
University of Turin
Department of Computer Science

RESEARCH DOCTORATE IN COMPUTER SCIENCE
XXXIII Cycle

Modeling and analysis of biological

complex systems

Simone Pernice

Tutor:
Prof. Marco Beccuti
Prof. Francesca Cordero

Supervisor of the Doctoral Program:
Prof. Marco Grangetto

Academic Year: 2020/2021

Scientific Disciplinary Sector: INF/01

September 16, 2021

i

Acknowledgments

Vorrei ringraziare tutto il Qbio group e non solo (Giulio, Laura, Greta, Beat-

rice, Nicola, Prof. Sereno e Paolo) per avermi accompagnato durante il mio

percorso di dottorato.

Un ringraziamento speciale va al Prof. Marco Beccuti, la Prof. Francesca

Cordero, e al Prof. Gianfranco Balbo per i loro preziosissimi insegnamenti,

consigli e commenti.

Grazie a tutta la mia famiglia che mi ha sempre supportato in ogni scelta e

decisione, permettendomi di diventare ció che sono. In fine, l’ultimo ringrazi-

amento lo dedico ad una persona a me molto cara, Andrea, che in questi anni

mi ha sempre sostenuto, supportato e sopportato su ogni fronte.

ii

Abstract

Computational modeling studies the behavior of complex systems by

exploiting computer simulations and mathematical models. In the last

decades computational modeling has become increasingly common in Life

Science research, opening up new computation challenges to deal with

the model complexity, the lack of knowledge and the missing parameters.

In literature several modeling approaches were proposed according to the

questions addressed during the analysis. All these approaches might be

classified into two groups, the statistical and mechanistic, depending on

the type of model exploited. In the statistical modeling approaches no

mechanisms of the system under study is explicitly modeled, and they

are thus mainly exploited to analyse time series data (such as growth

data). Differently the mechanistic approaches are used to study the sys-

tem dynamic considering different levels of abstraction, and modeling

the interactions characterizing the system under study. These last ap-

proaches are able to better reproduce the dynamics characterizing the

system behaviour enhancing the understanding of the mechanistic fac-

tors. Mechanistic approaches can be further divided into: interaction-

based, constraint-based and mechanism-based modeling approaches, de-

pending on the size and the level of abstraction of the model. The

interaction-based approaches are commonly exploited to study topologi-

cal properties of the system with methods based on the network analysis,

therefore with few information, such as the stoichiometry of reactions,

it is possible to study large and complex systems achieving qualitative

knowledge only. The constraint-based approaches rely on the assump-

tion of steady state and typically exploit Flux Balance Analysis (and its

extensions) to study the system at equilibrium. Finally, the mechanism-

based approaches describe the system behaviour and dynamics with high

level of details by specifying all its characteristics, like the structure of

the system, the mechanism of the events that produces changes in vari-

ables and the mathematical expressions used to represent them, with all

their parameters defined.

In this thesis we focused principally on the mechanistic approaches,

in particular to the mechanism-based ones, proposing new modeling and

analysis techniques to increase the employment of these approaches to

large complex networks. Indeed, the applicability of these approaches to

these networks is mainly limited because of the lack of quantitative infor-

mation on model parameters (due to cost and technical reasons) and the

complexity of the systems. To deal with these aspects, we investigated

iii

and developed different techniques exploiting i) hybrid models in which

some component are modeled with different level of details and abstrac-

tion, ii) model symmetries, and iii) approximation methods for stochastic

simulation.

These theoretical results were then implemented into a general modeling

framework, called GreatMod. It represents a new way of facing the mod-

eling analysis, exploiting the high-level graphical formalism, called Petri

Net (PN), and its generalizations, which provide a compact, paramet-

ric and intuitive graphical description of the system and automatically

derivation of the low-level mathematical processes (either deterministic

and stochastic) characterizing the system dynamics. The framework nov-

elties and strengths can be summarized into four points: (1) the use of

a graphical formalism to simplify the model creation phase exploiting

the GreatSPN GUI; (2) the implementation of an R package, Epimod,

providing a friendly interface to access the analysis techniques (from the

sensitivity analysis and calibration of the parameters to the model sim-

ulation); (3) a high level of portability and reproducibility granted by

the containerization of all analysis techniques implemented in the frame-

work; (4) a well-defined schema and related infrastructure to allow users

to easily integrate their own analysis workflow in the framework.

Its effective was showed on different complex systems, such as the Mul-

tiple Sclerosis with and without specific therapies, the spread of the

COVID19 in Piedmont region, and the Italian vaccination policy of the

Pertussis disease.

Contents

Contents iv

1 Introduction 1

I Background 8

2 Petri Net formalism and its generalizations 9

2.1 Petri Net formalism . 10

2.2 Stochastic Petri Net formalism 12

2.3 Stochastic Symmetric Net formalism 15

2.4 Exploiting symmetries in Symmetric Net 21

2.4.1 Arc functions syntax . 27

3 Solution techniques 31

3.1 Stochastic Simulation Algorithm 32

3.2 τ -leaping approximation . 33

3.3 Deterministic approximation 35

4 Flux Balance Analysis 37

4.1 Flux Balance Analysis formalism 38

4.2 Dynamic Flux Balance . 42

iv

CONTENTS v

II Theoretical results 44

5 New PN formalisms for modeling complex systems 45

5.1 Extended Stochastic Petri Net 45

5.2 Extended Stochastic Symmetric Net 48

5.3 Application example: Lotka-Volterra Model 49

6 Extended solution techniques 56

6.1 Symbolic formalism without complete unfolding 57

6.1.1 Case study . 57

6.1.2 First step: partial unfolding 65

6.1.3 Second step: symbolic ODE generation 69

6.1.4 Application of the method to the case study 77

6.1.5 Extension to the ESSN 79

6.2 Hybrid Model . 81

6.2.1 Hybrid model implementation 82

6.2.2 Application Example . 88

6.2.3 Discussion . 91

6.3 Stochastic Simulation . 92

6.3.1 Application of the method to the case study 94

IIIApplications and tool implementation 101

7 GreatMod 102

7.1 Framework . 103

7.1.1 The Epimod package . 105

8 Applications 110

8.1 Pertussis and its vaccination policy in Italy 110

8.1.1 The disease and its vaccination policy 110

8.1.2 The model . 112

8.1.3 A workflow for studying the Pertussis in Italy 116

8.1.4 Discussion . 131

8.2 Multiple Sclerosis . 133

8.2.1 The Multiple Sclerosis disease 134

8.2.2 The temporal model . 136

8.2.3 The spatial-temporal model 155

CONTENTS vi

8.2.4 The temporal model: exploiting real data 161

8.2.5 Discussion . 172

8.3 COVID-19 . 176

8.3.1 The COVID-19 disease and how can be modeled 177

8.3.2 The ESSN model . 179

8.3.3 Model calibration . 185

8.3.4 Model analysis . 188

8.3.5 Discussion . 193

9 Conclusion and future work 195

A Appendix 198

A.1 GreatMod installation . 199

A.2 Supplementary information: Pertussis model 199

A.2.1 Parameters . 199

A.2.2 General transition functions 202

A.2.3 Package functions . 205

A.3 Supplementary information: RRMS model 215

A.3.1 Second model . 215

A.3.2 Third model . 220

A.4 Supplementary information: COVID19 model 232

A.4.1 Parameter . 232

A.4.2 Contact Matrix . 233

A.4.3 Further results . 234

Bibliography 241

Chapter 1

Introduction

In recent years the software and hardware improvements in computer science

allowed to continuously enhance the simulation techniques based on compu-

tational models, making possible the deal with more complex systems consid-

ering different and new scales of analysis. In this contest, modeling means

to describe the complex reality in a simple but meaningful way, requiring a

balance between complexity and accuracy. A computational model uses a

mathematical language first to reproduce experimental findings and next to

help researchers to formulate new working hypotheses about the mechanisms

that generated the observed phenomena, and to predict new phenomena. In-

deed, the agreement between model results and observed data represents a

necessary step of any modeling effort, but in order to prove its utility, a model

should shed light on the system under study and offer a deeper understanding

of its behaviour. In particular computational modeling has become increas-

ingly common in Life Science research, thanks to a rapid development in sense

of data availability, given by the next generation sequencing improvement and

by major quantities of multiomic data for deep analyses and predictions, and

either thanks to the availability of more powerful machines and techniques,

opening up new computation challenges to deal principally with the model

complexity, the lack of information and the missing parameters. Although

the available modeling tools and frameworks are in a phase of rapid expan-

1

sion, modeling biological systems still remains a serious challenge.

Roughly speaking, modeling approaches can be classified into two groups:

statistical and mechanistic ones [78]. The major differences between these two

groups are: i) the aims of the analysis, ii) how the data (e.g., time series) are

treated, and iii) the typology of models developed. Indeed, the former group is

mainly exploited to analyse time series data (such as growth data) to obtain

a set of descriptors of the dynamics by exploiting no-parametric functions,

such as splines, to capture the statistical features of the data, ignoring any

mechanisms of the system under study. Differently, the mechanistic group

needs a great amount of information about the system mechanisms to be

specified. Indeed, these modeling approaches describe explicitly the dynamics

enhancing the understanding of the mechanistic factors and the causes of a

generic phenomenon. From the literature it is possible to classify the mech-

anistic approaches into three groups: interaction-based, constraint-based and

mechanism-based approaches. This classification depends principally on 1) the

size of the model and 2) the level of abstraction [149, 28, 13]. The former aspect

is characterized by the amount of mathematical details (e.g., number of param-

eters and variables) exploited to model the system. Instead, the latter aspect

is suited to formally describe the functioning of the system, which should be

identified taking into account the known biochemical, physical, or regulatory

properties of system components, from qualitative (interaction-based models)

to quantitative (mechanism-based models). We can briefly describe the main

feature for these three main classes of models as follows:

• Interaction-based models. Interaction-based models are typically

the results of network reconstruction processes that yield representa-

tions capturing structural information only. These models are commonly

exploited to study topological properties of the network with methods

based on the network analysis. In a given network, several topologi-

cal features can be investigated: degree distribution (statistical indexes

on the number of arcs connecting nodes), centrality measures (indexes

that indicate the relative importance of nodes and arcs), presence of

hubs (highly connected components), motifs (repeated architectures),

and clusters (portions of the network with a high node density)[28, 2].

• Constraint-based models. The definition of constraint-based models

2

requires to introduce the teleonomy term. In contrast to the philo-

sophical concept of teleology, teleonomy explains these goal-directed be-

haviours as an expression of genetic programs shaped by evolution. Flux

Balance Analysis (FBA) was the first method proposed to perform this

task [67]. The goal of Flux Balance Analysis (FBA) is to compute the

distribution of fluxes in a system at the equilibrium. The equilibrium, or

steady state, is a situation that follows a perturbation with no more net

production or consumption over time. The transient period occurring

after a perturbation of the system and before its steady state behavior

is instead neglected. In this context, the choice among a set of feasi-

ble flux distributions is performed optimizing for a specific system goal

according to the teleonomic assumption.

• Mechanism-based models. Mechanism-based models have the poten-

tial to reproduce the dynamics of the system. After listing all the entities

and events characterizing the system, the system dynamics can be ob-

tained by defining: a scheme of the mechanism of interactions among

components, a mathematical representation of these interactions, some

specific values for the kinetic parameters appearing in this representa-

tion, an initial set of values for the entities concentrations. All these

model elements have to be defined with caution, starting from a review

of the information available in the literature.

Furthermore, a schematic overview of these three groups is depicted in

Fig. 1.1, where approaches vary with respect to: (i) the size of the model,

defined in terms of the number of components and respective interactions, (ii)

the mathematical complexity (computational costs) required for the analysis

of the model, and (iii) the amount of detail needed to each approach, from

simple adjacency matrices to all the kinetic parameters and the stoichiometry

characterizing the system.

In this thesis we focused principally on the mechanistic approaches, con-

sidering in particular the mechanism-based ones, which describe the system

behaviour and dynamics with high level of detail by specifying all its charac-

teristics, therefore these approaches are the most likely candidates to provide

a complete understanding of the system under study. Indeed to devise high

precision models, a great amount of details and information regarding the

analysed system must be known. However, more details do not always imply

3

Interaction-based

Interaction Networks

M
a
th

e
m

a
ti

c
a
l
c
o
m

p
le

x
it

y

A
lg

e
b

ra
ic

a
n

a
ly

s
is

D
iff

e
re

n
ti

a
l

a
n

a
ly

s
is

To
p

o
lo

g
ic

a
l

a
n

a
ly

s
is

Constraint-based

Mechanism-based

Flux Balance Analysis
(FBA) and

its generalizations

FBA
+

ODEs

ODE-based
(Ordinary Differential Equations)

Kinetics models

Petri Net
formalisms

Hybrid

Amount of detail

Stoichiometry
Stoichiometry +

kinetic parametersAdjacency matrix

S
ize

 o
f th

e
 m

o
d

e
l

S
m

a
ll sca

le
La

rg
e
 sca

le

(ESPN, ESSN)

Figure 1.1: The three classes of modeling approaches are positioned basing on
their level of detail and the computational cost. The box represents the high
level Petri Net formalism and its extensions which we exploited to represent
the mechanism, constraint and the hybrid based models.

more precision, and we must be aware that the computational cost increases

together with the number of “free” parameters to be estimated. To cope with

the increasing quantity of details and complexity, we investigated and devel-

oped different modeling techniques, exploiting the high level graphical formal-

ism, namely Petri Net (PN) [84], to model the system in a more compact and

parametric manner. PNs are a well-known graphical mathematical formalism

for the description of the flow of activities in complex systems. With respect

to other similar formalisms for system representation (e.g. block diagrams,

logical trees, queuing networks, etc.), PNs are particularly suited to represent

in a natural way interactions among system components (i.e. synchronization,

sequentiality, concurrency and conflict). Indeed, the PNs are able to be both

powerful and capable of accommodating a team-work with scientists without

computer science and mathematical skills to translate ideas and hypotheses

into equations and coding, given that the model definition and analysis rep-

resent a mathematical, computational, and resource intensive challenge.

In the literature, PNs have been extensively used to study a wide range of ap-

plications ranging from chemical processes to man-made systems (communi-

cation networks, computational distributed systems, manufacturing systems,

etc.). In particular, the first application of PNs to modeling biological path-

4

ways was published by [126]; afterward, many other research works high-

lighted the advantages of using PNs to model biological systems [71, 34, 68,

152].

Starting from the PN formalism during my PhD we defined two new graph-

ical formalisms, namely Extended Stochastic Petri Net (Extended Stochastic

Petri Net (ESPN)) [115, 114] and the Extended Stochastic Symmetric Net

(Extended Stochastic Symmetric Net (ESSN)) [116], to make easier the model

creation phase in a compact and parametric manner. Thanks to the definition

of these two new formalisms we provide a general purpose tool able to sim-

ulate the differently kinetic laws governing the biological reactions and events.

Exploiting these formalisms, it is possible to automatically generate the stochas-

tic (i.e., the Continuous Time Markov Chain (CTMC)) and deterministic (i.e.,

Ordinary Differential Equation (ODE)s) processes underlying the model. The

choice between a deterministic model and a stochastic one depends on the

application under study and the questions leading the analysis. Indeed, the

stochastic process is able to reproduce relevant random features like variance,

bimodality, and tail behavior that cannot be captured by a deterministic quan-

tity, but with a higher computational cost than the solution of the ODEs sys-

tem characterizing the deterministic process. For instance, considering large

systems (i.e., systems with a large numbers of interacting elements) Stochastic

Simulation Algorithm (SSA) [57], an exact stochastic method widely used to

simulate chemical systems whose behaviour can be described by the Master

equations, could be computationally too slow, and thus approximation meth-

ods must be used. For this reason we adapted the τ -leaping algorithm [58] to

be applied to the general model that can be generated using PN formalism.

This method speeds up the stochastic simulation of system by approximating

the number of system events during a chosen time increment (i.e., τ) as a

Poisson random variable, providing a good compromise between the solution

execution time and its quality.

Another important issue characterizing both the deterministic and stochastic

processes is the model complexity, for this reason we studied new solutions

approaches to scale up the model analysis. Hence, to reduce the model com-

plexity we proposed 1) to exploit the model symmetries, 2) to define hybrid

systems combining different levels of details to model the different parts of the

system. In the former case we proposed a new method to exploit the sym-

metries of an ESSN model to reduce the complexity of the system analysis.

5

Thus, in according to this method, we developed an algorithm to automati-

cally derive from the model a reduced ODEs system exploiting the systems

symmetries, from which the same measures derived by the original ODEs can

be computed [12, 11]. Differently, in the latter we exploited the ESPN for-

malism to define hybrid systems in which parts of the net are modeled using

different level of details. In particular we proposed to combine mechanism

and constraint models, i.e., some components are modeled with a high

level of precision exploiting mechanism-based model (e.g., ODEs system), and

other by a low level of precision given by the constraint-based models (e.g.

FBA), as shown in Fig. 1.1. In particular, we showed the applicability of this

new approach considering the metabolic pathways altered in Pancreatic

Ductal Adenocarcinoma cells, [115].

These theoretical results introduced above were then implemented into a

new framework to study complex systems: GreatMod . It combines the high-

level graphical formalism of the PNs and its generalizations (e.g., ESPN and

ESSN) with classical and new model analysis techniques. We can summarize

its novelties and strengths into four points: (1) the use of a graphical formal-

ism to simplify the model creation phase exploiting the GreatSPN GUI [5];

(2) the implementation of an R package, called Epimod providing a friendly

interface to access the analysis techniques implemented in the framework; (3)

a high level of portability and reproducibility granted by the containerization

(into Docker images) of all analysis techniques implemented in the framework;

(4) a well-defined schema and related infrastructure to allow users to easily

integrate their own analysis workflow in the framework. The effectiveness

of this framework is shown through three applications: Multiple Sclerosis

(Multiple Sclerosis (MS)) [120, 116, 114, 117], Italian Pertussis vaccina-

tion policy [27], and COVID-19 Epidemic in Piedmont [119].

Finally, this thesis is organized into three parts:

1. Background. In this first part the notations used in the rest of the

thesis are introduced. In detail, Chapter 2 introduces the Petri Net

formalism and its generalizations (i.e., Stochastic Petri Net, Stochas-

tic Symmetric Net, Symbolic Net), describing how the stochastic and

deterministic processes can be generated by a model described trough

these formalisms. Chapter 3 gives the general details behind the sim-

6

ulations of stochastic processes, and their deterministic approximation

given by Kurtz’s Theorem. Finally, in Chapter 4 we focused on a specific

constraint-based approach, i.e., the Flux Balance Analysis, which will

be exploited to define the hybrid modeling approach.

2. Theoretical results. In the second part, Chapter 5 focuses on the

introduction of two new formalisms, the Extended Stochastic Petri Net

(ESPN) and the Extended Stochastic Symmetric Net (ESSN), obtained

by extending the Stochastic Petri Net and Stochastic Symmetric Net

respectively. In addition, in Chapter 6 three new developed solutions

techniques were introduced to scale up the analysis of ESPN and ESSN

models. Firstly, we described an algorithm by which the complete net

unfolding is avoided when the reduced ODEs system is automatically

derived from the (E)SSN model. Then, we defined the hybrid model-

ing approach which combine the constraint-based approach, given by

the Flux Balance Analysis, and the mechanistic-based approach, given

by the system of ODEs. Finally, we extended the τ−leaping algorithm,

widely used to approximate the stochastic simulation of the Master equa-

tions, to deal with general model.

3. Tools and applications. In the last part we introduced the the

GreatMod framework, implementing the above theoretical results. In

Chapter 7 all GreatMod novelties and functionalities are explained in

details. In particular, in Section 7.1 we introduce the R package, namely

Epimod, in which the functions characterizing the modeling analysis

steps are implemented. Chapter 8 focuses on the three case studies: Ital-

ian Pertussis vaccination policy (Section 8.1), Multiple Sclerosis (Section

8.2), and COVID-19 Epidemic in Piedmont (Section 8.3).

7

Part I

Background

8

Chapter 2

Petri Net formalism and its

generalizations

Petri Nets (PNs) [99] and their extensions are widely recognized to be a pow-

erful tool for modeling and studying complex systems thanks to their ability

of representing systems in a natural graphical manner and of allowing the

computation of qualitative and quantitative information about the behavior

of these systems. They have been satisfactorily applied to fields such as com-

munication networks, computer systems, manufacturing systems, etc. The

first application of PNs to modeling biological pathways was published by

Reddy et al in [126]; afterward, many other research works highlighted the

advantages of using PNs to model biological systems [71, 34, 68, 152].

In this chapter we recall the formal definitions of the PN formalism and

its extensions, namely Stochastic Petri Net (SPN) and Stochastic Symmetric

Net (Stochastic Symmetric Net (SSN)). In detail, we show how to derive from

the net both the CTMC and the ODEs underlying the model. Finally, the

definition of symmetries of an SSN model is formally introduced.

9

2.1. Petri Net formalism

2.1 Petri Net formalism

PNs are bipartite directed graphs with two types of nodes, namely places and

transitions. The former ones correspond to state variables of the system and

are graphically represented as circles. The latter ones correspond to the events

that can generate a state change and are graphically represented as boxes.

Nodes of different types are connected by arcs, which express the relation

between states and event occurrences. A specific cardinality (multiplicity) is

associated with each arc, and it describes the number of tokens removed from

(or added to) the corresponding place upon the firing of the transition the arc

is connected to. Graphically, it is written beside the arc, but the default value

of one is omitted. Finally, places can contains tokens drawn as black dots.

Then, the number of tokens in each place defines the state of a PN, called

marking.

Let introduce the formal definition of a PN.

Definition 1 (Petri Nets). A PN system is a tuple N = (P, T, I, O, m0)

where:

• P = {pi} is a finite and non empty set of places, with i = 0, . . . , np,

where np is the number of places.

• T = {tj} is a finite and non empty set of transitions with P ∩T = ∅ and

j = 0, . . . , nt, where nt is the number of transitions.

• I,O : P × T → IN are the input, output, that define the arcs of the net

and that specify their multiplicities.

• m0 : P → IN is a multiset on P representing the initial marking of the

net.

Functions I and O describe the input and output arcs of transitions, re-

spectively. For convenience, these can represented by nt × np matrices of

natural numbers. The matrix L = O − I is called the incidence matrix, and

it represents the overall effect of the transitions.

Let us introduce the following shorthand notation: given a transition t ∈ T , we

denote with •t = {p ∈ P : I(p, t) > 0}, and t• = {p ∈ P : O(p, t) > 0}
the subset of P containing all the places in input and output to transition t,

respectively.

10

2.1. Petri Net formalism

Figure 2.1: Representation of the PN describing the chemical reactions

A+ 2B
R0→ C and C

R1→ A+ 2B. Places represent the enzymes or compounds
while transitions represent the events/reactions among the compounds. To-
kens within the places stand for the molecules taking part in the reaction.

Finally, the evolution of the system is given by the firing of enabled transi-

tions, where a transition is enabled if each input place contains a number of

tokens greater or equal than a given threshold defined by the multiplicity of

the corresponding input arc. Formally, a transition t is enabled in marking m

iff m(p) ≥ I(p, t), ∀p ∈ P where m(p) represents the number of tokens in place

p in marking m. Enabled transitions may fire, so that the firing of transition

t in marking m yields a new marking m′ = m− I(t)T +O(t)T = m + L(t)T .

So, a transition occurrence/firing removes a fixed number of tokens from its

input places (•t) and adds a fixed number of tokens into its output places (t•)

(according to the multiplicity of its input/output arcs). Finally, the set of all

the markings reachable through the transition firings from an initial marking

is called the Reachability Set (RS). The behaviour of the net is described by

means of the Reachability Graph (RG), a directed graph whose nodes are

the markings of the RS and whose arcs are tagged with the names of the

transitions that induce the corresponding marking changes.

As an example, in Fig. 2.1 the PN model of the chemical reactions A +

2B
R0→ C and C

R1→ A+ 2B is showed, where P = {A, B, C} are places while

T = {R0, R1} are transitions. Observe that the arcs connecting B to R0 and

R1 to B have multiplicity 2 to capture the stoichiometry of these reactions.

Places can contain tokens (e.g., molecules of the corresponding entities) drawn

as black dots. The marking is A(3)+B(2)+C(1) and corresponds to the system

state in which there are three molecules of A, two of B and one of C. Finally

the input and output matrices are defined as:

I =

[
1 2 0

0 0 1

]
and O =

[
0 0 1

1 2 0

]
.

11

2.2. Stochastic Petri Net formalism

Thus, the transition R0 is enabled only if at least one token is in A and

two tokens are in B. The firing of R0 removes one token from A and two

tokens from B, while it adds one token in C.

Let us note that the PN formalism can be exploited to model different bi-

ological systems, from reaction systems (interactions among compounds, such

as the example showed in Fig. 2.1), cellular systems (interactions among cells)

to epidemiological systems (interactions among individuals). For instance, a

further example is reported in Fig. 2.4, in which is represented the classical

Susceptible-Infected-Recovered (SIR) model (susceptible, infected, and recov-

ered individuals).

2.2 Stochastic Petri Net formalism

The introduction of time into the PN formalism allows to model the tem-

poral dynamics of the biological system under investigation. Several time

dependency extensions have been proposed in the literature; among them

SPNs [75] assume that exponentially distributed random delays (interpreted

as duration of certain activities) are associated with transition firings. In this

way the temporal behaviour of the system can be described as a stochas-

tic process (i.e. Continuous Time Markov Chain - CTMC) governed by the

so-called Chapman-Kolmogorov (CK) equations [52], whose differential form

corresponds to the Chemical Master Equation (CME) [150] typically used

to describe the behaviour of biological system. It follows that the CMEs can

be automatically derived from an SPN model by observing that the underly-

ing CTMC can be represented as a graph isomorphic to the RG of the net.

However, in case of very complex models, the generation and solution of the

underlying CTMC could be unfeasible, due to the well-known state space ex-

plosion problem, thus Monte Carlo simulation can be exploited to study the

system behaviour. Let us underline that each trajectory obtained by Monte

Carlo simulation represents one sample of the probability mass function that

solves the CME. Among the simulation algorithm we mainly exploited the

Gillespie algorithm, called Stochastic Simulation Algorithm (SSA) [57], and

the τ -leaping method [58]. The SSA is an exact stochastic method widely

used to simulate chemical systems whose behaviour can be described by the

CME, Eq.s 2.2. In case of very large systems (i.e., systems with a large num-

12

2.2. Stochastic Petri Net formalism

bers of interacting elements) SSA could be computationally too slow, and then

approximation methods must be used. Among these approaches the τ -leaping

algorithm provides a good compromise between the solution execution time

and its quality. Indeed, this method speeds up the stochastic simulation of

system by approximating the number of system events during a chosen time

increment (i.e., τ) as a Poisson random variable.

A second method to approximate the CTMC, when the system stochasticity

is negligible and under specific assumptions [10], is defined by the so-called de-

terministic approach [83] which approximates the system behaviours through

a deterministic process based on ODEs which can be written for each place of

the net. This allows to derive and solve an ODEs system that is much smaller

than that obtained through CME in which one CK differential equation is

needed for each state of the system. More details regarding these simulation

techniques are reported in Chapter 3.

Hereafter we recall the formal definition of SPN and how CME and ODE

systems can be written in terms of SPN elements.

Definition 2 (Stochastic Petri Nets). A SPN system is a tuple

(P, T, I, O,m0, λ):

• P, T, I, O, m0 are introduced in the Definition 1;

• λ : T → R gives the firing rate of each transition.

In SPNs each transition is associated with a specific intensity, representing

the parameter of the exponential distribution that characterises its firing time.

By supposing that all the transitions intensity are defined in according to Mass

Action (MA) law [50], the parameter associated with an enabled transition t

is given by the function

ϕ(m, t, ν) =
λ(t)

I[p, t]!

∏
〈p| p∈•t〉

mpj (ν)I[p,t] (2.1)

with λ(t) representing the rate of the enabled transition t.

In the SPNs the stochastic firing delays, sampled from negative exponential

distributions, allow to automatically derive the underlying CTMC that can

be studied to quantitatively evaluate the system behaviour [99]. In details,

the CTMC state space, S, corresponds to the RS of the corresponding SPN,

13

2.2. Stochastic Petri Net formalism

i.e. all the possible markings that can be reached from the initial marking.

Thus, the CMEs for the CTMC are defined as follows:

dπ(mi, ν)

dν
=
∑
mk

π(mk, ν)qmk,mi mi,mk ∈ S (2.2)

where π(mi, ν) represents the probability to be in marking mi at time ν,

and qmk,mi the velocity to reach the marking mi from mk, defined as

qmk,mi =
∑
t∈T∧

t∈E(mk)|mi

ϕ(mk, t, ν)L[p, t]. (2.3)

where L[p, t] is the overall effect of the transition t on place p (obtained from

the incidence matrix), and E(mk)|mi
is the set of all transitions enabled in

marking mk whose firing brings to the marking mk.

The ODEs that describe the (approximate) deterministic behaviour of the

SPN have the following form:

dxi(ν) =

nT∑
j=1

ϕ(x, tj , ν)L[pi, tj]dν ∀i ∈ {1, . . . , nP }. (2.4)

where xi(ν) ∈ R+ is the continuous approximation of the number of tokens at

time ν ∈ R+ in place pi, and ϕ(x, tj , ν) is the rate of the reaction tj which

may depend on the marking of the SPN. In particular, assuming that all the

system reactions follow the MA law, the Eq. 2.1 becomes

ϕ(x, t, ν) = λ(t)
∏

pk∈•tj

x
I[pk,t]
k , ∀t ∈ T. (2.5)

For example, referring to the system represented in Fig. 2.1, its dynamics

are described by the following system of ODEs

dxA(ν)

dν
=

reaction R0︷ ︸︸ ︷
−λ(R0)xA(ν)xB(ν)2

reaction R1︷ ︸︸ ︷
+λ(R1)xC(ν)

dxB(ν)

dν
=

reaction R0︷ ︸︸ ︷
2λ(R0)xA(ν)xB(ν)2

reaction R1︷ ︸︸ ︷
+2λ(R1)xC(ν)

dxC(ν)

dν
=

reaction R0︷ ︸︸ ︷
λ(R0)xA(ν)xB(ν)2

reaction R1︷ ︸︸ ︷
−λ(R1)xC(ν)

where dxA, dxB, dxC represent the changes of the number of molecules of

type A, B, C respectively.

14

2.3. Stochastic Symmetric Net formalism

2.3 Stochastic Symmetric Net formalism

Among the PN generalisations proposed in literature, Stochastic Symmetric

Nets (SSNs) [30] extend PNs providing a more compact and readable repre-

sentation of the system, thanks to the possibility of distinguish different type

of tokens and thus graphically represented in the models as dots of different

colors.

In SSNs each place p ∈ P has an associated color domain (a data type) denoted

cd(p) which defines the type of tokens stored in such place. Color domains

are defined by the Cartesian product of elementary types called color classes

C = {C1, . . . , Cn}, so that cd(p) = Ce11 × Ce22 × . . . × Cenn where ei is the

number of times Ci appears in cd(p). Color classes are finite and disjoint sets.

They can be ordered (in this case a successor function (++) is defined on the

class, inducing a circular order among the elements in the class), and can be

partitioned into (static) subclasses (e.g Ci,j is the ith static subclass of the jth

color class).

The example model represented in Fig. 2.2 extends the PN model introduced

previously in Fig. 2.1 to take in account different positions where the A, B,

and C molecules might be arranged. For simplicity in this example we omit-

ted the movements, and we considered only three positions represented by one

color class, namely Position, which is divided into three static subclasses (i.e.

Pos1, Pos2 and Pos3). In this case the color domain of all the three places

is defined by the only color class, representing that one molecule might be in

position 1,2 or 3 (token colored in red, blue and green respectively).

An instance of a given transition t is an assignment of the transition vari-

ables to a specific color of proper type defined by its color domain cd(t).

Hence, we can define the function var which assigns to each transition t ∈ T
a set of variables, each taking values in a given color class Ci of C (the vari-

able’s type). For example, t with var(t) = {x, y, z}, x, y : C and z : C ′, is

a transition with three parameters, x, y, z, taking values on sets C (x, y) and

C ′ (z), respectively, hence cd(t) = C × C × C ′. If there are n variables of

the same type C, an indexed family of variable symbols {vi}, i : 1, .., n, may

be used: thus in the example above, we might use {x1, x2, z}, with xi : C,

z : C ′. In the example, x=c1, y=c2, z=c′, with ci ∈ C, c′ ∈ C ′, is an instance

of t, also denoted as a tuple 〈c1, c2, c
′〉 ∈ cd(t) (this tuple is the transition

15

2.3. Stochastic Symmetric Net formalism

instance’s color)1. An explicit notation may be used, i.e., 〈t, c〉 to denote an

instance, where c is the assignment, also called binding. The transition vari-

ables appear in the functions labeling its arcs. For instance, the color domain

of transition R 0 is Position×Position, the variables characterizing its input

arc are x, y ∈ Position, the binding is defined as c = 〈x, y〉 and consequen-

tially the instance is denoted as 〈t, x, y〉. Moreover, a guard can be used to

define restrictions on the allowed instances of a transition. A guard is a logical

expression defined on the color domain of the transition, and its terms, called

basic predicates, allow (i) to compare colors assigned to variables of the same

type (x = y, x 6= y); (ii) to test whether a color element belongs to a given

static subclass (x ∈ Ci,j); (iii) to compare the static sub-classes of the colors

assigned to two variables (d(x) = d(y), d(x) 6= d(y)). An example is given by

the guard associated with the transition R 0, which denies the A molecules

in the third position to participate at the reaction R 0.

The marking of an SSN is defined by the number of colored tokens in each

place. For instance, a possible marking of the place A in Fig. 2.2 is 2〈pos1〉+
1〈pos2〉, indicating that in place A there are two (red) tokens in the color class

Pos1, and one (blue) in Pos2.

Each arc connecting a place p to a transition t, namely an input arc of t, is

labeled with an expression defined by the function I[p, t] : cd(t)→ Bag[cd(p)],

with domain cd(t) and codomain Bag[cd(p)], where Bag[A] is the set of mul-

tisets built on set A, and if b ∈ Bag[A] ∧ a ∈ A, b[a] denotes the multiplicity

of a in the multiset b. Similarly, each arc connecting a transition t to a place

p, namely an output arc of t, is denoted by the function

O[p, t] : cd(t)→ Bag[cd(p)].

Thus, the evaluation of I[p, t] (resp. O[p, t]), given a legal binding of t, provides

the multiset of colored tokens that will be withdrawn from (input arc) or will

be added to (output arc) the place connected to that arc by the firing of such

transition instance. Moreover, we denote with •t the set of input places of

the transition t and with t• the set of output places of t, i.e. •t := {p ∈
P | ∃ c ∈ cd(p) s.t. I[p, t](c′)[c] > 0, ∀c′ ∈ cd(t)} and t• := {p ∈ P | ∃ c ∈
cd(p) s.t. O[p, t](c′)[c] > 0, ∀c′ ∈ cd(t)}. In details, a transition instance 〈t, c〉
is enabled and can fire in an marking m, iff: (1) its guard evaluated on c

is true; (2) for each place p we have that I[p, t](c) ≤ m(p), where ≤ is the

1If var(t) = {} then by convention cd(t) = E = {e}, E being the neutral color class

16

2.3. Stochastic Symmetric Net formalism

Figure 2.2: Representation of the SSN of the chemical reactions introduced
in Section 2.1, considering different positions. The color domain defined by
the color class Position is associated with each place. Let us observe that
Position is divided into three static subclasses, which are represented, for
clarity, by the red, blue and green colors.

comparison operator among multisets. We use the notation E(t,m) to denote

the set of all instances of t enabled in marking m. The firing of the enabled

transition instance 〈t, c〉 in m produces a new marking m′ such that, for each

place p, we have m′(p) = m(p) +O[p, t](c)− I[p, t](c).

In SSNs, the firing time of an enabled transition instance 〈t, c〉 is sampled from

a negative exponential distribution whose rate is given by the function ω, i.e.

ω(t, c) =

{
ri condi(c) i = 1, . . . , n,

rn+1 otherwise,

where condi are boolean and mutually exclusive expressions comprising stan-

dard predicates on the transition color instance. In this manner, the firing

rate ri of a transition instance can depend only on the static sub-classes of the

objects assigned to the transition parameters and on the comparison of vari-

ables of the same type. Thus, these stochastic firing delays, sampled from a

negative exponential distribution, allow to automatically derived the stochas-

tic process, i.e. the CTMC, that describes the dynamics of the SSN model.

Specifically, the CTMC states are isomorphic to SSN markings and the state

changes correspond to the marking changes in the model.

Hereafter we recall the formal definition of SSN.

17

2.3. Stochastic Symmetric Net formalism

Definition 3 (Stochastic Symmetric Net). An SSN is a nine-tuple:

NSSN = 〈P, T, C, I, O, cd ,Θ, ω,m0〉

where

• P, T are introduced in the Definition 1.

• C = {C1, . . . , Cn} is the finite set of basic color classes.

• I,O[p, t] : cd(t) → Bag[cd(p)] are the input and output matrices (sim-

ilarly as in Definition 1), whose elements are in the form of the arc

functions defined above.

• cd :
⊗n

i=1

⊗ei
j C

j
i is a function defining the color domain of each place

and transition (where ei ∈ N is the number of occurrences of the class

Ci); for places it is expressed as Cartesian product of basic color classes,

for transitions it is expressed as a list of variables with their types. Ob-

serve that a place may contain undistinguished tokens only or a transi-

tion may have no parameters, in this case their domain is neutral.

• Θ is the vector of guards and maps each element of T into a standard

predicate (Θ(t) may be the constant true, which is also a standard pred-

icate).

• ω : T × cd(t) → R is the function returning the rate of transition t

assuming the firing of the instance 〈t, c〉.

• m0 : P → Bag[cd(p)] is the initial marking, mapping each place p on a

multiset on cd(p).

Assuming that all the transitions of the SSN are characterized by a MA

law, the intensity defined in Eq. 2.1 of 〈t, c〉 in marking m becomes:

ϕ(m, t, c) = ω(t, c)
∏

〈p,c′〉| p∈•t ∧ c′∈cd(p)

m[p][c′]I[p,t](c)[c
′] (2.6)

where m[p][c′] denotes the marking of place p for color c′.

