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ABSTRACT Bacteria respond to nutrient starvation implementing the stringent response,
a stress signaling system resulting in metabolic remodeling leading to decreased growth
rate and energy requirements. A well-characterized model of stringent response in
Mycobacterium tuberculosis is the one induced by growth in low phosphate. The extracy-
toplasmic function (ECF) sigma factor SigE was previously suggested as having a key
role in the activation of stringent response. In this study, we challenge this hypothesis
by analyzing the temporal dynamics of the transcriptional response of a sigE mutant
and its wild-type parental strain to low phosphate using RNA sequencing. We found
that both strains responded to low phosphate with a typical stringent response trait,
including the downregulation of genes encoding ribosomal proteins and RNA polymer-
ase. We also observed transcriptional changes that support the occurring of an ener-
getics imbalance, compensated by a reduced activity of the electron transport chain,
decreased export of protons, and a remodeling of central metabolism. The most striking
difference between the two strains was the induction in the sigE mutant of several
stress-related genes, in particular, the genes encoding the ECF sigma factor SigH and
the transcriptional regulator WhiB6. Since both proteins respond to redox unbalances,
their induction suggests that the sigk mutant is not able to maintain redox homeostasis
in response to the energetics imbalance induced by low phosphate. In conclusion, our
data suggest that SigE is not directly involved in initiating stringent response but in pro-
tecting the cell from stress consequent to the low phosphate exposure and activation
of stringent response.

IMPORTANCE  Mycobacterium tuberculosis can enter a dormant state enabling it to
establish latent infections and to become tolerant to antibacterial drugs. Dormant
bacteria’s physiology and the mechanism(s) used by bacteria to enter dormancy dur-
ing infection are still unknown due to the lack of reliable animal models. However,
several in vitro models, mimicking conditions encountered during infection, can repro-
duce different aspects of dormancy (growth arrest, metabolic slowdown, drug toler-
ance). The stringent response, a stress response program enabling bacteria to cope
with nutrient starvation, is one of them. In this study, we provide evidence suggesting
that the sigma factor SigE is not directly involved in the activation of stringent
response as previously hypothesized, but it is important to help the bacteria to handle
the metabolic stress related to the adaptation to low phosphate and activation of
stringent response, thus giving an important contribution to our understanding of the
mechanism behind stringent response development.
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Role of SigE in M. tuberculosis Stringent Response

uberculosis is an airborne infectious disease caused by Mycobacterium tuberculosis.
In 2020, about 10 million new cases of tuberculosis were reported, and 1.3 million
people died from the disease (1).

Tuberculosis treatment requires the administration of multiple antimicrobials for
months to cope with the ability of M. tuberculosis to survive in a dormant state for pro-
longed periods of time, during which it develops tolerance and persistence to drugs
(2). One of the key mechanisms used by M. tuberculosis to develop drug tolerance is
the stringent response, a complex remodeling of metabolism with the aim to slow
down growth and energy requirements to survive for long periods in conditions of starva-
tion (3). The key molecule for the development of stringent response is the alarmone (p)
ppGpp, produced by Rel, a ribosome-associated protein, in response to specific signals
like the binding of a deacylated tRNA to the ribosome site A (4). One of the most charac-
terized models of stringent response in M. tuberculosis is the one induced after exposure
of bacteria to a low-phosphate environment (Fig. 1). In these conditions, the two-compo-
nent regulatory system SenX3-RegX3 activates the transcription of the phosphate-specific
transport operon, pstS3-pstC2-pstAl, and of ppkl, a gene encoding a polyphosphate
(polyP) kinase, leading to an increase of the polyP levels in the cell, a well-known stress
signal. Accumulation of polyP facilitates the phosphorylation of MprB, the response regu-
lator of the two-component system MprAB, which positively regulates the structural gene
of the extracytoplasmic sigma factor SigE (5), involved together with SenX3-RegX3 in the
induction of ppk expression (3, 6-8). It has been proposed that in these conditions SigE is
also able to drive the expression of relA, thus activating the stringent response (5).
However, most of the experiments suggesting the direct dependence of relA transcription
from SigE were performed in Mycobacterium smegmatis and not in M. tuberculosis.
Moreover, the activation of the stringent response is known to be mostly regulated at
the posttranslational level and not at the transcriptional level (9). These evidences moti-
vated us to explore whether the real role of SigE induction in conditions of low phos-
phate was to initiate the stringent response. To address this question, we compared the
transcriptional response dynamics to low phosphate of a sigf mutant and its wild-type
parental strain using RNA sequencing (RNA-seq) data.

We found evidence that SigE is not directly involved in the development of the
stringent response as previously hypothesized, since the main transcriptional signa-
tures characterizing this response, like the downregulation of genes encoding ribo-
somal proteins and RNA polymerase (RNApol), were found conserved in the two
strains. However, we found evidence that the role of SigE in these conditions is to pro-
tect the bacterium from stress induced from the metabolic and structural changes
caused by the stringent response.

