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We study the effect of shear and rotation on results previously obtained dealing with the applica-
tion of the spherical collapse model (SCM) to generalized Chaplygin gas (gCg) dominated universes.
The system is composed of baryons and gCg and the collapse is studied for different values of the
parameter α of the gCg. We show that the joint effect of shear and rotation is that of slowing down
the collapse with respect to the simple SCM. This result is of utmost importance for the so-called
unified dark matter models, since the described slow down in the growth of density perturbation can
solve one of the main problems of the quoted models, namely the instability described in previous
papers [e.g., H. B. Sandvik et al., Phys. Rev. D 69, 123524 (2004)] at the linear perturbation level.

PACS numbers: 98.80.-k., 95.36.+x, 95.35.+d

I. INTRODUCTION

During the 1990s, numerous results showed that the
cold dark matter (CDM) model approach is not sufficient
to describe the observed universe. Nowadays, the sce-
nario that best describes our Universe is a flat cosmology
with dark matter (DM) and an exotic component with a
negative pressure, usually named dark energy (DE). This
last component is, in the new picture, the responsible of
the accelerated rate of expansion of the Universe. This
last conclusion, coming from the observations of high red-
shift supernovae, which are dimmer than expectations [1],
was also confirmed by several others independent obser-
vations (e.g. the baryon acoustic oscillations [2], the an-
gular spectrum of the CMBR temperature fluctuations
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[3], the integrated Sachs-Wolfe effect [4]. Nevertheless,
after a decade of studies, the nature of the DE continues
to remain a mystery, and as a consequence of this ”igno-
rance”, a large number of models have been proposed.
The simplest is to identify DE with the cosmological
constant Λ, and the energy of vacuum, so obtaining the
ΛCDMmodel, in which the equation of state (EoS) of DE
is simply given by w = p/ρ = −1. In order to alleviate
one of the problems of the ΛCDM model, namely the cos-
mological constant concordance problem, several other
alternative DE models have been proposed. Extensions
of this model are based on a scalar field weakly inter-
acting with matter (quintessence models) [5], K-essence,
phantom models, or unified dark matter models (UDM)
(see, e.g., Ref. [6]). In UDMs, DM and DE are described
by the same physical entity. One peculiar case is the
so called generalized Chaplygin gas (gCg), introduced by
Kamenshchik [7] and then developed in studies by [8].
The EoS describing the gCg is

p = −
C

ρα
, (1)

where C and α are positive constants, ρ is the density,
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and p is the pressure. When α = 1, the gCg corresponds
to the standard Chaplygin gas (sCg)1.
Avelino [10] showed that the gCg background density

evolution is

ρ = ρ0

[

C̄ + (1 − C̄)a−3(α+1)
]

1
1+α

, (2)

where a is the cosmic scale factor, related to the cosmo-
logical redshift by 1 + z = a0/a, and C̄ = C/ρ1+α

0 , ρ0 is
the density at the present epoch.
The EoS parameter, w, is given by

w = −C̄
[

C̄ + (1− C̄)a−3(α+1)
]−1

. (3)

It is important to stress that Eq. (3) shows that the
gCg behaves as DM at early time (a → 0), and at later
ones w → −1, approaching a DE behavior.
Several theoretical [11] and observational consequences

of the Chaplygin gas have been studied. Cosmological
tests using CMB measurements [12], measurements of X-
ray luminosity of galaxy clusters [13], SNe Ia data [14],
lensing statistics [15], have been performed.
In the context of UDMs with α 6= 0, observations of

large-scale structure [16, 17] and comparison of the lin-
ear theory with observations have put in evidence some
problems of the gCg UDM. Avelino [17] studied the onset
of the nonlinear regime in gCg UDMs, showing that the
transition from the DM behavior to the DE one is not
smooth, and showed that in gCg UDM non-linear effects
generate a non trivial backreaction in the background dy-
namics. This implies a break down of the linear theory
at late times (even on large scales), for all α 6= 0 mod-
els. They also pointed out the need to take into account
non-linear effects when comparing with cosmological ob-
servations.
However, notwithstanding the linear perturbation the-

