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Abstract
The Bayesian approach to inference stands out for nat-
urally allowing borrowing information across hetero-
geneous populations, with different samples possibly
sharing the same distribution. A popular Bayesian non-
parametric model for clustering probability distributions
is the nested Dirichlet process, which however has the
drawback of grouping distributions in a single cluster
when ties are observed across samples. With the goal
of achieving a flexible and effective clustering method
for both samples and observations, we investigate a
nonparametric prior that arises as the composition of
two different discrete random structures and derive a
closed-form expression for the induced distribution of
the random partition, the fundamental tool regulating
the clustering behavior of the model. On the one hand,
this allows to gain a deeper insight into the theoret-
ical properties of the model and, on the other hand,
it yields an MCMC algorithm for evaluating Bayesian
inferences of interest. Moreover, we single out limita-
tions of this algorithm when working with more than
two populations and, consequently, devise an alternative
more efficient sampling scheme, which as a by-product,
allows testing homogeneity between different popula-
tions. Finally, we perform a comparison with the nested
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Dirichlet process and provide illustrative examples of
both synthetic and real data.

K E Y W O R D S

Bayesian nonparametrics, clustering, dependent random partitions,
hierarchical Dirichlet process, mixture models, nested Dirichlet
process, vectors of random probabilities

1 INTRODUCTION

Dirichlet process (DP) mixtures are well-established and highly successful Bayesian nonpara-
metric models for density estimation and clustering, which also enjoy appealing frequentist
asymptotic properties (Escobar, 1994; Escobar & West, 1995; Ghosal & van der Vaart, 2017;
Lo, 1984). However, they are not suitable to model data {(Xj,1,… ,Xj,Ij) ∶ j = 1,… , J} that are
recorded under J different, though related, experimental conditions. This is due to exchangeabil-
ity implying a common underlying distribution across populations, a homogeneity assumption
which is clearly too restrictive. To make things concrete we consider the Collaborative Perina-
tal Project (CPP), which is a large prospective epidemiologic study conducted from 1959 to 1974
(analyzed in Section 5.3), where pregnant women were enrolled in 12 hospitals and followed over
time. Using a standard DP mixture on the patients enrolled across all 12 hospitals would cor-
respond to ignoring the information on the specific center j where the data are collected and,
thus, the heterogeneity across samples. The opposite, also unrealistic, extreme case corresponds
to modeling data from each hospital independently, thus ignoring possible similarities among
them.

A natural compromise between the aforementioned extreme cases is partial exchangeability
(de Finetti, 1938), which entails exchangeability within each experimental condition (but not
across) and dependent population-specific distributions (thus allowing borrowing of informa-
tion). See Kallenberg (2005) for a detailed account of the topic. In this framework the proposal of
dependent versions of the DP date back to the seminal papers of Cifarelli and Regazzini (1978) and
MacEachern (1999, 2000). Dependent DPs can be readily used within mixtures leading to several
success stories in topic modeling, biostatistics, speaker diarization, genetics, fMRI analysis, and
so forth (see Dunson, 2010; Foti & Williamson, 2015; Quintana et al., 2022; Teh & Jordan, 2010
and references therein).

Two hugely popular dependent nonparametric priors, which will also represent the key ingre-
dients of the present contribution, are the hierarchical Dirichlet process (HDP) (Teh et al., 2006)
and the nested Dirichlet process (NDP) (Rodríguez et al., 2008). The HDP clusters observa-
tions within and across populations. The NDP aims to cluster both population distributions
and observations, but as shown in Camerlenghi et al. (2019a), does not achieve this goal.
In fact, if there is a cluster of observations shared by different samples, the model degener-
ates to exchangeability across samples. This issue is successfully overcome in Camerlenghi
et al. (2019a) by introducing latent nested nonparametric priors. However, while this proposal
has the merit of being the first to solve the degeneracy problem, it suffers from other limita-
tions in terms of implementation and modeling: (a) with data from more than two populations
the analytical and computational burden implied by the additive structure becomes over-
whelming; (b) the model lacks the flexibility needed to capture different weights that common
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LIJOI et al. 215

clusters may feature across different populations. More details can be found in the discussion to
Camerlenghi et al. (2019a).

The goal of this paper is thus to devise a principled Bayesian nonparametric approach, which
allows to cluster simultaneously distributions and observations (within and across populations).
We achieve this by blending peculiar features of both the NDP and the HDP into a model, which
we term Hidden Hierarchical Dirichlet Process (HHDP). Importantly, the HHDP overcomes the
above-mentioned theoretical, modeling, and computational limitations since it, respectively, does
not suffer from the degeneracy flaw, is able to effectively capture different weights of shared clus-
ters and allows to handle several populations as showcased in the real data application. Note
that the idea of the model was first hinted at in James (2008) and, later, considered in Agrawal
et al. (2013) from a mere computational point of view without providing results on distributional
properties that are relevant for Bayesian inference. Hence, as a by-product, our theoretical results
shed also some light on the topic modeling applications of Agrawal et al. (2013). Additionally,
the same model was independently applied in Balocchi et al. (2021) to successfully cluster urban
areal units at different levels of resolution simultaneously.

Section 2 concisely reviews the HDP and the NDP with a focus on the random partitions they
induce. In Section 3 we define the HHDP and investigate its properties, foremost its clustering
structure (induced by a partially exchangeable array of observations). These findings lead to the
development of marginal and conditional Gibbs sampling schemes in Section 4. In Section 5 we
draw a comparison between HHDP and NDP on synthetic data and present a real data applica-
tion for our model. Finally, Section 6 is devoted to some concluding remarks and possible future
research. Proofs of the results, an additional algorithm and simulation studies are provided in the
supplementary material.

2 BAYESIAN NONPARAMETRIC PRIORS
FOR CLUSTERING

The assumption of exchangeability that characterizes widely used Bayesian inferential proce-
dures is equivalent to assuming data homogeneity. This is not realistic in many applied contexts,
for instance, for data recorded under J different experimental conditions inducing heterogeneity.
A natural assumption that relaxes exchangeability and is suited for arrays of random vari-
ables {(Xj,i)i≥1 ∶ j = 1, … , J} is partial exchangeability, which amounts to assuming homogeneity
within each population, though not across different populations. This is characterized by

{(Xj,i)i≥1 ∶ j = 1,… , J}
d
= {(Xj,𝜎j(i))i≥1 ∶ j = 1,… , J},

for every finitary permutation {𝜎j ∶ j = 1,… , J} with
d
= henceforth denoting equality in dis-

tribution. Thanks to de Finetti’s representation theorem for partially exchangeable arrays, the
dependence structure is effectively represented through the following hierarchical formulation

Xj,i|(G1,… ,GJ)
ind∼ Gj, (i = 1,… , Ij, j = 1,… , J).