RESULTS AND DISCUSSION

In this section, we first show and discuss the dynamics of the transcriptional
response to low phosphate of a wild-type strain of M. tuberculosis, identifying the main
genes involved in the development of the stringent response, e.g., sigE-regulated
genes, and characterizing the main changes in the electron transport chain and the
alternations in the central carbon metabolism pathways. Second, we study the strin-
gent response in low phosphate in the sigk mutant strain, characterizing the main tran-
scriptional activities and focusing on the alterations that are specific to this strain, e.g.,
alteration in the oxidative and acid stress. To this end, we considered the wild-type
H37Rv strain (WT) and its isogenic sigk-null mutant ST28 (MU) in which SigE is rendered
nonfunctional. Triplicate WT and MU cultures grown in phosphate-rich substrate were
washed and resuspended in low-phosphate substrate. RNA extraction was performed
before exposure to low phosphate (time zero) (high phosphate) and after 6, 12, and
24 h of exposure to low phosphate and subjected to paired-end Illlumina RNA-seq. The
resulting sequencing data are available on NCBI's Gene Expression Omnibus (GEO) (10)
under accession number GSE211141. Bacteria exposed to low-phosphate media remained
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FIG 1 Schematic representation of the current stringent response network in M. tuberculosis. Low
phosphate activates the two-component system SenX3-RegX3, which leads to the induction of the
phosphate-specific transport operon pstS3-pstC2-pstAT1 and of ppkl. PPK1 synthesizes PolyP, resulting
in a more efficient activation of the MprAB two-component system (using PolyP as a substrate for
MprB phosphorylation). MprB phosphorylation allows sigE induction. SigE increases the expression of
the genes included in its regulon, including ppk1 and relA.

viable for at least 48 h (see Fig. S1 in the supplemental material). Finally, we report a vali-
dation of the robustness of the results obtained from the bioinformatics analysis.

Analysis of H37Rv wild-type strain. (i) Differentially expressed genes and func-
tional annotation. Differential expression analysis was performed using both edgeR
and FunPat (11), considering the entire time course, i.e,, at time 6, 12, and 24 h versus
time zero, to define a gene as differentially expressed (see Materials and Methods for
further details).

We found 2,087 differentially expressed (DE) genes, i.e., significantly affected by phos-
phate starvation in the M. tuberculosis wild-type at 6, 12, and 24 h versus 0 h (referred
from here on as “WT versus T0") (see Data Set S1 in the supplemental material).

Gene expression profiles were scaled to their maximum and clustered using k-means
into 6 different clusters of 362, 326, 404, 220, 447, and 238 genes (Fig. 2; see also Data Set
S1). The different clusters were characterized by specific patterns and were functionally
annotated using DAVID functional annotation clustering (12) for Mycobacterium tuberculosis
H37Rv. The complete list of WT versus TO DE genes, the list of genes in each cluster, and the
significantly enriched functional terms associated to each cluster are available in Data Set S1.

Cluster 1 is characterized by a peak of upregulation at 12 h with respect to time zero.
Significantly enriched functional terms included lipids catabolism (enoyl-coenzyme A
[enoyl-CoA] hydratase genes) and protein biosynthesis (aminoacyl-tRNA synthetases).

Cluster 2 is characterized by an increasing pattern of expression with a peak at 24 h.
Significantly enriched functional terms correspond to lipid biosynthesis (i.e., triacyclglycerols
and 2,3-diacyltrehaloses), response to nitric oxide and to hypoxia, and PPE family proteins.

Cluster 3, conversely, is characterized by a decreasing pattern of expression from 6 h
after phosphate deprivation and is significantly enriched with functional terms related to
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FIG 2 Clustering of differentially expressed genes in WT versus TO. Figure shows the 6 clusters of genes resulting from the k-means clustering. For each
cluster, the gene expression profile of the centroid, i.e., gene expression profile obtained from the average of all the gene expression profiles in the cluster,
is shown in black, together with 10 (randomly chosen) gene expression profiles from the same cluster (cyan). First row, gene expression profiles are plotted
in the original scale to show the difference in gene expression level intensities. Second row, the same gene expression profiles are scaled in 0 to 1 to

highlight the shape of the gene expression profiles.

electron transport chain (menaquinone biosynthesis, NADH dehydrogenases), redox pro-
teins (iron-sulfur cluster assembly), aromatic amino acid, and histidine biosynthesis.

Cluster 4 is characterized by upregulation with respect to time zero with a peak at
6 h and significant association to functional terms related to phthiocerol dimycocero-
sate (PDIM) synthesis.

Cluster 5 shows a decreasing pattern of expression with downregulation with respect to
time zero and significantly enriched annotation of the following terms: ribosome synthesis
and activity (ribosomal proteins, ribonucleoproteins, RNA-binding proteins, structural con-
stituent, cytosolic large ribosomal subunit), DNA modification enzymes (nucleases, transpo-
sases), and toxins (VapC family).

Cluster 6 shows an increasing pattern of expression, reaching a plateau at 12 h.
Enriched annotation terms include the following: enzymes involved in metabolism of
fatty acids and amino acids, core metabolism (tricarboxylic acids [TCA] cycle, glycolysis,
glyoxylate shunt), cofactors, and nucleotide biosynthesis.

Taken together, these clusters confirm that M. tuberculosis develops a transcrip-
tional metabolic change in response to phosphate starvation with the trait of the strin-
gent response, characterized by deep remodeling of lipid metabolism, as well as a
decrease in ribosome biogenesis and RNA transcription (9). Detailed examples are the
repression of rpoAB (see Data Set S2 in the supplemental material), encoding the RNA
polymerase, indicating a general decrease in transcription, and in the expression of
several genes encoding ribosomal proteins.

(ii) SigE network and SenX3-RegX3 regulon in H37Rv. In agreement with the pre-
vious findings highlighting the involvement of SigE in the development of the strin-
gent response (6, 7), exposure to a low-phosphate environment showed the induction
of several genes known to be directly regulated by SigE (sigE, hsp, htpX, sigB, rv2743-
pspA-clgR, rv2052c-rv2053c, and rv1072-rv1073) (Data Set S2) as well as genes indirectly
regulated by SigE through the action of other regulators that are part of its regulon
such as SigB (hsp and pks2) or CIgR (rv1043c and clpP1-clpP2) (13) (Data Set S2). These
genes encode for chaperons, proteases, proteins involved in sulfolipids biosynthesis, and
proteins involved in membrane stabilization and abnormal membrane protein degrada-
tion. These data suggest that in a low-phosphate environment the cell experiences surface
stress, probably due to the unfolding of surface proteins, that activates the SigE response.

