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A B S T R A C T   

Climate change in the European Alps, in particular in the high-elevation environments, is causing an increase in 
mass movements and hazards. To learn more about relationships between mass movements and climate drivers, 
the location of the starting zone and date of the instability events need to be known. Nevertheless, not all existing 
inventories of mass movements are suitable for the purpose. For these reasons, we have implemented a specific 
inventory of mass movements which occurred in the Italian sector of the Alps at an elevation >1500 m. 

Currently, the inventory contains information relating to 772 mass movements. The most frequent types of 
processes documented are rockfall and debris/mud flows, with 279 and 191 cases respectively. The highest 
number of events occurred in 2022 (71 events), and an evident trend towards an increase over the years and 
during summer was found. 

This inventory is an excellent support tool for many activities that take place in and for the mountains, its 
consultation, both online and offline, makes the inventory suitable for use with different types of devices and can 
be used not only as a consultation tool on mass movements occurred in the past, but also to insert new events. 
This use can be particularly suitable for monitoring activities, managed by civil protection structures, munici-
palities, natural parks, environmental agencies, researchers, freelancers and so on.   

1. Introduction 

Climate change in the Alps, in particular in the high-elevation en-
vironments, is causing an increase in mass movements and hazards. Air 
temperature and precipitation changes, in terms of values and regimes, 
with associated environmental changes (e.g. deglaciation and perma-
frost degradation), seem to be the main preparatory and triggering 
factors for mass movements: an extensive analysis on this topic is re-
ported in Gariano and Guzzetti (2016) and in Chiarle et al. (2021). There 
is a general agreement that the impact of temperature and precipitation 
changes on slope stability is remarkable: however, the understanding of 
these processes, in the context of climate change and the forecasting of 
future scenarios, needs to be deepened. For this reason, it is important to 
collect, catalogue and make available information on mass movements 
occurred at high elevation. To learn more about the relationship be-
tween mass movements and climate drivers (and change), the location of 
the starting zone and date of the instability events need to be known 

(Coviello et al., 2015; Wood et al., 2020). Nevertheless, not all in-
ventories of mass movements are suitable for this purpose. For example, 
the most complete landslide inventory for Italy is the “Inventario dei 
Fenomeni Franosi in Italia (IFFI)” realized by the Istituto Superiore per 
la Protezione e la Ricerca Ambientale (ISPRA) and by the administrative 
Regions and Autonomous Provinces (https://www.isprambiente.gov.it). 
IFFI collected 620,808 landslide events, affecting an area of about 23, 
700 km2 (7.9 % of the Italian territory). The IFFI dataset includes up-
dates from 2007 to 2017. However, the inventory is mainly based on the 
recognition of evidences of past events and unstable area from aerial 
photo interpretation, as the inventory was intended for land use pur-
poses. For this reason, in most cases the identified landslides are not 
dated. Moreover, not all types of mass movements are inventoried, and 
in some part of Italy high elevation environments have been excluded 
from the analysis. The IFFI inventory should be continuously fed by 
regional/provincial inventories, such as the “Catasto Dissesti della 
Regione Autonoma Valle d’Aosta”, updated to 2022 (https://catastod 
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issesti.partout.it/) and the “Sistema Informativo delle Frane in Pie-
monte”, updated to 2019 (https://tinyurl.com/sifrap). Other in-
ventories have been created to document specific slope instability events 
or have been made for a specific alpine sector and/or a specific type of 
process (Corò et al., 2015; Lucchesi et al., 2019; Blondeau et al., 2021; 
Savi et al., 2021; Chiarle et al., 2022; Peruccacci et al., 2023). It is 
therefore possible to note that, for Italy, there is not an inventory that 
responds to all the following characteristics.  

i) It collects mass movement events that occurred throughout the 
Italian Alps, at an elevation above 1500 m;  

ii) It considers all types of processes;  
iii) It includes accurate information on hour/date of occurrence;  
iv) It is updated to 2022;  
v) It is available online for free;  

vi) It can be used online and offline;  
vii) It is not only consultable but also editable. 

