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RMA molecules undergo a vast array of chemical post-transcriptional modifications (FTMs)
that can affect their structure and interaction properties. In recent years, a growing number of
FTMs have been successfully mapped to the transcriptome using experimental approaches
relying on high-throughput sequencing. Oxford Manopore direct-RMA sequencing has been
shown to be sensitive to RNA modifications. We developed and validated Manocompore, a
robust analytical framework that identifies modifications from these data. Our strategy
compares an RMA sample of interest against a non-modified control sample, not requiring a
training set and allowing the use of replicates. We show that Manocompore can detect
different RNA modifications with position accuracy in vitro, and we apply it to profile mSA
in vivo in yeast and human RMAs, as well as in targeted non-coding RMAs. We confirm our
results with orthogonal methods and provide novel insights on the co-occurrence of multiple
modified residues on individual RNA molecules.
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NA post-transcriptional modifications (PI'Ms) are a per-

vasive feature common to all domains of life. They arise

from covalent alteration or isomerisation of nucleotides,
typically involving the addition of chemical groups to different
positions of the nitrogenous bases or the ribose cycle. T'o date,
over 150 modifications have been found throughout all classes of
EMAs, with the most common modification being methylation'.
PI'Ms are deposited and catalytically removed by specific
enzymes and can be recognized by specific ‘reader’ proteins.
Owerall, PI'Ms influence fundamental properties and functions of
BMAs, including their stability, structure, intermolecular inter-
actions and cellular localization®.

N6-Methyladenosine (m6A) is the best characterised PI'M
and the most abundant in mRMNAs and long non-coding RMNAs
(IncRMAsg). It is deposited mainly by the METTL3/METTL14/
WTAP complex and has a variety of functions such as regula-
tion of nuclear export, translation, and degradation of RNAs"".
Other modifications, including Inosine (1), 5-methyleytosine
(m5C), pseudouridine (%) N6,N6-dimethyladenosine (m6,2A),
l-methylguanosine (m1G), 2'-0 methyladenosine (2-0MeA),
and 7-methylguanosine (m7G), are increasingly recognized as
important for the regulation of different RNAs in physiological
and pathological contexts, including cancer®?.

The majority of current methods for mapping PI'Ms rely on
ENA immunoprecipitation, chemoselective alteration, or specific
signatures resulting from reverse transcription (K1), and despite
being the current gold standard have certain limitations, such as
(1) the need to develop ad hoc protocols for each PITM, (2) cross
reactivity or low sensitivity of antibodies or chemical reactions,
and (3) biases induced by the complex multi-step experimental
protocols®?.

The recent advances in Manopore direct RNA sequencing
(DRS) have allowed, for the first time, direct sequencing of full-
length native KNA molecules without the need for RT or
amplification. Importantly, a number of studies have shown that
DRS  data intrinsically contain  information about RNA
modifications!"2, In Nanopore DRS, a single RNA molecule is
ratcheted by a molecular motor through a protein pore embedded
in a synthetic membrane. The passage of nucleobases through the
narrowest section of the pore (reader-head) alters the flow of ions
across the membrane, depending on the chemical composition of
the bases. At any given point in time, approximately 5 nucleotides
(commonly referred to as a kemer) reside within the reader-head
of B9 pores, leading to a strong kmer specific signal alteration.
Crucially, the presence of nucleotide modifications can induce
discernible shifts in current intensity and in the time the nucleic
acid sequence resides inside the pore (dwell time)™'".

In recent years, the scientific community has devoted substantial
respurces toward the development of experimental and analytical
strategies for the detection of RNA modifications. These efforts
have generated a number of algorithms and software packages,
which have been extensively reviewed elsewhere!®. The current
approaches for modification detection based on Nanopore data can
be divided into two categories: those based on the detection of
modification-induced basecalling errors and those based on the
analysis of the electrical signal. ‘The first strategy, which is imple-
mented in tools such as Epinano'l, Diffirr!®, Eligos'®, and
Drummer!?, has shown interesting results despite not considering
the effects of RNA modification on the raw electrical signal;
however, modern basecalling models tend to become more
insensitive to common FI'M, with the risk that methods of this
group could quickly become ineffective at detecting modifications.
On the other hand, methods based on raw signal space analyses
(such as Tombo!¥, Mines!”, xPore?l, nanom6A?l, nanoBRMSZ,
nanolDoc?, Yanocomp®, and Penguin®) can lead to richer
comparative analyses, but are more complicated and come with

steeper computational costs. The methods described above can be
further classified into two groups: de novo detection methods, that
uge a trained model to identify modifications, and comparative
methods, where differences between two samples are evaluated to
infer the presence of a modification. At present, de novo strategies
are often hindered by the difficulty to generate a training set
containing all kmer contexts with and without modifications. For
this reason, the majority of existing methods instead undertake a
comparative approach, where the sample of interest is compared to
a reference sample devoid of modifications. Here we introduce
Nanocompore, a flexible and versatile analysis method dedicated to
the detection of RNA modifications from DRS datasets in signal
space. T'o identify potential modification sites, Nanocompore uses
a model-free comparative approach based on a 2 components
Gaussian mixture model, where an experimental RNA sample is
compared against a sample with fewer or no modifications.
Potentially, this can be applied to any modification, provided that
an appropriate control depleted of the modification is available,
and that the modification significantly alters the current signal. We
demonstrate this for seven different RNA modifications in syn-
thetic oligonucleotides, as well as extensively for m6A in coding
and noncoding native BMNAs in yeast and mammalian cells.
Nanocompore includes several unique features: (1) robust signal
realignment based on Nanopolish, (2) modelling of the biological
variability, (3} ability to run multiple statistical tests, (4) prediction
of BENA modifications using both signal intensity and duration
(dwell time), and (5) availability of an automated pipeline that runs
all the preprocessing steps. Finally, the results generated by
Manocompaore can also be leveraged to infer RNA modifications at
single molecule resolution.

Results

Nanocompore data preparation and statistical basis. MNano-
compore detects potential RNA modifications by comparing DRS
datasets from one experimental test condition containing specific
RNA modifications to one control condition containing sig-
nificantly fewer or no modifications. Ideally, the control RNA is
isolated from a cell harbouring either a knock-down (KIDY) or a
knock-out (KO) of a gene encoding an RNA modifying enzyme.
Alternatively, for small scale comparison, it is also possible to use
either an in vitro transcribed or synthetic RNA containing cano-
nical RNA bases only. We have developed an automated Nextflow
pipeline (https://github.com/teonardi/nanocompore_pipeline) that
automatically runs the entire analysis from preprocessing of raw
MNanopore data (Fig. 1A), to modified-base detection with Nano-
compore  (httpsy/github.com/Qeonardi/manocompore, Fig.  1B).
Firstly, reads are grouped by reference transcript and transcripts
with coverage above a user-specified threshold are used for sub-
sequent amalyses. Then, two parameters - the median signal
intensity and the logl0(dwell time)—are collected from each read
and aggregated at the transcript position level. The aggregated data
are compared in a pairwise fashion, one position at the time. For
the identification of modified positions, Nanocompore supports
robust univariate pairwise tests on current intensity or dwell time
(Kolmogorov-Smirnov test, KS). In addition, we implemented a
more advanced bivariate classification method based on 2 com-
ponents Gaussian mixture model (GMM) clustering followed by a
logistic regression test (Jogit) to determine if there is a significant
difference in the distribution of reads into the two clusters between
conditions. Furthermore, we and others observed that DNA and
RENA modifications can have an intrinsic effect on the local signal
upstream or downstream of the modification position. Thus, to
evaluate the effect of modifications on the proximal sequence
context, Nanocompore offers the option to use Hou's method to
combine the non-independent p-values of neighbouring kmers (see
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Fig. 1 Overview of data preparation and Manocompore steps. A Raw fast’ reads from 2 conditions are basecalled with Guppy, filtered with Samtoaols and
the signal is then resquigeled with Nanopolish eventalign. The output of Nanopolish is then collapsed and indexed at the kmer level by NanopolishComp
Eventalign_collapse. B Manoccompore aggregates median intensity and dwell time at transcript position level. The data is compared in a pairwise fashion
positicn per position using univariate tests (K5, MW, t-tests) and/or a bivariate GMM classification method. The p-values are corected for multiple tests
and these data are saved in a database for further analyses. The signal graph is as an illustration not representative of all possible kmers.

Materials and Methods)*®. ‘The p-values are then corrected for
multiple tests using Benjamini-Hochberg’s procedure® and the
results are stored in a lightweight database. Users can obtain a
tabular text dump of the database or use the extensive Mano-
compore APl to explore the results and generate ready-to-publish

plots

In silico and in vitro validation. We first tested Nanocompore
on in silico data that simuolated the presence of RNA
modifications. ‘This technical control confirmed Nanocompore's
capacity to detect alterations in current intensity and/or dwell
time between two samples (see Supplementary Information and
Fig 81, §2).

To further validate the ability of Nanocompore to detect RNA
muodifications in real Nanopore data, we designed 3 oligonucleo-
tides carrying multiple modifications including méA in three
different sequence contexts, 1, m5C, ¥, m6.2A, mlG, and 2-
OMeA (see Materials and Methods). The data generated from the
muodified oligos was then analysed with Nanocompore using an
unmodified oligo as the reference condition. These results show
that Manocompore can detect all modifications tested (Figs. 2ZA
and 53), including the m6A modification both in the canonical
DRACH motif and non-DRACH sequence contexts2¥. Of all
modifications tested, m1G was the only one that instead of being
detected in one of the modification-containing kmers gave a

significant signal peak 1 kmer downstream. However, also for the
other modifications we observed that the intensity shift at
modified sites spreads to adjacent kmers containing the m6A
residue (Fig. 83). 'This shows that a modification can alter the
signal locally and supports the rationale of combining the
p-values of neighbouring kmers.

