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Abstract. The spectral determinat(E) of the quartic oscillator is known to satisfy a functional
equation. This is mapped onto thg-relatedY -system emerging in the treatment of a certain
perturbed conformal field theory, allowing us to give an alternative integral expressi@n fr.
Generalizing this result, we conjecture a relationship between:#feanharmonic oscillators

and theA;),—1 thermodynamic Bethe ansatz systems. Finally, spectral determinants for general
|x|* potentials are mapped onto the solutions of nonlinear integral equations associated with the
(twisted) X X Z and sine-Gordon models.

Since the discovery of quantum mechanics, the spectral problem associated with the
homogeneous Sobdinger operator

A d?
Hyn(x) = (—@ +x2M> Vi (x) = Exre(x) 1)

on the real line has been the subject of much attention, with a supply of papers which continues
to this day: [1-11] offer just a small sample of this work. Given the apparent simplicity of
the system, it is at first surprising that much of the most remarkable progress has been made
relatively recently. In the following we will be guided by the theory developed by AMdros

in [7-10], and we refer the reader to these articles for a detailed explanation of the subject.
Here we summarize a few facts that will be needed later. The confining nature of the potential
in (1) means that the spectruh;} of the theory is discrete. The properties of this spectrum
can be encoded into spectral functions, the simplest example being the spectral determinant

[o¢]

Du(E) = Dy [ ] (1 " E£> . )
k=0 k

The constanD,, (0) = sin(r/(2M + 2))~! reflects the definition oD, as a zeta-regularized

functional determinant (see [8])Dy,(E) is an entire function o and the positions of its

zeros coincide, by definition, with the negated discrete eigenvalues of equation (1). Despite

the absence of any closed expression forfhgprecise information about the spectrum can

be obtained by various means. The particular aspect that will be important for us is the fact

that the function®,, (E) satisfy certain functional equations [7, 8], similar to those previously

obtained for related Stokes multipliers [12]. These led to sum rules relating the different
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eigenvalues [7, 8, 10], but their utility was limited by the difficulty in finding solutions to the
equations within the class of entire functions. In this paper we point out a surprising link
between these functional equations and other systems of equations which have arisen in the
last few years in a very different context, namely the finite-size spectra of integrable (1 + 1)-
dimensional quantum field theories. Numerical work confirms the match, and we feel that this
unexpected connection between tavpriori disconnected topics deserves to be understood at
a deeper level.
We begin by reviewing some basic properties of the spectral determinants. From the Bohr—
Sommerfeld approximation one can deduce the asymptotic positions of thefzerosEy:
bo(E)" ~ 27 (k +1/2) k — oo ()
whereyu = (M + 1)/2M and
72 T(zy)
bo = — ——524—. (4)
M TG+55)
In addition, Dy, (E) admits a semiclassical asymptotic expansion |Bf — oo with
largE| <7 — 6,8 > 0:
In Dy (E) ~ ErA=2D) = —.
m(E) ,Z::oaj aog 2SN

Now suppose thal = 2. In this caséD(E) = D,(FE) satisfies the following functional
relation [7]:

(®)

D(Ej"YD(E)D(jE) = D(Ej %) + D(E) + D(jE) +2 (6)

where;j = €?"/3, Together with the asymptotics just described, this is strongly reminiscent of
the properties of solutions to thermodynamic Bethe ansatz (TBA) equations [13,14]. Consider,
for example, the perturbation of a theory Bf parafermions by the thermal operator of
conformal dimensiona = A = 2/(h+2). This results in an integrable massive quantum field
theory, associated with thé, ; Lie algebra. There ark — 1 particle species, with masses
M, = My sin(ra/h)/sin(x/h),a =1...h — 1. Speciest andh — a are charge-conjugate:
a = h — a. The scattering theory is factorizable, with two-parti§tenatrix elements [15]:

at+b—1

Sw=[] tp} ab=1...h—1 (7)

la—b|+1

step 2
where, in the notation of [16kp} = (p — D(p + 1), (p) = sinh(§ +iZ2)/sinh(§ —iZL).
Non-perturbative information concerning the finite-size scaling functions of the model in a
cylinder geometry can be obtained using the TBA technique [13, 14,17, 18]. The simplest
instance [13, 14] expresses the ground-state en€(@¥,, R) as—mc(M1R)/6R, where

h—1 00
c(r) = % Z/ do m,r coshOL,(6). (8)
a=1Y—x

L,®) =In(1+e%®) » = M;R andm, = M,/M;. The functions,(@),a =1...h—1
(known as pseudo-energies) solve the following equations:

1 h—1
ga(e) = mgr coshy — Z ;¢ab * La (9) (9)
with ¢, (0) = —idygIn S, (0) and gxf(0) = f_°°oo do’ g(® — 0') f(©). Now consider

Y,(0) = &<@. These are entire functions @f with periodicity Y, (0 + i (h +2)/h) = Yz(0)
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[19]. Conjugation symmetry of the ground-state equations means,fi#at= ¢;(9), so theY

are entire functions af= exp(216/(h + 2)) on the puncturedplaneC* = C\ {0}. Infact, the

Y are thought (cf [20]) to be analytic functions of the varialbles= (r exp(6))%"/"*2 with a

finite domain of convergence about the paiat, a_) = (0, 0). The domain of convergence is
finite because of square-root singularities linking the ground state to excited states [13,14,18].
It was also shown in [19] that thié satisfy a set of functional identities, known a¥-&ystem.

At h = 4,r = exp(46/3), and, taking the conjugation symmetry into account Ytk&ystem is

Yi(e" "R Y1(€™Pr) = 1+ Ya(r) (10)
Ya(e" P Y2(€73) = (1 + Y1(1))>. (11)

Substituting (10) into (11), it is easy to see thatr) satisfies a constraint involving itself
alone:

Yi(e PV ) = Y@ P P + v + € P + 2. (12)

The relation with equation (6) is clear, but the analytic propertieg;alo not quite match
those ofD yet. In particulary; has an essential singularityzat= 0. To remedy this, we take

a massless limit, replacing the driving termyr coshd with m,r€’ (this amounts to setting
a_ = 0). The resultingr are now nonsingular at = 0, and furthermore, for the ground
state their zeros lie on the line fn= 37 /4, the negative real axis in theplane. Setting
mor = bgoly—2 andt = E, and identifyingY;(¢) with D(E), all of the standard properties
of the spectral determinant of the quartic oscillator are reproduced. For example, the large
asymptoticY,(6) ~ b€’ is obtained by dropping the convolution term in (9), and implies that
Y>(09) takes the value-1 at the point® = x; + i/2, with boe** ~ 27 (k + %) ask — oo.
Combined with (10), this shows that the zerosef9) are at¥ = x; + 37i/4, matching the
asymptotic behaviour (3). Finally, at= 0 the solutions of th&'-system ar¢’; = 2, Y, = 3,
matching the resulb (0) = 2. Still unsatisfied, we performed a numerical check. Equation (9)
was solved for read and then, as in [20], equation (9) and thesystem were used to obtain
the values of1(9) on the line Im9 = 3 /4. The first zeros were found to high accuracy, and
the resulting predictions for the first six energy levels of tigotential are compared with
earlier results in table 1.

For M > 2 the equations satisfied y,,(E) become more intricate, and we have yet
to map them explicitly into known TBA systems. Instead we took a shortcut, though later
we shall give an alternative, and more systematic, treatment of the problem. The functional
relations forD,, (E) have &.,., symmetry [8], wherés = 2M. This suggests an examination
of Y-systems which share this symmetry in order to find a generalization afthe2 result.
Ofthe diagonal scattering theories, this picks out the models associated vith ther Dy, 2+1

Table 1. Energy levels for tha* potential from the TBA, compared with previous results.

Er (TBA) Er (QM)

1.060362090484 18 1.060 362090484 182899 65

3.799673 029801 39 3.79967302980

7.455697 937986 72 7.455 697 937 986 738 392 16
11.64474551137815 11.6447455%14
16.26182601885024  16.261826 018850225937 89
5 21.23837291823595 21.2383729%82

A WNPRFELO| =

afrom [5, 9].
b from [3].
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Table 2. Energy levels for tha® potential from the TBA compared with previous results.