For these reasons, we have implemented an inventory of mass 
movements which occurred in the Italian Alps at an elevation >1500 m 
(hereinafter MIA). 

In this paper, Section 2 gives a brief description of the Alps and its 
landslides. At this point it is necessary to underline that the MIA collects 
data relating to different types of mass movements but, in order to 
facilitate their dissemination, we have decided to combine them in a 
single term: “mass movement”. An extensive description of mass 
movements and their typologies can be found in Eisbacher and Clague 
(1984). Section 3 describes the methodology applied for the construc-
tion of the MIA and the different ways of use, both online and offline. 
Subsequently, in the results and the discussion section (Section 4), we 
will present some of the main outcomes of the analyses of the events 
included in the MIA. The paper ends with the conclusions (Section 5), 
which include some suggestions for future developments. 

2. The Alps and its landslides 

Our study focuses on the Italian sector of the European Alps, 
stretching 1200 km from East to West and covering about 5200 km2, 
(27.3 % of the entire Alpine area). The amazing geodiversity of the Alps 
arises from its complex geological history, a double-vergence collisional 
belt including litho-structural domains from different plates and 
geological environments. In the classic alpine literature, three main 
sectors show-case different paleogeographic region and crustal levels 
(Dal Piaz et al., 2003).  

i) the “internal” (southern and eastern) sector of the Italian Alps 
includes south-verging structural units from the upper plate of 
the collisional system (“Southalpine” domain); a complex of 
Hercynian and pre-Hercynian basement rocks, their Mesozoic 
sedimentary cover and later magmatic bodies, bounded to the 
north by the Periadriatic lineament, also named Insubric line;  

ii) the “external” (western and northern) sector, belongs to the lower 
plate of the collisional system (“European” foreland area: Hel-
vetic–Dauphinois domains of literature) made by Hercynian 
intrusive massifs (e.g. Mont Blanc), Mesozoic sedimentary covers 
and detrital deposits (flysch);  

iii) the “axial sector” is bounded by two crustal scale discontinuities: 
the Insubric line to the south and the Pennidic front thrust to the 
North. It includes Hercynian and pre-Hercynian continental 
crustal rocks, their metasedimentary covers, oceanic lithosphere 
with cover units from the ocean facing continental edges and 
orogenic flysch units. 

The complex kinematic framework of the whole chain involves 
extensional, contractional and strike-slip tectonics, dominating in the 
internal zones, whereas a coeval contractional kinematics mainly affects 

the external zones; late, intense uplift and exhumation of the western 
side culminated with the onset of Mont Blanc Massif (4810 m a.s.l.), top 
summit of whole European Alps. 

As a collisional belt, the Alps have been modelled as a mountain 
chain by several geomorphic processes interacting with tectonic ones, as 
shown by the main physiographic features at the regional scale: e.g. the 
arch-shaped western mountain sector following main thrusts, and the 
network of major valleys at the core of Central and Eastern Alps, aligned 
to continental Insubric shear zone. Nevertheless, the repeated Pleisto-
cene glacial pulsations modelled the alpine valleys (Giardino et al., 
2017), Holocene gravitational and fluvial/torrential processes deeply 
modified glacial landforms and deposits, causing widespread mass 
movements (Soldati et al., 2006). 

The numerous interactions between the general atmospheric circu-
lation and the mountain range make the climate of the Alps particularly 
complex and diversified (Wanner et al., 1997). The several climate re-
gimes that are present are influenced by air masses from south (warm 
wet, Mediterranean), from east (cold dry, Continental), from northwest 
(warm or cold wet, Atlantic) and from north (cold dry, Polar). The 
Köppen-Geiger climates present are: Arid, Warm temperate, Boreal and 
Alpine (Barry, 2008; Rubel et al., 2016). 

In the Italian Alps, the climate is cold and dry in winters and warm 
and wet in summers (Fratianni et al., 2017): the hottest months are July 
and/or August and the coldest months are January and/or February: this 
climate can be considered as a cold temperate type, with a transition to a 
nival type at altitudes above 2700 m. Differences in temperature values 
are present, due to the elevation gradient and to the slope aspect. The 
cold air masses coming from the arctic region and the hot air masses 
coming from Africa can cause high amount of rainfall, in particular in 
the more exposed sectors, with peaks of 3000 mm per year (Fratianni 
et al., 2017). The total annual precipitation shows a significant vari-
ability, that depends by the local climate conditions and by the different 
Alpine sectors (Barry, 2008). 