ory has shown that not all α favor structure formation,
there is a marginal degree of agreement between gCg
UDM and large scale structure observations [18].
In order to have a clearer idea of the importance of

the gCg as an alternative to the ΛCDM, it is necessary
to study the non-linear evolution of DM and DE in the
Chaplygin gas cosmology. This was partly performed by
Ref. [19]. Moreover, a fully non-linear analysis would
require SPH simulations (see, e.g., Refs. [20–23]). An
alternative analytical approach to perform the quoted
non-linear analysis and study the non-linear evolution
of perturbations of DM and DE, is the popular spherical
collapse model (SCM) introduced in the seminal paper
of Ref. [24], extended and improved in following papers
[25–32].
The SCM proposed by Ref. [24] does not contain non-

radial motions and angular momentum. The way to in-

1 The sCg is named after Sergey A. Chaplygin, the Russian physi-
cist who studied it in a hydrodynamical context [9]

troduce angular momentum in the SCM, and its conse-
quences, were studied in several papers [28, 29, 31–41].
Fernandes [42] used the SCM to perform the

quoted non-linear analysis. Their Friedmann-Lemâıtre-
Robertson- Walker (FLRW) universe was endowed with
two components: gCg and baryons2. An interesting fea-
ture of Fernandes’ treatment [42] is the fact that differ-
ently from other works (e.g., Refs. [19, 43, 44]), they con-
sidered the collapse of both gCg and baryons. Moreover,
they assumed, for the background and the collapsing re-
gion, a time-dependent equation-of-state parameter w,
and derived a more accurate expression for the effective

sound speed, c2eff , with respect to previous studies (e.g.,
Ref. [45]). However, their study did not consider two
important factors, namely rotation (vorticity), ω, and
shear, σ. Nevertheless, in any proper extension of the
SCM the contraction effect produced by shear and the
expansion one produced by vorticity should be consid-
ered, as done by Ref. [46]. The previous authors studied
the effect of shear and vorticity only in DM-dominated
universe, and only in Ref. [47] were shear and vorticity
effects considered in the case of DM- and DE-dominated
universes.
In the present paper, we study how the shear, σ, and

the vorticity, ω, change the results obtained by Ref. [42].
The paper is organized as follows: Sec. II summarizes

the model used. It reviews the derivation of the equation
of the SCM in presence of shear and vorticity, the effective
sound speed used, and the way equations were integrated.
Sec. III deals with results and Sec. IV with conclusions.

II. MODEL

As we already reported, the SCM is a surrogate to N-
body simulations to study the evolution of a density per-
turbation in the nonlinear phase. Because of the Birkhoff
theorem, a slightly overdense sphere, embedded in the
Universe, behaves exactly as a closed sub-universe. In
the model the overdensity is divided into mass shells,
each one expanding with the Hubble flow from an ini-
tial comoving radius xi to a maximum one xm (usually
named turn-around radius, xta), and eventually collapse
to a singularity (see Refs. [46, 48], to see how the singu-
larity can be eliminated). Collapse to a point will never
occur in practice, since dissipative physics and the pro-
cess of violent relaxation will convert the kinetic energy
of collapse into random motions, giving rise to a ”virial-
ized” structure (virialization occurs at t ≈ 2tmax). Once
a non-linear object has formed, it will continue to at-
tract matter in its neighborhood and its mass will grow
by accretion of new material, in the process of ”secondary
infall”.

2 Radiation was neglected since the study considered only the post-
recombination epoch
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In the seminal paper of Ref. [24], the authors were in-
terested in the formulation of a theory of infall of matter
into clusters of galaxies. The equations of dynamics of
the structure written by them are relativistic [Eq. (7)
of Ref. [24]], but they continued the treatment think-
ing in terms of Newtonian mechanics. Their treatment
supposed that the structure collapsed radially and that
non-radial motions were not present. Several following
papers showed how to introduce non-radial motions, and
angular momentum, L, [28, 29, 31–40] preserving spheri-
cal symmetry3. The equations of the SCM with angular
momentum can be written as (e.g., Refs. [37, 40, 49]):

d2R

dt2
= −

GM

R2
+

L2

M2R3
. (4)