E; (TBA) E; (QM)

4.338598 711513990 4.338598 7915
9.073084 560921 449 9.07309
3  14.93516963491078 14.935169 6349

k
0 1.144802453 797075 1.144802 453797 07
1
2

a From table 2 of [11].
b From table I of [9].
¢ From table VII of [4], rescaled by%*.

Table 3. Energy levels for tha® potential from the TBA compared with previous results.

E; (TBA) E; (QM)

1.2258201138005  1.22582011382
4.7558744139607  4.7588

10.2449469772369  10.2450

3 17.3430879705857 17.3483

k
0
1
2

@ From table 2 of [11].
b From table VI of [4], rescaled by*2°.

Lie algebras (cf [14, 16, 19]), for which the-systems are
T T\ T o
Y, (9 |h)Yu (9+|h)_£[1(1+y,,(9)) (13)

wherer is the rank and,;, the incidence matrix of the relevant Dynkin diagram. However, the
constants, (9 = —oo) do not match the value sin/(2M + 2))~ of D,,(0). But all is not
lost: we can invoke another system of functional relations, related tBthestem, called the
T-system (cf [21]):

T, (9 _ |%) T, (9 + %) =1 +}[[1Tb(0)’“” (14)
with Y, (0) = [T,_, T»(0)'». WhenM = 2 we havel,(9) = Y1(0), and so we can also search
for our generalization amongst tie-systems. Asymptotic checks lead to the conjecture
that Dy, (E) coincides with the functio, (6) of the masslesd,,,_1 TBA system obtained
from equation (9) by setting = 2M, replacing the terms:,» coshd by m,re’, and setting
myr = by and &* = E. This was checked using the fact that the zerdEpfd) on the line
Im6& = (h + 2)7r/2h correspond to zeros of 1¥,(#) on the line Imp = /2, and these can
be located using (9) and thesystem as before. Tables 2 and 3 show some resultd fer3
and 4.

The story might have ended here, but in fact it goes considerably further. Following [9],
we begin by asking about potentials of odd degree, so that the confining potenti&¥iswith
M now allowed to be a half-integer. It helps to split the eigenvalues according to the parity of
their eigenfunctions, decomposi¥ £) accordingly asD(E) = D*(E)D ™ (E), with

E
D*(E) = D* — .
(E) = D*(0) ];[en (1 + Ek) (15)
kodd
These spectral subdeterminants together satisfy a rather simpler equation than that obeyed by
the full spectral determinant, which also holda4fis a half-integer [8]:
QY2D*(QEYD™(QE) — Q YV2DY(QE)D (L YE) = 2i (16)
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whereQ = €7/M*D_ This is very similar to the so-called ‘quantum Wronskian’ condition
satisfied by th&-operators introduced in [22]. The similarity becomes more striking when
the condition is written in terms of the operatots (1) = AP/ Q.. (1):

a?1F A (@A (V) — 7P ALV A (gY?) = 2isin2x P). (17)

The parameterg and 82 are related by, = &7, As it stands, this is an operator equation,
but it becomes a functional equation when applied to the simultaneous eigenvecigrsef

the operatorsA. (1) and P, defined viaAL(A)|«, p) = AL (A, p)la, p), Pla, p) = pla, p).

(We refer the reader to [22] for the background to these definitions.) For brevity we will leave
the p-dependence of the eigenvalues(i, p) implicit from now on; they are entire functions

of A2, with AL (0) = 1, and a finite number of complex and negative real zeros. The remaining
zeros accumulate towardscralong the positive real axis of thé-plane. To choose particular
eigenvalues as candidate spectral subdeterminants, we recall that the Z2tqg&pfie on the
negative reaF axis. This selects the ‘vacuum eigenvaluag‘) (), for whichall of the zeros

lie on the real axis of tha?-plane, and suggests to identiA&)(vEl/z) with e D*(—E),

using the following dictionary, where as befqrte= (M + 1)/2M:

B2 =1/(M+1) p=1/(4M +4)
-1
v =(2M +2)" Y2 (i)
21

-1
ot = /m(@2M + 2T }j:i )
2 4du

Note,a*a™ = sinz/(2M + 2). The constant is fixed by comparing the behaviour af. (1)
asi? — —oo [22] with that of D*(E) asE — +oo [10]:

(18)

1\ 2
INAz(h) ~ (M + 1T <ﬂ) ao(—1?) (19)
In D*(E) ~ $agE" (ap = bo/ (2 sinum)).

