
12 September 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

SimpleHypergraphs.jl—novel software framework for modelling and analysis of hypergraphs

Publisher:

Published version:

DOI:10.1007/978-3-030-25070-6_9

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer Verlag

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1943730 since 2023-12-28T17:11:55Z

SimpleHypergraphs.jl — Novel Software
Framework for Modelling and Analysis of

Hypergraphs ?

Alessia Antelmi1, Gennaro Cordasco2, Bogumi l Kamiński3, Pawe l Pra lat4,
Vittorio Scarano2, Carmine Spagnuolo2, and Przemyslaw Szufel3

1 Dipartimento di Informatica, Università degli Studi di Salerno, Italy
aantelmi@unisa.it,vitsca@unisa.it,cspagnuolo@unisa.it

2 Dipartimento di Psicologia, Università degli Studi della Campania “Luigi
Vanvitelli”, Italy gennaro.cordasco@unicampania.it

3 SGH Warsaw School of Economics, Poland bkamins@sgh.waw.pl,

pszufe@sgh.waw.pl
4 Department of Mathematics, Ryerson University, Toronto, ON, Canada

pralat@ryerson.ca

Abstract. Hypergraphs are natural generalization of graphs in which
a single (hyper)edge can connect any number of vertices. As a result,
hypergraphs are suitable and useful to model many important networks
and processes. Typical applications are related to social data analysis
and include situations such as exchanging emails with several recipients,
reviewing products on social platforms, or analyzing security vulnera-
bilities of information networks. In many situations, using hypergraphs
instead of classical graphs allows us to better capture and analyze de-
pendencies within the network. In this paper, we propose a new library,
named SimpleHypergraphs.jl, designed for efficient hypegraph analy-
sis. The library exploits the Julia language flexibility and direct support
for distributed computing in order to bring a new quality for simulating
and analyzing processes represented as hypergraphs. In order to show
how the library can be used we study two case studies based on the Yelp
dataset. Results are promising and confirm the ability of hypergraphs to
provide more insight than standard graph-based approaches.

Keywords: Hypergraphs · Modelling hypergraphs · Software library ·
Julia programming language

1 Introduction

Many human-technology interaction situations generate data that can be viewed,
based on the type of interaction, as a self-organizing network. In these networks
(for example, the Yelp on-line social network) nodes not only contain some use-
ful information (such as user’s profile, photos, reviews) but are also internally

? The research is financed by NAWA — The Polish National Agency for Academic
Exchange.

2 A. Antelmi et al.

connected to other nodes (relations based on similar user’s behaviour, similar
taste, age, geographic location). Indeed, the proliferation of cellular usage has
given rise to massive amounts of data that, through data mining and analyt-
ics, promises to reveal a wealth of information on how users interact with one
another and shape the preferences of others.

Hypergraphs are of particular interest in the field of knowledge discovery
where most problems currently modelled as graphs would be more accurately
modelled as hypergraphs. Indeed, hypergraphs are natural generalization of
graphs where one edge consists of several vertices instead of just a pair of ver-
tices. This feature makes the hypergraphs particularly useful for modeling real
world systems in which many references occur simultaneously. Examples include
sending emails to many people, co-authorships of scientific publications, or sev-
eral parties participating in a crypto-currency transaction. All of these complex
real-world systems can be efficiently modelled with hypergraphs. Moreover, hy-
pergraphs can also be extremely helpful, in computational social science, for the
development of computer simulations [18,19]. Indeed, hypergraphs can be used to
model any complex interaction among a group of simulated agents. Despite this
fact, the theory and tools are not sufficiently developed to allow most problems
to be tackled directly within this context.

The goal of this paper is to introduce a new library designed for efficient
hypergraph analysis in the Julia language named SimpleHypergraphs.jl. The
library makes an excessive use and is built on top of LightGraphs.jl, which is an
efficient high-performance engine for graph analytics. Combined with language
flexibility and direct support for distributed computing, the SimpleHypergraphs.jl
library can bring a new quality for simulating and analyzing processes repre-
sented as hypergraphs.

The paper is structured as follows. In Section 2, we start with a review of
the existing frameworks dealing with hypergraphs, describe the motivation and
introduce the SimpleHypergraphs.jl library and its functionality. In Section 3,
a use case with analysis of Yelp reviews is presented with the aim to show a
real-life application of the developed library. Finally, we sum up the paper in the
Conclusions section.

2 Modelling and hypergraphs with SimpleHypergraphs.jl

In this section we start by introducing motivation for the hypegraph library and
next we move towards describing its functionality.

2.1 Motivation

Despite the fact that hypergraphs are natural representations of many real-world
systems, there are currently very few software frameworks that are suitable for
modelling and mining hypergraphs. In this Section, we give a brief overview of
several software libraries, focusing on their code availability and capability in
modelling and analyzing hypergraphs.