Let us note that the translation of an SSN model into an equivalent SPN is

always possible by means of a procedure called unfolding, which consists of

18

2.3. Stochastic Symmetric Net formalism

replicating places and transitions as many times as the cardinalities of the cor-

responding color domains. Therefore, colors disappear in the unfolded model

and the complex behavior due to color combinations, color arc functions, and

color transition guards, is encoded with a net structure in which tokens are

indistinguishable entities and new transitions, places, and arcs are introduced

to account for the different actions performed by instances of the same transi-

tion on different colored tokens. In particular, for the places containing tokens

of different classes, the cross-product of the color domains are computed and

each resulting element associated with the original name of the place becomes

the name of a corresponding new place in the unfolded net. These place

replicas are thus named pc1,...,cn , where ∀ 〈c1, . . . , cn〉 ∈ cd(p). Similarly, for

what concerns the transitions, the new names in the unfolded net start with

the name of the transition in the SSN model, followed by a list expressing

the binding. The possible bindings are derived accounting for the restrictions

possibly imposed by the associated transition guards (when present). These

transition replicas are thus named tc1,...,cn where ∀ 〈c1, . . . , cn〉 ∈ cd(t). For

instance, in our example model Fig. 2.2, if we consider the A place, which has

color domain Pos, then the number of places obtained from the unfolding is

(nPos1 +nPos2 +nPos3), where nPos1, nPos2, nPos3 are the cardinalities of the

sub classes Pos1, Pos2, Pos3 respectively. Since, nPos1 = nPos2 = nPos3 = 1

then the number of unfolded places of A is three: Apos1, Apos2, Apos3, rep-

resenting the number of tokens of color pos1, pos2, pos3 respectively, as de-

picted in Fig. 2.3, in which we showed the unfolding of the sub SSN of the

model introduced in Fig. 2.2 considering only the R 0 transition. Similarly,

the unfolded transitions derived from R 0 are defined by all the possible com-

binations of the color variables (which are associated with the transition input

arcs) x, y varying among the sub color classes defining the cd(R 0). For in-

stance, the transition R 0 x pos1 y pos2 is obtained because of x ∈ Pos1 and

y ∈ Pos2. Let us note that because of the guard associated with R 0 the place

A pos3 is not connected with any transitions, and transitions with x ∈ Pos3
(e.g., R 0 x pos3 y pos2) can not be derived.

In general, let C̃i = {Ci,h, h : 1 . . . |C̃i|} be the set of static subclasses of color

class Ci. The number of places resulting from the unfolding of a place p with

color domain cd(p) = Cn1
i1
×. . .×Cnk

ik
is given by the product

∏k
j=1(

∑|C̃ij
|

h=1 |Cij ,h|)
nj .

Where, the notation C
nj

ij
means that class Cij occurs nj times in the Cartesian

product.

19

2.3. Stochastic Symmetric Net formalism

(a)

(b)

Figure 2.3: Unfolding example considering the first transition of the SSN
model depicted in Fig. 2.2.

Therefore, to represent the behavior of an SSN model with an ODEs system

consists of translating it into a standard SPN via an unfolding procedure, and

then of applying the method discussed above which requires one ODE for

each place of the resulting model [92]. According to this, the ODEs system

introduced in Eq.s 2.4, which well approximates the stochastic behavior of an

SSN model [9], becomes:

dxp,c(ν)

dν
=

∑
〈t′,c′〉∈E(t′,x(ν)) ∧ t′∈T∧ c′∈cd(t)

ϕ(x(ν), t′, c′)(L[p, t′](c′)[c]) (2.7)

where xp,c(ν) is the average number of tokens of color c in the place p at time

ν, L[p, t′](c′)[c] = O[p, t′](c′)[c]− I[p, t′](c′)[c], T is the set of transitions of the

SSN, and E(t′, x(ν)) the set of the enabled instances of 〈t′, c′〉 in x(ν), i.e. the

20

2.4. Exploiting symmetries in Symmetric Net

vector of the average number of tokens at time ν for each place and possible

color tuple. In this case Eq. 2.6 becomes

ϕ(x(ν), t′, c′) = ω(t′, c′)
∏

〈pj ,c′′〉| p∈•t′ ∧ c′′∈cd(pj)

xpj ,c′′(ν)I[pj ,t
′](c′′)[c′]. (2.8)

2.4 Exploiting symmetries in Symmetric Net

The SSN syntax has been devised to exploit the symmetries present in the

modeled system to simplify its analysis. In this section, to show how sys-

tem symmetries can be automatically derived by SSN, we introduced as ex-

ample an extension of the SIR model, which is more suitable to show the

advantages of using the symmetries [10]. In detail, this model, depicted in

Fig. 2.4, has three places S, I, and R representing the three types of indi-

viduals: susceptible, infected, and recovered. Furthermore we defined two

color classes Age and Loc modeling the age and the locations of the members

of the population, respectively. The former color class is defined by three

static sub-classes, Age = {Newborn, Y oung, Old}, identifying people of the

same age, differently the latter class is partitioned into two static sub-classes

Loc = {Loc1, Loc2} defining two different zones. In such manner, each token

is associated with an age and a location information. Therefore, the events

that might occur are (i) the infection of a susceptible after the contact with

an infected one, modeled by the transition Infection, (ii) the recovery from

the disease, represented by the transition Recovery, (iii) the aging through

the transition Aging, and (iv) the movements between the two zones through

the transition Moving. All the arcs have cardinality one, except the arc con-

necting the transition Infection to place I which has cardinality 2 (which is

expressed by the sum of the two color instances representing the infected and

susceptible become infected), representing the susceptible becoming infected.

Let us note that the infection may occur only if the individuals are in same

locations, which is represented by the transition Infection guard. Finally, the

color domain of all places is defined by Age× Loc.

The constraints on the syntax of SSNs allow the automatic exploitation of

the symmetries of the model through a symbolic representation of markings.

This idea is based on the contest of the Symbolic Marking (SM) which is a

compact representations for sets of equivalent ordinary markings, where the

21

2.4. Exploiting symmetries in Symmetric Net

actual color of tokens is abstracted away, but the ability to distinguish tokens

with different colors and to establish their static subclass is retained. In de-

tail, we defined that a SM, m̂ , is an equivalence class of ordinary markings,

where two markings are equivalent if one can be obtained from the other by

applying a color permutation preserving static subclasses.

For instance considering the color class Loc partitioned in Loc1 = {l1, l2}

Figure 2.4: The SSN representing the SIR model where the age and locations
of the population are taken in account by the two color classes Age and Loc,
respectively.

and Loc2 = {l3}, the two markings representing two infected individuals

(a1, a2) in the same zone (Loc1) and one (a3) in the second zone (Loc2):

m = I(〈a1, l2〉 + 〈a2, l2〉 + 〈a3, l3〉) and m ′ = I(〈a1, l1〉 + 〈a2, l1〉 + 〈a3, l3〉)
belong to the same SM, since we may obtain m ′ from m by applying the

permutation that exchanges the colors l1 and l2, and vice versa. Observe that

instead, marking m ′′ = I(〈a1, l3〉+ 〈a2, l3〉+ 〈a3, l1〉) does not belong to the

same SM of m and m ′ since it is not possible to permute l1 and l3 because

they belong to different static subclasses.

Given two equivalent markings m1 and m2 (belonging to the same SM, m̂) it

is possible to show that there is a 1:1 correspondence between the transition

instances enabled in m1 and those enabled in m2. Indeed, if s is the permu-

tation that allows to obtain marking m2 from m1, i.e. m2 = s.m1 (where

22

2.4. Exploiting symmetries in Symmetric Net

the notation s.x represents a permutation of elements of the vector x), for

each transition instance 〈t, c〉 enabled in m1 there exists a transition instance

〈t, s.c〉 enabled in m2 with the same rate. Moreover markings m ′1 reached by

firing 〈t, c〉 in m1, and m ′2 reached by firing 〈t, s.c〉 in m2 are equivalent (i.e.

they belong to the same SM m̂ ′: indeed m ′2 = s.m ′1).

In particular, given this aggregation induced by the markings equivalence on

the CTMC describing the behaviors in time of the SSN model, it is possible to

prove that the strong and exact lumpability conditions are satisfied, so that

all the states within an aggregate are equally likely for every initial distri-

bution. Thus, by exploiting the system symmetries in such a way that not

only qualitative analysis but also quantitative analysis can be performed on

the reduced graph, called Symbolic Reachability Graph (SRG). In detail, by

defining a symbolic firing rule on the symbolic marking it is possible to build

the SRG directly starting from a symbolic initial marking, without building

the RG and then grouping markings into equivalence classes. The formal

description of the symbolic firing rule is given in [30], but the idea is that or-

dinary transition instance firings are grouped in a symbolic transition instance

firing, where the ordinary firing instance are obtained by valid assignments

of colors to the subclasses defined by tokens with the same distribution and

belonging to the same static subclass. Finally from the SRG it is possible

to directly derive the isomorphic lumped CTMC [30], from which the most

of quantitative proprieties computed from the original RG and CTMC can

still be obtained. Hereafter, for simplicity, we will focus on the ODEs system

which can be derived from the CTMC, but equivalent definitions can be made

considering the Kolmogorov equations.

Let us now define the static partition of a place color domain: if C̃i is

the set of static subclasses of class Ci, the static partition of color domain

C1 × C2 × C3 is C̃1 × C̃2 × C̃3; moreover, abusing notation, if c = 〈c1, c2, c3〉
is a color in C1 × C2 × C3, let us denote d(c) = 〈d(c1), d(c2), d(c3)〉 the static

partition it belongs to.

Given a place p with color domain cd(p), the average number of tokens of

color c ∈ cd(p) (which is denoted as m̄(p)(c)) has the following property:

∀c, c′ : d(c) = d(c′), m̄(p)(c) = m̄(p)(c′), i.e. the average number of colored

tokens in p is the same for all colors in the same static partition element. This

23

2.4. Exploiting symmetries in Symmetric Net

can be proved as follows:

m̄(p)(c) =
∑
m∈RS

π(m) m(p)(c) (2.9)

(where π(m) is the probability of marking m, either at a given time t or in

steady state). Let c′ : d(c) = d(c′) be a color in the same static partition

element: i.e. c′ = s.c for some permutation s preserving static partitions; now

applying permutation s to equation (2.9) we obtain

m̄(p)(s.c) =
∑

s.m:m∈RS
π(s.m) s.m(p)(s.c) (2.10)

Due to the hypothesis of initial symmetric marking, {s.m|m ∈ RS} = RS,

moreover s.m is in the same SM as m and hence have the same probability,

i.e. π(m) = π(s.m), finally s.m(p)(s.c) = m(p)(c) by definition of s.m.

Recalling the same idea behind the definition of symbolic marking, we

can define the notion of symbolic ODE (Symbolic ODE (ÔDE)): a compact

representation for a set of equivalent ODE, where the actual color identity is

abstracted away, but the ability to distinguish different colors and to establish

their static subclass is retained. Thus, due to symmetries, each summation

over the color domain of a given transition t in an ODE may be computed

efficiently by grouping instances with “similar” rate and same number of to-

kens moved into or out of the place. In detail, a ÔDE is an equivalence class

of ODEs, such that two ODEs are equivalent if one can be obtained from

the other by applying a color permutation preserving static subclasses. Its

representation can be formalized as follows:

Definition 4 (Symbolic ODE representation). A representation R of a ÔDE

is a tuple:

R = 〈c̃, s̃,M〉

where

• c̃ : C → N is a mapping from a color to the index of its corresponding

color class.

• s̃ : C → N is a mapping from a color to the index of its corresponding

static subclass.

24

2.4. Exploiting symmetries in Symmetric Net

• M : {x} → {x̂} is mapping from an ODE variable to the corresponding

symbolic variable in ÔDE such that:

M(xpi,c1,...,cn) = x̂p
i,Z1

c̃(c1),s̃(c1)
,...,Zk

c̃(cn),s̃(cn)

where ∀Zjc̃(c),s̃(c), Z
k
c̃(c′),s̃(c′) k = j ⇔ c = c′

For instance, if we consider the two differential equations, given in Eq. 2.7,

representing the susceptible individuals in the first color classes, i.e. {a1} ∈
Newborn and {l1, l2} ∈ Loc1, which are defined as follow

dxS,a1,l1(ν)

dν
=ϕ(x(ν),Moving, 〈a1, l2, a1, l1〉) + ϕ(x(ν),Moving, 〈a1, l3, a1, l1〉)−

ϕ(x(ν),Moving, 〈a1, l1, a1, l2〉)− ϕ(x(ν),Moving, 〈a1, l1, a1, l3〉)−

ϕ(x(ν), Aging, 〈a1, l1, a2, l1〉)− ϕ(x(ν), Infection, 〈a1, l1, a1, l1〉)−

ϕ(x(ν), Infection, 〈a1, l1, a2, l1〉)− ϕ(x(ν), Infection, 〈a1, l1, a3, l1〉)
dxS,a1,l2(ν)

dν
=ϕ(x(ν),Moving, 〈a1, l1, a1, l2〉) + ϕ(x(ν),Moving, 〈a1, l3, a1, l2〉)−

ϕ(x(ν),Moving, 〈a1, l2, a1, l1〉)− ϕ(x(ν),Moving, 〈a1, l2, a1, l3〉)−

ϕ(x(ν), Aging, 〈a1, l2, a2, l2〉)− ϕ(x(ν), Infection, 〈a1, l2, a1, l2〉)−

ϕ(x(ν), Infection, 〈a1, l2, a2, l2〉)− ϕ(x(ν), Infection, 〈a1, l2, a3, l2〉)

25

2.4. Exploiting symmetries in Symmetric Net

the corresponding ÔDEs is constituted by only one equation, that is:

dx̂S
Z1

1,1,Z
2
2,1

(ν)

dv
=ϕ(x̂(ν),Moving, 〈Z1

1,1, Z
2
2,1, Z

3
1,1, Z

4
2,1〉)+

ϕ(x̂(ν),Moving, 〈Z1
1,1, Z

2
2,2, Z

3
1,1, Z

4
2,1〉)−

ϕ(x̂(ν),Moving, 〈Z1
1,1, Z

2
2,1, Z

3
1,1, Z

4
2,1〉)−

ϕ(x̂(ν),Moving, 〈Z1
1,1, Z

2
2,1, Z

3
1,1, Z

4
2,2〉)−

ϕ(x̂(ν), Aging, 〈Z1
1,1, Z

2
2,1, Z

3
1,2, Z

4
2,1〉)−

ϕ(x̂(ν), Infection, 〈Z1
1,1, Z

2
2,1, Z

3
1,1, Z

4
2,1〉)−

ϕ(x̂(ν), Infection, 〈Z1
1,1, Z

2
2,1, Z

3
1,2, Z

4
2,1〉)−

ϕ(x̂(ν), Infection, 〈Z1
1,1, Z

2
2,1, Z

3
1,3, Z

4
2,1〉)

=ϕ(x̂(ν),Moving, 〈Z1
1,1, Z

2
2,2, Z

3
1,1, Z

4
2,1〉)−

ϕ(x̂(ν),Moving, 〈Z1
1,1, Z

2
2,1, Z

3
1,1, Z

4
2,2〉)−

ϕ(x̂(ν), Aging, 〈Z1
1,1, Z

2
2,1, Z

3
1,2, Z

4
2,1〉)−

ϕ(x̂(ν), Infection, 〈Z1
1,1, Z

2
2,1, Z

3
1,1, Z

4
2,1〉)−

ϕ(x̂(ν), Infection, 〈Z1
1,1, Z

2
2,1, Z

3
1,2, Z

4
2,1〉)−

ϕ(x̂(ν), Infection, 〈Z1
1,1, Z

2
2,1, Z

3
1,3, Z

4
2,1〉).

Where the place xS,a1,l1 becomes x̂S
Z1

1,1,Z
2
2,1

since a1 belongs to the first

color class Age (c̃(a1)) and its respective first subclass Newborn (s̃(a1)),

while l1 belongs to the second color class Loc and its respective first sub-

class Loc1. Similar reasoning could be done considering the intensity func-

tion defined in Eq. 2.8, for instance ϕ(x(ν),Moving, 〈a1, l2, a1, l1〉) becomes

ϕ(x̂(ν),Moving, 〈Z1
1,1, Z

2
2,1, Z

3
1,1, Z

4
2,1〉) since a1 belongs to the first color class

Age and its respective first subclass Newborn, and l1, l2 belong to the sec-

ond color class Loc and its respective first subclass Loc1. The mathematical

details and the algorithm to derive from an ODE system the corresponding

ÔDE are given in [10]. Roughly, the algorithm takes in input all the variables

of an ODE and replaces them with the corresponding representative symbolic

variables. Where an ODE variable, xpc1,...,cn , is defined by the corresponding

place name (e.g. p) and the list of the associated color (e.g. c1, . . . , cn). While

an ÔDE variable is defined so that it encodes for each Zki,j , their indexes i,

j, and k (i.e. color, subclass and index respectively). Hence, for each ODE

variable the algorithm derives the corresponding symbolic variable.

26

2.4. Exploiting symmetries in Symmetric Net

Now we can observe that symbolic variables representing the distribution of

equivalent tokens (w.r.t. a colored permutation preserving static subclasses)

in a place are the same so that we can substitute all these symbolic variables

with a representative one. This leads automatically to a reduction in the

number of ÔDEs and a reduction on the terms which constitute the equation.

2.4.1 Arc functions syntax

In this section we introduce some of the notations and definitions exploited in

the new method for deriving the set of ÔDE in Sec. 6.1, without the complete

unfolding of the SSN. This method is based on the symbolic manipulation of

expressions of a language L through a set of operators (difference, transpose).

Before explaining the elements of language L, let us recall some objects in-

troduced in Sec. 2.3, starting with the function var which assigns to each

transition t ∈ T a set of variables, each taking values in a given color class

Ci of C (the variable’s type). A transition t may have an associated guard

g = Θ(t), i.e., a predicate defined on cd(t) (the default/implicit guard being

the constant true): in that case the transition color domain cd(t) is restricted

to those instances of t verifying the guard. In details, Θ is a function assign-

ing a guard to each transition t, where a guard is defined as boolean function

defined on var(t), Θ(t) : cd(t) → {true, false}, and it is denoted through a

boolean expression whose terms are basic predicates on var(t). In this contest,

I and O associate each pair (p, t) ∈ P × T with a map I[p, t], O[p, t] (called

arc function), annotating a corresponding oriented arc connecting t and p (if

the arc does not exist the corresponding function is the empty constant).

Let us define an SSN function labeling an arc connecting transition t and place

p as a mapping W (p, t) : cd(t)→ Bag(cd(p)) whose form is:

W (p, t) =
∑
i

λiTi[gi], λi ∈ N, (2.11)

in which the sum is a multiset sum and [gi] is the guard, λi are scalars and

Ti are function-tuples. Where a function-tuple T , denoted by 〈f1, . . . , fk〉, as

the Cartesian product of class functions fi. Each class-function f is a linear

function defined on a subset of variables of var(t) of the same type. Let

varCi(t) = {v1, . . . vm} be the subset of variables in var(t) of type Ci, and C̃i

27

2.4. Exploiting symmetries in Symmetric Net

the set of static subclasses of Ci, then f : Cmi → Bag[Ci] is so defined:

f =

m∑
k=1

αkvk +

|C̃i|∑
q=1

βqSi,q (2.12)

where αk, βk ∈ Z. Si,q is a constant functions called diffusion/synchroniza-

tion, which maps its argument to the set Ci,q. In particular, the following

equivalence holds:
∑

q Si,q = Si. Scalars must be such that no negative co-

efficient result from the evaluation of f for any color satisfying the guard

possibly associated with the function-tuple or transition. Fixed an order

on var(t) defining cd(t), consistent with the local ordering on varCi(t), and

assuming that the color domain of class-functions naturally extends to the

tuple’s color domain, the semantics of a function-tuple T := 〈f1, . . . , fk〉 is

T (c) = 〈f1(c), . . . , fk(c)〉, where the Cartesian product of multisets is defined

as: let m1 ∈ Bag[A],m2 ∈ Bag[B], then 〈m1,m2〉 is an element of Bag[A×B]

such that ∀a ∈ A, b ∈ B, 〈m1,m2〉(〈a, b〉) = m1(a) ·m1(b). A guarded tuple

T [g], where g is a predicate defined similarly to transition guards, maps each

element c ∈ cd(t) in T (c) if g(c) = true, in ∅ otherwise.

Let us now introduce the syntax of the language used to express the SSN

structural relations. The expressions of L have a syntax which resembles

the arc function syntax defined in Eq.s 2.11 and 2.12, but there are some

additional constraints on the functions used as elementary building blocks,

however the expressive power is actually extended. Thus, the elements of L
are an extension of the SSN arc functions, and have got the following syntax:

∑
i

λi[g
′
i]Ti[gi], λi ∈ N (2.13)

where [gi] and [g′i] are respectively called guard and filter, which denote func-

tions D → Bag[D′]. D and D′ are in turn defined as Cartesian products of

color classes, and gi and g′i take the form of SSN standard predicates. Observe

that the SSN arc function syntax may include guards but not filters.

The components in a tuple Tj are in one-to-one correspondence with the ele-

ments in the Cartesian product D′: they are intersections (∩) of basic class

functions D → Bag[C] from set BS = {v, S − v, SC , SCk
}, where C is one of

the basic color classes in D′, v is a variable of type C, and Ck is a static sub-

class of C. When class C occurs n times in D′ a family {vi}, i : 1, .., n, of type

28

2.4. Exploiting symmetries in Symmetric Net

C variables may be used to highlight that vi (also called projection) refers the

ith type C element on a tuple of D′. Symbols S, SCk
are constants mapping to

a global (sub)class. To keep the presentation simple, ordered classes are not

considered here, but the extension is straightforward.

The functions in BS are a subset of SSN class-functions, however, any class-

function f can be expressed2 in terms of BS. A function tuple Tj , individually

considered, maps to multisets with multiplicities ≤ 1 (i.e., sets) of colors. Fil-

ters and guards are boolean expressions whose terms are basic predicates:

variable symbols occurring on the guard gj and on the tuple Tj have exactly

the same meaning, whereas a variable vi : C on g′j refers the ith type C ele-

ment of any color tuple represented by Tj .

Language L is closed with respect transpose and difference operators, defined

as follows:

Definition 5 (Transpose). Let f : D → Bag[D′] be a function, its transpose

f t : D′ → Bag[D] is defined as: f t(x)[y] = f(y)[x], ∀x ∈ D′, y ∈ D.

Definition 6 (Difference). Let f, g : D → Bag[D′] be two functions. The

difference f − g : D → Bag[D′] is defined as: f − g(x) = f(x)− g(x),∀x ∈ D.

The language, with its operators and properties, is the key formal tools

to define the ÔDE characterizing an SSN model without unfolding it. In

particular, the difference and transpose operators allow the relations R and A
to be defined and expressed in a symbolic form. Assuming that nodes p and

t are connected, function R(p, t), called Removed By, defines which instances

(t, c′) withdraw tokens of color c ∈ cd(p) from place p. Function A(p, t),

called Added By, defines which instances (t, c′) put tokens of color c ∈ cd(p)

into p. Both functions map to multisets: R(p, t)(c)[c′] and A(p, t)(c)[c′] are the

number of tokens of color c withdrawn/added by an instance (t, c′) from/to p.

R(p, t) : cd(p)→ Bag[cd(t)]; R(p, t) = (I[p, t]−O[p, t])t,

A(p, t) : cd(p)→ Bag[cd(t)]; A(p, t) = (O[p, t]− I[p, t])t.

The symbolic derivation of A(p, t) and R(p, t) is based on the calculus

presented in [25, 24].

Let us show an example considering the SIR model depicted in Fig. 2.4B).

2This can be obtained through the intersection, which is not included in the SSN arc
expressions syntax.

29

2.4. Exploiting symmetries in Symmetric Net

Place S (whose color domain is Age×Loc) is connected to transition Infection

with color domain x ∈ Age, y ∈ Age, l ∈ Loc, h ∈ Loc and with guard l = h.

The expression for R(Infection,S) = (〈x, l〉[l = h])t is 1〈age1, SAge, loc1, loc1〉
denoting a function from cd(S) to Bag[cd(Infection)]. Here the names age1

and loc1 indicate respectively the first occurrence of classes Age and Loc in

cd(S), while the color identifying an instance of Infection is indicated as a

4-tuple 〈x, y, l, h〉[l = h]. As expected the instances of Infection that remove

tokens of color 〈x, l〉 from S are those with x = age1, l = loc1, ∀y, h = loc1.

Let us now consider place I and transition Moving. A(Moving, I) = ((〈x, l〉)t

= 1〈age1, SLoc, loc1〉 where an instance of Moving is indicated as a 4-tuple

〈x, l, h〉. The A(Infection, I) expression can be interpreted as follows: the

instances of Moving adding tokens of color 〈age1, loc1〉 into I are those with

any l ∈ Loc and with y = age1, h = loc1.

Finally, if we consider the differential equation for place p and color c ∈ cd(p),

Eq. 2.7, we can rewrite it in terms of A()/R() as follows:

dx[p, c]

dν
=

∑
(t,c′):p∈t•,c′∈A(p,t)(c)

ϕ(x(ν), t, c′) · A(p, t)(c)[c′] (2.14)

−
∑

(t,c′):p∈•t,c′∈R(p,t)(c)

ϕ(x(ν), t, c′) · R(p, t)(c)[c′]

where x[p, c] is the (average) number of c-colored tokens in place p at time ν

(to keep notation simpler we will omit time dependency), then it is possible to

observe the color dependencies of the intensities and the A()/R() functions.

Indeed, each sum spans over all instances (t, c′) that add (positive terms)

or withdraw (negative terms) tokens of color c to/from p. The intensity ϕ

of (t, c′), which depends on the distribution of colored tokens in t’s preset,

multiplied by the number of tokens of color c added to or withdrawn from p

by (t, c′) (A(p, t)(c)[c′] or R(p, t)(c)[c′]) gives the actual flow of tokens into or

out of p.

30

Chapter 3

Solution techniques

In this Chapter we describe the main simulating techniques to obtain the

temporal evolution of systems in which entities interacting with each other

are involved.

Let us recall from Chapter 2 that the stochastic temporal evolution of

a given system is derived by solving a set of CMEs (eq.s 2.2), one for each

possible state of the system. However, this approach is unfeasible in case of

complex systems, leading to the well-known State-Space Explosion problem.

Two different approaches can be exploited to deal with this point: the stochas-

tic simulation or the deterministic approximation.

In 1976 Daniel Gillespie proposed an exact stochastic algorithm to simulate

chemical or biochemical systems of reactions, called Stochastic Simulation Al-

gorithm (SSA) [57], that can be exploited to obtain trajectories distributed in

according to the solution of the CME. Since this method explicitly simulates

all the events that might occur in the system, it can become slower with an

increasing number of system molecules. For this reason several algorithms

[56, 58, 22] were proposed for obtaining approximations of the SSA with lower

computational costs. One of the most common is the τ-leaping algorithm

[58], which exploits a Poisson approximation to leap over many fast reactions

and to approximate the stochastic behavior of the system. Indeed, it provides

a natural connection between the SSA in the discrete stochastic regime and

31

3.1. Stochastic Simulation Algorithm

the explicit Euler method applied in the continuous deterministic approxima-

tion, in which the system behaviour is approximated by a deterministic model

described through an ODEs system [83].

The deterministic approximation is instead characterized by a computational

cost significantly lower than the stochastic simulations, however in those sys-

tems in which randomness plays an important role, this approach is not able

to provide a good approximation of the real system behaviour (for instance

relevant random features like variance, bimodality, and tail behavior). In lit-

erature [63, 64, 66] there are approaches based on the co-simulation of discrete

(i.e., stochastic) and continuous events (i.e., deterministic) to study the evo-

lution of the system. These approaches will not be analysed in this thesis.

Thus, in this chapter we give the mathematical details regarding 1) the stochas-

tic simulations given by the SSA and its approximation, τ-leaping algo-

rithm, and 2) the deterministic approximation given by the Kurtz’s theorem

[83].

3.1 Stochastic Simulation Algorithm

The SSA [57] was proposed firstly as an algorithm to simulate chemical or

biochemical systems of reactions, but it could be easily extended to simulated

different systems. Since in this thesis the algorithm is directly applied to SPN

models, here we describe it by using the PNs notation. Thus, let us consider for

simplicity an SPN model of np places and nt transitions, but all the formulas

can be extended to the SSN formalism by adding the color dependencies to

each transition and place. The state of the system at a specif time point ν

is described by the marking mi, i.e., the number of tokens in each place at

time ν. We assume that the system is well stirred and in thermal but not

chemical equilibrium. We recall that the dynamics of the system follows the

CME introduced in Eq.s 2.2, that is:

dπ(mi, ν)

dν
=
∑
mk

π(mk, ν)qmk,mi mi,mk ∈ S (3.1)

where π(mi, ν) represents the probability to be in marking mi at time ν, and

qmk,mi the velocity to reach the marking mi from mk.

Let us now define the key factor of the SSA, which is the propensity function

at(mi) of the transition t with marking mi such that at(mi)dν is the proba-

bility that the transition t will fire in the next time interval [ν, ν + dν]. We

32

3.2. τ -leaping approximation

underline that the propensity function of a transition is strictly connected to

the velocity of changing markings. Indeed, defining the marking change vector

associated with a transition t as vt ≡ (v1t, . . . , vnpt), then for each markings

mi and mk, with mi reachable from mk, there exists always and uniquely a

transition t such that mi = mk + vt. Thus, the Eq.s 2.2 can be rewritten in

terms of propensity functions as follows:

dπ(mi, ν)

dν
=
∑
t∈T

[π(mi − vt, ν)at(mi − vt)− π(mi, ν)at(mi)], (3.2)

where the first term represents the probability to reach the state mi given

the firing of the transition t in the time interval [ν, ν + dν], and the second

term the probability to stay in mi given no firing transitions in the same time

interval.

Finally it is straightforward to show that the time necessary, ∆(̂ν), to the next

occurring firing transition is the exponentially distributed random variable

with mean
1

a0(mi)
, with a0(mi) ≡

∑
t∈T at(mi) (called total propensity). In

particular, associating an integer index to each transition exploiting a bijective

function index : T → {1, . . . , nt} s.t. index(t) = k, t ∈ T , than the index

of the firing transition t is the integer random variable with point probability
at(mi)

a0(mi)
. To advance the system from mi at time ν, the SSA generates two

random numbers r1 and r2 uniformly sampled in the unit interval, and then

takes the time of the next reaction to be ν + ∆(̂ν) where

∆(̂ν) =
1

a0(mi)
ln(

1

r1
), (3.3)

and the index for the next transition to be the smallest integer j satisfying

j∑
k=1

aindex−1(k) > r2a0(mi). (3.4)

The system state is then updated according to the marking change vector

associated with the transition t = index−1(j), and this process gets repeated

until some final time or condition is reached.

3.2 τ-leaping approximation

Although the SSA is an exact stochastic simulation method, it has some prac-

tical issues due to computational expensiveness due to the tracking of every

33

3.2. τ -leaping approximation

event, which makes this method impractical for many very complex problems

(e.g., a huge number of entities in the model). For this reason a new strat-

egy, called τ -leaping approximation, has been proposed in [58] and it starts

from the observation that, instead of considering an infinitesimal and negative

exponential distributed time interval and then make a simulation proceeding

one infinitesimal interval after the other, it is possible to consider a larger and

dynamic time step, τ , during which multiple transitions can fire leading to

a substantial change of the state. In this way the simulation proceeds faster

than before as long as small approximations are made. Indeed, we have to

identify the length of this time interval τ such that each transition can fire a

number of times i) without losing too much information about the evolution

of the system, and ii) without having an excessive discretization that leads to

something computationally similar to SSA. In this contest, we can define a

new object, denoted as Kt(τ,mν , ν), for counting the number of times, given

the marking mν at time ν, that the transition t will fire in the time interval

[ν, ν + τ). Indeed, if τ is small enough that no propensity function change its

value “appreciably”, a requirement that is called the leap condition, then

Kt(τ,mν , ν) can be approximated by a Poisson random variable P(at(mν), τ)

with mean and variance at(mi)τ . Therefore we can defined the τ-leaping

approximation the procedure to choose a value of τ satisfying the leap con-

dition, and then update the marking to time ν+ τ in according to the Poisson

approximation, i.e.

mν+τ = mν +
∑
t∈T

vtP(at(mν), τ). (3.5)

A critical aspect in τ -leaping approach is the definition of an efficient τ , that

is compatible with the leap condition. A first solution proposed by Gillespie

was to choose τ such that the expected change in each propensity function

at(mν) during the leap is limited by the total propensity function and an error

control parameter ε, i.e.,

|at(mν+τ)− at(mν)| < a0(mν)ε, ∀t ∈ T. (3.6)

Successively, Gillespie and Petzold [59] showed that the largest value of τ

that satisfies Eq. 3.6 can be estimated by the following equation

τ = mint∈T

{
a0(mν)ε

|µt(mν)|
,
(a0(mν)ε)2

σ2
t (mν)

}
, (3.7)

34

3.3. Deterministic approximation

where

ft,t′(mν) =
∑
p∈P

∂at(mν)

∂mν(p)
vpt′ ,

µt(mν) =
∑
t′∈T

ft,t′(mν)at′(mν), (3.8)

σ2
t (mν) =

∑
t′∈T

f2
t,t′(mν)at′(mν),

considering t, t′ ∈ T , mν(p) the marking of place p at time ν, and vpt′ the

state change of the place p with the firing of t′.

Because the Poisson random variable is unbounded, it is possible that the

Poisson approximation might fire a transition so many times that the number

of tokens in one of its input places becomes negative. In this case, a simple

manner to deal with the negativity is to decrease the τ value until no places

have a negative number of tokens. Indeed, this approach is computational

expensive so in [23] a modified Poisson τ -leaping procedure was introduced

to better resolve the negativity problem. The idea is based on identifying the

critical transitions, which are characterized by a positive propensity function

that is currently within nc firings of exhausting the tokens in one of the its

input places. Therefore, a second control parameter nc, a positive integer that

is usually set somewhere between 2 and 20, is introduced in the algorithm

[23]. Successively the identification of the critical transitions, the modified

algorithm simulates the critical ones using an adapted version of the SSA,

and the remaining transitions exploiting the Poisson τ -leaping method. Since

no more than one firing of a critical transition can occur during a leap, the

probability of producing a negative number of tokens is reduced to nearly zero.

3.3 Deterministic approximation

We can now recall that the deterministic approximation (also called fluid

approximation or mean field analysis [16]) which can be derived by the Kurtz’s

theorem [83]. Observe that we have expressed it in a form that is directly

related to the definition of SPN. First of all, let us define a principal property

which has to characterize the CTMC derived from the SPN, because the fluid

approximation can be applied.

Definition 7. Let Xη(v) be a parametric family of Markov chains with η ∈ N,

and state spaces Sη ⊂ Zk, such a family is called density dependent iff there

35

3.3. Deterministic approximation

exists a continuous function f(y, l), y ∈ Rk, l ∈ ∆(y) such that the non-

diagonal entries of the infinitesimal generator corresponding to Xη(v) can be

written in the form:

qk,k+l = ηf

(
k

η
, l

)
(3.9)

and the initial state of the chain is ηx0, x0 ∈ Zk, with probability one.

Let X(v) be a deterministic process denoting the solution of the ODE

system

dX(v)

dv
=

∑
l∈∆(X(v))

f(X(v), l) (3.10)

with initial condition X(0) = x0, meaning that the initial value of the deter-

ministic process X(v) is equal to the initial state of the parametric family of

density dependent Markov chains Xη(v) divided by η.

In [83] Kurtz has showed that under relatively mild conditions on function

f the following relation holds between the function X(v) and a trajectory of

the CTMC Xη(v):

∀δ > 0 : lim
η→∞

P

{
sup
u≤v

∣∣∣∣1ηXη(u)−X(u)

∣∣∣∣ > δ

}
= 0. (3.11)

Informally this means that if we consider a sequence of CTMCs with in-

creasing initial state and if we assume that the infinitesimal generators (i.e.,

the velocity to reach a specific state from a different state) corresponding to

this sequence satisfy the conditions expressed by Eq. 3.9, then, as η becomes

large, the behavior of the CTMC converges to the solution of the ODEs given

in Eq. 3.10. In this situation, the probability of finding differences between a

trajectory of the CTMC and the solution of the ODEs in a finite time horizon

(0, v) that are larger than a predefined arbitrarily small threshold, is zero.

In [9, 10] the authors showed the applicability of the fluid approximation

considering the SPN and the Symbolic Net formalism, respectively. Thus

the model behavior is then represented by one equation for each individual

place in the SPN case or less considering the symbolic formalism, so that the

computational complexity grows linearly with the number of places, while the

size of the underlying CTMC grows exponentially. In this case the ODEs

system obtained from the Kurtz’s theorem, Eq. 3.10, becomes the equations

system expressed by the Eq. 2.4.

36

Chapter 4

Flux Balance Analysis

High-throughput techniques in molecular cell biology (such as RNA seq and

proteomics, based on single cell technology), allow to extract information on

the gene repertoire activation and on occurring biochemical reactions. In-

deed, this information could be part or have an influence on the PNs design

(e.g., in the production of energy or of an enzyme, facilitating the formation

of conditions, such as kinases or phosphorilases, able to change the overall

phosphorilation dynamics and therefore the fluidity of the cytoplasm). For in-

stance, metabolic networks can include intra-cellular reactions occurring in a

cancer stem cell, or could be expanded to account for environmental metabolic

processes, i.e., all those occurring outside the cells in the tumor microenvi-

ronment. This is particularly important to investigate the energetic details

of cancer dynamics across different compartments (for example in the pan-

creas we could consider intra-cellular Langerhans islets, connective tissues,

and blood compartments). Having a list of reactions and of the enzymes

catalysing them, a system of differential equations can answer interesting bio-

logical questions. However, building such a system requires knowledge of rate

coefficients for every reaction, which are difficult to measure, especially for

enzyme catalysed reactions in vivo (the in vitro condition can rarely approxi-

mate the exact local in vivo condition). Therefore, techniques to analyse large

metabolic models must get by with just stoichiometry and other constraints

37

4.1. Flux Balance Analysis formalism

on reaction rates, such as constant bounds.

Constraint-based approaches are mathematical modeling approaches based

on the definition and manipulation of stoichiometric matrices, commonly used

with optimization techniques, such as the use of linear and mixed-integer pro-

gramming to maximize an objective function under specific constraints (+/-

infinity are allowed).

In particular, the Flux Balance Analysis (FBA) [137] computes the distri-

bution of reaction fluxes in a metabolic system at the equilibrium and finding

the feasible fluxes under given constraints and an objective function to max-

imize/minimize. Several techniques, that further explore the solution space,

have addressed the issue of choosing among indistinguishable optimal solu-

tions, like the decomposition of the flux distribution into Elementary Flux

Modes, or Flux Variability Analysis. Given that FBA only identifies the

metabolic flux distribution under specific constraints, a dynamic extension to

FBA has been formulated, namely Dynamic Flux Balance Analysis (DFBA),

to obtain further information on the metabolite concentrations or on the dy-

namic characteristics of the metabolic fluxes. Exploiting this approach it is

possible to explicitly model constraints on the fluxes given certain metabolic

concentrations.