Finally, the zeros oﬂi? (1) should all lie on thepositivereal axis of thev?-plane if they are

to map onto those ob*(E). This holds ifF2p > —p? [22], a condition which is indeed

met here. For a more precise check, we sought some numerical evidence. As in [22], consider
the functions:{” (1) = =47 AL (1) /AL (¢711). The so-called’—Q relation implies that

they assume the valuel precisely at the zeros eithemfﬁ)(x), or of arelated entire function

T (»). For the vacuum eigenvalues, the zerog ¢f) are away from the positive real axis and

so a search of this line for zerosaf’ (1) + 1 will allow us to locate the zeros of}’ (1). At

the values ofp andg given by (18), the functiong..(6) = Ina'” (¢//2) solve the following
nonlinear integral equations (NLIE):

fe(0) = —3ibov~ ¢ +/ @6 —6')In(L +e*)do’
C1

—/ 00 —0)In(A+e = do' +in/2 (20)
Ca
where the contour§; andC, run from —oo to +oo, just below and just above the reabxis,
and
- = . 21

w 2CoshZwsinhZ&w 27 § M (21)
Such equations first arose in [23, 24], in the contexts of the (twistedY model, and the
sine—Gordon model at couplirgy

0 A cinh T (&
<p(9)=/ €’ sinhZ (¢ — Do do 1
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Table 4. Energy levels for théx|1%4 potential computed using equation (20), compared with direct
QM results.

=~

E; (NLIE) E; (QM)

0 1.0503451122723 1.05034511
1 3.719071 0425856 3.71907104
2 7.206 1514537816 7.206 15145
3 11.148641889036 11.1486419

Solving (20) numerically, we can now test the conjecture (18). Moe 2, 3, 4, the
results of tables 1-3 were reproduced, with disagreements being typically in the last quoted
digit of the TBA data. Next we se¥/ = g and obtained the results quoted in [10] for the
|x|® potential. It was then natural to conjecture that the identification remains valid at arbitrary
M > 1. Inthe absence of suitable published data, we used the MAPLE package to diagonalize
the Hamiltonian (1) in a basis of harmonic oscillator eigenfunctions, as in [10]. Agreement
with (20) was confirmed for various potentiak§®"; some results foM = 1—85 are shown in
table 4.

For M < 1, the formulae for the determinants become divergent and need further
regularization [10]; at the same time, the calculations of [22] depart from the so-called
‘semiclassical domain’ and must be modified. Nevertheless, we have evidence that the
correspondence continues to hold. Mt= 1, the sine—Gordon model is at the free-fermion
point, the kernel (21) vanishes, and the energy legls= (2k + 1) of the simple harmonic
oscillator are easily recovered. ThenMt= % the D*(E) are known in closed form [10],
leading to the predictions

aV(WEY?) = QAI(-Q%E)/ Ai(—Q72E)
a” (WEY?) = QLA (—QPE)/ AV (—-Q2E)

where Ai(E) is the Airy function and2 = €**'/3. These were verified to 15 digits. Note that
B% = % for M = %: this is theN = 2 supersymmetric point of the sine—-Gordon model, and
it is tempting to conjecture a link with the Pain&ll results of [25], though this remains to
be elucidated. Finally, we made a numerical check against MAPLE resuMs=at’, again
finding agreement.

WhenM is an integer the potential is analytic; it is interesting that these cases are mapped
onto the reflectionless points of the sine—-Gordon model. In the TBA framework, these are
described byD,.;-related systems, with the twigt = 1/(4M + 4) implemented through
fugacitiesti on the fork nodes/ andM + 1 (see [25] for similar manceuvres in the repulsive
regime). It can be checked that, for the ground state wjith= ¢,,.1, this is equivalent to an
Aoy _1-related system, thus making a link with the approach described in the first half of this
paper.

(22)
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Note added in proofWe have now learnt that the result (22) has been obtained previously [26], and also that relations
of the form (6) have arisen in the context of integrable lattice models in [27]. We would like to thank Paul Fendley
and Paul Pearce for informing us of this work.
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