In agreement with the model of Sanyal et al. (6), in low-phosphate environments, an
increased transcription of the genes encoding the two-component system SenX3-RegX3
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FIG 3 Differential expression of gene involved in phosphate homeostasis in the wild-type strain. The charts report the expression level profiles of genes encoding
proteins directly involved in the sensing of phosphate availability and phosphate uptake. (A) Two-component system. senX3, sensor histidine kinase; regX3, sensory
transduction protein. (B) Phosphate transport operon. pstS3, periplasmic phosphate-binding lipoprotein; pstC2-pstA1, phosphate transporter, ABC type. (C) Phosphate
transport operon. pstB, phosphate-transport ATP-binding protein; pstS1, periplasmic phosphate-binding lipoprotein; pstCi1-pstA2, phosphate-transport integral
membrane ABC transporters. (D) pstS2, periplasmic phosphate-binding lipoprotein; pknD, transmembrane serine/threonine-protein kinase.

(even if the increase of senX3 did not reach statistical significance) was observed in the WT.
The expression started to increase after 6 h from exposure to low phosphate and continued
to increase until the end of the experiment (Fig. 3A; see also Data Set S2). The same pattern
was observed for the phosphate transport operon pstS3-pstC2-pstA1 (Fig. 3B; Data Set S2),
known to be under transcriptional control of the two-components system SenX3-RegX3 (7,
14), but not for the other phosphate transport operons pstB-pstS1-pstCi-pstA2 (Fig. 3C; Data
Set S2) and pknD-pstS2 (Fig. 3D; Data Set S2). In this case, the former decreased its expression
from the beginning of the experiment, while the latter showed a decreased expression in
the first 6 h, with a recovery after an additional 6 h of exposure to the low-phosphate envi-
ronment. These data are in contrast with previous studies where the latter two operons
were shown to be not differentially expressed or slightly induced in low phosphate (7, 15),
possibly due to differences in strains and experimental conditions.

Another gene known to be regulated by SenX3-RegX3 is ppkl, encoding a poly-
phosphate kinase, whose SigE-dependent transcription is activated through binding of
phosphorylated RegX3 to its upstream region (6). Increased Ppk1 levels cause an
increase in cytoplasmic polyP, a well-known stress signal (6), which through the activa-
tion of the two-component system MprAB leads to sigE induction generating a feed
forward loop between Ppk1 and SigE. Indeed, ppk1 was induced after 12 h of exposure
to low phosphate, when sigE expression reached its peak (Data Set S2).

Ppk1 was also reported to be essential for the activation of the stringent response
through the SigE-dependent induction of relA (5, 6); indeed, in our experiment, relA expres-
sion showed an increasing trend starting from 6 h after exposure to the low-phosphate
environment, even if this increase did not reach statistical significance (Data Set S2).

(iii) Changes in electron-transport chain. An intuitive consequence of phosphate
starvation is the reduced supply of cells with Pi for ATP-synthase, causing a drop in
ATP production. A diminished activity of this enzyme implies that protons released in
the periplasmic space by NADH dehydrogenase type | and cytochrome bc-aa cannot
be reimported by ATP synthase. This results in the accumulation of protons in the periplas-
mic space triggering acidification and alteration of proton motive force (pmf). Consistent
with this hypothesis, M. tuberculosis exposed to phosphate limitation induces the transcrip-
tion of the gene encoding the membrane carbonic anhydrase CanA (rv1284), which func-
tions as sink of protons (see Data Sets S3 and S4 in the supplemental material) (16-18).
Additionally, several genes from the respiratory chain are differentially expressed (Fig. 4;
Data Sets S3 and S4), which could contribute to the protection of cells from acidification
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FIG 4 Differential expression of electron transport chain genes. At the top, schematic representation of respiratory chain enzymatic complexes. The charts
with cyan/pink lines report the expression level profiles of involved genes in both wild-type (WT) (cyan) and sigk-null mutant (AsigE) (pink). Cyt bc-aa,,
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and altered pmf. (i) The operon encoding the proton-translocating NADH dehydrogen-
ase type | (huoABCDEFGHJKLMN) is downregulated, inducing the reduction of the export
of protons into the periplasmic space. NADH reoxidation can be supplied by two non-
proton-translocating NADH dehydrogenases (type Il) Ndh and NdhA (19), whose expres-
sions do not change. (ii) The genes involved in the menaquinone biosynthetic pathway
(entC-menD-menkE) are downregulated, suggesting that the density of electron flux across
the respiratory chain diminishes too, indirectly reducing the load of the export of protons.
(iii) The cytochrome bd oxidase genes (cydCDBA), encoding a non-proton-translocating

March/April 2023 Volume 11 Issue 2 10.1128/spectrum.02944-22 6


https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.02944-22

Role of SigE in M. tuberculosis Stringent Response

D-Glucose

D-Glucose 6P

l
l
l

D-Fructose 1,6P

/N

«— Glyceraldehyde 3P — Glycerate 3P

l
l

Glycerol

Dihydroxy
acetone phosphate

Gene Rv0211 (pckA)

Gene Rv0467 (icl1)

Microbiology Spectrum

gene up AsigE

gene down - WT

Isocitrate lyase 1

(iclt) Isocitrate lyase 1

(aceAab)