Finally, in this chapter we recall the basis and the mathematical details re-

garding both the FBA and DFBA techniques, and their solution techniques.

4.1 Flux Balance Analysis formalism

The first works [112, 166] regarding the FBA dates back to the early 1980s,

they showed the possibility to construct flux balance equations using a metabolic

map and to exploit linear programming for deriving the fluxes in a pathway.

The FBA models start considering a system characterized by a large number

of reactions and metabolites, each reaction associated with an inferior and su-

perior concentration boundaries. Thus, the dynamic mass balances (i.e. the

changes of metabolites concentration over the time) for each metabolite in the

system can be expressed by the following set of ODEs (in matrix notation)

dx

dt
= S · v(x, t), (4.1)

38

4.1. Flux Balance Analysis formalism

where x ∈ Rn denotes the concentration vector of all the nmetabolites, v ∈ Rm

is the flux vector describing the activity of all the m internal and exchange

fluxes (which may depend by x and t), and S ∈ Zm×n is the stochiometric

matrix.

The stoichiometry (the participant molecular species and their ratios) of chem-

ical reactions is fixed, since this is determined by conservation of matter and of

charge. These sets of reactions can be considered as flow networks, see [111, 97]

among others for recent comprehensive and general introductions. Although

there are few different ways in which these can be represented, a meaningful

approach is to consider the relationship between reactions and metabolites as a

bipartite graph where both reactions and metabolites are nodes, with reaction

nodes only having edges to metabolite nodes, and vice versa. The edges are

directed to represent either consumption or production of a metabolite, and

numbered with the stoichiometry of the considered chemical reaction. Rates

are associated with each reaction, and the reaction intrinsic rate multiplied

by the reaction stoichiometry defines the rate at which a particular compound

is produced. From this position, we can start introducing assumptions that

will allow to make the analysis easier. The first and most common of these is

the steady state assumption, which supposes that there is no net surplus or

deficit of any metabolite, so that the total rate of production of a metabolite

is equal to the total rate of consumption (for example we disregard circadian

or other oscillations).

In some sense this assumption is equivalent to Kirchoff’s current law in electric

circuits, and means that the rates of the reactions producing the metabolite

are tied to the rates of the reactions consuming it: the flux through each

metabolite in the network must be constant, i.e. the input flux must equal

the output flux.

Hence, under steady state condition, the time derivative in Eq. 4.1 can be

relaxed to zero, obtaining a set of linear homogeneous equations

S · v = 0, (4.2)

one equation per metabolite, from which it is possible to calculate flux values.

In this contest, v becomes a constant vector, independent by the time t and

the metabolites concentrations x.

Since the number of metabolites usually is smaller than the number of reac-

tions, the system resulting from the Eq. 4.2 is undetermined, i.e., there exists

39

4.1. Flux Balance Analysis formalism

different flux vectors satisfying it. Therefore, defining some constraints vmini

and vmaxi for each flux {vi}mi=1, and an objective function f : Rm → R to max-

imize/minimize we are able to shrink the feasible space defined by the Eq. 4.2,

neglecting all the fluxes whose are not physiologically relevant. An objective

function plays a role as a surrogate for the most plausible physiological state

among the states of the system, and it might be defined, for instance, as the

maximization of the biomass, or the minimization/maximization of the ATP

(in case of reaction models).

FBA methods can be divided into two groups: 1) biased methods make the

assumption that evolution has evolved to optimise for certain properties of the

reaction system, such as maximising biomass production, and simulate this

maximisation to find rates (i.e., they necessitate the definition of an objective

function); 2) unbiased methods make no such assumptions, finding into the

solution space a subset of statistically analysable functional states without

requiring the definition of an objective function. See [160, 161] for in depth

classification of these methods and list of useful software for the various types

of analyses. Therefore, FBA’s biased methods add one extra assumption to

the model previously outlined: that evolution has already optimised the or-

ganism to grow as fast as possible. To use this assumption we add another

placeholder reaction to the existing uptake and excretion nodes, a sink for

biomass. This reaction simulates the sequestration of materials that is re-

quired for growth, and is generally a reaction with a very large number of

input reactants, and unusually with fractional stoichiometries, since we can

add the ratios of materials required for growth by simply analysing the con-

stituents of a whole cell.

Once we have a biomass equation, we have a direction for optimisation. We

find the assignment of fluxes that will achieve the highest biomass production.

This is normally achieved by linear programming, which is a fast, specialised

optimisation method that is applicable to this type of problems. Mathemat-

ically the FBA is translated as a Linear Programming Problem (LPP) as

40

4.1. Flux Balance Analysis formalism

follow:

max f(v) or min f(v),

subject to

S · v = 0, (4.3)

vmini ≤ vi ≤ vmaxi ,

vi ∈ R, ∀i = 1, . . . , m,

where vmini and vmaxi are either zero or negative and positive infinity, respec-

tively, based on the direction of the flux. Usually considering internal fluxes

vmini is set to 0 and vmaxi to a constant or positive infinity either. Differently,

for the exchange fluxes depending on the existence of a source or a sink vmini

is set to negative infinity or zero, and vmaxi is set to zero or positive infinity,

respectively. If both a source and a sink are present for the metabolite then

the exchange flux is defined bidirectional with vmini and vmaxi set to negative

and positive infinity. Finally, the objective function is defined as a function

f : E −→ R where E represents the flux vector satisfying (i) the mass balance

equation, and (ii) the constraints (both defined in Eq.s 4.3).

Since LPPs are characterized by different issues to cope with, for instance

the principal on is the existence of alternate optima, several techniques are

proposed to guide the FBA through the identification of the best fluxes config-

urations. In this contest, two well known techniques in literature are the Flux

Variability Analysis (FVA)[95] and the Reaction Essentiality Analysis (REA)

[29], which can be exploited to identify the reactions whose play a central role

in system and whose are most variable. In details, the FVA is exploited to

determine robustness of metabolic models in various simulation conditions.

It consists in identifying which fluxes are necessary to reach specific optima

by maximizing and minimizing each flux in the network while maintaining

the biomass flux at some fraction of the optimal value reached from the initial

FBA (e.g., supporting 90% of maximal possible biomass production rate). Let

us note that by using the FVA it is not possible to find the best optimum flux

values, but rather it is possible to define a problem with the smallest set of

variables, which are the reactions that contribute more to the variability of

the objective function. Differently, REA consists to identify the essential reac-

tion, which are reactions whose omission from the metabolic system is lethal,

i.e., the maximum of the biomass flux goes to zero or lower than a specific

threshold. So deleting one reaction per time and solving the corresponding

41

4.2. Dynamic Flux Balance

LPP, it is possible to find a list of all the essential reactions and to determine

which reactions and metabolic pathways are active or dormant in a particular

condition.

4.2 Dynamic Flux Balance

In order to combine extra-cellular dynamics and intra-cellular steady states,

and therefore model metabolism under dynamic conditions, a step-wise FBA

approach, commonly referred to as Dynamic Flux Balance Analysis DFBA,

was proposed in [97, 96, 178]. This represents a first attempt to tackle limita-

tions from both the mechanistic-based and constraint-based models, merging

capabilities and exploiting knowledge of already well-known processes in order

to decrease costs, improve efficiency and perform more descriptive phenotype

predictions.

Roughly, the idea is that FBA simulation based on the steady-state constraint

is run at each time step, and the uptake rates of given nutrients for the next

simulation are reduced according to how much nutrient has been consumed

in the previous FBA simulation. More specifically, the assumption is that the

cell has a limited availability of extra-cellular nutrients (e.g., glucose), encoded

as a constraint (maximum uptake rate) in the associated exchange reaction.

Then, after an FBA simulation is run, the amount of nutrient which has been

actually taken up by the organism is used to reduce the nutrient availability

(maximum uptake rate) for the FBA simulation at the next time step. As

a result, DFBA allows investigating genome-scale networks under transient

conditions. It can be thought as a compromise between fully dynamic models,

which cannot be simulated at large scale, and steady-state models, which do

not involve kinetics [111, 97].

In literature we can find different formulations of the dynamic extension to

FBA, in which stoichiometric information is joined with kinetic data. For

instance in [96] the authors introduced two methods to formulate the DFBA,

called Dynamic Optimization Approach (DOA) and Static Optimization Ap-

proach (SOA). The former involves optimization over the entire time period to

obtain time profiles of fluxes and metabolite levels. In this case, the dynamic

optimization problem is transformed to a non-linear programming problem,

which is solved once. The latter method divides firstly the time period into

several time intervals, then an optimization problem is solved at the beginning

42

4.2. Dynamic Flux Balance

of each time interval, followed by integration over the interval. The optimiza-

tion problem was solved using LPP repeatedly during the course of the batch

to obtain the flux distribution at a particular time instant.

Moreover, in [102] the authors propose an integrated DFBA strategy which

is based on user-defined rules and parameters to represent an integrated stoi-

chiometric reconstruction of biological processes such as signaling, metabolic

and regulatory process. These are characterized by reactions with mixed time

scales, for instance signaling reactions are generally much faster than reg-

ulatory reactions. Furthermore, it is possible to simulate quantitative and

dynamic predictions of species concentrations by incorporating kinetic param-

eters. In details, the framework proposed involves performing an optimization,

over multiple discretized time steps, to approximate the dynamics of a sys-

tem given strictly stoichiometric constraints. These constraints are exploited

to distinguish the fast and slow reactions, which can be not included in the

network at specific time points. Similarly, in [37] the FBA approach is com-

bined with regulatory Boolean logic, and ODEs to create an integrated model

of E.coli to describe in detail carbohydrate uptake control and behavior of

diauxic growth.

43

Part II

Theoretical results

44

Chapter 5

New PN formalisms for

modeling complex systems

In this chapter we introduce the two new PN formalisms, that we developed to

model and study complex systems. In particular we show how the well-know

SPN and SSN formalisms can be extended to become a convenient tool to

efficiently describe epidemiological and biological systems.

5.1 Extended Stochastic Petri Net

The Extended Stochastic Petri Net (ESPN) extends the SPN definition by

splitting the set of transition T in two subsets Tma and Tg. The former subset

contains all transitions which fire with a rate expressed in MA law. The

latter one includes all transitions whose random firing times have rates that

are defined as general real functions. Hence, we will refer to the transitions

belonging to Tma as standard transitions and as general transitions those in

Tg. This allows to easily model reactions which do not follow the MA law and

to encode reactions whose dynamics are characterized through different and

more complex functions (for instance Michaelis Menten and Hill kinetics). An

example is showed in Fig. 5.1A), in which the ESPN version of the SIR model

is depicted. We used a black boxes to highlight the transitions belonging to Tg,

45

5.1. Extended Stochastic Petri Net

i.e., the Infection transition, and the white boxes for the transitions belonging

to Tma, i.e., the Recovery transition.

Definition 8 (Extended Stochastic Petri Net). An Extended Stochastic Petri

Net (ESPN) system is a tuple (P, T, I,O,m0, λ,Λ), where:

• P, I,O,m0 are defined as in Definition 2.

• T = Tma∪Tg is a finite, non empty set of transitions, with Tma∩Tg = ∅.
Tma = {t∗i }1≤i≤nTma

is the set of the nTma transitions whose speeds follow

the MA law. Tg = {ti}1≤i≤nTg
is the set of the nTg transitions whose

speeds are defined as continuous functions.

• λ : Tma → R gives the firing intensity of the transitions.

• Λ = {f1, . . . , fh} is the firing intensity set grouping the functions charac-

terizing the general transitions in Tg, with h ≤ nTg , h ∈ N. In particular

a function f depend only on the marking of the input places of the re-

spective transition t (|•t|) and on time ν ∈ R+, i.e.,

f : R|
•t| × R+ −→ R.

For instance the function f1 might represent a Michaelis Menten kinetic

and f2 an Hill kinetic.

We now show how the ODEs system describing the underlying determin-

istic process can be automatically derived from an ESPN model.

Similarly to what was introduced in Section 2.2, let xi(ν) ∈ R+ be the

continuous approximation of the number of tokens in place pi so that the

vector x(ν) ∈ RnP is the marking of the ESPN at time ν.

Let define x(ν)|•t as the subset of the marking x(ν) concerning just the input

places to transition t. Thus, given a transition t ∈ T = Tma ∪ Tg at the time

ν, it will move tokens in state xi(ν) with speed F (t, ν) defined as follows:

F (t, ν, x̂) :=

φ(t, x̂), t ∈ Tma,

ft(ν, x̂), t ∈ Tg,
x̂ = x(ν)|•t, ft ∈ Λ

where φ(ti, x̂) = λ(ti)
∏
k x̂

I(pk,ti)
k .

46

5.1. Extended Stochastic Petri Net

Figure 5.1: A) shows the ESPN of the SIR model, while B) the ESSN in
which the age and locations of the population are taken in account.

The instantaneous changes of tokens xi(ν) in the i-th place at time ν, is

modeled by the following ODE:

dxi(ν) =

nT∑
j=1

F (tj , ν, x̂)L[pi, tj]dν

=

nTma∑
j=1

φ(t∗j , x̂)L[pi, t
∗
j]dν +

nTg∑
j=1

ftj (ν, x̂)L[pi, tj]dν

∀i ∈ {1, . . . , nP }, (5.1)

where L is the incidence matrix [142, 32] defined as L[pi, tj] = I[pi, tj] −
O[pi, tj]. Therefore, if place pi is an input (output) place of transition tj , then

transition tj is removing (adding) tokens from (to) place pi according to the

current speed of the transition and the multiplicity given by function I (O).

47

5.2. Extended Stochastic Symmetric Net

Observe that the first sum of Eq. 5.1 corresponds exactly to Eq. 2.4, while the

second sum accounts for the new timing specifications allowed by the ESPN

formalism.

5.2 Extended Stochastic Symmetric Net

Similarly to Section 5.1, here we propose a new formalism, called Extended

Stochastic Symmetric Net (ESSN), which extends the SSN exploiting the same

ideas discussed in the previous section. In details, the set of transitions T is

split in two subsets Tma and Tg, basing on the syntax of the transitions rates.

Therefore the Definition 8 is modified to consider all the features connected

to the PN colours. An example is showed in Fig. 5.1B), in which the ESSN

version of the SIR model presented in Section 2.4 is depicted.

Definition 9 (Extended Stochastic Symmetric Net). An ESSN is a ten-tuple:

NESSN = 〈P, T, C, I, O, cd ,Θ, ω,Ω,m0〉

where

• P, C, I, O, cd ,Θ,m0 are defined as in SSN (see definition 3).

• T is the set of transitions and is defined as T = Tma∪Tg, with Tma∩Tg =

∅. Where Tma = {t∗i }1≤i≤nTma
is the set of the nTma transitions whose

speeds follow the MA law, and Tg = {ti}1≤i≤nTg
is the set of the nTg

transitions whose speeds are defined as continuous functions.

• ω(t, c) is the rate of transition t ∈ Tma assuming the firing of the instance

〈t, c〉.

• Ω = {f〈t,c〉}t∈T∧c∈cd(t) is set grouping all the transition speeds ∀t ∈ T .

Let us recall from definition 8 that these functions can depend only on

the marking of the input places of transition t at time ν. In detail, with

t ∈ Tma then f〈t,c〉 = ϕ(·, t, c), where ϕ is defined in Eq. 2.6.

Similarly to what discussed in Section 2.3, let xp,c(ν) ∈ R+ be the contin-

uous approximation of the number of tokens in place p and color c so that the

vector x(ν) ∈ RnP is the marking of the ESPN at time ν.

Let define x̂(ν) = x(ν)|•t as the subset of the marking x(ν) concerning only

the input places to the transition t. Given 〈t, c〉 at the time ν, with transition

48

5.3. Application example: Lotka-Volterra Model

t ∈ T = Tma ∪ Tg , the firing of 〈t, c〉 will move tokens in state x〈p,c〉(ν) with

speed F (x̂(ν), t, c, ν) defined as follows:

F (x̂(ν), t, c, ν) :=

ϕ(x̂(ν), t, c), t ∈ Tma,

f〈t,c〉(x̂(ν), ν), t ∈ Tg,
(5.2)

f〈t,c〉 ∈ Ω(t, c)

where ϕ(x̂(ν), t, c) is defined as in Eq. 2.8. Observe that ϕ(x̂(ν), t, c) and

f〈t,c〉(x̂(ν), ν) can depend only on the marking of the input places of transition

t at time ν.

Finally the ODE characterizing the p and color tuple c ∈ cd(p) is defined

as:

dxp,c(ν)

dν
=

∑
〈t′,c′〉∈E(t′,x(ν))

F (x̂(ν), t′, c′, ν)(L[p, t′](c′)[c])

=
∑

〈t′,c′〉∈E(t′,x(ν))
∧t′∈Tma

ϕ(x̂(ν), t′, c′)(L[p, t′](c′)[c])

+
∑

〈t′,c′〉∈E(t′,x(ν))
∧t’∈Tg

f〈t′,c′〉(x̂(ν), ν)(L[p, t′](c′)[c]) (5.3)

where x̂(ν) = x(ν)|•t′ .

5.3 Application example: Lotka-Volterra Model

In this section we show how the ESPN and ESSN formalisms can be efficiently

used to analyse the Lotka-Volterra model, also known as the predator-prey

model [93].

The Lotka-Volterra model is defined by a pair of ODEs, which describes

the dynamics of biological systems characterized by two species that may

interact, one as a predator and the other as prey. From the literature it is

possible to find several definitions of this model [39, 35, 125], and in [72] a

first classification of these models is reported depending on the functional

response, i.e., the change in the rate of prey consumption by a predator when

the prey density varied. In details, the functional response can be classified

in three major types, namely Holling type I, II, III, whose definitions can be

summarize as follows.

49

5.3. Application example: Lotka-Volterra Model

• Holling type I: the number of prey consumed shows a linear relation-

ship with the prey density, the green line in Fig. 5.2.

• Holling type II: the gradient of the number of prey consumed decreases

monotonically with increasing prey density, eventually saturating at a

constant value of prey consumption, the orange line in Fig. 5.2. This

follows from the assumption that the consumer is limited by its capacity

to process food. A real example of this phenomena was published in

[39] considering wolves and caribou. It was shown that the proportion

of caribou killed per wolf decreases as caribou density increases, given

that wolves are more easily satiated and the total number of caribou

kills reaches a plateau. Mathematically, this model is equivalent to the

model of enzime kinetics developed in 1913 by L. Michaelis and M.

Menten [101].

• Holling type III: the gradient of the number of prey consumed first

increases and then decreases with increasing prey density, the blue line in

Fig. 5.2. This sigmoidal behaviour has been attributed to the existence

of ‘learning behaviour ’ in the predator population, for example predators

learning more specialised techniques for hunting or prey handling.

Figure 5.2: Holling types I, II, III functional responses.

50

5.3. Application example: Lotka-Volterra Model

Independently by the functional response exploited, a general version of

the prey-predator model is defined by the following ODEs system.

dxPrey
dν

= f(xPrey)xPrey − g(xPrey, xPredator)xPredator, (5.4)

dxPredator
dν

= εg(xPrey, xPredator)xPredator − γxPredator,

where:

1. xPrey is the number of preys (e.g., caribou, rabbits, etc);

2. xPredator is the number of predators (e.g., wolves, foxes, etc);

3. ν represents time;

4. f(xPrey) is the individual prey growth rate in the absence of predators;

5. g(xPrey, xPredator) is the functional response of the model;

6. ε is the efficiency of the predator in converting consumed prey into preda-

tor offspring;

7. γ is the predator mortality rate.

The simplest and more known prey-predator model [93] exploits a func-

tional response of type I, in which a predator might interact with all the prey,

thus the product of the two populations is the obvious outcome. This model

can be easily represented using the SPN formalism, see Fig. 5.3a, from which

the following ODEs system can be derived:

dx̂Prey
dν

= αx̂Prey − βx̂Preyx̂Predator, (5.5)

dx̂Predator
dν

= δx̂Preyx̂Predator − γx̂Predator,

where:

1. xPrey is the average number of tokens in the Prey place, representing

the preys;

2. xPredator is the average number of tokens in the Predator place, repre-

senting the predators;

51

5.3. Application example: Lotka-Volterra Model

(a) (b)

Figure 5.3: The Lotka-Volterra model represented exploiting the SPN formal-
ism in (a) and the SSN formalism in (b), considering different territories and
prey species.

3. α, β, γ, θ are positive real parameters describing the interaction of the

two species and defining the rate of the BirthPrey, DeathPrey, Birth-

Predator, DeathPrey transitions, respectively.

Let use note that Eq.s 5.5 can be obtained from Eq.s 5.4 defining

g(xPrey, xPredator) = βxPrey, f(xPrey) = α , and δ = βε.

In this model we are assuming that the prey have an unlimited food supply

and it is able to reproduce exponentially (BirthPrey transition), unless sub-

ject to predation (DeathPrey transition). Differently, the food supply of the

predator population depends entirely on the size of the prey population. Thus,

the predator birth depends linearly on the number of prey at a specific time

point (BirthPredator transition), while the predators death does not depend

on it (DeathPredator transition). We can denote that all the transitions have

a velocity rate defined according to MA law. Finally, the periodic dynamics

of the system are showed in Fig. 5.4.

52

5.3. Application example: Lotka-Volterra Model

Figure 5.4: The Lotka-Volterra dynamics fixing: α = 1.1, β = 0.4, γ =
0.1, θ = 0.4, and the initial number of both the species equals to 10.

A similar example is depicted in Fig. 5.3b, in which the prey-predator

model is represented by exploiting the SSN formalism in which different ter-

ritories and prey species are modeled by using the color classes Territory and

Species respectively. The Territory color class is defined by two sub-classes

T1 and T2, representing for instance two different zones, characterized respec-

tively by three and two colors (i.e., in the same zone we can have different

positions). While Species models two different prey species defined by the two

sub-classes S1 and S2, both characterized by one color. Since we are modeling

that only the prey might belong to separate species, thus the color domain of

the Prey place is defined by both the classes, while the color domain of the

Predator place is characterized only by the Territory color class. Let us note

that to have an easier comparison with the previous model and since we are

not interested (in this case) to the model dynamics, we are not considering

movements among the territories.

In this case we have to deal with 15 equations instead of two, modeling for all

the five territories the interaction among two prey species and one of preda-

tors. Assuming that the interactions happen only if predator and prey are in

the same territory, Eq.s 5.5 become

53

5.3. Application example: Lotka-Volterra Model

dx̂Preyt,s
dν

= α(t, s)x̂Preyt,s − β(t, s)x̂Preyt,s x̂Predatort , (5.6)

dx̂Predatort
dν

= δ(t, s)x̂Preyt,s x̂Predatort − γ(t)x̂Predatort ,

where s, t represent the prey specie and the territory, respectively. Thus,

x̂Preyt,s is the number of preys in the territory t and belonging to the s specie.

For completeness all the parameters depend on the t, s colors.

However, most ecological interest in functional responses has to involve

types II and III. For instance, if it is considered that a single predator can

feed only until the stomach is full, a saturation function is needed to indicate

the intake of food, which is modeled using the Holling type II term. A simple

example of this term is expressed by Eq. 5.7, where a is the attack rate at

which the consumer encounters food items per unit of food density, and h

is the average handling time spent on processing a food item. Indeed, more

complex examples are given in [35, 125].

gII(xPrey, xPredator) =
a xPrey

1 + a h xPrey
. (5.7)

Similarly, type III functional responses can be characterized by the Eq. 5.7

if the attack constant rate a is defined in function of the number of preys [74],

for instance a general form is given by a hyperbolic function of xPrey:

a =
d+ b xPrey
1 + c xPrey

(5.8)

in which b, c, d are constants. Thus, we can easily derive a general equation

of type III as follows:

gIII(xPrey, xPredator) =
d xPrey + b x2

Prey

1 + c xPrey + d h xPrey + b h x2
Prey

. (5.9)

Finally, considering the functional response types described in Eq.s 5.7

and 5.9, in terms of SPN they should define the rate of the DeathPrey and

BirthPredator transitions. Indeed this is not easy using the SPN (or SSN)

formalism, while it can be achieved easily by exploiting the ESPN (or ESSN)

formalism. Indeed in the extended formalisms it is possible to integrate in

the model more complex functional response than the type I by defining the

54

5.3. Application example: Lotka-Volterra Model

(a) (b)

Figure 5.5: The Lotka-Volterra model represented exploiting the ESPN for-
malism in (a) and the ESSN formalism in (b).

DeathPrey (and BirthPredator) transition as a general transition. Let us

recall from Section 5.1 that a general transition t ∈ Tg is defined by a function

ft(x̂(ν), ν), where x̂(ν) represents the vector of the average number of tokens

for all the transition input places at time ν. Hence, the general transition

velocities of Fig. 5.5a should be defined as follows

fDeathPrey(x̂(ν), ν) = g(xPrey, xPredator) xPredator (5.10)

fBirthPredator(x̂(ν), ν) = εg(xPrey, xPredator) xPredator

with g() equals to gII() from Eq. 5.7 or gIII() from Eq. 5.9 in order to use

a functional response of type II or III, respectively. Let us note that in the

ESSN case the Eq.s 5.10 can be easily rewritten considering the color instances

given by the the prey species and the territories. Both the ESPN and ESSN

models are showed in Fig.s 5.5a and 5.5b, in which we used black boxes to

highlight the general transitions.

55

Chapter 6

Extended solution techniques

In this chapter we describe three new techniques developed to make more

efficiently the analysis of complex ESPN and ESSN models. In particular,

Sec. 6.1 focuses on exploiting the model symmetries to reduce the solution

computational cost. In this contest, we developed an algorithm to improve

the previously introduced procedure in Section 2.4 to automatically derive

the reduced ODEs system from the (E)SSN model exploiting the systems

symmetries, by avoiding the complete net unfolding (from which the same

measures derived by the original ODEs can be computed). In Section 6.2

we describe how ESPN formalism can be exploited as a “metaformalims”

to create hybrid model in which some sub-components were detailed as a

mechanism model and other as a constraint model. This means that some

components are modeled with a high level of precision exploiting an ODEs

system (mechanism-based model), and other by a low level of precision given

by the FBA (constraint-based models). Finally, in Sec. 6.3 we describe an

adaptation of the τ -leaping algorithm [58], to be used on general models (i.e.,

not only for chemical reactions models characterized by MA reactions).

56

6.1. Symbolic formalism without complete unfolding

6.1 Symbolic formalism without complete

unfolding

In Section 2.3 we explained how to derive from an SSN model the correspond-

ing ODEs system, from which the system behaviour can be generated. In

particular we highlighted that the unfolding step is typically the bottleneck

of this task. Moreover in Section 2.4 we showed that this step is also needed

when a reduced ODEs system is generated exploiting the symmetries. Since

this can substantially affect the efficacy of such approach, during my PhD

we developed a new method in which the reduced ODEs system is directly

obtained from a partially unfolded SSN model through an algebraic manipu-

lation of its color notation.

This section is then organized as follows: in Sec. 6.1.1 is briefly introduced

an example which will be used through the algorithm explanation. Succes-

sively, we explain the two steps characterizing the new method to derive the

reduced ODE system starting from an SSN partially unfolded without com-

pletely unfolding the model: 1) in Sec. 6.1.2 the partial unfolding procedure,

and 2) in Sec. 6.1.3 the specific functions required to automatically generate

a reduced set of ODE that represent the whole behavior of the system. In

Sec. 6.1.4 the benefits of the method and its implementation are discussed in

details. Finally, in Sec. 6.1.5 we discuss which constrains have to be defined

on the functions characterizing the general transitions to extend this approach

for the ESSN formalism.

6.1.1 Case study

In Fig. 6.1 the SSN model used throughout this section is depicted: it repre-

sents a Susceptible-Infected-Recovered-Susceptible (SIRS) model where mem-

bers of a population (place Population) may join (transition Arrival) a com-

munity of susceptible individuals (place Susceptible), which can be infected by

meeting (transition Infection) infected community members (place Infected).

Place Infected is represented as a big ellipse containing five places: this will

be used later to illustrate the partial unfolding procedure. For the moment

let us just consider the big place as a whole, disregarding the enclosed places

and the annotations on the arcs incident on them described in the table 6.1.

57

6.1. Symbolic formalism without complete unfolding

[g7] f1 [g1]

Infected4xNoDrug

Infected1xDrug

Infected2xDrug

Infected3xDrug

Infected4xDrug

[g6] f0 [g1]

[g7] f1 [g2]

[g8] f2 [g2]

[g8] f2 [g3]

[g9] f3 [g3]

[g9] f3 [g4]

[g10] f4 [g4]

S_ND

Color class definition: Trial = ND ∪DC, |ND| = 1, |DC| = 5

Figure 6.1: A SIRS model with antibiotic resistance.

Infected individuals can be treated with a drug (e.g., an antibiotic is pre-

scribed, possibly after an antibiogram analysis); the treatment may not be

effective for various reasons, e.g., the antibiotic did not reach the infected tis-

sue with enough concentration, or the patient did not accurately follow the

prescription. Bacteria may develop resistance to an antibiotic as a result of

an unsuccessful treatment, and this is modeled by recording in the token col-

ors of place Infected the types of drugs (up to four) that did not lead to a

full recovery. Transition Unrecovery represents the occurrence of unsuccessful

treatment leading to a higher degree of resistance of the involved bacterium,

up to a maximum level which cannot be treated with any drug. In the low and

intermediate resistance levels a successful treatment may occur, represented

by transition Recovery, leading to a complete recovery (passing through place

Recovered and then back to the Susceptible state). Place Drug represents the

available drugs that can be used for treatment. Periodically, a new supply of

drugs is brought to the pharmacy from a Storage (transition DrugArrival).

58

6.1. Symbolic formalism without complete unfolding

Trans guard rate

Arrival true 6e−8
CompleteRecovery true 0.025
DepartureR true 3.9e−8
DepartureS true 3.9e−8
Infection g1 ∨ g2 ∨ g3 ∨ g4 ∨ g5 4.89e−7
DepartureI g1 ∨ g2 ∨ g3 ∨ g4 ∨ g5 3.9e−8
DrugArrival [d ∈ DC] 1e−3
Unrecovery g1 ∨ g2 ∨ g3 ∨ g4 2e−5
Recovery g′1 ∨ g′2 ∨ g′3 ∨ g′4 1.98e−3

g6 = d1 ∈ ND ∧ d2 ∈ ND ∧ d3 ∈ ND ∧ d4 ∈ ND
f0 = 〈SND, SND, SND, SND〉
g1 = x ∈ DC ∧ y ∈ ND ∧ z ∈ ND ∧ k ∈ ND
g7 = d1 ∈ DC ∧ d2 ∈ ND ∧ d3 ∈ ND ∧ d4 ∈ ND
f1 = 〈x, SND, SND, SND〉
g2 = x ∈ DC ∧ y ∈ DC ∧ z ∈ ND ∧ k ∈ ND ∧ x 6= y
g8 = d1 ∈ DC ∧ d2 ∈ DC ∧ d3 ∈ ND ∧ d4 ∈ ND
f2 = 〈x, y, SND, SND〉
g3 = x ∈ DC ∧ y ∈ DC ∧ z ∈ DC ∧ k ∈ ND∧

∧x 6= y ∧ x 6= z ∧ y 6= z
g9 = d1 ∈ DC ∧ d2 ∈ DC ∧ d3 ∈ DC ∧ d4 ∈ ND
f3 = 〈x, y, z, SND〉
g4 = x ∈ DC ∧ y ∈ DC ∧ z ∈ DC ∧ k ∈ DC∧

∧x 6= y ∧ x 6= z ∧ x 6= k ∧ y 6= z ∧ y 6= k ∧ z 6= k
g10 = d1 ∈ DC ∧ d2 ∈ DC ∧ d3 ∈ DC ∧ d4 ∈ DC
f4 = 〈x, y, z, k〉
g5 = x ∈ ND ∧ y ∈ ND ∧ z ∈ ND ∧ k ∈ ND

g′1 = x ∈ ND ∧ y ∈ ND ∧ z ∈ ND ∧ k ∈ DC
g′2 = x ∈ DC ∧ y ∈ ND ∧ z ∈ ND ∧ k ∈ DC ∧ x 6= y
g′3 = x ∈ DC ∧ y ∈ DC ∧ z ∈ ND ∧ k ∈ DC∧

∧x 6= y ∧ x 6= k ∧ y 6= k
g′4 = x ∈ DC ∧ y ∈ DC ∧ z ∈ DC ∧ k ∈ DC∧

∧x 6= y ∧ x 6= z ∧ y 6= z ∧ x 6= k ∧ y 6= k ∧ z 6= k

Table 6.1: Parameters and transition definition of the SSN model depicted in
Fig.6.1.

Thus SSN model is characterized by a single basic color class, Trial, com-

posed of two static subclasses: ND (= {nd}), and DC, of cardinality n ≥ 4

(in the experiments n = 5). Thus, places Drug and Storage have color do-

main Trial, and actually hold only tokens with colour in subclass DC. In-

stead place Infected has color domain Trial × Trial × Trial × Trial, and

thus contains 4-tuples of elements of class Trial representing the achieved

antibiotic resistance of the bacterium of an infected individual. The other

places have a “neutral” color domain (i.e., they contain “black” tokens) com-

posed, by convention, of the neutral color class E = {e}. The initial marking

we are considering has 890000 black tokens in place Susceptible, 50 tokens

59

6.1. Symbolic formalism without complete unfolding

with color 〈nd, nd, nd, nd〉 in place Infected, 100 tokens of color 〈drugi〉 for all

drugi ∈ DC, 9950 black tokens in place Population. The arc expressions are

rather simple: syntactically they appear as tuples (1-tuple 〈x〉 and 4-tuples

〈x, y, z, k〉, or 〈x, SND, SND, SND〉) whose elements are projections (taking the

form of variables as x, y, z, k, d) or constant functions (e.g., SND).

Let us consider the arcs connecting transition Unrecovery to the places

enclosed by Infected, which result from a partial unfolding procedure that will

be explained later: in the original net there are only one input and one output

arc, annotated by I[Infected, Unrecovery] = f0[g1] + f1[g2] + f2[g3] + f3[g4]

and O[Infected, Unrecovery] = f1[g1] + f2[g2] + f3[g3] + f4[g4], respectively,

where the definition of fi and gi are given in Fig. 6.1. A term like fi[gj] eval-

uates to fi(c) if gi(c) = true, otherwise it results in ∅.

The transition color domains are Trial (DrugArrival, with parameter d);

Trial× Trial× Trial× Trial (Unrecovery, Infection, Recovery, DepartureI);

E (Arrival, DepartureS, DepartureR, Completerecovery).

Each transition has an associated guard, defining its valid instances, and

a rate parameter (w(trans.instance)) that concurs to the definition of the

transition firing speed (also called transition intensity): the transition guards

and rates for this model are listed on the table 6.1. Transition intensities

(characterizing the stochastic delay between transition enabling and firing)

are derived from the transition rate and the marking according to the mass

action law (MA), when t ∈ Tma, or to a continuous function if t ∈ Tg. For

simplicity in this section we shall consider the SSN formalism, thus only

transitions following the MA law.1 Therefore, when the MA semantics is

used, the transition intensity is given by the product of w(t, c) (the base rate)

and
∏
p∈•t

∏
c′∈I[p,t](c)m(p)[c]I[p,t](c)[c

′] (the product of all the transition input

places, each powered to the cardinality of the transition input arc, respec-

tively).

The table 6.2 refers to places Infected3xDrug and Susceptible, and con-

tains the expressions of relations A and R (see Section 2.4.1) for all transitions

they are connected to. These symbolic expressions are the basis for the con-

struction of the ODE associated with place Infected3xDrug, which contains

positive terms corresponding to A, and negative terms corresponding to R,

1In Section 6.1.5 we will discuss how this can be extended for ESSN, i.e., which con-
straints must be added for the continuous function defining the rate of the general transitions.

60

6.1. Symbolic formalism without complete unfolding

representing the flow of tokens into and out of the place, respectively. Analo-

gously for place Susceptible.

A(Infected3xDrug, Infection) =
1〈d1, d2, d3, d4〉[d1 6= d2 ∧ d1 6= d3 ∧ d2 6= d3∧
d1 ∈ DC ∧ d2 ∈ DC ∧ d3 ∈ DC ∧ d4 ∈ ND]

R(Infected3xDrug,Recovery) =
1〈d1, d2, d3, S − d1 ∩ S − d2 ∩ S − d3 ∩ SDC〉
[d1 6= d2 ∧ d1 6= d3 ∧ d2 6= d3 ∧ d1 ∈ DC∧
d2 ∈ DC ∧ d3 ∈ DC ∧ d4 ∈ ND]

A(Infected3xDrug, Unrecovery) =
1〈d1, d2, d3, SND〉[d1 6= d2 ∧ d1 6= d3 ∧ d2 6= d3 ∧
d1 ∈ DC ∧ d2 ∈ DC ∧ d3 ∈ DC ∧ d4 ∈ ND]

R(Infected3xDrug, Unrecovery) =
1〈d1, d2, d3, S − d1 ∩ S − d2 ∩ S − d3 ∩ SDC〉
[d1 6= d2 ∧ d1 6= d3 ∧ d2 6= d3 ∧ d1 ∈ DC∧
d2 ∈ DC ∧ d3 ∈ DC ∧ d4 ∈ ND]

R(Infected3xDrug,DepartureI) =
1〈d1, d2, d3, d4〉[d1 6= d2 ∧ d1 6= d3 ∧ d2 6= d3 ∧
d1 ∈ DC ∧ d2 ∈ DC ∧ d3 ∈ DC ∧ d4 ∈ ND]

R(Susceptible, Infection) =
1〈SND, SND, SND, SND〉+ 1〈SDC, SND, SND, SND〉

+1[d1 6= d2]〈SDC, SDC, SND, SND〉
+1[d1 6= d2 ∧ d1 6= d3 ∧ d2 6=
d3]〈SDC, SDC, SDC, SND〉
+1[d1 6= d2 ∧ d1 6= d3 ∧ d1 6= d4 ∧ d2 6= d3 ∧ d2 6=
d4 ∧ d3 6= d4]

〈SDC, SDC, SDC, SDC〉
A(Susceptible, Arrival) = 1〈SE〉
A(Susceptible, CompleteRecovery) = 1〈SE〉
R(Susceptible,DepartureS) = 1〈SE〉

Table 6.2: The expressions of relations A and R.