Air temperature in the Alps are increasing at an average rate of 
0.3 ◦C/decade (global warming rate 0.2 ◦C/decade), and this is mainly 
observed in summer and spring (Hock et al., 2019). A recent study has 
highlighted that in the Alps, during the 1991–2020 climate normal, 
minimum and maximum annual temperature are − 2.4 ◦C and 4.4 ◦C, 
respectively, with a warming rate of 0.5 ◦C/10 years (Nigrelli et al., 
2023). In particular, the periglacial environment shows the highest 
warming rate of the Alps: up to 0.6 ◦C/10 years and 0.8 ◦C/10 years for 
the maximum and minimum temperatures respectively (observation 
period 1999–2019, Nigrelli and Chiarle, 2021). Annual precipitation 
shows no clear trends in recent decades (Hock et al., 2019). 

The geo-structural and topographic setting, the morphological evo-
lution due to the action of exogenous agents (in particular glaciers), the 
diversity of climates and the ongoing climate change make the Alps 
prone to natural instability or, more specifically, mass movements 
(Fig. 1). The Alps share some types of instability with other physio-
graphic environments: block falls, rock falls, landslides, slow ground 
deformation, soil slips, debris/mud flows. In high-altitude areas, espe-
cially where glacial cover vanished over the decades, extensive and 
widespread debris bodies are exposed to reworking by transport pro-
cesses, mainly by gravitational, avalanche, and debris flow activities 
(Lucchesi et al., 2019). These dynamics are often interconnected and 
prepare for debris mobilization. Debris flows usually occur in summer, 
as a result of short and intense precipitation (rainfall amount in mm/h 
vary greatly from area to area), and more rarely in autumn, due to the 
type of rainfall events (generally low in intensity and lasting only a few 
days). Other processes, on the other hand, are specific to alpine envi-
ronments, due to the necessary relief energy, or because they involve 
glaciers (e.g. Glacial Lake Outburst Floods, so-called GLOF, ice 
falls/avalanches). 

Under current climate change, rock falls/avalanches, debris/mud 
flows and ice falls/avalanches seem to occur more frequently (Chiarle 
et al., 2022), but the lack of systematic documentation of such events 

G. Nigrelli et al.                                                                                                                                                                                                                                 

https://catastodissesti.partout.it/
https://tinyurl.com/sifrap


Computers and Geosciences 184 (2024) 105520

3

does not allow solid and statistically based conclusions. Certainly, global 
warming and related environmental changes are causing an upward 
shift of instability processes towards higher altitudes and an extension of 
the seasonality. In this context, particularly insidious are process chains, 
in which glaciers (and, more in general, the cryosphere) play a key role 
(Walter et al., 2020). 

There is a long history of mournful events that have involved an-
thropic areas, causing victims and serious damage (Luino, 2005). Not 
only landslides are included among these well identifiable phenomena, 
but also other extremely rapid and dangerous processes that are almost 
always classified as landslides by the uninitiated. For this reason, media 
reports need to be carefully analyzed by experts in the field when sus-
ceptibility studies and interventions are needed. 

In recent years a higher frequency of climate anomalies and extreme 
events has been argued as possibly responsible for the increased of mass 
movements at high-elevation sites (Gariano et al., 2016; Hock et al., 
2019). In the scientific literature, most part of studies focus on the 
development of landslide forecasting systems use in-situ observations 
and in particular precipitation data at both regional and slope-scale. The 
most common use of precipitation data is to derive rainfall thresholds 
(Guzzetti et al., 2008). More recently, in the light of the ongoing climate 
change, the role of extreme high temperatures on rock wall stability has 
been widely analyzed and especially in the alpine region in terms of high 
temperature-related effects on different mass-wasting processes (Gruber 
and Haeberli, 2007; Schlögel et al., 2020; Viani et al., 2020). Statistical 

