Kelvin and R is
the universal gas constant. From equation 2 it can be noticed that for each
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LMA modeled reaction, if thermodynamic information available allows us
to define the value of Keq, so that just one kinetic parameter is needed. This
aspect made LMA particular appealing to be exploited by the MASS ap-
proach [73], later described.

Other simplified rate laws, formulated as power-law or log-linear func-
tions based on linear Taylor approximation, were proposed to expand the
descriptive capabilities of LMA while still retaining a compact formulation.

Both Generalized Mass Action (GMA) and S-system were defined by Sav-
ageau inside the Biochemical System Theory (BST) [274] . A general formu-Generalized Mass

Action and
Biochemical System

Theory

lation is the following:

vi = γi

n∏
j=1

X
fij
j

where the rate constant γi is non-negative and the kinetic orders fij are
positive for variables Xjthat have an augmenting or activating effect on vi,
negative for variables that have an inhibiting effect, and 0 for variables that
do not have a direct effect on vi at all.

A S-System model represents a simplified version of a GMA model, where
one single power-law term aggregates all the influxes/effluxes to/from a
metabolite pool. For instance, if the concentration of a metabolite is modi-
fied by two reactions producing it and two reactions consuming it, the ODE
of that metabolite would be composed of four terms (two negative and two
positive) in a GMA system model, while just of two aggregated terms (one
negative and one positive) in a S-system model. while some situations can
cause inconsistencies in S-Systems, they generally provide a highly compact
description of the system but still able to retain its most important features.
GMA and S-system models have been used extensively for applications in
both in systems and synthetic biology [116].

Another approximate rate laws, the so called Loglin and Linlog rate laws,
are inspired from the developments of Metabolic control analysis (MCA).Loglin and Linlog

MCA, one of the methods of sensitivity analysis discussed in paragraph 1.3,
aims to assess how, around a specific reference condition, the model is in-
fluenced by changes in its variables and parameters. A reference condition
is normally chosen as a specific steady-state of the system, characterized
by reference steady-state fluxes, and reference concentration of metabolites
and enzymes. Seen in the context of metabolic engineering, MCA identifies
the variables and parameters that should be modified in order to control
system’s behavior. Developed in parallel by Kacser and Burns and Hein-
rich and Rapoport [281], it introduced the key concepts of elasticities, which
are reaction specific properties, and control coefficients, global properties of
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the system. An elasticity, which quantifies the effect of a metabolite, like a
substrate S, on a reaction flux v, is defined as

εvS =
∂v

∂S

S

v
=
∂ ln v
∂ lnS

The Loglin, and the later developed Linlog rate laws, use elasticities as
kinetic parameters and offer approximations of the system around a specific
steady state. Regarding the performances of GMA, S-system, Loglin and Loglin and Linlog

Linlog models, it is hard to evaluate them independently from the reference
condition that is considered, and they loose applicability in cases in which,
for practical reasons, the reference conditions cannot be characterized [192].

Also a reversible form of the HMM rate equation, although linked to well Henri-Michaelis-
Mentendefined biochemical principles and assumptions, inevitably loses accuracy

and thus should be considered an approximate kinetics every time it is used
with assumptions that oversimplify the reaction mechanism disregarding
some molecular interactions.

Another simplified rate law, the Hill kinetics was defined for multimeric
enzymes, i.e. enzymes with multiple catalytic sites. If the binding of one Hill

substrate induces structural or electronic changes that result in altered affini-
ties for the vacant sites, the curve of reaction velocity will no longer follow
Henri-Michaelis-Menten kinetics but will display, instead, a sigmoidal shape.
An enzyme with with these properties will be classified as allosteric, a term
originally defined by Monod Changeux and Jacob in 1963. If an allosteric
enzyme has n binding sites and if their cooperativity in substrate binding
is very marked then the reaction is most commonly modeled with a Hill
equation.

v =
vmax[S]

n

(KM)n + [S]n

Besides the fascinating potential of simplified rate laws, they should be
adopted with caution. Authors in [42] recently explored the validity of us- Studying the impact

of rate laws
aproximations

ing approximate rate laws with varying levels of assumptions in the context
of a red blood cell (RBC) kinetic model. They found that HMM rate law
with measured kinetic parameters could consistently reproduce the behav-
ior of the system. When, instead, they additionally assumed enzyme satu-
ration, neglected entirely enzyme behaviors or assumed Michaelis constants
equal to substrates concentrations, substantial dynamic and structural issues
would have arisen. They concluded that if, on one side, fully approximate
models can effectively contain useful information, on the other fully-detailed
mechanistic models become necessary to predict the system dynamics with
a reasonable accuracy.
In [20] Bulik et al. raised the issue that models built with simplified kinetics
show good approximations near a specific reference condition, but their per-
formance tends to become poorer moving farther from it. In their analysis,
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they compared the reliability of approximate rate laws to reproduce complex
metabolic behaviors assessing the range of physiological conditions under
which a kinetic model of erythrocyte metabolism based exclusively on sim-
plified rate equations still adequately describes the system’s behavior.
In specific they produced synthetic time course data with a model of the red
blood cell [20]composed of full mechanistic rate equations for 25 enzymes
and five transporters. Then, they built new models of the same system,
where various types of simplified rate equations replaced all of the original
ones.
Mass action as well as LinLog, Michaelis–Menten and power law rate laws
were tested. The goodness of these approximate models was assessed com-
paring their steady state behaviour after perturbations in the consumption
of ATP and glutathione (GSH) with the respective behavior of the original
model, considered as a reference standard. The authors concluded that
in most tested cases, the simplified models failed to reproduce these post-
perturbation responses even close to the reference in vivo state.

The approaches and results presented in this thesis concern specifically
mechanism-based models. In the following sections, in order to be more
coherent and focused on this subject, we will only refer to computational
approaches developed for mechanism-based models.

1.2 Creation of kinetic models

Once the parametric structure of the model is defined, the following task
consists in the proper model construction.

In this section, we will review some of the most relevant approaches used
to build kinetic models. Looking at the overall process, the work-flow of
building a kinetic model can follow a bottom-up or a top-down approach.
With a bottom-up strategy the behavior of the system is retrieved from the
integration fundamental components, whereas top-down approaches seek
to describe the global view of it. Both approaches present strengths and lim-
itations, and often is the case that the most accurate results can be obtained
combining them.

• Bottom-up approaches seek to capitalize all the amounts of biochem-
ical knowledge accumulated in the literature and stored in databases.
Important public databases such as BRENDA [202], SABIO-RK, [284]
and KiMoSys [30], contain specific enzyme kinetics and the associated
parameters, while BioModels [106]and JWS [146] serve as model repos-
itories.
With their strategy, bottom-up models try to reconstruct the behavior
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of the system integrating information of both the structure and the
kinetics of its specific components. This information ultimately con-
sists of other models, or portions of models, already built and vali-
dated in previous works. It is often the case that these models had
been originally produced with different goals, in different experimen-
tal conditions and with different approaches. Moreover, the available
information is characterized by a different level of detail depending
on which portion of the system we are observing. It can then be
easily understood why the main difficulties of bottom-up strategies
are related to the heterogeneity of data, which can consistently affect
model outcomes. Despite these limitations, several models have been
built [24, 28, 192, 215]

• Top-down approaches, on the contrary, do not rely on the mechanistic
information already available. Instead, they try to exploit phenomeno-
logical data of the system as a whole to infer details of its components.
Thus, while in bottom-up approaches parameters are retrieved fitting
the individual components to the data, in the case of top-down ap-
proaches, data fitting is always performed on the entire model.

In the process of model creation, many approaches so far proposed have
made use of approximate rate laws.

For instance Jamshidi and Palsson, in [73], formulated the Mass action
stoichiometric simulation (MASS) approach, in which they applied the LMA
rate law to create a model of the red blood cell, comprehensive of glycolysis
and the PPP pathway.
In this system, LMA models enzymatic reactions in two different ways. For Mass action

stoichiometric
simulation (MASS)
approach

the majority of system reactions, LMA describes the full catalysis from sub-
strates and products. Thus, LMA is here used as an approximate kinetics.
On the contrary,a few specific reactions that have a well documented key
impact on the overall system, namely phosphofructokinase (PFK), Hexok-
inase(HK), Diphosphoglyceromutase (DPGM), Glucose-6 phosphate dehy-
drogenase (G6PDH), were decomposed into their elementary steps.
The MASS approach, which gives the name to a toolbox implemented in
MATLAB, provides a complete parametrization of the model starting from
information about the stoichiometry, thermodynamics and about metabolite
concentrations in the system. Importantly, the model aims to describe the
the behavior of the system in proximity of a reference steady state, for which
experimental data on reaction fluxes and concentrations are available. The
procedure by which a MASS model can be built is elegant for its simplicity,
and composed of the following steps:

• Specify a particular steady-state flux distribution

• Identify the metabolite concentrations at the specified steady state

• Retrieve equilibrium constants from the literature or approximate them

23



1 modeling

• For each reaction, solve the linear equation 5 to calculate the forward
rate constants

Once all LMA rate constants have been calculated, the MASS model can be
used to reproduce the behavior of the system in proximity of the specific
steady state.

Other very well known computational frameworks devoted to the creation
of kinetic models of metabolism on wider reaction networks have been pro-
posed in recent years. Here, for the sake of completeness, we will men-
tion the most discussed by the community. The structural Kinetic Mod-
eling Framework (SKM) [224] dissects the dynamics of the system relying
mostly on its structure and building a local linear approximation of its be-
havior [192]
The Ensemble Modeling approach (EM) [251] generates a large set of candi-
date models, composed of elementary reactions represented with LMA, that
achieve a certain steady state flux distribution. The ensemble of models is
created through sampling techniques that explore wide ranges of values of
the kinetic parameters, still constrained by thermodynamic principles. Ad-
ditional data, for instance produced with knock-out experiments, are later
used to identify which models of the ensemble are able to reproduce them.
These models are retained in the ensemble, while all the others are discarded.
If the initial ensemble is big enough, and if the data are adequate, the en-
semble is progressively shrunk and one single parametrization is identified.
The Optimization and Risk Analysis of Complex Living Entities (ORACLE) [129].
ORACLE integrates information on stoichiometry, thermodynamics, concen-
trations and fluxes and exploits a sampling approach to compute reaction
elasticities, that are used to parametrize the models.

The Approximate Bayesian Computation and General Reaction and As-
sembly Platform (ABC-GRASP) [191] was defined instead as a sampling-
based framework that exploits Bayesian inference and can be used to build
detailed kinetic models of metabolism. An accurate comparison among
these methods is reported in [192].

The work previously described [20], where the authors compared the im-
pact of different approximate rate laws on the behavior of the system, also
presents a different perspective on the use of these simplified rate laws.
The authors indeed proposed the idea of building hybrid kinetic models,
in which part of the reactions are modeled with fully mechanistic rate equa-
tions while others are described with simplified kinetics. As the model isHybrid models of

metabolism: detailed
+ simplified kinetic

rate laws

built with two levels of detail, it is important that central regulatory en-
zymes, whose behavior has a strong effect on the overall system, are iden-
tified and modeled with fully mechanistic rate equations. Exploiting the
Structural Kinetic Modeling (SKM) method [224] to identify regulatory en-
zymes, they compared hybrid approximate-mechanistic kinetic models with
fully approximate models and verified that the first yielded better perfor-

24



1 modeling

mances for almost all variants of the simplified rate equations tested.

The idea of a metabolic system described two with different levels of accu-
racy had already been proposed in [298]. Here the network is divided into Hybrid models of

metabolism:
mechanistic +
constraint-based
approaches

sub-portions or modules, that are either interpreted as static or dynamic.
The modeling approach is thus hybrid: dynamic modules are modeled with
kinetic rate laws while the behavior of static modules is characterized just
at the steady state by Metabolic Flux Analysis (MFA), a constraint-based ap-
proach similar to FBA that only requires reaction stoichiometry.
As the total number of kinetic parameters in the resulting model is signifi-
cantly reduced, the main aim of this hybrid technique consists in providing
a dynamic description of the system through easier modeling efforts.
According to authors’ conclusions, the algorithm shows good results, al-
though inconsistencies might occur when (i) there exist many bottleneck
reactions, that is, boundary reactions that cannot be easily assigned to, or
simulated by, either the static or the dynamic modules; (ii) bottleneck reac-
tions are not clearly identifiable; (iii) there are large fluctuations in the rate
of reactions included in the static module.
These hybrid approaches [20, 298] offered sources of discussion and revi-
sion that pushed us to work on an approach (see chapter 3) that is in fact
hybrid, as different portions of the system are described with different levels
of detail. Even if many authors embrace a “something better than nothing
perspective”, the actual utility of these simplified models still has to be clar-
ified.

a priori assessment of model indetermination Either the case we
are using a top-down or a bottom-up approach, we need to acknowledge that
the structure and parameters of computational models of cancer metabolism
are often undetermined. Data scarcity, moreover, often causes large uncer-
tainties in the inferred interactions and parameters.
Figure 3 offers a condensed picture of all the components that need to be
defined in order to produce a kinetic model of metabolism. The picture
summarizes also all the main sources from which the necessary model com-
ponents can be obtained.
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Fig. 1. Overview of different types of data and related information that may  be used to assemble ODE-based kinetic models of metabolism. Some of this information is
available in online databases. The classical Michaelis-Menten (M-M) rate law example assumes an equation to describe a simple reaction with one reactant S and one product
P  catalyzed by one enzyme E. The model relates the overall reaction rate v  to the concentration of metabolite S, kinetic parameters p and the concentrations of enzyme E.
The  reaction rate can depend also on allosteric effectors (inhibitors and activators), which change the enzyme activity. The ordinary differential equation (ODE) describes
the  mass balances around a metabolite S. 1(Heijnen 2005 ); 2(Link et al. 2013); 3(Bar-Even et al. 2011); 4(Chassagnole et al. 2002); 5 (van Eunen et al. 2010); 6 (Smallbone et al.
2010) and 7 (Noor et al. 2012).
Notations: BioModels: repository of kinetic models of biological processes (Li et al., 2010a); BRENDA: the comprehensive enzyme information system (Schomburg et al.,
2002); MetaCyc: curated database of metabolic pathways and enzyme (Caspi et al., 2008 ); SABIO-RK: curated database of biochemical reaction, their kinetic equations
with  parameters and experimental conditions (Wittig et al., 2006 ); SBMLsqueezer: Generating kinetic equations for biochemical networks (Drager et al., 2015 ); Allosteric
Database: resource for structure, function, disease and related annotation for the well-established allosteric modulators (Huang et al., 2014); KiMoSys: data repository
for  Kinetic Models of biological Systems (Costa et al., 2014b); CeCaFDB: central carbon metabolic flux database (Zhang et al., 2014); BIGG: curated metabolic models and
reconstructions (Schellenberger et al., 2010); KEGG: encyclopedia of genes and genomes (Kanehisa and Goto, 2000); Reactome: curated pathway database (Vastrik et al.,
2007 ); MetaboLights: database for metabolomics experiments and derived information (Haug et al., 2013); ArrayExpress: archive of functional genomics data stores data
from  high-throughput functional genomics experiments (Parkinson et al., 2011); GEO: functional genomics data repository (Barrett et al., 2011); PRIDE: public data repository
for  proteomics data (Vizcaino et al., 2013); HMDB: human metabolome database (Wishart et al., 2007 ); TECRDB: Thermodynamics of Enzyme-catalyzed Reactions Database
(Goldberg et al., 2004).
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where, e is the enzyme level and v represents the flux.
The goals of the present review are manifold: (1) summarize

available sources such as the databases, standards and tools that can
be applied for kinetic modeling of metabolism, (2) highlight sev-
eral studies that have been focused on the use of ODE-based kinetic
models of metabolic pathways in guiding microbial improvements,
and (3) provide an overview of state of the art kinetic model-
ing approaches for large-scale biological networks, in particular
metabolic networks and how they differ.

2. Some considerations about kinetic modeling: databases,
standards and software tools

2.1. Databases

The challenge of the entire kinetic model building process of
metabolism is assessed by the availability and type of kinetic
data information. With the growth of the systems biology com-

munity, factors like reproducibility, exchange and accessibility of
data, models, and further metadata in specific online databases
are playing a key role. To store and access this scientific infor-
mation, a large number of open online databases have emerged
during the last years. The different type of kinetic data (metabolites,
13C-fluxome, enzyme, transcriptome, allosteric regulation, reaction
kinetics and topology of biological networks) that can be used for
ODE-based kinetic modeling are shown in Fig. 1. Another impor-
tant data resource is the scientific literature, which gives important
amount of biological facts (e.g., PubMed, MEDLINE) and general
databases such as BioNumbers (Milo et al., 2010) and CyberCell
(Sundararaj et al., 2004).

2.1.1. Pathways databases
Currently, there exist a vast number of databases containing

biochemical reactions. One such database is MetaCyc (Caspi et al.,
2008 ), which contains large metabolic pathways and regulatory
information. The important KEGG database (Kanehisa and Goto,
2000) also provides freely accessible resource of metabolic path-
ways and enzymes. In these databases, KEGG reaction records are
linked with metabolic enzymes, genes and also to functional cate-
gories like pathways. To obtain a complete view of the network

Figure 3: Overview of different types of data and related information that can be
exploited to assemble ODE-based kinetic models of metabolism. Figure
taken from [29]

All of the repositories of kinetic parameters we cited are far from being
complete, and the experimental settings across different queries are often
not fully detailed. Biochemical essays are commonly calculated executed
in in-vitro conditions, characterised by stardard pH and temperature, and
substrates and modifiers at saturating concentration. While for many bio-
chemical models these parameters can be fruitfully used to describe differ-
ent, in-vivo, conditions with good approximations, it has been seen that this
is not generally true [242].

Many studies showed that, at the intracellular level, different isoforms of
the same enzyme are present, and that every isoform has a specific affinity
for its own group of molecular regulators [135]. In a given cell, the kinetic
behavior of a metabolic reaction is then closely linked to the proportion of en-
zyme isoforms and to their kinetic differences [135] [12]. In many situations
this information cannot be clarified, and, even if known, the list of modifiers
for secondary isoforms often has not been fully clarified. For pathological
conditions like cancer, the situation is even more complex. Mutations and
copy number alterations of genes and isoform switches of transcripts can
cause quantitative alterations of enzyme isoforms as well as changes in their
affinity for regulators.

Among these preliminary analyses it should be additionally checked if
the model parameters are structurally identifiable. Structural identifiabilityStructural

identifiability differs from practical identifiability as it guarantees that a unique parameter
reconstruction would be possible if the response of the system to an arbitrary
rich set of inputs was perfectly observed. Practical identifiability analysis
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is instead performed a posteriori, and requires that parameter uncertainties
are calculated and compared with a desired level of accuracy [13]. If the
non-identifiability does not change for any data, these parameters are called
structurally non-identifiable. On the contrary, if the non-identifiability can
be remedied by data improvement, they are practically non-identifiable [107].
Structural identifiability is normally assessed calculating correlations among
model parameters, as it was in fact done in the model presented in [186], that
we will use in chapter 4

When the structure and the parameters of the models are unknown, ap-
proaches of Reverse Engineering (RE) and Parameter Estimation (PE) repre-
sent the two main classes of procedures aimed to infer them.

parameter estimation Unless we are using a bottom-up approach and
all kinetic parameters and initial concentrations of system variables can be
found in literature, some procedure of parameter estimation has to be nec-
essarily adopted. PE tries to carry out the automatic inference of kinetic
parameters, starting from:

• a defined network of molecular interactions

• some experimental data. Time-dependent measurements, or time se-
ries, of biochemical concentrations in the system represent the most
informative and useful type of data. The quality of the data has a
great relevance: the more precise, densely sampled and repeated the
measurements are, the more reliable will be the parameter inference.
As it is almost never the case that we can access dynamic profiles for
all biochemical concentrations, it becomes crucial that the data refer to
components that pay a central role in the system [107]

Parameter inference can be performed with two different classes of meth-
ods: frequentist approaches or Bayesian approaches.
Frequentist approaches employ optimization algorithms to identify the set of Frequentist

approachesparameters that produce the maximal similarity between the model behavior
and the data. This is done computing the Likelihood of each parameter set,
which can be otherwise described as the plausibility of the set given specific
observed data. Aim of the approach, which is thus based on Maximum like-
lihood estimation (MLE), is to use optimization algorithms to identify the
parameter set with the maximum value of the likelihood function.