– Chapel HyperGraph Library (CHGL) [3] that has been developed by
the Pacific Northwest National Laboratory since 2018 and is released under

Title Suppressed Due to Excessive Length 3

MIT license. CHGL is a library for the emerging parallel language Chapel.
The library provides the AdjListHyperGraph module that allows to store
hypergraphs on shared and distributed memory. The library is not well doc-
umented and does not provide an easy mechanism for the 2-section and
bipartite view analyses. However, it is worth mentioning for its functionality
for parallel and distributed computing.

– HyperX [6] is a scalable framework for processing hypergraphs and learning
algorithm built on top of Apache Spark. This library supports the same de-
sign model of GraphX, the Apache Spark API for graphs and graph-parallel
computation written in Scala language. An interesting feature of this library
is that it provides native support for hypergraph elaboration. The standard
approach uses the bipartite or the 2-section representation of hypergraphs
and exploits GraphX library, while HyperX directly processes hypergraph
data obtaining significant speedup compared to the standard approach.

– Pygraph [11] is a pure Python library for graph manipulation released
under the MIT license. It has almost all basic functionalities on graphs im-
plemented but also supports hypergraphs by exposing the class hypergraph.
This library does not provide any specific optimization and functionalities
for hypergraphs.

– Multihypergraph [9] is a Python package for graphs released under GPL
license. The library emphasizes the mathematical understanding of graphs
rather than the algorithmic efficiency and provides support for hyper-edges,
multi-edges, and looped-edges. This library provides only graph model mem-
ory definition and isomorphism functionalities without implementing any
other functionalities and algorithms for graphs and hypergraphs.

– HyperNetX [5] is a Python preliminary library released in 2018 under
the Battelle Memorial Institute licence5. The library generalizes traditional
graph metrics (such as vertex and edge degrees, diameter, distance, etc.) to
hypergraphs, and provides good documentation and tutorials. The library
supports the bipartite representation of a hypergraph, along with the possi-
bility to load hypergraphs from their bipartite view. Furthermore, it provides
some simple visualization functionalities for hypergraph.

– Halp [2] is a Python software package providing both a directed and an undi-
rected hypergraph implementation as well as several important and classical
algorithms. The library is developed by Murali’s Research Group at Virginia
Tech released under GPL license. The library provides several statistics on
hypergraphs and model transformations in graphs supported by the Net-
workX Python library. In addition, several algorithms for hypergraphs, such
as k-shortest-hyperpaths, random walk, directed paths, are implemented.

– HyperGraphLib [4] is a C++ implementation of hypergraphs that ex-
ploits the Boost Library, which also defines the library license. This library
provides basic functionalities for hypergraphs and implements some simple
metrics. Moreover, it also provides some isomorphisms functionalities and
path-finding algorithms. However, it does not implement any kind of hyper-

5 https://github.com/pnnl/HyperNetX/blob/master/LICENSE.rst

4 A. Antelmi et al.

graph representations (such as bipartite or 2-section) nor software integration
with other graph libraries.

– Iper [7] is a JavaScript library for hypergraphs released under MIT license.
The library provides the definitions of hypergraphs and allows the user to
define meta information for vertices. However, it does not include any kind of
hypergraph transformation/representations and integration with other graph
libraries for classical statistics and algorithms.

– NetworkR [10] is an R package with a set of functions for analyzing so-
cial and economic networks including hypergraphs. It includes analyses such
as degree distribution, diameter, and density of the network, as well as mi-
croscopic level analysis such as power, influence, and centrality of individual
nodes. The library does not provide support for meta information on vertices
and hyperedges and provides only hypergraphs projection into graphs.

– Gspbox [1] is an easy to use Matlab toolbox that performs a wide variety of
operations on a graph. It is based on spectral graph theory and many of the
implemented features can scale to very large graphs. Gspbox supports hyper-
graphs modeling, including ability for hyperedges to have weights assigned,
and for vertices to have coordinates in the space. The hypergraph manip-
ulation is obtained by representing the model as a graph. For this reason,
despite the fact that all graph functionalities are available, the library does
not provide any kind of specific solutions or optimization for hypergraphs.

Overall, all the considered libraries settles a compromise between efficiency
(which characterizes low level languages, such as C/C++) and easy-of-use/ ex-
pressiveness (which characterized interpreted and/or scripting languages like
Python and R).

In this work, we are proposing a library, which exploiting the Julia language
ensures both efficiency and expressiveness. Julia is a new programming lan-
guage developed at MIT [16]. The language uses a syntax similar to popular and
easy-to-use scientific computing languages like Python or R. This means that
experience in those languages can be directly applied in Julia by computational
scientists [21,29]. Moreover, a distinguishing feature of Julia is that while keep-
ing mathematics-oriented syntax it makes it possible to compile the code to a
binary form. In result it means that the observed performance of Julia programs
is very similar to that of C++, however with around 4 times less lines of code.