Place Infected3xDrug comes from the partial unfolding of Infected: this

replica holds four-tuples of colors whose first three are of type DC and all

different, and the fourth one is of type ND (the singleton {nd}). This is clearly

indicated by the guards of all corresponding A and R terms. The symbolic

expression of A(Infected3xDrug, Infection) is a template of those instances

of Infection putting tokens of color 〈d1, d2, d3, d4〉 into the place2: this simple

2Recall that cd(Infected) = Trial×Trial×Trial×Trial, hence symbol di denotes the
value of the ith element in the four-tuple associated with each token on the place.

61

6.1. Symbolic formalism without complete unfolding

template indicates that (only) a transition instance x = d1, y = d2, z = d3,

k = d4 puts exactly one (according to the weight of the unique term of A) such

a token into the place. Observe that despite there is input arc from Infected

to Infection (which after the partial unfolding is replicated for each of the five

unfolded places, including Infected3xDrug), R(Infected, Infection) = ∅.
The expression ofR(Infected3xDrug,Recovery) is a bit more complex: it

represents those instances ofRecovery withdrawing tokens of color 〈d1, d2, d3, d4〉
from Infected3xDrug. The expression’s unique term means that an instance

x = d1, y = d2, z = d3, and with k bound to any color (of type DC) other

than d1, d2, d3, removes exactly one such token from the place. According to

the term cardinality, there are |DC| − 3 such instances.

The symbolic expression ofR(Susceptible, Infection) is built of five terms.

As a whole, it represents which instances of Infection may remove a black

token from place Susceptible: they are 1) those with x ∈ ND, y ∈ ND, w ∈
ND, k ∈ ND, which corresponds to x = y = z = k = nd, 2) those with ∀x ∈
DC, y ∈ ND, w ∈ ND, k ∈ ND (there are |DC| such instances), 3) those with

∀x ∈ DC, ∀y ∈ DC, x 6= y, w ∈ ND, k ∈ ND (there are |DC|(|DC| − 1) such

instances), and so forth. In this case filters appear in the expression, allowing

specific color instances to be selected from the (parametric) set represented

by the following tuple (e.g., those satisfying x 6= y in the third term): as said,

a variable symbol di in a filter explicitly refers the ith element of a given type

(in our example, coinciding with the ith position) in the tuple.

Let us show how the ODE looks like for two places in the SIRS model, place

Susceptible and place Infected3xDrug, for which the A() ad R() have been

presented earlier in this section. We recall that the function ϕ(·) represents the

transition instance intensity defined following the MA law (Eq. 2.6 in Section

2.3).

62

6.1. Symbolic formalism without complete unfolding

dx[Susceptible, e]

dν
= ϕ(x,Arrival, e) · 1− ϕ(x,Departure, e) · 1

+ ϕ(x,CompleteRecovery, e) · 1 (6.1)

−
∑

〈d1,d2,d3,d4〉∈D0

ϕ(x, Infection, 〈d1, d2, d3, d4〉) · 1

−
∑

〈d1,d2,d3,d4〉∈D1

ϕ(x, Infection, 〈d1, d2, d3, d4〉) · 1

−
∑

〈d1,d2,d3,d4〉∈D2

ϕ(x, Infection, 〈d1, d2, d3, d4〉) · 1

−
∑

〈d1,d2,d3,d4〉∈D3

ϕ(x, Infection, 〈d1, d2, d3, d4〉) · 1

−
∑

〈d1,d2,d3,d4〉∈D4

ϕ(x, Infection, 〈d1, d2, d3, d4〉) · 1

where Di and gi are domains and filters respectively, which are defined as

follows:

D0 = ND×ND×ND×ND

D1 = DC×ND×ND×ND

g2 = d1 6= d2

D2 = DC×DC×ND×ND

g3 = d1 6= d2 ∧ d1 6= d3 ∧ d2 6= d3

D3 = DC×DC×DC×ND

g4 = d1 6= d2 ∧ d1 6= d3 ∧ d1 6= d4 ∧ d2 6= d3 ∧ d2 6= d4 ∧ d3 6= d4

D4 = DC×DC×DC×DC

and a filter prefixing a domain restricts it to the tuples satisfying the

predicate.

The first term derives from A(Susceptible, Arrival), and stands for a

summation with only one element: in fact the neutral class E is a single-

ton {e}, and the neutral transition Arrival has only one instance with in-

tensity ϕ(x,Arrival, e) = ω(Arrival) x[Population] and the coefficient 1 is

that appearing in A(Susceptible, Arrival). Similar arguments justify the sec-

ond and third terms (the third term is subtracted because it derives from

R(Susceptible,Departure)). The following five terms instead refer to several

instances of Infection that withdraw tokens from different unfolded places

63

6.1. Symbolic formalism without complete unfolding

replacing the original place Infected. The first term for transition Infection

comprises only one instance (since |D0| = 1) and the intensity of such instance

is

ϕ(x, Infection,〈d1, d2, d3, d4〉) =

ω(Infection)x[Susceptible]x[Infected4xNoDrug]

(observe that the tokens in place Infected4xNoDrug have all color 〈nd, nd, nd,-
nd〉). The second term for transition Infection comprises |DC| instances (since

|D1| = |DC|) and the intensity of such instances is

ϕ(x, Infection,〈d1, d2, d3, d4〉) =

ω(Infection)x[Susceptible]x[Infected1xDrug].

Assuming n = |DC| ≥ 4, the next three terms comprise respectively n · (n −
1), n·(n−1)·(n−2) and n·(n−1)·(n−2)·(n−3) instances and their intensities

depend on the (average) marking of any color 10 in place Infected2xDrug,

Infected3xDrug and Infected4xDrug, respectively.

The ODE for place Infected3xDrug is derived similarly:

dx[Infected3xDrug, dD3]

dν
= +ω1 · x[Susceptible]x[Infected3xDrug, dD3] · 1 (6.2)

− ω2 · x[Infected3xDrug, dD3] · 1

+ ω3 · x[Infected2xDrug, dD3]x[Drug] · 1

−
∑

〈d1,d2,d3,d4〉∈[g′3]D3

ω3 · x[Infected3xDrug, dD3]x[Drug] · 1

−
∑

〈d1,d2,d3,d4〉∈[g′3]D3

ω4 · x[Infected3xDrug, dD3]x[Drug] · 1

where:

ω1 = ω(Infection),

ω2 = ω(DepartureI),

ω3 = ω(Unrecovery),

ω4 = ω(Recovery);

and dD3 = 〈a, b, c, nd〉 represents an arbitrary fixed tuple in [g3]D3 (where

a, b, c are arbitrary distinct colors in DC representing the drugs that failed

to fight the infection while the last element is nd ∈ ND) and g′3 = g3 ∧ d1 =

a ∧ d2 = b ∧ d3 = c. The last two summations range over |DC| − 3 instances:

those with d1 = a ∧ d2 = b ∧ d3 = c and d4 ∈ DC and different from a, b, c.

64

6.1. Symbolic formalism without complete unfolding

6.1.2 First step: partial unfolding

The first step of this new method to compute the set of ÔDEs is a preliminary,

partial unfolding of some portions of the original SSN, since it is necessary

that all instances of any transition have the same (base) rate and the (average)

number of tokens of each color c in place p at any time ν is the same. In details,

transitions are partially unfolded only if their rates are color dependent:

assuming that the rate of t, with an associated guard g(t), is expressed as a

set of k pairs {〈gi, wi〉} (with wi ∈ R+, j 6= i⇒ ¬(gi ∧ gj), and
∨
i gi ≡ g(t)),

after the unfolding there will be k copies of t, denoted t[gi], with same input

and output arcs as t, with guard gi, and rate wi. Instead, places are partially

unfolded in two steps: the first step is based on the static partition of color

classes3, while the second step involves those places that have the same static

subclass repeated in their color domain, after the first step.

Let C̃i = {Ci,h, h : 1 . . . |C̃i|} be the set of static subclasses of color

class Ci. The number of places resulting from the complete unfolding of a

place p with color domain cd(p) = Cn1
i1
× . . . × Cnk

ik
is given by the product∏k

j=1(
∑|C̃ij

|
h=1 |Cij ,h|)

nj , see Section 2.4. Where the notation C
nj

ij
means that

class Cij occurs nj times in the Cartesian product. Differently, considering

the partial unfolding of the same place p, the resulting number of places from

the first step is given by the product
∏k
j=1 |C̃ij |nj . Moreover, place unfolding

exploits the possibility of prefixing the functions on the arcs incident on an

unfolded place instance with filters ensuring that the tokens yielded by eval-

uating the functions match the color pattern associated with that instance.

In such manner each partially unfolded place is labelled with p[g], where g

is a conjunction of membership clauses cij ,q ∈ Cij ,h4, ∀j : 1 . . . k, q : 1 . . . nj ,

associating a static subclass with each element of the Cartesian product cd(p).

Each place p[g] is connected to the unfolded transitions of the same transitions

as the original place p, with the corresponding arc functions prefixed by filter

[g]. The second place partial unfolding step involves all those places p that

have n (> 1) repetitions of a color class Ci in cd(p). This unfolding can be

done iteratively, considering one class Ci and one static subclass Ci,h ∈ C̃i at

a time. Let p[g] be a place obtained after the first unfolding step, and assume

that filter [g] includes m (> 1) predicates in the form ci,q ∈ Ci,h, then the place

3In the case a class is not partitioned, we consider it as having only one static subclass.
4The variable cij ,q refers the qth occurrence of Cij .

65

6.1. Symbolic formalism without complete unfolding

is unfolded into as many places as the number np of partitions of a set of car-

dinality m into at most |Ci,h| parts. For each such a partition ρj , j : 1 . . . np

(which denotes a partition of the set of symbols {ci,q}), the corresponding un-

folded place pρj is associated with a predicate g′j , which is the conjunction of

a number of (in)equalities: g′j contains equalities for the variables ci,q that are

in the same subset of partition ρj , and an inequality for each pair ci,q1, ci,q2

belonging to different subsets in partition ρj . Each unfolded place, labelled

with p[g∧g′j], is connected to the same transitions as p[g], with the correspond-

ing arc functions prefixed by filter [g ∧ g′] (in some cases this may result in

a null arc). Observe that, as long as we consider unordered color classes and

the static subclasses have cardinality greater than or equal to the maximum

number of repetitions of the corresponding class in any place color domain,

the partial unfolding of an SSN is independent on static subclass cardinalities.

The number of copies of a partially unfolded place may be reduced by taking

into account the form of the arc functions appearing on the arcs connected to

the place.

Let us introduce the simple SSN model depicted in Fig. 6.2a, which com-

prises a single transition t1 with two input places, •t1 = {P0, P1}, and one out-

put place, t•1 = {P2}. Input places have color domain C, where C = C1 ∪ C2

is a basic color class partitioned in two subclasses. Note that in the color do-

main of place P2 class C appears twice. Due to the transition guard, the first

element of the pairs in P2 must necessarily belong to C1. Thus, the set var(t1)

includes two type C variables x, y, moreover t1 which has the guard [x ∈ C1],

hence cd(t1) = C×C. The input arc functions, both of arity C×C → Bag[C],

are:

I[P0, t1] := 2〈x〉+ 〈y〉 I[P1, t1] := 〈y〉.

The partial unfolding, depicted in Fig. 6.2b, provides the duplication of both

input places, to take into account the partition of C. We denote P0,i and P1,i,

i = 1, 2 the two instances of P0 and P1. The possible instances of P2 instead

are: P2,11, P2,12 with double index due to the repetition of C in cd(P2), and

first index equal to one due to the transition guard. Place P2,11 has repetition

of class C in its color domain and when the two elements belong to the same

static subclass the case in which the two elements are equal or different must

66

6.1. Symbolic formalism without complete unfolding

(a)

(b)

(c)

Figure 6.2: In (a) a simple example of an SSN model is shown, while (b)
shows the same model after partial unfolding, and (c) after partial unfolding
and simplification.

67

6.1. Symbolic formalism without complete unfolding

be separated: P2,11eq and P2,11neq. Input arc functions are accordingly prefixed

by filters [c ∈ Ci], i : 1, 2. Similarly, in Fig. 6.2c it is shown a simplified version

of the same partially unfolded model, where the empty places are omitted and

the arc functions are rewritten by taking in consideration the only guard. For

instance, let us focus on P0,1, the instance of P0 that holds tokens of color

C1. In fact the function I[P0,1, t1] needs to be rewritten as (guard [x ∈ C1] is

implicit):

3〈x〉[x = y] + (2〈x〉+ 〈y〉)[x 6= y ∧ y ∈ C1] + 2〈x〉[y ∈ C2]. (6.3)

This expression points out that an instance 〈c, c〉 of t withdraws three tokens

of color c, whereas an instance 〈c, c′〉, with c 6= c′, withdraws two tokens of

color c and, if c′ ∈ C1, one of color c′. This affects the transition instance

intensity that depends on the maximum number of tokens of a certain color

withdrawn from a place. The input functions of the other places do not require

any further manipulation: their simplified forms, implicitly taking the guard

into account, are:

I[P0,2, t1] := 〈y〉[y ∈ C2] I[P1,1, t1] := 〈y〉[y ∈ C1]

I[P1,2, t1] := 〈y〉[y ∈ C2]

In the more complex example model introduced in Section 6.1.1, the par-

tial unfolding is limited to places Drug, Storage and Infected. Assuming that

the color subclass ND has cardinality 1 and DC has cardinality n, the com-

plete unfolding of these three places produce (n + 1) copies of the first two

places and (n+ 1)4 copies of the third one. Instead, the first partial unfolding

step would produce 2 copies of the Drug and Storage, and 24 copies of the

Infected, the latter should be further unfolded to take into account the case

where elements belonging to the same static subclass are equal or different.

Finally some unfolded copies can be eliminated if they remain isolated when

considering transition guards. In this example the number of non isolated

copies is relatively small: Drug and Storage are connected only to transi-

tions moving tokens in subclass DC; considering place Infected there are only

five copies because ND has cardinality 1 (hence all elements in that class are

surely equal), and the elements in DC are surely different due to the guards

of any transition connected to the place. Moreover the guards introduce also

restrictions on the way elements belonging to the two static subclasses are

68

6.1. Symbolic formalism without complete unfolding

interleaved in the tuples. The five copies of Infected correspond to the num-

ber of acquired antibiotic resistance, which in this model spans from 0 to 4.

The arcs connecting transitions Infection and Recovery to place Infected are

replicated for each of the five unfolded copies: the arc expressions are prefixed

with the filter appropriate for the specific replica of Infected. Observe that in-

creasing the size of DrugChoice does not change the structure of the partially

unfolded net (while increasing the size of ND would change it). The model in

Fig. 6.1 shows the five instances of place Infected and the connections between

the unfolded places and transition Unrecovery after the unfolding: the filters

g6 to g10 appearing in the arc expressions show the static subclasses of each

element of the tuples withdrawn from or added to the place and the relation

(equality or inequality) among tuple elements belonging to the same static

subclass.

6.1.3 Second step: symbolic ODE generation

In this section, we described the second step of new method to directly derives

the associated set of ÔDE starting from a partially unfolded SSN (the first

step described in the previous section), by avoiding its complete unfolding.

This method can be roughly summarize in three main steps: 1) computa-

tion of the firing intensity of macro terms, with a refinement into sub-terms

characterized by uniform intensity, 2) calculation of the structural relations

A and R, by operating in a purely symbolic way, and 3) computation of the

cardinality of the sets of transition instances represented by the refined terms

(producing the same state changes with same rate).

Thus, in the rest of this section we described in details the preliminary rewrit-

ing of input functions, which will be used in the refinement of the symbolic

expression (representing the ODE for the place) to take into account transi-

tion firing intensity. Successively, we defined the formulae for the derivation

in symbolic form of the terms to be included in each ÔDE, and the procedure

to express the cardinality (enabling degree) of transition instances appearing

in the ÔDE.

Preliminary rewriting of input arc functions

A subtle point in the derivation of ÔDE is the possibility that transition

instances, that (after the partial unfolding) are assumed to have the same

69

6.1. Symbolic formalism without complete unfolding

base rate, have different firing intensities, according to the adopted marking

dependency. The reason is that an input arc function may take different

shapes when evaluated on different instances of a transition. A rewriting of

input arc functions may be required, so that function shapes implicitly match

the intensity-based logical partitioning of the set of transition instances.

Specifically, functions I[p, t] : cd(t) → Bag[cd(p)] have to be expressed as

sum
∑

j λjFj , Fj = [gj]Tj [g
′
j], where: a) j1 6= j2 ⇒ (Fj1 ∩ Fj2) = ∅; b)

g′j1 6= g′j2 ⇒ (g′j1 ∧ g
′
j2

) = false (terms must be pairwise disjoint and the

associated guards are either equal or mutually exclusive).

Arc functions5 I[p, t] can thus be partitioned into sub-sums
∑

1 + . . .
∑

m of

(disjoint) terms having the same guard, i.e.,
∑

h =
(∑

jh
λjh [gjh]Tjh

)
[g′h]. For

instance, if we consider the rewritten arc function showed in Eq. 6.3 regarding

the SSN model depicted in Fig. 6.2c, then it is straightforward to observe the

correspondence to the notation with the partition given by the guards:

I[P0,1, t1] = (6.4)

λ1T1[g′1] +(λ2,1T2,1 + λ2,2T2,2)[g′2] +λ3T3[g′3] =

3〈x〉[x = y] +(2〈x〉+ 〈y〉)[x 6= y ∧ y ∈ C1] +2〈x〉[y ∈ C2].

Guards {g′h}, with the additional complementary one g′0 = ¬(
∨
h g
′
h) ∧ g(t),

define a parametric partition of cd(t): all t’s instances matching a given g′h
withdraw the same multiset of colors (up to a symmetry-preserving, color

permutation) from p. The predicate g′0 represents instances of t (if there are

any) not withdrawing tokens from p.

Let p ∈ •t such that Gt,p = {g′0, . . . , g′m} denote the intensity-based parti-

tion of t instances with respect to p. Let us define the map µ[t, p] : Gp,t → N
as: {

µ[t, p][g′0] = 0

µ[t, p][g′h] = ηh h 6= 0

where ηh =
∑
λjh when the MA law is considered, but in general it de-

pends on the law used to compute the transition intensities. For instance,

µ[t1, P0,1][g′1] = 3 and µ[t1, P0,1][g′2] = 2 + 1 = 3.

If |•t| > 1, the partitions related to all t’s input places p ∈ •t must be combined

in order to get a final one. This is done by calculating the Cartesian product

Gt = ⊗p∈•tGt,p, which results in a set of tuples 〈gp1 , . . . , gpn〉, each interpreted

5over which the incident transition’s guard g(t) implicitly spans

70

6.1. Symbolic formalism without complete unfolding

as a conjunctive form (resulting false elements are erased). By construction,

Gt (as Gt,p) represents a partition of cd(t). The map µ[t] : Gt → ⊗p∈•tN as-

sociates intensity-equivalent classes of t’s instances with corresponding tuples

of coefficients. It is defined as follows: let •t = {p1, . . . , pn}, gpi ∈ Gt,pi

µ[t](gp1 ∧ . . . ∧ gpn) = 〈µ[t, P1](gp1), . . . , µ[t, pn](gpn)〉.

In the special case •t = {p} then µ[t] = µ[t, p]. Guards mapping to the same

tuple of coefficients may be proficiently replaced by a single equivalent OR

term. The set Gt of guards will be used to refine the ODE symbolic expres-

sion on the basis of the intensity of t’s instances. In the particular (but not

rare) case Gt = {g(t)} (meaning that all color instances of t have the same

enabling degree), no refinement is needed. Observe that if in µ[t] there is an

element mapping to a tuple with all zeroes, it would mean there are some

instances of t not having any input place: this should be considered as a mod-

eling error.

Let us refer again to the partial unfolded SSN model depicted in Fig. 6.2c.

The map µ[t1] applied to Gt1 is reported below in a matrix form (Eq. 6.5),

considering the MA law defining the transition instances intensity (the mem-

bership clause x ∈ C1 is implicit). Note that, since we are considering that

transition t1 is defined by the MA law, some of its instances are brought to-

gether. In particular the case y ∈ C1 includes the sub-cases in which x = y

or x 6= y, because when the product of the number of tokens of the transi-

tion input places is computed there is no difference between x3
P0,1
· xP1,1 (i.e.,

y ∈ C1, x = y) and x2
P0,1
· x1

P0,1
· xP1,1 (i.e., y ∈ C1, x 6= y). Therefore, the

1st row of the matrix in Eq. 6.5 means that an instance of t1 of type 〈c, c′〉,
c, c′ ∈ C1 withdraws three tokens of the same color from P0,1, and one from

P1,1. These values are obtained from the λ values in Eq. 6.4 by applying the

first guard ([y ∈ C1]) to the I[·, t1] for each input places of t1. While the 2nd

row means that an instance of t1 of type 〈c, c′〉, c ∈ C1, c
′ ∈ C2 withdraws

two tokens from P0,1, and one from P0,2 and from P1,2.

µ[t]Gt1 =

(P0,1 P0,2 P1,1 P1,2

[y ∈ C1] 3 0 1 0

[y ∈ C2] 2 1 0 1

)
(6.5)

71

6.1. Symbolic formalism without complete unfolding

Symbolic representation of ODE

Successively to the rewriting of the input arc to obtain a parametric partition

of transition instances based on firing intensity, in this paragraph we analyse

the symbolic expressions A(p, t) and R(p, t), which mainly define the ÔDE

corresponding to place p (Eq. 2.14). Indeed, these terms are defined as a sum

of expressions which group several transition instances that add/withdraw the

same number of tokens, if the number of tokens are different then the rewrit-

ing of the input arc explained above may induce a further refinement of these

terms into sub-sums of disjoint terms (which now will add/withdraw the same

number of tokens). After this observation, to derive the system of ÔDE in

terms of R and A, we need to compute the cardinality of the tuples appear-

ing in summations and the multiplicity of (generic) token colors required by

the input arc functions, necessary to derive the enabling degree of transition

instances used to compute the rate (intensity) (which will be explained in the

next paragraph). Thus, in this paragraph we show that the functions R and

A can be always written as sum of constant-size functions, whose cardinality

can be easily computed.

As said, R, A are formally represented as weighted sums of tuples
∑

i λiFi,

λi ∈ N, Fi = [gi]Ti[g
′
i], ∀c ∈ cd(p), ∀c′ ∈ cd(t) Fi(c)[c

′] ≤ 1. A term of R and A
can be seen as a parametric set of t instances, each one withdrawing/putting

λi tokens of color c from/to p. Hence we need to compute the cardinality

of these parametric sets, which may depend on c ∈ cd(p). So now we de-

fine a constant-size function which can be associated with a syntactical

characterization necessary for computing tuple cardinality.

Definition 10 (Constant-size function). A function F [g] : D → Bag[D′] is

constant-size if and only if ∃k ∈ N : ∀c ∈ D, g(c)⇒ |F (c)| = k.

The above definition includes the particular case g ≡ true. The cardinality

|F [g]| of a constant-size function is equal to |F (c)|, for any c s.t. g(c) is true. A

function tuple t1[g] ∈ L is constant-size if and only if, for each t1’s component

(class function) f , f [g] is constant-size.

The following property defines a syntactical condition for a (guarded) class

function f [g] being constant size:

72

6.1. Symbolic formalism without complete unfolding

Property 1. f [g] is constant-size if: f either belongs to the basic-set BS of

class functions or it takes one of these forms

a)
⋂

j∈Q, |Q|<|C|

S − vj b) SCk

⋂
j∈J,|J |<|Ck|

S − vj

where in b) for each vj: g ⇒ vj∈Ck.

The cardinalities of terms of type a) and b) are |C| − |Q| and |Ck| − |J |,
respectively. The cardinalities of functions in BS can be easily inferred. For

instance, if we consider a function defined as f = S − v1 ∩ S − v2[v1 6= v2],

where v1, v2 are two variables of type C, then f is constant size with cardinality

|C| − 2.

We finally state a syntactical condition on a filter [g′] ensuring that [g′]T [g] ∈
L is constant-size.

Property 2. [g′]T [g]∈L is constant-size if t1[g] is constant size and

1. g′ is a conjunctive form composed only of (in)equations ci = (6=)cj, i < j,

2. for each (in)equation ci = (6=)cj the corresponding class-C functions

fi, fj in t1 are such that fj ≡ fi (i.e., tuple components referred to by

any (in)equation in the filter must be equal).

Let us constructively prove Property 2 by sketching the general algorithm

for computing tuple cardinality. We can express [g]T [g′] : D → Bag[D′]

as (
⊗

C∈D′ [gC]TC)[g′], where [gC]TC : D → Bag[Ce], and e the number of

repetitions of C in D′. In other words we consider separately the subtuples

of t1 involving each class C and the terms in g involving those components.

Note that it may be gC = true for some colour class C. The function [g]T [g′]

is constant-size iff every [gC]TC [g′] is constant-size and in this case
∣∣[g]T [g′]

∣∣ =∏
C

∣∣[gC]TC [g′]
∣∣.

Let us focus on [gC]TC [g′]. Let J(gC) = {j}, s.t. cj occurs in gC , in other

words J(gC) identifies the set of variables cj of type C appearing in gC . We

can partition gC (a conjunctive form) into {g1, . . . , gn}, such that for each

gi, gj , i 6= j, J(gi)∩J(gj) = ∅ (in this way we separate independent subsets gi

of terms in gC)). The terms in gi can be partitioned in equalities and inequal-

ities: let us introduce the notation gi = gi,eq ∧ gi,neq to separate the two parts

of gi. Note that gi,eq or gi,neq may be simply true. Without loss of generality,

we assume that equalities in gi,eq take all the form cj = cx (for an arbitrarily

73

6.1. Symbolic formalism without complete unfolding

fixed cj), and gi,eq 6≡ true∧ gi,neq 6≡ true⇒ J(gi,eq)∩ J(gi,neq) = {j}, in other

words if gi contains both equalities and inequalities there is just one variable

cj occurring both in gi,eq and in gi,neq. Under the initial hypothesis, all ele-

ments in subtuple TC corresponding to the index set J(gi) are equal. Let λ

(> 1) be their cardinality, and let us denote cardi the cardinality of the TC ’s

subtuple corresponding to J(gi) after being filtered through gi. If gi,neq ≡ true
(gi just contains equalities) then cardi is simply λ. Otherwise gi,neq can be

seen as a system of inequalities among n = |J(gi,neq)| integer variables on

the domain {1, . . . , λ}. Let G be the connected graph of order n representing

such a system: the number of system’s solutions (= card(i), for the particular

form of gi) is the chromatic polynomial value P (G,λ), corresponding to the

number of distinct λ-colourings of G. Finally, the cardinality of [gC]TC [g′] is

obtained by multiplying
∏
i card(i) by the cardinality of TC components not

corresponding to any index in J(gi).

Considering the SSN example depicted in Fig. 6.2c, R expression for the

place P0,1 can be obtained as follows:

R(P0,1, T) = 2 < c1, SC2 > [c1 ∈ C1] + 3 < c1, c1 > [c1 ∈ C1],

where the expression 1 < S− c1 ∩SC1, c1 > [c1 ∈ C1] + 2 < c1, S− c1 ∩SC1 >

[c1 ∈ C1] is not considered since with MA law we not take in account the case

in which y and x are different and in C1.

Thus, the instances of t1 that withdraw tokens from this place are given by

R(P0,1, T) above, according to its expression such instances are partitioned

into two disjoint sets.

• Any instance < t1, c, c
′ > of transition t1 belonging to 〈c1, SC2〉[c1 ∈ C1]

withdraws 2 tokens c ∈ C1 from P0,1, 1 token c′ ∈ C2 from P0,2, 1 token

c′ ∈ C2 from P1,2. There are |C2| instances of t1 of this kind.

• Any instance < t1, c, c > of transition t1 belonging to 3〈c1, c1〉[c1 ∈ C1]

withdraws 3 tokens c ∈ C1 from P0,1 and 1 token of the same color from

P1,1.There is only one transition instance of this kind.

Let us now consider the case study introduced in Section 6.1.1. The term

74

6.1. Symbolic formalism without complete unfolding

of R(Infected3xDrug, Unrecovery):

〈d1, d2, d3, S − d1 ∩ S − d2 ∩ S − d3 ∩ SDC〉

[d1 6= d2 ∧ d1 6= d3 ∧ d2 6= d3 ∧ d1 ∈ DC ∧ d2 ∈ DC∧

d3 ∈ DC ∧ d4 ∈ ND]

has a guard ensuring that the intersection in the tuple is constant-size: its

cardinality (and that of the tuple) is |DC| − 3. Similarly, the term of

R(Susceptible, Infection):

[d1 6= d2 ∧ d1 6= d3 ∧ d2 6= d3]〈SDC, SDC, SDC, SND〉

has a filter, that has to be taken into account: letting n = |DC|, m = |ND|,
the term’s cardinality is expressed by the formula n(n − 1)(n − 2)m. The

product n(n − 1)(n − 2) is the number of triplets with all different elements

(chosen from a set of n).

Finally, introducing the following property it possible to guarantee that

terms Fi = [gi]Ti[g
′
i] appearing in R or A are constant-size.

Property 3. Any expression e ∈ L can be rewritten as a weighted sum of

constant-size tuples [g′i]Ti[gi].

Thus, according to the transpose semantics, one such term [gi]Ti[g
′
i] ofR or

A represents a set of ni = |Fi| colour instances of t, each withdrawing/adding

exactly λi (the term’s coefficient in the weighted sum) tokens from/to place p

(these instances satisfy the predicate g′i).

If, in addition, all t’s colour instances matching [gi]Ti[g
′
i] had the same

intensity (denoted by ϕ(x(ν), t)), we could directly express the ÔDE relating

place p as:

dx[p, c]

dν
=

∑
t:p∈t•,Fi inA(p,t)

λiniϕ(x(ν), t) (6.6)

−
∑

t:p∈•t,Fj inR(p,t)

λjnjϕ(x(ν), t)

Each term in the ÔDE is a product of four factors: the cardinality of

the expression identifying a set of (ni) homogeneous transition instances, the

number (λi) of tokens withdrawn/added by any transition instance in the set,

75

6.1. Symbolic formalism without complete unfolding

the base rate w of transition instances in the set, and the marking-dependent

factor (the two last factors are combined in ϕ). The latter depends on the

number of coloured tokens at time ν required by the arc functions labelling

the input arcs of any transition instance in the set.

Some terms [gi]Ti[g
′
i] of A or R, however, may have to be preliminarily split

into equivalent sums of tuples representing classes of transition instances char-

acterized by the same intensity (enabling degree).

Computation of the enabling degree

Let us consider the ÔDE for place p expressed in Eq. 2.14. We saw above that

the contribution due to a transition t connected to p is expressed by R(p, t)

or A(p, t), whose weighted terms λiFi represent parametric sets of ni = |Fi|
instances of t, that withdraw/add exactly λi tokens from/to p. We may have

to split these terms into subterms denoting instances with the same intensity,

and we may have to derive the formal expression of the marking-dependent

factor. Both tasks are straightforwardly carried out by using the set Gt of

guards (representing the intensity-based symbolic partition of t’s instances)

and the associated map µ[t], computed during the rewriting of the input arcs

of the SSN (Paragraph Preliminary rewriting of input arc functions).

If |Gt| > 1 (i.e., the intensity-based partition of t’s instances is not trivial), Gt

guards are used as filters to possibly split the parametric sets Fi = [gi]Ti[g
′
i],

with ni > 1, into subsets with the same intensity, formally:

λiFi 7→ λi(
∑

g∈Gt
[g ∧ gi]Ti[g′i]).

This rewriting is coherent, resulting in an equivalent expression, because the

domain of any g ∈ Gt is cd(t), and
∨
g∈Gt

g ≡ g(t) (Gt is a partition of cd(t)).

Let F ′i be a subterm of Fi obtained by applying a filter g ∈ Gt to Fi

(F ′i = Fi ↔ Gt = {g(t)}). The associated marking-dependent factor to be

used in the ÔDE is directly obtained from the tuple of coefficients µ[t](g) =

〈ηp1 , . . . , ηpn〉, which takes the MA law form:∏
pk∈ •t

x[pk]
ηpk .

Let us return on the simple model introduced at the begin of this section,

Fig. 6.2. The R terms for the partially unfolded input places P0, P1 are (there

76

6.1. Symbolic formalism without complete unfolding

are no A terms for these places):

R(P0,1, t1) =2〈c1, SC2〉[c1 ∈ C1] + 3〈c1, c1〉[c1 ∈ C1]

R(P0,2, t1) =1〈SC1, c1〉[c1 ∈ C2]

R(P1,1, t1) =1〈SC1, c1〉[c1 ∈ C1]

R(P1,2, t1) =1〈SC1, c1〉[c1 ∈ C2]

Let us consider the ÔDE from the point of view of P0,1 (the restriction

of P0 for c ∈ C1). The instances of t1 that withdraw tokens from this place

are given by R(P0,1, t1) above. According to its form, such instances are

partitioned into two pair-wise disjoint sets, so applying the filters (guards

that are used as filters) in Gt1 = {[y ∈ C1], [y ∈ C2]} to R(P0,1, T) (i.e., by

using one guard per time it is possible to omit part of the instances) the ÔDE

for P0,1 is (wt is the transition’s base rate):

dx[P0,1]

dν
= −wt · (2 · |C1| · x[P0,1]3 · x[P1,1]1+

1 · |C1| · x[P0,1]3 · x[P1,1]1+

2 · |C2| · x[P0,1]2 · x[P0,2]1 · x[P1,2]1).

Finally, we obtained the ÔDE after 1) a partial unfolding of the net which

ensures the uniform rate (wt) for all instances 〈t, c〉, c ∈ cd(t) for any tran-

sition t; 2) the rewriting of the input arc functions to obtain a parametric

partition of transition instances based on firing intensity; 3) we showed the

the functions A and R are sums of constant size terms Fi (so we can calcu-

late their cardinality); 4) we computed the enabling degree for the instances

grouped in a term of A andR, which are unformized by applying the rewriting

of the input arc functions; 5) for each term Fi, representing a parametric set

of transition instances with uniform intensity φ(), only one term is generated

in the ÔDE and multiplied by |Fi|.

6.1.4 Application of the method to the case study

The new method for the automatic derivation of a set of symbolic ODE (ÔDE)

from an SSN presented in this section has been implemented in a new module

of SNexpression (tool targeted at the structural analysis of SSNs) [54], www.

di.unito.it/~depierro/SNex. Thus, in this section the results on the SIRS

77

www.di.unito.it/~depierro/SNex
www.di.unito.it/~depierro/SNex

6.1. Symbolic formalism without complete unfolding

example presented in Section 6.1.1 are showed: the number of equations and

overall size of the ÔDE system is compared with the corresponding sizes of the

ODE system obtained from the complete unfolding of the SSN model. The

method based on the complete unfolding prevents the computation of indices

when the size of one class grows, while the ÔDE system size does not change

(only the coefficients in the ÔDE are updated).

Figure 6.3 plots the average marking of four places of the SIRS model:

the results have been computed both with the set of ODE obtained from the

completely unfolded model (up to a certain size), and with the set of ÔDE ob-

tained with the SNexpression tool: the plotted lines show a perfect matching,

indeed the relative difference is very small (always below 10−7, the precision

set for the numerical solution of the system of differential equations). Ta-

ble 6.3 shows the size of the system of ODE and of ÔDE for different sizes

(n = 5, . . . , 10) of static subclass DC showing the limit of the solution based

on the complete unfolding.

The files describing both nets (described according to the SNexpression syn-

tax) and the ÔDE system automatically obtained for each model are available

for download in the SNexpression web page6.

Complete Unfolding

n 5 6 7 8 9 10

] ODE 1311 2418 4115 6582 10023 14666
] Trans. 831 2076 4409 8334 14451 23456
R size (MB) 0.350 0.718 1.6 2.8 4.6 7.4
Sol. time (s) 30 67.45 131.98 785.94 1770.35 n.c.
Mem. peak
(GB) 0.96 1.18 1.6 2.9 6.6 13.4

Partial Unfolding (ÔDE)

n > 4

] ÔDE 12
] terms 74
R size 6KB
Sol. time (s) 0.5

Table 6.3: Comparison of the size of the set of ODE and the set of ÔDE
varying n = |DC|.

6http://www.di.unito.it/~depierro/SNexpression/#Documentation%20and%

20sample%20files

78

http://www.di.unito.it/~depierro/SNexpression/#Documentation%20and%20sample%20files
http://www.di.unito.it/~depierro/SNexpression/#Documentation%20and%20sample%20files

6.1. Symbolic formalism without complete unfolding

Figure 6.3: Some measures obtained from the completely unfolded model and
the compact one: in each plot the two curves match.

6.1.5 Extension to the ESSN

In this section we discuss how this method can be extended to the ESSN

formalism. Let us recall from Section 5.2 that in an ESSN model we have to

deal with two types of transitions: standard (t ∈ Tma) and general (t ∈ Tg).
Since in the previous sections we showed the applicability of the algorithm

when all the transitions in the model are characterized by the MA law, now we

describe how this can be extended for general transitions by adding constraints

on the function f〈t,c〉 associated with the transition.

Let f〈t,c〉 ∈ Ω (see Definition 9) be the continuous function associated with

79

6.1. Symbolic formalism without complete unfolding

a color instance of the general transition t ∈ Tg, and depending only on the

marking of the input places of transition t at time ν. First, we can observe that

the definition of f〈t,c〉 must preserve the equivalence among markings belonging

to the same symbolic marking (SM) m̂ . As described in Section 2.4, given

two equivalent markings m1, m2 ∈ m̂ , there exists a correspondence between

the transition instances enabled in m1 and those enabled in m2. Indeed, if

s is the permutation that allows one to obtain marking m2 from m1, i.e.

m2 = s.m1, for each transition instance 〈t, c〉 enabled in m1 there exists

a transition instance 〈t, s.c〉 enabled in m2 with the same rate. Moreover

markings m ′1 reached by firing 〈t, c〉 in m1, and m ′2 reached by firing 〈t, s.c〉
in m2 are equivalent (i.e. they belong to the same SM m̂ ′: indeed m ′2 =

s.m ′1). Given that this holds for each transition instance with same rate, then

it is straightforward to define the syntax of the general transition intensity

f〈t,c〉, t ∈ Tg, such that

f〈t,c〉(m̂1, ν) = f〈t,s.c〉(m̂2, ν) (6.7)

where m̂ = m |•t as the subset of the marking m at time ν concerning only

the input places to the transition t. In terms of the Definition 4, considering

the mapping c̃ : C → N from a color to the index of its corresponding color

class, and the mapping s̃ : C → N from a color to the index of its corre-

sponding static subclass, then given two color instances c = 〈c1, . . . , cn〉 and

c′ = 〈c′1, . . . , c′n〉, of the general transition t ∈ Tg (i.e., belonging to cd(t)) the

following implication is verified for any marking m̂ and time ν

∀c, c′ ∈ cd(t) : c̃(c) = c̃(c′) ∧ s̃(c) = s̃(c′)→ f〈t,c〉(m̂ , ν) = f〈t,c′〉(m̂ , ν).