approaches were proposed to detect possible relations between climate 
variables at multiple scales and the triggering of different mass-wasting 
processes (Huggel et al., 2010; Allen and Huggel, 2013). To identify 
anomalies in climate variables associated with the initiation or prepa-
ration phase of geo-hydrological hazards, Paranunzio et al. (2015, 2016, 
2019b, 2024) proposed a method for recognizing possible links between 
temperature/precipitation and the trigger of different mass-wasting 
processes, pointing out the potential role of meteorological anomalies 
(i.e., values above or below a specific threshold in percentile) in the 
initiation/preparatory phase of such events. More recent studies aimed 
to better characterize the interplay among different climate variables in 
relation to different slope failure events by performing multivariate 
analysis, deriving indices and critical empirical thresholds or exploiting 
more sophisticated predictive models based on machine learnings 
techniques (Jomelli et al., 2019; Bajni et al., 2021; Ponziani et al., 2023). 
The role of temperature was investigated further also in the case of 
typically rainfall-induced processes like debris flow or shallow land-
slides (Rebetez et al., 1997; Pavlova et al., 2014; Mostbauer et al., 2018; 
Prenner et al., 2018; Jomelli et al., 2019). These studies agree that, in 
the Alpine region, most parts of the considered events are correlated to 
the occurrence of unusual climate conditions in the lead up of the event. 
Late-spring/summer time and higher elevation rockfalls are mainly 
associated with the occurrence of high temperatures. Such positive 
temperature anomalies potentially affect the cryosphere at short 
time-scale by acting on near-surface dynamics and at longer-scales at 

Fig. 1. Typical mass movements that occur in the Italian Alps. A, rock avalanche (in this picture rockfall occurred on 2014.11.20, Id 304 in the MIA); B, blockfall 
(occurred on 2019.08.23, Id 473 in the MIA); C, debris/mud flow (occurred on 2022.08.05, Id 547 in the MIA). 
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depth or enhancing the active layer thickening. Short-term pre-
cipitations are the main driver of debris flows and initiation of landslides 
while long-term precipitation may have a major role on the enhanced 
soil moisture and thus on the preparation phase. A contribution of 
long-lasting periods of high temperature may increase the probability of 
such events indeed. 

3. Methodology applied and types of use 

The MIA was made taking as a reference a procedure already widely 
applied by the authors for the construction of some relational databases 
related to geo-hydrological resources (Nigrelli et al., 2012; Sacco et al., 
2012; Nigrelli et al., 2013; Turconi et al., 2014) and two previous 
datasets on landslide events (Paranunzio et al., 2019a; Guerini et al., 
2021). However, the relational databases cited above are now obsolete 
and therefore no longer available online. 

The methodology applied for the construction of the MIA consists of 
4 steps that are described below and are reported in Fig. 2. 

3.1. Step 1: data collection 

Data collection of mass movements which occurred in the Alps 
(>1500 m a.s.l.). We made this choice because above this elevation 
threshold, the alpine environments: i) are responding quickly to climate 
change, due to the presence of cryosphere (permafrost, snow, glaciers); 
and ii) are the ones where landslides are increasing, as a consequence of 
temperature increase (Allen and Huggel, 2013; Gobiet et al., 2014). 

We used six main data sources: 1) Online and offline archive docu-
ments; 2) Survey data; 3) National/regional agencies datasets; 4) Sci-
entific papers; 5) Web alerts; 6) Newspapers and social media. 

The different types of data sources are essential in order to acquire as 
much information as possible on the mass movements occurred. 
Nevertheless, the heterogeneity of the data acquired from different 
sources does not allow a direct use of these data: thus, an in-depth 
quality control and an accurate validation are necessary. 