The library SimpleHypergraphs.jl is available on a GitHub public reposi-
tory6, where the library documentation is also provided7. Additionally, several
tutorials are available in the form of Jupyter Notebooks8. This Section describes
the library design and motivations behind its implementation. Furthermore, li-
brary functionalities of the 1.0 version will be discussed.

6 https://github.com/pszufe/SimpleHypergraphs.jl.
7 https://pszufe.github.io/SimpleHypergraphs.jl/latest/reference/.
8 https://tinyurl.com/y5btobdk.

https://github.com/pszufe/SimpleHypergraphs.jl
https://pszufe.github.io/SimpleHypergraphs.jl/latest/reference/
https://tinyurl.com/y5btobdk

Title Suppressed Due to Excessive Length 5

2.2 Definitions and Notation

Hypergraphs are natural generalization of well-known and widely used graphs.
Formally, a hypergraph is an ordered pair H = (V,E) where V is a set of vertices
and E is a set of edges. Each edge is a non-empty subset of vertices; that is,
E ⊆ 2V \ {∅}, where 2V is the power set of V . We will use n = |V | and m = |E|
for the size of the vertex set and, respectively, the edge set. Indeed, hypergraphs
are generalization of graphs in which each edge is a two element subset of V ;
that is, hypergraph G = (V,E) is a graph if E ⊆

(
V
2

)
⊆ 2V \ {∅}.

2.3 Library design and functionalities

SimpleHypergraphs.jl represents a hypergraph H = (V,E) as an n×k matrix,
where n is the number of vertices and k is the number of hyperedges. In other
words, each row of the matrix is associated with a vertex and indicates the hyper-
edges the vertex belongs to. The proposed library stores in-memory a hypergraph
using its matrix representation. Vertices and hyperedges are uniquely identi-
fied by progressive integer ids, corresponding to rows (1, . . . , n) and columns
(1, . . . , k), respectively. Each position (i, j) of the matrix denotes the weight of
vertex i within the hyperedge j. In addition, the library provides several con-
structors for defining meta information type and enables to attach meta-data
values of arbitrary type to both vertices and hyperedges.

The library APIs are designed in similar fashion of the popular library for
graph manipulation LightGraphs.jl, this provide to the programmers a familiar
environment.

Hypergraph constructors. Based on the previous consideration, the Julia
hypergraph object is defined as:

Hypergraph{T, V, E} <: AbstractMatrix {Union{T, Nothing }}

where T represents the type of the weights stored in the structure while V and
E are the type of values stored in the vertices and edges of the hypergraph,
respectively.

Functions. SimpleHypergraphs.jl provides several accessing and manipulat-
ing functions:

– add vertex!, adds a vertex to a given hypergraph H. Optionally, the vertex
can be added to existing hyperedges. Additionally, a value can be stored
with the vertex using the vertex meta keyword parameter.

– set vertex meta!, sets a new meta value new value for vertex id in H.

– get vertex meta, returns a meta value stored at vertex id in H.

– get vertices, returns vertices from a H for a given hyperedge heid.

The same functionalities are provided for the hyperedges.

Hypergraph Transformations. The library provides two hypergraph trans-
formations into the corresponding graph representation:

6 A. Antelmi et al.

(a) G Bipartite View of H (b) G 2-section View of H

Fig. 1: (H)ypergraph transformations.

1. BipartiteView is a bipartite representation of a hypergraph H. As described
in Bretto [17], this representation is an incidence graph of hypergraph H =
(V,E); that is, a bipartite graph IG(H) with vertex set S = V ∪ E, and
where v ∈ V and e ∈ E are adjacent if and only if v ∈ e. Figure 1a (on the
left) depicts a simple example of bipartite view.

2. TwoSectionView is a 2-section representation of a hypergraph H. As de-
scribed in Bretto [17], this representation of a hypergraph H = (V,E), de-
noted by [H]2, is a graph whose vertices are the vertices of H and where two
distinct vertices form an edge if and only if they are in the same hyperedge
of H. As a result, each hyperedge from H occurs as a complete graph in G.
The weight of an edge corresponds to the number of hyperedges that con-
tain both the endpoints of the edge. Figure 1b (on the right) shows a simple
example of the 2-section view.

Both Views are instances of the AbstractGraph graph object defined by
the LightGraphs.jl library [8]. When the view is materialized—according to
LightGraphs.jl specifics—the generated graph does not include any meta in-
formation.

Hypergraph I/O. The library currently offers a basic mechanism to load/save a
hypergraph from/to a stream. Given hypergraph H is stored using the following
format. The first line consists of n and k, the number of vertices and, respectively,
the number of edges of H. The following k rows describe the actual structure of
H. Each row represents one hyperedge as a list of all vertex-weight pairs within
that hyperedge.