(G1,… ,GJ) ∼ .
(1)

Here we focus on priors  defined as compositions of discrete random structures and including,
as special cases, both the HDP and the NDP. More specifically, we consider in (1) that is defined
as follows
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216 LIJOI et al.

Gj | Q iid∼ (Gj| Q) (j = 1, … , J); Q | G0 ∼ (Q| G0); G0 ∼ (G0), (2)

with discrete random probability measures Gj (j = 1,… , J), Q and G0. The data are denoted by
X = {X1, … ,XJ} with Xj = (Xj,1,… ,Xj,Ij) and Ij the size of the jth sample. Discreteness of these
random structures entails that with positive probability there are ties within each sample Xj and
also across samples j = 1,… , J, that is, P(Xj,i = Xj,𝓁) > 0 for any i ≠ 𝓁, and P(Xj,i = X

𝜅,𝓁) > 0 for
any j ≠ 𝜅. Hence, X induces a random partition of the integers {1, 2,… ,n}with n = I1 + · · · + IJ ,
whose distribution encapsulates the whole probabilistic clustering of the model and is, there-
fore, the key quantity to study. Importantly, the random partition can be characterized in terms
of the partially exchangeable partition probability function (pEPPF) as defined in Camerlenghi
et al. (2019b). The pEPPF is the natural generalization of the concept of exchangeable partition
probability function (EPPF) for the exchangeable case (see e.g. Pitman, 2006). More precisely,
D is the number of distinct values among the n =

∑J
j=1Ij observations in the overall sample X.

The vector of frequency counts is denoted by nj = (nj,1,… ,nj,D) with nj,d indicating the num-
ber of elements in the jth sample that coincide with the dth distinct value in order of arrival.
Clearly, nj,d ≥ 0 and

∑J
i=1ni,d ≥ 1. One may well have nj,d = 0, which implies that the dth distinct

value is not recorded in the jth sample, though by virtue of
∑J

i=1ni,d ≥ 1 it must be recorded at
least in one of the samples. The dth distinct value is shared by any two samples j and j′ if and
only if nj,d nj′,d ≥ 1. The probability law of the random partition is characterized by the pEPPF
defined as

Π(n)D (n1,… ,nJ) = E
∫

XD
∗

D∏

d=1
{G1(dxd)}n1,d … {GJ(dxd)}nJ,d

, (3)

with the constraint
∑D

d=1nj,d = Ij, for each j = 1,… , J and where X is the space in which the
Xj,i’s take values and X

D
∗ is the collection of vectors in XD whose entries are all distinct. We stress

that the expected value in (3) is computed with respect to the joint law of the vector of random
probabilities (G1,… ,GJ), that is the de Finetti measure  in (1). Hence, the pEPPF may also be
interpreted as a marginal likelihood when (G1,… ,GJ) directly model the observations accord-
ing to (1). Obviously, for a single population, that is J = 1, the standard EPPF is recovered and
(3) is further interpretable as an extension of a product partition model to a multiple samples
framework. As such, it provides an alternative approach to popular covariate-dependent product
partition models. See, for example, Müller et al. (2011), Page and Quintana (2016, 2018).

If we specify ( ⋅ |Q) and Q such that they give rise to an NDP, then one may have ties also
among the population probability distributions G1,… ,GJ , that is, P(Gj = G

𝜅
) > 0 for any j ≠

𝜅. Therefore, in the framework of (1) and (2), one may investigate two types of clustering: (i)
distributional clustering, which is related to G1,… ,GJ and (ii) observational clustering, which
refers to X. The composition of these two clustering structures is the main tool we rely on to devise
a simple, yet effective, model that considerably improves over existing alternatives.

2.1 Hierarchical Dirichlet process

Probably the most popular nonparametric prior for the partially exchangeable case is the HDP of
Teh et al. (2006), which can be nicely framed in the composition scheme (2) as
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LIJOI et al. 217

(Gj|Q) = DP(Gj|𝛽,Q), (Q|G0) = 𝛿G0(Q), (G0) = DP(G0|𝛽0;H), (4)

where DP( ⋅ |𝛼,P) denotes the law of a DP with concentration parameter 𝛼 > 0 and baseline prob-
ability measure P. Here we assume that H is a nonatomic probability measure on X and we refer
to such prior as the J-dimensional HDP denoted by (G1,… ,GJ) ∼ HDP(𝛽, 𝛽0;H). Hence, the Gj’s
share the atoms through G0 and this leads to the creation of shared clusters of observations (or
latent features) across the J groups. The pEPPF induced by a partially exchangeable array in (1)
with  = HDP(𝛽, 𝛽0;H) has been determined in Camerlenghi et al. (2019b). It is important to
stress that the model is not suited for comparing populations’ distributions since P(Gj = G

𝜅
) = 0

for any j ≠ 𝜅 (unless the Gj’s are degenerate at G0, in which case all distributions are equal).
Similar compositions have been considered in Camerlenghi et al. (2019b) and, later, in Argiento
et al. (2020) and Bassetti et al. (2020). Hierarchically dependent mixture hazards have been intro-
duced in Camerlenghi et al. (2021). Anyhow, the HDP and its variations cannot be used to cluster
both populations and observations. To achieve this, one has to rely on priors induced by nested
structures, the most popular being the NDP.

2.2 Nested Dirichlet process

The NDP, introduced by Rodríguez et al. (2008), is the most widely used nonparametric prior
allowing to cluster both observations and populations. However, as proved in Camerlenghi
et al. (2019a), it suffers from a degeneracy issue, because even a single tie shared across samples is
enough to group the J population distributions into a single cluster.

Like the HDP, also the NDP can be framed in the composition structure (2) as

(Gj|Q) = Q(Gj), (Q|G0) = DP(Q|𝛼;G0), (G0) = 𝛿DP(𝛽;H)(G0), (5)

where Q is a random probability measure on the space 𝒫X of probability measures on X and
G0 is degenerate at the atom DP(𝛽;H), which is the law of a DP on the sample space X.
As in (4), H is assumed to be a nonatomic probability measure on X. Henceforth, we write
(G1,… ,GJ) ∼ NDP(𝛼, 𝛽;H). By virtue of the well-known stick-breaking representation of the DP
(Sethuraman, 1994) one has

Q =
∑

k≥1
𝜋

∗
k𝛿G∗

k
, (𝜋∗k )k≥1 ∼ GEM(𝛼), G∗

k
iid∼ DP(𝛽;H), (6)

where the weights (𝜋∗k )k≥1 and the random distributions (G∗
k)k≥1 are independent. Recall that

GEM stands for the distribution of probability weights after Griffiths, Engen, and McCloskey,
according to the well-established terminology of Ewens (1990). Given a sequence (Vi)i≥1 such
that Vi

iid∼ Beta(1, 𝛼), this means that 𝜋∗1 = V1 and 𝜋

∗
k = Vk

∏k−1
i=1 (1 − Vi), for any k ≥ 2. Since

P(Gj = G
𝜅
) = 1∕(𝛼 + 1) for any j ≠ 𝜅, Q generates ties among the random distributions Gj’s with

positive probability and, thus, clusters populations. Furthermore, a structure similar to the one
displayed in (6) holds for each G∗

k, that is,

G∗
k =

∑

l≥1
𝜔k,l𝛿X∗

k,l
, (𝜔k,l)l≥1

iid∼ GEM(𝛽), X∗
k,l

iid∼ H,

and, due to the nonatomicity of H, the X∗
k,l are all distinct values.
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218 LIJOI et al.