3.2. Step 2: data processing 

Data processing consists of four consecutive stages: 1) Quality con-
trol; 2) Validation; 3) Dataset construction; 4) realization of a QGIS 
project. In order to perform this procedure in the best possible way, 
guaranteeing reproducibility and avoiding bias, a multidisciplinary and 
systematic approach is strongly recommended, as also reported in Pia-
centini et al. (2020) and in Poratelli et al. (2020). Quality control and 

data validation are closely connected. Quality control and validation are 
performed by a skilled human analyst who checks and validates (or 
discards) the acquired data in relation to the attributes necessary for the 
implementation of the dataset and, subsequently, of the shapefile. In this 
process, the analyst makes use of various resources (e.g. spreadsheets, 
maps, online geoportals, satellite and orthophoto images, web re-
sources). The procedure is not very complex, but requires a good level of 
knowledge in both geoscientific and IT fields. 

After quality control and validation procedures, a dataset containing 
all the necessary information relating to the single mass movement was 
realized. The dataset is then imported into a QGIS project as a “.csv” file, 
thanks to Lat/Lon fields, and saved as a point shapefile. The list of at-
tributes that are present in the shapefile with their description is shown 
in Table 1. 

Regarding the “S_acc” attribute, a value from 1 to 3 is assigned in 
relation to the accuracy of the geolocation of the point in the shapefile 
with respect to the place of event initiation: 1, exact and punctual 
geolocation; 2, areal geolocation, close to the event site or the toponym 
(less than 500 m); 3, indicative geolocation in relation to the event site 
or the toponym (more than 500 m). Regarding the “T_acc” attribute, a 
value from 1 to 3 is assigned in relation to the accuracy of the mass 
movement occurrence date: 1, exact date of occurrence (yyy-mm-dd, 
with knowledge of the time of occurrence, in some cases); 2, year and 
month of occurrence known, day not know (yyy-mm-00); 3, year of 
occurrence known, month and day not know (yyy-00-00); Regarding the 
“Process” attribute, we have identified thirteen different types of mass 

Fig. 2. Flowchart of the methodology applied, illustrating the different steps of the mass movements inventory in the Italian Alps.  

Table 1 
List of attributes included in the web map of the mass movements 
inventory in the Italian Alps. In the display order, * are shown in the 
POI file.  

Attribute Description 

S_acc* Spatial accuracy 
T_acc* Time accuracy 
Adm_reg Administrative region 
Source Data source 
Event Name of the event 
Date* Date expressed in yyyy-mm-dd 
Elev* Meters above sea level 
Latitude ◦N (EPSG: 4326 – WGS 84) 
Longitude ◦E (EPSG: 4326 – WGS 84) 
Process* Name of the type of process 
Owner* The owner of the data 
Id* Identification number  
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movements: blockfall, complex, debris/mud flow, GLOF (glacial lake 
outburst flood), ice and snow avalanche, ice avalanche, ice fall, land-
slide, rock avalanche, rockfall, rockfall/ice avalanche, slow deforma-
tion, and soil slip. The other attributes are easy to understand and need 
no explanation. The term “landslide’ has been used to include cases 
where the exact process type cannot be identified. 

From now on, the MIA update is done directly on the shapefile in 
QGIS. 

3.3. Step 3: from client side to server side 

This step consists of three consecutive stages: 1) Export of the QGIS 
project; 2) Shapefile conversion; 3) Upload of files on the web server. 

In the QGIS project, the MIA shapefile is exported as web map folder 
with qgis2web plugin. Qgis2web generates a web map folder directly in 
QGIS project that can be exported and uploaded in the website. No 
server-side software is required. The web maps created with this plugin 
can be inserted into responsive websites. With the dialog box of this 
plugin, it is possible to set the type of web map, the type of visualization 
and define the attributes of each layer that you want to query through 
the web map. 

In addition, the web map comprises the Google Maps WMS (Web 
Map Service) and the OpenStreetMap WMS as base maps, alongside the 
MIA shapefile. 

Moreover, the MIA shapefile has been converted to “.gpx” file, in 
order to use it as a POI (Points of Interest) on tablets or smartphones. 

The web map folder of the MIA is uploaded in a web server via 
internet. A RAID 5 server configuration with 3 hard drives ensures data 
integrity. Periodic backups to external NAS unit are performed after 
each MIA update (usually every year). 