2.4 Hypergraph Modularity

One of the most important properties of complex networks is their community
structure, that is, the organization of vertices in clusters, with many edges joining
vertices of the same cluster and comparatively few edges joining vertices of dif-
ferent clusters. In social networks communities may represent groups by interest,
in citation networks they correspond to related papers, in the Web communities
are formed by pages on related topics, etc. Being able to identify communities in
a network could help us to exploit this network more effectively. In our example,
clusters in Yelp hypergraph may help to find similar restaurants, discovering
users with similar interests that is important for targeted advertisement.

Title Suppressed Due to Excessive Length 7

The key ingredient for many clustering algorithms is modularity, which is at
the same time a global criterion to define communities, a quality function of com-
munity detection algorithms, and a way to measure the presence of community
structure in a network. Modularity was introduced by Newman and Girvan [27]
and it is based on the comparison between the actual density of edges inside a
community and the density one would expect to have if the vertices of the graph
were attached at random, regardless of community structure. The modularity
function was recently generalized to hypergraphs [24] but no fast, heuristic algo-
rithms are developed yet for this hypergraph counterpart. Our goal is to propose
a number of potential solutions in the forthcoming paper and in this paper we
present applicability of this method that has been already implemented in the
SimpleHypergraphs.jl library.

3 Use case—Yelp dataset

In this section, we present a practical application of the SimpleHypergraphs.jl
library. We especially focus on and analyze Yelp dataset consisting of reviews
of restaurants. A natural representation of such data is a hypergraph in which
vertices are associated with restaurants and hyperedges are associated with re-
viewers who reviewed various restaurants. The topology of this hypergraph al-
lows us to find clusters of restaurants that are commonly reviewed together.
As hypergraph clustering is an example of an unsupervised learning technique,
our goal is to learn if such clusters are related to some natural characteristics
of underlying restaurants. Such analysis allows us to better understand which
factors (ground-truth) influence the changes that two restaurants are reviewed
together. To that end we propose a methodology to measure and then to com-
pare the results of hypergraph clustering against various possible ground-truth
variables (here the main challenge is to develop a measure comparable across
different ground truths). Since the Yelp dataset is used only as an example,
the proposed approach can be used to identify ground-truths in other datasets
that are represented as a hypergraph. As side effect of this use case, we also
show that the hypegraph based approach conveys more information about the
ground-truth properties of a hypergraph than a standard graph analysis ap-
proach. In particular, we compare the results obtained for hypergraphs with the
corresponding results for 2-section, and show that hypergraph clusters provide
uniformly more information than their graph counterpart. Additionally, when
analyzing the data we consider different sub-hypegraphs, namely, we examine
hypergraphs containing only reports with a given number of stars, from 1 to 5.
This approach sheds some light on how review linkages are formed; in particular,
we test how the mechanism behind those linkages differs across different review
classes.

An interesting property that is worth to investigate, typical to many such
networks, is the community structure, that is, the division of networks into
groups of vertices that are similar among themselves but dissimilar from the
rest of the network. The capability to detect the partitioning of a network into
communities can give important insights into the organization and behaviour of
the system that the network models.

8 A. Antelmi et al.

Data Instances Description

Business 192,609 Business data including location, attributes, and categories.
User 1,637,138 User data including the user’s friend mapping and all the

metadata associated with the user.
Review 6,685,900 Full review text including the user id that wrote the review

and the business id the review is written for.
Picture 200,000 Photo data including caption and classification (one of

“food”, “drink”, “menu”, “inside” or “outside”).
Tip 1,223,094 Tips written by users on businesses. Tips are shorter than

reviews and tend to convey quick suggestions.
Check-in 192,609 Aggregated check-ins over time for each business.

Table 1: Yelp entities contained in the dataset.

3.1 The Yelp Open Dataset

Yelp is an online platform where customers can share their experiences about
local businesses by posting reviews, tips, photos, and videos. It allows businesses
and customers to engage and transact [12]. Every year, the Yelp Inc. Company
releases part of their data as an open dataset to grant the scientific commu-
nity to conduct research and analysis on them. Some interesting articles that
use the Yelp dataset for their analysis can be found in [22,23,25,26]. As a use
case, we analyzed the 2019 Yelp Challenge dataset [13], containing information
about businesses, reviews, and users. Table 1 describes all the accessible dataset
entities. A more detailed description can be found on the official page [14].

Figure 3 (on the left) presents business categories distribution, where a cate-
gory is a label describing the typology of the business such as Bars or Shopping
along with the number of reviews associated with each category. It highlights
the category distribution evaluated over all businesses. As clearly visible from
the plot, the most common business typology is Restaurant. For this reason, we
focused our analysis on this business subgroup. Figure 3 (on the right) shows
the category distribution evaluated only within the Restaurant macro-category.
Both Figures show top-20 most common categories.