SCM equations can be written in terms of the over-
density δ, using General Relativity [50] or in the Pseudo-
Newtonian (PN) approach to cosmology [51]. In the PN
approach, the evolution equations of δ in the non-linear
regime has been obtained and used in the framework of
the spherical and ellipsoidal collapse, and structure for-
mation by Refs. [52–56].
In order to obtain the quoted equations, we assume

that the fluid satisfies the equation-of-state P = wρ (we
assume that the velocity of light c = 1), and we use in the
calculation the generalizations of the continuity equation,
of Euler’s equation (both valid for each fluid species j),
and of Poisson’s equation (which is valid for the sum of
all fluids) given by [51, 56]:

∂ρj
∂t

+ ~∇~r · (~ujρj) + pj~∇~r · ~uj = 0 , (5)

∂~uj

∂t
+
(

~uj · ~∇~r
)

~uj = −~∇~rΦ−
~∇~rpj
ρj + pj

, (6)

∇2
~rΦ = 4πG

∑

k

(ρk + 3pk) , (7)

where ρj, pj, ~uj and Φ denote, respectively, the density,
pressure, velocity and the Newtonian gravitational po-
tential of the cosmic fluid.
It is important at this stage to recall that in order to

derive our equations describing the evolution of pertur-
bations, we assume the validity of the pseudo-Newtonian
approach. This approach tries to include relativistic ef-
fects (like the inclusion of pressure) adding additional
terms to the usual hydrodynamical equations. This is
particularly evident in Eqs. (5)-(7). Relativistic con-
tributions play a role in all the equations. Due to the
equivalence principle, the pressure now acts as a source

3 Spherical symmetry is preserved if one assumes that the distri-
bution of angular momenta of particles is random, implying a
net null mean angular momentum [35].

of the gravitational potential in Poisson’s equation [Eq.
(7)] and modifies the denominator of the last term on the
rhs of Eq. (6) (Euler equation). This set of equations is
valid only for subhorizon scales and they do not take into
account possible effects at scales larger than the horizon.
Despite their limitations, they proved to be very useful
to describe structure formation in quintessence models
and their predictions were in agreement with results of
N-body simulations (see for example the appendix in Ref.
[44] and references therein). The equations as presented
here, are not simply a generalization of Newtonian hydro-
dynamical equations, but they have a well defined theo-
retical justification. As detailed in Ref. [44], to which we
refer for more details, the pseudo-Newtonian equations
can be derived directly from General Relativity, assuming
the stress-energy tensor of a perfect fluid characterized by
density and pressure. Given the stress-energy tensor T µν ,
one computes its four-divergence (∇µT

µν = 0) and its
contraction with the projection tensor hαµ = gαµ+uαuµ.
The first, contracted with the four-velocity, gives the gen-
eral relativistic continuity equation, the second the Euler
equation. Specifying the usual Newtonian metric and
under the assumption of weak field and small velocities
(v ≪ c) we obtain the pseudo-Newtonian equations. An-
other confirmation of the validity of our approach is that
our perturbed equations (11) and (12) coincide with the
set of Eq. (30) in Ref. [57] assuming further that time
derivatives of the gravitational potential are negligible
with respect to spatial derivatives and that perturba-
tions in the pressure term are not adiabatic. It might
appear that there are differences between the two sets
of equations, but this is due to the fact that we work
in the configuration space while Ref. [57] worked in the
Fourier space. Slightly different is the reasoning behind
the derivation of Poisson’s equation. To derive it we can
proceed in two different ways. The first one is to combine
Eqs. (23a) and (23d) in Ref. [57], or work it out directly
with the assumed metric.

We would like to recall that in this work, we want to
generalize the work of Fernandes [42] taking into account
the contribution of the shear and rotation terms. We
therefore closely follow the derivation of their equations.