= CO Gene Rv1915 (aceAa) Gene Rv1916 (aceAb)
Phoenolpyruvate gé 2 Phosphoenolpyruvate 28 o5 g 1
carboxykinase 3" GTP co 57 H 8 o
KA, s s §% g
bokt) 5 Pyruvate S = & W74 A
N 0 & T 4 kaA / g / =
Gene Rv1240 (mdh) Time (h) Acetyl-CoA L g ] . 5 s b o
ime 0 6 12 24
% /\ G DP Time (h) Time (h)
Malate  £§ + CO; NADP* .
dehydrogenase % e NADH,H Oxaloacetate Citrate Gene Rv0066c¢ (icd2)
MELE | dh L
g m . RS )
R L y NAD+ icl1/2 . NADPH,H £s /s Isocitrate
Time (h) L-Malate e— _ Isocitrate 7 & . dehydrogenase 2
FADH?2 Glyoxylate . g (icd2)
fi icd2 3 Sr
Gene Rv1098c (fum) um COZ d
o V' ul L} - . A
g FAD Fumarate a-Ketoglutarate gitD o 6
3 , \sdh1 Cco, NA(DJ,\)
Fumarase £ sdh2 Succinate ) L-Glutamate
(fum) & Succinyl-CoA
[} +
g CO_NADH,H L-glutamate synthase
6w % sucCD 2 (qltDB)
Time (h) Gene Rv3858c (gItD) Gene Rv3859c (gitB)
Gene Rv3316 (sdhC) Gene Rv3317 (sdhD) Succinyl-CoA synthetase % é \ §
s g (sucCD) 5. E\/- E=5
E < N Gene Rv0951 (sucC) Gene Rv0952 (sucD) %’ rga %
§8 ) / . . g \—- S 2
fs I o8 2< é g0 6 n I %
w © g 5 ol Time (h) Time (h)
Succinate € 5 1w R B B e \ -
dehydrogenase 2 Gene Rv3318 (sdhA) Gene Rv3319 (sdhB) ) g
(sdhCDAB) g

[

o

12
Time (h)

24 0 8

1400

fisg o 8

Expression level
1000

]
1000 1200 1400 1600
of =

600
o

6 2 24 [} 2 2
Time (h) Time (h)

2
Time (h)

4

FIG 5 Differential expression of genes involved in the core of central carbon metabolism. The charts with cyan/pink lines report the expression level
profiles of involved genes in both wild-type (WT) (cyan) and the sige-null mutant (AsigE) (pink). Genes that are up-expressed at 6, 12, and 24 h compared
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terminal oxidase with high oxygen affinity (20, 21), are strongly induced, contributing to fur-
ther reduce the load of exported protons and guaranteeing the continuity of electron flux.

(iv) Central carbon metabolism pathways alteration. Another interesting tran-
scriptional response to low phosphate regards the expression of genes encoding
enzymes involved in the Krebs cycle. Genes involved in the direct production of succi-
nate, like isocitrate lyases (icl1, aceAa, aceAb) and succinyl-CoA synthetase (sucCD),
were induced (Fig. 5; see Data Set S5 in the supplemental material). It is known that
when there is a significant drop in ATP levels and a rise of pmf as hypoxia (22, 23) or
iron starvation (24), the pathways involved in succinate production are overexpressed
and a fraction of succinate may be secreted to maintain the pmf. Our data strongly
support a reduced electron transport chain (ETC) activity that likely leads to reduction
of ATP production and an alteration of pmf. It might be possible that additionally in
conditions of low phosphate, M. tuberculosis needs to secrete succinate to maintain
the pmf and for this reason it increases its production.
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Interestingly, we found a sharp and prolonged downregulation of the gene encoding
the small subunit of glutamate synthase (g/tD) (Fig. 5; Data Set S5). Comparing this pat-
tern of expression to those of isocitrate dehydrogenase 2 (icd2) and sucCD (Fig. 5), which
show only temporary induction, suggests that the cell might accumulate a-ketoglutarate.
This metabolite is an important metabolic regulator (25), and a recent study in Bacteroides
thetaiotaomicron revealed that during stringent response, a-ketoglutarate pool size
increases, altering the metabolic processes and promoting growth arrest (26). It is possible
that when phosphate is low in M. tuberculosis, the accumulated a-ketoglutarate is partially
transformed in succinate and partially used as metabolic regulator.

Between 6 and 12 h, succinate dehydrogenase 1 complex (Sdh1/rv0247¢c-rv0249c)
expression decreased, while the expression of succinate dehydrogenase 2 (Sdh2/sdhCDAB)
increased (Fig. 5; Data Set S5). This switch is consistent with a previous demonstrated role
of Sdh2 in stress conditions, causing a drop in ATP production as in hypoxia (27, 28).

Finally, the genes encoding the phosphoenolpyruvate carboxykinase PckA, the
malate dehydrogenase Mdh, and the fumarase Fum were found to be induced (Fig. 5;
Data Set S5). In a condition where the high-ATP yielding pathway is compromised, the
induction of pckA may represent a substrate-level phosphorylation mechanisms to sup-
ply ATP (24, 29), which results in the production of oxaloacetate. In these conditions,
the phosphoenolpyruvate-derived oxaloacetate can be used by Fum and Mdh to
implement a reverse Krebs cycle toward succinate production and NADH reoxidation
(Fig. 5). It is worth noting that a reverse operation of oxaloacetate-malate-succinate
branch of Krebs cycle, together with glyoxylate shunt, has been demonstrated to occur
in M. tuberculosis exposed to hypoxia to increase the succinate production (22, 23).