Indeed, if this condition is true then the marking equivalence should hold

making possible the ÔDE generation.

Let us consider the ESSN model introduced in Section 5.3 regarding the

prey-predator model in Fig. 5.5b. The general transition of the prey death

from Eq. 5.10 applied to the ESSN model can be written as follows:

f〈DeathPrey,t̄,s̄〉(m̂(ν), ν) =
a mPreyt̄,s̄

1 + a h mPreyt̄,s̄

mPredatort̄ (6.8)

where m̂(ν) = [mPredatort̄ ,mPreyt̄,s̄], ∀t̄ ∈ cd(Predator), 〈t̄, s̄〉 ∈ cd(Prey),

with mP ∈ m̂(ν) is the number of tokens at time ν in place P , for all the color

80

6.2. Hybrid Model

variables t̄, s̄ identifying the position and the prey species respectively. While

the constant parameter a is the attack rate at which the consumer encounters

food items per unit of food density, and h is the average handling time spent

on processing a food item. Let us recall that the prey-predator model depicted

in Fig. 5.5b is characterized by two color classes: 1) Territory representing

the different positions of an animal, which is defined by two subclasses T1 and

T2 composed respectively by three and two colors, and 2) Species modeling

two different species defined by the two subclasses S1 and S2, both composed

by one color. In particular, the color domain of the Prey place is defined by

both the classes, while the color domain of the Predator place is character-

ized only by the Territory color class. Thus, assuming that ∀t̄, s̄ belonging

to specific subclasses (e.g., T1 and S1 respectively) the initial marking of the

instance places mPredatort̄ and mPreyt̄,s̄ are not different with respect to the

t̄, s̄ colors, then it is straightforward to conclude that the function in Eq. 6.8

associated with the DeathPrey transition does not assume different values

varying t̄ ∈ T1(or T2) and s̄ ∈ S1(or S2). Instead, if the attack rate (a) or

the marking of one place would have assumed different values with respect to

t̄ ∈ T1, then we could not exploit the symmetries in T1 and the condition in

Eq. 6.7 would not hold anymore.

Finally, to apply the method, which depends on the intensity law defining

each transition (in the previous sections we considered only standard transi-

tions which are defined by the MA law), we need to define the same intensity

(i.e., equal enabling degree) to all the transition instances characterized by

the same function. Indeed, in this case the preliminary rewriting of input arc

functions is not necessary and the terms in the ÔDEs regarding the general

transitions can be written directly.

6.2 Hybrid Model

In this section we explained how ESPN can be successfully exploited to com-

bine signaling, metabolic, and regulatory networks in a unique model. In

particular we focused on integrating the Flux Balance Analysis (FBA), used

for large scale analysis of metabolic network (see Chapter 4), with the more

detailed model based on Ordinary Differential Equations (ODEs). Thus, this

section is organised as follows: in Section 6.2.1 we introduced the mathe-

matical formalisation of this cross-talk between different models by exploiting

81

6.2. Hybrid Model

the ESPN formalism. In this contest we focused on two aspects: 1) how to

define the fluxes constraints, and 2) how to synchronize the solution of the

two modeling approaches. In Section 6.2.2 we showed how to exploit ESPN

formalism to combine the FBA model with the ODEs system characterizing

the dynamics of the main metabolic pathways altered in Pancreatic Ductal

Adenocarcinoma cells. This case study is principally a proof of concept of

our approach and it was published in [115].

6.2.1 Hybrid model implementation

In Sec. 5.1 we defined the generic ODE of a place p (Eq. 5.1) as composition

of two sums corresponding to state change due to standard transitions and

general transitions. In this section we further refine this equation splitting the

set of general transitions into two disjoint subsets TFBAg and T¬FBAg , so that

i) TFBAg ∪T¬FBAg = Tg, and ii) t ∈ TFBAg iff its rate is estimated by solving an

FBA model. Thus, the instantaneous changes of tokens xi(ν) in the ith place

at time ν expressed in the Eq. 5.1 can be rewritten as follows:

dxi(ν) =

nTma∑
j=1

φ(t∗j , x̂)S(pi, t
∗
j)dν +

nTg∑
j=1

ftj (ν, x̂)S(pi, tj)dν

=

nTma∑
j=1

φ(t∗j , x̂)S(pi, t
∗
j)dν +

n
T¬FBA
g∑
j=1

ftj (ν, x̂)S(pi, tj) (6.9)

+

n
TFBA
G∑
j=1

ftj (ν, x̂)S(pi, tj)dν

∀i ∈ {1, . . . , nP },

where the notation nset indicates the cardinality (number of transitions) of set,

φ(∗) is the standard transitions intensity following the MA law, and ft(ν, x̂) is

the function associated with the general transition t ∈ T¬FBAg , which depends

on its input places marking x̂ at time ν. In this way the ft(ν, x̂) associated

with a general transition t ∈ TFBAg must be defined as follows:

ft(ν, x̂) = vt s.t. ∃i ∈ {1, . . . ,m} : vt = vki ∧ t ∈ TFBAg (6.10)

with vk conditioned to the kth linear programming problem (LPP)

82

6.2. Hybrid Model

max fkobj(v
k) or min fkobj(v

k),

subject to

Sk · vk = 0,

flower(v
k
i , x̂) ≤ vki ≤ fupper(vki , x̂),

vki ∈ R, ∀i = 1, . . . , mk,

where vk ∈ Rm is the fluxes vector, mk the number of reactions in the kth

network considered by the FBA, fkobj the objective function, Sk the stoichio-

metric matrix. Let us highlight that the k(≥ 1) value implies the possibility

to consider multiple independent LPPs. Indeed, the kth LPP is in common

to all the t ∈ TFBAg such that the respective flux belongs to vk (i.e., the

fluxes vector corresponding to the kth LPP). The functions flower and fupper

represent the lower and upper bounds in which each vki flux varies, we will

discuss later how to define them. Let us now consider a simple ESPN example

showed in Fig. 6.4, in which we used a blue-shaded rectangle to highlight the

sub part of the net modeled with the FBA. Hereafter for simplicity we will

omit the k notation since we consider only one LPP (i.e., k = 1). Indeed,

Figure 6.4: A simple example of ESPN model including different types of
generic transitions. Rates of reactions in the blue-shaded rectangle are esti-
mated by linear programming problems.

in this example the set of standard transitions Tma contains R
[1]
MA and R

[2]
MA

83

6.2. Hybrid Model

transitions; while the set of generic transitions Tg contains RMM , RF1, RF2

and RF3 transitions (i.e. {RF1, RF2, RF3} = TFBAg and {RMM} = T¬FBAg).

According to this, the speeds of R
[1]
MA and R

[2]
MA follow the MA law and they

are thus defined as φ(R
[1]
MA, xA) = λ(R

[1]
MA)x2

A and φ(R
[2]
MA, xC) = λ(R

[2]
MA)xC

respectively. Conversely, RMM represents a Michaelis-Menten reaction so that

its rate is fRMM
(ν, xB) =

VmaxxB(ν)

KM + xB(ν)
where Vmax, KM are the maximum

rate and the Michaelis constant characterizing such reaction. Finally the ve-

locity of transitions RF1, RF2, RF3 (transitions that define the set TFBAg) are

estimated by FBA on the metabolic network (which is composed by only the

places in the blue-shaded rectangle. Specifically, they are obtained by solving

a LPP, such as:

max(VRF1
) s.t.

stoichiometric matrix︷ ︸︸ ︷[
−2 −1 +1

0 0 −1

] VRF1

VRF2

VRF3

 =

[
0

0

]
, (6.11)

flower(RF1, xE) <VRF1
< fupper(RF1, xE),

flower(RF2, xE) <VRF2
< fupper(RF2, xE),

flower(RF3, xD) <VRF3
< fupper(RF3, xD),

where flower/upper(·) are the constraints, which depend on the respective tran-

sition and its input places, and VRF1
, VRF2

, VRF3
are the fluxes of the tran-

sitions RF1, RF2, RF3, respectively. Therefore, following the notations in-

troduced above, we define fRF1
(ν, xE) = VRF1

, fRF2
(ν, xE) = VRF2

, and

fRF3
(ν, xD) = VRF3

.

As a consequence, the ODE system defined by equations such 6.11, character-

izing the model quantities in Fig. 6.4 is:

84

6.2. Hybrid Model

dxA(ν)

dν
=

transition R
[1]
MA︷ ︸︸ ︷

−2 φ(R
[1]
MA, xA)

transition RF1︷ ︸︸ ︷
+1 fRF1

(ν, xE)

dxB(ν)

dν
=

transition R
[1]
MA︷ ︸︸ ︷

+1 φ(R
[1]
MA, xA)

transition RF2︷ ︸︸ ︷
+1 fRF2

(ν, xE)

transition RMM︷ ︸︸ ︷
−1 fRMM

(ν, xB)

dxC(ν)

dν
=

transition RMM︷ ︸︸ ︷
+1 fRMM

(ν, xB)

transition R
[2]
MA︷ ︸︸ ︷

−1 φ(R
[2]
MA, xC)

dxD(ν)

dν
=

transition RF3︷ ︸︸ ︷
−1 fRF3

(ν, xD)

transition R
[2]
MA︷ ︸︸ ︷

+1 φ(R
[2]
MA, xC) .

Notice that, since place E is studied under the hypothesis of Flux Bal-

ance, we decided to omit the corresponding differential equation because its

variation is always equal to zero.

Constraints definition. The functions flower and fupper represent the lower

and upper bounds in which each vi flux varies, which may depend on the

marking of the transition input places. Indeed, as reported in [37], there are

several types of metabolic flux constraints which can be used to define the

flower/fupper functions:

1. irreversibility constraints, where the lower bound of the reaction is

set to zero for reactions which can only proceed in the forward direction

[36];

2. environmental constraints, where the maximum flux through an ex-

change reaction is limited by the amount of substrate in the culture

medium [158];

3. transport constraints, which are represented as a maximum substrate

uptake7;

4. regulatory constraints, where the flux through an enzyme is restricted

by the expression of the corresponding protein(s) [164];

7Typically the rate of uptake of nutrients is dictated by availability (a nutrient that is not
present cannot be absorbed), concentration and diffusion constants (higher concentrations
of quickly-diffusing metabolites are absorbed more quickly).

85

6.2. Hybrid Model

5. ODE matching constraints, where the fluxes are specified by the

ODE model.

The first three type of constraints are derived from the literature (and

it is the classical manner to define the constraints), so the functions can be

expressed as flower/upper(vi, x̂) = k
lower/upper
i , where k

lower/upper
i ≥ 0 are con-

stants. Indeed, when the flux does not depend on the ODEs values than the

x̂ dependency can be omitted. For instance, considering the simple example

showed above, we can define flower(VRF2
) = 0 and fupper(VRF2

) = k2.

The regulatory constraints can be obtained by encoding in the function asso-

ciated with the general transition a Boolean regulatory model, i.e., a set of

Boolean logic equations which involve restricting expression of a transcription

unit (sequence of nucleotides in DNA that codes for a single RNA molecule)

to the value 1 if the transcription unit is transcribed and 0 if it is not. Sim-

ilarly, the presence of an enzyme or regulatory protein, or the presence of

certain conditions inside or outside of the cell, may be expressed as 1 if the

enzyme, protein, or a certain condition is present and 0 if it is not. In this

thesis, we decided to not consider this type of constraints, but to focus on

the ones which depend on the ODEs characterizing the part of the ESPN

which is not considered in the FBA. In this case, as shown in [37], the upper

and lower bounds of the FBA fluxes depend by the entities modeled from the

ODE system, and they are settled equal to the corresponding rate calculated

by the ODE model. For instance, we can define flower(VRF3
, xD) = −xD(ν)

and fupper(VRF3
, xD) = +xD(ν). In such manner the concentrations from the

ODEs could be used as flux constraints because they represent the availabil-

ity of the metabolites in the environment and therefore represent the uptake

limit. Usually, the upper constraint is set only if a growth limit has to be

defined, otherwise it should be infinity.

Synchronization. Since we are implementing a hybrid model technique

which combines two different algorithms for solving differential and algebraic

systems, we have to define rules to synchronize these techniques. In partic-

ular, we define the ODEs system as the model leading the simulation, while

the LPP characterizing the FBA is exploited to calculate the value of some

components of the ODEs system. Thus, according to this, we have to decide

how many times and under which hypothesis the LPP has to be solved, and

in this manner the respective components in the ODEs system updated.

86

6.2. Hybrid Model

In [37] the authors proposed a new type of DFBA, called integrated FBA, in

which they integrated the FBA metabolic network with a Boolean transcrip-

tional regulatory network and an ODE model. In particular, their simulations

are characterized by a series of consecutive numerical integration of the ODE

model and solution of the LPP, whose interaction depends on some common

metabolites and variables. In this contest they suggest to choose the length of

each time step to be large enough that the FBA assumption (the concentra-

tions of internal metabolites are time-invariant) holds, and yet small enough

for the ODE model to calculate the system dynamics without accumulating

numerical error.

Starting from this consideration, we defined a more general way to call the

LPP during the ODEs solution without stopping it. In details, we decided to

solve the LPP only if the differences between all the input places of the general

transitions modeling the FBA at time t1 and time t2, with 0 ≤ t1 < t2 < tfinal

(tfinal is the final time selected for the ODE solution) is greater than ε > 0.

Mathematically this can be expressed as follows (starting from the Eq.s 6.9):

dxi(ν) =

nTma∑
j=1

φ(t∗j , x̂)S(pi, t
∗
j)dν +

nTg−nTFBA
g∑

j=1

ftj (ν, x̂)S(pi, tj) (6.12)

+

n
TFBA
G∑
j=1

[
(1− 1{cond})ftj (ν, x̂

last) + 1{cond}ftj (ν, x̂)
]
S(pi, tj)dν

∀i ∈ {1, . . . , nP },

where 1{cond} is the indicator function which is 1 if the condition expressed in

cond is true, otherwise is 0. Such condition can be defined as follows:

cond =


TRUE if

∨
xp: xp∈x̂FBA

|xlastp (ν ′)− xp(ν)| > ε,

FALSE otherwise,

(6.13)

where x̂FBA = {xp : p ∈• t ∧ t ∈ TFBAg } is the set of the markings of all the

input places of the general transitions modeling the FBA, and xlastp represents

the marking of xp ∈ x̂FBA the last time ν ′ at which the FBA was calculated,

with ν ′ < ν. Therefore, the LPP is solved only if there exists a difference

(defined by ε) between the only variables that could change the results of

the FBA, since the constraints of the flux associated with a specific general

87

6.2. Hybrid Model

transition t ∈ TFBAg might depend on its input places marking. Otherwise,

there would not be any important differences in the fluxes obtained from

solving the FBA characterized by the same constraints (the only parameters

of the FBA model which vary and depend on the ODE model). In the next

section we will show an application in which we varied the value of ε.

6.2.2 Application Example

In this section we introduce a case study inspired by Pancreatic Ductal Ade-

nocarcinoma (PDA) model discussed in [132] as a proof of concept of our pro-

posed approach, which provides a biologically and mathematically grounded

decision making setting for the integration of regulatory, signalling, and metabolic

networks and greatly increases model interpretability and reusability.

The kinetic model is the result of a set of experimental findings obtained

by Son et al. [146] and represents the main metabolic pathways altered in

PDA cells. It models the pathways where the glucose and glutamine are

catabolysed in order to produce energy (Adenosine TriPhosphate - ATP).

ATP is the main source of energy for healthy cells and a dysregulation in

its production can help cancer cells to survive and proliferate. Fig. 6.5 re-

ports the actual ESPN model of PDA cells metabolism. It consists of 46

metabolites (that are the products of glucose and glutamine breakdown and

correspond to the places of the net) and 67 chemical reactions (the transi-

tions of the net) subdivided in two MA reactions and 65 general reactions8.

We exploited the GreatMod framework, which will be described in details in

Chapter 7, to automatically derive the ODEs system proposed in [132] from

the corresponding ESPN model (drawn using GreatSPN GUI). This clearly

shows how the expressivity of the ESPN formalism is rich enough to deal

with biological networks in which complex biological dynamics coexist. In

details, the time required to convert the model in Fig. 6.5 into an R file con-

stituted by 47 differential equations (one per metabolites plus one for the

cell number) is just 0.001 sec. The Backward Differentiation Formula (BDF)

method [18] (which is able to cope with stiffness problems), and the R package

Rglpk (https://CRAN.R-project.org/package=Rglpk) are utilized to solve

the ODE system and the LPP, respectively.

8A detailed list of all the dynamic associated with the reactions is reported in the Sup-
plementary material of [132].

88

https://CRAN.R-project.org/package=Rglpk

6.2. Hybrid Model

To illustrate an example of the cross-talk between PN and FBA we intro-

duce the simple ESPN model in Fig. 6.5 (bottom-left). This model exemplifies

the Oxidative Phosphorylation, a pathway where the majority of ATP is pro-

duced within the cell. In details this net consists of four transitions and seven

places, and it was not explicitly considered in the kinetic model of Roi et

al. [132]. This pathway uses the free energy released during the oxidation of

FADH2 to drive the synthesis of several ATP molecules starting from ADP

and Pi molecules. In the model the transition speeds are computed by FBA

assuming ATP production to be maximized. Indeed, in presence of oxigen,

this pathway produces the main source of ATP (i.e., energy) in human cells.

Observe that the whole ESPN model is obtained by the superposition

between places having the same names in the two models depicted in Fig. 6.5.

Hence, the new places P, FADH2 and FAD, are added to the original model

and the speeds of the three new transitions ATP Synthase, ATP Synthase2 and

SDH reaction are defined solving FBA submodel. In particular, their rates

were calculated solving a LPP in which the production of ATP and mFUM

is maximized. The time required to generate the new ODEs system is similar

to the previous one, while the computational time to solve the ODEs system

increases with smaller ε values (i.e., how many times the FBA submodel is

solved considering a difference of epsilon between the the last and the current

markings of the input places of t ∈ TFBAg) as reported in Table 6.4.

Model Mean time (sec)

Original model (only ODE) 20.2
Original model + FBA (ε = 100) 26.8
Original model + FBA (ε = 10) 26.9
Original model + FBA (ε = 1) 93.82
Original model + FBA (ε = 0.1) 11608

Table 6.4: Mean solution times considering firstly the original model composed
by only the ODEs system, and successively the extended model with the FBA
considering different ε values.

Therefore, by integrating the original model with this simple net it is

possible to investigate the evolution of ATP over a period of five days. In

Fig. 6.6 are plotted and compared the time evolutions of ATP, ADP, ASP

and OAA derived by the original model (i.e. without FBA submodel) and

by the extended one (i.e. with FBA submodel) in which four ε values are

89

6.2. Hybrid Model

Figure 6.5: ESPN submodel describing the Oxidative Phosphorylation path-
way (bottom left). At top right, the ESPN model of the PDA is reported,
places shared with the this model are highlighted in dark blue. Reactions
within the light blue-shaded box are computed using FBA.

90

6.2. Hybrid Model

considered. In details, the analysis varies the ε value from 0.1, representing

that the FBA submodel is solved after small variations in the markings of

the input places ∀t ∈ TFBAg , to 100, i.e., the FBA submodel is solved only

to initialize the solution of the ODE system. In details the black continuous

lines are related to the original model while the colored dashed lines to the

extended model. As expected by introducing the Oxidative Phosphorylation

submodel, the plots in Fig. 6.6 report an increase in ATP concentration and

a decrease of ADP respectively. Moreover the other two plots in Fig. 6.6

highlights as the integration of this submodel has a global impact on the

whole system behaviours. Indeed, even quantities not directly connected with

FBA submodel, as ASP and OAA, are substantially affected by this extension.

ATP OAA

ADP ASP

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5
0

100

200

0.00

0.25

0.50

0.75

1.00

1.25

0

2

4

6

2.5

5.0

7.5

10.0

Days

C
on

ce
nt

ra
tio

n

Original Model Original Model + FBA
(Eps = 0.1)

Original Model + FBA
(Eps = 1)

Original Model + FBA
(Eps = 10)

Original Model + FBA
(Eps = 100)

Figure 6.6: Dynamics of ATP, ADP, ASP and OAA considering both the
original (solid black line) and the extended model considering different ε values
(dashed colored lines) of the Oxidative Phosphorylation.

6.2.3 Discussion

According to this simple example, the FBA can be seen as a global source and

sink of the system for a specific set of metabolites (e.g. ATP, mFUM, etc.).

Clearly, this is very simple use of FBA, and in general different ways of using

FBA results within an ESPN model are possible depending on the available

91

6.3. Stochastic Simulation

data. For instance, one possibility arises in the extreme case when no kinetics

are available. In this situation it is possible to assume that the speeds of all

transitions of the net are defined using FBA model. Therefore, in this case

the ESPN formalism becomes an efficient tool to describe more easily an FBA

model through a parametric and graphical formalism.

Another possibility is to identify sub-cycles in the net where kinetics informa-

tion is missing and where the FBA approach can be conveniently applied. In

this situation the ESPN formalism allows modeler to describe in an appeal-

ing manner the inter-playing between the system deeply detailed components

with respect to those abstracted through FBA model.

Finally, a third possibility comes from the observation that a net could be

an open-system as the ESPN model in Fig. 6.5 where glucose and glutamine

are continuously imported into the system and lactate (the product of glucose

breakdown) is exported out of it as soon as it is produced. In this last situa-

tion the interactions between the modeled system and its environment can be

abstracted through an FBA submodel which allows the modeler to close the

system under study.

6.3 Stochastic Simulation

In this section we described how to extend the τ−leaping approach intro-

duced in Sec. 3.2 to consider different kinetics from the Mass Action (MA)

law. In details, this approach was defined under the assumption that all the

reactions follow the MA law. Assumption that is exploited to compute the

partial derivatives of the propensity functions, as shown in Eq. 3.8, making the

algorithm dependent on the transition velocity syntax (i.e., the MA law). In

general, we proposed a derivatives approximation to consider any continuous

functions as kinetic (i.e., transition intensity). In such manner the τ−leaping

approach can be applied for the stochastic simulations considering ESPN and

ESSN formalisms, in which the general transitions are defined by continuous

functions. Let us note that the SSA does not need to be extended since the

algorithm is independent with respect to the transition velocity syntax.

Indeed, if all the transitions within the model follow the MA law (or in gen-

eral if the transitions velocity is defined with a polynomial structure), then

the propensity function of the transition instance 〈t, c〉 in marking m is given

92

6.3. Stochastic Simulation

by the Eq. 2.6, that is:

at(m) = ω(t, c)
∏

〈p,c′〉| p∈•t ∧ c′∈cd(p)

m[p][c′]I[p,t](c)[c
′], (6.14)

where t ∈ Tma, and m[p][c′] denotes the marking of place p for color c′. Let us

note that in the case of a ESPN the propensity function is reported in Eq. 2.5,

defined by a similar equation, but without the color dependencies.

Thus, the partial derivatives of Eq. 6.14 with respect to the number of tokens

in a place p and color c′, denoted as
∂at(m)

∂m[p][c′]
, are straightforward to compute:

∂at(m)

∂m[p][c′]
=
I[p, t](c)[c′]

m[p][c′]
at(m), ∀p ∈• t ∧ c′ ∈ cd(p) (6.15)

where the number of tokens in m[p][c′] is always different from zero, otherwise

the transition is not enabled. Let us note that the Eq. 6.15 derives from the

following relation, which could be easily generalized for any formulation of the

MA law:

a(x) = xn1 x
m
2 c,

∂a(x)

∂x1
= n xn−1

1 xm2 c

=
n

x1
a(x),

∀n, m > 0, a constant c ∈ R and x1 6= 0.

Naturally, when this assumption is not true anymore, such as considering

general transitions characterized by firing intensities defined as continuous

functions {f1, . . . , fh} = Λ, it is no longer possible to know in advance the

propensity functions and so their partial derivatives. To overcome this prob-

lem a method of approximation of derivatives, called Richardson’s Extrap-

olation [127], was exploited.

This procedure is a general method for generating high-accuracy results using

low-order formulas, for instance it is possible to turn a second-order approx-

imation of the first derivative into a fourth order approximation exploiting

two second-order approximations. Where the nth order approximation is a

polynomial of degree n, which is obtained by truncating the Taylor series to

this degree.

Therefore, we decided to exploit the following fourth-order approximation ob-

tained from two second-order approximations:

f ′(x) =
f(x− 2h)− 8f(x− h) + 8f(x+ h)− f(x+ 2h)

12h
+O(h4), (6.16)

93

6.3. Stochastic Simulation

to calculate a sixth-order approximation of the derivative:

f ′(x) =
16 S(h)− S(2h)

15
+O(h6), (6.17)

where S(h) derives from Eq. 6.16 and it is defined as follows:

S(h) =
f(x− 2h)− 8f(x− h) + 8f(x+ h)− f(x+ 2h)

12h
. (6.18)

Finally, we can approximate the partial derivatives of the propensity func-

tion with respect to the number of tokens in a specific colored place in Eq.s 3.8

by using the Eq. 6.17 in which the function f is defined as the propensity func-

tion of a transition 〈t, c〉 in marking m:

S(h) =
at(m− 2hp,c′)− 8at(m− hp,c′) + 8at(m+ hp,c′)− at(m+ 2hp,c′)

12hp,c′
,

(6.19)

where hp,c′ is a small increment only on the number of tokens in the place

p with color c′.

6.3.1 Application of the method to the case study

In this section we applied the τ−leaping extension introduced to a reaction

model famous for its bistable steady-state distribution, called the Schlögel

model [138]. In this contest, we implemented both the SSA and τ−leaping

approaches in a C + + algorithm embedded in the model generation module

of the modeling framework, GreatMod, which will be described in details in

Chapter 7.

Therefore, we used the ESPN formalism to model the Schlögel reactions (see

Fig. 6.7). In particular we defined two ESPN models, the former (Fig. 6.7a)

characterized by standard transitions, which follow by definition the MA law,

and the latter (Fig. 6.7b) by general transitions, which are associated with

functions defined as the MA law. Therefore, we compared the results obtained

from the extended τ−leaping approach by varying the h value representing

the increment in the derivatives approximation (from the Richardson Extrap-

olation) and the ε value (the error control parameter from the τ−leaping

approach). The histogram distance [21, 20] is introduced to measure the sim-

ulation error between the trajectories obtained from the two ESPN models.

94

6.3. Stochastic Simulation

(a) The ESPN model characterized by
all standard transitions.

(b) The ESPN model characterized by
all general transitions defined as MA
law.

Figure 6.7: The Schlögel reactions model.

Schlögel model.

The Schlögel model is a quite famous example of a simple reaction network

which exhibits bi-stability, i.e. the solution strongly depends on the initial

conditions and parameters, converging to one of the two stable states. The

model is characterized by two reactions:

B1 + 2X1
c1

c2

3X1,

B2
c3

c4
X1,

where B1 and B2 denote buffered species whose respective molecular pop-

ulations are assumed to remain constant over the time interval of interest,

while X1 is the only time-varying specie. The corresponding ODEs system is

dB1

dν
= −c1/2 ∗B1 ∗X12 + c2/6 ∗X13

dX1

dν
= +c1/2 ∗B1 ∗X12 − c2/6 ∗X13 + c3 ∗B2− c4 ∗X1 (6.20)

dB2

dν
= −c3 ∗B2 + c4 ∗X1

where the c1, c2, c3 and c4 are constant parameters. To obtain the two

stable states, the parameter values were settled as follows:

c1 = 3 · 10−7, c2 = 10−4, c3 = 10−3, c4 = 3.5,

with an initial concentrations of the species defined asB1(0) = 1×105, B2(0) =

2× 105 and X1(0) = 250.

95

6.3. Stochastic Simulation

0

200

400

600

800

0 1 2 3 4
Time

X
1

co
nc

et
ra

tio
n

0.0000.0020.0040.006
Density

Figure 6.8: The two stable states of the Schlögel reactions model obtained
exploiting the SSA method. In red the empirical probability density function
at the final time, ν = 4.

In Fig. 6.7a the Schlögel reactions model is represented using the ESPN

formalism, where all the transitions are standard one (i.e., they follow the

MA law as in Eq.s 6.20). Since our aim is to show the good approximation

(introduced above) in the τ -leaping approach when continuous functions define

some reactions in the model, we exploited a second ESPN model, Fig. 6.7b,

in which all the transitions are treated as general transitions whose respective

functions are defined as the MA law, i.e., Eq. 2.5.

Histogram Error Distance.

Let us recall some basic definitions to introduce the histogram distance for

approximating the distance between the probability density functions of two

random variables.

Let X be a continuous random variable, then its Cumulative Distribution

Function (CDF) is defined as

FX(x) = P (X ≤ x) =

∫ x

−∞
pX(x)dx, (6.21)

which can be expressed as integral of its Probability Density Function (PDF)

pX(x). In many practical problems, it is not possible to obtain an analytic

96

6.3. Stochastic Simulation

distribution, thus we can consider instead the Empirical Cumulative Distri-

bution Function (Empirical Cumulative Distribution Function (ECDF)) to

approximate the CDF, and the histogram function to measure the PDF. So,

let x1, x2, . . . , xN be independent realizations of X, then the ECDF of X is

defined as

FN (x) =
1

N

N∑
i=1

ψ(x− xi) (6.22)

where the function ψ is called the sign function and it is defined as follows:

ψ(x) =

1, x ≤ 0

0, x > 0
.

Therefore, the sum in Eq. 6.22 gives the number of points that are smaller

than x. When it is divided by N , we obtain the fraction of points smaller

than x, which approximates the CDF.

Supposing that all the sample values are bounded in the interval I = [xmin, xmax),

with L = xmax − xmin, then we can divide I into K subintervals Ii =

[xmin +
(i− 1)L

K
, xmax +

i L

K
). Thus, pX can be approximated by the his-

togram function hX computed from

hX(Ii) =
L

KN

N∑
j=1

χ(xj , Ii) (6.23)

where χ(x, Ii) is the characteristic function, which denotes if x belongs to the

interval Ii,

χ(x, Ii) =

1, x ∈ Ii
0, otherwise

.

The sum in Eq. 6.23 gives the number of points falling into the interval Ii, and

when this sum is divided by N , the fraction of the points inside that interval

is obtained, which approximates the probability of a sample point lying inside

that interval. We divide this by the interval length,
L

K
, to approximate the

probability density. Thus, hX(Ii) measures the average density function of X

in the interval Ii.

97

6.3. Stochastic Simulation

Let us consider two continuous random variables, X and Y , which have

probability density functions pX and pY , respectively. Then, the density dis-

tance between X and Y is defined as follows:

D(X,Y) =

∫
|pX(s)− pY (s)|ds. (6.24)

This measure can be approximated by the histogram distance by substituting

6.23 in 6.24, obtaining:

DK(X,Y) =
K∑
i=1

|hX(Ii)− hY (Ii)|L
K

(6.25)

=
K∑
i=1

|
∑N

j=1 χ(xj , Ii)

N
−
∑M

j=1 χ(yj , Ii)

M
|,

where x1, x2, . . . , xN and y1, y2, . . . , yM are the two groups of realization of

the variables X and Y of size N and M respectively.

Indeed, DK(X,Y) varies depending on the value of K (the number of bins of

the histogram). When K becomes larger we obtain more detailed information

about the difference, and DK(X,Y) will increase, but we must generate a

large number of samples, otherwise there will not be enough data falling into

each subinterval and there will be a large measurement error. In particular

with K, N and M sufficiently large, the histogram distance DK(X,Y) is close

to the density distance area D(X,Y):

DK(X,Y) −→ D(X,Y) as N, M, K −→∞.

Simulations.

We used the histogram distance error measure defined in Eq. 6.25 to compare

the simulations obtained exploiting the extended version of the τ−leaping ap-

proach applied to the stochastic process generated from the ESPN model with

all general transitions (depicted in Fig. 6.7b) and the SSA approach consid-

ering the ESPN model with standard transitions (in Fig. 6.7a). In particular

we analysed the results obtained by varying the h value from the Richardson

Extrapolation9 and the error control parameter ε (see Eq. 3.6) value, consid-

ering 105 simulation runs using the initial state and the constant parameters

reported in the previous paragraph.

9For simplicity we considered an increment value h equal for each hp,c′ with 〈p, c′〉 is the
place instance respectively to that increment.

98

6.3. Stochastic Simulation

Therefore, we firstly compared the SSA and the τ−leaping approaches consid-

ering the ESPN model characterized by all standard transitions, to have base

values to evaluate the approximation introduced in the τ -leaping algorithm

to take in account continuous functions. Thus, in this case the simulations

approaches are the ones described in Chapter 3, and the only varying param-

eter is ε. The plot with red title box in Fig. 6.9 shows the histogram error

calculated at time ν = 4 as a function of ε. It is straightforward to see that

the errors increase roughly linearly with ε, reproducing the results reported in

[21]. Differently, the other plots in Fig. 6.9 show the distance error between the

simulations obtained from the SSA applied to the ESPN model with standard

transitions and the corresponding extended version of the τ -leaping approach

applied to the second ESPN model, in which all the transitions are treated as

general (with associated function the MA law). In such manner we are able

to compare the results. Finally, Fig. 6.9 shows that with h ≤ 10−4 the error

varying ε is similar to the referring case (the red box), otherwise we have that

the error derived from the control parameter ε is neglected by the error derived

from the derivatives approximation using the Richardson’s Extrapolation.

99

6.3. Stochastic Simulation

● ● ● ●

● ●
●

●

● ●
●

●

● ● ● ●

● ●
●

●

● ● ● ●

● ●
●

●

Tau vs SSA − ESPN (standard tr.) Tau vs SSA − ESPN (standard tr.) Tau vs SSA − ESPN (standard tr.)

Tau vs SSA − ESPN (general tr.) h= 1e−04 Tau vs SSA − ESPN (general tr.) h= 1e−05 Tau vs SSA − ESPN (general tr.) h= 1e−06

Tau vs SSA − ESPN (general tr.) h= 0.1 Tau vs SSA − ESPN (general tr.) h= 0.01 Tau vs SSA − ESPN (general tr.) h= 0.001

0.001 0.01 0.05 0.1

0.001 0.01 0.05 0.1 0.001 0.01 0.05 0.1 0.001 0.01 0.05 0.1

0.001 0.01 0.05 0.1 0.001 0.01 0.05 0.1 0.001 0.01 0.05 0.1
0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

Epsilon

H
is

to
gr

am
 e

rr
or

 d
is

ta
nc

e

Figure 6.9: Plots of histogram distance errors with K = 100 corresponding
to different ε values for the Schlögl model. Histogram distance errors are
measured at the ν = 4 considering 105 samples generated by the SSA method
and the τ -leaping approach, respectively, using different h and ε values.

100

Part III

Applications and tool

implementation

101

Chapter 7

GreatMod

In this chapter we described in detail GreatMod1, a new framework that we

developed during my PhD taking into account all the theoretical results pre-

sented in the first part of this thesis. In particular, GreatMod ’s novelties and

strengths can be summarized as follows: (1) the use of a graphical formalism

based on Petri Nets (i.e., ESPN and ESSN) to simplify model construction

and to provide an intuitive description of system behaviour; (2) the container-

ization (into Docker images) of all the implemented analysis techniques to

improve the framework portability and to ensure the reproducibility of the

derived results; (3) the implementation of an R package to provide a user-

friendly interface for easily accessing to the analysis techniques2 also for users

without advanced mathematical and computational skills; (4) the specification

of a well-defined schema and related infrastructure to allow users to integrate

their own analysis workflows in the framework.

Thus, Section 7.1 focuses on the architecture of the framework. While, the ef-

fectiveness of GreatMod framework is shown through the following three case

studies described in the next chapter: 1) Italian Pertussis vaccination policy,

2) Multiple Sclerosis disease, and 3) COVID-19 Epidemic in Piedmont.

1Our framework is available to the following web page: https://qbioturin.github.io/
epimod/

2including the one proposed in the first parts of this thesis.

102

https://qbioturin.github.io/epimod/
https://qbioturin.github.io/epimod/

7.1. Framework

1. Italian Pertussis vaccination policy. This work was published in

[27] and it was exploited as a step by step guide to use the framework

and to point out that GreatMod can be easily used to develop an efficient

workflow to analyse very complex systems.

2. Multiple Sclerosis disease. Applying GreatMod to model the MS, we

were able to identify the key parameters involving in the modulation of

the effect of a specific therapy, and to perform in silico experiments help-

ing to improve the understanding of this complex disease. Furthermore

we show how GreatMod can be applied to model several scenarios consid-

ering woman pregnancy [116], different treatments [120, 116, 114, 117],

and space dependency [118].

3. COVID-19 Epidemic in Piedmont. In this work [119] GreatMod

was exploited to calibrate the model considering the surveillance Pied-

mont data available at the website of the Italian Ministry of Health /

Civil Protection from February 24th to May 2nd, and successively to

simulate the evolution of infected and deceased individuals under dif-

ferent scenarios. In particular, we showed how the control measures

have proven effective in containing the epidemic, limiting the potential

dangerous impact of a large proportion of undetected cases.

7.1 Framework

The architecture of this framework is composed of three main modules (see

Fig. 7.1). The first module consists of a Java Graphic User Interface (GUI)

based on Java Swing Class which allows to draw models using the PN for-

malism. This graphical editor is part of GreatSPN [6, 5], a software suite

for modeling and analyzing complex systems using the PN formalism and its

extensions. In particular, for the purposes of the framework, the GreatSPN

GUI has been upgraded to support the ESPN and ESSN, which enable users

to define a system in a compact and parametric manner, and to specify in

a natural way the rate functions which may be associated with the model

events, see Chapter 5.

The other two modules, consisting of an R library, called Epimod, and a set

of docker images, implement all the framework functionalities needed for the

model analysis (including the new ones proposed in this thesis). The Docker

103

7.1. Framework

Figure 7.1: GreatMod framework schema depicting its modules and its func-
tionalities from a user point of view.

containerization, a lightweight Operation System (OS)-level virtualization, is

exploited to simplify the distribution, the utilization and the maintenance of

the analysis tools; the R library provides an easier user interface for which no

knowledge on the docker commands is needed. Notice that all these docker

images and R functions were created following the guidelines specified by

Reproducible Bioinformatics Project (RBP) project to achieve a framework

for developing reproducible workflow of analysis [82]. Container technology

was recently proposed in the area of Bioinformatics as an efficient solution

to simplify the distribution, the usage and the maintenance of bioinformat-

ics software [38]. Indeed, exploiting containerization the users have not to

deal with dependency or compilation problems; since applications and their

dependencies are already packaged and installed together into the container

image. Obviously, this simplifies considerably the installation and the usage

of the applications encapsulated into a container image. Among the container

platforms proposed in literature, Docker (http://www.docker.com) is getting

actually the standard environment to quickly build, deploy, scale and manage

containerized applications under Linux. In summary docker strengths are its

high level of portability, which allows users to easily register and share con-

tainers over different hosts, and to achieve a more effective resource use and

104

http://www.docker.com

7.1. Framework

a faster deployment compared with other similar software.