Introducing cosmological perturbations in the previous
equations, using comoving coordinates, ~x = ~r/a, using
δj = δρj/ρj, and assuming that wj and c2eff,j are functions
of time only, the equations for the perturbed quantities
are:

δ̇j + 3H
(

c2eff,j − wj

)

δj =

−
[

1 + wj +
(

1 + c2eff,j

)

δj
]

~∇ · ~vj
a

−
~vj · ~∇δj

a
, (8)

~̇vj +H~vj +
~vj · ~∇

a
~vj = −

~∇φ

a
−

c2eff,j
~∇δ

a
[

1 + wj + (1 + c2eff,j)δj

] ,

(9)
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∇2φ

a2
= 4πG

∑

k

ρ0kδk
(

1 + 3c2eff,k

)

, (10)

where c2eff,j ≡ δpj/δρj is the effective sound speed of each

fluid. 4

The previous equations can be simplified as in Ref.
[56],

δ̇j = −3H(c2eff,j − wj)δj − [1 + wj + (1 + c2eff,j)δj]
θj
a

,(11)

θ̇j = −Hθj −
θ2j
3a

− 4πGa
∑

k

ρ0kδk(1 + 3c2eff,k) , (12)

where θj ≡ ∇ · ~vj and ~vj is the peculiar velocity field.
If we do not discard the shear and vorticity, the equa-

tions read:

δ̇j = −3H(c2eff,j − wj)δj

−[1 + wj + (1 + c2eff,j)δj]
θj
a

, (13)

θ̇j = −Hθj −
θ2j
3a

−4πGa
∑

k

ρ0kδk(1 + 3c2eff,k)

−
σ2
j − ω2

j

a
. (14)

In Eq. (11) the number of equations is equal to the num-
ber of cosmological fluid components in the system. For

a ‘top-hat’ profile, resulting in ~∇δj = 0, the peculiar ve-
locity is the same for all fluids (θj ≡ θ, σj ≡ σ, ωj ≡ ω),
resulting in only one Eq. (12) [or Eq. (14)]. The reason
for this is that to preserve the top-hat profile, all fluids
flow in the same way [58]. We remind the reader that
shear and vorticity are present already in Eq. (9), via

the term (~v · ~∇)~v. To obtain σ and ω, one simply needs
to take the divergence of Eq. (9).
In terms of the scale factor a, and recalling that Ωj =

8πG
3H2 ρj, the previous equations can be expressed in the
form:

δ′j = −
3

a
(c2eff,j − wj)δj

−[1 + wj + (1 + c2eff,j)δj]
θ

a2H
, (15)

θ′ = −
θ

a
−

θ2

3a2H

−
3H

2

∑

j

Ωjδj(1 + 3c2eff,j)−
σ2 − ω2

a2H
, (16)

where the prime denotes the derivative with respect to a.

4 Note that in the previous equations, ~∇ refers to gradient with
respect to comoving coordinates ~x.

The evaluation of the term σ2 − ω2 was discussed in
Ref. [47] by defining the ratio α between the rotational
and gravitational term in Eq. (4):

β =
L2

M3RG
. (17)

In the case of spiral galaxies like the Milky Way β ≃ 0.4.
Its value is larger for smaller size perturbations (dwarf
galaxies size perturbations) and smaller for larger size
perturbations (for galaxy clusters the ratio is of the order
of 10−6).
In order to obtain a value for δc similar to the one

obtained by Ref. [59], we set β = 0.04 for galactic masses
(see also Ref. [60]).
In order to integrate Eq. (16) we need to make explicit

the σ2 − ω2 term. This was done in Ref. [47].
Based on the above outlined argument for rotation,

one may calculate the same ratio between the gravita-
tional and the extra term appearing in Eq. (16) thereby
obtaining

σ2 − ω2

a2H2
= −

3

2
β
∑

j

Ωjδj(1 + 3c2eff,j) . (18)