Targeted metabolomics investigations will be necessary to confirm these hypotheses.
However, recent transcriptomic, proteomics, and metabolomics studies performed on M.
tuberculosis exposed to bedaquiline (BDQ) (30, 31), an inhibitor of membrane-embedded
F, domain of ATPase (32) and hence mimicking the low phosphate effect, partially confirm
our hypothesis. In response to BDQ exposure, (i) glyoxylate shunt and anaplerotic PckA are
both active, (i) succinate is secreted (31), and (jii) together with succinate, malate and fu-
marate are also secreted, raising the thought that the postulated malate and fumarate pro-
duced by a reductive Krebs cycle branch in low phosphate can be secreted to maintain an
energized membrane. Additionally, non-proton-translocating cytochrome bd oxidase (cydAB)
is upregulated following exposure to BDQ as in low phosphate (30).

In support of our hypothesis regarding the acidification of periplasmic space, a tran-
scriptomic study shows that M. tuberculosis exposed to mild-low pH downregulates
NADH dehydrogenase | and upregulates cytochrome bd oxidase (33) similarly to what
we observed after low-phosphate exposure.

In summary, our transcriptomic data indicate that during growth in a low-phosphate
environment, M. tuberculosis suffers from acidic and high pmf stress, and to contrast
these perturbations, it (i) stimulates carbonic anhydrase expression as a sink of protons,
(ii) reduces the electron flux across the respiratory chain to reduce the proton export, (iii)
secretes tricarboxylic acids to maintain an energized membrane, and (iv) utilizes sub-
strate-level phosphorylation to maintain ATP production.

Analysis of the sigE-null mutant strain. (i) Differentially expressed genes and
functional annotation. When we performed the same analyses in the mutant strain,
we found 1,734 genes significantly affected by phosphate starvation at 6, 12, and 24 h
compared to 0 h (referred from here on as “MU versus T0") (see Data Set S6 in the sup-
plemental material).

Gene expression profiles were scaled to their maximum and clustered using k-means
in 6 different clusters of 310, 311, 406, 279, 185, and 243 genes (Fig. 6), identifying clus-
ters of genes sharing similar expression profiles. We found that several clusters showed
the same temporal patterns of the clusters found in WT. Some of them were significantly
enriched with similar functional terms. The complete list of MU versus TO DE genes, the
list of genes in each cluster, and the significantly enriched functional terms associated
with each cluster are available in Data Set S6.

Cluster 1 was characterized by temporal profiles similar to the ones observed in the
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FIG 6 Clustering of differentially expressed genes in MU versus TO. Six clusters of genes resulting from the k-means clustering. For each cluster, the gene
expression profile of the centroid, i.e., gene expression profile obtained from the average of all of the gene expression profiles in the cluster, is shown in
black, together with 10 (randomly chosen) gene expression profiles from the same cluster (salmon/pink). First row, gene expression profiles are plotted in
the original scale to show the difference in gene expression level intensities. Second row, the same gene expression profiles are scaled in 0 to 1 to

highlight the shape of the gene expression profiles.

same cluster in WT, with significant associations to functional terms related to DNA binding
and transcriptional regulation, including several genes encoding toxin/antitoxin systems
and histone-like proteins.

Also, clusters 2, 3, 4, and 5 showed temporal profiles similar to the correspondent
profiles in WT clusters, as well as sharing the same enriched functional terms.

Cluster 6 showed a decreasing pattern of expression with respect to time zero at
times 6 and 12, an increased expression between 12 and 24 h, and showed significant
enrichment terms similar to cluster 2 of the WT.

Interestingly, several typical biological processes related to the stringent response,
such as the downregulation of transcription of ribosomal proteins and RNA polymer-
ase, were also present in the sigE mutant, suggesting that the basic stringent response
does not depend on this sigma factor. This was also supported by the fact that, even if
expressed at lower level in the mutant strain, relA was induced following a similar pat-
tern in both WT and MU strains.

(ii) SigE network and SenX3-RegX3 regulon in sig mutant. The genes induced
in WT under the control of SigE, SigB, and CIgR were, as expected, not induced in MU,
and in some cases, they showed a very low level of expression even at time zero (sigB,
clgR) (Fig. 7; see also Data Set S7 in the supplemental material). An exception was the
sigk gene, which was induced and highly expressed. This apparent incongruence was
because in our sigE-null mutant, the sigE gene was disrupted by an Hyg cassette and not
totally deleted, so the first part of the gene was still expressed. The overexpression of
this part of the gene in the mutant was already noted using DNA microarrays (13, 34).

In the sigE mutant strain, the transcriptional profiles of the genes encoding the two-
component system SenX3-RegX3 and the phosphate-transport systems were similar to
those observed in the WT strain, with the exception of the operon pknD-pstS2, as in
the mutant the peak of expression at 12 h was absent, suggesting a role of SigE in its
regulation (Data Set S7). As expected, the induction of ppkT1 in the mutant was totally
abrogated, confirming its dependence on SigE (Data Set S7). However, relA followed a
similar temporal pattern in the two strains, but its level of expression in the mutant was
significantly lower (Fig. 7), suggesting that even if SigE has some role in the conditions
of phosphate starvation, some other sigma factors can, at least in part, compensate for its
absence. A candidate is SigH, whose consensus sequence is very similar to that of SigE (35)
and that was induced in the sigE mutant but not in the WT strain (Fig. 7; Data Set S7). It is
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not clear whether this decreased expression of relA in the sigkE mutant has an effect on the
activation of the stringent response, since RelA is mainly regulated at the posttranslational
level (36). The expression of WT levels of sigB and the induction of ppK7 were restored in a
sigk mutant complemented strain (see Fig. S2 and S3 in the supplemental material).

(iii) Oxidative and acid stress in sigE mutant. One of the most striking differences
observed between the transcriptional profiles of the two strains was the induction in
the sigf mutant of sigH and its regulon (see Data Set S3 and S8 in the supplemental
material), known to be important for protection from oxidative stress (37).