The discrete structure of the G∗
k’s generates ties across the samples {Xj ∶ j = 1,… , J} with

positive probability. For example, P(Xj,i = Xj′,i′ ) = 1∕{(𝛼 + 1)(𝛽 + 1)} for any j ≠ j′. Hence, the G∗
k’s

induce the clustering of the observations X.
If the data X are modeled as in (1), with (G1,… ,GJ) ∼ NDP(𝛼, 𝛽;H), conditional on a parti-

tion of the Gj’s the observations from populations allocated to the same cluster are exchangeable
and those from populations allocated to distinct clusters are independent. This potentially appeal-
ing feature of the NDP is however the one responsible for the above-mentioned degeneracy issue.
For exposition clarity, consider the case of J = 2 populations. If the two populations belong to
different clusters, that is, G1 ≠ G2, they cannot share even a single atom X∗

k,l due to the nonatomic-
ity of H. Hence, P(X1,l = X2,l′ |G1 ≠ G2) = 0 for any l and l′. Therefore there is neither clustering
of observations nor borrowing of information across different populations. On the contrary,
P(X1,i = X2,i′ |G1 = G2) = 1∕(𝛽 + 1) > 0. These two findings are quite intuitive. Indeed, G1 ≠ G2
means they are independent realizations of a DP with atoms iid from the same nonatomic prob-
ability distribution H and, thus, they are almost surely different. Instead, G1 = G2 corresponds
to all observations coming from the same population distribution, more precisely from the same
DP, and ties occur with positive probability. A less intuitive fact is that when a single atom, say
X∗

k,l, is shared between G1 and G2 the model degenerates to the exchangeable case, namely P(G1 =
G2|X1,i = X2,i′ ) = 1 and the two populations have (almost surely) equal distributions. Hence, the
NDP is not an appropriate specification when aiming at clustering both populations and observa-
tions across different populations. This was shown in Camerlenghi et al. (2019a) where, spurred
by this anomaly of the NDP, a novel class of priors named latent nested processes (LNP) designed
to ensure that P(G1 ≠ G2|X1,i = X2,i′ ) > 0 is proposed. However, while this formally solves the
problem, it has computational and modeling limitations. On the one hand, the implementa-
tion of LNPs with more than two samples is not feasible due to severe computational hurdles.
On the other hand, LNPs have limited flexibility since the weights of the common clusters of
observations across different populations are the same. This feature is not suited to several appli-
cations and the discussion to Camerlenghi et al. (2019a) provides interesting examples. See also
Beraha et al. (2021), Christensen & Ma (2020), Denti et al. (2021), Soriano & Ma (2019) for further
stimulating contributions to this literature.

Hence, within the composition structure framework (2), our goal is to obtain a prior distribu-
tion able to infer the clustering structure of both populations and observations, which is highly
flexible and implementable for a large number of populations and associated samples.

3 HIDDEN HIERARCHICAL DIRICHLET PROCESS

Our proposal consists in blending the HDP and the NDP in a way to leverage on their strengths,
namely clustering data across multiple heterogeneous samples for the HDP and clustering differ-
ent populations (or probability distributions) for the NDP. More precisely we combine these two
models in a structure (2) as

(Gj|Q) = Q(Gj), (Q|G0) = DP(Q|𝛼;DP(𝛽;G0)), (G0) = DP(G0|𝛽0;H).

This leads to the following definition.

Definition 1. The vector of random probability measures (G1,… ,GJ) is a hidden hierarchical
Dirichlet process (HHDP) if
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LIJOI et al. 219

Gj|Q
iid∼ Q, Q =

∑

k≥1
𝜋

∗
k𝛿G∗

k
, (𝜋∗k )k≥1 ∼ GEM(𝛼), (G∗

k)k≥1 ∼ HDP(𝛽, 𝛽0;H),

with (𝜋∗k )k≥1 and (G∗
k)k≥1 independent. In the sequel we write (G1,… ,GJ) ∼ HHDP(𝛼, 𝛽, 𝛽0;H).

In terms of a graphical model, the HHDP can be represented as in Figure 1.
The sequence (G∗

k)k≥1 acts as a hidden, or latent, component that is crucial to avoid the bug
of the NDP, namely clustering of populations when they share some observations. Moreover, by
extending (4) to J = ∞, it can be more conveniently represented as

G∗
k =

∑

l≥1
𝜔k,l 𝛿Zk,l , Zk,l|G0

iid∼ G0, G0 =
∑

l≥1
𝜔0,l 𝛿X∗

l
, X∗

𝓁

iid∼ H,

(𝜔k,l)l≥1
iid∼ GEM(𝛽), (𝜔0,l)l≥1 ∼ GEM(𝛽0),

(7)

where independence holds true between the sequences (𝜔k,l)l≥1 and (Zk,l)l≥1 and between (𝜔0,l)l≥1
and (X∗

l )l≥1. Combining the stick-breaking representation and a closure property of the DP with
respect to grouping, one further has

G∗
k =

∑

l≥1
𝜔

∗
k,l𝛿X∗

l
,G0 =

∑

l≥1
𝜔0,l𝛿X∗

l
,

where ((𝜔∗k,l)l≥1|𝝎0)
iid∼ DP(𝛽;𝝎0), 𝝎0 = (𝜔0,l)l≥1 ∼ GEM(𝛽0) and X∗

l
iid∼ H, for l ≥ 1.

In this scheme, the clustering of populations is governed, a priori, by the NDP layer Q through
(𝜋∗k )k≥1 ∼ GEM(𝛼). However, the aforementioned degeneracy issue of the NDP, a posteriori, is
successfully avoided. The intuition is quite straightforward: unlike for the NDP, the distinct dis-
tributions G∗

k in the HHDP are dependent and have a common random discrete base measure

F I G U R E 1 Graphical model representing the dependencies for a hidden hierarchical Dirichlet process
(𝛼, 𝛽, 𝛽0;H). Here the zj’s are auxiliary integer-valued random variables that assign each Gj to a specific atom G∗

k
of Q

 14679469, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12578 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



220 LIJOI et al.

G0, which leads to shared atoms across the G∗
k’s and thus borrowing of information, similarly to

the HDP case.