To better gauge the accuracy of Nanocompore at coverage
levels representative of real experiments, we generated 100 sub-
sampled datasets containing random samples of 32 to 4096 reads,
doubling at each step. By analysing such datasets with
Nanocompore, we observed that the GMM-logit method had
lower sensitivity but higher specificity than the non-parametric
tests on intensity or dwell time (Fig. 2B). This was also reflected
in the GMM-logit test having the best F1 score at coverage greater
than 512 reads (Fig. 2C-E). Owerall, at a p-value cutoff of 0.05
and 512 reads coverage, the GMM-logit test had a mean accuracy
of 9448% at detecting m6A and B98% at detecting other
modifications.

We then reasoned that the results obtained with these modified
oligos are only representative of the extreme situation where
100% of the RNA iz modified in the condition under study
whereas the modification is completely absent from the control
condition. In order to evaluate the performance of our method
under conditions more representative of real experimental
scenarios, we generated in silico datasets by mixing known
proportions of modified and unmodified reads. Such datasets
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where generated for each intersection of 3 possible factors: (1) %
of modified reads in experimental condition (ranging from 0% to
100% in steps of 10%, effectively simuolating modification
stoichiometry); (2) % of modification reduction in control
condition (100%, 80% or 50% reduction, effectively simulating
knock-down efficiency), and (3) read coverage (from 16 to 4096
reads per dataset). For each combination of these three factors we

generated 100 independent datasets that were then analysed with
Manocompore, for a total of 80,000 runs (Fig. 3A). By knowing
the ground-truth modification state in each run we could measure
accuracy and produce ROC curves for all conditions tested
(Fig 54, 85, 86). As expected, we observed that the accuracy varied
greatly according to the coverage as well as to the relative fraction
of modified reads in the test and control conditions (Fig 57). For
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Fig. 2 Manoccompore benchmarks with synthetic modified oligonucleotides. A Manocompore p-values (GMM logit method, y-axis) reported at each

positicn (x-axis) along three oligonucleotides of 100nt carrying multiple modifications at defined positions. Oligol: three mé&A sites in different sequence
contexts; Oliga?: |, m&C and ¥; Oligo3: mé&,2A, mlG and 2-0OMeA Kmers shown in blue represent the peaks identified through Nanoccompore's peak

calling procedure. Shaded areas contain the 5 consecutive kmers that contain each modification. Each oligonucleotide was sequenced in a separate flowcell,
producing on average &418,513.5 reads after guality filtering. The dotted horizontal lines correspond to a p-value of 0.01. B Manocompore ROC curves for
mi&A detection (Oligo) at varying levels of coverage and using different statistical tests (GMM logit test, KS test on intensity or K5 test on dwell time). €
F1 score for m&A detection (Oligel) with the GMM logit test, KS test on intensity or KS test on dwell time at varying levels of coverage. Mominal p-value
threshold of 0.05. D, E True Positive (DY) and False Positive (E) rates for mé&A detection (Oligol). The values reported are the means of n =100 artificial
samples generated as described (see Materials and Methods). The error bars show the 95% confidence interval. TPR and FPR were calculated at a nominal

p-value threshaold of 0.0%

example, at coverage levels below 128 reads we found that
Nanocompore could hardly detect modified sites onless the
maodification stoichiometry andfor knock-down efficiency were
high. On the other hand, at a coverage of 4096 reads, we could
detect 75% of meA sites when as little as 20% of the reads are
modified (Fig. 57).

These simulations also allowed us to better investigate the
performance of the different tests implemented in Nanocompore.
We observed that the KS tests on current intensity or dwell time
achieved the highest sensitivity at the cost of lower specificity, in
particular at high levels of coverage. On the other hand, the GMM
logit test has the lowest False Positive Rate overall and the best
balance between precision and sensitivity (Le. highest F1 score) at
high coverage (Fig. 3B, 56 and 57). Additionally, our data show
that different modifications and/or different sequence contexts
have heterogeneous effects on the current intensity and/or dwell
time of Nanopore data (Fig 83), and the GMM test is the only
one that simultaneously captures both. ‘Therefore the GMM-logit
test is the most suitable choice to analyse RNA modifications in
complex transcriptomes, where the sequencing coverage is
heterogeneous between transcripts and where the effect of the
modification on current and dwell time is not known. For all
these reasons, all the analysis in this article will make use of the
GMM-logit test unless otherwise stated.

As a further control for Nanocompore sensitivity, we re-analysed
DRS dataset of 165 rRNA from Escherichia coli strain MREGDD
knock-out for Rsmis or Rsud, which are responsible for an m7G
residue at position (G527 and ¥ at position 516 respectively’Z. In
both cases, Manocompore was able to detect the modified
nucleotides as highly significant (Fig. 58, pvalue<10—30 for both
sites).

Benchmarking nanocompore with metacompore. Having vali-
dated the accuracy of Nanocompore on simulated and synthetic
data, we sought to compare the in vivo performance of Nano-
compore with that of other methods based on Nanopore
sequencing. We first focused on the méA modification in yeast, a
species with a relatively small transcriptome and with a com-
prehensive annotation of known m6A sites based on techniques
orthogonal to MNanopore sequencing. We generated a Sacchar-
oriyces cerevisige strain KO for IME4 (imedA), the only known
m6A methyltransferase in yeast. We then used DRS to sequence
the polyA+ transcriptome in Wild Type (W) cells as well as
imedA cells. We sequenced three biological replicates per condi-
tion in individual flowcells, generating a total of 14,554,547 reads
and obtaining a coverage above 30x for 2,523 genes (40% of the
total annotated transcriptome). Manocompore analysis of such a
dataset identified 15961 significant kmers in 1,510 distinct
transcripts (FDR 1%, Fig 59A). Since a single modification can
affect the signal of multiple neighbouring kmers, we refined our
predictions with a peak calling algorithm, finding 10,217 peaks
with a median of 3 peaks per transcript. In line with current
knowledge on m6A, we found that Nanocompore peaks were

enriched in proximity to the stop codon of mRMNAs (Fig. 59B) and
were also enriched for the canonical DRACH motif (Fig. S9C). To
assess the accuracy of Nanocompore's results we measured the
overlap between the predicted mbA sites identified and known
m6A sites annotated in an orthogonal reference set of yeast meA
sites”™ Y (see Materials and Methods). 'This analysis revealed that
21% (124/602) of known meA sites overlap with a Nanocompore
peak, whereas 8% (124/1549) of the sites identified by Nano-
compore were also supported by a peak in the orthogonal
reference set (Fig. 59D, E).

In order to compare our results with those obtained through
other tools, we developed Metacompore, a software pipeline
written in the Snakemake language®' that automatically runs &
different algorithms for modification detection, namely: Nano-
compore, Tombo, Eligos, Diff err, Epinano and MINES (see
Materials and Methods and Supplementary Table 1 for a
comparison of their features). We then used the collection of
m6A sites in the orthogonal reference set as a ground truth, and
uged it to calculate the sensitivity, specificity and precision of each
method. Since Epinano and MINES are designed to only detect
méA sites within the DRACH motif, we performed two separate
analyses, one that considered all kmers but excluded Epinano and
MIMNES and another one that only considered DRACH kmers and
included Epinano and MINES.

When considering all kmers, we found that Eligos2 had the
highest sensitivity (45.8%) of all methods tested, while Nano-
compore’s GMM method and GMM context 2 method had a
sensitivity of only 16% and 5.5% respectively (Fig. 510A, nominal
FDR threshold 1%, log odds ratio threshold 0.5). On the other
hand, Manocompore had the highest specificity of all methods
tested (98.3% and 997% for GMM and GMM context 2
respectively) whereas Tombo had the lowest (26.8%, Fig. S10B).
We then used the F1 score to measure the balance between
sensitivity and specificity, finding that Nanocompore achieved the
best overall score (0.0994, Fig. 510C) closely followed by diff_err
(0.0969). Similarly, in terms of precision (fraction of 1'rue Positive
méA sites out of all sites predicted as méA) Nanocompore GMM
context 2 achieved the best result (Fig. 510D), with an 1.8-fold
increase over the second most precise method diff err (F1 scores
of 0.153 and 0.084 for Nanocompore and diff_err, respectively).

We then repeated a similar analysis only considering DRACH
kmers but including Epinano and MINES in the comparisons.
This time we found that Fligos achieved the best balance of
sensitivity and specificity with an F1 Score of 0.287, whereas
Manocompore had the second best score of 0.180 (Fig. S10E-G).
However, also in this case Nanocompore GMM context 2
achieved highest precision at the cost of lower sensitivity, with
43.8% of its predicted m6A sites being confirmed by the
orthogonal reference set (Fig. S10H).

Nanocompore, similarly to Eligos and diff_err, also reports the
odds ratio of modified sites, which indicates the magnitude of the
effect (see Materials and Methods). We therefore also measured
the sensitivity and specificity of Nanocompore at a stringent log
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odds ratio threshold. As expected, we found that more stringent
filtering increased specificity at the cost of lower sensitivity, with
an overall increase in precision (Figure 5101-L). Finally, we also
found that the KS tests on intensity or dwell time alone had worse
performance compared to GMM both in terms of F1 score and
precision, further supporting our approach of combining
intensity and dwell time through Gaussian Mixture Modeling.