3.4. Step 4: online and offline use 

The MIA can be consulted both online and offline. Online, MIA can 
be consulted with a web browser, by connecting at http://geoclimalp.to. 
cnr.it/landslide-inventory, or with QField. In order to have the shortest 
internet address, the URL and the. zip file of the “inventory of high- 
altitude mass movements in the Italian Alps” was converted to “land-
slide-inventory”. 

Consultation via web browser is simple and intuitive. The web map 
shows the 772 points relating to the mass movements (red circles). By 

clicking on each point, the web map returns the attribute list of the 
associated process (Fig. 3). The web page includes four dialog boxes 
useful for querying the MIA. Mass movements queries can be done as 
follows (from top to bottom of the web page).  

i) On the process type (Process);  
ii) On the Italian administrative region in which the processes 

occurred (Adm_reg);  
iii) On the elevation of the detachment or trigger zone (Elev);  
iv) On the year in which the mass movement occurred (Date). 

Offline consultation of the MIA is mainly necessary during field 
survey, during rescue and civil protection activities, or during mountain 
hiking or climbing, using tablet or smartphone devices. This is necessary 
because in various sectors of the Italian Alps, especially in high-altitude 
environments, there is not GSM signal. In this way, it is possible to 
consult the MIA even in the absence of an internet network, simply using 
the offline maps and the GPS signal of the tablet/smartphone. 

MIA can be consulted offline with OsmAnd and with QField. OsmAnd 
(OpenStreetMap Automated Navigation Directions) is a navigation 
map/app for Android and iOS. The application is free of charge (110 
MB) and data can be stored for offline use. Map files are downloaded to 
your device by selecting the desired countries or administrative regions. 
To use the MIA offline with OsmAnd is necessary to download the 
following maps: Liguria (69 MB), Piemonte (207 MB), Valle d’Aosta (22 
MB), Lombardia (286 MB), Trentino Alto Adige (127 MB), Veneto (217 
MB), Friuli Venezia Giulia 93 (MB). After downloading the maps directly 
in OsmAnd, it is necessary to download the MIA in “.gpx” file format 
(355 KB, 29 KB in compressed “.zip” file), available at https://geoclima 
lp.irpi.cnr.it/wp-content/uploads/2023/03/POI-landslide-inventory. 
zip. The “.gpx” file must be uploaded to OsmAnd as “My Places”. This 
file is a light version of the web map shapefile. In fact, due to the small 
size of the screen and the type of file that OsmAnd manages (.gpx), the 
number of attributes relating to each point had to be reduced and it had 
to be displayed using a special string format. The string format is as 
follows (for the description of attributes see Table 1): “Id|Date|Elev| 
Process|S_acc|T_acc|Owner”. An example of the OsmAnd screenshot is 
shown in Fig. 4A. With OsmAnd it is possible to query only one point at a 
time, but it is also possible to insert new points and modify those already 
present. 

Online and offline consultation of the MIA are possible by using 

Fig. 3. Screenshot of the online consultation of the mass movements inventory in the Italian Alps with a common web browser. In this screenshot the point Id 547 is 
highlighted (base map Google Maps). For the attribute list and the display order see Table 1. 
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QField, an app supported by both Android and iOS. The QGIS projects 
can be loaded directly into QField. QField is based on QGIS and can be 
used on the field, with tablet or smartphone (version newer than 
Android 5.0). The application is free of charge (65 MB). The re-
quirements on field are different from the desktop ones. The screen is 
smaller and this limits human-peripheral interaction. To fix this prob-
lem, several operations (e. g. layer styling setup, downloading offline 
maps, project setup) should be done on a desktop/laptop PC with QGIS 
installed first. Also in this case it is possible to query one point at a time, 
insert new points and modify those already present. 

Using QField online, the WMSs that are present in the QGIS project 
are directly imported as base map. Using QField offline, the maps that 
are present in the QGIS project are directly imported as base map. An 
example of the QField screenshot is shown in Fig. 4B. In order to pro-
mote and extend this type of investigation, the use of the MIA through 
QField is released within specific collaboration agreements. 

4. Results and discussion 

Currently, the MIA contains information relating to 772 mass 
movements occurred in the Italian Alps at an elevation above 1500 m, 
during the period 2000–2022. 