Differently from frequentist methods, Bayesian methods use specific prob- Bayesian approaches

ability density functions to define parameters as random variables. Aim of
these methods is to combine subjective information about the parameters
(called priors and expressed as probability density functions) with the in-
formation contained in the data, and to compute an updated probability
distribution, the posterior distribution.
Bayesian methods can proceed in two different ways. Similarly to frequentist
inference methods they can use MLE and optimization algorithms to identify
the candidate set of parameters that maximizes the likelihood function. On

27



1 modeling

the other hand Bayesian methods often exploit sampling-based techniques,
like Monte Carlo approaches, to produce an ensemble of parameters that
describe model behavior.
Despite their elevated computational costs, Bayesian methods are still the
most affordable choice for PE of large and complex models. Intriguingly,
thanks to the probabilistic definition of estimated parameters, Bayesian PE
can be used iteratively considering the posterior in one experiment as the
prior in a new experiment.
If PE is based on MLE, either in the frequentist or in the Bayesian case, it
makes use of optimization algorithms.

Optimization algorithms can be classified as local or global search meth-
ods. More specifically local methods are either gradient-free or gradient-Optimization

processes: local vs
global search

methods

based, depending whether they exploit or not the gradient (the matrix of the
partial derivatives, or Jacobian) of the objective function with respect to the
parameters.
Gradient-based algorithms are widely used for their high speed and conver-
gence, but, if the landscape of the objective function is ragged, the solvers
tend to remain trapped in local minima.
When the optimization problem is highly complex, as it is often the case in
top-down approaches, a global search optimization should be better adopted.
Global optimization methods are either deterministic or stochastic. Stochas-
tic methods have lower computational costs but they need much more ex-
pertise to be properly parameterized. Examples of stochastic algorithms
for global optimization are simulated annealing and many population-based
meta heuristics, either based on evolutionary computation, like genetic algo-
rithms or differential evolution, which exploit a process of Darwinian selection
of candidate parameter sets, or based on swarm intelligence, like Particle
Swarm Optimization, where parameters are described as autonomous agents.
When the models have complex structures and the data is scarce, MLE-based
approaches often result in different parameter sets with equally optimal like-
lihood values and the parameters become non-identifiable [180]. In these sit-
uations, sampling-based, most often Monte Carlo based, approaches show a
higher flexibility and better performances.

reverse engineering When mechanical interactions cannot be clearly
defined, methods of reverse engineering try to infer them starting from the
available data. It is often the case that both network structure and some
kinetic parameters are unknown, and thus need to be inferred during the
same optimization process. In these cases a PE procedure is embedded in a
RE.
As an example, evolutionary techniques called Genetic Programming (GP),
can for instance be exploited to generate a set of candidate networks of
interactions, evaluate their behavior and identify the network that at best
can represent the data. General limitations of RE approaches include:
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• Indistinguishability of different network architectures that produce the
same behavior

• failure of local search methods to identify the global optimum

• a very high computation time

parameter uncertainty analysis After a specific parameter set has
been identified, the uncertainty and quality of the fitted parameters should
be assessed. In the frequentist statistical setting the goodness of the fit can Frequentist

approachesbe quantified with different approaches, here just cited: χ2-test, likelihood
ratio tests, Akaike Information Criteria (AIC), Bayesian information criterion
(BIC) or Likelihood profile (LP) method [192].
Monte Carlo-based methods can be also used to measure parameter uncer-
tainty. In the case of frequentist Monte Carlo approaches, parameter uncer-
tainty is normally calculated with bootstrapping methods, which, with or
without the need of additional parameters, introduce some disturbance in
the original experimental data and create new data sets, from which the pa-
rameter inference procedure is restarted.
In the case of Bayesian approaches, as parameters are defined in terms of Bayesian approaches

probabilities, the analysis of parameter uncertainty is straightforward. Simi-
larly to the process of parameter inference, Monte Carlo methods are often
indispensable [192].
In both of the frequentist and Bayesian setting, parameter uncertainty is
quantified by confidence intervals. Once a set of parameters and their con-
fidence intervals have been calculated, it is common to use these parameter Uncertainty

propagationvalues to calculate other quantities. During this process, it is important to
consider how uncertainty propagates. Various methods, not mentioned here,
can be adopted for the study of uncertainty propagation.

1.3 Sensitivity analysis (SA) and parameter sweep analysis (PSA

The role of a sensitivity analysis is twofold. Sensitivity analysis
(SA)

• SA can help elucidate the impact of parameter uncertainty on the be-
havior of the model. In this way, it can suggest which parameters
require to be studied with more attention in order to reduce the un-
certainty in model output, and, at the same time, which should not be
given great relevance and could be withdrawn from the model.

• SA becomes fundamental to understand which are the elements of the
models that have the larger influence on its behavior, unraveling the
fundamental control mechanisms of the system. This kind of perspec-
tive can be exploited to identify, for instance, some liabilities of the
system that could be targeted with some interventions. In this second
use the SA can suggest which experimental tests deserve to be planned.
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Fundamental requirements to perform a sensitivity analysis are a network
topology, a defined set of parameters, considered as input of the analysis, a
range of variability for these parameters, and the specification of a system
variable that has to be treated as output of the analysis.

Sensitivity analysis algorithms aim to compute sensitivity indexes, whichSensitivity indexes

reflect how the output variable responds to changes in the input parameter.
If the output is highly correlated with the input parameter, the sensitivity
coefficient for that parameter is high, and small variations in the input result
in wide changes in the output. When sensitivity coefficients are computed
for many model parameters, they are normally ranked and can inform us
on which parameters have the most-to-least influence on model outputs.Computing

sensitivity indexes:
local vs global SA

If the variation in input parameters spans just the neighborhood of a ref-
erence value, SA is defined local, while if it spans a wide range of values is
classified as global. Local SA should be used if we are in a situation where
we have a good confidence on parameter values. When, in bottom-up ap-
proaches, instead, parameters are taken from many different sources and
the uncertainty is high, methods of global SA should be better used, as they
allow to scan a much wider range of parameter values. The use of global SA,
although potentially permits better performances, however incurs in higher
computational burdens. SA often takes a “one at time" (OAT) approach, in
which one parameter at time is modified with all the other kept constant,
and the output of interest is registered. This strategy is simple to implement
and has reasonable computational costs, but interactions among parameters
remain here hidden. In order to assess the impact of combinations of mul-
tiple parameters changes, instead, sampling methods like Latin Hypercube
Sampling [205] become necessary to try to limit the computational efforts.

The calculation of sensitivity coefficients can be done with different meth-
ods. Two of the most used are

• Partial derivative methods. With these approaches, sensitivity indexes
are calculated as the partial derivative of the output with respect to the
input, in a given point in the input space

SXi,Y =
∂Y

∂Xi

∣∣∣∣
X0

The most famous example of a sensitivity analysis approach that uses
partial derivatives is Metabolic Control Analysis, which, as already
introduced, computes elasticities and control coefficients to identify
where over the networks is the control distributed.

• Variance-based methods. In this case, sensitivity coefficients are cal-
culated as the the proportion of the output variance that is caused by
the variance of a specific input. In the first order coefficient, the contri-
butions of a single parameter to the output variable can be calculated
as

Si =
Var[E(Y|xi)]

Var(Y)
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Second order coefficients, instead, measure the contribution of a pair
of parameters to the variance in the output.

Differently form sensitivity analysis, parameter sweep analysis (PSA) does
not aim to compute sensitivity coefficients. Instead, PSA seeks to identify
some combinations of model parameters that produce a desired outcome.
In PSA, a large number of model behaviors are computed at different values
of the input parameters and are later compared with some experimental
data.

1.4 Model validation and refinement

In order to show their ultimate utility, computational models should be al-
ways validated and possibly refined. The process can follow multiple phases
of validation and refinement, where the outcomes of model implementation
are iteratively compared to the experimental data, some new hypothesis are
generated, and some model component is modified accordingly.
Computational models of metabolism can be validated both qualitatively or
quantitatively. A quantitative validation, in which model outputs are com- Quantitative

validationpared in value to some experimental findings, is always preferable. In an
ideal scenario, time course experimental profiles of some biochemical com-
pound are plotted and compared to the time-dependent behavior of the cor-
responding variables in the model. In analogy to what already observed for
the parameter estimation phase, these data are often not available. In this
case, model outputs can be compared to static measurements, like the values
of fluxes and concentrations at the steady state. The ability of a model to
reproduce new phenomena that were not considered during its construction
is a very sound proof of its validity. In biology, a widely used procedure to
achieve this, and at the same time inspire new experiments, is the evaluation
of the outcomes of gene deletion experiments. Mechanism-based models
generally show good flexibility in the simulation of these intervention. For
instance, a gene deletion meant to suppress the synthesis of a specific pro-
tein, like a metabolic enzyme, can be easily reproduced in silico by simply
changing the concentration of the enzyme to a low value or to zero.
If the system under study has an intrinsic complexity a quantitative valida- Qualitative

validationtion might, however, be impossible to perform. In these cases, a qualitative
validation becomes the only alternative. In a qualitative assessment, we are
guided by the biological evidences available in the literature. We might
check, for instance, that the model correctly consumes and produces some
metabolite, we might verify that some required precursor is correctly syn-
thesized, that some reaction fluxes are active or suppressed, or that some
oscillations or bistabilities are present.
An observation should be done here. It is evident that in a qualitative val-
idation many models could potentially produce equally plausible findings.
This, however, should not be used as an argument to disprove the validity
of the model. We believe, in fact, that as long as a model mirrors our current
knowledge of the system, being it scarce or detailed, it deserves to be con-
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sidered a possible, not necessarily true, explanation of the phenomena.

1.5 Data integration

A model that does not embed some information of the actual phenomena
of study cannot aspire to describe reality.

A first way to customize metabolic models with experimental data is to
relate the activity of the reactions as they are described in the model to the
measured abundance of mRNAs and proteins.

Many efforts to incorporate both absolute and differential expression data
into metabolic models have been attempted in recent years [14]. Thanks to
its growing availability, gene-expression data represent an attractive source
of information to be integrated in computational models. The integration
of this data is, however, not devoid of complications. The main issues are
related to the possibility to infer protein abundance from mRNA quantifi-
cations. Even though, according to the central dogma, the sequence of
nucleotides in a gene determines the sequence of its mRNA product, and
an mRNA’s sequence determines the amino acid sequence of the resulting
polypeptide, there is no trivial relationship between the concentration of a
transcript and the concentrations of the proteins derived from a particular
locus [114].

This subject has been largely reviewed and discussed in many works [121] [145].
The conclusions drawn by most of the authors come out in favor of a pos-
itive but weak correlation between mRNAs and protein abundance. How-
ever, it seems at least possible to treat cells in steady-state as a separate case.
Cells can be considered at the steady state if the average protein and/or
mRNA levels remain relatively stable over time (normally above several
hours). If the experimental data are collected under these circumstances,
gene-to-gene variation of protein levels can be primarily attributed to their
respective mRNA levels [114]. In [9] the authors accurately analyze the pro-
cedure by which gene expression values, using gene-protein-reaction (GPR)
rules, are used to infer protein abundance. Differently from what is done
inside the COBRA Toolbox [64] and in other works, they explain how ANDs
and ORs should be better replaced with minimums, and sums, respectively.
Considering the biological explanation of these logics, we believe that, if two
isoforms of the same enzyme are present, they are both functional units that
can work in parallel. The activity of the resulting isoform mixture should
then be defined as the sum of the single activities rather than the maximum.
This motivates our choice to replacement of the ORs with sum() instead of
max() in all our experiments. If the ORtosum() transformation is applied
with an automated procedure, however, the conversion of the boolean log-
ics into numerical operators is not trivial. GPR rules often contain several
nested operators that can cause erroneous computations. As presented by
the authors, we report here 1.5 an example of a problem that can occur with
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this mapping where some genes’ expression levels may be counted more
than once.

r1 := [A and B] or [A[A and C] −→ e1 = min(a,b) +min(a, c)

r1 is a reaction rule and e1 is the corresponding estimated complex abun-
dance level. Lower case letters are shorthand for the expression level of the
corresponding gene ID in uppercase; for example, α = E(A), where E(A) is
the expression of gene A. Supposing A is the minimum, then if we just eval-
uate r1 directly, A will be counted twice. In their paper the authors propose
an algorithm that deals with these situations.
In case proteomics data for the conditon of interest are available, these
should in principle be preferred to gene expression data, and used to re-
fine the models. The data produced by proteomics techniques are normally
linked to the IDs of the related genes, thus they should be integrated into
the models through GPRs mapping, analogously to what is done with gene
expression data.

Despite the fact that these regulatory processes can be still understood
and modeled with great uncertainties, in the last decade several approaches
to integrate gene and protein expression data into metabolic models have
been proposed. Considering that high-throughput technologies offer us in-
formation at the cell level, most of the efforts have focused on developing
methods to integrate these data into genome-scale constraint-based models.
These methods are aimed at constructing cell or tissue-specific networks of
metabolic reactions starting from a GS map of the human metabolism like
Recon 1, Recon 2 or the more recent versions. The algorithms use (mostly,
but not exclusively) RNA sequencing (RNA-seq) data to predict which sub-
set of reactions are active in each cell line, depending on a user defined
threshold.

A critical and quantitative comparison between several of these algorithms
can be found in [119]. In [147] the authors gave a quantitative evaluation
of how different pipelines of data integration resulted in different genome-
scale models predictions. Hundreds of models of four cancer cell lines were
built using three sets of constraints based on exometabolomics data, six al-
gorithms, and four gene expression thresholds. Referring to the distinction
proposed in [147] we can group these algorithms into three main families:

• The GIMME-like family minimizes flux through reactions associated
with low gene expression.

• The iMAT-like family finds an optimal trade-off between removing re-
actions associated with low gene expression, and keeping reactions
whose genes/enzymes are highly expressed.

• In the MBA-like family, the algorithms identifies a sets of core reactions
that should be retained and active, while remove other reactions if
possible.
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Following the descriptions reported in [147] we will briefly explain here
the basic procedures implemented in some of them.

• GIMME Gene Inactivity Moderated by Metabolism and Expression
(GIMME) [10], finds a flux distribution that is consistent with a given
biological objective and that minimizes the utilization of reactions clas-
sified as inactive, weighted by the difference between their expression
level and a given threshold. The authors used this method to model
adaptive evolution in E. Coli strains, and to create tissue-specific hu-
man cell models.

• iMAT The integrative metabolic analysis tool (iMAT) [278] considers
gene expression to divide reactions into two groups: highly and lowly
expressed. It then finds a flux distribution that maximizes the consis-
tency with this classification. iMAT has the advantage of not requiring
the definition of a biological objective, facilitating the analysis of bio-
logical systems, such as multi-cellular organisms, where this definition
is not so clear.

• mCADRE Metabolic Context-specificity Assessed by Deterministic Re-
action Evaluation (mCADRE) [307] uses the gene expression levels
and the network topology to calculate connectivity-based evidence
scores for all reactions in a model. These scores are used to deter-
mine which reactions should be removed from the generic model to
create a context-specific model.

• INIT The Integrative Network Inference for Tissues algorithm (INIT)
uses proteomic data from the Human Protein Atlas, but can also use
transcriptomic data to build tissue-specific models [2]. It maximizes
the activation of certain reactions based on a qualitative confidence
score while minimizing the utilization of reactions associated with ab-
sent proteins. One of the novel aspects of this method is the relaxation
of the steady-state condition to allow a small net accumulation rate for
internal metabolites. If there is evidence for the presence of a metabo-
lite, this accumulation is imposed in order to prevent the removal of
the reactions necessary for its synthesis.

A recent work presented single-cell Flux Balance Analysis (scFBA) [32] a
computational framework to translate single cell transcriptomes into single-
cell fluxomes. In this framework scRNA-seq data are integrated into a multi-
scale stoichiometric model of cancer population. The authors showed that,
with this integration process, some clusters of cells with different growth
rates within the population can be identified.

Metabolomics and fluxomic instead generate phenomenological data that,
due to their nature, represent the best source of information to be exploited
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by parameter inference methods. Either time course metabolite concentra-
tions, steady state metabolite concentrations and steady state fluxes can be
effectively used for these goals.
The specific procedures of data extraction and manipulation for all of these
experimental techniques will not be described here.

2 quantitative models of cancer metabolism
In this section we will review the most important efforts of modeling can-

cer metabolism. Very different types of models can be found in the literature.
Schematically, we will divide them into 3 groups: intracellular constraint-
based models, intracellular mechanism-based models and population-based
models.

constraint-based models The algorithms of data integration presented
in section 1.5 allowed the generation of several models of cancer metabolism:

• In [305] the authors studied the hallmarks of metabolic alterations in
cancer calculating metabolic flux states for the NCI-60 cell line collec-
tion and correlated the variance between these states with the pheno-
typic characteristics of each cell line. To obtain a flux distribution for
all cancer cell lines they started from the definition of a core metabolic
model of a cancer cell that included the pathways related to the known
most relevant metabolic functions.
The optimization problem was then constrained by uptake fluxes based
on cell line-specific measurements. These were retrieved from a recent
study [72] where exometabolomic data were used to infer uptake and
secretion profiles for the NCI-60 panel. Non-cell-line-specific approx-
imations, specifically ATP maintenance, oxygen uptake, and certain
flux splits, were used as additional constraints. They also defined a
partially cell line-specific biomass function for each cell line based on
cell sizes and on the typical composition of mammalian cells. FBA was
performed with an NADPH production objective, which interestingly
determined the highest agreement with 13C tracing data. The result-
ing flux distributions showed that glutamine was taken up on average
32 times more than its biosynthetic requirement, a finding that con-
firms the addiction of cancer cells for glutamine. These results led the
authors to speculate that the compliance to oxidative stress might rep-
resent a fundamental requirement for cancer cells, and that this might
be achieved via the catabolism of glutamine through the mitochondrial
NADPH-producing malic enzyme pathway.
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• In [79] a hybridoma cell line was used as a model for cancer to produce
experimental data that were used to build a constraint-based model of
152 reactions including TCA and PPP pathways, the electron transport
chain (ETC), and the one-carbon metabolism pathway. The model was
interrogated to investigate metabolic requirements of mammalian cell
proliferation. The authors focused on the study of the process of pro-
duction of 1C units from serine and glycine catabolism, as well as the
contribution of glutamine to the total cellular nitrogen and carbon to
clarify the most important requirements for biomass production. Mov-
ing forward from these analyses they used constraint-based FBA sim-
ulations to model the metabolic effects of metformin, a well known
antidiabetic drug, considered as a potential cancer therapeutic.

• In another work, [44] Liquid-Cromatography-MS-based experimental
data, together with an FBA model were used to characterize cancer
metabolism, more specifically the contribution of aerobic glycolysis
and oxidative phosphorylation to the total ATP production, and the
relative contribution of glucose, glutamine and other nutrients to the
maintenance of the reducing power. FBA was used to calculate a
steady-state flux distribution that could match metabolite uptake and
secretion rates measured [72] and 72-h dynamic profiles of some in-
tracellular metabolite concentrations. FBA predictions supported lit-
erature evidences that glutamine is able to drive TCA cycle flux, but
also interestingly showed that oxidative phosphorylation remains the
largest quantitative contributor to ATP production and that Ras onco-
gene has no net effect on ATP production.

• In [54] A genome-scale constraint-based model specific for clear cell
renal carcinoma (ccRCC) cells was presented. Model network was re-
constructed with the INIT algorithm [3], integrating gene and protein
expression data. Exploiting experimentally measured fluxes for a num-
ber of exchange metabolites FBA was used to predict essential genes.
Essential genes are the genes whose function is critical for the survival
of the cell and thus may be considered as potential therapeutic tar-
gets. This scenario was simulated in-silico with knock-out experiments
in which the flux of the reaction under observation was constrained
to zero. Discussing FBA results, the authors argued that ccRCC de-
pends on the expression of AGPAT6, GALT, GCLC, GSS, and RRM2B,
which, although essential for cancer cells, are potentially nonessential
in normal cells.

• After some studies demonstrated how cancer cells could use alterna-
tive glycolytic pathways with net zero ATP production, in [267]. the
authors built a genome-scale constraint-based model of a Myc-driven
tumor accounting for cytoplasm solvent capacity.
The study uncovered a novel pathway for ATP generation that starts
from 3-phosphoglycerate and involves reactions of the serine biosyn-
thesis, of one-carbon metabolism and of the glycine cleavage system.

36



2 quantitative models of cancer metabolism

The results showed that cancer cells may exploit different pathways
for ATP generation, that either maximize ATP yield per mole of sub-
strate or ATP yield per occupied volume fraction.

• In [48] genome-scale constraint-based models of NCI-60 cell lines were
used to identify genes essential for cellular proliferation. Starting from
Rz, the subset of active reactions was defined with the Model Building
Algorithm (MBA) [75] which automatically integrates gene expression
microarray data. The model was able to predict 52 cytostatic drug
targets, 40% of which already targeted by known anticancer drugs, as
well as combinations of synthetic lethal drug targets.

• In a different study [290] more than 280 models of normal and cancer
cell-lines were built with PRIME algorithm using gene expression data,
while measured proliferation rates supported both the testing and val-
idation phases. The model predicted that Malonyl-CoA decayboxylase
(MLYCD) gene can be targeted to affect cancer cell growth. The result
was tested in both leukemia and renal cancer cell lines, vs normal lym-
phoblast and renal cell lines, confirming the prediction. The authors
however acknowledged that assuming maximal cell growth, used as
FBA objective function, and neglecting enzyme variants, potentially
cause limitations in model predictions.