Genes of the SigH regulon found to be upregulated in the sigk mutant (Fig. 7) in
response to low phosphate included those encoding the protein disaggregase ClpB
(rv0384c), an important regulator of the stress response (38, 39); three genes encoding
the TRX system designed to protect cells from oxidative damage (trxB-rv1471, trxB2-
rv3913, trxC-rv3914); and rv2466¢c-mrx2, encoding a mycoredoxin (40) (Fig. 7; Data Set
S8). Of note, genes involved in mycothiol biology as rv0486-mshA (41), and rv1082-mca
(42) were induced in this mutant even if not known to be directly regulated by SigH
(Data Set S8). Induction of sigH and mrx2 were abrogated in a sigE mutant comple-
mented strain (see Fig. S4 in the supplemental material). While SigH and mycothiol
have always been associated with the oxidative stress response, several studies have
also linked them to the response to low pH (33, 43, 44), suggesting that sigk exposed
to low phosphate may experience one or both of these stress conditions. The reason
why the absence of SigE may lead to acidic and/or oxidative stress is not clear, and fur-
ther experiments need to be performed to clarify this matter. The main role of SigE is
the protection of the cell envelope from surface stress (13, 45, 46). It is possible that
the changes in the electron transport chain induced in low phosphate to reduce the
electron flux and control the pH causes the membrane to lose its homeostasis, thus
activating the SigE response, which, in turn, is able to maintain membrane integrity.
However, in its absence, the envelope could be damaged, thus interfering with the proper
functionality of the electron transport chain and of the system involved in the acid-protec-
tion, causing the generation of reactive oxygen species (ROS) and the alteration of pmf.
The strong induction in the sigE mutant of the genes encoding the lipoprotein Rv1540
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and the phospholipase Rv2037c (Data Set S8), both involved in the cell envelope integrity
maintenance under stress (47, 48), while not part of the SigE regulon, confirms that this
mutant experiences cell envelope stress under phosphate limitation.

(iv) Other alterations specific to the sig mutant. In support of our hypothesis that
the sigE mutant experiences a strong alteration of electron transport chain activity, we found
induction of the gene encoding the well-known transcriptional factor WhiB6 (see Data Set
S9 in the supplemental material), which responds to changes of redox potential (49).

Additionally, we found other genes specifically induced in the sig mutant that may
suggest that this strain experiences a stronger stress compared to WT, although it is
not clear how these alterations are functionally connected to the absence of SigE. In
particular, we found the following to be induced: (i) whiB7, which encodes a transcrip-
tional regulator (Data Set S9) that modulates the expression of several genes involved
in intrinsic resistance to translation-targeting antibiotics such as eis, rv1258, and the op-
eron rv0492c-rv0493c (50); (ii) genes encoding multidrug-efflux pumps, such as mmpL5-
mmpS5 (51), rv2686-rv2687, or mmr, and two adjacent putative operons, rv2640c-cadl
encoding for a regulator of the ArsR family and rv2642-arsC probably involved in detox-
ification; and (iii) several genes encoding toxin-antitoxin systems, such as rv0299,
vapB4-C4, vapB27-C27, vapB29-C29, mazF5-E5, and relF-G (Data Set S9).

Robustness and reproducibility of the RNA-seq results. To assess the reproduci-
bility of the main findings of this study, we first analyzed the reliability of RNA-seq
data, and then evaluated the robustness of the bioinformatics pipeline.

More than 99.8% of the RNA-seq reads passed the read quality control check and
were considered for read alignment (see Table S1 in the supplemental material). Read
alignment step resulted in a high fraction of mapped reads (52), ranging between 97.41%
and 99.66%; read alignment statistics are reported in Table S1. The read mapping statis-
tics confirmed the absence of contaminants, a high efficiency of rRNA depletion, with a
low fraction of reads mapping to rRNA genes (range, between 0.59% and 2.31%), and in
stranded library preparation (see Tables S1 and S2 in the supplemental material).

The robustness of the bioinformatics pipeline was assessed through the evaluation
of different strategies for both gene expression level quantification and differential
gene expression analysis.

In terms of gene expression level quantification, we used two alternative strategies,
namely, “totcounts” and “maxcounts” (53) (see Materials and Methods). Independently
from the adopted gene expression level quantification strategy, there is a large agree-
ment across biological replicates, i.e., average Pearson correlation of ~0.95 and ~0.96
for maxcounts and totcounts, respectively (see Fig. S5 to S8 in the supplemental mate-
rial). These results suggest both the lack of batch effects in the data and the robustness
of the computed gene expression levels to the choice of the quantification strategy.
Remarkably, the adoption of a stranded protocol and a high sequencing depth further
assisted the accuracy of the estimated gene expression levels. Considering the large
agreement between the two quantification strategies and the proven robustness of
the maxcounts strategy to read length bias and uneven coverage (53), maxcounts
gene expression level quantifications were used in this study.

The other critical step in the bioinformatics analysis is the identification of differen-
tially expressed genes (DEGs), since the analysis of the RNA-seq time-series can results
in the selection of a high number of DEGs that is likely to include false-positives.
Differential expression analysis was performed using both edgeR (54), one of the most
widely used tools for RNA-seq data analysis, and FunPat (11), a tool specifically devel-
oped for the analysis of time series RNA-seq data. Compared to edgeR, FunPat selected
a lower number of DEGs (see Fig. S9A in the supplemental material). Notably, 93.84%
to 97.65% of all DEGs selected by FunPat were also selected by edgeR. Furthermore,
we evaluated the false positives (FP) made by FunPat and edgeR by looking at external
RNA controls consortium (ERCC) spike-in RNAs (n = 23) with constant concentration in all
RNA-seq libraries detected as differentially expressed by the two methods. FunPat proved
a higher capability to control the FP-rate with respect to edgeR (see Table S3 in the supple-
mental material). Considering the large agreement between DEGs identified by both
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methods and the better control of the FP-rate provided by FunPat, the DEGs identified by
FunPat were used in this study. To further assess the robustness of differential expression
analysis, FunPat was also tested on totcounts data. The list of DEGs obtained with the two
methodologies showed a large overlap (Fig. S9B) but a slightly higher number of FPs iden-
tified from totcounts data compared to maxcounts data (Table S3).