3.2 The Yelp Hypergraph

We model Yelp dataset using a hypergraph H = (V,E), where V represents
businesses and E represents users of Yelp. In particular, each hyperedge repre-
senting user u contains businesses u has written at least one review for. Figure 2
shows an example hypergraph representing a Yelp data subset. As shown in the
figure, the hypergraph H is defined by four businesses (V = {b1, b2, b3, b4}) and
three users (E = {u1, u2, u3}). For instance, hyperedge u1 connects businesses
b1, b2, and b4, as the corresponding user have written reviews for each of the
listed business.

Since processing the entire Yelp dataset is a heavy computationally task, for
our purpose we have decided to explore only a subset of it. We have modelled
the Yelp hypergraph according to the following building strategies:

Title Suppressed Due to Excessive Length 9

Fig. 2: Yelp Hypergraph defined by the users reviews.

1. yelpdataset1 is a random selection of reviews of specific sizes. It is worth
mentioning that such selection of reviews defines also the number of busi-
nesses involved. Indeed, our analysis are executed on connected hypergraphs
that are obtained by removing isolated vertices and small components.

2. yelpdataset2 is a subset of those businesses that belong to the category
“restaurant” (note that some businesses have more than one category; in
such cases we select one category from its categories set according to the
frequencies (highest) in the whole dataset).

A
rt
s
&

Ent
er

ta
in

m
en

t

H
om

e
&

G
ar

de
n

Piz
za

H
ai
r
Sa

lo
ns

Fa
st

Fo
od

C
off

ee
&

Tea

Sa
nd

w
ic
he

s

Fa
sh

io
n

A
ct

iv
e
Life

Eve
nt

Pla
nn

in
g

&
Se

rv
ic
es
B
ar

s

N
ig
ht

lif
e

A
ut

om
ot

iv
e

Loc
al

Se
rv

ic
es

H
ea

lth
&

M
ed

ic
al

B
ea

ut
y

&
Sp

as

H
om

e
Se

rv
ic
es

Fo
od

Sh
op

pi
ng

R
es

ta
ur

an
ts

0

20,000

40,000

60,000

|B
u
si
n
es
se
s|

0

1,000,000

2,000,000

3,000,000

4,000,000

|R
ev

iew
s|

Businesses

Reviews

C
aj

un
-C

re
ol
e

H
aw

ai
ia
n

Por
tu

gu
es

e

Lat
in

A
m

er
ic
an

G
re

ek

C
ar

ib
be

an

M
id

dl
eE

as
te

rn

Fr
en

ch

K
or

ea
n

V
ie
tn

am
es

e
T
ha

i

C
an

ad
ia
n(

N
ew

)

A
sia

nF
us

io
n

In
di

an

M
ed

ite
rr
an

ea
n

A
m

er
ic
an

(N
ew

)

It
al
ia
n

C
hi

ne
se

M
ex

ic
an

A
m

er
ic
an

(T
ra

di
tio

na
l)

0

2,000

4,000

6,000

8,000

|R
es
ta
u
ra

n
ts
|

0

200,000

400,000

600,000

800,000

|R
ev

iew
s|

Restaurants

Reviews

Fig. 3: Businesses (left) and Restaurants (right) distribution and number of re-
views associated with each category.

3.3 Results

We are interested in the following two research questions. First of all, our goal
was to investigate whether modelling the Yelp dataset with hypergraphs gives
qualitatively more information than looking at the corresponding 2-section graph

10 A. Antelmi et al.

representation. Then we compared the information provided by the three hyper-
graphs consisting of positive, neutral and negative reviews. In this case, the
research question is: are the three hypergraphs similar or different? In order to
answer the two questions, we set up two experiments explained below.

Experiment I: “Forecasting stars”. This experiment tries to forecast the
number of stars of a given business v, based on the information available in
the local neighbourhood of v. Two different strategies have been developed,
one is based on the information provided by hypergraph H defined above, and
one is based on the information provided by the weighted 2-section of the same
hypergraph. Here, the weight of an edge (u, v) corresponds to the number of users
that reviewed both u and v, that is, the number of hyperedges that contain both
u and v.

For the first strategy (on hypergraph H), for each business u, we first compute
the average number of stars for all hyperedges containing u; in each hyperedge
e, the average is computed excluding u. This corresponds to the typical rating
given by the user associated with e. Then, the forecast for the number of stars
of u is obtained as the average over the values computed at the previous step.
In other words, the forecast of the number of stars of u is the average over the
averages in each hyperedge involving u. Formally,

s′i(u) =
1

|E(u)|
∑

e∈E(u)

 1

|e| − 1

∑
v∈e,v 6=u

s(v)

 ,

where s(v) denotes the number of stars associated to v, E(v) denotes the set
of hyperedges that contains v, and s′i(u) denotes the forecasted value for u for
strategy i.

The second strategy exploits the weighted 2-section graph. In this case, the
forecast of the number of stars of u is the weighted average over the neighborhood
of u. Formally,

s′2(u) =

∑
e=(u,v)∈E

s(v)w(e)∑
e=(u,v)∈E

w(e)
,

where w(e) denotes the weight of edge e.
In order to compare the two strategies, we computed their average error as

follows:

erri =

∑
u∈V

|s(u)− s′i(u)|

|V |
.