The most frequent types of processes are rockfall (279 processes, 36 
% of the total) and debris/mud flows (191 processes, 25 % of the total). 
The most affected administrative regions are Valle d’Aosta (311 events, 
40.3 % of the total), Lombardia (147 events, 19.1 % of the total), Pie-
monte (126 events, 16.3 % of the total) and Trentino Alto Adige (121 
events, 15.7 % of the total). The greatest number of events occurred in 
2022 (71 events), and out of these 71, 60 events (85 %) occurred in the 

summer (June, July, August). Another analysis has highlighted an 
evident trend towards an increase in mass movements over the years and 
during summer (Fig. 5). Among the main causes of this increase we can 
mention permafrost degradation, poor snowfall in winter and spring 
seasons (Nigrelli et al., 2018, 2022; Biskaborn et al., 2019; Masson--
Delmotte et al., 2021). 

Observing geographical position of the 772 mass movements in the 
Italian Alps, it can be seen that some alpine sectors have a higher con-
centration of events than others (Fig. 6). This uneven geographical 
distribution of the mass movements is due to various factors, and in 
particular to.  

i) Different geological and geomorphological features: for example, 
the western Alpine sector is the one in which the highest moun-
tain massifs are present, consequently there are many steep 
slopes and more prone to instability;  

ii) Different meteo-climatic conditions: in the Alps, climate can 
differ greatly from one alpine sector to another.  

iii) Presence/absence of cryosphere: cryosphere distribution varies 
considerably, depending on the specific climatic, geographical 
and geomorphological features. Over the last thirty years, tem-
perature increase caused melting of part of the cryosphere and, as 
a consequence, the permafrost degradation, with the increase in 
slope instability.  

iv) Different degree of knowledge about mass movements: there are 
many mass movements that take place in remote alpine areas 
and, for this reason, are unfortunately not identified and 
documented; 

Fig. 4. Offline consultation of the mass movements inventory in the Italian Alps by smartphone. A, in this OsmAnd screenshot the point Id 547 is highlighted (base 
map OpenStreetMap). B, screenshot of an overview of the 772 points (red squares) of the mass movements inventory in the Italian Alps as appear in QField (base map 
Google Maps). The regional administrative boundaries (orange lines) and the alpine area boundary (black line), have been identified by the Alpine Convention (http 
s://www.alpconv.org). 
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v) Different regional policies for collection and publication of data 
on mass movements. 

MIA is an excellent support tool for many activities that take place in 
and for the mountains. Its consultation, both online and offline, makes 

MIA suitable for use with different types of devices. For example, with 
desktop and laptop devices, the MIA can be used indoors and the main 
users can be local government bodies, decision makers, researchers, 
journalists, or anyone who wants to plan different types of mountain 
activities. With tablet and smartphones devices, the MIA can be used 
outdoors, during rescue and survey activities, training and environ-
mental education activities, hiking or climbing. In this mode, the main 
users can be researchers, professors and teachers, hikers, climbers, 
tourists, citizens, or those who want to carry out on-site training activ-
ities on the natural hazards in the mountains. On this regard, it is worth 
reiterating that the MIA can be used not only as a consultation tool but 
also to enter new mass movements. This use can be particularly suitable 
for land-use planning, disaster prevention, risk mitigation and moni-
toring activities, managed by government bodies, municipalities, natu-
ral parks and environmental agencies. The damages caused by mass 
movements on infrastructures and human activities in the Alps are 
growing and the socio-economic losses are remarkable (Gariano et al., 
2016; Luino et al., 2020; Huang and Zhang, 2022). To reduce these 
damages and, more generally, to apply correct risk mitigation strategies, 
some solutions based on historical data or monitoring systems or 
ecological approaches can also be adopted. As regards solutions based 
on historical data, it is necessary to underline its importance, since this is 
often ignored or considered of little importance by the scientific com-
munity. Historical data can contain key information about events, their 
impacts and social and cultural adaptation (Luino et al., 2023). As 
regards solutions based on monitoring systems, it is possible to say that 
these systems are very effective for some types of mass movements but 
not for all. For example, the monitoring systems used to prevent and 
mitigate risks arising from debris flows have now reached a high level of 
reliability and are used in many cases in the Alps (Marchi et al., 2021; 
Arattano et al., 2023). Regarding solutions based on ecological ap-
proaches, we can mention the role that forests have. Existing methods 
and models for assessing the effects of forests on natural risks are now 
sufficient to integrate forests into quantitative risk assessment (Moos 
et al., 2018). 