As previously told, our Eq. (18) is based on the
assumption that the ratio of acceleration due to the
shear/rotation term to that of the gravitational field, is
constant during the collapse [Eq. (17)]. An objection
to this argument could be that angular momentum, L,
generated by tidal torques could reduce in the collaps-
ing phase, producing a reduction of the value of β and
consequently undermining the result of the calculation.
This objection can be disproved as follows. As previ-
ously reported, according to the tidal torque theory, the
large scale structure exerts a torque on the forming struc-
ture, with the result of imparting angular momentum on
the protohalo [61–70]. After the protostructure decou-
ples from Hubble flow, turns around and starts to col-
lapse, tidal torquing is made almost inefficient because
the length of the lever arms are reduced (see Fig. 7 in Ref.
[67]) [69–71]. Consequently, angular momentum acquisi-
tion is maximum at turn-around, and later it remains
constant, since it is not lost in the collapse phase, as dis-
cussed by all the previous cited papers, and as known
from the comparison of the galaxies rotation with the
tidal torque theory (e.g., Refs. [68–70]). The term β
is the ratio of the angular momentum acquired through
tidal torques (which as told remains constant after turn-
around), the massM , and radius R of the protostructure.
While M remains constant, R, is decreasing in the col-
lapse, and in the case of a collapsing sphere, its value at
virialization is approximately Rfinal ≃ 1/2Rinitial. This
produces an increase in the term β. For precision’s sake,
we should add that in the protostructure formation two
sources of angular momentum are present: a) the angu-
lar momentum originated by tidal torques (about which
we spoke till now) connected to bulk streaming motions,
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and b) the angular momentum originated by random tan-
gential motions, often refereed to as “random angular
momentum” [28, 29, 31, 32, 35, 37, 67, 72, 73]. Random
angular momentum contribute to increase the total value
of the angular momentum of the protostructure.
In the following, we will consider β = 0.04 – corre-

sponding to spiral galaxies similar to the Milky Way –
and β = 0.02 and β = 0.01, corresponding to systems in
which rotation is less important.
At this point we want to stress out that combining

Eqs. (15) and (16) will lead to a quite complicated sec-
ond order ordinary differential equation that generalizes
the usual evolution of the perturbations. To recover it,
one has simply to identify ceff with the unperturbed equa-
tion of state w. It is also important to notice that our
derivation is very general and it should not be considered
as an expansion in the overdensity parameter. The equa-
tions obtained have very broad validity and they hold
also in the case that δ ≫ 1.
The term c2eff used is the same proposed by Ref. [42],

namely:

c2eff = = −
C

ρ1+α

(1 + δ)−α − 1

δ
= w

(1 + δ)−α − 1

δ
.

(19)

It was obtained by the quoted authors writing c2eff by us-
ing the EoS of the gCg, Eq. (1), and the relation between
the densities in the background and in the collapsed re-
gion as follows:

c2eff =
δp

δρ
=

pc − p

ρc − ρ
; (20)

recalling that the perturbed quantities ρc and pc are re-
lated to their background counterparts by:

ρc = ρ+ δρ (21)

pc = p+ δp , (22)

and using ρc = ρ(1 + δ) and Eq. (1).
Eq. (19) shows that the effective sound speed depends

on the collapsed region (through δ) and the background
(through w). The w relative to the collapsed region,
namely wc, is given by Eq. (20) of Ref. [42]:

wc = −
C

(ρ(1 + δ))1+α
=

w

(1 + δ)1+α
. (23)

In order to study the effect of α on the growth of per-
turbations, we solved a system of two Eqs. (15) (one for
gCg and one for baryons), and one Eq. (16). We used
three values of α, namely α = 0 (model equivalent to
the ΛCDM), and α = 0.5, 1, and C̄ = 0.75. As previ-
ously reported, we considered three values for β, namely
β = 0.01, 0.02, and 0.04. The initial conditions (ICs)
for the system, the values of the density parameters, and
Hubble constant are the same as in Ref. [42], and in
agreement with recent values for the ΛCDM [3]. As in
Ref. [42], pb = wb = c2s,b = c2eff,b = 0.