3.1 Some distributional properties

Given the discreteness of (G1,… ,GJ) ∼ HHDP(𝛼, 𝛽, 𝛽0;H), the key quantity to derive is the
induced random partition, which controls the clustering mechanism of the model. However, it is
useful to start with a description of pairwise dependence of the elements of the vector (G1,… ,GJ),
which allows a better understanding of the model and intuitive parameter elicitation. To this end,
as customary, we evaluate the correlation between Gj(A) and Gj′ (A): whenever it does not depend
on the specific measurable set A ⊂ X, it is used as a measure of overall dependence between Gj
and Gj′ .

Proposition 1. If (G1,… ,GJ) ∼ HHDP(𝛼, 𝛽, 𝛽0;H) and A is a measurable subset of X, then

Var[Gj(A)] =
H(A)[1 −H(A)](𝛽0 + 𝛽 + 1)

(𝛽 + 1)(𝛽0 + 1)
(j = 1,… , J),

Corr[Gj(A),Gj′ (A)] = 1 − 𝛼𝛽0

(𝛼 + 1)(𝛽 + 𝛽0 + 1)
(j ≠ j′).

Arguments similar to those in the proof of Proposition 1 lead to determine the correlation
between observations, either from the same or from different samples.

Proposition 2. If {Xj ∶ j = 1,… , J} are from (G1, … ,GJ) ∼ HHDP(𝛼, 𝛽, 𝛽0;H) according to (1),
then

Corr(Xj,i,Xj′,i′ ) = P(Xj,i = Xj,i′ ) =
⎧
⎪
⎨
⎪
⎩

1
𝛽0+1

+ 𝛽0
(1+𝛼)(1+𝛽)(1+𝛽0)

(j ≠ j′)
𝛽+𝛽0+1

(𝛽+1)(𝛽0+1)
(j = j′).

The correlation between observations of the same sample depends only on the parameters of
the underlying HDP(𝛽, 𝛽0;H) that governs the atoms G∗

k: this is not surprising since, whatever the
value of the parameter 𝛼 at the NDP layer, observations from the same sample are exchangeable.
Moreover, an appealing feature is that such a correlation is higher than for the case of observations
from different samples, that is, j ≠ j′. As for the dependence on the hyperparameters (𝛼, 𝛽0, 𝛽),
when 𝛼 →∞ the Gjs are forced to equal different unique distributions G∗

k, similarly to the NDP
case. However, unlike the NDP, this does not imply that the distributions are independent, and
the correlation is controlled by the hyperparameters 𝛽 and 𝛽0 (increasing in 𝛽 and decreasing in
𝛽0). In Figure 2 we report the aforementioned correlations as functions of 𝛽 and 𝛽0 with 𝛼 set
equal 1. Finally, if 𝛼 → 0 the a priori probability to degenerate to the exchangeable case, that is,
all Gj’s coincide a.s., tends to 1 and so does also Cor[Gj(A),Gj′ (A)].

We now investigate the random partition structure associated with a HHDP, namely the par-
tition of {1,… ,n}, with n =

∑J
j=1Ij, induced by a partially exchangeable sample X modeled as in

(1). Since a HHDP(𝛼, 𝛽, 𝛽0;H) arises from the composition of two discrete random structures, it is
clear that the partition induced by X will depend on the partition, say Ψ(J), of the random proba-
bility measures G1,… ,GJ . As for the latter, the Gi’s are drawn from a discrete random probability
measure on 𝒫X whose weights have a GEM(𝛼) distribution and whose atoms are almost surely
different since they are sampled from an HDP(𝛽, 𝛽0;H). Then the probability distribution of Ψ(J)
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LIJOI et al. 221

F I G U R E 2 Correlations as functions of the hyperparameters 𝛽 and 𝛽0 with 𝛼 = 1. The left plot represents
the correlation between random probabilities Gj(A), the middle one between observations collected in the same
population and the right one between observations from different populations

is the well-known Ewens sampling formula, namely

P[Ψ(J) = {B1,… ,BR}] = 𝜑(J)R (m1,… ,mR) =
𝛼

R

𝛼(J)

R∏

r=1
(mr − 1),

where {B1,… ,BR} is a partition of {1,… , J}, with 1 ≤ R ≤ J, the frequencies mr = card(Br) are
such that

∑R
r=1mr = J and 𝛼(J) = Γ(𝛼 + J)∕Γ(𝛼). This structure a priori implies, as in the NDP

case, that P(Gj = G
𝜅
) ∈ (0, 1) for any j ≠ 𝜅. However, unlike the NDP, a posteriori the HHDP

yields P(Gj = G
𝜅
|X) < 1, regardless of the shared clusters across the samples X. Moreover, let

Φ(n)D,R( · · · ; 𝛽, 𝛽0) denote the pEPPF of a HDP(𝛽, 𝛽0;H), namely

Φ(n)D,R(n
∗
1,… ,n∗R; 𝛽, 𝛽0) = E

∫
XD
∗

D∏

d=1

̂G1( dxd)n
∗
1,d · · · ̂GR( dxd)n

∗
R,d
,

where ( ̂G1,… ,
̂GR) ∼ HDP(𝛽, 𝛽0;H), D ∈ {1,… ,n} and

∑R
r=1

∑D
d=1n∗r,d = n. An explicit expres-

sion of Φ(n)D,R has been established in Camerlenghi et al. (2019b), even beyond the DP case.
Now we can state the pEPPF induced by {Xj ∶ j = 1,… , J} in (1), where  is the law of a
HHDP(𝛼, 𝛽, 𝛽0;H).

Theorem 1. The random partition induced by the partially exchangeable array{Xj ∶ j = 1,… , J}
drawn from (G1,… ,GJ) ∼ HHDP(𝛼, 𝛽, 𝛽0;H), according to (1), is characterized by the following
pEPPF

Π(n)D (n1, … ,nJ) =
∑

𝜑

(J)
R (m1,… ,mR; 𝛼)Φ(n)D,R(n

∗
1,… ,n∗R; 𝛽, 𝛽0), (8)

where the sum runs over all partitions {B1, … ,BR} of {1, … , J} andn∗r,d =
∑

j∈Br
nj,d for each r ∈

{1, … ,R}, d ∈ {1,… ,D}.

Given the composition structure underlying the HHDP(𝛼, 𝛽, 𝛽0;H), the pEPPF (8) unsurpris-
ingly is a mixture of pEPPF’s induced by different HDPs. For ease of interpretation consider the
case of J = 2 populations and note that the pEPPF boils down to
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222 LIJOI et al.

Π(n)D (n1,n2) =
1

𝛼 + 1
ΦD,1(n1 + n2) +

𝛼

𝛼 + 1
ΦD,2(n1,n2), (9)

where Φ(n)D,1 is the EPPF of a single HDP(𝛽, 𝛽0;H), namely J = 1, while Φ(n)D,2 is the pEPPF of
a HDP(𝛽, 𝛽0;H) with two samples, namely J = 2. Clearly (9) arises from mixing with respect
to partitions of {G1,G2} in either R = 1 and R = 2 groups, where the former corresponds to
exchangeability across the two populations. Still for the case J = 2, a straightforward application
of the pEPPF leads to the posterior probability of gathering the two probability curves, G1 and G2,
in the same cluster thus making the two samples exchangeable, or homogeneous.