• Differently from the approaches mentioned so far, the work in [182]
presented a model of cancer metabolism based on dynamic FBA, which,
starting from an initial number of cells C0 and an initial glucose con-
centration in the media GLC0, could simulate both intracellular flux
distributions and cell growth. The model includes glycolysis, the TCA
cycle, the Pentose Phosphate Pathway (PPP), glutaminolysis and the
oxidative phosphorylation. Hela cell lines were used to study the
growth kinetics and qualitatively compare it with in silico predictions.
Noticeably, the authors acknowledged the difficulties related to the
definition of an appropriate objective function for cancer cells. The
problem was addressed starting from a review of the literature and
general considerations on the functioning of metabolic systems, and
then defining a generic objective function as a linear combination of
extracellular lactate, ATP, and mitochondrial oxaloacetate, citrate, ri-
bose 5-phosphate and NADPH. 1000 instances of the objective function
were then chosen by randomly sampling the stoichiometric coefficients.
Metabolic reactions with a central role in cancer cell growth were iden-
tified by two constraints: low flux variability and high enzymatic es-
sentiality for cancer cell growth. Together, these constraints constitute
computational criteria for selecting those reactions that ensure a low
redundancy on metabolite synthesis with a maximal effect for decreas-
ing cell growth. The model successfully identified some enzymes that
are currently considered as potential drug targets.
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mechanism-based models Aiming to move beyond the characterization
of flux distributions at the steady state, in [82] the first kinetic model of can-
cer metabolism was developed. The model, containing 58 reactions mod-
eled in a Log-linear form, was built with the ensemble modeling (EM) ap-
proach, cited in section 1.1. Sampling for reaction reversibilities and enzyme
fractions under thermodynamic and steady state constraints an ensemble of
models was generated.Then, all models in the ensemble were computation-
ally perturbed and the steady state fluxes they predicted were compared to
experimental perturbation results. Models that captures the experimental
results were retained. The resulting models predicted transaldolase (TALA)
and succinyl-CoA ligase (SUCOAS1m) to cause a significant reduction in
growth rate when repressed. Furthermore, the results suggested that the
simultaneous repression of the two enzyme targets would result in a 3-fold
increase in the repression of growth rate.

population-based models In [31] is presented one of the first attempts
to represent intra-population metabolic heterogeneity in tumor. In this work,Metabolic

heterogeneity in
cancer

the authors introduced popFBA, an extension of FBA that takes into account
intra-tumor heterogeneity and interactions among different cell populations
within the same tumor. popFBA was applied to a model of 10 clones of
the metabolic network of human central carbon metabolism, simulating a
plasma supply of glucose, glutamine and oxygen, assuming equal bounds
for the reactions of the 10 clones and an internal exchange of lactate, glu-
tamine, glutamate and ammonia. The models showed that clones may fol-
low several different metabolic paths and cooperate to maximize the growth
of the total population. Also, the model showed how alternative nutrients
in plasma supply and/or a inhomogeneous distribution of oxygen provision
may affect the landscape of heterogeneous phenotypes.Metabolic

heterogeneity non in
cancer Modeling efforts that represent intra-population metabolic heterogeneity

in a non-cancer scenario deserve to be briefly presented. From a modeling
perspective a population of different bacterial species and a population of
cancer sub-clones with heterogeneous metabolic traits can be represented
similarly. Even if the context and the environment are hugely different
among the two situations, both can be viewed as multitudes of indepen-
dent cells that consume substrates and secrete wasteful compounds, thus ex-
changing metabolites with a shared extracellular environment. In the most
recent years growing efforts to model natural and synthetic communities of
bacteria have been made. Many of the approaches that are valid for pop-
ulation of microorganisms could be in fact potentially applied to describe
metabolic phenomena in cancer.
The modeling strategies that can most adequately represent metabolic in-
teractions at the population level have been accurately reviewed recently in
[218].
In principle, all the classes of modeling approaches that have been discussed
so far could be applied also to represent metabolic systems spanning pop-
ulations of cells. It should be highlighted, however, that the increased size
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of the biological system strongly conditions the applicability of these meth-
ods. If high number of cells participate to metabolic interactions, in fact, the
intracellular metabolic system of each of them should be represented more
schematically. Considering the costs we currently need to afford to build
and solve our models, the size of intracellular network should be limited
to toy or core models, and the intracellular steady state should be assumed.
Limiting to quantitative models, great part of the works available in litera-
ture describe intracellular reactions with constraint-based modeling models.
We list here a few of these examples:

• In their pioneering work, Stoylar et al. [226], built a stoichiometric
model for a microbial consortium, in which microbial species were
treated as internal compartments and an intracellular flux distribu-
tion for each organism was obtained maximizing the weighted sum
of species biomasses.

• Under the name of community Flux Balance Analysis (cFBA), was in-
stead proposed an extension of FBA that can be used to model pop-
ulations of cells. cFBA predicts for communities at balanced growth
the maximal community growth rate, the required rates of metabolic
reactions within and between microbes and the relative species abun-
dances [81].
Zomorrodi and Maranas [306] developed instead OptCom, a general-
ized computational platform for cFBA, in which a bi-level optimization
problem where both community-level and individual cell-level objec-
tive functions are used.

• Thanks to its ability to describe changes in extracellular concentrations,
dynamic Flux balance analysis is well suited to model metabolic inter-
actions in a population of cells.
In a variant of OptCom, an implementation of dynamic flux balance
analysis that includes uptake kinetics was also presented. Differently
form OptCom, DyMMM, a framework based on dFBA used to model
competitive and syntrophic (cross-feeding) communities, considers in-
stead just a community-level objective function. [218]
The Computation of Microbial Ecosystems in Time and Space (COMETS)
represents instead a framework in which dFBA is integrated with dif-
fusion on a lattice to reconstruct the metabolic behavior of a colony of
cells. Each different metabolic subpopulation is represented with a dif-
ferent FBA model and at each time point metabolites concentrations in
the extracellular space are updated according to the computed uptake
and release fluxes. COMETS was able to reproduce the composition of
two and three-species communities at the equilibrium [61].
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3 data mining
Data mining is a process by which large amounts of data are analyzed

with the goal of discovering patterns and rules [90]. This discovery implies
a process of learning, which can be classified as supervised and unsuper-
vised . In supervised learning some instances of data, considered as targetsSupervised and

unsupervised
learning

of the analysis, are described by a model generated through the rest of the
data [90].
Supervised learning algorithms can be used for classification, prediction or
estimation purposes [90]. With unsupervised learning algorithms, on the
other hand, relationships between the data are highlighted, without any
training phase. Association, visualization and clustering are some exam-
ples.
The approaches of data integration presented in this thesis motivated us to
focus on tasks of data classification and clustering. More specifically, the
classification and clustering problems we faced in our work can be defined
as multiclass multivariate time-series classification and clustering problems.
Time series classification (TSC) problems are differentiated from traditionalTime series

classification
problems

classification problems because the attributes, e.g. metabolite concentration
profiles, have a temporal ordering [211]. It is often the case that datasets
are not huge, with the result of the number of objects in the train/test splits
being relatively small. This prevents the use of the majority of machine learn-
ing algorithms, which require a high number of objects to produce accurate
results.

Both for classification and clustering purposes, the distance between ob-
jects needs to be quantified. Many distance measures are available. The sim-Distance measures

plest and best known is the Euclidean Distance. In the case of time-series
objects X and Y composed of the same number of temporal observations N,
the Euclidean distance among them can be computed as:

d =

√√√√
N∑
i=1

(Xi− Yi)2

While the Euclidean distance is easy to calculate, the standard benchmark
elastic distance measure is, however, dynamic time warping (DTW). Core
DTW strength is the ability to deal with times-series of different lengths and
to transform ("warp") them non-linearly in the time dimension to determine
a measure of their similarity independent of certain non-linear variations in
the time dimension. In DTW algorithms, first a nxm local cost matrix (LCM)
is created, where the number of rows n and columns m respectively equal
the number of observations in the two time series [56]. Each element of LCM
is defined as the squared Euclidean distance computed between a couple of
elements of the two time series. A warping path P is a contiguous set of
matrix elements that spans all rows and columns of the LCM and defines a
mapping between the two objects. Starting from the LCM, DTW algorithm
searches for an optimal warping path between X and Y having the minimal
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total distance among all possible warping paths. The DTW distance between
X and Y is then defined as the sum of all LCM elements that compose the
optimal warping path.
In the case of multivariate time series, calculating the DTW distance becomes
more complex and computationally expensive. For this specific problems,
different approaches have been proposed in the literature [53]. In order to
cluster or classify a group of k objects, DTW distances need to be calculated
pairwise among all k objects. Output of this procedure is a kxk distance
matrix that can be used as input for a classification or clustering algorithm.
The list of clustering and classification algorithms developed and available
is extensive, and we will not provide a more detailed overview of them here.
Suffice it to say that the several factors such as the number of variates and
classes, differences in the number of observations, or the presence of motifs
that repeat in time should affect the choice of the algorithm which is used.
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representing stochasticity The development of all the approaches
we will present later in this chapter is grounded on a stochastic representa-
tion of the behavior of metabolic systems based on Stochastic Petri Nets and
its extensions.

Before we move to explain our approaches we thus give here an intro-
duction on stochastic models, and explain how, in the context of metabolic
system, they can be well approximated by deterministic models composed
of ODEs.

To present stochastic modeling, we need to start defining a random vari-
able. A random variable, by the name itself, is a variable which can take
random values with a specific probability. If the number of possible values
the variable can take, D, is countable, then the variable is said to be discrete.
For a discrete random variable X, its probability mass function p(a) can be Random variable

defined by
p(a) = P{X = a} ,a ∈ D

On the other hand, we say that X is a continuous random variable if there
exists a nonnegative function f(x), defined for all real x ∈ R, having the
property that for any set B ∈ R

P{X ∈ B} =
∫
B

f(x)dx

The function f (x) is called the probability density function of the random vari-
able X.

A stochastic process X(ν),ν ∈ T is a collection of random variables. This
means that, for each ν ∈ T ,X(ν) is a random variable. The set T is called the
index set of the process. The index ν is often interpreted as time and, as a
result, we refer to X(ν) as an instance of the process at time ν. Stochastic process

A stochastic process is said to be a discrete-time process if T consists of a count-
able set. If {ν ∈ R}, instead, the stochastic process is said to be a continuous-
time process. For instance, X(ν), ν ∈ N is a discrete-time stochastic process
indexed by the nonnegative integers, while X(ν),ν > 0 is a continuous-time
stochastic process indexed by the nonnegative real numbers.
The state space of a stochastic process is defined as the set of all possible val-
ues that the random variables X(ν) can assume.

A stochastic process has the markovian property if the conditional dis-
tribution of the future X(ν + τ) given the present X(ν) and the past X(u),
0 6 u < ν, depends only on the present and is independent of the past. The markovian

property
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A stochastic process Xν,ν ∈ N displaying the markovian property is
termed Discrete Time Markov Chain. If Xν = i,ν ∈ N, then the process is
said to be in state i at time ν. We suppose that whenever the process is in
state i, there is a fixed probability Pij that it will next be in state j. That is,
we suppose that

P{Xν+τ = j | Xν = iν, Xν−1 = iν−1, ..., X0 = i0} = P{Xν+τ = j | Xν = iν}

(6)
with τ ∈N and iν, j ∈ R+∀ν.

Moving to the case of continuous time, a process

{X(ν)}ν∈R+

is a Continuous-Time Markov Chain (CTMC) if for all τ,u ∈ R+,u 6 νContinuous Time
Markov Chains and i, j, x(u) ∈N:

P{X(ν+ τ) = j | X(ν) = i,X(u) = x(u), 0 6 u < ν}
= P{X(ν+ τ) = j | X(ν) = i}

(7)

The importance of CTMCs for the description of physical and chemical pro-
cesses was evidenced in the works by Daniel T Gillespie. In 1977, he devel-
oped a theory based on the hypothesis that collisions among molecules, in
constant volumes and at constant temperatures, are random. With his the-
ory, he was able to show that the kinetics of the chemical reactions deriving
from these collisions corresponds to an underlying stochastic process that is
a Continuous Time Markov Chain (CTMC).

In order to simulate the evolution of stochastic processes like CTMCs, we
need to introduce the concept of exponentially distributed random variables.
An exponential random variable with parameter λ is a continuous random
variable with a probability density function given, for some λ > 0, by

f(x) =

{
λe−λx, if x > 0
0, if x < 0

(8)

Random variables that are exponentially distributed with rate λ can be used
to represent the times that separate two consecutive events in the evolution
of stochastic processes like CTMCs.

The exponential distribution, in fact, has the unique property to be mem-
oryless. A random variable X is said to be without memory, or memoryless,Memoryless random

variable if
P{X > x+ y | X > x} = P{X > y} ∀ x,y > 0. (9)

In 9 the first term expresses the conditional probability that X > x+y, knowing
that X > x.

A CTMC can represent any direct graph with labeled transitions, where
the value of the label describes the rate associated with that change of state.
The graph in figure 4, for instance, is described by a CTMC where two states
are possible, and λ and µ define the rates at which the two states can be left.
The rates of transition between states are recapitulated in the transition rate
matrix, Q, also defined infinitesimal generator of the CTMC.
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Figure 4: State transition
rate diagram

Q =

[
−λ λ

µ −µ

]

Infinitesimal generator of the
CTMC in figure 4

Diagonal elements of Q qii are defined such that

qii = −
∑
j6=i

qij and
∑
j

qij = 0 ∀i

and thus they represent the probability that the system remains in state i.
The exact solution of the CTMC at time t amounts to the computation

of the solution of a set of differential equations called forward Chapman-
Kolmogorov equations, defined as: Chapman-

Kolmogorov
equationsdπj(t)

dt
=
∑
i 6=j

πi(t)qij − πj(t)qj ,

dπ(t)

dt
= π(t)Q ,

where πi(t) describes the solution of the system and consists in the probabil-
ity that the system is in state i at time t. Q is the infinitesimal generator. For
instance, the Chapman-Kolmogorov equations that describe the behavior of
the system in figure 4, if the system is in state 0 at time 0 with probability 1,
is 

d(π0)(t)
dt = −λπ0(t) + µπ1(t)

d(π1)(t)
dt = −µπ1(t) + λπ0(t)

π0(0) = 1

π1(0) = 0

. (10)

The number of equations that need to be written equal the number of
states in the CTMC.

Fluidification

fluidification As the number of Chapman-Kolmogorov equations that
need to be written equals the number of states in the CTMC, the simula-
tion of the system often becomes computationally prohibitive. In fact, even
small extensions of the network, or increments in the number of the entities
described, can cause state space of the process to rapidly expand. In the
case of metabolic models, where our intention is often to describe several
reactions, and where the number of biochemical compounds is high, solv-
ing the system of the Chapman-Kolmogorov equations becomes practically
infeasible.

45



methods

With the goal of circumventing these issues, the pioneering works by
Kurtz showed that the stochastic process can be approximated as a deter-
ministic one, in which each system quantity is described by one ODE. Since
then, in fact, Ordinary Differential Equations have represented the formal-
ism most used for mechanism-based models of metabolism. This transfor-
mation from a stochastic model to an approximated, deterministic, one, is
also described as “fluidification”.

stochastic petri nets Since working at the level of CTMCs can be com-
putationally expensive and require advanced mathematical and modeling
skills, in this section we introduce the Petri Net (PN) formalism which al-
lows one to model the system as a parametric graphical diagram that makes
easier and faster the model creation and its comprehension. Moreover, PN
provide the possibility of automatically derive qualitative and quantitative
properties with both numerical and analytical methods

Petri Nets PN and their extensions [161, 162] are a family of graphi-
cal modeling formalisms well suited for modeling Discrete Event Dynamic
Systems (DEDS): they have been satisfactorily applied to fields such as com-
munication networks, computer systems, manufacturing systems, but also
applied to biological systems. Simple and intuitive in its graphical appear-
ance, PNs are able to facilitate the process of model creation.

PNs are bipartite directed graphs with two types of nodes: places, graph-
ically represented as circles, that correspond to the system variables (e.g.
enzymes and metabolites), and transitions, graphically represented as rect-
angles, that correspond to the events (e.g. interactions among biochemical
entities) that lead the system to evolve. An explanatory PN model repre-
senting glycolysis in human red blood cells is shown in Fig. 9. Places can
be marked with tokens, graphically represented as black dots, that, in the
context of systems biology, normally describe the number of molecules of
the corresponding entities. The state of a PN, called marking, is defined as
the number of tokens in each place of the net. An example of marking for
the PN in Fig. 9 is showed in the third column of the Table in Fig. 10 .

Arcs connect places to transitions and vice versa, and express the relation-
ships between states and event occurrences. Arcs are divided into input and
output arcs: input arcs are directed towards a place, while output arcs move
away from a place. Each arc is labeled with its multiplicity, a number that
represents the amount of tokens that are moved when the transition occurs.
This occurrence is called firing. A transition fires only if it is enabled, mean-
ing the markings on its input places equal or exceed the multiplicities of the
corresponding input arcs.

Stochastic Petri Nets In our work we focused on Stochastic PNs (SPNs) [133],
in which transition firings are dictated by exponentially distributed random
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delays, which are interpreted as durations of certain activities. SPNs are
thus suited to give a high level graphical representation of a stochastic pro-
cess. In specific, the stochastic process which underlies the behavior of an
SPN is a CTMC, whose state space is isomorphic to the reachability set of
the SPN. Thanks to this assumption the temporal behavior of the system
can be modeled with a random process governed by the so-called Chapman-
Kolmogorov differential equations [46]. These equations correspond to the
Master Chemical Equations [55] that are used to describe the behaviour of bi-
ological systems, thus making this formalism quite attractive for these types
of applications.

The formal definition of an SPN is the following:

Definition 1 (SPN ). A SPN is a tuple:

NSPN = 〈P, T , I,O, λ, m0〉

where:

• P is a finite and not empty set of places;

• T is a finite and not empty set of transitions, such that P ∩ T = ∅;

• ∀p ∈ P, t ∈ T , I(p, t),O(p, t)→N are the pre- and post- incidence matrices,
whose elements represent respectively the multiplicity of the input and output
arcs connecting place p to transition t or vice versa;

• λ: is a mapping from T into R that gives the firing intensities of the transi-
tions.

• m0 : P → N, called the initial marking of the net, is the initial state of the
net;

The marking m of the net, including the initial marking m0, associates
with every place a natural number that corresponds to the number of tokens
contained in such a place

In order to define the set of places in input or output to a transition the
following shorthand notation was introduced:

1. •t = {p ∈ P : I(p, t) > 0} is the subset of P containing all the places in
input to transition t.

2. t• = {p ∈ P : O(p, t) > 0} is the subset of P containing all the places in
output to transition t.

All of these features schematically refer to two different SPN aspects: the
network structure on one side, and its behavior on the other.

Static analyses Structural properties of Petri nets are obtained from the
incidence matrix, independently of the initial marking. This information can
be exploited by approaches based on graph theory, also used for interaction-
based models. In addition, two structural properties that can be checked Static analyses
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specifically with Petri Nets are the presence of P semiflows, that refer to the
places of the net, and T semiflows, that refer to their transitions.

Given a Petri Net, pre- and post- incidence matrices I(p, t) and O(p, t), let
C(p, t) be the Incidence Matrix C(p, t) = O(p, t) − I(p, t). Each element of C,
cp,t, thus describes the effect of the firing of transition t on the number of
tokens in place p.
In an SPN, a set of places is said to be covered by P semiflow if the weighted
sum of their markings does not change with time. Formally, if x ∈ Z|P| is a
place vector; then a P-semiflow is a place vector x such that it represents an
integer and non-negative solution of the matrix equation xC = 0.
A sequence of transitions, instead, is said to be a T semiflow if, through a
sequence of events, it can reproduce at some point in time t the marking of
the net that was present at time t = 0. Formally, if y ∈ Z|T | is a transition
vector; then a T-semiflow is a transition vector y such that it represents an
integer and non-negative solution of the matrix equation Cy = 0. As already
said, both P and T semiflows are structural properties that can be assessed
by the analysis of the incidence matrix C.

Dynamic analyses The net behavior can be obtained starting from the
net structure and the initial marking and applying the evolution rules for
the marking. An evolution rule defines the preconditions for the occurrence
of a transition and the state change produced by such occurrence. Both theDynamic analyses

preconditions and the state change are encoded in the arcs connected to the
transition.

The separation of the net structure from its behavior is reflected directly
upon methods of analysis based on the structure of the net and those based
on the state space (net behavior). The dynamic behavior of the net is de-
scribed by means of its Reachability Graph (RG) an oriented graph whose
nodes are the possible states (or markings) that the system can reach from
its initial marking m0 by applying a transition firing rule. The arcs of theReachability Graph

RG represent the transition firing that produce the change state.
In order to introduce the RG the following definitions are needed: transi-

tion concession, enabled transition, transition firing, firing sequence and reachabil-
ity set.