III. RESULTS

In our calculations, we used the same ICs for all the
models. In Figs. 1(a)-1(c) [1(d)-1(f)], the solid lines
represent the evolution of δb (δgCg) in the case the term
σ2 − ω2 is not present (similarly to Ref. [42]), and from
top to bottom in each plot the values of α changes from
α = 1, 0.5, 0.
As noticed by Ref. [42], larger values of α produce

a faster collapse via larger values of the effective sound
speed at lower z. The different behaviors of δb (δgCg) for
different α reflect the different evolution of c2eff and w on
the equations of evolution of δ. Moreover, at smaller z –
when DE dominates – larger values of α produce a later
transition from DM to DE dominated stages of the gCg
universes.
The dotted line represents δb (δgCg) for the same val-

ues of α but when σ2 − ω2 is different from zero. In
Fig. 1(a) the value of β is 0.01, while in Figs. 1(b) and
1(c) it is 0.02 and 0.04, respectively, and similarly for
Figs. 1(d)-1(f). The effect of σ2 − ω2 is that of slowing
down the collapse [74], so that the collapse acceleration
produced by larger values of α is mitigated by the addi-
tive term. Somehow, the presence of the additive term
can be mimicked by a reduction of α.
Before going on, we want to stress that a comparison

of our calculations with other studies, e.g., Ref. [75], in
order to understand if the instability shown in our Fig
1 (when shear and vorticity are not taken into account)
or their Fig. 1, is due to a term like (kcs/aH)2δk, in
their Eq. (7), is not trivial. A direct comparison of our
calculations with theirs [e.g., Eq. (7)] shows that already
at linear level, we obtain different equations. This is due,
as said, to the different approach followed (we followed
Fernandes’ approach).
In Figs. 2(a)-2(c), we calculate wc using Eq. (23), and

the previously calculated values of δgCg, while in Fig.
2(d), we calculate w. Solid lines in Figs. 2(a)-2(d) repre-
sent wc when σ2−ω2 is not taken into account, for α = 1
(top curve), 0.5 (median curve), 0 (bottom curve). α has
a strong effect on the results. Larger α produce a faster
collapse and a wc closer to zero, and moreover results in
a later transition from DM to DE dominated stages of
the gCg universes. The quoted result is obtained for a
fixed value of C (C = 0.75 in our case). If we increase the
content of DE of the system, corresponding to increasing
the value of C, the collapse will happen at later times
or it will be prevented with the consequence that wc will
no longer be close to zero. The dotted lines represent
the same quantity when the additive term is taken into
account. In Fig. 2(a) the value of β is 0.01, while in Figs.
2(b) and 2(c) it is 0.02 and 0.04, respectively. Since the
effect of the additive term is to slow down the collapse,
the effect on wc is that of showing a more pronounced
departure from zero. Fig. 2(d) represents w given by
Eq. (3), depending on C, a, and α, and then independent
from our additive parameter, and consequently identical
to Fig. 2(b) of Ref. [42]. The solid line represents the
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(a) (b) (c)

(d) (e) (f )

FIG. 1: Growth of perturbations for the SCM in gCg-dominated universes.Top: δb vs z (panel a-c). Bottom: δgCg vs z (panel
d-f). Panel (a-c): from left to right α has the values 1, 0.5, 0. The solid line represents δb without the effect of the additive
term, while the dotted line with its presence. The value of β is 0.01 in panel a, 0.02 in panel b, and 0.04 in panel c. Panel
(d-f): similar as panel (a-c) but for δgCg.

case α = 0, the dash-dotted one the case α = 0.5, and
the dashed line the case α = 1.

In Figs. 3(a)-(c) we plot c2eff and in Fig. 3(d) c2s = −αw
for the same values of α and β, and with the lines having
the same meaning as in previous figures. The plot shows
the different behavior of c2eff and c2s , implying a different
behavior of the gCg component locally (c2eff) and in the
background (c2s ). Again notice that our Fig. 3(d) for
c2s, is the same of Fig. 3(b) of Ref. [42], since the sound
speed is not dependent upon the additive parameter.