Transcriptome-wide méA profiling in mammalian cells. We
then sought to study the méA modification in mammalian cells,
where METTL3-METTLI4  heterodimers form a  N6-
methyltransferase complex that methylates adenosine residues
at the N(6) position of specific RNAs. Since mb&A is required for
development and maintenance of acute myeloid leukemia®?~3, jt
is of particular importance to accurately map it in leukemia cells.
We therefore used DRS to profile the poly-At transcriptome of
human MOLMI3 cells with inducible shENA-mediated knock-
down (KD) of MEITL3, as well as control Wild Type (W)
MOLMI3 transfected with a scrambled shRNA. We sequenced
BNA from two biological replicates per condition on independent
Minion flow cells after 4 days of induced KD of MEITL3,
yielding a total of 3,768,380 reads. After applying a 30x coverage
threshold, we obtained data for 751 unique transcripts robustly
expressed in all samples (Fig. S11A-C). Overall, we observed a
high correlation of expression levels between samples showing the
consistency of the datasets (K2 of 0,969, Fig. 5111-F). We then
used Manocompore to map the location of METTL3-dependent
m6A sites in human transcripts from MOLMI13 cells and
found 11,995 significant kmers (FDR 1%), corresponding to
1570 peaks in 216 transcripts, with a median of 3 peaks per
transcripts (Fig. 4A, Fig. 512). As an example, we found 40 peaks
(337 kmers with p-value<0.01, Fig. 4C) in the p-actin (ACTB,
ENSTO0000646664) mBNA. Interestingly, the 3 most significant
B-actin hits are "GGACU™ kmers, perfectly matching the cano-
nical maA DRACH motif (Fig. 4C-F). On a transcriptome-wide
scale, we reproduced previous observations showing that
METTL3-dependent méA sites are enriched in the immediate
vicinity of mRNA stop-codons (Fig. 4B). Additionally, we
used Sylamer® to identify enriched kmers in the Nanocompore
significant kmers, finding a 4.3 fold enrichment for the consensus
GGACU motif in the Nanocompore sites with p-value<0.01
(hypergeometric p-value = 4.3 % 1021, Fig. 403). Lastly, we gen-
erated miCLIP datasets from MOLMI3 cells targeted with
METTL3 CRISPR gRNAs to compare the results obtained with
Nanocompore with an orthogonal high-resolution method. We
found that 54% of Nanocompore sites were supported by miCLIP
in W' cells (Fig. 4H, 1) and Nanocompore positive sites also
showed a significant reduction of miCLIP crosslink sites upon
METTL3 KO (p-value —7.90% 10!, Mann Whitney test,
Fig. 4H and Fig. 513). Overall, these results show that Nano-
compore is capable of identifying enzyme-specific RNA mod-
ifications transcriptome-wide and that these findings are in
agreement with previous techniques.

The identification of RNA modifications outlined so far
operates at consensus level, ie., looking at the distribution of
sipnal across the entire population of reads. However, the
information obtained from GMM cdustering at the population
level can be leveraged to calculate the probability of each read to
belong to the modified or unmodified cluster. Hence, it is possible
to assign modification probabilities at the single-molecule, single-
zite level. As a proof of concept, we calculated the single-molecule
maodification probabilities of the three p-actin high-confidence
mbA sites previously described (Fig. 4C-F). We found that these
three sites are methylated at different degrees: 45% of B-actin
molecules methylated with high-confidence (probability =0.75) at

position AG52, 23% at position Al1324 and 49% at position
A1535. As expected, we also found that the fraction of methylated
molecules decreased at all three sites in the METTL3 KD
condition (26%, 14%, and 27% of molecules methylated at A652,
Al324 and A1535 respectively, Fig 5A-C). We further asked
whether the presence of an mé6A modification at one of these
three sites influences the probability that the same molecule is
modified at the other sites. Taking into account the underlying
frequency of modification at each site, we calculated the
conditional probabilities for all possible combinations of 0, 1, 2,
or 3 modifications to co-occur in the same molecule (Fig. 51).
‘This analysis showed that the observed and expected modification
frequencies do not differ significantly, suggesting that methyla-
tion of these three sites are independent events (p-value — 0.4, see
Materials and Methods).

Modification mapping in snRNA 7SK by high coverage tar-
geted sequencing. Using the same inducible METTL3 KD and
control cells as above, we next performed high-coverage targeted
DRS of the human non-coding snBRNA 75K. To do so, we
designed a custom nanopore sequencing adapter targeting the 3°
end of 75K (see Materials and Methods and Supplementary
Table 2). With this approach we achieved consistently high
coverage in all the samples (average of 4,844 reads per sample).
75K is a highly structured RNA with numerous binding sites for
interacting proteins, which together form the 75K snRNPs
(Fig. 6A). Nanocompore analysis of 75K in METTL3 KD cells
identified 24 significant kmers across its entire sequence (p-
value<0.01, Fig 6A, B). The most significant hit falls in the
UGAUC kmer at position 41 (Fig. 6A-13), which corresponds to
the 5" palindrome of the double-stranded and structurally con-
served binding site for HEXIM 1% Interestingly, the 3" GAUC
palindrome at position 64 is also a significant site (Fig. 64, B, 1)),
These results suggest that the two central adenosines of the
double stranded HEXIMI1 binding site {A43 and A65) are both
methylated by METTL3. We also identified 5 significant over-
lapping kmers between positions 229 and 250 in the terminal
loop of hairpin 3 (HP3) (Fig. 6A, B). This region was recently
shown to be the binding site for RNA-binding motif protein 7
(RBM7), which mediates the activation of P-'TEFb by releasing it
from 75K snRNP, as well as for the structure- and context-specific
binder hnRNP AL/A2¥3 We validated the presence of méA in
75K by RNA immunoprecipitation and qRT-PCR on the nuclear
RMNA fraction, finding a significant reduction of méA enrichment
upon METTL3 KD (Figs. 6E and 514).

We next sought to extend our investigation of 75K to include
other modifications in addition to méA. T'o this end we used IVT
to generate large amounts of 75K BNA devoid of all modifica-
tions. We then sequenced this 1V 75K by DRS and analysed the
resulting data with Nanocompore, using the dataset from targeted
sequencing of W' MOLMI13 cells as the reference condition. ‘This
approach potentially allows mapping of all RENA modifications in
targeted HRMNAs, albeit without revealing the type of each
modification. We identified 68 significant kmers spread across
the entire 75K sequence (1% FDR, Fig. 515A). The most
significant region identified is ~10nt long and is located at the
stem-loop boundary of HP3 (Fig. S15B). This region encompasses
the m6A site identified at position A245 by the analysizs of
METTL3-KD, as well as a known W site at position U250
(Fig. $15C)". We also observed a significant change between 1V'T'
and W1 ENA samples at A43 (UGAUC kmer, p-value—0.0608)
and A65 (GCUGA and CUGAU kmers, p-values — 0.0839 and
0.0346, respectively), supporting the presence of the two m6A
sites that we identified above in the double stranded HEXIMI1
binding site.
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In recent years substantial progress has been made in our
understanding of the roles and functions of RNA PI'Ms. The
diverse range of RNA FI'Ms biological roles are mediated by their
capacity to dynamically regulate the physical and chemical
properties of RNA molecules, for example by creating or masking
binding sites, altering RNA structure or modulating expression

104
mGLIP covarage Fwashakd

and subcellular distribution!*2, However, fully understanding
the breadth and scope of RNA modifications as well as their
dynamic regulation in physiological and pathological contexts
requires efficient and accurate methods to detect their presence
and to map them to the respective RNA sequence contexts.

In this paper we introduce Nanocompore, a robust and ver-
satile method for the identification of multiple types of RNA

MATURE CORMMUMICATIONS | (20N2-M98 | bl doiong N00008 046 7-021-27393-3 | www.nalbure comynalurecormmunicalions



ARTICLE

Fig. 4 m&A profiling in MOLM13 cells. A Sharkfin plot showing the absolute value of the Manocompore logistic regression log odd ratio (GMM logit

meethod with context 2, x-axis) plotted against its p-value (-logll, y-axis, see Material and Methods). Each point represents a specific kmer of a transcript.
Red points are DRACH kmers. B Metagene plot showing the distribution of significant méA sites identified by Manocompore (blue) and miCLIP (red). C
Genome browser screenshot showing METTL3-dependent maA sites in the ACTB transcript. The p-value track reports the Nanocompore GMM-4-Logistic
regression method (see Material and Methods). D=-F As in C but showing the three most significant f-actin sites at higher magnification. The sequence
reported at the bottom corresponds to the RMA sequence in the 3’ to 5 crientation, as the ACTE transcript is encoded on the minus strand. The méA
consensus GGACU sequences are highlighted in red. G Sylamer plot showing kmer enrichment in Nanocompore significant sites. The x-axis repaorts all
Nanocompore sites with p-value<0.% ranked from the most to the least significant. The y-axis reports the uncorrected Sylamer hypergeometric p-value of
enrichment {(one-sided test) of a certain motif in the first x Nanocompore sites vs the rest. The vertical dotted line delineates Manocompore sites with p
value<(.01 (to the left of the line). The red line correspends to the combined p-value (Fisher's method} of all DRACH kmers. H m&A miCLIF coverage of
clusters of significant Nanocompore sites (GMM logit (context 2) p-value<0.01). The y-azis shows the mean input-normalised miCLIP counts across sites.
Shaded regions on the plot represent the meantthe standard deviation at each position in the profile (WT miCLIP n= 4, KO n= 2). Both the mean and
bounds were smoothed using loess regression with a span of 0.6, The difference between WT and KO in the windows 04/-20nt is statistically significant
(pvalue = 790 =10 1 Mann-Whitney test). | Plot showing the fraction of Manocompore significant peaks supported by a varying number of miCLIP reads

(x-andis) in WT MOLMI3 cells.

modification from Nanopore DRS data. Nanocompore performs
a signal level comparison between two conditions, allowing
identification of significant changes indicative of the presence/
absence of RNA modifications (Fig. 1). Our approach has sev-
eral advantages over alternative RNA PI'M mapping methods.
First, it is based on Nanopore DRS, a technique which is seeing
rapid adoption and that, unlike previous genome-wide strate-
gies, is not affected by reverse transcription or PCR amplifica-
tion biases. Second, it maps RNA modifications in the context of
long reads, giving critical information on RNA PI'Ms on indi-
vidual gene isoforms. Third, our comparative strategy does not
require any training and can be applied as-is to different RNA
modifications, as long as a modification-depleted reference
sample is available. Fourth, the approach implemented in
Nanocompore is paving the way for future works to study RNA
modifications at single molecule resolution. Finally, we imple-
mented analysis pipelines in the Nextflow and Snake-
make Domain Specific Languages, allowing automatic execution
of all processing steps, from raw data up to the execution of
Nanocompore and other RNA modification tools, thus greatly
simplifying the bioinformatics work.