Definition 2 (Concession and enabling in SPN). A transition t ∈ T has conces-
sion to fire in a marking m iff:

∀p ∈ •t, m(p) > I(p, t)

A transition t with concession in m becomes enabled.

Definition 3 (Transition firing). A transition t enabled in marking m can fire and
its firing causes a state change from m into m′ denoted m[t〉m′. The state evolution
happens according to the following rule:

m[t〉m′ ⇔ m′ = m − I[t] +O[t]∧ t ∈ ε(m)

This definition can be extended to a transition sequence as follows.
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Definition 4 (Transition firing sequence). A transition firing sequence σ is a
list of transition firings t1, t2, . . . , tk. A transition firing sequence σ is enabled in
marking m if ∃m1, . . . , mm−1 s.t. m[t1〉m1[t2〉 . . .mm−1[tk〉mm

The marking mm reached by firing a sequence σ from the marking m is
given by:

m = mm −

k∑
i=1

I(ti) +

k∑
i=1

O(ti)

We shall denote |σ|t the number of occurrences of a transition t ∈ T in
sequence σ

Now we can define the set of markings that can be reached from the initial
marking m0 by applying the above firing rule.

Definition 5 (Reachability Set (RS)). Let 〈P, T , I,O, m0〉 be an SPN, its Reacha-
bility Set (RS) is the smallest set satisfying the following properties:

• m0 ∈ RS;

• m ∈ RS ∧ m[t〉m′ ⇒ m′ ∈ RS.

The RS contains no information about the transition sequences fired to
reach each marking. In order to have this information we must introduce
the RG. Each node in the RG represents a reachable state, and there is an arc
from m to m′ iff the marking m′ is directly reachable from m. This arc will be
labeled with t iff m[t〉m′. Note that one or more arcs can connect two nodes
(it is possible for two transitions to be enabled in the same marking and to
produce the same state change), so that the RG is actually a multi-graph.

Definition 6 (Reachability Graph (RG)). Let 〈P, T , I,O, m0〉 be an SPN, its
Reachability Graph (RG) is a graph RG =(RS, A) where:

• RS is the reachability set of the system;

• A ⊆ RS×T×RS is a set of labeled arcs such that
(m, m′, t) ∈ A iff m ∈ RS ∧ m[t〉m′.

It is important to highlight that for each SPN the underlying stochastic
process corresponds to a Continuous Time Markov Chain (CTMC) that can
be represented as a graph isomorphic to the RG of the net labeling the edges
with transition rates

from spn to odes It often happens that, in case of very complex mod-
els, the underlying CTMC can not be derived or/and solved due to the well-
known state space explosion problem. To cope with this difficulty, whenever
the stochasticity of the modeled system can be neglected (e.g. due to huge
number of molecules), the so-called deterministic approach can be exploited,
assuming that the behavior of entities contained in a place of the net is ap-
proximated by an Ordinary Differential Equation (ODE) and that the whole
model is specified with a system of ODEs, one for each place of the net.
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In the literature, different laws (e.g. Michaelis-Menten, Hill-equation, etc.)
have been proposed to encode each reaction of the biological system into an
ODE. Here we focus on the Mass Action (MA) law [273]1 in which the ODEs
describing the model have the following form:

dxpi(ν)

dν
=

∑
j:O(pi,tj) 6=0

O(pi, tj)λ(tj)
∏

h:I(ph,tj) 6=0

xph(ν)
I(ph,tj)

−
∑

j:I(pi,tj) 6=0

I(pi, tj)λ(tj)
∏

h:I(ph,tj) 6=0

xph(ν)
I(ph,tj) (11)

where xpi(ν) represents the amount of the entity in place pi at time ν as-
suming that xpi(0) is defined through the initial marking of the net so that
xpi(0) = m0(pi).

For instance, considering the PN model in Fig.9 the behaviour of place
GLC is described by the following ODE equation assuming the MA law:

dxGLC(ν)

dν
= +λ(KF1) · xHK · xGLC · xATP (12)

−λ(KR1) · xHK · xG6P · xADP
(13)

Petri Nets in Systems Biology The use of Petri Nets and computational
approaches based on them is not new in systems biology. In the literature in
fact can be found various examples of how they are applied to the descrip-
tion of biological systems [63, 40].

optimization problems The approach to indetermination we will present
in next section requires that we introduce here some concepts related to op-
timization processes. In Mathematics, Computer Science, and Operations
Research, optimization or mathematical programming consists of minimiz-
ing (or maximizing) a function by systematically choosing the values of
its variables from a set of feasible possibilities properly exploiting analyti-
cal or numerical methods. In Systems Biology optimization is not a new
concept since it has been already proposed to reconstruct gene regulatory
networks, transcriptional regulatory networks, protein interaction networks,
conditional specific sub-networks, and active pathways [97], and to perform
FBA. Formally an optimization problem with inequality constraints can be
defined as follows:

minimize
y

Fopt(y)

subject to Gi(y) > bi, 1 6 i 6 l
Li(y) 6 cj, 1 6 j 6 m

where the vector y = (y1, . . . ,yn) is the variable vector, the function Fopt :

Rn → R is the objective function, the functions Gi(y) : Rn → R and Li(y) :

1 Observe that this choice does not affect the generality of our approach that can be applied
independently of the assumed law.
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Rn → R are inequality constraint functions, and the constants b1, . . . ,bl, c1, . . . , cm
are the bounds for the constraints. A vector y•, called optimal, is the solu-
tion of the OP if, among all vectors that satisfy the constraints, it is that
which yields the smallest (largest) value of the optimization function: ∀z s.t.
G1(z) > b1, . . . ,L1(z) 6 cm we have that Fopt(z) > Fopt(y•).

We recall that an OP is called a linear program if the objective and the
constraints are linear with respect to the variables and a non-linear program
otherwise. As shown in the next sections of this paper, we will focus on
non-linear programs in which constraints are non-linear as well. To solve
this type of OPs, several algorithms have been proposed in the literature,
and the reader can find a complete survey of these methods in [1].

Now that we have introduced concepts and definitions related to stochas-
tic processes and Stochastic Petri Nets, we present the three main directions
of our work, together with some approaches we developed

1 model indetermination
In this Section, we present a method to deal with indetermination of

mechanism-based kinetic models. As already highlighted in Chapter 2, ei-
ther we are taking a bottom-up or a top-down approach in order to properly
set up a kinetic model we need a model structure and specific values for
its kinetic parameters. Defining them is a well-known nontrivial task: small
differences in this choice can have huge impacts on model dynamics. Many
methods of parameter estimation and reverse engineering have indeed been
proposed in literature, and have been reviewed in Chapter 2. Experimental
time-course data represent the general requirement for these methods to be
effectively applied. At the current moment, modeling efforts are strongly
limited by the scarcity of these data. While their availability is growing for
in-vitro studies, the same is not true for in-vivo systems like cancer.

In Chapter 2 we analyzed how in common situations uncertainty largely
affects multiple components of kinetic models of metabolism. Both unchar-
acterized isoform mixtures and far-from-standard environmental conditions
not only overcomplicate the procedure of parameter estimation but also un-
dermine the accuracy of the estimated parameters. For these and the afore-
mentioned motivation it is often the case that he validity of the calculated
parameter values is restricted to the proximity of a specific steady state. If
we wanted our model to effectively capture the behavior of the system dur-
ing large environmental changes, these in practice might be better described
with different parameterizations, each valid around of a specific steady state.

Acknowledging that many factors have the potential to shape the be-
haviour of a metabolic reaction, however, should not induce us to drop any
modelling effort. Coherently to authors’ statements in the realization that
“sloppy” parameters can still yield a predictive kinetic model has opened
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the door for ‘unusual’ modelling strategies in the field. We intend, thus, to
proceed, exploiting some specific biological assumptions.

As a first assumption for our method, we consider that our knowledge
of molecular interactions and kinetic parameters is non uniform across the
network, and depends on the biochemical event we are observing. We thenDetermined and

undetermined
reactions

decide to divide metabolic reactions, the events of metabolic systems, into
two classes: determined reactions and undetermined reactions.

In the case of determined reactions, all molecular interactions are assumed
to be known, and we also assume that a mechanistic, fully-detailed, mathe-
matical description of their activity is available in the literature. Thus, reac-
tions of this class can be clearly characterized and modeled.

For undetermined reactions, instead, we assume that either 1) they belong
to portions of the network that have been studied with less detail, so that
a fully detailed reaction kinetics has not been reported in the literature, ei-
ther, 2), that the available kinetics is not adequate to represent the specific
actual conditions (e.g isoform mixtures, pH, temperature, metabolite concen-
trations) our model aims to represent.

We should clarify here that undetermined reactions are not regarded as
completely blank elements though: we consider that their stoichiometry is
known. While also some activator/inhibitor might have been identified, we
make the general assumption that some additional mechanism that we can-
not quantify is potentially affecting their behavior. We are not interested to
speculate further on the nature of this indetermination: either unidentifiable
isoform concentrations, unknown molecular interactions, uncharacterized
environmental conditions, or a combination of these factors, we decide to
remain agnostic to its specific causes.

More importantly, this assumption makes us state that a fully parametrized
mathematical expression that appropriately describes undetermined reac-
tions is lacking. As we described in 1.2 many authors have already tried
to circumvent the problem exploiting approximate kinetics. Aware the lim-
itations of these approaches, we still believe their use is legitimated by the
absence of adequate alternatives and becomes attractive for their compact
mathematical representation, which eases the development of new computa-
tional tools. In our experiments, presented in Chapter 4, for reasons of clarity
we chose to illustrate the potential of our approach with the simplest formal-
ism, the LMA rate law, used to model both determined and undetermined
reactions. To the reader, this probably seems to contradict the definition of
determined reactions we just gave. In fact we stated that a fully detailed
kinetic characterization is available for determined reactions. This, indeed,
holds true. However, the scope of the example here presented is rather ex-
planatory, hence for determined reactions, and just for them, a LMA with
defined kinetic parameters is here meant to represent a fully detailed kinetic
expression retrieved from the literature. This use of LMA is assumed to
represent the behavior of determined reactions without approximations.

On the contrary, due to their undetermined nature, an approximate kinetic
formulation has to be forcedly adopted for undetermined reactions, where
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it represents their approximate behaviour.
In our method, we try to mitigate the effects of this approximation with the
following modeling choice. Just in the case of undetermined reactions, we
transfigured the significance of their kinetic parameters: fixed parameter val-
ues are replaced by time-varying coefficients. As we stated that many, and
potentially important, factors might affect the behavior of undetermined re-
actions, an approximate kinetic description would hardly be able to recapitu-
late their behaviors. Time-varying coefficients are then defined as functions
that change in time, depending on some component of the system, either
known or not characterized.
In this view, these time-varying coefficients are meant to condense the ef-
fects of multiple biochemical processes into a single value. With this new
perspective, approximate kinetics, like LMA, acquire extended capabilities
to represent different kinetic behaviours. In order to avoid confusion, two
points should be stressed here. The introduction of time varying coefficients
with the resulting conceptual change of kinetic rate laws

1. involves only undetermined reactions;

2. reflects the fact that, with this approach, we intend to focus on the
behavior of the whole model rather than on the biochemical meaning
of kinetic parameters, which in fact here is lost;

3. even if if the effects of unknown isoform mixtures, pH, temperature
or metabolite concentrations could realistically affect also determined
reactions, we decide to treat determined reactions as if these factors
could be neglected.

We are aware that the assumptions we are posing here can cause non-
trivial approximations and can be seen as limiting, but from our perspective
they can become empowering as they allow to progressively test different
biological hypotheses.

Finally, as anticipated in Section 2, we assume that the behavior of our
model is goal-directed. This does not mean that the system under study
necessarily is, but, instead, that if an “accurate” objective function is defined,
this can be used to formulate an OP and to reproduce the behavior of the
original system.

The discussion then shifts to which objective functions can be considered
accurate. From our point of view, the objective function can be interpreted
and thus defined in different ways. For instance, the objective function can
be related to its definition in FBA or cybernetic models and formulated sim-
ilarly. In FBA, according to its teleonomic perspective, the objective function
describes a function that we believe is physiologically relevant for the cell,
like the production of biomass to sustain growth. An objective function with
this meaning can then be used to predict a physiological behavior of the cell.

In alternative, taking inspiration from other successful applications of
FBA, the objective function can express a non-physiological goal of the cell,

53



1 model indetermination

like the maximization of ATP production, and can be used to identify some
property of the network, or to impose an engineering (e.g. maximization of
the production of a particular amino acid) or therapeutic (e.g. minimization
of some reaction fluxes vital for cancer cells) goal that we would like the
system to reproduce.
More in general, the objective function is here intended to represent any rel-
evant biological behavior that has been observed experimentally or that we
would like to artificially recreate in the system. Our approach thus tries to
investigate if, and how, this specific biological phenotype can be reproduced
in a biochemical system where the topology and the parametrization are just
partially known.

In details, we propose here a method that exploits iterative processes of
static optimizations: at each simulation step, an objective function with the
aforementioned biological meaning allows us to estimate the activities of
undetermined reactions, and thus to obtain a complete description of system
behavior.

As we anticipated, the kinetic parameters of determined transitions are
retrieved from the literature and are kept at fixed values. On the contrary, for
each (unidirectional) undetermined transition, one time-varying coefficient
is defined.

To facilitate the construction of the model we propose a new graphical
formalism based on PN, which allows to automatically translate the model
into its mathematical representation, consisting of the ODEs system and the
Optimization Problem (OP).

According to this we decide to present our approach firstly introducing this
new graphical formalism, and then providing its automatic translation into
a ODE system in which indeterminate transitions are tackled through an OP.
For this purpose we use the model of Fig.9 as a “running example" that we
comment in the rest of the paper to discuss the features of this new modeling
formalism.

SPN with Indetermination. The formal definition of a new PN extension
called Stochastic Petri Net with Indetermination (SPNI) is the following:

Definition 7. A stochastic Petri net with indetermination is a tuple

N = (P, T , I,O, m0, λn,Λu,FN
opt)

where:

• T = Tn ∪ Tu is a finite, non-empty set of timed transitions with Tn ∩
Tu = ∅. Tn is the set of determined transitions, while Tu is the set of
undetermined transitions.

• λn : Tn → R gives the firing intensity of Tn transitions.

• Λu : Tu → R2 gives the range of variation of the flux of Tu transitions.
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• FN
opt : T × P → R is an objective function whose terms are represented by

place markings and transition firing intensities.

We use the notation ΛLu(t) (resp. ΛUu (t)) to denote the lower (resp. upper)
bound values of the interval in which the flux of a t ∈ Tu can vary; Λu(t)
then represents a possible flux value of the (undetermined) transition t com-
patible with its specified lower and upper bounds.

From SPNI to ODE and OP.
Due to the indetermination associated with the Tu transitions, it is not possi-
ble to directly use Eq. 11 to represent the deterministic behavior of an SPNI
model. We can however re-write Eq. 11 as follows:

dxpi(ν)

dν
=

∑
j:O(pi,tj) 6=0

O(pi, tj)Mtj(ν)
∏

h:I(ph,tj) 6=0

xph(ν)
I(ph,tj)

−
∑

j:I(pi,tj) 6=0

I(pi, tj)Mtj(ν)
∏

h:I(ph,tj) 6=0

xph(ν)
I(ph,tj) (14)

where M is a function defined in the following way:

Mt(ν) =

{
λn(t) if t ∈ Tn
yt(ν) otherwise

(15)

The parameter yt(ν) encodes the indetermination associated with the unde-
termined transition t at time ν and must be properly estimated to solve the
ODE system.

Independently of the context of the modeling experiment, it is usually the
case that we want to minimize (or maximize) certain measures defined on
the portion of the state of the system that is not directly affected by unde-
termined transitions. These measures, that may assume complex definitions,
become the optimization functions that we use to reproduce the model be-
havior.

To cope with this problem we thus propose to exploit an optimization
process in which the objective function depends on the solution of the ODE
systems in Eq.14. In practice, the optimization process solves the ODE sys-
tem for a specific time interval while, simultaneously, it uses the obtained
solution to compute the objective function of the optimization problem. The
maximum/minimum value of the objective function allows to identify the
values of unknown parameters of undetermined reactions.

Given an SPNI model, the corresponding OP, whose solution will be used
to estimate the firing intensity values of the Tus, is derived using the follow-
ing definition.

Definition 8. The OP derived by the SPNI is a tuple

Opt = (yν,Fopt,G,L)

where:

• yν represents the optimizing values of undetermined transitions at time ν, i.e.
∀t ∈ Tu ⇒ yt(ν) ∈ yν;
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• Fopt = FN
opt;

• G is defined by

∀t ∈ Tu ⇒ yt(ν)
∏

h:I(ph,t) 6=0

xph(ν)
I(ph,t) > ΛLu(t)

• L is defined by

∀t ∈ Tu ⇒ yt(ν)
∏

h:I(ph,tj) 6=0

xph(ν)
I(ph,tj) 6 ΛUu (t)

For instance, considering the SPNI in Fig. 9, where the gray boxes high-
light the transitions affected by indetermination, the vector y(ν) has size
six and represents the optimal values of the firing rates of transitions Tuf1,
Tur1, Tuf3, Tur3, Tuf12, Tur12. An example of objective function could be
the maximization of the Lactate (LAC) as described in our case study in the
Chapter 4.

Moreover in our example
ΛLu(Tuf1 ) = 1620 · xHK · xGLC · xATP
ΛUu (Tuf1 ) = 2.592e+ 08 · xHK · xGLC · xATP,

with limit values chosen as explained in the Chapter 4.

How to compute the model behavior. Let x(ν) represent the behaviour of
the model at time ν The numerical integration of Eq. 14 provides the be-
haviour of the model at time ν+ τ, in terms of the behaviour x(ν) computed
at time ν and of a set of parameters deriving from the structure of the SPNI
(I, and O), the firing intensities of the definite transitions of the net (λn) and
of the firing intensities of the undetermined transitions estimated at time ν
and collectively represented as y(ν). The values of x(ν+ τ) are thus the re-
sults of the evaluation of a function whose input parameters are represented
by a tuple B(ν) = (B,Bu(ν)) where B = (I,O, λn) and Bu(ν) = (x(ν), y(ν)) 2.
The integration step s identifies the time points νi = i ∗ τ where the evalua-
tion of the model behaviour is of interest.

Role of the estimation phase of our method is to find a set y(ν) that, be-
ing compatible with the constraints of the SPNI model (Λu), minimizes the
objective function at time ν+ s. The optimization phase identifies a num-
ber K of initial conditions, that we denote with B

[k]
u (ν),k = 1, ...,K, con-

sisting of the behaviour of the model computed at time ν and of K ran-
dom points within the space of firing intensities of the undetermined tran-
sitions identified by the constraints Λ. From each of these configurations
the method numerically integrates the system of ODEs up to time ν+ s to
derive y(ν). Letting B[k](ν) =

(
B,B[k]

u (ν)
)

, with B[k]
u (ν) = (x(ν), y[k](ν)),

the solutions obtained from the integration of the ODEs with parameters
B[k](ν),k = 0, 1, ...,K and up to time ν + s are compared to identify the

2 In the sequel of the paper we will indifferently use yt(ν) or Λu(t,ν) to represent the unde-
termined parameters of our models as provided by the optimization problem at time ν.
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Algorithm 1 Algorithm to solve ODE system with Indetermination
1: function SolveODEI(ODEI,G,L,Fopt,yt,τ,FinalTime)
2: ν = 0.0;
3: ODEI.Init(Value);
4: while (ν 6 FinalTime) do
5: print(ν,Value);
6: Res=SolveOpt(yt,Value,ODEI,ν+ τ,G,L,Fopt);
7: Value=Res.Value;
8: yt=Res.yt;
9: ν += τ;

Algorithm 2 Algorithm to solve ODE system with Indetermination
1: function SolveODEI(ODEI,G,L,Fopt,yt, τ, FinalTime)
2: ν = 0.0;
3: ODEI.Init(Value);
4: while (ν 6 FinalTime) do
5: print(ν,Value);
6: if Heurist(Value,time) then
7: Res=SolveOpt(yt,Value,ODEI,ν+ τ,G,L,Fopt);
8: Value=Res.Value;
9: yt=Res.yt;

10: else
11: Value=ODE.SolverODE(Value,ν+ τ,RateTu);

12: ν += τ;

choice of B[k](ν) which provides the best evaluation of the objective func-
tion, thus identifying y[k](ν+ s) = y(ν). Crucial in this optimization step
is that the numerical integration of the ODEs is performed with a method
capable of identifying an integration step h small enough to allow a precise
solution of the ODEs during these “tentative" evaluations that are used to
select the firing intensities of Tus.