Overall, the above tests confirmed the reliability of the produced RNA-seq data, the
robustness of the adopted bioinformatics pipeline, and the reproducibility of the main
finding from the bioinformatics analysis.

Conclusions. Our data suggest the hypothesis that SigE is not directly involved in the
activation of the stringent response, even if its induction together with the genes belong-
ing to its regulon was clearly confirmed at low phosphate. However, our data suggest that
in these conditions its role is to counteract the stress that the strong modification of cellu-
lar metabolism imposes on the cells. Indeed, in the absence of SigE, another sigma factor,
SigH, together with other transcriptional regulators, such as WhiB6 and WhiB7, plays as a
backup system to help the cell to adapt to the new physiologic conditions.

MATERIALS AND METHODS

To increase the reliability and reproducibility of the study, we followed the main best practices for
the design of RNA-seq experiments.

First, bacteria were cultured in triplicate at each time point for each strain. Replicates are of fundamen-
tal importance in the downstream bioinformatics analyses, especially when dealing with time series data.

ERCC spike-in control mixes were added to each sample before sequencing (see Fig. S6 in the sup-
plemental material). The predefined molar concentration ratios of the spike-in RNAs were used for
assessing the quality control of samples and a fine tuning of the bioinformatics analyses.

Samples were distributed across different sequencing lanes following a strategy to minimize poten-
tial batch effects (see Fig. S10 in the supplemental material). Specifically, samples containing different
strains and time points were distributed across different sequencing lanes, such that a potential batch
effect in a sequencing lane would affect only one biological replicate.

Paired-end stranded protocol was used for the sequencing processes. Paired-end distance and read
strandness were used during preprocessing (i.e., read alignment and gene expression level quantifica-
tion) of the sequencing data to improve the accuracy of the bioinformatics pipeline.

Finally, an extremely large sequencing depth was used, resulting in almost 63 million reads per sam-
ple; the amount of reads for each sample is available in Table S1 in the supplemental material.

Bacteria cultures. We used three strains of M. tuberculosis as follows: the wild-type H37RV, a sigE
mutant (ST28) in which the sigE gene was rendered nonfunctional, and a complemented strain (ST29) in
which the WT sigE gene was reintroduced in an ectopic locus of the chromosome (13).

The strains were routinely growth at 37°C in 7H9 medium supplemented with ADN (5% albumin,
0.2% dextrose, 0.85% sodium chloride), 0.05% Tween 80, and 0.2% glycerol.

For all of the experiments, cells were grown in rolling bottles (225-mL volume capacity) in 30 to 35 mL
modified 7H9 broth containing 20 mM MOPS (morpholinepropanesulfonic acid), pH 6.6, and 25 mM Pi
(NaH2PO4) and supplemented with 0.05% Tween 80, 0.02% glycerol, and 0.2% glucose until an optical den-
sity at 600 nm (ODg,,) of 0.6 to 0.9. Then, the cells were harvested, washed three times in Pi-free broth, and
resuspended in Pi-free modified Middlebrook 7H9 broth (20 mM MOPS, pH 6.6, 1.46 g sodium chloride, 0.05%
Tween 80, 0.02% glycerol, and 0.2% glucose). Cells were harvested and collected for all of the experiments at
time zero (in high-phosphate conditions, before the washings) and after 6, 12, 24, and 48 h of incubation.

Viability of cultures grown in Pi-free broth (see Fig. S7 in the supplemental material) was evaluated
performing 1:10 serial dilutions at each time point and spotting 10 uL of each dilution on 7H10 plates
supplemented with ADN, 0.05% Tween 80, and 0.2% glycerol, in duplicate. CFU were recorded after
21 days of incubation at 37°C.

RNA sample preparation. Total RNA was extracted from 35-mL cultures as previously describe (55).
Two or three DNase treatments were performed to remove DNA contamination from the samples. The
DNA contamination was verified using 5 ng of nucleic acids samples. RNA was quantified by spectropho-
tometer (Nanodrop), and its quality was verified by bioanalyzer (Agilent RNA 6000 Nano kit). Only sam-
ples with RNA integrity number (RIN) values of 8/9 were used for the following steps.

For RNA-seq, samples were prepared from three independent experiments (in total 24 samples). Before
sequencing, the Ambion ERCC spike-in control mixes from Thermo Fisher Scientific (Waltham, MA) were
added to the M. tuberculosis RNAs following the manufacturer instructions. The ERCC standards consist of
two mixtures of spike-in RNAs in figure, present at defined molar concentration ratios, described by four
subgroups. Each subgroup contains 23 transcripts that cover a 1e6-fold concentration range and have dif-
ferent lengths and GC-contents. The two mixtures of ERCC spike-ins were distributed across the 24 samples
as shown in Fig. S10 in the supplemental material.