Finally, Fig. 4 plots the evolution of h = H + θ
3a with

z. Solid lines again represent h(z) without the additive
term. In each plot, α has the values α = 0, 0.5, 1, from
left to right. Larger values of α give rise to a faster de-
crease in h. Since the turn-around redshift, zta, can be
defined as the z at which h = 0, it is clear that higher
α imply a larger zta and an earlier collapse. Taking into
account the additive term, zta becomes smaller with re-
spect to the case in which it is not present. The effect
of the term σ2 − ω2, is represented by the dotted lines:
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(a) (b) (c)

(d)

FIG. 2: Evolution of wc and w with z for gCg universes. Panel (a-c): from left to right α goes from 1, 0.5, 0. The solid line
represents δb without the effect of the additive term, while the dotted line with its presence. The value of β is 0.01 in panel a,
0.02 in panel b, and 0.04 in panel c. Panel (d): w versus z for α = 1 (dashed line), 0.5 (dot-dashed line), 0 (solid line).

β = 0.01, 0.02, and 0.04 in Figs. 4(a)-4(c), respectively.

Previous works (e.g., Refs. [75, 76]) have shown a prob-
lem in UDM models, namely oscillations or exponential
blowup of the dark matter power spectrum not seen in
observations – a problem which is evident on galactic
scales and only at recent times, and that cannot be solved
by taking baryons into account, as proposed by Ref. [77].
Both Refs. [75, 78], have shown that gravitational effects
of DM, at late time, can add fluctuations to baryons but
that they are unable to erase the ones already present.

Our result concerning the effect of α on the growth
of perturbations are partially in disagreement with the
linear theory of perturbation in gCg universes (e.g., Refs.
[75, 76]), and in agreement with the findings of Ref. [42].
However, in our study – due to the additive term, which
has its maximum effect on galactic scales – the growth
of perturbation is slowed down. This somehow implies
that the additive term presence works in the direction of
reducing possible present oscillations as found by Refs.
[75, 76].

The previous results are perfectly framed in top-hat
profiles for density and pressure. Since the profile is flat,
it does not contain pressure gradients and the growth of
perturbations can be suppressed only by an accelerated
expansion. Assuming a nonflat initial perturbation, it
would be possible to improve the understanding of how
α affects structure formation.

The study of the effect of pressure gradients, by us-
ing alternative profiles – such as a Gaussian profile or
a Navarro-Frenk-White profile – will be the object of a
future study.

Similarly to Ref. [42], we also studied how changing
the ICs changes the turn-around epoch. Small changes
of the ICs can produce the same turn-around redshift in
all models.
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(a) (b) (c)

(d)

FIG. 3: Evolution of c2eff and c2s with z for gCg universes. Panel (a-c): from left to right α goes from 1, 0.5, 0. The solid line
represents c2eff without the effect of the additive term, while the dotted line with its presence. The value of β is 0.01 in panel
a, 0.02 in panel b, and 0.04 in panel c. Panel (d): c2s versus z for α = 1 (dashed line), 0.5 (dot-dashed line), 0 (solid line).

(a) (b)
(c)

FIG. 4: Evolution of the expansion rate, h, with z. Solid lines, represent the case σ2 − ω2 = 0. From left to right, in each
panel: α = 0, 0.5, and 1. Dotted lines: σ2 − ω2 6= 0, with β = 0.01 (Fig. 4a), β = 0.02 (Fig. 4b), and β = 0.04 (Fig. 4c).

IV. CONCLUSIONS

In the present paper, we used the SCM to study how
perturbations evolve in gCg universes, taking into ac-

count the effect of shear and rotation. We used the same
c2eff as Ref. [42], and in agreement with their work we
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found that larger values of the parameter α speed up
the collapse, but the additive term σ2 − ω2 produces a
slowing down of this acceleration, visible in the figures
showing the evolution of δb, δgCg (Fig. 1), wc, c

2
eff , and

h. The comparison of wc, and c2eff (the local, nonlinear
parameters) with w, and c2s (the global, linear parame-
ters) shows clear evidence of the difference in the linear
and nonlinear dynamical behavior of the gCg.
Notwithstanding that the SCM is usually a faithful

technique to study gravitational collapse and structure
formation – with results comparable to those of simula-
tions [79] – it would be worthwhile to check the results
of this paper against SPH simulations, that would allow
to take account of spatial pressure gradients. Moreover,

more realistic profiles would improve our understanding
of the local dynamics of gCg universes, and how the back-
ground dynamics is influenced by local non-linear inho-
mogeneities.
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