We extensively validated the performance of Nanocompore in
silico, in vitro, and in vivo in both imedA yeast cells as well as
METTL3 KD human cells (Figs. 2-5). In both human and yeast,
we were able to recapitulate previous observations on the dis-
tribution of m6A and provide new interesting insights. For
example, we found m6A to be enriched toward mBENA stop
codons as well as for the short motif DRACH. Furthermore, we
confirmed with orthogonal techniques that méA is enriched at
the sites identified by Nanocompore both in human and in yeast.
However —despite being greater than 20% in yeast—the overlap
between Manocompore and orthogonal techniques is incomplete,
likely due to a combination of biological variability between
samples as well as technical biases that affect the two technologies
in different ways. In this regard, more work is still required in
order to generate a reliable ground-truth annotation of m6A sites.

As an additional proof-of-concept, we performed high cover-
age targeted sequencing of non-polyadenylated ncRMNAs, identi-
fying multiple putative modification sites in the 75K snRNA
(Fig. 6). In addition to METTL3-dependent m6A sites we were
also able to profile the overall modification landscape of 75K by
comparing our sample with an IVl' control.

Through the creation of thousands of artificial datasets, we
showed that Nanocompore performs well with mixed populations
of modified/unmodified reads in the control and experimental
samples. Although it is currently unsuitable for the identification
of very low-frequency modifications, our benchmarks show that

for abundant transcripts we achieve high sensitivity where as little
as 20% of reads are modified. However, these simulations also
show that the sensitivity is highly influenced by (a) expression
level, (b) modification stoichiometry, and (c) efficiency of mod-
ification reduction in control. These observations strengthen the
importance of having good control conditions (such as high
efficiency knock-downs, knock-outs, or IV samples) and high
depth of sequencing. In our experiments, to profile méA in yeast
we achieved a median coverage of 120 reads per transcript. The
T'rue Positive Rate for méA detection at this sequencing depth is
~48%, highlighting the fact that the low throughput of individual
MinlON flowcells currently does not provide enough coverage to
resolve RNA modifications transcriptome wide. However, newer
releases of DRS kits provide constant improvements in terms of
throughput. Furthermore, when cost and amount of RNA are not
limiting factors, users have the option of pooling multiple
MinlON flowcells or using a PromethlON to achieve higher
coverage. A further limitation that emerged from our bench-
marks, which is intrinsic to the methods that directly use elec-
trical signals to identify modifications, is the spatial resolution of
modification calling. Since the reader head of the pore contains
~5 nucleotides, a single modified nucleotide can potentially affect
the signal of up to 5 consecotive kmers, making it hard to resolve
modification position with single nucleotide precision.

An additional feature of Nanocompore is that by analysing
knock-down or knock-out samples it intrinsically assigns RMNA
maodifications to specific writer enzymes, thus allowing to discern
the individual roles of multiple enzymes that catalyse the same
modification. It will also be of great interest to assess the effects of
pharmacological inhibition of enzymes that regulate or deposit
RNA modifications, for example in cancer, viral infections and
potentially other diseases™ 1%, However, an important caveat to
be considered when pursuing this approach—as well as any other
method based on loss-of-function of catalytic enzymes—is that
compensation between different enzymes or functional interac-
tions between neighbouring modifications could be a confound-
ing factors for Manocompore analysis and currently cannot be
accurately resolved solely with our method, in particular for long
periods of inhibition of the RNA modifying enzymes. Because of
this intrinsic inability of comparative methods to directly assign
modifications, it is currently not possible to study multiple types
of modifications at the same time.

An intrinsic feature of Nanocompore is its ability to assign
modifications to specific isoforms, although this implies that
Nanocompore requires either a well-annotated transcriptome ora
custom transcriptome annotation generated from the DRS data,
In addition, it is becoming increasingly important to obtain
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information about modification stoichiometry and combinatorics.
Although Nanocompore currently does not allow measuring
stoichiometry, one of its major advantages is the ability to detect
BENA modifications at single molecule resolution. As a proof of
concept we applied our analysis to the most significant m6A sites
found by Nanocompore in B-actin mRNA and found that mul-
tiple methylated residues are present in the same molecule
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independently of one another at a given time. Although this type
of analysis can not currently be applied transcriptome-wide, and
although these results are still not quantitative in nature, they
suggest the presence of highly site-selective intramolecular
deposition andfor removal of méA. This is the first observation of
this kind to date, and it will need to be cross-validated when other
methods enabling the same level of resolution become available.
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Fig. 5 Single molecule identification of mé&A sites. A Heatmap organised by hierarchical clustering showing the probability of AG52, AT324, and A1535 in
the [i-actin gene to be modified in the WT and METTL3 KD samples. Each column corresponds to a single molecule. B Scatter plot with overlaid kernel
density estimates showing the scaled madian intensity vs the scaled logl0 dwell time for each read covering ABS2, A1324 and A1535. Data points are
colour coded according to the probability that the read belongs to the duster of méA modified reads. For visualisation purposes the x- and y-axis were
limited to the +/-3 range. € Density plot showing the distribution of modification probability for ABS2, A1324, and A1535 of fractin in WT (blue) and KD
{red). D Bar chart showing the number of molecules identified in each of the & possible m&A configurations for the AG52, A1324, and A1535 sites of i
actin. Each site was considered modified if the modification probability was >0.7%. The shaded blue areas indicate the expected number of molecules in
each given configuration under the null hypothesis of independence of the three modifications.

The last few years have seen a remarkable increase in the
number of methods available for modification detection from
Nanopore data. The majority of these focus on the identification
of only one type modification (typically m6A) whereas others,
such as Nanocompore, NanoRMSE, Epinano, and Eligos have been
tested on a larger number of distinet modifications. The tools
available also differ greatly in terms of methodology employed:
for example, certain tools use machine learning algorithms (eg
nanombA, MINES, nanoDoc, Penguin, nano-113, Epinano)
whereas others apply clustering techniques and statistical testing
(eg Tombo, Nanocompore, xPore, nanoRMS, Yanocomp, Dif-
flirr, DRUMMER and Eligos). At the same time, these methods
also differ in terms of strengths and shortcomings, which hawe
been extensively reviewed in recent works'®. Here we have
benchmarked the performance of Nanocompore at detecting
m6A against a small set of representative tools (namely Differr,
Eligos2, Tombo, EpiNano and MINES), finding that in most
situation Nanocompore achieves very high accuracy at the cost of
lower sensitivity. Although this benchmark was done in yeast, we

similar results for other species. However —as we and
others”™ have observed low sequencing coverage negatively
impacts modification detection. For this reason, a lower sensi-
tivity can be expected for complex transcriptomes such as the
human one. In addition, our experiments with synthetic RNAs
also show that performance metrics are heavily influenced by
maodification stoichiometry and relative reduction of the mod-
ification in the control condition. Despite these observations, the
field is still lacking a systematic comparison of the performance of
all the methods available, of how it is impacted by the factors
mentioned above and how it varies between different modifica-
tions or model species. For this reason, we recommend users
seeking to detect RNA modifications from Nanopore data to test
multiple methods that implement different approaches and to
carefully assesz the impact of coverage and knock-down/knock-
out efficiency under their experimental settings.

In conclusion, Manocompore offers a versatile, robust, and
practical method to readily identify RNA modifications from
Nanopore DRS experiments. Its adoption by the scientific com-
munity has already benefited a number of studies and should
continue shedding light on the distribution and function of RNA
modifications at high resolution, helping to reveal the currently
hidden life of RNAs.

Methods

Cell culture and KD/KOD experiments. The KMNA from WT and METTLY KD
MOLMI3 cells was obtained from Barbierd et al 32, Briefly, cells were cultured in
KPMIL6AD (Invitrogen) supplemented with 10% FES and 1% pendcallingstregto-
||:|;r\|.'in.|’Ei|.|.l:.n|i|u:. Conditsonal ksock-downs {KIJ] s ng M]‘.’]’]Ilﬂ-h.lﬁd.llﬁ i
scrambled shRNAs were performed as previously deseribed™. For lentivirus pro-
duction, 203T cells were transfected with PLEO. lentiviral vector mnllillillﬂ e
shENA sequences (Table 52), together with the packaging plasmids psPAX2
(Addgene Plasmid #12260), and VEV.G (Addgene Plasmed #14888) for METTLS
KLY g Pax2 fﬁﬂdﬁum Plasmad ﬂﬂm}. at a 1:1.54.5 rati, sang Li|.|r.|fm:t:.n||.m:
20 reagent (lovitrogen) according to the manufscturer's instructions. Sugser-
natant was harvested 48 and 72 h after transfection. 1 = 109 cells and viral super-
matant were mixed in 2 ml culture medium supplemented with 8 pg/ml polylsrene
(Milligrore), followed by spinfection (60 min, 900y, 32 °C) amd further inculxated

B LA IR

overnight at 37 °C. The medium was refreshed on the following day and the
transduced cells were cultured further. MOLMI3 cells (5 3 10P) were infiected using
FLEO-TET on-Puro lentiveral veciors EXpressing shEMAz Afier 24 b of infectson,
the cells were replated in fresh medium containing 1 pgfml of puromycin and kept
i selection medivm for 7 days. shRNA expression was mduced by treatment with
200 negfiml doxycycdine for 4 days for METTLS KD, Near complete hoss of METTLS
BMA and protein was confirmed by Western Blot and gPCR by Barbiers e 2l %,
For METTL3 knock-out (KO) experiments, kentiviruses were produeced in HEK293
cells using ViraPower Lentiviral Expression System (Invitrogen) acoording to
mmanufacturer’s instructions. MOLMI3 cells stably expressing Cas9 were trans-
duced with lentiviral gRNA vectors expressang either empty or METTLI gRNAc
(Table 52) and sebected with puromycin from day 2 o day 5. AL day 5 post-
transduction, the cells were suspended in fresh mediom without puromycin. At 1hr
6, cells were harvestad for ENA extraction.