Proposition 3. If the sample {Xj ∶ j = 1, 2} is from (G1,G2) ∼ HHDP(𝛼, 𝛽, 𝛽0;H), according to (1),
the posterior probability of degeneracy is

P(G1 = G2|X) =
Φ(n)D,1(n1 + n2)

Φ(n)D,1(n1 + n2) + 𝛼 Φ(n)D,2(n1,n2)
, (10)

where Φ(n)D,1 andΦ(n)D,2 are the EPPF and the pEPPF induced by the HDP(𝛽, 𝛽0;H) for a single
exchangeable sample and for two partially exchangeable samples, respectively.

The pEPPF is a fundamental tool in Bayesian calculus and it plays, in the partially exchange-
able framework, the same role of the EPPF in the exchangeable case. Indeed, the pEPPF governs
the learning mechanism, for example, the strength of the borrowing information, clustering, and,
in view of Proposition 3, it allows to perform hypothesis testing for distributional homogeneity
between populations. Finally, one can obtain a Pólya urn scheme that is essential for inference
and prediction. See Section 2 of the supplementary material. In the next section, we provide a
characterization of the HHDP(𝛼, 𝛽, 𝛽0;H) that is reminiscent of the popular Chinese restaurant
franchise metaphor for the HDP and allows us to devise a suitable sampling algorithm and further
understand the model behavior.

3.2 The hidden Chinese restaurant franchise

The marginalization of the underlying random probability measures, as displayed in Theorem 1,
can be characterized in terms of a hidden Chinese restaurant franchise (HCRF) metaphor. This
representation sheds further light on the HHDP and clarifies the sense in which it generalizes the
well-known Chinese restaurant (CRP) and franchise (CRF) processes induced by the DP and the
HDP, respectively. For simplicity we consider the case J = 2.

As with simpler sampling schemes, all restaurants of the franchise share the same menu,
which has an infinite number of dishes generated by the nonatomic base measure H. However,
unlike the standard CRF, the restaurants of the franchise are merged into a single one if G1 = G2,
while they differ if G1 ≠ G2. Moreover, each Xj,i identifies the label of the dish that customer i
from the jth population chooses from the shared menu (X∗

d )d≥1, with the unique dishes X∗
d

iid∼ H. If
G1 ≠ G2, customers may be assigned to different restaurants and when G1 = G2, they are all seated
in the same restaurant. Given such a grouping of the restaurants, the customers are, then, seated
according to the CRF applied either to a single restaurant or to two distinct restaurants (Camer-
lenghi et al., 2018; Teh et al., 2006). Furthermore, each restaurant has infinitely many tables. The
first customer i who arrives at a previously unoccupied table chooses a dish that is shared by
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LIJOI et al. 223

all the customers who will join the table afterward. It is to be noted that distinct tables within
each restaurant and across restaurants may share the same dish. An additional distinctive feature,
compared to the CRF, is that tables can be shared across populations when they are assigned to
the same restaurant, that is, when G1 = G2. Accordingly, the allocation of each customer Xj,i to a
specific restaurant clearly depends on having either G1 = G2 or G1 ≠ G2.

The sampling scheme simplifies if latent variables Tj,i’s, denoting the tables’ labels for cus-
tomer i from population j, are introduced. We stress that, if G1 ≠ G2, the number of shared tables
across the two populations is zero, given the populations j = 1, 2 are assigned to different restau-
rants, labeled r = 1, 2, respectively. Conversely, if G1 = G2, one may have shared tables across
populations, since they are assigned to the same restaurant r = 1.

Now define qr,t,d as the frequencies of observations sitting at table t eating the dth dish, for a
table specific to restaurant r. Moreover, Dt is the dish label corresponding to table t and 𝓁r,d the
frequency of tables serving dish d in restaurant r. Marginal frequencies are represented with dots,
for example, 𝓁r,⋅ is the number of tables in restaurant r. Throughout the symbol x−i identifies
either a set or a frequency obtained upon removing the element i from x. Finally, Δ stands for an
indicator function such that Δ = 1 if G1 = G2, while Δ = 0 if G1 ≠ G2.

The stepwise structure of the sampling procedure reflects the composition of the three layers
(Gj|Q),(Q|G0) and(G0) in (7) relying on a conditional CRF. First, one sample the populations’
clusteringΔ and, given the allocations of the populations to the restaurants, one has a CRF. Hence,
the algorithm becomes

(1) Sample the population assignments to the restaurants from P(Δ = 1) = 1∕(𝛼 + 1).
(2) Sequentially sample the table assignments Tj,i and corresponding dishes DTj,i from

p(Tj,i,DTj,i |T
−(ji+)

,X−(ji+),Δ) ∝

⎧
⎪
⎪
⎨
⎪
⎪
⎩

Tj,i = t q−(ji+)r,t,⋅

q−(ji+)r,⋅,⋅ +𝛽

Tj,i = tnew
,Dtnew = d 𝛽

q−(ji+)r,⋅,⋅ +𝛽

𝓁−(ji+)
⋅,d

𝓁−(ji+)⋅,⋅ +𝛽0

Tj,i = tnew
,Dtnew = dnew 𝛽

q−(ji+)r,⋅,⋅ +𝛽
𝛽0

𝓁−(ji+)⋅,⋅ +𝛽0
,

where (ji+) = {(ji′) ∶ i′ ≥ i} ∪ {(j′i′) ∶ j′ ≥ j} is the index set associated to the future random
variables not yet sampled.

4 POSTERIOR INFERENCE FOR HHDP MIXTURE
MODELS

Thanks to the results of Section 3, we now devise MCMC algorithms for drawing posterior
inferences with mixture models driven by a HHDP. Though the samplers are tailored to mix-
ture models, they are easily adapted to other inferential problems such as, for example, survival
analysis and species sampling. Henceforth, is a density kernel and we consider

Xj,i|𝜃j,i
ind∼ (⋅|𝜃j,i), (i = 1,… , Ij j = 1,… , J),

𝜃j,i|Gj
ind∼ Gj, (i = 1,… , Ij, j = 1,… , J),

(G1, … ,GJ) ∼ HHDP(𝛼, 𝛽, 𝛽0;H). (11)
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224 LIJOI et al.