We performed our experiment on several instances of yelpdataset1, varying the
number of reviews used. The left side of Figure 4 depicts the obtained results
for stars’ forecast experiment. The error value err2 using the weighted 2-section
graph is always greater than the error value err1 obtained for the hypergraph
representation.

Title Suppressed Due to Excessive Length 11

2.5 · 105 5 · 105 7.5 · 105 1 · 106
0

0.2

0.4

0.6

0.8

1

|Reviews|

err

Graphs

Hypergraphs

Fig. 4: Stars’ forecast varying the dimension of the reviews set on yelpdataset1.

We also experimented with forecasting on yelpdataset2, obtaining similar
results; the error for graphs is always close to 0.6 while the error for hypergraphs
is always close to 0.5. Both the results are promising since the average number
of stars obtained by businesses are around 0.5 and so it is important to be
able to accurately predict low rated instances. Our experiment shows that the
information provided by the hypergraph is more accurate than the information
provided by the corresponding weighted 2-section.

Experiment II: Positive, neutral, and negative reviews. The second ex-
periment examines the amount of information given by different kind of reviews,
depending on the number of stars associated to them. We used yelpdataset2
but due to the performance issues, we restricted the set of businesses to restau-
rants category, as described in Section 3.2. Five hypergraphs were built after
partitioning the reviews into five categories: 1 stars, 2 stars, . . . , 5 stars.

In the dataset we have 342,044 1-star reviews, 281,307 2-star reviews, 402,053
3-star reviews, 791,068 4-star reviews and 1,188,558 5-star reviews. Hence, we
decided to build five hypergraphs, one for each set of reviews. Henceforth, for
i = 1, 2, . . . , 5, we will denote by Hi, the hypergraph generated using the set of
reviews having i stars and by Gi the corresponding 2-section view graph.

Stars Hi (|V |; |E|) Gi (|V |; |E|) Gi Modularity Gi Triangles

1 (29479; 244671) (29479; 240412) 0.6210 1,158,341

2 (28055; 173140) (28055; 484527) 0.7173 6,491,497

3 (30369; 177792) (30369; 2636712) 0.6616 289,584,451

4 (32987; 301578) (32987; 4384044) 0.6857 404,709,664

5 (32558; 590320) (32558; 2187473) 0.6657 104,128,714

Table 2: Graphs Statistics.

12 A. Antelmi et al.

Stars Hi (|V |; |E|) City State Alcohol Noise Level Take Out Category

1 (29479; 244671) 0.8833 0.9562 0.8166 0.8104 0.8176 0.8163

2 (28055; 173140) 0.8582 0.9462 0.7744 0.7651 0.7731 0.7702

3 (30369; 177792) 0.8132 0.9226 0.7075 0.6940 0.6966 0.6965

4 (32987; 301578) 0.7812 0.9081 0.6573 0.6385 0.6419 0.6400

5 (32558; 590320) 0.8027 0.9145 0.6963 0.6797 0.6894 0.6841

ALL (35856; 950488) 0.7500 0.8985 0.6162 0.5919 0.6013 0.5967

Table 3: Hypergraph modularities for various number of stars and various ground
truth based partitioning conditioned on properties of restaurants.

First, we computed some statistics on the five hypergraphs and their corre-
sponding 2-section views. The collected information can be found in Table 2. This
preliminary analysis shows that the five hypergraphs/graphs are quite different.
For instance, for the 2-section graphs, the number of edges, and the number of
triangles exhibit a “bell-shaped” trend as a function of the number of stars. As a
result, we shift our attention to their ability to detect the community structure,
that is, the division of the vertex set into groups of restaurants that are similar
among themselves but dissimilar from the rest of the network. In order to eval-
uate this feature, we decided to run some community detection algorithms on
each graph/hypergraph. We then compared the obtained results with a ground
truth restaurant partitioning, based on the “type of cuisine” provided by the
system. This ground truth partitioning is composed of 55 categories of which
the largest (American Traditional) comprises 7,107 restaurants.

The Table 3 contains modularity values for various partitionings of the hype-
graph. In order to calculate modularities we used approach presented in [24] that
we have implemented as the modularity function in the SimpleHypergraphs.jl
library. One can see that the modularity is strongest when we uses city or state
to partition the hypergraph. This means that people doing reviews usually use
restaurants within the same city and if restaurants in different cities are reviewed
by a single person they are usually in the same state. It can be noted that re-
views with one star have the strongest modularity values across all partitionings.
This probably means that there is a group of people who have a stronger ten-
dency to submit negative scores on the base of some ground-truth property of a
restaurant.