In general, this whole method is repeated for each time point νi starting
from ν0 = 0. However, solving the OP for each value of νi can be excessively
costly and we can thus reduce this computational effort by identifying a time
interval ρ that is a multiple of τ and that determines the time points where
the optimization is requested. By doing so, if we set ρ = m · τ, we assume
that for m− 1 intermediate evaluation steps the values of Λu(ν) (i.e. y(ν))
remain constant and an approximation is introduced.

Having discussed how to derive from an SPNI model (i) an ODE system
with indetermination (see Eq.14), and (ii) an OP (see Def.8), we can devise
an algorithm which combines them to derive the model behaviour.

The pseudo-code of this algorithm is shown in Alg. 1. It takes as input
the ODE system with indetermination (i.e. ODEI), the OP (i.e. described
by functions G, L and Fopt), the initial guess for the rate of undetermined
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transition (i.e. yt), the step size used for the optimization schema (i.e. τ),
and the final time (i.e. FinalTime). The output of the algorithm is represented
by the values generated for each system entity at different time points (i.e.
νi). In details, the method Init() at line 3 initializes the vector Value encoding
the initial values assumed for all the entities of the model. Then, the code
from line 7 to line 12 is repeated until the time horizon is reached. In each
iteration the function print() is called to print the current values of the system
entities. Subsequently, the function SolveOpt() solves the optimization and
returns the new values of the system entities and of the rates of Tus (i.e.
Res.Value and Res.yt respectively). It takes as input an initial guess for the
rate of Tus (i.e. yt), the current values of the entities (i.e. Value), the final time
in which the objective function will be evaluated (i.e. ν+ τ), the ODE system
(i.e. ODE), and a set of functions encoding the OP (i.e. G,L and Fopt). The
functions G and L are used by the optimization solver to test if a new vector
y, randomly generated according to the parameter constraints, is a feasible
solution. Indeed the functions G and L verify if y satisfies the inequality
constraints. The function Fopt is instead called by the optimization solver to
compute the value of the objective function associated with a feasible vector
y.

This function, takes as input the vector y, the current values of the enti-
ties (i.e. Value), the ODE system (i.e. ODE), and the final time in which the
objective function must be evaluated (i.e. ν+ τ). First it computes the quan-
tities values at ν+ τ assuming the missing rates to be equal to y. Then, the
computed values are used to evaluate the objective function, whose derived
value is returned. When the optimization step is terminated the vector Value
is updated with the new computed values.

Moreover, in Alg. 2 we report an extension of the previous pseudo-code
in which the optimization solver could be executed less frequently, so not
at each time step. Indeed, we propose to exploit a heuristic function to
decide when the optimization phase must be performed. Hence, when the
optimization solver is not called the previous value yt are considered during
the solution of ODE system (i.e. method SolveODE()). In Chapter 4 an
example of such a heuristic function is discussed and some experimental
results are presented.

2 data integration
Our method aims to use high-throughput gene expression data produced

with RNA-Seq technologies to transform kinetic models of metabolism, al-
ready built and validated for a specific condition, into new models that de-
scribe new conditions of interest. The transformation is intended to adjust
the value of some model parameters depending on the expression of the
metabolic enzymes in the specific condition.
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The level of expression of metabolic enzymes has in fact a high impact
on the velocity of the reactions in the system. For all reactions catalyzed
by enzymes, either modeled with fully detailed or approximate kinetics, the
influence of enzyme concentration on reaction kinetics is captured by some
of the kinetic parameters that appear in the rate law. In the case of LMA
and GMA, for instance, the influence of enzyme concentrations on the re-
action flux is modeled implicitly. Variations in enzyme concentrations, in
fact, would impact the values of the forward and reverse reaction rate con-
stants. In Michaelis-Menten, as well as in the vast majority of fully detailed
reaction rate laws, instead, a vmax, forward or reverse, parameter that de-
fines the maximal catalytic activity an enzyme can reach, is always present.
As it is also highlighted in figure 3, the value of vmax can be linked to
the values of its multiplication factors, Etot and kcat, by the relationship
vmax = Etot · kcat.
kcat, or turnover number, consists of the same parameter described as k2
in reaction 2. kcat determines the catalytic efficiency of the enzyme as it
represents the rate of the limiting elementary step in the reaction.

In order to test our approach of data integration, we assume that the dif-
ferences in the estimated values of vmax (or, equivalently, in kf and kr for
LMA and GMA rate laws) across different conditions, like different cells
or different tissues, are uniquely caused by differences in enzyme concentra-
tions. kcat is then assumed to hold a constant value, specific of each enzyme,
in all the conditions we are considering. With this assumption vmax can be
directly calculated knowing the level of enzyme present in the system.

Estimates of enzyme concentrations are normally obtained with western
blots and proteomics technologies. These analyses, however, require labor-
intensive preprocessing procedures and high costs. For these reasons, these
types of data are publicly available in limited amounts. Gene expression
data, on the other hand, is currently a much more readily available source
of information.

In our method, we explored how enzyme concentrations can be inferred
with a simple procedure that exploits RNA-Seq gene expression data. In spe-
cific, we use RNA-Seq outputs, namely the Fragments Per Kilobase Mapped
Reads (FPKMs), to recast some model parameters so that the model reflects
the gene expression profile of the condition of interest.
With respect to this goal, it is important to highlight that the amount of
mRNA of an enzyme-coding gene should be used with caution. First of
all, the current understanding of transcription and epigenetics teaches us
that the proportion of transcript that is converted into a functional enzy-
matic form is the result of many processes of post-transcriptional and post-
translational modification [304]. The impact of these can be potentially very
high, as reviewed in [115]. Also, these mechanisms are still far from be-
ing completely understood, and almost impossible to model mathematically.

59



2 data integration

Aware of these extremely complex events of regulation, we anyway believe
that the utility of simplistic methods of data integration should be explored.

We give here an example of our recasting approach. In the case of vmax,
the parameters for a new, desired, condition N can be calculated the known
vmax values of a reference condition R

vmaxN = vmaxR · FPKMN/FPKMR

.
In the case of LMA, instead

kNf = kRf ·
FPKMN

FPKMR

kNr = kRr ·
FPKMN

FPKMR

In this way, a model that is fully parameterized for a reference condition can
be recast into a new model, representative for a new condition of interest, if
RNA-Seq data of the two conditions are available.

It should be noticed that when we make use of these simple transforma-
tions we do not necessarily need to postulate that all post-transcriptional
processes have a null effect on enzyme concentrations. More precisely in-
stead, we are proposing that epigenetic mechanisms affecting the final con-
centration of metabolic enzymes are consistently and equally present across
the conditions we are studying. In fact, if in two different conditions some
post-transcriptional modifications have a high but equal impact on enzyme
abundance (we can envision, for instance, that a very low proportion of
mRNA is effectively converted into a functional protein) and we know from
the existing literature the accurate vmax value for one of the two conditions,
then the computed vmax value for the new condition would be accurate as
well.
We remark that, in order to limit additional sources of uncertainty, the level
of mRNA should be better measured with RNA-Seq technologies rather than
with microarrays, as the former provides a more accurate absolute quantifi-
cation of its abundance.

RNA-Seq data, however, are not the only type of data that can be used for
this approach. For those situations in which proteomics data are available, in
fact, these can be used to improve the accuracy of the recasting process. The
type of data used does not alter the procedure of data integration, simply
FPKM values should be replaced by protein concentrations. A complete dis-
cussion on the potential insights that can be gained applying this approach
in the context of kinetic models of cancer metabolism, supported by some
figures and data, is postponed to chapter 4.
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3 representing metabolic heterogeneity

3 representing metabolic heterogeneity
A metabolic system can present features of metabolic heterogeneity at dif-

ferent levels. In this thesis, we will focus more specifically on two forms
of heterogeneity: heterogeneous kinetic properties of different enzyme iso-
forms and the heterogeneous metabolic traits that can be displayed by dif-
ferent cells in a population. We will see here how an extension of SPN,
namely Stochastic Symmetric Nets, has peculiar properties that facilitate the
representation of the metabolic heterogeneity present in the system.

3.1 Stochastic Symmetric Nets

We have seen how SPNs have the capability to provide a high level rep-
resentation of a stochastic process, a CTMC specifically, in a graphical and
compact formulation, from which a system of ODEs can be directly derived.
As for many biological systems, however, it can be the case that an SPN rep-
resentation is still highly complex and hard to represent graphically without
confusion. In these cases, a modeler can exploit repeated and modular struc-
tures that might be present in the network, which are seen as symmetries in
an SPN, to create a much more concise representation of the system. Stochas-
tic Symmetric Petri Nets (SSN) are the formalism that permits such a compact
model description.

One important new feature of SSNs is the possibility of having distin-
guished tokens, so that the tokens could be represented graphically as dots
of different color 3: in practice the “color” attached to them may be any kind
of information. The type of the information associated with tokens can dif-
fer depending on the place where they are located, hence the definition of
an SSN must include the definition of a color domain for each place (denoted
cd(p),p ∈ P) that specifies the type of data attached to the tokens in that
place.

The advantage of this new feature can be better understood considering
the following biochemical example. Figure 33 shows the elementary step of
a simple reaction in which a substrate is converted to a product in the pres-
ence of a competitive inhibitor. We can imagine that one or more isoforms
of this enzyme are actually present in the system, and that these isoforms
display a slightly different functionalities. It could be, for instance, that one
of the isoforms is insensible to the interaction with the inhibitor, or that the
catalytic step occurs at different rates. In such situations it becomes impor-
tant to model how many molecules of substrate interact with one isozyme
or with the other, as if the tokens contained in places E, ES, EI, EP could
be separated depending on the specific isoform proportions. If we maintain
the separation, our model is able to represent what actually happens in the
system, i.e. the substrate molecules are channeled into separate, parallel
routes, each characterized by its own kinetic properties. In this situation a
color class, as defined in 10, can be associated to all the enzymatic forms,

3 this explains the adjective colored
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bounded or unbounded. The resulting SSN representation of the system,
later reported in figure 33, is able to retain all the information in the model
in a much more compact format.

Figure 5: SPN representation of the elementary steps of the conversion of substrate
S into product P in the presence of a competitive inhibitor I

The state, or marking, in SSNs is represented by the multiset of colored
tokens associated with each place. As in SPN systems the state change is
performed by transition firing. Since the tokens in SSNs are distinguished,
some additional information is needed to define the colored tokens that are
withdrawn from the input places and put into the output places of a given
transition when it fires. Hence the transitions can be considered to be proce-
dures with parameters. The possible values of these parameters define the
so called transition color domain. The set of parameter is defined through the
arc function connecting the transition to input/output places.

In order to enable and fire a transition, it is necessary to instantiate the
actual values for its parameters. A transition whose parameters have been
instantiated to actual values is called transition instance.

If the number of possible colors is finite then an SSN has the same the-
oretical modeling power as an SPN and it is always possible to derive an
equivalent SPN applying an unfolding algorithm4.

Modeling complex systems, like biochemical systems for instance, with
SSN is more convenient, not only for their compactness and readability but
also for their significantly higher degree of parameterization. Model sym-
metries can in fact be automatically exploited to generate a lumped CMCT

4 It is important to observe that while the unfolding of an SSN is unique, the inverse operation
of folding an SPN to obtain a more compact, colored representation of the same model, may
lead to several alternative SSN models, depending on the point of view of the folding and
the desired degree of compacting.
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from which it is possible to compute the same indexes computed for a non-
lumped CTMC [25, 59, 70].

Before giving a formal definition of an SSN it is necessary to introduce the
following concepts: multiset, basic color class, color domain, standard predicate,
elementary function, class function and arc function.

Definition 9 (Multiset). A multiset a over a nonempty set A is a mapping a ∈
{A → N}, we use the notation Bag(A) to denote a multiset over A. Intuitively,
a multiset is a set that can contain several occurrences of the same element. It can
be represented by a formal sum: a =

∑
x∈A(a(x))x. The coefficient a(x) is called

multiplicity of x in a.
Observe that the elements with multiplicity zero are omitted in the formal sum

representation

Definition 10 (Basic Color Class). A basic color class, denoted Ci, is a finite not
empty set of colors identifying objects of the same nature.

It is called ordered basic color class if a successor function (denoted !) induces a
circular ordering on its elements.

Moreover a basic color class can be partitioned into ni disjoint subsets Ci,j with
j = 1, . . . ,ni called static subclasses; colors belonging to different static subclasses
represent objects of the same type but with different behavior.

We will denote C = {C1, . . . ,Ch, . . . ,Cn} the set of pairwise disjoint basic color
classes. We use also the convention that classes with index up to h are not ordered,
while classes with higher index are ordered.

Definition 11 (Color Domain). The information associated with tokens comprises
one or more fields, each field in turn has a type selected from the set of basic color
classes C.

The transition color domains are used to define the parameters of transitions and
their type. Each parameter has a type selected from the basic color classes. In
addition, the possible color instances of a transition can be restricted by means of a
guard, a standard predicate which will be defined below. Hence the definition of
a transition color domain comprises a list of typed parameters.

Each parameter is associated with a variable appearing in some arc function of
the input, output or inhibitor arcs of the transition. We shall denote vari(t) the
subset of transition t parameters of type Ci, and var(t) the whole set of transition
t parameters. In practice this approach of using the variable-based notation makes
the model more readable.

Definition 12 (Standard Predicates and Guards). A guard is a boolean expres-
sion defined on a transition color domain. In an SSN it is expressed by a standard
predicate, that is a boolean expression whose basic terms are basic predicates. Ba-
sic predicates allow to compare color elements from the same color class Ci or test
whether a color element belong to a given static subclass, and can take the following
form:
- [Xji = X

k
i ](c), it evaluates to true iff the jth component of type Ci in c is equal to

the kth component of the same type;
- [d(Xji) = Ci,h)](c), it evaluates to true iff the jth component of type Ci in c belong
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to the static subclass Ci,h;
- [d(Xji) = d(X

k
i )](c), it evaluates to true iff the jth and kth components of type Ci

in c belongs to the same static subclass.

Before introducing the arc functions, it is necessary to define the two fol-
lowing concepts: elementary function and class function.

Definition 13 (Elementary Function). An elementary function is a linear map-
ping from cd(t) to Bag(Ci) (for some i ∈ 1, . . . ,n) chosen among the following
functions:

• the projection function denoted Xli defined as:

Xli(. . . , c
j1
1 , . . . , cj22 , . . . , cjnn , . . .) 7→ cli

• the successor function denoted !Xli defined as:

!Xli(. . . , c
j1
1 , . . . , cj22 , . . . , cjnn . . .) 7→!cli

• the diffusion function (also called synchronization function, depending whether
it annotates an output or an input arc), which is constant, denoted Si and de-
fined as follows:

Si(. . . , c
j1
1 , . . . , cj22 , . . . , cjnn . . .) 7→ Ci

Notice that in practice the symbols Xli used above to denote the projection
function are substituted by names of transition variables (representing the
transition parameters) in the models; each variable has a type Ci. The variable-
based notation usually makes the model more readable.
The diffusion (synchronization) function can be restricted to a static subclass,
denoted Si,j and defined as follows:

Si,l(. . . , c
j1
1 , . . . , cj22 , . . . , cjnn . . .) 7→ Ci,l

Definition 14 (Class Function). A color function f on class Ci, also called Ci
class function, is a linear combination of elementary functions (with same domain
and codomain):

fi =
∑
j

αj ·Xji +
|Ĉi|∑
q=1

βq · Si,q +
∑
j

γj·!Xji

The coefficients βq ∈N, αj,γj ∈ Z must satisfy the following constraint: if f−i and
f+i are respectively the multisets of elements with negative and positive coefficients
in the formula above (so that fi = f+i − f−i ), then it must hold f−i 6 f+i .

Definition 15 (Arc Function). An arc function is a weighted (and possibly guarded)
sums of tuples, the elements composing the tuples are in turn weighted sum of class
functions.

F =
∑
k

λk · [predk]
n⊗

i=1

ei⊗

j=1

f
j,k
i
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where fki,j is class function, λk ∈ N, [predk] is a standard predicate and ei is the
number of occurrences of class Ci in cd(p). The symbol

⊗
denotes the Cartesian

product, in the text we shall also use the representation 〈f11, f21, . . . fenn 〉, briefly called
function tuple (or simply tuple).

The formal definition of an SSN is the following

Definition 16 (SSN). A Stochastic Symmetric Petri net is a tuple:

NSSN = 〈P, T ,C, I,O, cd,φ, λ, m0〉

where:

• P,T are defined as for SPN;

• C is a finite set of finite color classes,

• I(p, t),O(p, t) : cd(t)→ Bag(cd(p)) are the pre- and post- incidence matri-
ces associating a function with each arc;

• cd : P ∪ T → C is a function defining the color domain of each place and
transition;

• φ is the vector of guard functions and maps each element of T into a function
assigning to each color cd(t) a value in {false, true};

• λ is a set of functions λt : cd(t)→ R expressed in the following form:

λ(t)=
{
case cond1 : r1
case cond2 : r2
. . .
case condn : rn
default: rdefault
}

• m0 : P → Bag(cd(p)) is the initial marking, mapping each place p on a
multiset on cd(p)

The evolution of an SSN system is defined through a firing rule, but in
this case the firing concerns a transition instance rather than a transition.

Definition 17 (Transition instance). A transition instance is an assignment of
actual values to the parameters of the transition. We use the notation 〈t, c〉 for an
instance of transition t, where c ∈ cd(t) represents the assignment of actual values
to the transition parameters.

Let us define the concession and the enabling of transition instance and
their firing.
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Definition 18 (Concession and enabling of transition instance). A transition
instance 〈t, c〉 has concession in m iff:

∀p ∈ P, I(p, t)(c) 6 m(p) ∧φ(t)(c) = true

A transition instance 〈t, c〉 is enabled in marking m iff 〈t, c〉 has concession in m.

Definition 19 (Transition Instance Firing). An enabled transition instance 〈t, c〉
may fire, and its firing leads to a new marking m′:

∀p ∈ P, m′(p) = m(p) +O(p, t)(c) − I(p, t)(c)

The firing is denoted m[t, c〉m′ or m
〈t,c〉→ m′.

As we described in chapter 2 Petri Nets can be effectively used to describe
a system of metabolic reactions, both for its structural properties and its
dynamic behavior. In this section we are presenting how heterogeneity at
different levels can be represented with Symmetric Stochastic Petri Nets, and
the notions of color domains.

heterogeneity of enzyme isoforms Enzyme isoforms, or isozymes,
can be defined as highly similar gene products that perform essentially the
same biological function. Due to these slight differences, isozymes convert
substrates into products with slightly different kinetics. To better present
our approach, we will temporarily restrict our focus to consider a system
composed of a single enzyme catalyzed reaction, like the one we presented
above, depicted in figure 33. The figure shows a Petri net that represents
the elementary steps of a simple reaction mechanism, in which an enzyme,
a substrate, a product and a competitive inhibitor participate. If we want-
ted to expand our model to take into account the fact that in our system
additional isozymes are present, our reaction network would expand signif-
icantly. In the simple case in which we have a mixture of just two enzyme
isoforms, the two different enzyme species, together with the reactions they
independently catalyze, would increase both the rows and the columns of
the stoichiometric matrix associated to the system. A graphical representa-
tion with an SPN would equally expand, almost doubling in size. A visual
example of how a model with two isozymes would appear is reported in
figure 6

It should become evident that the size of the SPN would increase as many
times as the number of different isoforms we want to include in the model.
If we further wanted to describe systems of more that one reactions the
representation would become rapidly incomprehensible. In order to describe
larger systems where multiple isozymes are present while limiting modeling
difficulties associated to network reconstruction, visualization and model
simulation, we propose that SSN should be more effectively employed. In
figure 7 we report an SSN representation of the same system in figure 33,
in which 3 enzyme isoforms are specified. This SSN has one color class
Et = {A,B,C} divided into two static subclasses EtA = {A}, EtB = {B,C}. The
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Figure 6: SPN representation of a system analogous to the one in figure 33, in which
two enzyme isoforms are described

color domain of all the places is Et and represents the enzyme in its bounded
and unbounded forms. The resulting SSN model, much more elegant in its
appearance, is able to retain the same exact information on the structural
and behavioral properties of the original model.

For this explanatory model, for instance, heterogeneity was introduced in
the model as follows:

• The initial marking of place E0, m0(E) = 2〈A〉+ 〈B〉+ 3〈C〉 reflecting
the relative isozymes abundances as 2 color A tokens, 1 color B token,
and 3 color C tokens

• All the arcs are labeled with the projection function 〈x〉

• the label [d(x) = EtA] associated with the transition E+ I → EI, repre-
sents a guard which defines that just isozymes of color A can interact
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Figure 7: SSN representation equivalent to the SPN representation in in figure 6

with the inhibitor, while the other two remain unaffected by this inhi-
bition.