RNA sequencing. All samples, together with the admixed spike-in RNAs, were subjected to RNA-seq
with the lllumina HiSeq sequencer (lllumina, San Diego, CA). The sequencing was run in multiplexing
with 5 libraries per lane (Fig. S10). Tagged libraries were prepared with the lllumina TruSeq stranded pro-
tocol with depletion of rRNA, pooled, and subjected to 2x 100-bp paired-end sequencing.
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Read processing, mapping, and counting. Reads were preprocessed with the FASTX toolkit 0.0.13.2
(http://hannonlab.cshl.edu/fastx_toolkit); “fastx_clipper” was used to remove adapter sequences, whereas
“fastq_quality_trimmer” was used to trim read ends with Phred-scores lower than 20 and remove reads
shorter than 70 bp. For each library, paired reads (i.e., read pairs passing data preprocessing) and single-
tons (i.e., reads whose mate was discarded by data preprocessing) were stored in separated files.

The reference for read mapping was built merging the M. tuberculosis H37Rv complete genome
(GenBank accession number AL123456.3) with the FASTA sequences of the 92 ERCC RNAs. Paired reads
and singletons were mapped separately to the reference using Bowtie 2 (56) version 2.2.1, which is suited
for unspliced reads of 50 to 100 bp in length with the options “—end-to-end” and “~very-sensitive.” Finally,
mapped paired reads and singletons were merged in a single BAM file with samtools (57).

To build the GTF file of gene coordinates, we gathered the H37Rv annotations from TuberculList (58) (http:/
tuberculist.epfl.ch/), selected the coding sequences (CDS), and merged them with the ERCC RNA annotations.

To further assess the reliability of the data and avoid any bias in the bioinformatics analysis, we
quantified the gene expression level in two ways.

First, we used the “maxcounts” strategy described in Finotello et al. (53). By computing gene expres-
sion as the maximum coverage along each CDS (or any genomic feature of interest), maxcounts reduces
the length bias and is robust to situations in which the reads are not uniformly distributed along
sequences, as it happens due to sequencing errors and ambiguity in the read mapping.

In addition, the total number of reads mapped to a CDS (referred from now on as “totcounts”) was also com-
puted. Maxcounts and totcounts were computed considering the read strandness. For our analysis, we used the
-Ss option to handle stranded paired-end reads, available on Github (https:/gitlab.com/sysbiobig/maxcounts).

Counts ¢, for each gene g and library / were normalized as follows:

, c'q - median(S;)
lg=—"———
g S N;

where S, and N, are the library sizes and normalization factors, respectively, estimated with edgeR (54)
for all of the libraries (/).

Differential expression analysis. To assess the effect of phosphate starvation on M. tuberculosis
gene expression, RNA-seq data from samples collected at 6, 12, and 24 h were compared to 0 h in the
wild-type (“WT_vs_T0") and in the mutant (“MU_vs_T0").

As the analysis of RNA-seq time-series can results in the selection of a high number of differentially
expressed genes (DEGs), likely to include false-positives, we analyzed RNA-seq data using FunPat, which
has been shown to be robust to noise oscillations in time series experimental data (11). Funpat was
used for the selection step. It implements the bounded-area method (59), which calculates for each
gene the area A of the region bounded by the time series expression profile and a baseline, set at the
corresponding expression level at 0 h. Specifically, in this study, two experimental conditions were ana-
lyzed as follows: WT(t > 0) verus WT(t = 0) and MU(t > 0) versus MU(t = 0). A P value was assigned to
each gene by evaluating the significance of its bounded area against a null hypothesis distribution
described by a model of the biological-plus-technical variability and its dependency on the mean gene
expression level, which was derived using a negative binomial model with the tag-wise dispersion,
whose parameters were estimates obtained using edgeR (54).

For the sake of comparison, differential expression analysis was also performed with edgeR using gener-
alized linear models (“glmFit” and “gImLRT” functions) (60). For both edgeR and FunPat analyses, differen-
tially expressed genes were selected with a significance level of 5% on P values adjusted for multiple testing
with the Benjamini-Hochberg approach. Analyses were performed with R (https://www.R-project.org/).

Gene clustering and functional annotation. For each gene in WT (MU) condition, we computed
the average gene expression profile, i.e., at each time point, we computed the average expression level
across the three replicates of WT (MU) conditions. Considering only those genes that were identified as
differentially expressed in WT versus TO (MU versus T0), we performed a k-means clustering of their aver-
age gene expression profiles. A value of k = 6 was chosen, calculating the within-cluster-sum of squares
(WSS) for different values of k and choosing the k for which WSS curve showed a clear elbow. k-means
clustering was performed using the kmeans function of the “stats” R package, setting the maximum
number of iterations (max.iter) to 10,000 and the number of restart (nstart) to 1,000. Average gene
expression profiles were scaled and centered prior to k-means clustering, such that clusters contain
genes sharing similar expression profiles rather than similar expression levels. The results of k-means
clustering are available in Data Sets ST and S6 in the supplemental material.

The different clusters of genes were functionally annotated using DAVID functional annotation clus-
tering (https://david.ncifcrf.gov/). DAVID takes as input a list of genes and organizes them in subsets of
genes with similar biological annotation based on multiple co-occurrences of the functional annotation
terms found in multiple sources of biological annotation such as Gene Ontology, KEGG Pathways,
BioCarta Pathways, Swiss-Prot Keywords, BBID Pathways, SMART Domains, NIH Genetic Association DB,
UniProt Sequence Features, COG/KOG Ontology, NCBI OMIM, InterPro Domains, and PIR Super-Family
Names. For each functional subset, we report the main annotation terms, indicating them as significant
if their false discovery rate (Benjamini-Hochberg correction of functional enrichment test P values) is
lower than 10%. The results of functional annotation analysis are available in Data Sets ST and S6. Analyses
were performed with R (https://www.R-project.org/).

Data availability. Sequencing reads and the gene expression count table (both raw and normalized
count data) are available on NCBI's Gene Expression Omnibus (GEO) (10) under accession number GSE211141.
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