The dipload 5. cerevisdae strains used for generating the imedA mutant were
derived from the SKI background. The imedA strain was generated using the one-

atep gene replacenent method described previously .

RMA purificatiom and in vitro transcription. Tolal ENA was solated from
MOLMI3 cells using the HKNeasy muici kit {QLI.H.EEI’I} amd |.|u|r.ﬁ.+ BMNA was pur-
ified froo 30 pg total KNA wsang the Dynabeads mBNA Punfication Kit (Theross
Fuher Scientific) :l.l.r.u'dl.r.w. to the manufacturer’s instroctions. For |.l|'ud|.::1‘.it.m af
unmmasdified 75K RMA, synthetic double stranded DMA template for in vitro
transcription (IVT) was produced by hybradization of synthetic Megamer® Single-
Strandsd DNA Fragrmenis (177 conlaining the 75K sequence downstream of a T7
promaoter (Table 53). 30ng of double stramded DNA template were used in 20 pl
IVT reactions for 1h using the TranscriptAsd T7 High Yield Transeription Kit
(Thermo Fsher Scientific), following the manufacturer’s instructions. The KNA
product was purified wing the ENA Clean & Concentrator kit (Zynw Research).
Wild Type and tmedAd yeast cells were collected after 4h in sporulation mediom and
total KNA was extracted with acid phasolchloroformcisoamyl abeohol as previously
deseribed V. polyA4 RNA was purified from total RNA usiing the Dymabeads
mBNA Purification Kit (Thermo Fisher Scentific) as above.

miCLIP. o CLIP was performed in duplicates with RNA solated from wild Iype
amd METTLI3 KO MOLMI3 cells. The protocol is conceplually related to the
original mwbA maCLIP protocol®, bul wses total BMA as inpul asd follows a mwore
recent variant of CLIP protocel ™. 4 pg of total BNA were fragmented with RNA
fragmentation regents (Thermobisher) following the manufacturer’s instroctions.
Fragmented RNA was then incubated with 2.5 pg anti-méA antibody (Abcam,
ab151230) in 1P buffer (50 mM Tris-HC pH 7.4, 1000 mM NaCl, 005% NP-40) at
4% for 2 h, in rotation. Suhmluunﬂr. the solution was placed in 6-wdl plates on
ice awd irradiated twice with 0.3 | cn—2 UV light (254 nm) i a Stratalinker
crosslinker. 30 pl protein G beds (Dynabeuds) per sanple were washed twice with
1P buffer and then incubated with the RNA-antibody solution at 4°C for 1.5 h, i
rodations. Afier the IF, the ENA-antibody-beads complexes were washed twice with
HIE}I-S&]I ‘Wash buffer (50 mM Trs-HCl pH 74, 1M MaClL 1 mM EDTA, 1%
Igepal CA-630, 0.1% 506, 0.5% sodm deoxycholate), once with 1P buffer and
once with PNEK Wash buffer (20 mM Tras-HCI pH 7.4, 10 ;M MgCL,, 02%
Tween-20). The beads then procesded to 3 dephosphorylation and the rest of the
ICLIP protocol. The 3" adapters for on-besd ligataon carry the sequences found in
Table 54. Samples were mixed after the adapter removal step. Mwmﬁ the SD&-
PAGE g, the membrane was cul from 45 kKD to 185 ke and ENA was extracted.
The following sequence of the BT prioser was used: /5Phos/WWW CGTAT
NNNN AGATOGGAAGAGOGTOGTGATSp IR/ GGATOCASpIWTACT-
GAACCGC. cDNA libraries were sequencad with single end  100bgr reads on
Mumina Hifeg 000

Manopore direct-RNA sequencing (DRS). BEMA sequencing was performed fol-
lowang the mnstruction provided by Oxford Nanopore Technobogies (Oxford, UK),
using K94 chemstry fowcells (FLO-MIN106) amd direct-BNA chemstry

SR NI lats (SOK-HMADD or SOK-HMADDZ). For polyA+ transcriplome
sequencing, we followed the conventional DES protocol using the provided polyT
(RTA) adapter. For the 't:.r‘;dui SOYUETICIng, we ordered custom reverse tran-
senplion adapters complementary to the 3" end of 4 selected noncoding KENAs, and
followed the sequence-specific DES protocs] (Table 55). For libwary preparation of
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IVT 75K, we used S0y of unmodified [VT BENA preparad as described above,

usingg, the adapter complementary o the 3end of 75K,

ﬂlﬂl_ptmﬁ-ﬂﬂMCdnﬂhmMﬁmn
bological ) or METTLI-KD cells (six

independent bi replicates for each shBENA) six days afier

adoumistration. Cell lyss was performed in 100 mb TRIS pH = 7.8, 140 mM NaCl,

1.5 mbd MpCl, 10 mM EDTA, 0.5% NP0 and BMase inhibitor (EMNazeOUT™,

MOLMIZ WT [n:

12

ycline

Thermo Fisher Scientific, 10777014, kot # 2232786) for 30 min on ice followed by
centrafugation at 3,000 = g for 3 min. Nudear RNA fraction was then purified uang
the BNAswey mads kit (Qiagen). Succesavely, 4 pg of nuchear RNA were fragmented
for 3 min and 30 second at 70°C the RNA ionn Heagents (Thermso
Fusher Scientific, AMETA0, lot # 00786992). Fragmented nucler KNA was then
purified using the BMA Clean & Conceniraior™-5 kit (Zymo Research, RIO16L
meRIP gRT-PCR was performed, as previously descriled™ with some modifica-

tionns. Brefly, for cach mmmunoprecipitation raction | jg of fragmentad auclear
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Fig. & m&A identification in 75K RNA. A Un the left, the secondary structure of 75K showing positions of known protein binding sites and structural
conservation. On the right, the secondary structure of 75K with the Nanccompore p-value (METTLI-KD vs WT, GMM-logit test) overlaid as a colour scale.
For each nucleotide the colour indicates the lowest p-value among those of the 5 kmers that overlap it. Only p-values<0.01 are shown in colour. B mé&A
profile of 75K, showing the Manocompore GMM -logit p-value (y axis, -logl0) across the transcript length. € Scatter plot showing the scaled median
intensity vs the scaled logl0 dwell time for each read covering kmer 41 of 75K, Each point shows data for a distinct read colour coded according to the
sample. The contour lines show the kermel density estimates for the two samples. For visualisation purpeses the x- and y- axis are truncated at -4 and +3
respectively. D Violin plots showing the distributions of median intensity (top) and scaled logl0 dwell time (bottom) for the Hexim] binding sites and
neighbouring kmers. All coordinates refer to the first nucleotide of each kmer relative to ENSTO00006364184. The cross mark indicates the intensity and
dwell time value of the kmer according to the unmiodified model. E méA RIP-gPCR results in three non-overlapping regions of 75K in WT and METTLS KD
MOLMI3 cells. Bars show the mean of & independent experiments. Vertical bars show the standard error of the mean. The p-values were caloulated using
a one-sided Welch's t-test. Full uncropped scans of Western Blots confirming METTL2 KD are shown in Figure 514,

EMA was incubated 2h at 4°C in rotabion with anti-m®A (Abcam, abl151230, lot
FLRHIF19501-1) or anb-GFP Antibodies {.u.n.:.ln.. abh2e, lot IGHJ&ZIS?E-I} an a
final volume of 1l RIP Buffer (RIF buffer 5, ddH 0, RMNaseOUTF, and
subsequently icubrted 2hat 4°C in rotation with 50 pl. of BSA-coated Dynalseads
G (Thermo Fisher Scientific, 100D, A total of 5% of cach immunoprecipitation
reaction was saved as inpul control. To elute RIP-ENA, beads were incubated twice
30 muin ak 37 °C in a thermo-shaker (1100rpm) in 40 pl of elution buffer (RIP buffer
Ix, 6.7 mbd Né-Methyladenosine 5-monoghosphate (Santa Cruz Bwotechaology,
sc-215524, lot # L1320, RMNaseOUT™). Input and BIP samples were finally purified
minr. ithe BNA Clean & Concentrator™-5 kit {?Jplm Research, R1016). cDMA was
obtaned using the high-capacity cONA reverse transcription kit (Thermo Fisher
Scientific, 43688 14). The bevels of TSK were measured using a Ql.mlﬁ"-l.l.ul.in & Flex
real-time PCH machine and PowerUp™ SYBR™ Green PCHR master mix (Thermo
Fasdver Scientific, Azm} :.:mn'iln; 1o e manufactuner’s structons. Satistical
testiogg, for differences between KD amd Control was done with the one-tailed
Welch's t-test. gRT-FCR praimers: Tsk (22-73) Fwd 5"-GOGACATCTGTCACCC
CATT-3; Rev 5"-CAGOCAGATCAGOCGAATCA-Y. 7sk (50-160): Fwd 5'-GGGT
TGATTOGGETGATCT-3; Rev 5'-GLGGATGGTOGTOCTCTT-3" 7k (258-308):
Fawd 5-CGTAGGGTAGTCAAGCTTOCA-3; Rev 5-CAGUGOCTCATTTGG
ATGTG-3

Western blotting. Western blot experiments were performed as previously
discribed (Barbieri, Nature 2007) using the following antibodses: anti-METTLS
{.ﬁ.lu:nl. abl195352, lot I‘GH&Z-‘I?[ZI-EI-} and anti-beta Actin {.l'ﬂ:ca.lll.. ah®8277, ot
#LHI255600-1).