We develop two samplers: (i) a marginal algorithm that relies on the posterior degeneracy proba-
bility (Proposition 3) in Section 2 of the supplementary material; (ii) a conditional blocked Gibbs
sampler, in the same spirit of the sampler proposed for the NDP by Rodríguez et al. (2008), in
Section 4.1. As for (i), the underlying random probability measures G0 and G∗

k’s are integrated out
leading to urn schemes that extend the class of Blackwell-MacQueen Pólya urn processes. In such
a way we generalize the a posteriori sampling scheme of the Chinese restaurant process for the DP
mixture (Neal, 2000) and the one of the Chinese restaurant franchise for the HDP mixture (Teh
et al., 2006). In the supplementary material, we describe the marginal sampler for the case of J = 2
populations. Even if in principle it can be generalized in a straightforward way, it is computation-
ally intractable for a larger number of populations. Similarly to the hidden Chinese restaurant
franchise situation, one has to evaluate the posterior probability of all possible groupings of
G1,… ,GJ , which boils down to P(G1 = G2|X) when J = 2 but becomes involved for J > 2.

This shortcoming is overcome by the conditional algorithm we derive in Section 4.1, which
relies on finite-dimensional approximations of the trajectories of the underlying random prob-
ability measure. Its effectiveness in dealing with J > 2 populations is further illustrated in the
synthetic data example 5.2 and in the application of Section 5.3.

4.1 A conditional blocked Gibbs sampler

A more effective algorithm is based on a simple blocked conditional procedure. To this end, we
use a finite approximation of the DP in the spirit of Muliere and Tardella (1998) and Ishwaran and
James (2001). However, instead of truncating the stick-breaking representation of the DP, we use
a finite Dirichlet approximation. See Ishwaran and Zarepour (2002). Therefore, we approximate
𝝅
∗
,𝝎

∗
0, with a K- and an L-dimensional Dirichlet distribution, respectively. More precisely, we

consider the following approximation

𝝅
∗ ∼ DIR(𝛼∕K,… , 𝛼∕K), 𝝎

∗
0 ∼ DIR (𝛽0∕L,… , 𝛽0∕L) , (12)

implying that (𝝎∗k|𝝎
∗
0)

iid∼ DIR(𝛽 𝝎∗0), for k ≥ 1.
Introduce the auxiliary variables zj and 𝜁j,i which represent the distributional and obser-

vational cluster memberships, respectively, such that zj = k and 𝜁j,i = l if and only if Gj = G∗
k

and 𝜃j,i = 𝜃∗l . Henceforth, S = {(𝜃∗l )
L
l=1,𝝅

∗
,𝝎

∗
0, (𝝎

∗
k)

K
k=1, (zj)Jj=1, (𝜁j,i)j,i, (Xj,i)j,i} and, in order to

identify the full conditionals of the Gibbs sampler, we note that under the finite Dirichlet
approximation (12)

p(S) = p(𝝅∗)p(𝝎∗0)

[ L∏

l=1
p(𝜃∗l )

][ K∏

k=1
p(𝝎∗k|𝝎

∗
0)

]⎧
⎪
⎨
⎪
⎩

J∏

j=1
p(zj|𝝅

∗)
⎡
⎢
⎢
⎣

Ij∏

i=1
p(Xj,i|𝜃

∗
𝜁j,i
)p(𝜁j,i|𝝎

∗
zj
)
⎤
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

.

This leads to the following

(1) Sample the unique 𝜃∗l from

p(𝜃∗l |S
−𝜃∗l ) ∝ H(𝜃∗l )

∏

{j,i∶𝜁j,i=l}
(Xj,i|𝜃

∗
l ).
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LIJOI et al. 225

(2) Sample distributional cluster probabilities from

p(𝝅∗|S−𝝅∗ ) = DIR(𝝅∗|𝛼∕K +m1,… , 𝛼∕K +mK),

with mk =
∑J

j=11{zj = k}.
(3) Sample probability weights of the base DP from

p(𝝎∗0|S
−𝝎∗0 ) ∝

L∏

l=1

⎡
⎢
⎢
⎣

(𝜔∗0,l)
𝛽0∕L−1

𝜉

𝛽𝜔

∗
0,l

l

Γ(𝛽0𝜔
∗
0,l)

K

⎤
⎥
⎥
⎦

, (13)

with 𝜉l =
∏K

k=1𝜔
∗
k,l.

(4) Sample the observational cluster probabilities independently from

p(𝝎∗k|S
−𝝎∗k ) = DIR(𝝎∗k|𝛽𝝎

∗
0 + nk),

with nk,l =
∑
{j∶zj=k}

∑Ij

i=11{𝜁j,i = l}.
(5) Sample distributional and observational cluster membership from

p(zj = k|S−{zj,𝜻 j}) ∝ 𝜋∗k

Ij∏

i=1

L∑

l=1
𝜔

∗
k,l(Xj,i|𝜃

∗
l ) (k = 1,… ,K),

p(𝜁j,i = l|S−𝜁j,i) ∝ 𝜔∗zjl
(Xj,i|𝜃

∗
l ) (l = 1,… ,L).

Importantly, all the full conditional distributions are available in simple closed forms, with
the exception of the distributions of 𝝎∗0 and, possibly, of 𝜃∗l . To update 𝝎

∗
0 we perform a

Metropolis-Hastings step, where we work on the unconstrained space RL−1 after the transforma-
tion [log(𝜔0,1∕𝜔0,L),… , log(𝜔0,L−1∕𝜔0,L)] and we adopt a component-wise adaptive random walk
proposal following Roberts and Rosenthal (2009). The update of the unique atoms 𝜃∗l is standard,
as with the DP mixture model in the exchangeable case.

In Section 5 we assume a Gaussian kernel (⋅|𝜃) = N(⋅|𝜇, 𝜎2) and a conjugate
Normal-inverse-Gamma base measure H(⋅) = NIG(⋅|𝜇0, 𝜆0, s0, S0) and obtain

p(𝜃∗l |S
−𝜃∗l ) = NIG(𝜃∗l |𝜇l, 𝜆l, sl, Sl),

with 𝜇l =
nlyl+𝜆0𝜇0
𝜆0+nl

, Sl = S0 + 1
2

(

e2
l +

nl𝜆0(yl−𝜇0)2

𝜆0+nl

)

, 𝜆l = 𝜆0 + nl, and sl = nl∕2 + s0, where nl =
∑J

j=1
∑Ij

i=11{𝜁j,i = l}, yl =
∑
{j,i∶𝜁j,i=l} Xj,i∕nl, and e2

l =
∑
{j,i∶𝜁j,i=l} (Xj,i − yl)2 are the observational

cluster sizes, means and deviances, respectively.

5 ILLUSTRATION

In this section, we compare the performance of our proposal (11) with the same model where the
HHDP is replaced by a NDP as in (5), on synthetic data involving J = 2 and J = 4 populations.
Note that for the latter, the implementation of the latent nested prior process mixture of Camer-
lenghi et al. (2019a) is not feasible, while the proposed HHDP mixture model can easily handle
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226 LIJOI et al.

that level of complexity. The inferential results that we display are obtained by relying on the
blocked Gibbs sampler of Section 4.