• The kinetic properties of the isozymes differ with respect to the kcat.
This kinetic heterogeneity can be easily encoded in an SSN specifying
that three different firing rates f(x) are associated with the isoforms.

intrapopulation metabolic heterogeneity The high versatility of
SSNs can also be shown in the context of metabolic heterogeneity in a popu-
lation of cells that share the same environment and the same energetic sub-
strates. This multicellular system can be envisioned as a portion of a tissue, a
cancer, or a bacterial community. A population in which different metabolic
traits are present would be normally modeled with an equally numerous
population of interacting models. It is important to notice that a model of
a population of cells cannot be reduced to multiple, separated sub-models,
each for one single cell. A similar transformation would miss the key aspect
that these metabolic models compete for the same substrates available in the
environment. Each single cell sub-model, thus, should always “sense” the
presence of the other sub-models. If these sub-models are characterized by
a high similarity (e.g they just differ for the values of their kinetic parame-
ters), they can be described with a single SSN, where the colors reflect the
differences (e.g. different parametrizations) among the sub-models in the
population. In chapter 4, we will show how an ensemble of single cell sub-
models describing the different metabolic phenotypes identified in a sample
of cancerous tissue can be represented and modeled with the support of the
SSN formalism.
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Our implementation. To perform our experiments a prototype implemen-

tation of the proposed method integrated in the GreatSPN framework [7]
was developed. In detail, we extended the GreatSPN tool PN2ODE provid-
ing the automatic translation from SPNI to the ODEs system and OP system.
A scheme representing this process is reported in Fig. 8. The generated
ODEs system and OP are encoded in R language and saved into a file that
is processed through the R environment to obtain the system behavior. The R
package deSolve [78] is used to solve ODE integration, while package GenSA
[234] is used to solve the OP.
The translation tool takes as inputs:

• the SPNI model, drawn with the GreatSPN GUI and saved into two
files with extension.net and.def;

• One text file listing the undetermined bounded transitions;

• One text file containing the objective function.

The translation is performed with the following pipeline:

• The program extrapolates from.net and.def files all the PN informa-
tion, such as places, transitions, arcs, initial marking and firing rates.
Unknown transition rates are marked as NA.

• The program verifies the correctness of the file containing undeter-
mined bounded transitions. For each undetermined transition Tu two
values ΛLu(t) and ΛUu (t) that bound its flux are required. Optionally,
the starting point, from which the OP solver starts searching the opti-
mal solution, can be specified. If no starting point is provided, then a
default value is computed as half of the sum of ΛLu(t) and ΛHu (t).

• The objective function, stored in the .txt file, is processed through a lex
and yacc parsing tool. It can be a generic expression whose terms are
the places and the transitions of the net.

• The whole translation process is executed from the command line as
follows:
PN2ODE SPNI_file -M -P -T./transitions_file -F./obj_fun_file ,
where -M enables Mass Action policy, -P enables export format in R
with the optimizer, while -T and -F are respectively used to specify the
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Figure 8: PN2ODE translation process.

two text files containing the undetermined bounded transitions and
the objective function.

Case study. The proposed approach is used to investigate the metabolic
behavior of cancer cells to illustrate its practical applicability. The model
represents the glycolytic pathway in a generic human cell. It is inspired
by the model presented in [74], which describes glycolysis in human red
blood cells. Glycolysis is the most important and best studied intracellular
metabolic pathway. In every cell of the human body, it leads to the consump-
tion of Glucose (GLC) and a progressive production of Pyruvate (PYR) and
energy, in the form of Adenosine Triphosphate (ATP). Then, in physiological
conditions, in the presence of oxygen, PYR is metabolized by other pathways
to generate the majority of the energy consumed by the cell. In absence of
oxygen, PYR is converted to LAC without further energetic yields. The
model is characterized by seventeen metabolic reactions, the related equa-
tions are reported in the first column of the Table in Fig. 10, and it can be
graphically described by the SPN model in Fig. 9 where place names are
chosen to recall the corresponding biological compounds. The first and the
last transitions are included to reproduce the inflow of GLC and the outflow
of LAC in and from the cell. All the other transitions describe forward and
reverse reactions, catalized by specific metabolic enzymes.

Differently from normal cells, cancer cells exhibit an enhancement of gly-
colysis and production of LAC even in the presence of oxygen, a phenomenon
known as Warburg Effect [62]. This phenomenon represents the central fo-
cus of our experiments. It has been recently shown that metabolic alterations
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Figure 9: Case study: Glycolysis in Homo Sapiens.
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Table 1.

Reactions Rate Equations

/0
K f 0!GLC K f 0 = 6.48E +06

HK +GLC +AT P
K f 1
�
Kr1

HK +G6P+ADP K f 1 = 6.48E +05,Kr1 = 4.9E +03

PGI +G6P+AT P
K f 2
�
Kr2

PGI +F6P K f 2 = 1.15E +03,Kr2 = 2,68E +03

PFK +F6P+AT P
K f 3
�
Kr3

PFK +FBP+ADP K f 3 = 1E +09,Kr3 = 8.47E +04

ALD+FBP
K f 4
�
Kr4

ALD+DHAP+GAP K f 4 = 1.46E +02,Kr4 = 1.18E +00

T PI +GAP
K f 5
�
Kr5

T PI +DHAP K f 5 = 7.93E +00,Kr5 = 4.53E +06

GAPDH +GAP+NAD+
K f 6
�
Kr6

GAPDH +BPG13+NADH K f 6 = 1.42E +05,Kr6 = 5.28E +06

BPGM +BPG13
K f 7
�
Kr7

BPGM +BPG23 K f 7 = 1E +08,Kr7 = 1E +05

BPGF +BPG23
K f 8
�
Kr8

BPGF +PG3 K f 8 = 6.84E +02,Kr8 = 1E �09

PGK +BPG13+ADP
K f 9
�
Kr9

PGK +PG3+AT P K f9 = 2.61E +04,Kr9 = 1.45E +01

PGM +PG3
K f 10
�

Kr10
PGM +PG2 K f10 = 5.38E +01,Kr10 = 7.92E +00

ENO+PG2
K f 11
�

Kr11
ENO+PEP K f11 = 5.82E +02,Kr11 = 3.44E +02

PK +PEP+ADP
K f 12
�

Kr12
PK +PY R+AT P K f12 = 5.17E +02,Kr12 = 5.17E �01

LDH +PY R+NADH
K f 13
�

Kr13
LDH +LAC +NAD+ K f13 = 1.04E +03,Kr13 = 2.34E +00

AT Pase+AT P
K f 14
�

Kr14
AT Pase+ADP K f14 = 9.74E �01,Kr14 = 9.74E +00

REDOX +NAD+
K f 15
�

Kr15
REDOX +NADH K f15 = 9.74E �01,Kr15 = 9.74E �04

/0
K f 16! LAC K f16 = 1

Table 2. Glycolysis in Homo Sapiens: reactions, rate equations and initial marking.

Figure 10: Table: Reactions, Equations and Initial marking of glycolysis in Homo
Sapiens.

seen in cancer cells are promoted by specific mixtures of isoforms of their
metabolic enzymes. In particular, it seems that isoforms of Hexokinase (HK),
Phosphofructokinase (PFK) and Pyruvate Kinase (PK) may play an eminent
role [124]. Despite these discoveries, it is still complicated to characterize the
in vivo kinetics of these isoforms. Conditioned by these constraints, we chose
to set the reactions involving HK, PFK and PK as undetermined transitions,
i.e deficient of a complete list of regulators and of a specific mathematical
expression containing its kinetic parameters. Our approach is used here as
an attempt to acquire a deeper understanding of cancer metabolic dynamics.
The idea is to use an objective function that encodes the Warburg Effect, con-
sidering every type of cancer at every possible tumour stage. We decided
to formalize it as the maximization of LAC production at every integration
step. Thus, the optimization process searches the values of the firing inten-
sities of all Tus that allow to maximize LAC. The fluxes of undetermined
transitions Tuf1 , Tur1 , Tuf3 , Tur3 , Tuf12 and Tur12 were allowed to vary in a
wide range that agrees with the available biological knowledge. Specifically
the boundary conditions were set as follows:

ΛLu(Tuf1 ) = 1620 · xHK · xGLC · xATP
ΛUu (Tuf1 ) = 2.592e+ 08 · xHK · xGLC · xATP
ΛLu(Tur1 ) = 12.24 · xHK · xG6P · xADP
ΛUu (Tur1 ) = 1.9584e+ 06 · xHK · xG6P · xADP
ΛLu(Tuf3 ) = 2.5e+ 06 · xPFK · xF6P · xATP
ΛUu (Tuf3 ) = 4e+ 11 · xPFK · xF6P · xATP
ΛLu(Tur3 ) = 211.864 · xPFK · xFBP · xADP
ΛUu (Tur3 ) = 3.38983e+ 07 · xPFK · xFBP · xADP
ΛLu(Tuf12 ) = 1.29234 · xPEP · xPK · xADP
ΛUu (Tuf12 ) = 206774 · xPEP · xPK · xADP
ΛLu(Tur12 ) = 0.0058511 · xPK · xPYR · xATP
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Figure 15: Behaviours of
place F6P
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Figure 16: Behaviours of
place PEP

ΛUu (Tur12 ) = 0.620322 · xPK · xPYR · xATP
Fig. 11 shows the evolution of LAC over time. The black line represents the
results of the model of a normal cell, where all parameters are well charac-
terized. The blue dashed line show the time evolution of LAC when uncer-
tainty is applied. It can be noticed that this objective function is able to drive
the system to accelerate LAC production. Even if the difference might not
seem large enough to represent the Warburg Effect, we point out that these
diagrams show the behavior of our model for a very short time interval.
Fig. 12 shows the rapid accumulation of Fructose 6-Phosphate (F6P) in the
normal cell model compared to a more balanced production-consumption
dynamics in the cancer model. F6P, a high glycolitic intermediate, increases
as a direct consequence of GLC degradation and is later processed by PFK.
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It is then significant to see which parameters the optimization solver inde-
pendently chooses to tune in order to maximize its objective function. While
parameter values of HK and PK did not vary markedly if compared to the
normal cell model (data not shown), the highest difference regarded PFK.
Many articles as [135] have demonstrated that PFK kinetics is highly non-
linear and depends on many allosteric interactions. Our results seem to
reinforce Mulukutla’s thesis [135] that the regulation of PFK activity has a
crucial impact on the glycolitic flux and may be relevant to explain metabolic
alterations in cancer. In the absence of quantitative data to perform a quan-
titative validation of our approach, we consider that the emergent finding
of the importance of PFK parameters for the behavior of the system can be
regarded as a qualitative validation of our approach.

With an additional set of experiments we studied if it was possible to
reduce the computational costs of our approach while maintaining a good
accuracy of the solution. With this intent, we progressively decreased the
frequency at which the optimizator was invoked and then explored the per-
formance of our algorithm. When the optimization process is not repeated
at every integration step the time-varying parameters associated with Tus
are then transformed into piecewise constant parameters. This can be moti-
vated with the assumption that in the time interval between two consecutive
optimization processes some fixed parameter values can well approximate
the real behavior of all Tus. The time interval that separates different opti-
mization processes, in alternative called optimization step, was set to four
different values: 1e−7, 5e−7, 1e−6, 5e−6 h. As reported in Table 1 the result-
ing computational times are compared. As expected, reducing the number
of optimization processes allowed to significantly diminish the overall com-
putational efforts of the algorithm. We then studied how these changes af-
fected the dynamics of the system. Intriguingly, we found that some places,
like LAC, as shown in Fig 14, displayed little or no changes, while for other
places, like F6P and PEP, the changes were much more relevant, as shown
in Fig. 15 and 16. We can then observe that for the more sensible places
the reduction of computational time comes at the cost of the precision of
the solution, which nevertheless maintains the capability to provide some
qualitative information about the behavior of the model. In a further set of

ODE Opt int 1e-7 Opt int 5e-7
0.732235s. 2441.878sec. 569.7389sec.

Opt int 1e-6 Opt int 5e-6
254.9282sec. 119.2946sec.

Table 1: Execution times for different optimization time intervals. All executions
were performed on an INTEL i7 64bit 2.60GHz processor

experiments we tested if the time step of the optimization processes could
be adaptively tuned along the solution of the system. The rationale behind
this choice is to invoke the optimization process just if it produces significant
effects. In order to do it, we added in our algorithm an heuristics, presented
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in Chapter 3, that considers the relative change in the markings of input
places of all Tus. When the relative change in one of these places crosses
a user-defined threshold, the optimization process is executed. We stud-
ied how three different thresholds values (i.e. 5%, 10% and 25% of change)
impacted both the computational time and the accuracy of the solution. Fig-
ures 18, 19 and 17 display the differences in the dynamic behaviors of F6P,
PEP and LAC, when the different threshold values are considered. The ex-
ecution times in the three cases are reported in Table 2, compared to the
performance of the algorithm in the absence of the implemented heuristics.
Data clearly show that, for instance when a 5% threshold value is used, no
negative effects reflect on model solutions, while the computational cost is
reduced of a factor greater that 10. Regarding the accuracy of the solution,
also greater threshold values are satisfactory, with the advantage that they
allow considerably higher time savings.

Opt int 1e-7 Thr=5% Thr=10% Thr=25%
2441.878sec. 195.0151sec. 135.4613sec. 82.67076sec.

Table 2: Execution times for different threshold values of relative change in place
markings. All executions were performed on an INTEL i7 64bit 2.60GHz
processor

It is important to observe that our approach, moving forward from the
strict teleonomic perspective adopted by FBA and CM, allows to define ob-
jective functions that may mimic some experimentally observed behavior.
It is worth underlying that teleonomy has shown great utility to help dis-
sect metabolic characteristics in microorganisms. In the case of multicellular
and more complex organisms like humans, however, the process of selec-
tion that justifies the teleonomic view is much more complex, and a clear
goal-directedness of intracellular metabolism is not equally reasonable to
consider. However, the LAC maximisation function, which we adopted in
our case study of cancer glycolysis, besides reflecting the fact that a high
production of LAC in cancer cells is a renown experimental finding, may
also have a teleonomic value. In fact, it can be hypothesized that the process
of evolution of cellular phenotypes observed in cancer, i.e. in the selection of
aggressive cancer clones during its progression (current focus of extensive
studies [286]), tends to select a goal-directed cellular phenotype character-
ized by LAC maximization.
Moreover our proposed approach, differently from FBA and CM, does not
assume the steady state of the intracellular metabolites, as in FBA, and it
does not require a complete knowledge of all kinetic parameters, as in CM.
Finally, it is useful to highlight again that the lack of experimental data,
which is very frequent in cancer cell scenarios, does not affect our approach
as it does for techniques of RE and PE.
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2 data integration
In chapter 3 we presented a method that can be used to convert a vali-

dated, condition-specific kinetic model, into a new model, specific for a new
condition of interest. Fundamental requirements to use this approach are
gene expression data in the form of FPKMs, or in case they are available,
protein quantifications by proteomics technologies.

In this section we intend to illustrate the process that accompanied our
modeling efforts and discuss some theoretical as well as practical consider-
ations arisen from these results. The structure of this section will be thus
more conversational.

The work that led us to elaborate this approach started with a process of
literature review, in which we scrutinized the most significant examples of
computational models of cancer metabolism. A summary of some of these
is reported in section 2. As already mentioned, modeling cancer metabolism
is an intrinsically difficult challenge, both for the complexity of its patho-
physiological aspects, both for the low availability of biological data. So far
these substantial limitations have strongly conditioned both the number of
modeling attempts as well as the methods adopted. The vast majority of
modeling experiences focused in fact on constraint-based models, while just
a few authors proposed kinetic models.

Acknowledging the methods already implemented in the literature, we
asked if these modeling efforts could be complemented and improved through
additional procedures of data integration. With this goal in mind, we de-
cided to aim attention at kinetic models of metabolism. The description of
the system they are potentially able to provide is attractive, especially if we
consider the strongly dynamic characteristics of cancer. As an additional mo-
tivation of our choice, many other technique, reviewed elsewhere [119, 147],
had already been proposed for constraint-based models.
Moving in a relatively unexplored field, our investigation was not devoid of
complications. We will accompany the discussion of our results reviewing
the main difficulties and obstacles that can be encountered in the process.

In order to build and validate kinetic models of metabolism, the most in-
formative type of data are time-course profiles of metabolite concentrations.
The scientific community is confident in the belief that these data will be-
come cheaper and cheaper, and more and more available in the near future.
At the moment, however, they are hardly accessible. In the absence of such a
dynamic overview of the system we are studying, top-down modeling strate-
gies are hampered. We hence devoted our efforts to a bottom-up strategy
and we inspected the sources of kinetic information that are currently at our
disposal. As we saw in section 1.1 these can be distinguished into databases
where kinetic parameters are archived, and on-line repositories of kinetic
models that have been already validated and published. Regarding the for-
mer, we already discussed that the data collected in these databases always
has a highly heterogeneous provenience, thus their use should be prudent.
Concerning the latter, we searched a model that we could use as a scaffold
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to test our data integration approaches.
In this search, it can be rapidly discovered that stored models are often in-
complete of some necessary element that prevents a straightforward repro-
ducibility of the published results.

red blood cell model Among the models we checked, no kinetic model
specific of cancer metabolism was available. Thus, looking for models of non-
transformed, human cells, we selected the red blood cell model, in which
Jamshidi and Palsson proposed their MASS approach based on the approxi-
mate mass action rate law [73]. As a motivation of our choice, its formulation
with the LMA makes the model easy to implement and check. Interestingly
the stoichiometric matrix, the full list of estimated kinetic coefficients, the
values of the fluxes at the steady state and the initial conditions were listed.
The model was represented with an SPN, using the GreatSPN framework [7],
a tool that simplifies the creation and simulation of SPN models. Exploting
the features of the software, an SPN model was automatically translated into
a system of ODEs describing its behavior.
We intended to test our approach trying to recast this RBC model into kinetic
models representative of different, non pathological tissues.