In silice simulated datasets

Urisrigulified RNA miodel We used an in vitro transcribed husman BENA DRS
dataset rebeased by the Nanogore WGS consortium as a ground truth for non-
modified RMA bases (hittps/fgithub.com/manopore-wgs-consortivm/MA 1 ZR7TE).
This datasel contains all PIH!IHE S-Pers o average 58307 times. The reads
were aligned on gencode release 28 human reference transcnptome with
MinimapZ v2.14 amd we realigoned the signal to the reference sequence using
Namopolish eventalign v 10,1 followed by NanopolishComp Evenlalign collapse
w5 . Mext, we collected the median intensaty and dwell time data for cch Smers
and tried to fit 44 different distributions. We sdected distributions NS,
the sum of square root error for all kmers between the observed and modelled
data. In additson, we also based our selection on the possibility to ml]r :ﬂlamﬁt
the parameters of the distributions o simulate the presence of modifications. We
selected the Wald distribution and the Logistic distribution for dwell time and
median intensity, respectively. Finally, we generated a model file containing the
parameters of the observed and model distributions for each 5-mer. The up-to-
date model file 15 distributed with Nanocompore. The detailed :.ln]:rsis [H]
available in the following Jupyter notebook: httpsfgithubcom/Uernardif
nanocompore paper analyses/blob/masterfin silco dataeet/

01 IVT Kmer Modelipynb.

Somuibated reference sequience. We generated a set of in silico reference sequences. In
order to maximse the sequence diversity and kmer coverage we used a “guided”
random sequence generator. In brief, the sequences are generatied base per base
usingg a random function, but the program keeps track of the mumber of times each
kmer was already wsed. The sequence s extended, based on a random funsction
with a weighted probability for each kmer nversely proportional to their socur-
rence i the sequences already generatinl. This ensures that all kisers are fepre-
sented as uniformly as possble, but it leaves some space o randomness, We
generated a set of 2000 ssquences 500 bases bong, each maximsang the 9-mers
coverage. We excluded any homsopolymers lur.ltFr than 5 bases, as they are |ik£|r L
be miscalled in manopore data. Kmer coverage in the fimal sequence sel are sum-
marsed in Table 56, The detailed a.m]',lsls is available in the fulluwinﬁ Jupyter
mredsook: httpsoigithubcom/teonandy nanocompore paper analyses/Tsloby
masterfin silico dataseti2 Random guided ref genipynb.

m1 A TT L FRR AT TE, AT

Sarmubaled roodified and wnrsdified dafasets. Nowcompore comes with a compa-
mson tool called SomBteads which can generale samulated read data based on a fasta
reference and a kmer model file. Essantially, SimBesds walks abong, the refencce
sequence and genwerates intensity and dwell e values corresponding o each
S-mers. To do %o, ot uses a pn‘n]:li.]lt'r du:si.t\lf random gulcn‘t-ur |.|:si1|q.jI the kmer
moded values (Jocation and scale) bounded by the extreme observed values. This
tool can alan offset the model mean b‘f a fraction of the distrbution standand
deviation to simulate the effect of KNA modifications. This can be done for all the
reads or ooly on a subpopulation of resds. Simitewds generates files similar to e
oulpaut r.f.ﬁ'n.lru.lpr.lli.shrﬂmp Enﬂuﬁ'xnt:r.vﬂ:lpm This means that the datasets can be
directly used as input for NamoCompore SampComp. Using Nanocnpaore
v1.00rc3 with the pmmwﬂr deseribed simulated reference sequence sel we pen-
erated 144 in salico datasets with varows amplitude of modification of the madan
ngmll m‘tmm‘l‘r and the dwell tse {l.l. 1.2 3. and 4 standard d.-nn.l.lun} as well as
different fractions of modified resds (10%, 25%, 5006, 75%, 90%, and 100%). All the
datasets were simulated in duglicate with a uniform coverage depth of 100 reads.
The detailed I.I'IIIFB 15 available in the F.ﬂ.luwinﬁ Jupyler nodebook: hitps://
github.comi'teonardy nanocompore. paper analyses/bloby master/

i salico dataset/03 Simulated datiset genipyab.

Arud’m': -I.!,"mlMﬂI dutasets. We compare the 144 datasets th.lnlnbsilnl.ﬁ.lﬂ.l
modifications against the referance dataset generated from the unmodified owdel
with Masocompore v9L00R3 (See Nanooompore section after). The analyss was
performed with all the statistical methods supported by Nanocompore wsang a
sequence context of 2 nudectides (httpsyfgithub, cony'teonard/

nanocompore paper analysesblobfmasterfing silico datasstM - nanooomponesh]).
The result database was subsequently parsed and the predicted modified sites were
compared with the position of the known stmulated posations. A hit was considered
true positive (TF) when we fownd a significant p-value within 3 nucleotides of a
known modified position. A significant hit outside of this window was oounted as a
fakse positive (FP). Finally, we plotted the Receiver Qunltmﬂ Characterstic [ROC)
curves cormesponding to the TP rate compared with the FP rate for every Nano-
compore comparison performed ﬂlﬂpﬂfﬁﬂlluhuulumuunnli.r

panocompore paper analyses/blobdmasterfin siloo dataseti0s ale rocsh).

Sequencing and analysis of synthetic modified oliges. The four PAGE-purified,
synithetic LﬂlEdJnl.I.‘lEl’J'.lh of 1006t were ondered ﬂll‘l.wll Huorgeon Discovery
LTI at a concentration of 0.2 pmol. Cligol, 2, and 3 carred 3 modified nudeotides
each, whersms Oligod was the unmadified control. A the oligonucleotides have
the samwe sequence, but they contan different modifications sufficently spaced
(23 bases) to avoid mieractions between modificatsons. The sequence was
chosen i order o combine all the know consensus of the modifications in :.sinﬁl:
oligo sequence in order o be able o use a sngle non-modified reference for all
wlagos:

*  mbh: GGLACU (strong DRACH consensus)
maA: CLACC (Weak NRACH consemnsus)
mbA: CUAGT {AHT.L DRACH consensus)
Inosine: UUAGE (loose motil in editing-ennched regions (EERs) - from
.Bhllg:l and Bass 2016, amd %mgtun et al. H.Ill}.
Peeudol)l: UGUAG (from Pus7s UGYAR molif, and 75K IVT pak...)
ma2A: GUGAACT (from the 185 rRNA modifisd sequence)
m5C: COOGGE (from Huang et al. 2019)
mlG: CAGGTOG (from the tRNA m1G37 position)
2O GAGAGAA {frr.un rRMNA don: ID.lmflme}mlSlﬂ'.l

The meotifs were all expanded to 7 bases and combined in a sequence separated
by a randomly generated buffer of 9 bases, We generated all possble permutations
of the blocks and 1000 different verssons of the randomly generated buffer
sequences (disallowing homopolymers), totalling 216,000 candsdate sequences. We
then computativaslly folded all of the candsdate sequences usang KNARld v24.15
froam the Vienna pas;'kzip l"lnﬂl'r.. we calculated a combined scone l:k.i.nﬁ il
accoaent the folding score and the base composation balance and picked the best
candidate:
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meA strong-lnosine-mb 2 A-meA anti-mSC-mlG-meA weak-Peeudol)-
20med jueed—=H02

oonbnol

AUACUCGACAUAGAUAGGACUCUUUAGCUAGUGAADCCUAGC-
CUCCGGAGACAGRUOGCGACCUGUGUAGA UGAGAGA ACUGAGUGCA-
CAAAAAAAAAAA

amod set 1

AUACUCGACAUAGAUAGGmeA Y CUCUUUAGCUAGUGAACCOU (mAA)
GUOUCOGGAGACAGGUCGOG] maA)
COUGUGUAGAUGAGAGAACUGAGUGCACA AAAAAAAAAA

wwd set 2

AUACUCGACAUAGAUAGGACUCULULT)
GUUAGUGAACCCUAGOCUC mSC)
GLAGACAGGUOGEGACCUGUG Pseudoll)
AGAUGAGAGAACUGAGUGCACAAAAAAAAAAA

o] set 3

AUACUCGACAUAGAUAGGACUCUUUAGCUAGUG] ma2A)
ACCCUAGOCUCCGGAGACAG m1G)
UCGOGACCUGUGUAGAUGAG N OmeA)
GAACUGAGUGCACAAAAAAAAAAA

Thee full design analyss is now provided o the ooline conpanion analysis
reposilony ]llqn:ufﬂ'slﬂnbmnu'ﬂu:umddnmmn[mm paper analysesftree/
mastercontrol oligos design

DRS libwaries were prepased from 500 ng of cach olige wang the SOK-RNAGOZ
kit (ONT) and rullr.minﬁ the stamdard protocol. Libraries were then sequenced in
mndividual FLO-MIMI06 fowcells on a GridlON instroment. The data was then
basecalled with G!.lppr (v3 2100 with default parameters. A konown lmitation of
DPES is the poor data normalsation for short reads. To overcome this limitation
amd reduce noise, we only retained for rl.l.rﬂ‘mr:.ln]'fsis I]l:Gupp:r pass rewuds of at
beast 10t in length (Le., full length oligos amd fusion reads). Filtered reads were
then mappad to the reference unmodified sequence wsing minmmap? (-k 9 -m 5),
the sagnal data was then resquiggled with Nanopolish and the aligned events table
was collapsed with NanopolishComp as outlined before. The filterad datasets for
ﬂis,ul. 2, and 3 were then :n:]rsui with Manocompsore {vIJ:IJ:In'J-. -min Coverage
3, ~downsample high coverage 50000, The Nanocompore signal peaks were
generated as deserdsed in Peak Calling section using a p-value threshold of 0001,

We then generated artificial datasets containing variable fractions of
unossdified and modified resds, covering all possible combinations of 3 factors:

1. [, the fraction of modified reeds o t:l.ptrilnnlt:] condition, '-‘"-‘ﬂi"ﬁ from O
o 1 im L1 increments

2 . the fraction of modification reduction in control condition. Valwes 1,
0.8 or 0.5

3 m, the read coverage ranging from 16 to 40% and doubling at exch step.