5.1 Inference with two populations

The data are simulated from the same scenarios considered in Camerlenghi et al. (2019a). More
precisely, we consider two populations and the data in each population are iid from a mixture of
two normals:

Scenario 1. We simulate the data from the two populations independently from the same
density

X1,i
d
= X2,i′

iid∼ 0.5N(0, 1) + 0.5N(0, 1).

Scenario 2. We simulate the data in the two populations independently from mixtures of two
normals with one shared component

X1,i
iid∼ 0.9N(5, 0.6) + 0.1N(10, 0.6) X2,i′

iid∼ 0.1N(5, 0.6) + 0.9N(0, 0.6).

Scenario 3. We simulate the data in the two populations independently from mixtures of two
normals having the same components, though with different weights

X1,i
iid∼ 0.8N(5, 1) + 0.2N(0, 1) X2,i′

iid∼ 0.2N(5, 1) + 0.8N(0, 1).

In all these scenarios we consider balanced sample sizes I1 = I2 = 100 and an HHDP mixture
model (11), with 𝛼 = 1, 𝛽 = 1, 𝛽0 = 1 and H(⋅) = NIG(⋅|𝜇0, 𝜆0, s0, S0). We set standard values of
the hyperparameters in terms of the mean y and variance Var(y) of the data, that is, 𝜇0 = y, 𝜆0 =
1∕(3 Var(y)), s0 = 1 and S0 = 4. In drawing the comparison between (11) and the NDP(𝛼, 𝛽;H),
we further set 𝛼 = 𝛽 = 1. Furthermore, we set the concentration parameters all equal to 1. In
Section 3 we perform a sensitivity analysis with respect to hyperparameters’ specifications as
done, for instance, by Zuanetti et al. (2018) for the NDP. The mean measure of the marginal
underlying random distributions E[Gj(A)] = H(A) is the same for all populations. Also variances
are comparable (see Proposition 1) since Var[Gj(A)] equals H(A)[1 −H(A)]∕2 for the NDP and
3H(A)[1 −H(A)]∕4 for the HHDP. The sensitivity analysis leads, for all the considered settings,
to the same conclusions in terms of comparison of the two models. Moreover, we fix the dimen-
sions of the finite approximations L = K = 50 in (12) and we do the same for the truncation levels
in the algorithm of Rodríguez et al. (2008). In the supplementary material, we perform an empir-
ical analysis trying different levels of L and K which corroborates the fact that the approximation
error is negligible in terms of inferential results.

Inference is based on 10,000 iterations with the first half discarded as burn-in. As for the
output, besides obtaining density estimates for the two populations we also determine the point
estimate of the clustering of observations that minimizes the variation of information (VI) loss
function. See Meilă (2007) and Wade and Ghahramani (2018) for detailed discussions on VI
and point summaries of probabilistic clustering. Additionally, we estimate the probability that
observations co-cluster, namely P(𝜁j,i = 𝜁j′,i′ |X) through the average over MCMC draws
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LIJOI et al. 227

∑B
b=11{𝜁b

j,i = 𝜁
b
j′,i′ }

B
,

where B is the number of MCMC iterations. These are visualized through heatmaps as in Figure 4,
with colors ranging from white, if the probability is 0, to dark red, if the probability is 1. Our anal-
ysis is completed by reporting the estimated distributions of the numbers of mixture components
in each scenario.

As expected, both models yield accurate estimates of the true densities in all scenarios. In
Figure 3 we report the true and estimated models under the third scenario. In terms of clustering,
in the first scenario both models correctly cluster together the two populations, thus degener-
ating to the exchangeable case as they should. However, in the second and third scenarios the
NDP makes the two samples X1 and X2 independent, therefore preventing borrowing of infor-
mation across the two populations. As the distributions have a shared component, the only way
for the NDP to recover correctly the true densities is by missing such a component. Had it been
detected, the density estimates of the two populations would have been equal and, thus, far
from the truth. The point estimate of the observations’ clustering in Table 1, the heatmaps of
the posterior co-clustering probabilities in Figure 4 and the posterior distributions of the over-
all number of occupied components in Table 2 showcase the theoretical findings, namely that
the NDP in the second and third scenarios cannot learn the shared components. Hence, it over-
estimates the total number of occupied components and does not cluster observations across
populations. In contrast, the HHDP model is able to cluster observations across populations,
learns the shared components and borrows information also when the model does not degenerate
to the exchangeable case.

5.2 Inference with more than two populations

Here we consider J = 4 populations and deal with the same scenario discussed in Beraha
et al. (2021). More precisely, we simulate independently across populations Ij = 100 (for j =
1,… , 4) observations as follows

X1,i
d
= X2,i

iid∼ 0.5N(0, 1) + 0.5N(5, 1) X3,i
iid∼ 0.5N(0, 1) + 0.5N(−5, 1) X4,i

iid∼ 0.5N(−5, 1) + 0.5N(5, 1)

Our prior corresponds to a Gaussian mixture model with the same specification for the HHDP
used in the previous Section with J = 2 population. Figure 5 shows that the HHDP mixture model

F I G U R E 3 True (dashed lines), posterior mean (solid lines) densities and 95% point-wise posterior
credible intervals (shaded gray) estimated under the third scenario
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228 LIJOI et al.

T A B L E 1 Frequencies of observations in the two populations allocated to the point estimate of the
clustering that minimizes the variation of information loss with the two models under different scenarios

Scenario I Scenario II Scenario III

NDP HHDP NDP HHDP NDP HHDP

Population 1 2 1 2 1 2 3 4 1 2 3 1 2 3 4 1 2
1 56 44 56 44 87 13 0 0 87 13 0 85 15 0 0 85 15

2 48 52 48 52 0 0 88 12 12 0 88 0 0 80 20 21 79

Abbreviations: HHDP, hidden hierarchical Dirichlet process; NDP, nested Dirichlet process.

F I G U R E 4 Heatmaps of the true and estimated posterior probability of co-clustering of observations,
ordered by population memberships, under the hidden hierarchical Dirichlet process and the nested Dirichlet
process models, for the three different scenarios in Section 5.1
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T A B L E 2 Posterior distributions of the number of overall occupied components estimated with the two
models under different scenarios

Overall number of components

Scenario Model 1 2 3 4 5 6 7 8 9 ≥10
I NDP 0 0.4090 0.3615 0.1647 0.0492 0.0136 0.0020 0 0 0

HHDP 0 0.5374 0.3743 0.0788 0.0080 0.0016 0 0 0 0

II NDP 0 0 0 0.2959 0.3906 0.2151 0.0700 0.0256 0.0024 0.0004

HHDP 0 0 0.5742 0.3339 0.0796 0.0116 0.0008 0 0 0

III NDP 0 0 0 0.1331 0.3055 0.2947 0.1743 0.0608 0.0232 0.0084

HHDP 0 0.5010 0.3966 0.0856 0.0164 0.0004 0 0 0 0

Abbreviations: HHDP, hidden hierarchical Dirichlet process; NDP, nested Dirichlet process.