In doing this, our intention was not to create models that could reproduce
quantitative metabolic behaviors with accuracy. Rather, we wanted to verify
if some qualitative differences that resembled the known metabolic diversity
of these tissues could be reproduced. We downloaded FPKM values for five
different tissues: muscle, liver, brain, pancreas and reticulocytes.
A factor we had not previously considered, as red blood cells have no nu-
cleus, their mRNA production is no more active. We hence decided to use
FPKMs as an estimate, even if rough, of enzyme expression levels in RBCs.
Then all the reactions in the network were manually assigned to the corre-
sponding reaction ID in the Human metabolic reconstruction Recon 2 [241].
Mapping model reactions to Recon 2 was necessary to compute the conver-
sion. It should be highlighted in fact that the integration of FPKM values
requires that these, which have a one-to-one relationship with the genes, are
mapped into a coefficient that defines the level of activation of the reaction.
This mapping procedure requires gene-protein-reaction (GPR) rules, logic
expressions in which gene identifiers are linked by AND and OR operators.
In chapter 2 we mentioned that other more recent reconstructions, like Recon
2.2 [233] and Recon 3D [18], have already been published. We however de-
cided to use Recon 2 for practical reasons of the mapping process. Referring
to the analyses carried out in [147], we believe that the results obtained with
our data integration approach can be still evaluated regardless the choice of
the human reconstruction. Anyway it is part of our future intentions to try
to assess the differences we would obtain in our results if we used newer
metabolic reconstructions.
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A specific feature of the original model, the reactions are described with
two different levels of details. For some of them, all enzymes in their com-
plexed and uncompleted forms are represented as variables in the system.
For the others, instead, the enzymes are not modeled, and the reaction di-
rectly catalyzes the conversion of substrates into products. This diversifi-
cation was taken into account using two different modes of integration of
FPKM data. Where an enzyme was not specifically modeled, FPKM values
were used to recast kf and kr values of the original model into the new one

kMf = kRf ·
FPKMM

FPKMR

kMr = kRr ·
FPKMM

FPKMR

Where, in this example, M indicates the target condition (muscle) while R
the reference condition (reticulocyte). For all the reactions in which enzymes
were explicitly modeled, instead, FPKM values were used to recast the initial
concentrations of total enzyme moieties, starting from the initial concentra-
tions specified in the supplementary material of the paper. With the recast
completed for all the enzymes in the network, we were able to produce time
course profiles for each metabolite/enzyme in the model.
The analysis of these results was unfortunately inconclusive, hindered by
the inability to check that the original model (not recast) was correct, as the
paper did not report dynamic profiles that could be used as a comparison.
In our simulations the dynamic trends of the most important intracellular
metabolites showed unreasonable behaviors that could not be more accu-
rately interpreted. Moreover, following the procedure exposed in the paper,
we tried unsuccessfully to retrieve the steady state fluxes starting from the re-
ported kinetic rate constants and the steady state metabolite concentrations,
using LMA formula:

v1 = k
+
1A

2 − k−1 B (16)

The recasting process was however able to recreate distinguishable profiles
for the different tissues, but deeper speculations on whether these quanti-
tative differences were consistent with the biological differences among the
tissues were impeded. We hypothesized that these apparently anomalous
behaviors were caused by some error in the model description. It is out of
the scope of this thesis to be more detailed here, however we do believe it
is interesting and important to witness that the reproducibility of published
data is an issue that should be more and more discussed by the community
in the future.

alternative gpr mapping methods Even though the recast models
could not deliver interpretable predictions, they were however used to ana-
lyze the impact of two alternative implementations of GPR rules conversion.
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As we have previously explained in section 1.5, some authors proposed that
the logic operators AND and OR contained in the rules are converted into
min() and max() functions. According to other perspective found in the
literature, we believe that the OR − to − sum() conversion is more appro-
priate. Here, we assessed the effect of choosing one policy of translation
versus the other. As we mentioned in section 1.5, computing the transfor-
mation from gene expression levels to reaction expression levels through
GPR rules is not trivial, and some specific algorithms have been proposed
for this task [9]. Unable to run these for compatibility reasons, we imple-
mented the AND− to−max() and OR− to− sum() conversions manually.
Figures 20 show the differences in the dynamic behavior of the model if we
use the MATLAB functions extractGPRs() and mapGeneToRxn() included in
the COBRA Toolbox versus the mapping we implemented manually. Even
though the differences are not uniformly marked, and the trajectories tend
to converge to the same steady state, it can be seen how the choice of the
type of conversion influences significantly the transient behavior.
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Figure 20: Continuous lines: behavior obtained with COBRA Toolbox functions;
dashed lines: profiles obtained with OR− to− sum() implemented man-
ually.

pancreatic ductal adenocarcinoma model In order to explore the
prediction capabilities of our recasting method, the MASS RBC model was in-
adequate, and thus abandoned. A new recently published kinetic model [186],
was chosen as a scaffold to test our approaches. In this work the authors
built a kinetic model of the core metabolic pathways which for the first time
represents metabolic alterations in KRAS-mediated pancreatic ductal adeno-
carcinoma (PDAC). The model is composed of a set of ordinary differen-
tial equations that describe the time evolution of metabolite concentrations
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in glycolysis, glutaminolysis, tricarboxylic acid cycle and the pentose phos-
phate pathway. The model, comprising 46 metabolites and 53 reactions, was
fit to published enzyme knockdown experimental data specific to PDAC
cell lines. The building phase was carried out with processes of identifiabil-
ity analysis and parameter estimation. The analyses reported in the paper
explain the ability of the model to simulate in silico enzyme modifications
and evaluate the effects on cell proliferation. Attaining to what the authors
declare, the model identified some potential combinations of enzyme knock-
downs, metabolite inhibitions, and extracellular conditions that impede cell
proliferation. A scheme of the system of reactions contained in the original
model by is reported in figure 21

Roy and Finley Model of Pancreatic Cancer Cell Metabolism

FIGURE 1 | Model schematic. The metabolic network is comprised of 46 metabolites interacting through 53 enzymatic reactions. The major pathways involve

glycolysis, glutaminolysis, the TCA cycle, the PPP, and shuttle reactions between mitochondrial (shaded rectangle) and cytoplasmic compartments. The abbreviations

for the metabolites, cofactors, and enzymes are given in Supplementary File S3. The colored nodes represent the metabolites for which the fold-change has been

measured experimentally during the knockdown of enzyme GOT1 (shown in red). The arrows represent the direction of the reaction fluxes in the baseline model at the

initiation of the simulation.

considered by increasing and decreasing the upper and lower
bounds, respectively, by 20%. Due to the lack of measurements
that distinguish the metabolite levels in different cellular
compartments, the initial concentrations of metabolites that
were present in both mitochondrial and cytosolic compartments
were assumed to be the same. The ranges of metabolite
concentrations given in Table 1 account for variability in
literature measurements as well an additional uncertainty for
unknown intracellular concentration of pancreatic cancer cell
lines in particular.

Latin Hypercube Sampling (McKay et al., 2000; Oguz et al.,
2013) was applied to sample within the ranges selected for
each metabolite. LHS separates the range of concentrations
for the metabolites into multiple intervals and samples from

each interval exactly once, thereby efficiently exploring the
entire possible range of initial conditions for each metabolite.
We selected to obtain 100 sets of initial conditions for each
metabolite for parameter identifiability analysis (Section 3.1.1),
and then randomly selected 50 of those sets to be used in
parameter estimation (Section 3.1.3). This procedure adequately
explores the possible ranges of initial conditions while balancing
the computational resources required for global parameter
optimization.

2.3. Parameter Estimation
The baseline model, adapted from literature, has a total of 372
parameters, which includes 71 reaction velocities (the forward
and reverse rates,Vf andVr , respectively). The reaction velocities

Frontiers in Physiology | www.frontiersin.org 4 April 2017 | Volume 8 | Article 217

Figure 21: Metabolic reaction network of the PDAC mechanistic kinetic model [186]

Differently form the RBC MASS model, this model is fully detailed, with
kinetic expressions of reaction fluxes that involve several allosteric interac-
tions. The baseline model, adapted from literature, has a total of 372 pa-
rameters, which includes 71 reaction velocities. The model implementation
is reported in MATLAB and SBML formats, provided as a supplementary
material of the paper. Importing the SBML model in COPASI [69] and solv-
ing the system of ODEs, however, the computed time profiles of metabolite
concentrations seem to contradict what is reported in the paper. More specif-
ically, the main issue we encountered relates to the growth curves in figures
3 and 4 of the paper: neither in the paper nor in the supplementaries it is
further specified how the “relative cell growth” is computed, and the abso-
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lute cell number shows a early and rapid increase a the beginning of the
simulation that can be hardly matched with the profiles shown in figures 3

and 4 in the paper [186]. Concerning this last point, and according to what
is reported in the paper, the growth rate equation is defined as dependent
on three metabolites, assuming a “ Monod-type function”:

µ = αatP(
ATP

kap +ATP
) +αglc(

Glin
kgc +Glcin

) +αgln(
Glnin

kgn +Glnin
) (17)

The Monod equation is a mathematical model that links microbial growth
rate to the concentration of a limiting nutrient in the growth medium.

µ = µmax
s

(Ks + s)
(18)

Observing Monod’s equation, we could not interpret authors’ choice to mod-
ify the equation replacing substrate concentrations in the media with intra-
cellular concentrations. As glucose and glutamine start being upkaten by
cells, their intracellular concentrations rise rapidly. If we consider just the
portion of the equation that depends on one substrate, glucose for instance,
we can see how the term

αglc(
Glcin

kgc +Glcin
)

would tend to increase as Glcin increases, because kgc (like kap and kgn)
has a value smaller than one. As the growth curve that best recapitulates the
experimental growth profile is the logistic, one would expect the value of
the growth rate to start at high values and progressively diminish to become
zero at the plateau, and not a growth rate changing from low to high in
the first phase. Also the meaning of the carrying capacity was not of easy
interpretation. The differential equation that describes the changing in time
of the number of cells is defined in the model as :

dC = µ ∗C ∗ (1− (C/kk)) − µd ∗C

, where C stands for the cell number, kk for the carrying capacity and µd
represents the death rate parameter. The carrying capacity is normally used
to define the maximum size that the population can reach. Here, however,
as the carrying capacity has no effect on the µd ∗C term, it can be the case
that a steady state is reached at lower values that the carrying capacity. For
these reasons, we decided to let the model display a growth curve that is not
influenced by a kk parameter. In our model, the definition of µ and of dCdt ,
were changed to the following:

µ = αglc(
Glcout

kglc +Glcout
) +αgln(

Glnout

kgln +Glnout
)

dC = µ ∗C
The resulting code was run and was able to reproduce the temporal behavior
of all system variables. The plots in figure 22 show the reproduced behavior
of the PDAC kinetic model, with some components modified as we just
mentioned.
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Figure 22: Dynamic behavior of intracellular metabolites obtained with the PDAC
kinetic model

original model recast to new nci-60 cell line models After this
preliminary phase of model adjustments, we proceeded to test our method
of data integration. Intriguingly, in section Methods of the paper, the au-
thors explain, literally, how “reaction velocities are thought to distinguish
metabolism across different cell types. Therefore, of the many kinetic pa-
rameters included in the reaction rate equations, only the reaction velocities
were fit to the training data, and the other rate constants were held at their
literature values”.
In a process of identifiability analysis the authors assessed the correlation
among the 71 reaction velocities for different initial conditions in the model.
When the forward and reverse reaction velocities (Vf and Vr, respectively)
for a particular reaction were shown to be highly correlated for multiple sets
of initial conditions, only the Vf was considered for the data fitting proce-
dure, while Vr was indirectly calculated from the value of Vf and the equilib-
rium constant of the reaction. The size of the parameter set that was consid-
ered for data fitting was thus shrunk from 71 to 59 parameters. These were
fit to published experimental measurements consisting of the fold change
in steady state concentrations of 14 intracellular metabolites upon GOT1

knockdown [217]. The data used for the fit was produced using 8988T cell
line cultures.
Acknowledging these correlations present among vmax parameters, we pro-
ceeded recasting only the 59 maximal velocities that were not strongly corre-
lated among them. The fact that several attempts of data integration within
constraint-based models have been performed on NCI-60 cancer cell line
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2 data integration

panel, motivated us to consider this panel to explore our approach and to
compare it to the results of those integration processes.

Before we could perform the actual recast, we mapped the reactions de-
fined in the paper with the reaction IDs listed in Recon 2 with the most
similar stoichiometry. This task was performed manually, and was not de-
void of obstacles. For each reaction included in the model, multiple reactions Mapping genes to

reactionslisted in Recon 2 shared the same reactants and products. Among these, we
tended to select the ones that allowed forward and reverse fluxes. For the
cases in which the choice would have been ambiguous, we used the recon-
structions of NCI-60 cancer cell lines core metabolic pathways in [305] as a
comparison and check.
Once each reaction in the model was assigned a reaction in Recon2, for each
reaction we retrieved the relative GPR rule. In this case, again, the con-
version was performed replacing manually AND with min() and OR with
sum().
All 59 low correlated vmax parameters were recast with the same procedure
presented in chapter 3 and reviewed in this section.
For the FPKM of the reference condition we considered gene expression data
of 8988T cell line, as data used for the PE in the original model were pro-
duced with this cell line. For the gene-expression data we downloaded pub-
licly available FPKM data for 675 commonly used human cancer cell lines
from https www.ebi.ac.ukarrayexpress with the accession EMTAB2706.
As a result, we obtained more than 675 models, one for each cell line, dis-
playing different dynamic behaviors.
Performing the conversion by simple proportion we realized that kinetic pa-
rameters can become unreasonable big or small. If we consider that the
original parameter set spans several orders of magnitude, specifically from
1e−10 to 1e+42, we can understand that, after the proportions are applied,
this range becomes even larger. The biggest issue we had with these pa- Dealing with ODEs

stiffnessrameters was more practical than theoretical. When kinetic rate constants
become so different, the resulting ODEs system becomes stiff, causing the
simulations to slow down significantly or to stop. We should just mention
here that problems of stiffness with numerical solutions represent in general
an additional obstacle to the reproducibility of results present in the litera-
ture. In order to overcome the stiffness of the ODEs system we decided to
define an upper bound for reaction velocities equal to 1e+15: all velocities
greater that this value were adjusted to it. This can in principle reduce the
differences among recast models. However just around 5 parameters over 59

had to be corrected to stick to this bound, thus we can be reasonably confi-
dent that we are not losing too much information with this procedure. Even
if this was not the case, we believe that a limited computational cost needs
to be a primary requirement for the utility of our approach. Hence, it was
considered that the capability of obtaining more accurate simulations with
tedious simulation times fell outside the goals of our method.

As an example of the type of outputs we were able to generate, the dy-
namic profiles for all 675 cell lines can be found in the appendix A.
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The fact that the NCI-60 panel has been deeply and repeatedly studied
offers the possibility to compare model predictions with many types of data.
We report here a short list of some of the publicly available information that
can be found on-line:Publicly available

data for NCI-60 cell
lines • Cell doubling times, from the NIH website, which inform us on the

growth rate during the phase of exponential growth displayed by these
cell lines in-vitro

• Exometabolomics data, reported in [72], which can inform us on ex-
tracellular metabolite concentrations. From these, in [72] uptake and
release fluxes were also inferred

• Cell line specific biomass compositions [305]

• 13C fluxomics data for a few, widely used, cell lines [51, 127]

• Proteomics datasets, like the one at proteomics.wzw.tum.de/nci60/

• implementations and solutions of constraint-based cell line specific
models, whose qualitative and quantitative solutions can be used as
a source of comparison [305, 6, 279, 3, 210, 41, 291]

In addition to their abundance, these data are also easy to access, as they
have already been processed several times in different studies.

We tried to exploit these data in different ways to test the validity of our
approach. In specific, we tried to match the data reported in [72] to recreate,Comparison with

exometabolomics
data

in silico, the experimental conditions the authors used during the process of
data acquisition. Starting from the information on the media in which cells
were grown, congruent values for the initial conditions were defined. With a
set of ODEs fully parameterized with the recast rate constants the behavior
of the system could be simulated.

With the purpose to compare our results with the data in [72], we mim-
icked an exometabolomics analysis performing in silico sampling of metabo-
lite concentrations at approximately 4-5 days from the start of the culture.
Importantly, metabolomics data were available just for a small subgroup of
metabolites, and only for a portion of 675 cell lines.

In figures 23 we report a comparison between the dynamic profiles ob-Quantitative
comparison tained with the system of ODEs and the metabolite concentrations measured

experimentally. Exometabolomics data only refers to concentrations in the
media, so in principle we could compare these data with the only three extra-
cellular metabolites described in our model, namely glucose (GLC_out), glu-
tamine (GLN_out) and lactate (LAC_out). Here, however, we decided to be
less stringent and to anyway allow the comparison between exometabolomics
data and the concentrations of the corresponding metabolite in our model,
either this was intra or extracellular.

From the figures we can notice that the results are non-uniform. For
some metabolites the simulated concentrations seem to reflect qualitatively
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Figure 23: Comparison between the time behavior of the recast models and the con-
centration data retrieved from [72]. The dashed lines represent the match
between the last time point in the simulation and the concentration data

with a good approximation the experimental measurements, for others the
same is not true. Still it is can be noticed that for some metabolites, like
lactate (LAC), mithocondrial citrate (mCIT), 2-Phosphoglycerate (2PG) and
3-Phosphoglycerate(3PG), some quantitative match can be observed. The
range of simulated values and the range of experimental values, in fact, over-
lap.

We then asked if, instead of evaluating the absolute values of the predicted
metabolites, an analysis of their relative abundance could have been more
informative. In this analysis then we compared concentrations at the end Qualitative

comparisonof the simulation with the measured values and checked whether we could
find some analogies in the lower-to-higher ordering of these concentrations.
Figure 24 shows just the final 20% of the simulated concentration profiles,
compared with the experimental data, normalized and adapted to the range
of simulated results. In this case, then, the absolute values of measured data
looses its relevance. The dashed lines that connect predicted and experi-
mental values are here meant to give a rapid and informative answer: if the
ordering was conserved, we would want to see that lines do not cross one
with each other. Here, again, the results show differences from metabolite
to metabolite. For some subset of cell lines we can find that the higher-to-
lower correspondence is maintained, however we could not find an overall
consistent match between the measured and predicted concentrations.
We also tried to plot separately only the cell lines of a specific cancer (breast,
colo-rectal, ovarian, brain), but we couldn’t find a better match, so the plots
are not reported here. As an additional comment on these plots, we should
notice that the system is far from the steady state. We imagine an arguably
better match could be obtained after a the stationary phase is reached.
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Figure 24: Comparison between the time behavior of the recast models and the con-
centration data retrieved from [72]. The dashed lines represent the match
between the last time point in the simulation and the concentration data

In the next step, we explored a way to improve the outcomes of our
method. In doing so, a few considerations made us decide to disregard
parameter estimation techniques. Firstly, for almost all the cell lines weParameter Sweep

Analysis considered, some experimental data like those reported in [217] and used
to parameterize the original PDAC kinetic model are currently unavailable.
Moreover, we sought to explore methods that are easier to implement, that
do not require huge computational costs, and that could complement the
recasting process rather than replace it. Thus, we asked if we could sen-
sibly reach a better accuracy performing a parameter sweep analysis on a
small subgroup of the recast parameters. In a parameter sweep, the values
of one or more parameters are sampled randomly within a specific range,
an ensemble of models is generated, and model outcomes are compared to
the experimental results in order identify some combinations of parameters
that could be better used to reproduce the data. With this goal in mind,
we employed the Latin Hypercube Sampling method [205] to generate 100

combinations of the kinetic parameters associated with lactate, glucose and
glutamine exchange reactions, over a range of +/− 5 orders of magnitude.
Due to the computational costs of the simulations, we limited the use of this
sampling method to only 4 cell lines, namely A549, and breast cancer cell
lines MCF− 7, MDA_MB_231 and MDA_MB_468.

We ran the simulations and selected the parameterization producing the
shortest distance from experimental data. In Figure 25 we can see how this
additional procedure was able to slightly improve both the qualitative and
quantitative predictions. Interestingly, if we look at the LAC subplot, we can
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2 data integration

see that the higher-to-lower order is maintained.
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Figure 25: Comparison between the time behavior of the recast models for the 4

selected cell lines and the concentration data retrieved from [72]. The
dashed lines represent the match between the last time point in the sim-
ulation and the concentration data

Potential
applications of the
presented approach:
1) provide
qualitative
information
2) support
procedures of
parameter
estimation

Overall we can notice that the match between model outcomes and the
experimental findings is loose. This stimulated us to go back and reconsider
some of the concepts used in our approach. We then present here some con-
siderations on the validity and utility of the method we proposed.

When, in the phase of model validation we judge the solidity of an ap-
proach, we should also acknowledge which of the currently available alter-
natives can perform similar tasks. If we are interested to a dynamic descrip-
tion of a system which, as it is often the case, has not been yet described
by means of a kinetic model, we could imagine that any dynamic behavior
could be possibly present. If we consider that the dynamics of the system
is so highly undefined, we believe that this approach, which starts from a
quantitative description of a reference condition and applies a quantitative
transformation to describe a new condition, is still able to provide us some
qualitative information of the uncharacterized condition of interest.
As we said, in the absence of time course-data, bottom-up strategies be-
come the only plausible alternative to try to build kinetic models of cancer
metabolism. One of their greatest values lies in their capability to gather
high quantities of information collected along decades of investigation in
biochemistry. Their most valuable characteristic, is, however also their most
costly weakness. The high heterogeneity of these data, once integrated in a
whole model, can in fact lead to possibly misleading results.

Considering all the factors we just mentioned, we believe the challenge of
creating a kinetic model should be either abandoned, either embraced, to-
gether with all the uncertainty it is accompanied by. If we were to explore
these approaches, and we faced the challenge of modeling bottom-up a sys-
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tem we knew little about, we would start identifying the knowledge and
data we can rely upon, and we would complement the lacking information
using algorithms of parameter inference, as for the approach followed by the
authors in [186]. If we were adopting a procedure analogous to theirs, that
seeks parameter values starting from steady state data at a single reference
state, our model would still be highly undetermined and so the confidence
in inferred parameters would be low. In a context like cancer studies, where
the information we can access is so little, we believe that every source of
data could be effectively exploited, and so that there would be no reason to
neglect gene expression data to focus solely on parameter estimation.

Moving one step further, we could speculate that gene expression data
could facilitate some process of parameter estimation. When the model is
very complex and the number of parameters to be estimated is high, in
fact, the search space that is explored by parameter estimation algorithms
becomes rugged. Parameter estimation tries to cope with these difficulties
either with the use of global search algorithms, either repeating local search
procedures from multiple, different starting points in the parameter space.
In the scientific community global search algorithms are used less frequently,
as they require that many meta-parameters are appropriately tuned. Consid-
ering this aspect, we believe that all PE problems in which local search ap-
proaches are used would benefit of a method, like the one we just proposed,
as a way to identify a first draft parametrization that is later iteratively re-
fined towards the optimum.