For each dataset to be ganerated, we created 4 NanopolishComp index files:

1. A file rd'mll:inﬁ:. random sample of 0*F reads from the dataset conlaining
the modification
2 A file rd-uuu:ilq; a randaim 5a|.|||.|.|]|: af @*[1-f) reads from the unmodified
dataset
3 A Gk referencng a random sample of o*fr reads from the dataset
containing the modification
4. A file referencing a random sample of 0*{1-Fr) reads from the anmodified
dataset
This procedure was repeated 100 times for each combimation of o, [ and r amd
aun]'rml in B1.000 distinct NManocomgeore runs s, the: combvined files 1 and 2 as
the experimental sample and the combined files 3 and 4 as the reference sample
We then :ml],rsui the results of Manocompare in onder to caloulate, for sach
combaination of o, [, and r, the mean number of True Positives, False Positives, Troe

created fronm the annotation BED file and genome FASTA file with Bedparse
[ﬂJ_L?_‘.Isz. Reads were then :]is,uni o the Lranscriploane reference with Melimnamap 2
(V216" in unspliced mode (-x map-ont). The resulting aligned reads were filtensd
with samtools (v1.95 to keep only primary alignments mapped on the forward
stramd (-F 2324) and the raw si&mﬂ Wik rudqilmd on reads usang Manopolish
eventalign (w1115 Finally, the data was processed by ManopolishComp
H'rnl'h]lgn |.u|]a|.|:u: [ﬂ.l.&.ﬂs'ﬁ Lo g:n:mtt a random aceess indexad tabalated file
contxining realigred medan intensity and dwell time values for sech kmer of
each read

Signal comparison with nanecompore. Nanocompore i a Python3 package
dedicated to comparative analysis of DRS nanopone sequencing raw agnal in order
to identify potential RNA modification sites. Signal analysis and complex statistical
tests are Ecnu-d]r resource-intensive, but Manocompore takes ald.w.ll‘h.ﬁ of a
mubtiprocessing architecture to process ranscopts in paralld and has a rdativey
small memaory foolprint. Manocompore requines at beast 1 indexed tabulated file
generated with NanopolshComp Eventalign collapse for each of the 2 conditions
to compare. The program will run with a single replicate per condition, bat we
recommend at beast 2 to take full :dmltaﬂt ol the advanced statistical framework.
The analysis fow is divided o three stepss (1) white-listing of transcripts with
aifficent coverage, (2) paralld processing and statistical testing of transcripts
position per position, (3} post-processing and saving,

Tramscripts whitelisting. In order to reduce the computational burden, Nano-
compore first ilters out transerpts with insufficient coverage. This i achieved by a
rapud fally of resds magsped per transcripts followad by sdectson of transcnpts
having at beast 30 reads mapped inoall of e samples provided. Users can modify
the threshold but the default value allows to get reproducible resulis. ﬂﬂkunﬂr.
one can provide a custom list of transcripts to include or exdude.

Stattical anabysis. White-listed transeripts are processed in parallel (o take
:.dmlt:ﬁe of multi-threaded archateciure. First, the data unruqumdlnuln the reads
muaggred on cach transenpt is loaded in memory and transposed in the transcrigt
space in a posbon-wise fashion. The current implementation of Nanoosmpore
only uses the median sgpoal itensity and the scaled logl0 transformed dwell time,
but the framework i fexible awough to sggregate more variables, asch as the error
rate or additional Nanopolish HMM states. The 2 experimental conditions are
compared posiling per posilion using a range of statictical tests. We induded the
K.ulnluﬁunn-ﬂlnmm (KS) test as a robust univarate pairwise statistical test on
current intensity amd dwel time. These tests are perforowed independently on the
medsan intendity and the dwell tiase. We abio implemented a Gaussman mixtune
meodel (GMM) dustening-based methaod. For a given position we fit 2 bivarate 2
components GMM (o all the data points observed (x=median intensity, y=dwell
timee), irrespective of the sample label. We then assgn cach data point to one of the
two clusters and test for differences in the dstribution of reads between dusters
across conditions. To this purgoese, testing i implemented n two ways: 1) by
default, we it a Logit model to the data wsng the formula pre-

dicted chuster—-1-4-sarmple label and report the coefficsent’s p-value. 2) As an
optional alternative we do a one-way ANOVA test CARTN[rArifeg, the lur. odds of data
points bebonging to chester e between the two conditions. Afier testing, is
optaonally also possible to aggregate the p-values of neighbowring kmers to sccount
for the fact that modified bases affect the sagnal of multiple kmers. To this ewd, and
due tor the fact that neiyghbouwring p-values are noo-independent, we implemented
i pfllbuu a metlod that extends the Fisher's statistac K.=-ﬂuil|{l"|"'|' J-'z"‘2 - I"k"'h}
to approximate the distnbution of the weaghted combimation of non-independent
probabilities™. The combined p-valuwes are comgauted all :]r.mﬁ the sequence Lsing @

Negatives, and False Megatives sdentified. For this purpaose, Troe positives were
diefined as the pumber of known modification sites with at beast 1 sis,ulrunl. knser;
False positives were defined as the number of sgnificant kmers outside of the
known modification siles; T'rse IIEEIIi.‘UB ak the aumber of known unmodified aies
that didn't have any significant kmer and Falbse negatives as the number of kiown
modification sites not supported by any sigmaficant ker.

Direct-RMA datasets analysis
e files. For this st we wsed the following Human reference files all
e
obtained from Ensembl:

*  Human Genome reference: Human genome assembly GRCh38.pl2
®  Human Annotation reference: Ensembl Gene build release-97
*  Yeast SK1 Genome Reference: hitpo/ichaoumskoec.ong/public/SE1L Mv(y

Data preprocessing. All the datasels were preprocessed uwang an austonated
aun]'rsis NextFlow pipeline, before runmng Manooompore {lll.'tpudf“iﬂlu]:.uuluf
teonardymanocompore pipeline). Raw reads FASTS files were basecalled with
ONT Guppy v3.1.5 and the basecalled reads were saved in FASTO) format. A post-
basecalling quality control was performed with pyoeQC (v224P7 to verify the
consistency of the sequencing runs. A transeriplome reference FASTA file was
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didineg, window of a given length. This method greatly reduces the pradiction nose
[False prmative rate) at the EXPEnse nfq.nl.n] reslulion, while fving maone wtis]‘:lt-u
ates for which the effect of BENA modifications on the signal s spread over
several kmers.

Post-procesing, soving and date exploration with Nanocompore inieractive plottong
AP Results generated by the statstical mwdule are collected and written in a
amphe keylvalee GDEM database. Although this data structure has limitations in
terms of portability and concurrent access, it is natively supported by python and
allows stonng complicated data structures. For sach est previously performed
p-values are temporanly loaded in memory and corrected for multiple tests with
the Benjamini-Hochberg, procedure. Users can then obtain a tabulated text dumgp
of the database containing all the statistical results for all the positions in the
transcripls space or a BED file with the positions I.lf!ﬂllifl'ﬂ.llt Tits found 'br
Manocompore converted m the genome space. Finally, we provade a convenient
python wragper over the GDBM datalace, allowing users to inleractively socess
amphe high level functions o plot and export the results (hitps//
nanocompore rna rocksfdemo SampCompDB wsage/). The wrapper was initially
develogred for Jupyter but can EHEDI.EIII" work with any python IDME. At the time of
publication the wrapper allows (o generate 6 different types of publication ready
plots for a given transcripl illdl.:iilqi (1) the distribution of p-values, (2) the
dustribrution of signal intonsaty and dwell tme, (3) the overall coverage per sample,
(4) the: nanopolish HMM states, (5) the kernel density of the sspnal and dwel tiose
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for a specific position amd (6) the sharkfin plot of the p-values compared with Log
Odds Ratio (for the GMM method).

Downstream analyses. The code for all genenic analyses, plots and metrics s
availalle at hitpe!/githish.com/tanardi/ mamecompore paper analyses. The
transcript intersection plot for the MOLMI3 polyA dataset had been geserated
with UpsetiR™5%,

Peak cilling. Given that a single modification can affect the sagnal for multiple
overlapping kimers, we developed a peak calling methaod to refise our predictsons.
Eriefly, we first converted p-values in -log 10 so that peaks correspomd o positions
with }nﬂlwr prﬂn]:ui]lt‘r uf'bti.nﬂ muodified. We then defined a drmlll.l'.‘ threshald
per transenpts correspoasding to the median of all the values above 2 (p-valses
0017, I the case where o Swliflﬂ.llt p-ﬂ]uu were found, the threshold was set
to 2. Peaks were called using sopy.signalfind peaks using the dynamic threshobd
described before ax a mininal beight and a minimal dstaoce of 9 between 2 peaks
5 WEIIIPPID.E S-mers). Examples can be found in Figure S12

Metagene mbA coverage. The metagene méA coverage amalysis was done con-
sidering all nanocompore kmers with GMM bogit p-value<0.01 and a bog odds ratio
=05, The plot was produced in BB ioconductor with the Guitar Lnllxﬁ,: using, the
TaDb Hsapiens, UCSC g3t knownGene package for the hunan transcriplomse
anotation amd the SKI reference transcriptome GEF for the yeast annotation.