F I G U R E 5 True (dashed lines), posterior mean (solid lines) densities and 95% point-wise posterior
credible intervals (shaded gray) estimated under the fourth scenario

is able to recover the data generating densities also in this scenario. In terms of clustering of
populations the point estimate that minimizes the VI loss coincides with the data generating
truth. Figure 6 reports the heatmaps of the posterior co-clustering probabilities of the four popu-
lations that show little uncertainty around the correct point estimate, for example the estimated
probability that populations 1 and 2 are correctly clustered together is 0.9858.

Finally, the point estimate of the observations’ clustering in Table 3 shows the HHDP model
is able to cluster observations across populations, learns the shared components and borrows
information also when there are more than two populations.

5.3 CPP data

A multicenter application is the focus of this section. We consider a dataset from the CPP, a large
prospective epidemiologic study conducted from 1959 to 1974. Pregnant women were enrolled in
12 hospitals between 1959 and 1966 and were followed over time. Among several prepregnancy
measurements, we focus on the birth weight Xj,i for nonsmoking woman i in center j. We assume
the following Gaussian mixture model:

Xj,i|𝜇j,i, 𝜎j,i
ind∼ N(𝜇j,i, 𝜎j,i) (i = 1,… , Ij, j = 1,… , 12),

𝜇j,i, 𝜎j,i|Gj
ind∼ Gj (i = 1,… , Ij, j = 1,… , 12).
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F I G U R E 6 Heatmap of the estimated posterior probabilities of co-clustering of the population estimated
with the hidden hierarchical Dirichlet process mixture model under the fourth scenario in Section 5.2

T A B L E 3 Frequencies of observations in the four populations allocated to the point estimate of
the clustering that minimizes the variation of information loss with hidden hierarchical Dirichlet
process under the fourth scenario

Observational cluster 1 2 3
Pop 1 53 47 0

Pop 2 56 44 0

Pop 3 48 0 52

Pop 4 0 52 48

The same HHDP prior used for the previous synthetic data is placed the vector of random dis-
tributions. This model specification is coherent with what is suggested by Dunson (2010) for the
CPP data. Indeed, it is known that the pregnancy outcome can vary substantially for women from
different ethnicity and socioeconomic groups. Therefore, we specify a model allowing to capture
differences between the centers since different groups of hospitals can serve different women.
Canale et al. (2019) provide further analysis of the CPP data.

The heatmap of the co-clustering posterior probability for the 12 hospitals is shown in Figure 7.
Such probabilities imply that the clustering point estimate of the hospitals that minimizes the
VI loss has two blocks and, in the same figure, the mean posterior densities associated with
the two clusters are reported. Given the partition of the hospitals, the posterior mean densities
are evaluated based on all patients belonging to hospitals in each of the two partition groups.
The heatmap shows the posterior distribution of the clustering of the hospitals and can be used
to perform uncertainty quantification. As expected, the lack of well-separated data generating
mixtures of Gaussians entails more uncertainty around the point estimate of the clustering of
the populations with respect to the numerical experiments. However, the heatmap shows that
the point estimate of the clustering of distributions is a reliable summary. More precisely, the
point estimate that minimizes the VI loss entails that the first cluster of hospitals includes the
hospitals with (reordered) labels 1,2,3: these are well-separated from the remaining hospitals

 14679469, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12578 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



LIJOI et al. 231

1
2
3
4
5
6
7
8
9

10
11
12

1 2 3 4 5 6 7 8 9 101112

0.25

0.50

0.75

1.00

0.000

0.005

0.010

0.015

0.020

0 50 100 150

F I G U R E 7 Heatmap of the estimated posterior probability of co-clustering of hospitals and estimated
population cluster-specific posterior densities for the Collaborative Perinatal Project data

T A B L E 4 Posterior distributions of the number of clusters shared and not shared across the two clusters
of hospitals

Number of observational clusters 0 1 2 3 4 5
Only in the second cluster of hospitals 0.3530 0.3670 0.2040 0.0640 0.0100 0.0020

Only in the first cluster of hospitals 0.7750 0.1850 0.0340 0.0060 0 0

Shared across clusters of hospitals 0 0.1680 0.4800 0.2660 0.0780 0.0080

according to the posterior probabilities of co-clustering in the heatmap. The heatmap shows also
that another meaningful point estimate of the clustering of the hospitals is the finer partition
{{1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11, 12}}. However, the VI loss suggests a more parsimonious clus-
tering of the hospitals in two blocks, that is {{1, 2, 3}, {4, 5, 6, 7, 8, 9, 10, 11, 12}}. Note that in the
second cluster of hospitals (red dashed density in Figure 7) the distribution of the birth weights
is slightly shifted on lower values and the two mean densities are similar in the two clusters of
populations. Coherently the proposed model allows to borrow information across clusters of hos-
pitals for estimating the posterior mean densities of the birth weights. Furthermore the model
can be used to identify clusters of women shared in the two different clusters of hospitals. Indeed,
Table 4 shows that some clusters of observations are shared across different clusters of hospitals,
thus allowing the borrowing of information for estimating the densities of the birth weights in
the two groups.

6 DISCUSSION

As highlighted in the recent literature, NDP mixture models are often not an appropriate tool
for clustering simultaneously population distributions and observations. In contrast, the HHDP,
overcomes the issues plaguing the NDP, while preserving tractability and clustering flexibility
even when the number of populations J is larger than 2. We have further devised sampling
schemes allowing for efficient inference and prediction. This work paves the way for future
intriguing research directions that we plan to address in forthcoming work. First, it is natural
to move beyond DPs and consider models based on alternative discrete nonparametric priors,
such as the Pitman–Yor process and normalized completely random measures, while studying the
induced clustering. The characterization of the HHDP in terms of the induced random partition
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suggests a nice connection of our work with recent and exciting advances on time-dependent
random partition models such as those proposed, for example, in Page et al. (2022) and Zanini
et al. (2019). Indeed, these papers define a general framework that can be tailored to HHDP pri-
ors for generating time-dependent models suited for analyzing, for example, longitudinal data
thus allowing for the investigation of the joint evolution of observational and distributional clus-
tering through time. The theory we have developed in Sections 3 and 4 provides the necessary
tools for successfully carrying out such a program. Moreover, the general composition scheme,
where we have embedded the HHDP, seems a promising and effective approach for addressing
other interesting inferential problems, beyond density estimation and clustering. Finally, the gen-
eral scheme that we have introduced in (2) seems an appropriate specification for capturing the
inherent complexity and heterogeneity of data that arise when drawing predictions with multi-
variate species sampling models and when performing inferences in survival and functional data
analysis. These will be the object of forthcoming work.
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