Several community detection algorithms have been proposed in the literature.
A review of the various methods available can be found, for example, in [20,15].
For graphs, we decided to opt for a label propagation (LP) strategy proposed
by Raghavan et al. [28]. This strategy can be summarized as follows: each node
is initially given a unique label (initialization); at each iteration, each node is
updated by choosing the label which is the most frequent among its neighbours
(propagation rule)—if multiple choices are possible (as, for example, at the very
beginning), one among the candidate labels is picked randomly. The algorithm
terminates at the first iteration that leaves the label configuration unchanged

Title Suppressed Due to Excessive Length 13

or after the predefined number of iterations (termination criteria). We exploited
the LP implementation provided by the Julia LightGraphs library [8].

For hypergraphs, we implemented an ad-hoc label propagation strategy which
generalizes the algorithm in [28] for hypergraphs. The proposed algorithm shares
the initialization phase as well as the termination criteria with the standard label
propagation algorithm. On the other hand the propagation rule is, in this case,
composed of two phases: hyperedge labelling and vertex labelling. During the
hyperedge labeling phase, labels of hyperedges are updated according to the
most frequent label among the vertices that belong to the edge. Then, during
the vertex labeling phase, label of each vertex is updated by choosing the label
that is the most frequent among the hyperedges it belongs to.

Both algorithms have been executed setting the maximum number of itera-
tions to 100. We compared the partitions obtained running the label propagation
strategies described above with the ground truth partition in order to learn how
much they are related. Several measures to evaluate the correlation between the
two partitions have been borrowed from information theory. In particular, by
considering a partition as a probability distribution, the Normalized Mutual In-
formation (NMI) is often used to measure their correlation. Several variants of
the NMI have been defined (see, for example, [30] for a detailed discussion). In
this paper we use the sum variant which is defined as follows:

NMI(X,Y) =
I(X,Y)

H(X) + H(Y)
, (1)

where I(X,Y) denotes the Mutual Information (that is, the shared information
between the two distributions X and Y) and H(X) denotes the Shannon Entropy
(that is, the information contained in the distribution) of X. NMI enjoys several
interesting properties: namely it is a metric and lies within a fixed range [0, 1].
Specifically it equals 1 if the partitions are identical whereas it has an expected
value of 0 if the two partitions are independent.

1 2 3 4 5
0

0.1

0.2

Stars

NMI

Graphs

Hypergraphs

Fig. 5: Then NMI between the ground truth partition and the 10 partitions
obtained running the label propagation algorithm on the five hypergraphs and
on the corresponding 2-section views.

14 A. Antelmi et al.

Results appear in Figure 5. Although the correlation in general is not very
high (the best result is 0.23 for H5), the figure provides two interesting points.
First, in all the five considered cases, the quality of partitioning provided by
hypergraphs is always better than that provided by the corresponding 2-section
view graph. Moreover, also in this case, the results appear in the form of an
“inverted bell shape” (the best results in this case are given by the two external
values). In a sense, very good as well as very bad reviews are much better able
to identify restaurants genre.

4 Conclusion

In this work we have presented a novel library for the manipulation and analy-
sis of hypergraph structures. Hypergraphs have been shown to be much better
than standard graphs to model many natural phenomena, such as collaborative
activities, which involves group based interactions.

The library, named SimpleHypergraphs.jl, provides Hypergraph views built
exploiting the popular package LightGraphs.jl a Julia library for graphs ma-
nipulation. Several functionalities for the I/O, the manipulation and the trans-
formation of hypergraphs have already been developed and are available on a
public GitHub repository. In addition, the library enables the user defining meta
information type as well as attaching meta-data values of arbitrary type to both
vertices and hyperedges. This approach enables for an efficient analysis of struc-
tural properties of the network, combined to the possibility to perform semantic
analysis based on the attached meta-data. The Yelp dataset case studies show
that it scales well when analyzing thousands of nodes connected by millions of
edges. We plan to expand the library by developing novel functionalities and
a visualization engine which will enable the exploration of the hypergraph net-
works as well as of the enclosed meta-information. We have presented also a case
study based on the Yelp dataset showing some of the functionalities available on
SimpleHypergraphs.jl and, at the same time, that hypergraph networks con-
vey much information with respect to their corresponding graph representation.