We now briefly describe all the functions implemented in the R library,

Epimod and their associated docker images. We report in the supplementary

appendix, section A.1, the instructions to install the framework.

7.1.1 The Epimod package

Epimod provides five base functions which can be combined to build a pipeline

of analysis specific for the system under study:

1. model generation(): derives the deterministic and stochastic processes

underlying the PN model from its graphical representation;

2. sensitivity analysis(): analyses the unknown parameters to identify

which have a great impact on the model behaviour;

3. model calibration(): finds the parameters configuration which matches

better a given reference data;

4. model analysis(): provides the solution and/or simulation of the un-

derlying processes;

5. display data(): offers a web application developed in Shiny, providing

an interface for data visualization.

Let us now explain the details behind each introduced function.

Model generation. The generation of the stochastic and deterministic pro-

cesses underlying a PN model is implemented by the R function:

model generation(). In details, starting from the GreatSPN GUI is possi-

ble to draw the PN model (using whichever formalisms among the SPN, SSN,

and their extensions ESPN, ESSN) and save it in a file with PNPRO exten-

sion, the function automatically derives from PNPRO file the corresponding

deterministic and stochastic processes using the C/C++ program PN2ODE

embedded in the docker image greatspn. The derived processes and the library

used to simulate them are packaged into a binary file with .solver extension.

In the literature many algorithms are proposed for the numerical solution of

ODEs systems and for numerically generating time trajectories of a stochastic

process. Obviously, each method has its strengths and weaknesses, and for

105

7.1. Framework

these reasons we decided to integrate more than one algorithm in our frame-

work, which are contained in the .solver file and can be exploited in all the

Epimod functions.

Considering the numerical solution of ODEs systems we implemented three

explicit methods (i.e., Runge-Kutta 5th order integration, Dormand-Prince

method, and Kutta-Merson method) which can be efficiently used for systems

without stiffness (i.e., the system solution is numerically stable) [18]. Instead

for systems with stiffness we provided a Backward Differentiation Formula

(BDF) method [18] that we implemented using the C++ LSODA library

(https://en.smath.com/view/lsoda). For the simulation of the stochas-

tic process, we implemented the Stochastic Simulation Algorithm SSA [57],

the τ -leaping algorithm [58] (introduced in Section 3.1), and our respective

extended version (introduced in Section 6.3). Finally, we proposed a further

experimental module in this function, which is still not completely integrated

in the framework, to automatically recognize and exploit the model symme-

tries (based on the theoretical results of Section 6.1).

Sensitivity analysis. The R function sensitivity analysis() implements

the sensitivity analysis starting from the .solver file generated by the

model generation function. Sensitivity analysis is a well-known approach

exploited in computational modeling to investigate which parameters affect

mostly the variability of the outcomes generated by the model. In the liter-

ature several approaches are proposed to achieve this task, such as Pearson

correlation coefficient (CC) method (for linear relationships), Partial Rank

Correlation Coefficient (Partial Rank Correlation Coefficient (PRCC)) method

(for non-linear and monotonic relationships), and Fourier Amplitude Sensitiv-

ity Test (FAST) method (for any non-linear relationships) [98, 134]. Thus,

this R function calls the R script sensitivity.mngr.R encapsulated into the

docker image epimod sensitivity to compute a sampling-based method which

combines Monte Carlo Sampling (MCS) with PRCC index.

In details MCS is exploited to generate the samples of the model input

variables from a random sequence of numbers with a prescribed probability

distribution (generally the uniform distribution). Then the model is run N

times on a fixed temporal interval: one for each generated input variable

sample combination. Finally, PRCC between the generated input variables

and the obtained model outputs are evaluated on the same chosen interval. In

106

https://en.smath.com/view/lsoda

7.1. Framework

this way the PRCC analysis and corresponding significance tests (i.e significant

p-value) are utilized to identify key model parameters and to select time points

which need an additional in-depth investigation. Specifically, PRCC values

close to 1 (resp. -1) identify positive (resp. negative) monotone relationships

between inputs and outputs; while the significance tests allow to discover those

correlations that are important, despite having relatively small PRCC values.

Model calibration. The model calibration is performed by the R function

model calibration(). This function executes the R script calibration.mngr.R

embedded in the docker image epimod calibration that calls the right solvers

according to the passed input parameter and produces as output a textual

file in which all the generated parameter values are ranked according to their

ability to fit the real data (i.e., from the best data fitting to the worst one).

This is obtained solving an optimization problem in which the input objective

function is minimized. In Computer Science, Mathematics, and Operations

Research, optimization or mathematical programming consists of minimizing

(or maximizing) a function by consistently selecting the values of its variables

from a set of feasible possibilities utilizing analytical or numerical methods.

Formally an Optimization Problem (OP) with inequality constrains can be

defined as follows:

minimize
x

Fopt(x)

subject to Gi(x) ≥ bi, 1 ≤ i ≤ l

Li(x) ≤ cj , 1 ≤ j ≤ m

where the vector x = (y1, . . . , yn) is the variable vector, the function Fopt :

Rn → R is the objective function, the functions Gi(x) : Rn → R and Li(x) :

Rn → R are inequality constraint functions, and the constants b1, . . . , bl,

c1, . . . , cm are the bounds for the constraints. A vector x•, called optimal,

is the solution of the OP if, among all vectors that satisfy the constraints, it

is that which yields the smallest (largest) value of the optimization function:

∀z s.t. G1(z) ≥ b1, . . . ,L1(z) ≤ cm we have that Fopt(z) ≥ Fopt(x•).
OP is termed a linear program if the objective and constraint functions are

linear and non-linear otherwise. In our framework, the focus is on non-linear

programs in which constraints can be non-linear as well. To solve this type

of OPs, several algorithms have been proposed in the literature, an overview

on these methods is reported in [85]. Among the available algorithms, the

107

7.1. Framework

one integrated in our framework is the Generalized Simulated Annealing for

Global Optimization implemented in the R package GenSA [176], since it

was designed to solve complicated nonlinear objective functions with a large

number of local minima.

Model analysis. The R function model analysis() solves the model and

generates an output representing the time evolution of the model. The R script

model.mngr.R embedded in the docker image epimod model is then executed

by model analysis() function. Thus, this script simulates the underlying

deterministic or stochastic process, given a fixed parameters configuration,

and returns a textual file in which the system solution is provided.

Display data. To help the user in both experimentation and analysis of the

model, our workflow encompasses a data visualization function. Specifically,

the function display data() offers a web application developed in Shiny pro-

viding a basic-level interface and an expert-level interface for data visualiza-

tion. The basic-level interface consists of a simple visualization environment,

so that the user can directly focus on analyzing and visualizing the results

with just few clicks rather than spending its efforts setting up the necessary

environment for the visualization. On the other hand, when the basic level

interface is not enough to highlight complex behaviours of the system under

study, then the expert-level interface of display data can be exploited. Indeed

it allows the user to implement its own visualization plots. In this case, the

user has to provide a function describing how the output data derived by anal-

ysis phase must be manipulated to be plotted. Hence, this functionality makes

the data visualization very flexible, since it supports all the functionalities of

ggplot2 [174] R library.

How to integrate a new function in the framework.

The customization of the framework is one of its strengths since it provides

the generalizations needed to use this same framework for completely different

studies. For instance, in this thesis we applied the framework to analyse a

molecular biological system by modeling the MS disease (Section 8.2), and two

epidemiological systems considering the Pertussis disease (Section 8.1) and the

COVID-19 disease (Section 8.3); but in general GreatMod could be exploited

to model other biological systems other those described in this thesis. To

108

7.1. Framework

this aim we described in this subsection how new solution functionalities can

be easily added in the framework. Practically, a user must firstly embed the

new tool into a docker images following the tutorial reported at http://www.

reproducible-bioinformatics.org/ in the section “How to be part of the

Reproducible Bioinformatics project”. Secondly, an R function implementing

an interface for the created docker images has to be provided. To simplify

the creation of such controlling function the R function skeleton.R, reported

in the library, can be exploited as prototype. Then, any new R function and

associated docker image must always be supported by an explanatory vignette,

accessible online as html document, and by a set of test data accessible online

as well. Finally, this new R function and associated docker image must be

submitted to the info@reproducible-bioinformatics.org so that the RBP

core team verifies the compliance of the new functionalities with the RBP

guidelines. In our case, this protocol means that, once the framework has

been certified by the RBP core team, every new addition or improvement

must first be verified by the RBP organization before integrating it into the

framework. More details on this task can be found in [82].

109

http://www.reproducible-bioinformatics.org/
http://www.reproducible-bioinformatics.org/
info@reproducible-bioinformatics.org

Chapter 8

Applications

In this chapter we show three different case studies successfully investigated

using GreatMod.

8.1 Pertussis and its vaccination policy in Italy

In this section we described how the GreatMod framework was exploited to

study the Pertussis infection and its vaccination cycle in Italy. We first in-

troduced the problem in Section 8.1.1, and then we showed in Section 8.1.2

how a model for this complex system can be created. In Section 8.1.3 we

described the use of the functions and feature implemented in GreatMod to

reproduce real data coming from the observation of the spread of Pertussis in

Italy during the period from 1974 to 2016. Moreover, we demonstrated that

our framework can be easily exploited to support a what-if analysis on the

model representing this complex system.

8.1.1 The disease and its vaccination policy

Pertussis, also known as whooping cough, is a highly contagious infectious

disease caused by the bacterium Bordetella Pertussis which colonizes the cil-

iated cells of the respiratory mucosa. It provokes an uncontrollable coughing

which often makes breathing hard and which can possibly lead to serious com-

110

8.1. Pertussis and its vaccination policy in Italy

plications including death. The first vaccine against Pertussis was developed

already in the 1930s by pediatrician Leila Denmark. Despite this, Pertussis

remains a challenging public health problem because many aspects of its in-

fection, disease, and immunity are not completely understood yet.

Although the implementation of Pertussis vaccination programs in many coun-

tries has decreased substantially its diffusion and mortality, Pertussis has not

been eliminated and Pertussis-related hospital admissions and fatalities are

still evident, particularly in young infants [104].

Moreover, the European Centre for Disease Prevention and Control (ECDC) in

its annual 2017 report [51] highlighted an increasing trend of Pertussis cases

in EU, probably due to the decrease in vaccine effectiveness over time and

pathogen adaptation [81, 104, 140]. In this context computational modeling

can play an important role in providing insights on the drivers of Pertussis

epidemiology, in investigating alternative explanations of the observed resur-

gence and in predicting potential effects of different vaccination strategies.

To these aims, several models were proposed in the literature since 1980s; for

instance in [70, 69], an age-structured model is exploited to analyse the pos-

sible effects of adopting different vaccination strategies in Australia. Other

models expressed in terms of systems of differential equations are used to ex-

plain the duration of the Pertussis natural immunity [167], or the importance

of age-structured contacts [128]. Differently in [156], a set of Partial Differ-

ential Equation (PDE)s, characterized by age and time dependent variables,

is proposed to study the vaccination related changes that may have occurred

for the pertussis epidemic in the Netherlands from 1996 to 1997. In [94] it is

shown that a stochastic process can be used to better capture Pertussis vac-

cination behaviour, as well as the nature and degree of protection provided

by the acellular Pertussis (aP) vaccine. Similarly, in [40, 15] a stochastic pro-

cess modeling Pertussis vaccination is presented for the analysis of the disease

effect in different countries, respectively Massachusetts (United States) and

Thailand. However, all of these works address only a subset of the specific

peculiarities of the pertussis disease. In [19] the authors report the necessity

of incorporating into a single model more details of the disease (e.g., the pop-

ulation age, the individual immunization level, . . .) to better match the real

observed dynamics and to predict the outcome of vaccination measures [19].

111

8.1. Pertussis and its vaccination policy in Italy

8.1.2 The model

The many aspects of the Pertussis disease and of the vaccination strategies

can be conveniently represented by extending the classical Susceptible - Infec-

tious - Recovered - Susceptible (SIRS) model. In particular, this new model

considers a population in which each individual is described by their age (i.e.,

newborn, young, or adult), their level of immunization (i.e., resistance level),

their vaccination status (i.e., how many doses were administered) and their

infectious status (i.e., susceptible, infected, and recovered). The main system

events are: the infection of a susceptible individual due to a contact with an

infected one, the vaccination of an individual involving the administration of

vaccine doses at different time points, and the recovering of an infected indi-

vidual.

To keep under control the complexity of this phenomenon, the ESSN for-

malism is used, and in Fig. 8.1 the developed model is showed. It consists of

eight places and 30 transitions, and it is organized in four modules highlighted

through colored boxes.

In details, places BirthCount,VacCount, and InfectedCount are introduced to

count the total number of births, vaccinations, and infections happened dur-

ing the system simulation. Hence, these places have a neutral domain and are

introduced to make easier the computation of the measures of interest (e.g.

the number of infected individuals in each year).

Places S, V, Ip, Is, and R encode the possible infectious status in which a pop-

ulation member may be (i.e., Susceptible, Vaccinated, Infected due to primary

infection, Infected due to repeated infection, and Recovered respectively).

It is worth noting that the Infected state is modeled with two places to distin-

guish between individuals that are experiencing a primary infection (Ip) and

those experiencing a repeated infection (Is). This distinction is important

because primary and repeated infections have different characteristics [167].

The number of tokens in these places denotes the number of population mem-

bers that are Susceptible, Infected, Vaccinated, and Recovered at any point in

time, during the evolution of the system represented by the model. Moreover,

each token (i.e., individual) in these places is labelled with the age, the level

of immunization, and the vaccination status to better characterise each indi-

vidual in the system. This is carried out defining the following three color

classes:

112

8.1. Pertussis and its vaccination policy in Italy

• The class A = {a1, a2, a3} records the age of the population. It is divided

in three static subclasses: N = {a1} representing Newborn individuals

(from 0 ∼ 11 months), Y = {a2} representing Young individuals (11

months ∼ 18 years:), and O = {a3} representing all the others (18 ∼ 99+

years).

• The class V = {v0, v1, . . . , v5} represents how many vaccination doses

were currently received. Since the Italian vaccination policy establishes

three doses within the first 11 months of life followed by two additional

boosters between 12 and 18 years of age, then we accordingly split this

class in six static subclasses (i.e., NV = {v0} no vaccination, V 1 = {v1}
first vaccination, . . .V 5 = {v5} fifth vaccination). The vaccine coverage

data were extracted from [171] and [62]. Let us note that the under-

reporting is not considered in this analysis.

• The class L = {l0, . . . , l3} represents the level of protection against the

infection. It is divided into four static subclasses (i.e., L0 = {l0}, . . . , L3 =

{l3}) encoding an increasing level of resistance.

The color domain associated with these places is defined by the Cartesian

product A × V × L. Moreover the transitions GrowthS, GrowthIp, GrowthIs,

GrowthR, GrowthV, RecRecall, RecoveryIp, LevDecreasingR and LevDecreas-

ingV are standard transitions (i.e following MA law) while all the others are

general transitions (i.e. whose rates are defined as continuous functions).

Let us note that the contact matrix depending on the three age ranges (N, Y

and O) was estimated from that provided by [107], in which the Italian contact

rates are reported assuming the population divided into 15 age ranges. While

from the Italian Ministry of Health [172] we obtained the Italian population

size, annual numbers of live births and deaths from 1974 to 2016. According

to this we defined i) the initial marking of the system, and ii) the birth and

death rates as the average number of births and deaths, respectively, per day

in each age class during the reference period. Moreover, from [62] and the

surveillance data, we were able to estimate the number of infects in each age

class in the 1974 for initializing the analysis. In general, all the constants, the

numerical values, the generic functions associated with these transitions, and

how we defined the initial marking are described in detail in the Appendix,

Section A.2. The four modules corresponding to the four infectious status of

an individual are now described.

113

8.1. Pertussis and its vaccination policy in Italy

1) Susceptible 2) Infected

3) Recovered

4) Vaccinated

BirthCount:

S:

V: AxVxL

Ip:AxVxL Is:

R:AxVxL

InfectCount:AxVxL

VacCount: AxVxL

RecRecall

RecoveryIp

ContactRi_IsToRii ContactRi_IpToRii

DeathR

ContactR_IsToIs

ContactR_IpToIs

GrowthS GrowthIp
GrowthIs

GrowthV

GrowthR

DeathIsDeathIpDeathS

DeathV

ContactV_IpToIs

ContactV_IsToIs

Birth

ContactS_IsToIp

ContactS_IpToIp

ContactVi_IpToVii
ContactVi_IsToVii Vaccination

VacRecall

LevDecreasingV

LevDecreasingR

RecoveryIs

FirstVaccination

[a ϵ N]

[aϵO]

[(vϵV3 ⋁ vϵV4) ⋀ mϵL3 ⋀ aϵY]

[lϵL2 ⋁ lϵL1]

[lϵL2 ⋁ lϵL1]
[lϵL2 ⋁ lϵL1]

[lϵL3]

[lϵL0]

[lϵL0]

[lϵL3]

[lϵL0]

[lϵL0]

[lϵL3 ⋀ vϵNV]

[aϵY ⋁ vϵV1 ⋁ lϵL1]

[(vϵV1 ⋁ vϵV2) ⋀ ((lϵL3 ⋀ mϵL3) ⋁ (lϵL3 ⋀ m=l++)) ⋀ aϵN]

[aϵO][aϵO]

[aϵO]

[lϵL2 ⋁ lϵL1]

[aϵO]

[lϵL3]

[(vϵV3 ⋁ vϵV4) ⋀ mϵL3 ⋀ aϵY]

<a,v,l>+<b,v,l>

<a,v,l>
<a,v,l>

<a,v,l++>

<a,v,l>

<a,v,l>

<a,v,l>
<a,v,l>

<a,v,l>
<a++,v,l>

<a,v++,m>

<a,v++,m>

<a,v,l>

<a,v++,m>

<a,v,l>

<a,v,l><a,v,l>

<a,v,l>

<a,v,l>

<a,v,l>

<a,v,l++>

<a++,v,l>

<a,v,l>

<a,v,l>

<a,v,l++>
<a,v,l++>

<a,v,l>

<a,v,l>

<a,v,l++>

<a,v,l++>

<a,v,l> <b,w,l>+<a,v,l>

<a++,v,l>

<a,v++,l>

<a,v,l>

<b,w,l>

AxVxL AxVxL

<a,v,l>

<a,v,l>

<a,v,l>

<a,v,l>

<a,v,l>

<a,v,l>

<a,v,l>

<a,v,l>

<a,v,m>

<a,v,l>

<a,v,l>

<a,v,l>

<a,v,l>

<a,v,m>

<a,v,l>

<a,v,l>

<a,v,l>

<a,v,l>

<a,v,l>
<a,v,m>

<a,v,l>

<b,v,l>

<b,v,l>

<b,w,l>

<b,w,l>

<b,v,l>

<b,v,l>

<b,v,l>

<a,v,l>

<b,v,m>+<a,v,m>

<b,v,m>

<b,v,l>

<b,v,l>

<a++,v,l>

<a++,v,l>

<b,v,l>

AxVxL

<a,v++,l>

<b,v,l>

<b,v,l>

<b,v,l>

<b,v,l>

<a,v++,l>

Figure 8.1: ESSN model developed for studying Pertussis epidemiology and
vaccination in Italy. It is divided in four sub-models representing the possible
infectious status in which a person might be: Susceptible, Vaccinated, Infected,
and Recovered

1) Supsceptible module. It describes the behaviour of susceptible individ-

uals. Transition Birth models the birth of a new person adding a new token

in places BirthCount and S. Since a newborn enters into the system with

the lowest level of resistance and without vaccination then the token added in

place S is 〈a1, v0, l0〉. Differently, the age growth and the death of a suscep-

tible individual are modeled by transitions GrowthS and DeathS respectively.

Observe that the successor operator (i.e., s++) in the arc function labeling

the output arc connecting GrowthS to S is used to represent the increasing

of the age, while the guard [a 6∈ O] associated with GrowthS guarantees that

this transition is disabled when the maximum level of age (i.e., O) is reached.

114

8.1. Pertussis and its vaccination policy in Italy

2) Infected module. It models the behaviour of infected individuals. In

particular, two types of infections, primary and repeated infections are con-

sidered and represented by places Ip and Is, respectively. Similarly to what

done in the Supsceptible module, the age growth of an individual with pri-

mary (resp. repeated) infection is modeled by the transition GrowthIp (resp.

GrowthIs), while the individual death is represented by the transition DeathIp

(resp. DeathIs).

Transition ContactS IpToIp (resp. ContactS IsToIp) models the infection of a

susceptible member due to a contact with one individual with primary (resp.

repeated) infection. Thus its firing removes one token from S and adds it into

Ip. Finally, the recovery from a primary (resp. repeated) infection is modeled

by transition RecoveryIp (resp. RecoveryIs), which removes one token from

the place Ip (resp. Is) and adds it to the place R. In particular, the guards

associated with these transitions (i.e., RecoveryIp and RecoveryIs) guarantee

that the recovered patient has the highest level of immunity (i.e., [l ∈ L3]).

3) Recovered module. It describes the behaviour of recovered individuals.

Transition ContactRi IpToRii (resp. ContactRi IsToRii) models the natural

booster that increases to l3 the resistance level of a recovered with resistance

level l1 or l2 after a contact with an individual with a primary (resp. repeated)

infection. These transitions (i.e. ContactRi IpToRii and ContactRi IsToRii)

can fire only if l belongs to L1 or L2, guaranteed by the guard [l ∈ L1 || l ∈ L2].

Transition ContactR IpToIs (resp. ContactR IsToIs) describes the relapse of

a recovered individual with the lowest resistance level (see guard [l ∈ L0])

due to the contact with a population member affected by a primary (resp.

secondary) infection.

Transition RecRecall models the two vaccine recalls between 12 and 18 years

old, which are possible only if all the previous three doses were successfully

administrated during the first year of life. This is ensured by the guard

[(v ∈ V3 || v ∈ V4) & m ∈ L3 & a ∈ Y], which enables the transition

only if an individual is in the second age class (i.e a ∈ Y) with three (i.e

v ∈ V3) or four (i.e v ∈ V4) vaccine doses already administrated. Thus, each

administration increases the patient resistance level to its maximum (i.e. the

transition guard m ∈ L3). Moreover, each time transition RecRecall fires,

one token is added to the place VacCount for counting the number of vaccine

doses which have been administrated.

115

8.1. Pertussis and its vaccination policy in Italy

Transition LevDecreasingR represents the reduction of the resistance level.

Observe that the immunization is totally lost after about 14 years [173] from

the last infection. In particular, when the resistance level of an individ-

ual reaches the minimum value, i.e. [l ∈ L0], a recovered patient becomes

again susceptible for infection. their relapse is modeled by transitions Con-

tactR IpToIs and ContactR IsToIs respectively. Finally, the age growth and

the death of a recovered patient are encoded by transitions GrowthR and

DeathR.

4) Vaccinated module. It implements the vaccination policy. Similarly

to the recovered module, transitions ContactV IpToIs and ContactV IsToIs

model the infection process, while transitions ContactVi IpToRii and Con-

tactVi IsToRii the natural booster, GrowthV the aging and DeathV the death.

Differently from the recovered module, the reduction of the resistance level ob-

tained by the vaccine is lost after about 7 years [173]. This process is modeled

by the LevDecreasingV transition. The starting of the vaccination process

is represented by transition FirstVaccination, whose guard guarantees that

vaccination is administrated only to a susceptible child. To complete the vac-

cination schedule, the administrations of two further doses are modeled by the

Vaccination transition. Its guard, defined as [(v ∈ V1 || v ∈ V2) & ((l ∈
L3 & m ∈ L3)||(l 6∈ L3 & m = l++)) & a ∈ N], guarantees that,

under the condition to be in the first age class, (i.e. a ∈ N , only if the first

or second vaccination is administrated) it is possible to move into the succes-

sive vaccination class, i.e. if v ∈ V1||v ∈ V2 then the output arc instance is

characterized by v++. Indeed, the resistance level increases, due to the new

dose administration, only if the level is not already at the maximum value,

i.e. (l ∈ L3 & m ∈ L3) || (l 6∈ L3 & m = l++).

Finally, every time that transitions FirstVaccination, Vaccination, and Vac-

cRecall fire, a new token is added to the place VaccCount.

8.1.3 A workflow for studying the Pertussis in Italy

We now describe how the framework functions can be combined to obtain

an analysis workflow for such model. This schema is summarized in Fig. 8.2

in which the light grey rectangles correspond to the four phases (i.e., Model

generation, Sensitivity Analysis, Model Calibration and Model Analysis) im-

116

8.1. Pertussis and its vaccination policy in Italy

Deterministic
Process

Stochastic
Process

Graphical
Model

Process
Generation

PRCC
+

Ranking

Parameters
Range

Data Fitting
Minimizing SE
(ODE solution)

Optimal
Parameter

Values

New
Parameters

Range

Optimal
Parameter

Values

Data Fitting
Minimizing AIC
(Stoch. sim.)

Measure
Computation

(What-if
analysis)

Model generation

Sensitivity
Analysis

Model
Calibration

Model
Analysis

sensitivity_analysis()

model_calibration()

model_calibration()

model_analysis()

model_generation()

Figure 8.2: The schema of the workflow implemented for studying the ESSN
model in Fig. 8.1.

117

8.1. Pertussis and its vaccination policy in Italy

plementing the analysis of our Pertussis model, while the dark grey boxes

inside rectangles point out the main R framework functions exploited in each

step of the analysis. The output of each task is instead highlighted by a blue

circle.

Model Generation. The starting point of this workflow is the Model Gen-

eration phase, which derives from the Pertussis model the corresponding un-

derlying stochastic and deterministic processes. This task can be achieved ap-

plying the R function model generation() on the Pertussis ESSN model. Then

the derived deterministic process is represented by a system of 179 ODEs,

while the derived stochastic process is characterized by 1965 possible events.

The total execution time needed to derive the two processes and to create the

.solver file requires less than one minute on Intel Core I7 2.60Ghz. After this

initial step, Sensitivity Analysis and Model Calibration are two pivotal steps

to make our model consistent with real observed data, which were collected

from the Italian Ministry of Health [103, 170] and Surveillance Atlas of In-

fectious Disease [169]. Such data report the number of Italian Pertussis cases

per year from the beginning of 1974 until the end of 2016.

Sensitivity Analysis. This step allows to identify among the input param-

eters which are the sensitive ones (i.e., those that have a great effect on the

model behaviour). This may simplify the calibration step reducing (1) the

number of variables to be estimated and (2) the search space associated with

each estimated parameter. In our case study, we identified 15 input parameters

characterized by a high uncertainty due to their difficulty of being empirically

measured. Specifically, three of them represent the probabilities of having (i)

the susceptible infection success, i.e., the infection of a susceptible individual

due to a contact with an infected individual, namely prob infectionS, (ii) the

resistant infection success, i.e., the infection of a vaccinated or recovered in-

dividual with the minimum resistance level due to a contact with an infected

individual, namely prob infectionR l1, and finally (iii) the natural boosts, i.e.,

the restoring of the resistance level to the maximum when a person with re-

sistance level different from the minimum level comes into contact with an

infected individual, namely prob boost.

The others 12 parameters define the proportion of susceptible and recovered

individuals for each pair of age class and resistance level in the initial mark-

118

8.1. Pertussis and its vaccination policy in Italy

ing. Specifically, init S a{1,2,3} represent the initial number of susceptible

individuals in each age class, while init R a{1,2,3} nv l{1,2,3} are the initial

number of non vaccinated recovered individuals for each age class (a) and re-

sistance level (l). Given the partial information that we have on the spreading

of the infection over the Italian population at the beginning of our study (es-

timated from ISTAT website [103] at the beginning of 1974 decreased by the

average number of infected individuals during the same year) such proportion

is used to define an initial detailed situation adequate for our modeling study

and compatible with the available data.

Furthermore, to provide a measure of the sensitivity of these parameters the

function sensitivity analysis() was applied on the deterministic process previ-

ously generated and considering the period from 1974 to 1994, when the type

of vaccine was the whole-cell Pertussis (wP) vaccine. The choice of this time

interval for this analysis allows to simplify our model disabling the vaccination

process, since the wP vaccine era is widely considered as a good surrogate for

pre-vaccine era [167].

Moreover, this model was run 64’000 times on this time interval: in every run a

new input variable sample combination is generated according to the uniform

distributions reported in Table 8.1, column two. Finally PRCC between the

generated input variables and the obtained model outputs (using Backward

Differentiation Formula method for the numerical solution of ODE system)

are evaluated. A complete description of the used command line is reported

in the Appendix, Section A.2.3. The execution time for this analysis is ∼ 4

hours on Intel Xeon processor @ 2GHz, exploiting a parallel execution on 40

cores. The computed results are reported in Fig. 8.3 in which the PRCCs val-

ues calculated for each parameter with respect to the number of infection cases

over the entire time period are showed. From this plot it is straightforward to

derive that the prob infectionS is the most important parameter affecting the

infects behaviour, followed by prob infectionR l1. Differently the prob boost

probability and the initial number of susceptible and recovered individuals in

each age class are less relevant on the infection behaviour.

In Fig. 8.4, the squared error between the real and simulated infection

cases from 1974 to 1994 are plotted varying the prob infectionS parameter (on

the x-axis) and prob infectionR l1 parameter (on the y-axis). Each point is

then colored according to a linear gradient function starting from color dark

blue (i.e., lower value) and moving to color light blue (i.e., higher values).

119

8.1. Pertussis and its vaccination policy in Italy

Parameter name PRCC ranges GENSA Init. GENSA ranges GENSA Output

prob boost [0, 0.010] 0.0025 [0.0, 0.0025] 0.002474758
prob infectionS [0, 0.005] 0.0031 [0.0025, 0.0100] 0.002537443

prob infectionR l1 [0, 0.010] 0.0023 [0.0, 0.0025] 0.002458887
init S a1 [0, 866703] 866703 [0, 866703] 866696
init S a2 [0, 15685693 15685693 [0, 15685693 15685680
init S a3 [0, 37837299] 37837299 [0, 37837299] 37628100

init R a1 nv l4 [0, 866703] 0 [0, 866703] 7
init R a2 nv l1 [0, 15685693] 0 [0, 15685693] 4
init R a2 nv l2 [0, 15685693] 0 [0, 15685693] 2
init R a2 nv l3 [0, 15685693] 0 [0, 15685693] 2
init R a2 nv l4 [0, 15685693] 0 [0, 15685693] 2
init R a3 nv l1 [0, 37837299] 0 [0, 37837299] 209184
init R a3 nv l2 [0, 37837299] 0 [0, 37837299] 4
init R a3 nv l3 [0, 37837299] 0 [0, 37837299] 4
init R a3 nv l4 [0, 37837299] 0 [0, 37837299] 4

Table 8.1: Parameters variability range used during sensitivity and calibration
analysis. In details, in the first column are listed the parameter names, then
in the second and fourth columns the variability ranges used for the sensitivity
and calibration analyses, respectively. The third column reports the initial pa-
rameters configuration. Finally, the fifth column is the optimal configuration
discovered in the calibration analysis such that the quadratic error w.r.t. the
real data is minimized. Let us remember that the population size assumed is
∼ 60 Million (i.e., the Italian population of the 1974).

From this plot we can observe that higher squared errors are obtained when

prob infectionS assumes values greater than 0.0025 and prob infection l1 val-

ues greater than 0.005, see the light blue points within the region identified by

values of prob infectionS ∈ [0.0025, 0.005] and prob infection l1 ∈ [0.005, 0.01].

Therefore, according to this we shrunk the search space associated with the

two parameters in order to focus on the identified area.

Model Calibration. The aim of this phase is to adjust the model input

parameters (e.g., prob infectionS, prob infectionR l1, . . .) to have the best fit

of simulated behaviours to the real data. As described in above our framework

implements the calibration procedure through an optimization problem which

minimises a user-defined object function. Since this optimization task is com-

putationally expensive when a stochastic process is considered, we describe

now a two-steps approach to speed-up this task that can be implemented eas-

ily using our R function. The idea behind this approach is to exploit the

calibration of the deterministic process, typically faster, to reduce the param-

eter search space in the calibration of the stochastic process.

120

8.1. Pertussis and its vaccination policy in Italy

prob_boost

prob_infectionS

prob_infectionR_l1

−1.0

−0.5

0.0

0.5

1.0

1975 1980 1985 1990 1995

Years

P
R

C
C

 f
o

r
th

e
 I
n

fe
c
t

Parameters:
init_R_a1_nv_l4
init_R_a2_nv_l1
init_R_a2_nv_l2

init_R_a2_nv_l3
init_R_a2_nv_l4
init_R_a3_nv_l1

init_R_a3_nv_l2
init_R_a3_nv_l3
init_R_a3_nv_l4

init_S_a1
init_S_a2
init_S_a3

prob_boost prob_infectionR_l1prob_infectionS

Figure 8.3: PRCCs values for the selected input parameters with respect the
number of infections over the entire simulated period.

Then, in the first step the function model calibration() is applied on the

generated deterministic process to fit its behaviour to the real Italian infec-

tion data (from 1974 to 1994) using squared error estimator via trajectory

matching, and then Generalized Simulated Annealing for Global Optimiza-

tion, GenSA [176], is executed to identify the best parameter set and BDF

method to solve the ODEs system. Note that the information derived by

the sensitivity analysis is exploited to reduce the number of parameters to be

estimated and/or their search space.

Fig. 8.5 shows a subset of all the trajectories generated by GenSA char-

acterized by 15’000 trajectories extracted from a set of ∼ 90’000 trajectories

obtained in ∼ 48 hours on an Intel Xeon processor @ 2GHz on a single core.

The trajectories are colored depending on their distance (in terms of squared

error) with respect to the Pertussis surveillance data (the red line). In de-

tails, the yellow color is associated with a low squared error, the purple color

with a high squared error, while the optimal trajectory is showed in black.

Moreover, the beam of trajectories (colored in yellow), closest to the optimal

121

8.1. Pertussis and its vaccination policy in Italy

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●●
● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●● ●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●
●

●

●●
●

●

●

●

●●

●

●●

●●

●

●●
●

●●
●

●

●●

●

●

●●
●

●

●

●
●

●

●●

●

●
●●

● ●
●

●

●
●●

●

● ●

●
●

●

●

●●
●●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●● ●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

● ●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●
● ●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0000

0.0025

0.0050

0.0075

0.0100

0.000 0.001 0.002 0.003 0.004 0.005
prob_infection_S

pr
ob

_i
nf

ec
tio

n_
R

_l
1

min

max
Error

Figure 8.4: Scatter Plot showing the squared error between the real and simu-
lated infection cases varying prob infectionS and prob infectionR l1. The dark
blue points represent the parameters configuration with minimum error w.r.t.
the real data.

one, provides an indication on the ranges of parameter values that should be

considered in the second steps of our calibration approach. In the second step,

the function model calibration() is applied on the generated stochastic pro-

cess to fit its behaviour to the real infection data using Akaike Information

Criterion (AIC)[3] via trajectory matching. The parameter search space of

this second optimization step is then computed from the result obtained from

the previous step, reported in the last column of the Tab. 8.1. Fig. 8.6 shows

trajectories (grey lines) for the fifteen best parameter configurations discov-

ered, whose range values are reported in the Tab. 8.2. The blue area contains

the average trajectories derived for the first ten best parameters configuration,

while the two green lines provides the associated confidence interval. We can

observe that a good approximation of the surveillance data (red line) from

the 1974 to 1994 is obtained. This second step required about 48 hours on

Intel Xeon processor @ 2GHz, exploiting a parallel execution on 40 cores. The

trajectories are generated using the extended τ -leaping algorithm (see Section

122

8.1. Pertussis and its vaccination policy in Italy

Figure 8.5: Model Calibration considering the deterministic model. It is plot-
ted a subset of the trajectories showing the number of new cases per year
obtained from GenSA considering the parameter ranges stored in the fourth
column of Tab. 8.1. The color of each trajectory depends on the squared error
w.r.t. the incidence of Pertussis (red line). The black line is the optimal trend
obtained by minimizing the squared error.

6.3).

Model Analysis. In this last phase of our workflow the user can analyse

the calibrated model to answer specific questions and to derive new insights.

In our case study we show a simple what-if analysis that can be implemented

tacking advantage of the R function model analysis(). In particular we in-

vestigate the impact of different vaccination failure probabilities with respect

to the number of infection cases. The simulated time period is from 1974

to 2016, and the pertussis vaccination program is started in 1995, with an

average vaccination coverage starts from 50% and transitions linearly to 95%

in 8 years, [171, 62]. The results are derived using the extended τ -leaping

algorithm for generating 1024 trajectories for each case. The simulation of

each case has required 4 hours on Intel Xeon processor @ 2GHz, exploiting a

123

8.1. Pertussis and its vaccination policy in Italy

Figure 8.6: The number of new cases per year considering the stochastic
model. a) 2500 trajectories (grey) over the whole time interval are reported.
b) Boxplots over the time period considering the best configuration.

124

8.1. Pertussis and its vaccination policy in Italy

Figure 8.7: Probability of vaccine failure settled to zero. a) 1024 trajectories
of the number of new cases per year (grey) considering the stochastic model
over the whole time interval. The blue dashed line represents the mean trend.
Finally, the red line represents the incidence of Pertussis. b) Boxplots over
the time period. c) Zoom considering the last 21 years.

125

8.1. Pertussis and its vaccination policy in Italy

Figure 8.8: Probability of vaccine failure settled to 10%. a) 1024 trajectories
of the number of new cases per year (grey) considering the stochastic model
over the whole time interval. The blue dashed line represents the mean trend.
Finally, the red line represents the incidence of Pertussis. b) Boxplots over
the time period. c) Zoom considering the last 21 years.

126

8.1. Pertussis and its vaccination policy in Italy

Figure 8.9: Probability of vaccine failure settled to 40%. a) 1024 trajectories
of the number of new cases per year (grey) considering the stochastic model
over the whole time interval. The blue dashed line represents the mean trend.
Finally, the red line represents the incidence of Pertussis. b) Boxplots over
the time period. c) Zoom considering the last 21 years.