Mfmmhmi urwf_n:s l.fn'nﬁﬂ sites. For the motil enndhment a.r.:llrsn: of mAA
sites identified by Nanocompore analysis of METTLS KLY, we extracted the
sequenice of all kmers tested by Nanooompore and having a p-value<05 (GMM-
bogt). The sequences were then sorted by pvalue and analysed with Sylamer for
the identification of over-represented words, uwang a word siee of 5 and a growth
paramseter of 100 The S',Ilunu results were then imported o B for IJ]I'J“.ID.E. Ta
produce a combined profile of the DRACH motif, the per-window p-values of all
DRACH kmers were combinead using Fusher's method. For visualisation purposes,
the final plet ooly reports the lines for the top 100 motils with the greatest area
under the sylumer curve, with the top one represented in colour.

:"n'rg:k muolecule ﬁkrd':ﬁr.u!im'l Lﬂrmﬁﬂ sties. To assign an mbA probability at A652,
Al324 and A1535 for cach read covenng the factin trmscapt, we developed a
dedicated post-processing scrpl available at hitps:/github, com/'Ueonardi/
manocompore paper amalyses/nvbacodefparse sampeomdb.py. Briefly, for each of
the three positions of interest, we extract the GMM mode saved in sampCompDB,
amd for each read we then predict the pn.‘.nl:n]lh’ that ilbchmﬁs to each of the two
clusters. To define which of the two dusters corresponds to meA modified reads,
wie conader whach of the two clisters has HEF.I.IU'E '|u5 odds of data poanls
bedonging to it o the KD condition (e, we consader which of the two custers
shrinks in the KD condition). To test the independence of the methylation events
at these three sites, we performed a dhi-sguared test of independence LOrmparng
the expected number of molecules for each of the 8 combinations of modifications
to the observiad aumber of molecules. The reults reportad are oltained wang a
probability threshold of 075 (s predicted by the GMM) to consider a nead as
methylated. However, b ensure robustness of these results, the da-squared test was
repeated for all thresholds between 0.1 and 1 (005 steps) and p-values were
adjusted accordingly wang the Benjamini-Hochberg, procedure. Adjusted p-values
were =039 for all thresholds wsed.

TEK structures. The 75K multiple :]lﬁnlnums amd comsenous !EL‘rJIHh.I"r structune
were oblained from Efam (BFODWM). Secomdary structure plots were produced
with RZE%5 and a cusiom pfﬂmn script to anmotate p-values as colour s]n.ﬂ.lnE
(available at hitps/fgithub.contleonandynanocompore. paper analyses/Tiloly
master/ncENAs structures/creale annotalions. py)

miCUP analysis. ouCLIP data and cormesponding npul data was amalysed waing
the iMaps web server (httpe/fimaps genialis comy). Briefly, raw reads were
demultiplesed and trimmed (for adagtors and quality], before being mapped 1o a
(ENA and rRMNA index using STAR (v2A01)%. Unmapped reads were then
mapped to GRCh3g GENCODE primary :.muuu',l. using, GENCODE annotation
¥30. STAR parameter -algnEndsType Extend5pOfRend] was wal to asure oo
soft clippang of COMA start stes. PCR duplicates were removed based o unigue
molecular identifier (UMI) amd mapping position. cIMNA start -1 posations were
taken as crosdink sites. Significant Nanocompore clusters were determaned by
IHETRIng mﬂa.ppi.nﬁ kmers with a GMM lus,lt contex 2 p-value < (U001 usang
bedtonds merge (v228.0). Control stes were selected as those with a context 2
pvalue of 1 and split into those that did or did ot contain DREACH within a 1dat
window arcund the center of the duster. Due to large differences in library sme,
i LIP crosslinks were first filtered to remsove intergenic and neRNA sites and
then subsampled Lsing GMU coreutils shuf, to generate libraries equal in size to the
smallest library, totalling 47,012 crosdinks. Crosslink counts were divided by gene
TPMs calculated from ather WT or KO mock mpCLIP samples. BigWig files were
generated from the normsalised bedgraphs, which were used as the input (o
deepTools®! (v330) computeMatriz and plotHeatnap o generate metaprofiles

m1 A TT L FRR AT TE, AT

-1t + 1000bp around the center of Nanocompore dlusters with a bin siee of
M. The resultang tabilar output wis further analysed i B Shaded rogions oo the
plot represent the mean +/- the standard deviation at each positson in the profile
(W1 miCLIF n=4, K( n=Z). Both the mean and bounds were smoothed using
Towess FEgr eI with a span of 06 In order to test for a siﬁnlﬂum‘t difference
between W and KO profile, mean vallues from W and KO miCLIF between
positions -2 to 420 around pasopore sites were subgectiad to a Mann-Whitaey
LU test.

Maodification prediction Comparison with MetaCompore. |n order (o compare
Manocompore agaimst most of the other tools available for RNA modification
detection in a reproducible way, we wrole a smabemake pipeline called Meta-
Coanpore (https!github.com/fa-shideMasCompore). For this study, we used
MetaCompore w12, which includes the Tatest version of following tools : Epinamss
1.2, Eligos 2.0.0, Tombe 1.5.1, differs nanopore drs (Ratest version), Mines (latest
version] and Manocompore 103, MetaCompore preprocess the data for all the
touols, including Basecalling with ONT-Gugspy 422 (except for Epinano which
required the older 3.1.5 version), red :]'tslum:nl to the referance branscriptome
with Mimimap2 2,17, alignments filtering with pyBwtools 027 and sapnal rea-
ligmmsent with 5 (06 For portabality and seproducibility reasons, every module of
MetaCompore is provided within its own :ﬂnﬁul:.n‘l.‘r container and all the opthons
used for a run are tracked in a YAML configuration file. Nanocompone and Ep-
nano are the only tools to support expenmental replicates. For all the other tools
we merged the data oldtained from replicates. Since every tool outputs a different
kil of statistics/forasat, MetaCompore filters the data following the respective
authors recommendations and when possble converts the result in a similar for-
mxat containing the signaficant site associated with their p-valee and Effect size. For
Manocompore and Tombo which both work in Si.ﬁlﬂ] space, we added a peak
calling denoising step to narrow down the results.

Fowr the comparison in the paper we used a Yot SKI1 dataset comjparing 2
replicates of W yeast against 2 replicates of an IME4 KO mutant (méA writer in
Yeust) We usexd the Yeast SK1 reference transeriplome (hitpss//
ww.ytaslﬁcnmm’_urw'mildﬁﬁl}. Prior to modification detection, we ran an
optsonal pipcine step to Glter out any reference transcript with less than 30 reads in
all replicates. The command line options used for all the tools are available in the
MetaCompore configuration filke provided as supplementary matersal.

Benchmarks of MetaCompore results against known yeast mbA sites. We
compiled an Lwﬂmﬁunl refierence set of mbA sites from 5K1 yeast lr,l tﬂklnﬁ mbA-
Seq sites from Schwartz et 2l and MAZTER-seq sites from Garcia-Campos

et al ™ The sites and surrounding squence wene mapped to the M0 SK1 genane
fasta to obtain the equivalent genomic coondinates. ACA sites annotated with
MAZTER-szoq confidence group > | or supported by méA-Seq were taken o single
nuclestide positions. Non-ACA sites were taken from méA-Seq. IT an nbA-Sey
winsdow overlapped with one or mone single nudeotide sites it was removed from
the reference set. In total this produced a set of BH2 unE]: nucleotide positions, and
A15 B0nt windows, amounting to 1297 refoence méA. positions.

The comparson of cach method i MetaCompore with this orthogosal
reference datoset was based on our 8. cerevisae DRS data and limited to transcrpis
with a coverage of at beast 30 reads. The calculations of the TPR/FPRIF]L scoref
Precision of cach method was done at a p-value threshold of 0.01. For each methaod
wie comnstructed a confusion matnx using the fllowing critera:

®  True Positives: the aumber of ground-truth abA sites overlapping at least
onee signaficant kover acconding to the given method. The True Positive Rate
was further defined as the number of True Positives divided by the total
number of meA sites in the Hrr.u.uu]-l.rul]l. sl

®  True Negatives: the oumber of ool sagnificant DRACH kmers i the
transcrptome (Bmited to transcripts present in the DRS dataset)

®  False Posmtives the number of agnificant kmers that do ool overlag a
ground-truth méA site. The Fabe Positive Rate was further defined as the
number of False Positives diveded by the sum of Falee Positives and True
Negatives.

®  False Negatives: the number of EL‘I’JI.I.IId-I.I’I.I."I b sites nol overlagped b-:r

any significant kmer

For the purposes of the caloulations above, we used the resulis tables produced
by each method (prior to Metacompore postfiltering) and appliad the following
criteria o consider a kmer as significant:

Eligos2: reported p-value<=0.01 and odds ratio=12 (a5 recommended by the
authors)

aiff ere: reported p-value<001 (diff err results are already filtered by p-value
and G-test)

MINES: all sites (MINES only reports significant sites)

Epimame: sites dassified as modified (modification probabality =0.5)

Tombwr: reported lp-w]u:d.l.l.ll after “EDF.IDJDI-HI’.N.‘II]JCI.‘E xiju.-d‘.nlult

Nanocompore: repaorted p-value<0.01 and GMM bog odds ratio=05 (for GMM
method onlyh

For the benchamarks above, the single nucleotsde sates identified by each methad
were extended to 100t prior o overlapping them with the ground-truth set.
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Data availability

The direct RMA and miCLIP datasets data generated in this study have been deposited in
the European Nudeotide Archive database under accession codes PRIEB44511 and
PRIEB35148. The data supporting the findings of this study are available from the
curresponding authors upon reasonable request.

Code availability
The computational methods and custom scripts used for this paper are available in the
following, Cithub repository: httpsigithubocomiteonardi/manoompore_paper_analyses.
The code af the Metacompore pipeline is available in the following Github repository:
hitps:tigithub.comia-slide/Metal ompore
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