References

1. gspbox, MatLab. https://github.com/epfl-lts2/gspbox (2019), [Online; 2019]
2. halp, Python. https://github.com/Murali-group/halp (2019), [Online; 2019]
3. Hypergraph, Chapel. https://github.com/pnnl/chgl (2019), [Online; 2019]
4. HyperGraphLib, C++ . https://github.com/alex-87/HyperGraphLib (2019),

[Online; 2019]
5. HyperNetX, Python. https://github.com/pnnl/HyperNetX (2019), [Online; 2019]
6. HyperX, Scala. https://github.com/jinhuang/hyperx (2019), [Online; 2019]
7. iper, JavaScript. https://github.com/fibo/iper (2019), [Online; 2019]
8. LightGraphs.jl, Julia. https://github.com/JuliaGraphs/LightGraphs.jl

(2019), [Online; 2019]
9. multihypergraph, Python. https://github.com/vaibhavkarve/multihypergraph

(2019), [Online; 2019]
10. networkR, R. https://github.com/O1sims/networkR (2019), [Online; 2019]
11. pygraph, Python. https://github.com/jciskey/pygraph (2019), [Online; 2019]
12. yelp. https://www.reuters.com/finance/stocks/company-profile/YELP.N

(2019), [Online; 2019]

https://github.com/epfl-lts2/gspbox
https://github.com/Murali-group/halp
https://github.com/pnnl/chgl
https://github.com/alex-87/HyperGraphLib
https://github.com/pnnl/HyperNetX
https://github.com/jinhuang/hyperx
https://github.com/fibo/iper
https://github.com/JuliaGraphs/LightGraphs.jl
https://github.com/vaibhavkarve/multihypergraph
https://github.com/O1sims/networkR
https://github.com/jciskey/pygraph
https://www.reuters.com/finance/stocks/company-profile/YELP.N

Title Suppressed Due to Excessive Length 15

13. yelp-dataset. https://www.yelp.com/dataset/challenge (2019), [Online; 2019]
14. yelp-dataset-docs. https://www.yelp.com/dataset/documentation/main (2019),

[Online; 2019]
15. Antelmi, A., Cordasco, G., Spagnuolo, C., Vicidomini, L.: On evaluating graph par-

titioning algorithms for distributed agent based models on networks. In: Euro-Par
2015: Parallel Processing Workshops. pp. 367–378. Springer International Publish-
ing, Cham (2015)

16. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: A fresh approach to
numerical computing. SIAM review 59(1), 65–98 (2017)

17. Bretto, A.: Hypergraph Theory: An Introduction. Springer Publishing Company,
Incorporated (2013)

18. Cordasco, G., Spagnuolo, C., Scarano, V.: Toward the new version of d-mason: Effi-
ciency, effectiveness and correctness in parallel and distributed agent-based simula-
tions. In: 2016 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). pp. 1803–1812 (2016)

19. Cordasco, G., De Chiara, R., Raia, F., Scarano, V., Spagnuolo, C., Vicidomini, L.:
Designing computational steering facilities for distributed agent based simulations.
In: Proceedings of the 1st ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation. pp. 385–390 (2013)

20. Danon, L., Dı́az-guilera, A., Duch, J.: Comparing community structure identifica-
tion. Journal of Statistical Mechanics: Theory and Experiment (2005)

21. Edelman, A.: Julia: A fresh approach to technical computing and data processing.
Tech. rep., MASSACHUSETTS INST OF TECH CAMBRIDGE CAMBRIDGE
(2019)

22. Gulati, A., Eirinaki, M.: Influence propagation for social graph-based recommen-
dations. In: 2018 IEEE International Conference on Big Data (Big Data). pp.
2180–2189 (2018)

23. Ji, Z., Pi, H., Wei, W., Xiong, B., Woźniak, M., Damasevicius, R.: Recommendation
based on review texts and social communities: A hybrid model. IEEE Access 7,
40416–40427 (2019)

24. Kaminski, B., Poulin, V., Pralat, P., Szufel, P., Theberge, F.: Clustering via hy-
pergraph modularity. arXiv preprint arXiv:1810.04816 (2018)

25. Li, R., Jiang, J.Y., Ju, C.J.T., Wang, W.: Corals: Who are my potential new
customers? tapping into the wisdom of customers’ decisions. In: Proceedings of
the Twelfth ACM International Conference on Web Search and Data Mining. pp.
69–77. WSDM ’19 (2019)

26. Lu, X., Qu, J., Jiang, Y., Zhao, Y.: Should i invest it?: Predicting future success
of yelp restaurants. In: Proceedings of the Practice and Experience on Advanced
Research Computing. pp. 64:1–64:6. PEARC ’18 (2018)

27. Newman, M.E., Girvan, M.: Finding and evaluating community structure in net-
works. Physical review E 69(2), 026113 (2004)

28. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect com-
munity structures in large-scale networks. Physical review. E, Statistical, nonlinear,
and soft matter physics 76 (2007)

29. Regier, J., Fischer, K., Pamnany, K., Noack, A., Revels, J., Lam, M., Howard,
S., Giordano, R., Schlegel, D., McAuliffe, J., et al.: Cataloging the visible universe
through bayesian inference in julia at petascale. Journal of Parallel and Distributed
Computing (2019)

30. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance. J. Mach.
Learn. Res. 11, 2837–2854 (2010)

https://www.yelp.com/dataset/challenge
https://www.yelp.com/dataset/documentation/main

	SimpleHypergraphs.jl — Novel Software Framework for Modelling and Analysis of Hypergraphs