127

8.1. Pertussis and its vaccination policy in Italy

Parameter name Final range

prob boost 0.002523008 ∼ 0.002531240
prob infectionS 0.002528196 ∼ 0.002529264

prob infectionR l1 0.002458931 ∼ 0.002474028
init S a1 866696
init S a2 15685680
init S a3 37628100

init R a1 nv l4 7
init R a2 nv l1 4
init R a2 nv l2 2
init R a2 nv l3 2
init R a2 nv l4 2
init R a3 nv l1 209184
init R a3 nv l2 4
init R a3 nv l3 4
init R a3 nv l4 4

Table 8.2: Final parameters variability range used during the calibration of
the model by solving the stochastic process τ -leaping algorithm.

parallel execution on 40 cores.

In Fig.s 8.7, 8.8, 8.9 we showed how the number of infection cases is affected

by increasing the vaccination failure probabilities from 0 to 0.5. We observed

that only probabilities greater than 0.3 have an effect on the number of infec-

tion cases. For a matter of space, we only report results for failure probability

of 0 (the reference), 0.1 and 0.4.

Moreover, considering the same time period we further investigated the effects

of varying the vaccination coverage of newborns in the period from 2006 to

2016. Fig. 8.10 and Fig. 8.11 show results for vaccination coverage of 90% and

80% respectively. The simulation of each case comprises of 1024 stochastic

traces and has required 4 hours on Intel Xeon processor @ 2GHz, exploiting

a parallel execution on 40 cores.

In details Fig. 8.10 a) and 8.11 a) shows how the number of new cases distri-

bution for each year shifts upward when the fraction of vaccinated newborns

decreases.

Looking at the initial vaccination years (i.e. from 2001 to 2006) of these fig-

ures it is possible to notice that the distribution of infects look quite alike,

as indeed they are the realizations of the same stochastic process. On the

other end, starting from 2006 the two distributions begin to differ reflecting

128

8.1. Pertussis and its vaccination policy in Italy

the changes in the vaccinated population.

Moreover, to better understand the effects on the distribution of the num-

ber of cases among the population, Fig.s 8.10b) and 8.11b) show the Empirical

Cumulative Distribution Function (ECDF) of the number of cases in 2016 for

both the reference data series and the one with the percentage of vaccinated

newborns reduced to 90% and to 80%. Comparing the two ECDFs it is clear

that reducing the vaccination coverage the probability mass is shifted toward

higher number of cases in the population. Indeed, the slope of the ECDF in

Fig. 8.10 b) is much more steeper in the initial stage (i.e., in the range between

1000 and 1250) than that in Fig. 8.11 b), meaning that a lower vaccination

coverage remarkably increases the probability of having infection outbreak.

129

8.1. Pertussis and its vaccination policy in Italy

Figure 8.10: Comparison between 1024 stochastic traces following the refer-
ence data and a scenario where the population vaccinated is reduced to the
90% starting from 2006. a) Shows the violin plot comparing the distribution
of the number of infected patients in the two scenarios. b) Comparing ECDF
of the number of cases after 10 years of reduced vaccination rate.

130

8.1. Pertussis and its vaccination policy in Italy

Figure 8.11: Comparison between 1024 stochastic traces following the refer-
ence data and a scenario where the population vaccinated is reduced to the
80% starting from 2006. a) Shows the violin plot comparing the distribution of
the number of cases in the two scenarios. b) Comparing ECDF of the number
of cases after 10 years of reduced vaccination rate.

8.1.4 Discussion

In this first case study we presented how to use our new general modeling

framework, GreatMod, for the analysis of the pertussis epidemiology in Italy.

The choice of studying this disease is due to the intrinsic complexity of its epi-

demiology and vaccination, and to the need of comprehensive studies capable

131

8.1. Pertussis and its vaccination policy in Italy

of addressing the many facets of this problem. Indeed, despite the fact that

many models have been proposed since 1980s [70, 69, 167, 128, 156, 94] with

the aim of providing insights on vaccination strategies, duration of immunity,

and epidemic episodes, all of them share the characteristics of addressing only

a subset of the specific peculiarities of the pertussis disease, and none of them

faces the necessity of incorporating into a single model more details of the

disease (e.g., the population age, the individual immunization level, . . .) to

better match the real observed dynamics and to predict the outcome of vacci-

nation measures [19]. In Section 8.1.3 we showed that our framework can be

easily exploited to construct and to analyse such a complex and comprehensive

model (i.e., its underlying deterministic process is described by 179 ODEs and

its underlying stochastic one is characterized by more than 1900 events). The

development of such a model would be clearly unfeasible without the use of

the graphical formalism; similarly, the analysis of such a representation would

be difficult and error prone without the use of the suite of powerful solution

tools integrated in the framework. As described in Section 8.1.3, the model

was calibrated in order to reproduce the observed Italian pertussis spread

from 1974 to 2016. Fig.s 8.6a) and 8.6b) show that the model provides a good

approximation of the real data giving confidence on the possibility of using it

to answer specific biological questions such as the impact of different vaccine

failure probability and/or different vaccination coverage on the probability to

have a pertussis outbreak. This shows that focusing on the analysis of specific

biological questions, a model of this type can be used to perform a what-if

analysis to assess the sensitivity of the model to variations of certain input

parameters. The high level of parametrization and the flexibility provided

by the framework gives the possibility of re-using the model and its analysis

workflows for many other cases beyond the one studied in this section, rep-

resenting one of the strengths of the proposed approach. For instance, with

new contact matrices and new set of observed data, it would become possible

to study the Pertussis (or other similar disease) in other countries other than

the Italian one.

132

8.2. Multiple Sclerosis

8.2 Multiple Sclerosis

In this Section we presented a second case study in which we applied the

GreatMod framework to model and analyse the Remitting Relapsing Multi-

ple Sclerosis (Relapsing Remitting Multiple Sclerosis (RRMS)). In particular,

by exploiting the main features characterizing our framework, i.e., the de-

scriptive power of ESSN to provide a graphical representation of the complex

biological system in a compact and parametric way, the sensitivity and cali-

bration analysis to calibrate the model parameters, and the model analysis we

were able to reproduce the typical oscillatory behavior relating to the onset

of RRMS, followed by the analysis of different scenarios.

According to this, in Section 8.2.1 we first introduced the pathogenesis cor-

related to MS, highlighting the roles of the immune system cells and events

that we modeled by exploiting the ESSN formalism. Then, to make easier

the results presentation, we distinguished three versions of the same RRMS

ESSN model1. Specifically, a first version of the RRMS model is presented

in Section 8.2.2, which has been constructed to study the deterministic tem-

poral dynamics of the disease, [116]. In details, two different scenarios of

RRMS were considered. In the former scenario the effect of the daclizumab

administration, an antibody tailored against the Interleukin-2 receptor of T

cells, is investigated, while in the latter one the RRMS was studied in preg-

nant women. Successively, we extended in Section 8.2.3 the introduced model

to analyse the deterministic spatial-temporal evolution of MS, by consider-

ing the cells movement into a three-dimensional grid. Moreover, we showed

how the intrinsic symmetries of the ESSN model, see Section 6.1, can be ex-

ploited to drastically reduce the complexity of its analysis.Finally, in Section

8.2.4, a third version of the model introduced previously is proposed, in which

(differently from before) we analysed the stochastic model behaviour and we

included other biological entities relate to the immune system: (1) the Blood-

Brain Barrier (BBB), that mainly has the function of protecting brain tissue

from harmful elements present in the blood and that in MS is damaged and

crossed by T cells [113]; (2) pro-inflammatory (e.g. Interleukin-17 (IL-17),

Interferon gamma (IFNγ)) and anti-inflammatory (e.g. Interleukin-10 (IL-

10)) cytokines, cell signaling molecules that modulate the immune response

1The files to reproduce these analysis are freely available at https://github.com/

qBioTurin/.

133

https://github.com/qBioTurin/
https://github.com/qBioTurin/

8.2. Multiple Sclerosis

through the activation of several pathways [113]. Moreover, the model is cal-

ibrated by exploring experimental data on 16 subjects, eight MS patients

and eight healthy donors, in which the individual variability in terms of num-

ber of cells and cytokines production, in the blood and in the cerebrospinal

fluid, had been quantified [129]. Then, the model behaviour without and with

Daclizumab (DAC) administration was studied using SSA[57] method to take

into account the stochasticity and the variability of the MS disease.

Let us note that for clarity and since the parameters and the functions of

the general transitions are similar among the three model versions, we will

report the mathematical details regarding only for the first version of the

RRMS model, while for the other versions these details will be reported in the

Appendix.

8.2.1 The Multiple Sclerosis disease

Multiple Sclerosis (MS) is a chronic and potentially highly disabling disease

with considerable social impacts and economic consequences. In Europe it

is the leading cause of non-traumatic disabilities in young adults, since more

than 700,000 EU people suffer from MS [49].

Multiple sclerosis is an inflammatory autoimmune disease in which the pa-

tient’s immune system reacts against itself by damaging Central Nervous Sys-

tem (CNS) nerve cells, i.e., compromising the ability of the neurons to send

electrical signals, resulting in a progression of physical handicap until complete

paralysis within 25 years in more than 30% of patients [154].

In literature four courses of MS are identified: Relapsing-Remitting MS

(RRMS), Secondary Progressive MS (SPMS), Primary Progressive MS (PPMS),

and Progressive Relapsing MS (PRMS). Among them the RRMS is the most

common course since it is diagnosed in about 85% of MS cases. It is char-

acterized by episodes of neurological dysfunction (i.e. relapses) followed by

a complete or partial recovery (i.e. remissions). Unfortunately, within 25

years RRMS usually changes to SPMS (in about 90% of cases) increasing the

severity of the disease [49].

Despite the etiology of MS is unknown, the scientific community agrees

that MS involves a process mediated by immune system in which an abnor-

mal response of the body’s immune defense is directed against the CNS which

is made up of brain, spinal cord and optic nerves. Within the CNS the im-

mune system activates an inflammation process that damages the myelin (i.e.

134

8.2. Multiple Sclerosis

the fatty substance that surrounds and insulates the nerve fibers), the nerve

fibers themselves and the cells specialized in myelin production (i.e. Oligoden-

trocytes (ODC)). The myelin degradation process is mediated by self-reactive

T cells which are activated in the peripheral lymph nodes and secrete pro-

inflammatory cytokines (mainly IFNγ and IL-17). Among them IL-17 pro-

ducing T cells sustain the pathogenesis of MS by promoting BBB disruption

and inducing autoimmune inflammation in the CNS [86, 76]. Furthermore,

IL-17 producing T cells are increased in the peripheral blood [48, 129], in

the cerebrospinal fluid and in the CNS perivascular space of MS patients

[155, 129]. These self-reactive T cells can be found also in healthy subjects

but are strictly controlled by various mechanisms including suppression by T

Regulatory (Treg) cells. In MS patients Treg cells are impaired in number

and function [179] and allow self-reactive T cells to expand in the periphery,

cross the BBB and reach the CNS, where they undergo into a secondary re-

activation and induce demyelination and axonal damage [33, 42]. The triggers

that convert the innocuous self-reactive T lymphocytes into pathogenic are

still not understood, but a combination of genetic and environmental factors

(e.g. Epstein-Barr Virus, vitamin D and smoking) [1] seems to be implicated.

Some studies linked MS with Epstein-Barr Virus (EBV) infection due to the

presence of higher titers of EBV antibodies in MS patients compared to age-

matched controls [162].

Besides environmental factors, physiological factors also impact on the out-

come of the MS disease. In particular, pregnancy represents a period of im-

mune tolerance for patients that has important consequences on the relapse

rate [177]. Indeed, pregnancy condition seems to have beneficial effects on

women patients which have been associated with fewer relapses in RRMS.

This phenomenon has been related with an increase in a particular type of

immune cells, the Treg, which confers fetal tolerance and thus shows a pro-

tective effect of pregnancy to patients [100].

Until now a dozen treatments have been proposed to reduce the frequency

of MS relapses, slow the accumulation of disabilities and contrast the RRMS

progression. Such disease modifying therapies include oral agents and mono-

clonal antibodies (mAbs), which have been designed for a selectivity of drug

action. Among mAbs DAC was selected for its ability to bind the CD25 sub-

unit of the high-affinity Interleukin-2 receptor (IL-2R). IL-2R is a receptor-

135

8.2. Multiple Sclerosis

structure able to bind a key component of the immune system, Interleukin-2

(IL-2), a cytokine that allows T cell proliferation. DAC introduced a new

mechanism of action preventing the binding of IL-2 to its receptor with a

consequent effect on immune cells which involves the blockade of T effector

cells activation, the reduction of Treg cells and the increase of a particular

Natural Killer (NK) cells subset with regulatory ability [141]. DAC efficacy

was demonstrated in reducing (i) the clinical relapse rate of RRMS, (ii) the

disability progression, and (iii) in improving health-related quality of life [141].

DAC appears to be generally well tolerated by MS patients with some adverse

events as infections, encephalitis, and liver damages. However, the safety and

efficacy results obtained after eight years of DAC treatment from the clinical

trials were finally published [61].

8.2.2 The temporal model

In this section we introduced the ESSN model which will be exploited through

the analysis, showing the ability of the model to reproduce the typical oscilla-

tory behavior relating to the onset of RRMS by supposing a breakdown of the

cross-balance regulation mechanisms at the peripheral level. In this contest, a

challenging issue in the definition of the RRMS model was the calibration of

the unknown parameters (e.g. EBV and DAC concentrations, and the tran-

sitions rate). Thus, in Paragraph Sensitivity Analysis the most critical

parameters were identified exploiting the sensitivity analysis (see Sensitivity

analysis paragraph in Section 7.1), and from this analysis two parameters con-

figurations were obtained to represent a healthy subject and a RRMS patient.

Then, two different sets of experiments were conducted. In the former set,

reported in Paragraph DAC therapy, we inspected the effect of the DAC

therapy in our model, which was firstly calibrated for reproducing the cells

dynamics of RRMS patients. The latter set of experiments, Paragraph Preg-

nancy, were devoted to study the effect of RRMS in pregnant patients. The

mechanisms at the basis of a partial MS remission during the pregnancy are

not fully understood yet, leading this case particularly interesting.

The ESSN model

The cell and molecular interactions involved in the RRMS are described by the

model showed in Fig. 8.12, which consists of 10 places and 22 transitions. We

136

8.2. Multiple Sclerosis

7) DAC

FromTimoREG
FromTimoEFF

EffectorMemoryResting_Treg Resting_Teff

TregActivation TeffActivation
MemActivation

Treg

TregDeath

TregKillsTeff

Teff

TregDup

NKdup

Remyelinization

TeffDup_Sym

TeffKillsODC

TeffDeath

TeffKillsEBV

EBVinj

NKDeath

NKentry

NKKillsTeffNKKillsTreg

EBV

ODC: Mye
IL2

NK

5) IL2

6) ODC
TeffDup_Asym

1) Treg 3) EBV2) Teff

4) NK

DAC

DACinjDACDegradation

Figure 8.12: The RRMS model is composed by places corresponding to cells
or molecules, and by transitions corresponding to the interactions among the
entities, injections or death of molecules. The RRMS model is composed by
seven modules: Treg, T Effector (Teff), EBV, NK, IL-2, ODC and DAC.

137

8.2. Multiple Sclerosis

remember that the white transitions are the standard transitions following the

MA law, while the black transitions are the general ones, following different

kinetics described in details in Paragraph General transitions. For clarity,

we organized the model into seven modules corresponding to the biological

entities characterizing RRMS: Treg, Teff, EBV, NK, IL-2, ODC, and DAC.

Let us now describe in details each module separately.

1) Treg module. The Treg cells are characterized by two places: the

Resting Treg and Treg. The transition FromTimoREG represents the ar-

rival of new resting Treg cells from thymus. Its rate is defined in order to

keep constant the number of resting cells. The transition TregActivation rep-

resents the activation of the resting Treg depending on the Teff cell number

and EBV concentration, while TregDeath represents the death of Treg. The

transition TregKillsTeff models the homeostatic regulation operated by Treg

cells against self-reactive Teff cells, and TregDup models the Treg duplication.

2) Teff module. The second module is characterized by three places: Resting-

Teff, Teff , and EffectorMemory. The transitions FromTimoEFF, TeffActi-

vation, and TeffDeath behave similarly to those described in module 1, but

they are referred to the Teff population.

The Teff proliferation takes place in two different manners called Symmetrical

and Asymmetrical processes. These two possibilities are captured in the

model by assuming that one happens with probability pdupeff and the other

with probability pmemeff = 1 − pdupeff . Given a replication speed named reffdup ,

the transition TeffDup Sym generates two Teff cells with the rate equals to

reffdup ∗ p
dup
eff , for more details see Paragraph General transitions. Otherwise,

the transition TeffDup Asym takes place with a speed resulting from the prod-

uct reffdup∗p
mem
eff replicating one Teff cell into one T Memory effector cell and one

Teff cell. The transitions TeffKillsEBV and TeffKillsODC encode the killing

effect of Teff cells against EBV and ODC, respectively. Finally, MemActiva-

tion models the rapid activation of the Effector Memory depending on both

the EBV and the Tmem concentrations. The transitions TeffKillsEBV and

TeffKillsODC encode the killing effect of Teff cells against EBV and ODC, re-

spectively. Finally, MemActivation models the rapid activation of the Effector

Memory depending on both the EBV and the Tmem concentrations.

138

8.2. Multiple Sclerosis

3) EBV module. The third module describes the EBV behaviour. Transi-

tion EBVinj models the infection. The TeffKillsEBV transition summarizes

all steps from antigen processing and presentation by EBV infected cells to

Teff cells, to the activation of Teff cells.

4) NK module. In this modules the role of the NK cells is described.

The transition NKentry models the arrival of new NK cells. The death of

NK is then modeled by transition NKDeath. Transitions NKKillsTeff and

NKKillsTreg encode the killing of self-reactive Teff and Treg cells respectively

due to NK cells. Finally NKdup models the proliferation of the NK cells led

by the presence of IL-2.

5) IL-2 module. The fifth module is focused on the IL2 role. IL2 is

involved in the Treg, Teff and NK proliferation. All these types of cells

consume IL-2 which is produced by the transition TeffActivation.

6) ODC module. The sixth module encodes the ODC behaviour. The

transition TeffKillsODC models the damage caused by Teff cells on ODC

cells. When the myelination level reaches the lowest value, an irreversible

damage occurs and the remyelinization is no more possible (i.e. the transition

Remyelinization is permanently disabled by its guard). To model this effect,

we used the color class Mye encoding the myelination levels of ODC. Mye

is divided into five static subclasses ranging from Lmin (no myelination) to

Lmax (full myelination).

7) DAC module. In the last module the daclizumab behaviour is modeled

through the place DAC. The drug administration is modeled by transition

DACinj, while the pharmacokinetic inhibiting the expansion of Treg and Teff

decreases the velocity of transitions TregDup,TeffDup Sym and TeffDup Asym.

Finally, its degradation is modeled by the transition DACDegradation.

Sensitivity Analysis

The sensitivity analysis step was exploited to select the input values (transi-

tion parameters, and the concentrations of EBV and DAC) leading the model

outputs (i.e., the trajectories) towards the expected values obtained from ob-

serving the behaviour of specific quantities both in healthy and MS affected

139

8.2. Multiple Sclerosis

subjects. In particular, thanks to this analysis, we were able to identify which

parameters have more impact on the model outcomes. Then, the identified

parameters were thoroughly investigated considering both the healthy and MS

patients scenarios.

From our model (without the DAC module, Fig. 8.12) a system of 13 ODEs

with nine unknown parameters is derived. These parameters were analysed

through sensitivity analysis implemented in GreatMod, by generating 5000 pa-

rameter combinations using a uniform distribution whose ranges are showed

in the second column of the Table 8.3.

For all the simulations, we assumed as initial marking the following param-

eters consistent with a space of 1mm3 of blood and 4mm3 of neural tissue:

500 ODC with level Lmax of neuronal myelinization, 1687 resting Teff cells,

63 resting Treg cells, 375 NK cells and 1000 IL-2 molecules, and zero cells in

the other places (see Table 8.4). Moreover, we defined the disease occurrence

when the Lmin level of neuronal myelinization is reached for each ODC cell,

representing an irreversible damage. Then, five virus injections are simulated

at regular times (every two months), introducing into the system 1000 EBV

copies per injection. Finally, model solutions were calculated for each param-

eter combination over one year interval, [0, 365] days.

Analyzing the 5000 trajectories generated, three scenarios have been identi-

fied: (i) the occurrence of the MS, represented by a huge number of dead

ODC cells; (ii) the complete remission of the MS disease, characterized by a

low number of dead ODC cells and with a complete elimination of the EBV

virus; (iii) the partial remission of the MS disease specified by a partial elimi-

nation of the EBV virus. The Fig. 8.14 reports the EBV and ODC dynamics

generated considering different set of parameters.

On these trajectories the PRCC analysis was applied to identify key model

parameters affecting the system behaviour. The PRCCs values are calculated

for each parameter over the entire time period, which are showed in Fig. 8.13.

The rates associated with transitions TeffKillODC, TregKillTeff, TeffKill-

EBV and Recovery result to be the crucial parameters affecting the ODC

behaviour. Fig. 8.15 reports a scatter plot in which each point corresponds to

a generated trajectory, its color represents the percentage of irreversible ODC

damaged at the final time point (i.e. a grey color corresponds to a lowest

percentage of damaged ODC and a red color to highest one). The simula-

tions are performed changing the rates of TeffKillEBV (in the x-axis), the

140

8.2. Multiple Sclerosis

Figure 8.13: Sensitivity analysis. PRCCs over the whole time interval for
each model parameter is reported. Yellow area represents the zone of non-
significant PRCC values.

TregfKillTeff (in the y-axis) and TeffKillODC (in the z-axis). A few number

of irreversible damaged ODC are obtained increasing the TregfKillTeff rate

and the decreasing the others two rates.

The key parameters identified were deeply studied exploiting the LHS

method computing 500 new combinations varying only TeffKillEBV, TregfKill-

Teff and TeffKillODC. We defined two sets of parameters (see Table 8.5), one

for the MS patients and one for the healthy subjects, see Fig. 8.16.

The MS patients are modeled by a set of parameters which maximizes

the ODC damage maintaining the Treg and Teff cell numbers consistent with

those measured in the reality, see red trajectories in Fig. 8.16 a and b panels.

For the healthy cases, we selected the trajectory providing a Teff-Treg

regulatory balance able to control the spread of the EBV virus and to minimize

the irreversible damage to ODC cells, even if the amount of EBV in each

injection is substantially increased, see blue trajectories in Fig. 8.16, panels

a and b. In particular, we performed 500 simulations varying the amount of

EBV injected in a range of [1000 − 5000 particles/mm3]. From Fig. 8.17

it is possible to observe that, even for large quantities of EBV injected, the

141

8.2. Multiple Sclerosis

Figure 8.14: A subset of the 5000 trajectories generated by Latin Hypercube
Sampling (LHS) of the EBV cells (a) and the ODC cells with an irreversible
damage (b) over the whole time interval.

percentage of irreversibly damaged ODCs reaches 17% (Fig. 8.17(a)). This

value is very small if compared with respect to the 77% of irreversibly damaged

ODCs in the case of the disease occurrence. Moreover, independently of the

quantity of EBV injected, Teff are able to eliminate EBV completely (Fig.

8.17(d)), and the abundance of EBV does not drastically affect the number of

effectors or regulators in the system (Fig. 8.17(b,c)).

Finally, we can conclude this part affirming that the LHS with PRCC

index identified TeffKillODC, TregKillTeff, TeffKillEBV as the most critical

parameters to the model outcomes. This result agrees with our expectation

since these parameters play a central role in the disease progression. In the

analysis of the EBV behaviour in a healthy subject, it is interesting to note

the effect of immune memory which increases the number of activated Teff

cells from the time of second injection (see Fig. 8.18). In particular, thanks to

142

8.2. Multiple Sclerosis

Figure 8.15: 3D scatter plot of the ODC irreversible damaged at the fixed time
365 versus theTeffKillODC, TregKillTeff, TeffKillEBV parameters variation.

the faster activation of the Tmem cells with respect to the Teff cells, from the

second EBV injection it is possible to observe a more rapid virus annihilation.

Indeed, Tmem cells have a faster activation (i.e. since they already have the

memory of a previous contact with the EBV) than Teff cells, leading to a more

rapid virus annihilation during the relapses.

Figure 8.18: The Teff dynamics considering an MS subject.

143

8.2. Multiple Sclerosis

Figure 8.16: A set of the 500 trajectories generated by LHS of the EBV virus
(a) and the ODC cells with an irreversible damage (b) over the whole time
interval varying the TeffKillODC, TregKillTeff, and TeffKillEBV transition
parameters.

DAC therapy

To investigate the effect of the DAC therapy in our RRMS model calibrated for

MS patients, we simulated the DAC administration at the 53rd day after the

first EBV injection. Our results are reported considering two important as-

pects in the modulation of a therapy: the drug dose and the drug degradation

time. The quantity of DAC administrated per injection and the DAC cells

deterioration were studied by means of LHS method. The values of these two

parameters are then sampled according to two uniform distributions whose

ranges are reported into the Table 8.3.

From the sensitivity analysis we clearly observed that the drug degradation

144

8.2. Multiple Sclerosis

Figure 8.17: Different injections of EBV (d) are considered to check if the Teff-
Treg (c-b) regulatory loop is able to control the virus spreading minimizing
the irreversible damages to the ODC cells (a).

145

8.2. Multiple Sclerosis

Transitions/events Parameters Range

Treg Death rTregD 1/24 h−1

Teff Death rTeffD 1/24 h−1

NK Death rNKD 1/24 h−1

NK Dup rNKDup 1/24 h−1

Teff Activation rTeffA [0.2, 0.6] h−1

Treg Activation rTregA [0.1, 0.3] h−1

Treg Dup rTregDup [0.045, 0.135] h−1

Teff Dup rTeffDup [0.25, 0.75] h−1

TeffKillODC rTeKodc [0.05, 0.15] h−1

TregKillTeff rTrKTe [1.5, 4.5] h−1

TeffKillEBV rTeKebv [0.075, 0.225] h−1

Recovery rrec [0.075, 0.225] h−1

NKKillTcell rNKkTc [0.05, 0.15] h−1

DACDeath rDacD [0.0004, 0.001] h−1

DACinjection rDacInj [5, 100] h−1

Table 8.3: List of the model fixed and unknown parameters with their corre-
sponding values or (in the latter case) ranges on whose the Uniform distribu-
tion is defined.

Cell Value Reference

TLymphocytes [3 ∗ 103cells/mm3] [4, 165]

RestingTeff [1687cells/mm3] [136, 14, 31, 133]

RestingTreg [63cells/mm3] [145]

NK [375cells/mm3] [136, 14, 31, 133]

ODC [125cells/mm3] [139]

EBV infection [50− 70days] [7]

Table 8.4: List of the cell numbers used in the model.

Transition Teff Activation Treg Activation Treg Dup Teff Dup TeffKillODC TregKillTeff TeffKillEBV Recovery NKKillTcell

Healthy 0.4 0.2 0.09 0.5 0.1 3 0.15 0.1 0.1

Sick 0.4 0.2 0.09 0.5 0.15 1 0.1 0.1 0.1

Table 8.5: Parameters used for simulating the Healthy version (first row) and
Sick version (second row) of the disease.

146

8.2. Multiple Sclerosis

time has a greater impact on the elimination of EBV virus than the amount of

DAC administered, see the number of ODC irreversibly damaged in Fig. 8.19.

Therefore, we decided to focus our attention on the DACDegradation parame-

ter variation. Knowing that the half-life of DAC was detected around 22 days,

we considered that a complete degradation of DAC ranges between 30 and 90

days [79]. The results of the simulations are reported in Fig. 8.20(a) in which

it is possible to appreciate that a greater DAC permanence has the effect of

reducing the number of irreversibly damaged ODC cells with respect to the

case in which no therapy was considered (red line). Moreover, it is interesting

to note that the RRMS model with DAC injections highlights a decrease of

the long term ability of the immune system to eliminate EBV Fig. 8.20(b).

Finally, in Fig. 8.21 is reported the trend of the NK cells that increase with

respect to the DAC degradation rate.

Figure 8.19: Scatter plot of the ODC irreversibly damaged variable at the fixed
time 365 depending on the DAC injected (x-axis) and the DAC death rates
(y-axis). The colour depends on the number of ODCs irreversibly damaged.
The number of ODC is strongly dependent by the DAC degradation: the
decrease of the number of damaged ODC is more influenced by an increase of
the permanence time of DAC drug in the body.

147

8.2. Multiple Sclerosis

Figure 8.20: ODC and EBV trajectories colored depending on DAC degrada-
tion rate (expressed in months). The red line represents the starting sample
without drug administration.

148

8.2. Multiple Sclerosis

Figure 8.21: NK trajectory colored depending on DAC degradation rate (ex-
pressed in months). The red line represents the starting sample without drug
administration.

Pregnancy

In this subsection we investigate the RRMS in pregnant women. As already

pointed out before, pregnancy was associated with fewer relapses in RRMS

and reduced activity of disease in autoimmune encephalomyelitis (EAE). Ben-

eficial effects of pregnancy are thought to be related to pregnancy-associated

changes in the maternal immune system. One of the observations is that Treg

cells increase in number establishing the fetal tolerance and conferring a tem-

porary protection to women with RRMS [135, 145].

According to the literature, we modeled the pregnancy condition changing the

proportion between the activate Treg cells and the activate Teff cells decreas-

ing the Teff activation rate and increasing the Treg activation rate proportion-

ally to the pregnancy phase [145]. Three pregnancy phases, corresponding to

the three trimesters, have been simulated. When a new trimester begins, we

increased the ratio of TregActivation rate to TeffActivation rate; while at de-

livery time both rates return to their initial values. Thus we simulated 100

different scenarios with a increasing variation of parameters, obtaining differ-

ent levels of protection from ODC damage. As expected, the model behaviour

149

8.2. Multiple Sclerosis

shows a substantial reduction of the ODCs damage (see Fig. 8.22).

Regarding the immune system cells, we observed that Treg cells increase dur-

ing pregnancy and then suffer a sharp decline at the time of delivery. The

same effect, but in the opposite direction is showed on Teff cells. It is interest-

ing to note that a rebound of Teff is reported in the week following pregnancy,

see Fig. 8.23.

Our results are in line with what comes to us from biological knowledge and

clinical observations since the resetting of the immune system is what signifi-

cantly influences the course of the disease during pregnancy and also has been

related with clinical manifestation of increased relapses associated with the

post-partum period. From our results it is possible to appreciate the differ-

ence between the ODC cells irreversibly damages in the case of MS no pregnant

patients and MS pregnant patients (specially in the case of max variation of

the Treg-Teff balance). This difference increases from the first trimester to

the time of delivery then returns to become not significant.

Figure 8.22: The ODCs irreversibly damaged considering the pregnant woman
case of study. 100 trajectories colored depending on different variations of
the TregActivation and TeffActivation parameters. The red line represents
the starting sample without pregnancy. Furthermore each trimester another
variation is applied to these parameters in order to represent the increasing
of the maternal immune system.

150

8.2. Multiple Sclerosis

Figure 8.23: The Teff a) and Treg b) dynamics before, during and after the
pregnancy. The red line represents the starting sample without pregnancy.

General transitions

In this subsection we describe in details the firing rate function associated

with the general transitions in the RRMS model introduced in Paragraph The

temporal model. These transitions model the following biological events: i)

the killing of a cell, e.g., TregKillsTeff or TeffKillsODC, ii) the entry of cells

into the system, such as EBVinj, iii) the activation of T cells, e.g., TeffActi-

151

8.2. Multiple Sclerosis

vation, and iv) the duplication of a cell,e.g., such as TeffDup.

Let us recall the notations characterizing the general transition introduced in

Section 5.2: f〈t,c〉(x̂(ν), ν) is the speed of the transition t ∈ Tg and x̂(ν) rep-

resents the vector of the average number of tokens for all the input places of

t. For brevity when the function will not depend on the color instance c then

we will omit it reporting just the transition t, i.e. ft(x̂(ν), ν) . All the general

transitions of the model are now explained in details. All the constants and

numerical values associated with the transitions are summarized in the Tables

8.3 and 8.6.

• EBVinj, DACinj inject into the system specific quantities of EBV and

DAC respectively at fixed time points;

• FromTimoREG, FromTimoEFF, and NKentry are the transitions which

keep in a constant range the number of RestingTreg, RestingTeff, and

NK respectively. They are defined as

fFromTimoREG(xResTreg, ν) = qRestTreg ∗ (1− xResTreg/63);

fFromTimoEFF (xResTeff , ν) = qRestTeff ∗ (1− xResTeff/1687);

fNKentry(xNK , ν) = qNK ∗ (1− xNK/375),

where xResTreg, xResTeff , and xNK are the numbers of cells in the input

places (i.e. RestingTreg for FromTimoREG, etc) at time ν. Then q·

represents the quantity injected in the output place to preserve the cell

quantity, i.e. 63 for the RestingTreg, 1687 for the RestingTeff and

375 for the NK (see Table 8.4).

• TregActivation and TeffActivation transitions model the activation of

the Teff and Tref cells. In particular, these transitions are defined of

type general to simulate a reduced Teff activation velocity when the virus

presence decreases, and a Treg activation velocity which is proportional

to the number of Teffs and inversely proportional to the number of EBV

particles (allowing the Teff to annihilate the virus). So the functions are

defined as

fTregActivation(x̂(ν), ν) = rTregA ∗
xTeff

(xTeff + xEBV + 1)
∗ xResTreg;

fTeffActivation(x̂(ν), ν) = rTeffA ∗ (1− exp(− xEBV
CEBV

)) ∗ xResTeff ,

152

8.2. Multiple Sclerosis

where rTregA and rTeffA are the activation constant rates for the Treg

and Teff respectively. In case of the TregActivation transition, the

vector x̂(ν) of its input places RestingTeff,EBV and Teff consists

of the variables xResTreg, xEBV , xTeff respectively. Differently the x̂(ν)

of TeffActivation transition is characterized by xResTeff and xEBV .

Finally the constant CEBV is related to the EBV particles and it is

defined to reduce the activation rate with the decreasing of the virus

presence.

• MemActivation is defined as

fMemActivation(x̂(ν), ν) =

0 ν < t2inj ,

rMemA ∗ xMem(ν) ν ≥ t2inj ,

where

rMemA = 2 ∗ rTeffA ∗ (1− exp(−xMem(ν)

CMem
) ∗ (1− exp(− xEBV

CEBV
),

and t2inj is the time corresponding to the second EBV injection. We

are considering the velocity of this transition as zero ∀ν < t2inj , since

the T Memory effectors start to react after the first virus occurrence.

x̂(ν) = (xMem(ν), xEBV (ν)) is the marking vector storing the number

of T Memory effectors and EBV particles respectively at time ν. CMem

and CEBV constants are related to the Memory and EBV cells needed to

slow down the activation rate with the decreasing of EBV and Memory

cells. This is due to the necessity of leaving a minimum number of T

Memory effectors into the system. So when in the system there are a

large number of EBV particles and of T Memory effectors, the activation

speed reaches its maximum given by twice the velocity of the Teff cells,

rTeffA.

• All the transitions modeling the killing of a specific cell are defined as

follows:

∀t ∈
{

TregKillsTeff,TeffKillsODC,TeffKillsEBV,NKKillsTcell
}

then

ft(x̂(ν), ν) =
1

xtot
∗ rt ∗

∏
i

x̂i(ν),

153

8.2. Multiple Sclerosis

where
∏
i x̂i(ν) is the product of the average numbers of tokens in the

input places of the transition t, rt is the constant rate related to the

transition t, xtot is the total number of cells at time ν, and
1

xtot
represents

the probability that a specific meeting between two different cells is

occurred.

• TregDup transition models the Treg duplication depending proportion-

ally on the amount of IL-2 and inversely proportionate on the number

of DAC cells (to simulate the reduced duplication velocity during the

DAClizumab therapy), and it is defined as:

fTregDup(x̂(ν), ν) = ηTrD(x̂(ν), ν) ∗ xTreg ∗ xIL2 ∗
1

xtot
,

with

ηTrD(x̂(ν), ν) = rTregDup ∗ (1− exp(− xIL2

CIL2
)) ∗ (exp(− xDAC

CDAC
)),

where rTregDup is the constant Treg duplication rate,

x̂(ν) =
{
xTreg, xIL2, xDAC

}
and CIL2 and CDAC are the constant

related to the IL-2 and DAC cells to slow down the duplication velocity

with an increasing number of DACs and a decreasing number of IL-2

proteins.

• Considering the Teff duplication event we have to distinguish two possi-

ble cases: 1) the Teff symmetric duplication with probability pdupeff and a

Teff asymmetric duplication, implying the T Memory effector differenti-

ation, with probability pmemeff = 1−pdupeff . This is modeled exploiting two

different transitions: TeffDup Sym and TeffDup Asym. So let us define

reffdup = ηTeD(x̂(ν), ν) ∗ xTeff ∗ xIL2 ∗
1

xtot

then these two transitions are defined as:

fTeffDup Sym(x̂(ν), ν) = pdupeff ∗ r
eff
dup

and

fTeffDup Asym(x̂(ν), ν) = pmemeff ∗ r
eff
dup ,

with

ηTeD(x̂(ν), ν) = rTeffDup ∗ (1− exp(− xIL2

CIL2
)) ∗ (exp(− xDAC

CDAC
)).

154

8.2. Multiple Sclerosis

Where rTeffDup is the constant Teff duplication rate,

x̂(ν) =
{
xTeff , xIL2, xDAC

}
.

Constant Value

qRestTreg 20

qRestTeff 500

qNK 100

CEBV 1000

CMem 200

CDAC (DACinjected)/log(.1) 2

CIL2 200

CTcell 200

CTeff 200

pdupeff 2/3

pmemeff 1/3

Table 8.6: List of the constants regarding the first version of the RRMS model.

8.2.3 The spatial-temporal model

In this section we proposed an extension of the model introduced in the pre-

vious Section 8.2.2, to consider both the spatial and temporal aspects. In

details, we included the spatial coordinates of all entities in a cubic tissue

portion. This gives the opportunity to model more realistic scenarios, where

different quantities of virus enter into the system from different directions.

Moreover, we described how the intrinsic symmetries of the derived ESSN

model may be automatically exploited to reduce the complexity of the anal-

ysis step. This allows to study models which are independent from the grid

size, while with the classical approach it is hard to generate the ODEs system

corresponding to the model with a 5× 5× 5 grid. In this contest, we used the

experimental module in GreatMod to exploit the model symmetries as showed

in Section 6.1.

Finally, in the first Paragraph The ESSN model, we report how the RRMS

2DACinjected represents the quantity of DAC injected per time and with this formula
we estimate automatically the constant in order to have exp(−DACinjected/CDAC) = .1,
i.e. the T-cells duplication rate is reduced of the 90% when all the DAC particles are present.