As an additional attempt to better interpret these results, we exploited the
availability of protein expression data for NCI-60 cell lines (at proteomics.wzw.tum.de/nci60/)
to perform the same exact recasting process. Proteomics quantifications areIntegration of

proteomics data in fact normally believed to be more reliable than FPKMs for the inference of
protein abundance. The process of data integration is however complicated
by the fact that we did not have one protein for each gene symbol, and thus
we did not have a protein expression value related to all the gene names that
appear in gene-protein-reaction rules: for around 30% of the gene names no
protein level was assigned. We then needed to check that the computation
of reaction expression values was not drove to zero as a consequence of this.
The outcomes of the comparison are presented in figures 26, 27, 28. The cell
lines represented in the figures are the only ones for which both FPKMs and
proteomics data were available.
From the plots we can notice that the behaviors are different, and that the
curves generated with proteomics data display a higher diversity. For some
metabolites, like ATP, it seems in fact that the computed dynamic behavior
displays multiple steady states. Anyway, although tempting, if we consider
the difficulties encountered in the GPRs mapping process, we believe that
from these plots it would be inappropriate to reach any conclusion on the
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better accuracy of one method with respect to the other. If we look at places
like DHAP, FBP and G3P we can in fact suspect that the anomalous behavior
of SF539 and SW_620 cell lines is the result of some error either present in
the data, either introduced in the GPRs mapping process.
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Figure 26: Behavior of cell line models obtained integrating FPKM values (A) and
proteomics data (B)

As we have already discussed in chapter 2 other formalisms are available
and amenable to be used to create models of cancer metabolism. Consid-
ering these results it could be argued that a wiser modeling choice should
fall on a different approach, like the constraint-based. The detractors of
constraint-based methods, on their side, believe that the tight dependence of
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Figure 27: Behavior of cell line models obtained integrating FPKM values (A) and
proteomics data (B)

FBA from the steady state assumption, and its disregard for metabolite con-
centrations are limitations that become invalidating when we try to study a
highly complex and dynamic system like cancer. In between the two oppo-
site positions, we believe that FBA and its extensions probably represent a
reasonable compromise, but using constraint based models should anyway
not preclude new attempts in the realm of kinetic models.

Our experiments suggest some observations on the effectiveness and accu-
racy of procedures that seek to integrate gene expression data into metabolic
models. As we discussed in section 1.5 algorithms like mCADRE, INIT,
GIMME, iMAT, PRIME all make use of quantifications of transcripts to de-
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Figure 28: Behavior of cell line models obtained integrating FPKM values (A) and
proteomics data (B)

fine which subset of all intracellular metabolic reactions are actually active
in a cell/tissue. The reactions that, according to the gene expression profile,
are considered inactive, are instead removed from the network.
The activity or inactivity of a reaction is called, with different rules according
to the different algorithms, considering that a low expression of a transcript
is most probably correlated to a low concentration of functional enzyme,
and thus to a limited catalytic power. It can be seen, then, that the assump-
tions used by these methods very much resemble those that we have just
specified. Besides the fact that each of these algorithms exploits different
biological hypotheses, all of them assume, more or less explicitly, that the
transcript abundance is a good predictor of the level of the functional pro-
tein actually present in a cell/tissue.

It is then interesting to notice how these similar theoretical considerations
produce different model outcomes. When the aforementioned algorithms
are used to create tissue or cell line specific genome scale models (like
in [119, 147, 279, 3, 210, 41, 291]) different subsets of reactions are consid-
ered inactive and thus removed from the network. These differences how-
ever mostly concern reactions at the periphery of the network, while central
metabolic pathways are normally retained in all models.
Some works [119, 147] have compared how these algorithms influenced the
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2 data integration

resulting flux distribution of the model, computed with FBA. If the recon-
struction of GS models is based only on gene or protein expression data and
if reaction fluxes are not further constrained, or semi-constrained (following
the same semantics proposed in [147]) with metabolomics data, still the var-
ious cell line models show significant differences among their steady state
flux distributions. Moreover, these differences affect reaction fluxes both in
peripheral areas of the network, where many more reactions are called in-
active, both in the central metabolic pathways that all the different model
retain.
Differently from these GS constraint-based models, the kinetic model we are
using represents part of the core metabolic pathways, while all more periph-
eral reactions are neglected. As the network of central metabolic pathways
is represented in both modeling approaches, it is interesting to try to see
how these different approaches (kinetic vs constraint-based), together with
the different strategies of gene expression data integration, describe the be-
havior of these common phenomena.

The majority of works in the literature consider that kinetic models, when
compared to constraint-based models, display an expanded predictive power,
despite the fact that they describe a smaller network. If we adjust the vmax
parameters considering exclusively the assumption of the direct proportion-
ality between transcripts and enzymes (which, again, is very similar to what
is assumed by integration methods applied to constraint based models), we
might than agree that, in view of the higher level of detail a kinetic model
possesses, the behavior of the recast model would outperform a constraint
based description of the system. If this is a fairly acceptable statement, it is
then curious to witness the fact that all our recast kinetic models, even in the
presence of changes of high magnitude in the value of the parameters, still
display dynamic behaviors that tend to converge to the same steady state.
In order to appreciate this, we need to observe the distribution of the fluxes,
and not just the concentrations. In fact, if two models display the same fixed
intracellular concentration at the steady state, this does not necessarily mean
that their flux distributions are identical. For this reason we registered the
time dependent behavior of the fluxes through the simulation. The values
of the fluxes were scaled for the total cell volume and the time-dependent
total number of cells. Figure 29 reports what was observed, specifically with
integration of the proteomics data, which displayed the larger variability in
the curves of the concentrations over time. While we can see that during the
transient phase some of the lines(fluxes) tend to diverge, ultimately all of
them converge to steady state values that are indeed very close.

This finding then would induce to reason, on one side, on the predictive
power of bottom-up kinetic models, and on the other, on the actual accuracy
of algorithms for the integration of gene expression data in constraint-based
models. Indeed, also the authors of the work in [119], reach the conclusion
that the transcriptome seems to be a modest predictor of metabolic fluxes.
In conclusion, the predictive capabilities of the data integration approach
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3 representing metabolic heterogeneity at the single cell level
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Figure 29: Variation in reaction fluxes across the simulation

we proposed should be more carefully assessed with the additional experi-
ments we are planning. Our method, however, may offer a different point
of observation and be used as a complementary tool to support predictions
made with other approaches.

3 representing metabolic heterogeneity at the
single cell level

We show here how the Symmetric Stochastic Nets presented in chapter 3

and the procedure to recast parameters can be combined to represent intra-
tumor metabolic heterogeneity at the single cell level. The gene expression
values, in the form of FPKMs, that we have used so far are produced from
pooled samples of cells. For each gene reported in the data, its FPKM quan-
tification thus reflects the mean value across the overall sampled cell popu-
lation. If we integrate these data, the model can just represent the average
behavior of the population. If we were interested to grasp more subtle dif-
ferences in the metabolic traits present in the population we could use the
gene expression levels of a sub-portion of the whole tumor, or the FPKMs
measured at a single cell level. Data of this kind are difficult and expen-
sive to produce. However, thanks to the interest they have captured, their
availability in online repositories is growing.

A dataset with single cell gene expression levels in breast cancer tissues
was produced in a recent work [26]. The dataset contained 11 samples from
11 breast cancer patients. For each sample a variable number of single cells
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3 representing metabolic heterogeneity at the single cell level

were sequenced. Interestingly, in the supplementary material of the paper
the authors report a classification of the cell types based on a computational
approach that takes as input gene-expression inferred Copy Number Vari-
ants (CNV).

With these data in hand, we could build a population-based model rep-
resentative of the in-vivo, patient-specific composition of cells in the tumor.
Starting again from the PDAC model used so far, we used our recasting
procedure to create an a new cell-specific model for each cell in the gene
expression dataset. Following our intentions, we we did not want to simu-
late these single cell models independently, in parallel. Instead, the models
were combined in a multi-scale framework, in which extracellular metabo-
lites represent resources that are shared among all cells. The time dependent
concentration profiles of extracellular variables, can thus account for the si-
multaneous processes of uptake and release happening at the level of all
single cells. A scenario where some items are subdivided to follow some
parallel and similar processes can be represented graphically taking advan-
tage of the properties of Stochastic Symmetric Nets presented in section 3.
If we draw an SPN describing the system of reactions inside one single cell,
and in addition we define a color class, we obtain an SSN where each cell is
associated to a specific color. Hence, all the transitions in the model can be
described with transition instances, whose firing rate reflects the differences
in the recast kinetic parameters in the population. Once the SSN was built, a
complete system of ODEs could be derived and solved. The curves obtained
for some of the metabolites in the system are shown in figures 30 31.
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Figure 30: The dynamic behavior of intracellular metabolites concentrations shows
differences among single cells

Looking at the figures, a few aspects can be visually noticed:
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Figure 31: The dynamic behavior of intracellular metabolites concentrations shows
differences among single cells

• A classification based on the trajectories able to resemble the classifica-
tion proposed in [26] seems to be hardly predictive.

• The metabolites that are more central in the system, like LAC and PYR,
do not allow one to discriminate any (two or more) clusters of different
behavior.

• A few metabolites that are more marginal in the reaction network
present bistabilities, like for alpha-Ketoglutarate (AKG), or clusters
with radically different behaviors, like mitochondrial fumarate (mFUM),
oxidized glutathione (GSSG) and sedoheptulose 7-phosphate (S7P)

• Intriguingly GSSG, a metabolite that, together with its reached form
GSH, reflects accurately the redox state of the system, is able to isolate
with high specificity the group of non-classified cells. We cannot trace
any additional conclusion on the nature of these cells, however an in-
teresting research question could aim to explore if these cells present
any commonalities

Independently from the visual aspect of the figure, we decided to per-
form a classification to obtain a quantitative measurement of our ability
to classify the cells with respect to their time course profiles. First of all
we calculated the distances among all the curves, for all the cells, us-
ing Dynamic Time Warping as a distance measurement. We obtained
a distance square matrix with as many entries as the number of cells.
We then used the Weka software [60] using this matrix as input and

95



3 representing metabolic heterogeneity at the single cell level

the algorithm J-48 as a classifier. In the case of the cells in figure 30

we obtained correctly classified instances 43.2432% vs 56.7568% incor-
rectly classified instances, while for the cells in figure 31 the correctly
classified instances were 88.4615% vs 11.5385% incorrectly classified in-
stances. Tables 3 and 4 report the confusion matrices as returned by
Weka software.

classified as Tcell Bcell Tumor notClassified
Tcell 3 3 3 0

Bcell 3 3 3 0

Tumor 0 4 10 1

notClassified 1 2 1 0

Table 3: Confusion matrix output of the classification task performed on the data
in figure 30

classified as Tumor notClassified Stromal
Tumor 19 0 1

notClassified 0 4 0

Stromal 1 1 0

Table 4: Confusion matrix output of the classification task performed on the data
in figure 31

96



5 C O N C L U S I O N S A N D F U T U R E
P E R S P E C T I V E S

In this thesis we have presented a summary of a 3-years work that focused
on computational models of cancer metabolism. We started describing the
difficulties and challenges that modelers are currently facing in this field and
then we illustrated the computational methods we developed to try to over-
come some of these obstacles. All our work was accompanied by the study
of stochastic processes and their representation with Stochastic Petri nets
(SPNs), a high level graphical formalism based on Petri Nets. Knowing that
the behavior of a generic biochemical system can be described by stochas-
tic processes like Continuous Time Markov Chains (CTMCs), we showed
how these can be effectively represented with SPNs. The specific properties
linked to both the structure and the behavior of SPN were continuously ex-
ploited for the methods we developed. More in specific, we saw that if, as
customary, the fluid approximation is introduced and the behavior of the
system is described with Ordinary Differential Equations (ODEs), then the
full system of ODEs can be automatically derived from the SPN representa-
tion of the system under study.

model indetermination In a first research thread we focused on a new
approach to deal with biochemical models with lacking kinetic information.
Although our premises and the methods we proposed can be referred to
any metabolic system in which data is insufficient, we instantiated our work
around the specific topic of modeling cancer metabolism. We thus described
that for the scenario of human cancers, data availability has a crucial influ-
ence on the construction of bottom-up kinetic models of metabolism. We
explained how data scarcity causes indetermination in the structure and the
parameters of mechanism-based kinetic models. This indetermination is typ-
ically overcome with techniques of reverse engineering (RE) and parameter
estimation (PE), which, however, inevitably fail when the space of feasible
parameter values is not enough constrained by the data. Ultimately, all of
these factors cause models to be poorly representative of the metabolic phe-
nomena under study, and hence of difficult use.
Acknowledging this context, we developed a method which might be ex-
ploited in alternative or in addition to the classical RE and PE approaches.
In our method we proposed to discriminate the biochemical events in the
system, corresponding to reactions in a metabolic network and to transi-
tions in an SPN, into two groups, according to their level of indetermination.
We defined as determined reactions and determined transitions the reaction-
s/transitions for which we assume to be able to retrieve, from the literature,
accurate structure and kinetic parameters. On the other hand, we defined
undetermined reactions and undetermined transitions those reactions/tran-
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conclusions and future perspectives

sitions for which we assume that the information available prevents their
accurate mathematical description. While the velocity of undetermined re-
actions can be computed with a fully parameterized mathematic expression,
we compute the fluxes of undetermined reactions with approximate rate
laws, whose parameters are replaced by time varying coefficients. If, on one
side, these coefficients completely loose the biological meaning associated
to otherwise constant parameter values, they are here introduced as a way
to condense into one specific value the influence that any unknown factor
have on these reactions. We then propose that the empirical knowledge of
the experimentalists allows us to define some boundary conditions for the
coefficients as well as an objective function that generically describes the bio-
logical behavior we intend to reproduce. When all of these components have
been defined, we showed how the behavior of the system can be reproduced
exploiting iterative processes of optimization.
The procedure by which the method can be used for real-case applications
was demonstrated in chapter 4, where we proposed to apply our approach
to investigate specifically the behavior of three glycolytic enzymes, HK,PFK
and PK. According to many evidences reported in the literature, these play
a key role in metabolic alterations found in cancer metabolism, but at the
same time their behavior in cancer has not been fully understood. In or-
der to clarify the validity of the approach we proposed, as future works we
are considering some additional experiments. The performances of any op-
timization process are highly dependent on the objective function, on the
constraints that define the space of feasible solutions, and on the algorithm
used to explore it. Depending on the specific model, objective functions
with different biological meaning will be tested. We will also investigate
which available biological data can be effectively used to adapt the model to
the specific situation under study. Either data obtained with transcriptomics,
proteomics and metabolomics, as well as reaction fluxes and thermodynamic
information are all possible candidates. These data will provide a fundamen-
tal support to define the initial conditions of the model, to inspire the choice
of the objective function and to set the constraints for the optimization. Fi-
nally the performances of different optimization algorithms will be tested.

data integration In a second research thread we explored a method
to integrate gene expression data in the form of Fragments per Kilobase
Mapped Reads (FPKMs) to generate new condition-specific mechanistic mod-
els of metabolism. The approach bases its validity on the assumption that FP-
KMs, despite the occurrence of many post-transcriptional and post-translational
processes, still retain some useful quantitative information regarding the
abundance of the enzyme in the cell/tissue. The approach requires as in-
put a kinetic model fully parametrized for a reference condition, and FPKM
values for both the reference and the desired condition. Applying a simple
proportion, the kinetic parameters that are directly related to enzyme concen-
trations, like vmax parameters, can be recast to represent the new condition.
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conclusions and future perspectives

As we presented in chapter 4 the procedure was used to convert a pancre-
atic cancer specific kinetic model to kinetic models representing, respectively,
NCI-60 cell lines, breast cancer patients and breast cancer single cells. The
results of the simulation were compared to available exometabolomics data
(for NCI-60 cell lines), and were analyzed to assess their utility for classifica-
tion tasks. The availability of proteomics data for a subgroup of the NCI-60

cell line panel allowed us to recast the parameters with protein levels in-
stead of FPKMs, and to draw interesting comparisons between the resulting
outputs. This research project is however still ongoing. For the near future,
we plan to expand our analysis of the NCI-60 cell line models with a few
additional experiments. In specific we are planning to:

• Assess how much our results are affected by the network reconstruc-
tion we choose to use (Recon 2 [241] vs 2.2 [233] vs 3D [18]), consid-
ering that the stoichiometry of the system as well as GPR rules show
some differences.

• Use publicly available NCI-60 cell doubling times (available at
https://dtp.cancer.gov/) to reproduce experimental growth curves, con-
sidering that the number of cells in time N(t) can be retrieved from the
doubling time (dTime) using the following equations:

N(t) = N(0)eµ∗t, µ =
ln(2)
dTime

The curves obtained plotting N(t) can be compared with the curves
produced by our models. We highlight the fact that, as in our model
the growth rate varies with time (µ(t)) the comparison among curves
is easier and more effective than the comparison among growth rates.

• Use as a source of comparison the NCI-60 cell line specific genome
scale constraint based models that can be found in the literature. These
were originally built integrating gene expression data with different al-
gorithms. We plan to try to compare the intracellular flux distributions
calculated with these approaches with the reactions fluxes displayed by
our models once the steady state is reached.
The process of comparison between the two modeling approaches is
not straightforward, and needs to be guided by a few considerations:

– the size of our kinetic model is much smaller than these genome
scale network reconstructions, so we should assume that the pa-
rameters in kinetic equations already take into consideration the
effects of all the reactions that are excluded from the kinetic model.

– FBA computes the flux distribution at the intracellular steady
state. The intracellular steady state is characterized by null dif-
ferentials for intracellular concentrations (dmdt = 0), a constant
flux through the biomass reaction, and thus by a constant growth
rate. FBA then assumes that the cell population is in a phase of
exponential growth. The plots of the original PDAC model [186]
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instead do not directly show the intracellular steady state, as the
concentrations of intracellular metabolites are not scaled by the to-
tal cell volume. Taking into consideration the average cell volume
and the time-dependent number of cells, growing from the initial
n = 5000, we will adjust the values of both intracellular fluxes
and concentrations.

• Assess if our recast model can be used as a first draft parametrization
that is later improved with local search PE algorithms that do not re-
quire excessive computational costs.
The exometabolomics dataset produced in [72] was here used to try to
validate the accuracy of our recasting approach. In a future step, in-
stead, we will exploit it in a parameter estimation process, analogous
to the one proposed in the original paper [186], where the simulated
steady state metabolite concentrations will be fitted to the experimen-
tal values. Both global and local PE approaches will be used and the
outcomes compared. Specifically, we will test if the recast parameters
can be considered as a good starting point that helps local search ap-
proaches to correctly identify the global optimum.

representing metabolic heterogeneity In this thesis we showed
how the distinctive features of Stochastic Symmetric nets (SSN) can be used
to represent heterogeneity in metabolic systems at different levels. As a first
example, we described that the introduction of color classes allows one to
represent multiple enzyme isoforms with a much more compact description,
that still retains all the information present in the system. If, for instance, we
were willing to specify multiple isoforms for all the enzymes in a medium-
scale metabolic network of reactions, we can understand that a SSN repre-
sentation, from which the complete ODEs system can be directly derived,
can be of great help.
As a further application of SSNs, we moved our focus to the heterogene-
ity of metabolic traits among single cells in a population. Importantly, in
our examples we considered a virtual tumor composed of cells with differ-
ent metabolic characteristics that are located in a common environment and
share the same pool of nutrients. In such a situation, each different cellular
metabolic phenotype can be assigned a color that identifies a phenotype-
specific set of kinetic parameters. The overall virtual tumor can thus be
represented by one single network of metabolic reactions with a color class
that retains the heterogeneity of parameters, and hence of behaviors, of the
system. The majority of our research efforts are directed, and in the future
will most likely be directed, on the study of intra-population metabolic het-
erogeneity, both in the context of cancer and of microbial communities. At
the present we are working on an agent-based multi scale model that de-
scribes how the composition of a population of cells evolves depending on
the metabolic traits that it hosts. A graphical scheme of its structure can
be found in the appendix A. We believe that these types of framework will
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provide a powerful tool to investigate eco-evolutionary metabolic dynamics
in multicellular systems.

With this goal in mind, the predictions of these frameworks can be re-
inforced by approaches of single cell data integration like the one we just
presented. Other approaches proposed recently [32] seek to integrate sin-
gle cell gene expression data into constraint-based models. Analogously to
the comparison between kinetic and constraint-based models of the NCI-60

cell lines, we are then planning to compare the outcomes of kinetic and
constraint-based models of a tumor that is heterogeneous in its metabolic
aspects. Using the same RNA-Seq datasets, the same network reconstruc-
tion(Recon 2.2 [233]) and the same rules of integration, we will compare the
steady state analyses among the results obtained with the two approaches.
Overall, we believe that this type of comparison can help uncover strengths
and weaknesses of the different modeling approaches and thus to support
modelers in the choice of the modeling formalism that best suits their re-
search goals.
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Figure 32: Outcomes of all 675 recast cell line models. Each cell line is plotted with
a different color. The dashed lines represent the match between the last
time point in the simulation and the concentration data retrieved from
[72]. As one can notice, metabolite concentrations were available just for
some a subgroup of 675 cell lines. The plots show how the variability in
glucose consumption is reflected on variable growth profiles.
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Figure 33: Graphical scheme of a multi-scale agent-based model representing intra-
population metabolic heterogeneity. In this modeling framework we are
interested to understand how the composition of the population over
time is conditioned by metabolic processes happening both at the in-
tracellular level and in the extracellular space. A multi-scale model, in
specific, allows one to link the events occurring at higher scales to the
molecular characteristics of each cell in the population, and thus to test
different interventions at different levels
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