Currently, the understanding of future scenarios still shows large 
uncertainty and, in this context, MIA can be an effective tool in pro-
moting new risk mitigation strategies in scenarios of uncertainty. 

5. Future developments and conclusions 

Because of the fact that there is a clear trend towards an increase in 
mass movements over the years, the updating of the MIA takes place 
annually. Furthermore, an important activity in progress is the digiti-
zation of mass movements that took place before 2000, already 

Fig. 5. Mass movements inventory in the Italian Alps. A, number of annual 
events; B, number of summer events (JJA: June, July and August). 

Fig. 6. Online consultation of the mass movements inventory in the Italian Alps. Geographical distribution of the 772 processes (red points) included in the mass 
movements inventory in the Alps, and the 7 administrative regions involved (LIG, Liguria; PIE, Piemonte; VAO, Valle d’Aosta; LOM, Lombardia; VEN, Veneto; TAA, 
Trentino Alto Adige; FVG, Friuli Venezia Giulia). Basemap QGIS WMS ESRI Terrain. 
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inventoried by the Research Institute for Geo-hydrological Protection. 
New IT solutions are currently being developed, in order to improve 

the usability of the MIA. Information management systems are being 
tested to be applied to this inventory, capable of containing metadata (e. 
g. geoportals), in order to fulfill EU data requirements and the FAIR data 
directives. An important capability that we are developing in the MIA 
concerns the possibility of including images and/or videos relating to 
the processes inserted. Another important action that we are developing 
in the MIA is the inclusion of new fields in the dataset, such as those 
containing information on the geology of the site where the mass 
movement took place and, where these are present, on the damage at the 
infrastructures. This action requires a large amount of work because this 
new information must also be included for the processes already present, 
in order to make all the cases inventoried complete and homogeneous. 

We also intend to verify the possibility of making the MIA interact 
with existing datasets at a regional and national scale, in order to acti-
vate a virtuous process whereby these datasets automatically provide 
the information of interest for the MIA, and the MIA can possibly inte-
grate the information from the other datasets with original information: 
in fact, as already mentioned, mass movements occurring at high 
elevation may easily go unreported. In the future, the collaboration of 
stakeholders and citizens could give even more benefits to the devel-
opment the tools like MIA. Participatory mapping approach are prom-
ising citizen science activities to move towards a collaborative and 
collective post-disaster mapping and contribute to producing updated 
landslide information. This would provide new opportunities to improve 
risk preparedness, assessment, and early action to landslide hazard and 
as well as raising awareness (e.g., Juang et al., 2019). 

As a conclusion, this simple inventory is a practical tool for scientific 
community and government bodies studying the effects of climate 
change on high-elevation environments in the Alps. Moreover, it is a 
tangible contribution towards a European mass movements inventory, 
which can be continuously updated within the Alpine region. Agree-
ments, collaborations, and exchanges between private entities, histo-
rians, research groups, or institutions that may have historical dataset or 
archives throughout the Alps could be useful in this regard. 
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shift of very high resolution Köppen-Geiger climate zones 1800–2100. Meteorol. Z. 
26, 115–125. https://doi.org/10.1127/metz/2016/0816. 

Sacco, G.M., Nigrelli, G., Bosio, A., Chiarle, M., Luino, F., 2012. Dynamic taxonomies 
applied to a web-based relational database for geo-hydrological risk mitigation. 
Comput. Geosci. 39, 182–187. https://doi.org/10.1016/j.cageo.2011.07.005. 

Savi, S., Comiti, F., Strecker, M.R., 2021. Pronounced increase in slope instability linked 
to global warming: a case study from the eastern European Alps. Earth Surf. Process. 
Landforms 46 (7), 1328–1347. https://doi.org/10.1002/esp.5100. 
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