155

8.2. Multiple Sclerosis

a) b)

T effector
(Teff)

Myelin Sheath

Regulatory T
(Treg)

Natural killer (NK)

Epstein Barr
Virus (EBV)

Neuron

Central Nervous
System (CNS)

3D cubic grid

Daclizumab
(DAC)

Oligodendrocyte
(ODC)

FromTimoREG FromTimoEFF

EffectorMemoryResting_Treg: Pos3D Resting_Teff: Pos3D

TregActivation TeffActivation
MemActivation

EBVMovement

Treg: Pos3D TeffMovementTregMovement

TregDeath

TregKillsTeff

Teff: Pos3D

TregDup

NKdup

Remyelinization

TeffKillsODC

TeffDeath

TeffKillsEBV

EBVinj

NKDeath

NKKillsTeffNKKillsTreg

EBV: Pos3D

ODC: Mye X Pos3D
IL2: Pos3D

NK: Pos3D
NKentry

5) IL2

6) ODC
TeffDup_Sym

TeffDup_Asym

<x,y,z>

<x,y,z>

<x,y,z>
<x,y,z>

<x,y,z>

<x,y,z> <x,y,z>

<x,y,z>

<x,y,z>

<x,y,z>
<x,y,z>

<x,y,z>

<x,y,z>

<x,y,z>

<x,y,z>

<x,y,z>

<x,y,z>

<x,y,z>

<x,y,z><x,y,z>

<x,y,z>

<x,y,z>

<x,y,z><x,y,z>

<x,y,z>

<x,y,z>
<x,y,z>

2<x,y,z>

<x,y,z>

<x,y,z>

<x,y,z>

<x,y,z>

<x,y,z>

<x,y,z> <x,y,z>

<x,y,z>

<x,y,z>

<x,y,z>

<x,y,z>

<x,y,z>

<x,y,z>
<x,y,z>

2<x,y,z>

<x,y,z>

2<x,y,z>

<l++,x,y,z>

<l++,x,y,z>

<l,x,y,z>

<l,x,y,z>

<q,p,k><q,p,k>

MovementEBV

MovementDAC

MovementTeff

Teff

MovementEBV

MovementTreg

MovementTeff

MovementDAC

Treg
EBV ODC

Teff Treg

<q,p,k>

MovementTeff

[l Lmax]

[l Lmin l Lmax]

Teff Treg<q,p,k>

<x,y,z>

1) Treg 3) EBV2) Teff

4) NK

7) DAC
DACMovementDAC: Pos3D

DACinjDACDegradation

Figure 8.24: a) Representation of the three-dimensional model. b) The ESSN
model representing the RRMS disease with cells movements.

model was extended to consider the spatiality, while the Paragraph Results

focuses on the analysis of the model. The detailed expressions of the functions

that encode the general transition velocities are reported in the Appendix Sec-

tion A.3.1.

The ESSN model

In Fig. 8.24a) a portion of the CNS is depicted, showing: the neuron with its

myelin sheath, and the 7 elements characterizing the MS disease distributed

within a 3D cubic grid. The respective ESSN model is shown in Fig. 8.24b),

consisting of 13 places and 25 transitions, and it is basically equal to the

model depicted in Fig. 8.12 with the additions of transitions simulating the

cells movements.

This model is organized in seven modules corresponding to the biological enti-

ties characterizing RRMS. The detailed description of each module is reported

in Sec. 8.2.2. Briefly, the EBV module simulates the virus reactivation by

means of a series of injections of virus particles in the system at given times,

156

8.2. Multiple Sclerosis

while the Treg and Teff modules encode the activation of the T cells, the anni-

hilation of the virus by the Teff action, the control mechanism of the Treg over

the Teff. The NK module describes the killing of self-reactive Teff and Treg

cells respectively, due to NK cells. The IL-2 module is focused on the IL-2 role.

IL-2 is consumed by the Treg, Teff and NK functions and it is produced by

the Teff activation. The ODC module describes instead the ODC behaviour,

characterized particularly by the damage caused by Teff cells on ODC cells.

Indeed, when the myelin level reaches the lowest value, an irreversible dam-

age occurs and a remyelination of the neurons is no more possible. Finally,

the DAC module encodes the drug administration and its pharmacokinetics

inhibition of the expansion of Treg and Teff.

The model is characterized by four color classes: PosX, PosY, and PosZ

representing the coordinates of the position of a molecule in a 3D cubic grid;

Mye encoding the myelination levels of ODC. Mye is divided into five static

subclasses ranging from Lmin (no myelination) to Lmax (full myelination).

Then, all the places except the ODC and EffectorMemory are characterized

by the color domain defined as Pos3D = PosX×PosY ×PosZ, i.e. the three-

dimensional Cartesian product of the three coordinates color classes. Instead,

the ODC place is characterized by the three coordinates plus the myelination

levels, so that its color domain is Pos3D×Mye. Finally, the EffectorMemory

place has neutral color domain. Moreover, we assume that the EBV, Teff,

Treg and DAC cells are able to move in all the cubic cells of the grid. Practi-

cally, the EBVs move uniformly in all the cells, the Teff cells move with higher

probability towards a location in which there is higher concentration of EBV,

and Treg and DAC cells move with higher probability towards a location in

which there is higher concentration of Teff cells. Hereafter, the notation of

the color combinations 〈px, py, pz〉 and 〈qx, qy, qz〉, representing the location

coordinates, is simplified to 〈p〉 and 〈q〉, respectively. In particular, we de-

fine xCellType〈p〉 as the number of CellType in the location 〈p〉 at a specific

time point. Hence, the movement functions can be defined as follows. The

transition EBVMovement simulates the movements of EBV cells from point

(with coordinates represented by the color combination) 〈p〉 to point 〈q〉. The

speed of this movement (the rate of transition EBVMovement) is uniform in

all directions and is captured in the following formula by assuming that the

probability to move is equally distributed among all the grid cells.

157

8.2. Multiple Sclerosis

f〈EBVMovement,p,q〉(x̂(ν), ν) = rmoves · pEBV〈q〉 · xEBV〈p〉

where rmoves is a coefficient that we set equal to 0.1 in our numerical experi-

ments. Differently, the transition TeffMovement simulates the movement of

Teff cells from point 〈p〉 to point 〈q〉, and its speed is inversely related to the

number of EBV cells in 〈p〉 (since more the virus in 〈p〉 less the Teff cells are

tempted to leave the position) and depends on the number of EBV in 〈q〉 (a

greater number of EBV cells leads to a higher probability to move into that

location). This is captured by the following formula

f〈TeffMovement,p,q〉(x̂(ν), ν) =rmoves · (exp(−
xEBV〈p〉
CEBV

)) · pTeff〈q〉 · xTeff〈p〉

where rmoves is again set equal to 0.1; the second term of the function, defined

as exp(−
xEBV〈p〉
CEBV

), varies in the interval [1, 0), simulating the decreasing of

the movement velocity with respect to the number of EBV cells present in the

starting point; pTeff〈q〉 =
xEBV〈q〉
EBVtot

represents the probability to move in the cell

with coordinates 〈q〉 where EBVtot is the total number of EBV in the grid at

time ν; and CEBV is an experimental constant that we set equal to 1000. All

these quantities are functions of the time ν which is omitted in the formula

to keep the notation simpler.

Transitions TregMovement and DACMovement represent the movements

of the Treg and DAC cells (respectively) from point 〈p〉 to point 〈q〉. Simi-

larly to what explained for transition TeffMovement, their speeds are inversely

related to the number of Teff and T (= Treg+Teff) cells in 〈p〉 and depend

on the number of Teffs and Ts in 〈q〉.

Results

We studied the RRMS considering a tissue portion explicitly modeled through

a cubic grid consisting of 27 cubic cells (Fig. 8.24a)). To achieve this, we

defined the color classes PosX = {x1, x2, x3}, PosY = {y1, y2, y3} and PosZ =

{z1, z2, z3}. For all the simulations, we assumed 500 ODC with level Lmax of

neuronal myelinization, 1687 resting Teff cells, 63 resting Treg cells, 375 NK

cells and 1000 IL2 molecules, and zero cells in the other places.This model is

equivalent to a system of 433 ODEs, but with few assumptions it is possible

to derive the corresponding reduced ÔDEs system including only the symbolic

equations.

158

8.2. Multiple Sclerosis

In details, let us define the set of all the 27 location coordinates as P =

{〈px, py, pz〉 : px ∈ PosX, py ∈ PosY, pz ∈ PosZ}. Then, we consider three

disjoint subsets of P, namely P1, P2, P3; the first two correspond to grouping

the EBV and DAC injection locations, respectively, while the third P3 groups

all the remaining locations. For simplicity, and to maintain the symmetries

into the system as well, the EBV and DAC injection locations do not change

over the simulation time and do not overlap. Given this, it is possible to derive

the ÔDE system characterized by 49 equations only. Indeed, the 433 original

equations can be partitioned into 49 groups of similar equations. Each group is

expressed in the reduced model by one representative equation. The grouping

derives from the observation that the behaviors of the modeled elements do

not depend on their actual positions, but only on the presence of the EBV

and/or DAC cells. When the grid size grows the number of groups does not

change, as long as the number of locations where different quantities of EBV

and/or DAC cells appear is fixed; instead the size of each group of equivalent

ODEs increases with the grid size. A further reduction is represented by the

number of terms in each ÔDE, representative of each group of ODEs, with

respect to the number of terms appearing in the ODEs in the equivalence class.

This reduction is due to the factorization obtained by exploiting symmetries.

Other examples are reported in Table 8.7, where the R file dimension and

the number of differential equations of the complete and reduced models are

compared considering different cubic grid dimensions, from 3×3×3 to 5×5×5.

It is easy to see that an increasing number of locations is associated with an

increase in the number of ODEs and of the R file containing them, while the

ÔDE system does not change. Note that when the 5×5×5 grid is considered,

the ODEs generation procedure fails because it exceeds the available memory.

The advantage can also be observed from the point of view of the simulation

time, we obtained a speed up from 8.927205 hours to 12.76043 secs on an

Intel Xeon processor @ 2GHz, by using one core. Note that the simulation was

performed considering 3×3×3 cubic grid, one year interval and assuming EBV

injections at regular times (every two months), and each injection introduces

into the system 10000 EBV copies.

159

8.2. Multiple Sclerosis

Number of locations R File dimension ODEs / ÔDEs Number of ODEs / ÔDEs

27 (3x3x3) 0.43 MiB / 0.023 MiB 433 / 49
64 (4x4x4) 5.0 MiB / 0.023 MiB 1025 / 49
125 (5x5x5) Out of memory / 0.023 MiB 2001 / 49

Table 8.7: Comparing the ODE and ÔDE system, varying the cubic grid
dimension.

a) Without treatment

Day 7 Day 37 Day 67 Day 127 Day 217 Day 247 Day 365

b) With DAC treatment

z = 1
plane

z = 2
plane

z = 3
plane

1 2 3

x−axes

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

1 2 3

x−axes

1 2 3

x−axes

1 2 3

x−axes

1 2 3

x−axes

1 2 3

x−axes

1 2 3 y−
ax

es

3
2

1

y−
ax

es

3
2

1

y−
ax

es

3
2

1

y−
ax

es

3
2

1

y−
ax

es

3
2

1

y−
ax

es

3
2

1

x−axes

Day 7 Day 37 Day 67 Day 127 Day 217 Day 247 Day 365

z = 1
plane

z = 2
plane

z = 3
plane

100%

Percentages of
ODC irreversibily
damaged

EBV Injections

DAC Injections0%

1 2 3

x−axes

1 2 3

x−axes

1 2 3

x−axes

1 2 3

x−axes

1 2 3

x−axes

1 2 3

x−axes

1 2 3

x−axes

Figure 8.25: Percentages of ODCs irreversibly damaged a) without and b)
with DAC treatment.

A possible evolution of the system is shown in Fig. 8.25, where the red

circles represent the location in which EBV is injected. For each plot, the

three rows represent the z-planes and the columns refer to the time points

in which the injections are done. Fixing the time point and the z-plane, the

corresponding 3 × 3 square reports the number of ODCs damaged into the

nine grid cells obtained varying the x and y coordinates. As expected, the

panel a of Fig. 8.25 shows the progressive accumulation of ODC irreversibly

damaged until day 365. Instead, in panel b of Fig. 8.25 is reported the results

of the simulation of the DAC effect. In details, every month after two months

of simulation, two injections are simulated (green squares) introducing 300

DAC copies for each administration. These results agree with those proposed

in Section 8.2.2 since the number of irreversibly damaged ODCs decreases in

the case with DAC administration with respect to the case in which no drug

is injected. With DAC the percentage of irreversibly damaged ODCs ranges

from 28% to 45%, while with no DAC the number of irreversibly damaged

160

8.2. Multiple Sclerosis

ODCs is between 70% and 85%.

8.2.4 The temporal model: exploiting real data

In this section, we extended the first model version presented in Section 8.2.2

by including different actors of the pathogenetic mechanisms of MS, as the

blood brain barrier and some cytokines produced by self-reactive Teff cells

that in MS overcome the BBB and reach the CNS where they damage ODCs

[148, 42].

Several evidences suggest the association of viral (and, to a lesser extent, also

bacterial) infections with disease onset and relapses leading to hypothesize

that RRMS course could be related to a reactivation of a latent infection

[148, 110]. EBV, Human Herpes Virus 6 (HHV-6), Varicella Zoster Virus

(VZV), and Human Endogenous RetroViruses (HERVs) infections can cause

the activation of auto-reactive Teff cells against the CNS[148, 110, 8] through

a mechanism called “molecular mimicry”. This is the most frequently dis-

cussed mechanism for how viruses or bacteria could induce autoimmunity in

MS, that occurs when peptides from pathogens (antigens) share sequence or

structural homology with host peptides (self-antigens), in the case of MS with

CNS antigens (e.g. Myelin Basic Protein, Myelin oligodendrocyte glycopro-

tein) [90]. When Teff cells encounter such a foreign peptide, they produce

IFNγ and IL-17, potent inflammatory mediators able to increase the inflam-

matory micro-environment. In a healthy host Teff response is tightly regulated

by Treg cells to mediate effective host defense against pathogens without caus-

ing excessive tissue damage. Furthermore, Treg cells play an important role in

maintaining peripheral tolerance to self-antigens. In MS patients, low number

and impaired function of Treg cells [179] could explain the massive production

of IFNγ and IL-17, during the exacerbation phases of MS. In this context, NK

cells also give a contribution acting as first-line defense against viruses and

bacteria and regulating the auto-reactive Teff cells activity, producing the

pro-inflammatory cytokine IFNγ and the anti-inflammatory cytokine IL-10

[121, 87].

Current therapeutic strategies for MS are now focusing on the (i) reduction of

the risk of relapses avoiding accumulation of disability and (ii) identification

a trade-off between drug efficacy and side effects [106]. DAC was selected for

its effects on the depletion of Teff cells, concomitant with a reduction in the

number of Treg cells and the expansion of a particular NK cell subset called

161

8.2. Multiple Sclerosis

CD56bright NK cells [61].

In this section we first described the computational model developed to

study RRMS and then the data exploited to calibrate the model parameters;

in particular two parameter configurations are identified for healthy and MS

subjects. Finally, we discuss two therapy scenarios in which we investigated

the effect of the DAC administration on MS patients. All the analyses are

performed on a server with 6 Intel Xeon E5-2650 processors (2.00Ghz, 20MB

Cache, 8 Cores) by exploiting GreatMod.

The ESSN model

The cellular interactions characterizing the immunopathology of RRMS are

described by the model showed in Fig. 8.26. The model consists of 26 places

and 55 transitions (in details, 40 are standard transitions and 15 are general

transitions). Observe that to make immediately clear the biological role of

each place in the net, we decided to represent them using four different icons

whose meaning is reported in the legend of Fig. 8.26. The respectively ESSN

model is showed in Fig. A.1 in the Appendix. In details, the model is divided

in two compartments: the peripheral lymph node/blood vessel and the CNS.

The two compartments interact with each other through the place BBB, as

illustrated in Fig. 8.26. All transitions describing interactions occurring in

peripheral lymph node/blood vessel have the suffix “ out” while all transi-

tions taking place in CNS have the suffix “ in”. The Antigen place, simulates

the first pathogen infection and then the infection reactivation in the system

through the AntigenInjection transition.

In the peripheral lymph node compartment of the net the places regarding

the Teff cells, including Effector Memory T cells, are represented. After

pathogen infection Teff cells can give rise to Teff or Effector memory cell

through TeffDup Sym out and TeffDup Asym out transitions. Effector mem-

ory cells remain in this compartment and are able to respond faster to the

infection reactivation. The annihilation of the pathogen by the Teff action

is modeled by the transition TeffKillsA, while symmetrical and asymmetri-

cal duplication of Teff cells is encoded by transitions TeffDup Sym out and

TeffDup Asym out. Teff production of the inflammatory cytokines IL-17 and

IFNγ is represented by the transitions Teff prod IL17 and Teff prod IFNg, re-

spectively. Inflammatory cytokines are degradated by IFNgConsumption out

162

8.2. Multiple Sclerosis

and IL17Consuption out transitions. Afterwards, the arrival of new resting

Treg cells from thymus, the control mechanism of the Treg over the Teff and

their activation, proliferation and death are encoded by the transitions From-

TimoReg, TregKillsTeff out, TregActivation out, TregDup out and TregDeath,

respectively. Treg production and degradation of the anti-inflammatory cy-

tokines IL-10 are represented by the transitions Treg prod IL10 out and IL10-

Consuption out. Through the transition NKarrive the arrival of a NK cells

able to kill self-reactive Teff is simulated. The killing is simulated by the transi-

tion NKKillsTeff out and the NK production of IFNγ and IL-10 is represented

by the transitions NK prod IFNg and NK prod IL10, respectively. The death

and proliferation of the NK cells are modeled by transition NKDegradation

and NKdup.

The drug administration of daclizumab (DAC) is modeled by transition DAC-

injection, and its degradation by DACDegradation. DAC is able to inhibit the

expansion of Treg and Teff through the transitions DACkillTeff and DACkill-

Treg. During the relapsing phases of the disease the BBB increases its per-

meability leading to the passage of Teff and Treg from peripheral blood to

CNS. This biological process is encoded by the place BBB and transitions

Teff pass BBB, Treg pass BBB, IL10 BBB and IL17 BBB.

In the CNS the Resting Teff in are activated through the transition Teff-

Activation in. The ODC damage due to Activated Teff cells is modeled by

TeffKillsODC whose its fire decreases the myelination levels of ODC s by act-

ing on the colors of the tokens in place ODC3. When the myelin level reaches

the lowest value, an irreversible damage occurs since the remyelinization of

the neurons modeled by the transition Remyelinization is no longer possi-

ble. Finally, transition TeffDup Sym in simulates the Teff cells proliferation.

Teff production of the inflammatory cytokines IL-17 and IFNγ is represented

by the transitions Teff prod IL17 in and Teff prod IFNg in, respectively. The

inflammatory cytokines are degraded by IFNgConsumption out and IL17-

Consuption in transitions. Tregs in CNS (Resting Treg in and Treg in) prod-

uct and degrade IL-10 thought Tref prod IL10 in and IL10Consuption in.

Their control mechanism on Teff their activation, proliferation and death

are encoded by following transitions: TregkillsTeff in, TregDup in and Treg-

3Observe that the tokens in ODC are colored according to color class Mye that is divided
into five static subclasses ranging from Lmin (no myelination) to Lmax (full myelination)
of the color class

163

8.2. Multiple Sclerosis

IL10_in IL17_in

Resting_Treg_in

Resting_Treg_temp

Resting_Treg_out

Treg_out

Treg_in

Effector
Memory

IL10_out

IFNg_out

IL17_outAntigen

NK_out
Teff_out

Teff_in

BBB

Resting_Teff_out

Resting_Teff_temp

ODC

Resting_Teff_in

IFNg_in

IL10Consuption_out

NK_prod_IL10

Treg_prod_IL10
AntigenInjection

TeffKillsA

IFNgConsuption_out

IL17Consuption_out Teff_prod_IL17

NK_prod_IFNgTeff_prod_IFNg

NKentry

NKDegradation

NKkillsTeff_out

Teff_death

TeffDup_Sym_out

TeffActivation_out

FromTimoEff

DACkillTeff

DACDegradation

DACkillTreg
TregDup_out

Treg_death

TregActivation_out

FromTimoReg

TeffDup_Asym_out

MemActivation

TregKillsTeff_out

Teff_pass_BBBTreg_pass_BBB
IL17_BBB

TregActivation_in

Treg_to_NLT

TregDup_in

TregkillsTeff_in

Treg_prod_IL10_in

IL10Consuption_in

Teff_prod_IFNg_in

TeffDup_Sym_in

Teff_prod_IL17_in

Teff_to_NLT

TeffActivation_in

Remyelinization

TeffKillsODC

IL17Consuption_inIFNgConsuption_in

Central Nervous System

Peripheral lymph node/blood vessel

T cells

Cytokines

Daclizumab

Antigen

Blood Brain Barrier

LEGEND OF THE PLACES:

DAC

NKdup

DACInjection

Figure 8.26: RRMS model represented by exploiting the ESSN graphical for-
malism. Each place has on top a sketch of its biological role as described by
the legend.

to NLT.

164

8.2. Multiple Sclerosis

Model calibration

The model calibration was performed on our model to make its behaviours in

agreement with the experimental values described above. Let us recall that

the mathematical details of how this step is implemented are reported in Sec.

7.1.1. In details, during the calibration analysis the same initial marking was

assumed for both healthy donors (Healthy Donor (HD)s) and MS patients,

as showed in Table A.6, where only the places with initial marking different

from zero were reported. Observe that these values correspond to the average

values computed considering only the HDs reported in Table A.5. Moreover,

we considered all the 500 ODC with level Lmax of neuronal myelinization at

the initial time.

Then, from the model shown in Fig. 8.26 a system of 26 ODEs composed

by 20 unknown parameters was derived. These parameters (reported in the

appendix Table A.9) were characterized by a high uncertainty due to their

difficulty of being empirically measured. To identify the parameter values,

the ODE system was simulated over 30 days interval assuming a injection

of 100 antigen copies at the second day. This analysis lead to identify the

best fit characterized by the values described in the Appendix Sub Section

A.3.2. In particular, the parameter values for HD and MS patient were iden-

tified by minimizing the difference among the numbers of IFNγ-producing,

IL-17-producing IL-10-producing cells in blood and in CSF obtained from the

solution of the ODE system and those experimentally measured in average for

HDs and MS patients (reported in Table A.5) after 18 hours from the antigen

injection. Since the real data were available at a specific time point, it was

not possible to completely validate the model over the whole simulation time

window against observed data. Thus, the parameters were chosen such that

the model outcomes are in agreement with real data and the current knowl-

edge of the biological system.

It is worth noting that the two sets of parameter values, respectively for HD

and MS patients, obtained by the calibration step, differ only in the values of

the parameters pTreg Activation and pTeff Activation associated with the transi-

tions TregActivation in(out) and TeffActivation in(out).

The model behaviours derived by these two parameter configurations are re-

ported in Fig. 8.27. From these plots it is immediately clear that the model

outcomes are in agreement with real data and the current knowledge of MS

disease, for example the MS patients are characterized by a higher number of

165

8.2. Multiple Sclerosis

IL17_in IFNg_in IL10_in

Treg_in Teff_in ODC irr. damaged

IL10_out IL17_out IFNg_out

EffectorMemory NK_out BBB

Teff_out Treg_out Antigen

0 10 20 30 0 10 20 30 0 10 20 30

0 10 20 30 0 10 20 30 0 10 20 30

0 10 20 30 0 10 20 30 0 10 20 30

0 10 20 30 0 10 20 30 0 10 20 30

0 10 20 30 0 10 20 30 0 10 20 30

0
25
50
75

100

0.00
0.25
0.50
0.75
1.00
1.25

0
100
200
300

0

5

10

0.0
0.5
1.0
1.5
2.0

0

10

20

10

20

30

0

20

40

0

10

20

30

0

10

20

30

0
100
200
300
400

0
25
50
75

0

10

20

0.0
0.5
1.0
1.5
2.0

0
1
2
3

Days

Q
ua

nt
ity

Healthy MS

Figure 8.27: Deterministic solution of the ODEs system considering both the
parameters combinations, red the MS patient and blue the healthy individual.
The violin plots are the representation of the real data.

irreversibly damaged ODC cells and a more impermeable BBB than HDs.

Stochastic simulations. After the model calibration, the two parameter

configurations were exploited to investigate the stochastic behaviour of the sys-

tem using the SSA algorithm. In Fig. 8.28, 1000 trajectories for each scenario

are plotted in grey, while the colored bold line represents the mean trajectory.

The distribution of experimental data (Table A.5) is represented through vi-

olin plots. It is possible to observe that the mean trajectory and the set of

1000 stochastic trajectories are consistent with the experimental measures in

both HD and MS patients. In particular, observing the 1st row in Fig. 8.28, it

is possible to appreciate the differences in the number of circulating Treg cells

166

8.2. Multiple Sclerosis

between HD and MS patients. Accordingly, while the antigen is counteracted

by the Teff cells, Treg cells try to balance the aggressiveness of the immune

system and to maintain the cellular homeostasis by acting as a brake on the

inflammatory response producing IL-10and killing Teff cells. In the 2nd row

in Fig. 8.28 the IL-10 dynamics are reported: the MS condition produces less

IL-10 with respect to the healthy counterpart. IL-10 cytokines imbalance to-

wards an inflammatory state is reflected in an increased permeability of the

BBB. IL-10 contributes to promote BBB integrity, while IL-17 contributes to

the damage of BBB, making it permeable to the passage of cells of the im-

mune system and other molecules. Indeed, after less than one week we can

observe that in the MS patient BBB has the highest permeability (3rd row in

Fig. 8.28) leading to a T cell trafficking in the CNS. This effect is observed

in the form of an increased reactivation of Teff cells in the CNS of the MS

patient compared to the healthy subject (4th row in Fig. 8.28), as well as in

the increase in the circulation of pro-inflammatory cytokines produced by the

Teff cells circulating in the CNS: IL-17 (5th row Fig. 8.28) and IFNγ (6th row

Fig. 8.28). The final result of this pro-inflammatory environment in the CNS

is an increased damage to the ODCs, which simulates a neuronal damage to

the myelin in the CNS actually observed during the clinical relapse (7th row

and second column Fig. 8.28). Conversely, ODC damage is not observable in

HDs (7th row and first column Fig. 8.28). The dynamics of the other cells are

reported in Fig. 8.29.

Drug therapy

To investigate the effect of the DAC therapy in our model calibrated for RRMS

patients, we simulated a real scenario with multiple antigen occurrences at dif-

ferent time in two-years time interval. In details we assumed a total of eight

injections introducing into the system 100 antigen copies per injection. Most

of the MS-related viruses, infect a particular type of immune cells (i.e. the

EBV infects B cells) and once the initial lytic infection is brought under con-

trol, the virus persists in the immune repertoire of a subject in a state called

“of latency” for the rest of his/her life and is subjected to periodical reac-

tivation [8]. For this reason, we defined a sequence of injections at varying

intervals: the first three injections were set at constant time interval, i.e.,

the 2nd, 67th and 127th day, then four consecutive injections were simulated

at 295th, 300th, 303th and 307th days, and finally the last injection at 600th

167

8.2. Multiple Sclerosis

Healthy MS

Tre
g

_
o

u
t

IL
1

0
_

o
u

t
B

B
B

Te
ff_

in
IL

1
7

_
in

IF
N

g
_

in
O

D
C

 irr. d
a

m
a

g
e

d

0

1
0

2
0

3
0 0

1
0

2
0

3
0

0

10

20

30

0

50

100

150

0

5

10

15

0

50

100

0

10

20

30

0

30

60

90

0

100

200

300

400

500

Days

Q
u

a
n

ti
ty

Healthy MS Simulations

Figure 8.28: 1000 stochastic simulations considering the healthy (first column)
and the MS (second column) parameters configuration. The colored bold lines
represent the mean traces of the simulations, blue for the healthy and red for
the MS scenario. The violin plots are the representation of the real data.

168

8.2. Multiple Sclerosis

Healthy MS

Te
ff_

o
u

t
Tre

g
_

o
u

t
A

n
tig

e
nEffe

cto
rM

e
m

o
ryNK

_
o

u
t

B
B

B
IL

1
0

_
o

u
t

IL
1

7
_

o
u

t
IF

N
g

_
o

u
t

Tre
g

_
in

Te
ff_

in
O

D
C

 irr. d
a

m
a

g
e

d
IL

1
7

_
in

IF
N

g
_

in
IL

1
0

_
in

0

1
0

2
0

3
0 0

1
0

2
0

3
0

0
100
200
300
400

0
10
20
30

0
25
50
75

100

0
50

100
150
200
250

0
100
200

0
5

10
15

0
50

100
150

0
20
40

0
100
200
300

0
10
20
30

0
50

100

0
100
200
300
400
500

0
10
20
30

0
30
60
90

0
5

10

Days

Q
u

a
n

ti
ty

Healthy MS Simulations

Figure 8.29: 1000 stochastic simulations considering the healthy (first column)
and the MS (second column) parameters configuration. The colored bold lines
represent the mean traces of the simulations, blue for the healthy and red for
the MS scenario. The violin plots are the representation of the real data.

169

8.2. Multiple Sclerosis

days. Two important aspects of the therapy modulation were considered in

our simulations: the drug dose and the drug potency. In details, five scenarios

characterized with an increasing drug dose (i.e., 1000, 2000, 5000, 10000 and

15000) were analysed. Then for each scenario two drug potencies (i.e. weak po-

tency and strong potency characterized by DACkillT reg and DACkillTeff

set to 0.01 and 0.03, respectively) are showed for a total of ten different sce-

narios. These scenarios are proposed in two course of actions: early regime

therapy in which the DAC administration starts at the first month, and late

regime therapy in which the DAC administration starts at the sixth month.

In Fig.s 8.30 and 8.31 the behaviour of the places Antigen, Teff out, IFNg out,

IL17 out, Treg out, IL10 out, NK out, BBB, and ODC irreversibly damaged

in the early and late regime are reported. In each figure, the columns represent

nine scenarios among the twelve described above. Specifically, we decided to

omit for clarity the healthy scenario and the ones considering drug dose equals

to 2000. The colored bold lines represent the median of 1000 simulations, while

the colored areas are the range of the simulations between the first and third

quartile. In the Appendix Fig.s A.2 and A.3, the complete list of cell types

for all the scenarios in both the regime considered are reported.

In both Fig. 8.30 and Fig. 8.31, the reduction of circulating Teffs and Tregs is

visible in all treatment conditions (the 2nd and 5th rows), with a remarkable

effect at increasing doses. The same effect is visible in the amount of cytokines

produced by T cells (the 3rd, 4th and 6th row). Although the DAC is unable

to cross the BBB and spread in the CNS, these effects are observable either

in the blood and in the CNS (Fig.s A.2 and A.3). This is due to a reduced

number of T cells that are not able to effectively reach the CNS and to cause

damage. Indeed, the immunosuppressive action of DAC is mediated by the

binding to CD25 molecules of IL-2R, present on activated Teff cell and on Treg

cells, and results in the inhibition of their proliferation and in the induction

of T cell death.

Fig. 8.32 shows the number of irreversibly damaged ODC (the blue con-

tour boxplot) and the overall antigen concentration (the red contour boxplot)

for each scenario. In details, it is showed the difference in the total amount of

irreversibly damaged ODCs at the end of the two years, a behavior reflecting

the protective effect of DAC therapy on the CNS.

It is observed that for the same dose and potency of DAC, the number of irre-

170

8.2. Multiple Sclerosis

versibly damaged ODCs is lower in “early therapy” than in the “late therapy”

condition (Fig. 8.32). Indeed, clinical practice suggests that, in MS, the early

intervention reduce neuronal damage and long-term disability [106].

Moreover, an interesting effect of DAC therapy visible by our simulations is

that increasing dose and potency of DAC can suppress the immune system by

depleting T cells and cytokine diffusion. An overdose of the drug reproduces

an immuno-compromised immune system, where T cells are depleted and the

antigen persists in the circulation. This is visible in Fig. 8.32 where the red

contours boxplots report the antigen concentration. It is straightforward to

see that increasing drug dose is associated with a minor ODC damage at the

expense of the antigen annihilation. Moreover, a stronger drug potency is not

positive either from the ODC damage and the antigen annihilation point of

view. The ideal dose of DAC is a trade-off between antigen annihilation and a

reduction in damaged ODC. Drug efficacy must occur with a consideration of

the protection from external antigens to minimize the risk of secondary infec-

tions, sometimes with serious adverse effects, that often accompany immuno-

suppressive therapies in MS [130].

Finally we can conclude that in our model, following the administration

of DAC, a reduction of Teff cells activation was observed. Furthermore, this

reduction was visible for Treg cells too, which normally expose the CD25

on their surface and use it to sequester IL-2 to Teff cells which result in an

indirect inhibition mechanism of Teff cells by IL-2 competition [144]. On the

other hand, NK cells, trying to make up for the lack of T cells, undergo a

selective expansion, as expected [61].

We observed that a dose below 1,000 DAC molecules leads to an insufficient

protection from relapses (i.e. ODC damage), while a dose above 10,000 DAC

molecules totally depletes the pool of T cells, impairing the mechanisms of

protection from external antigens, as shown by the increase of antigen in the

system. The right dosage in our model should be set to a value between 1,000

and 10,000 DAC molecules, corresponding to the actual therapeutic range of

150-300 mg per four weeks consistently with the idea that immunosuppressive

therapies cannot totally imbalance immune cell homeostasis, as a minimal level

of immunesurveillance should be always mantained in order to clear phatogens.

Moreover, simulation results about to the comparison between early and late

interventions support the current guidelines of therapy for MS, in which is

171

8.2. Multiple Sclerosis

Healthy MS DP 0.01; DAC 1000 DP 0.01; DAC 2000 DP 0.01; DAC 5000 DP 0.01; DAC 10000 DP 0.01; DAC 15000 DP 0.03; DAC 1000 DP 0.03; DAC 2000 DP 0.03; DAC 5000 DP 0.03; DAC 10000 DP 0.03; DAC 15000

A
ntigen

D
A

C
Teff_out

IF
N

g_out
IL17_out

Treg_out
IL10_out

N
K

_out
B

B
B

Teff_in
IF

N
g_in

IL17_in
Treg_in

IL10_in
O

D
C

 irr. dam
aged

0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0

0
100
200
300
400

0
5000

10000
15000
20000

0

50

100

150

50

100

0

10

20

30

0
5

10
15
20

0
25
50
75

100

0
50

100
150
200

0

2

4

6

0
10
20
30
40
50

0
10
20
30
40

0.0
2.5
5.0
7.5

10.0
12.5

0
2
4
6
8

0
1
2
3
4
5

0
100
200
300
400

Days

Q
ua

nt
ity

Healthy MS 1000 2000 5000 10000 15000

Figure 8.30: Stochastic simulations considering the early therapy. Different
colors are associated with quantity of DAC injected for each scenario, from
1000 to 15000 cells. The first two column represent the healthy and MS
scenarios. Two drug potencies (called DP) are showed, i.e., 0.01 e 0.03.

suggested that early intervention is crucial for minimize the accumulation of

disability [106].

8.2.5 Discussion

In immunology the use of computational modeling is quite recent, but it is

becoming increasingly important. In particular, the computational models

can help the researchers to discern between potential right and wrong bio-

logical hypotheses, whose confirmation cannot be acquired through in vivo

or in vitro experiments, to find novel treatments, to validate or deduce the

172

8.2. Multiple Sclerosis

MS DP 0.01; DAC 1000 DP 0.01; DAC 5000 DP 0.01; DAC 10000 DP 0.01; DAC 15000 DP 0.03; DAC 1000 DP 0.03; DAC 5000 DP 0.03; DAC 10000 DP 0.03; DAC 15000

A
ntigen

Teff_out
IF

N
g_out

IL17_out
Treg_out

IL10_out
N

K
_out

B
B

B
O

D
C

 irr. dam
aged

0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0

0
100
200
300
400

0

50

100

150

50

100

0

10

20

30

0

2

4

6

0
25
50
75

100

0
50

100
150
200

0

2

4

6

0
100
200
300
400

Days

Q
ua

nt
ity

MS 1000 5000 10000 15000

Figure 8.31: Stochastic simulations considering the late therapy. Different
colors are associated with quantity of DAC injected for each scenario, from
1000 to 15000 cells. The first two column represent the healthy and MS
scenarios. Two drug potencies (called DP) are showed, i.e., 0.01 e 0.03.

mechanisms of actions of existing ones, and to optimize timing and dosage

of treatments. The use of such modeling approaches is gaining attention also

by regulatory agencies that are starting to foster their application also in the

field of personalized-medicine.

In this context, the construction of mathematical models and their solutions

remain a challenging tasks mainly due to the lack of general framework easily

accessible even by researchers without advanced modeling and mathematical

skills. To deal with this aspect, we showed how our framework, GreatMod,

can provide a friendly environment for the modeling and the analysis of the

RRMS disease. Indeed, RRMS represents a very challenging case study, due to

the complexity of the disease which involves many different biological agents,

ranging from molecular to environmental factors. Therefore, by exploiting

the descriptive power of ESSN to provide a graphical representation of the

complex biological system in a compact and parametric way, we were able

173

8.2. Multiple Sclerosis

●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●

●●●●●●●●●

●●●●●
●●●●

●
●

●

●●●

●

●

●
●
●

●

●

●

●●●

●

●
●

●
●●
●●
●●●
●●●
●●
●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●●●●
●
●
●
●
●
●

●
●
●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●
●
●

●

●

●
●

●

●

●

●

●●
●
●

●
●

●

●

●

●

●
●

●
●

●

●

●
●●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●

●
●●●●●

●

●
●●●●●●

●

●●●●●●

●

●
●

●●●●●
●●●

●●

●

●●●
●
●●●
●

●
●

●●●●●
●●
●
●

●●

●●●●

●
●
●
●
●
●●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●●

●

●
●
●●●
●

●

●

●
●

●

●

Early therapy Late therapy

10
00

20
00

50
00

10
00

0

15
00

0

10
00

20
00

50
00

10
00

0

15
00

0

0

100

200

300

400

500

0

250000

500000

750000

DAC quantity

O
D

C
 ir

re
ve

rs
ib

ly

da
m

ag
ed

 in
 2

 y
ea

r
A

ntigen quantity in 2 year

DP: 0.01 0.03 y−axis: Antigen ODC irr. damaged

Figure 8.32: Box-plots representing the 1000 trajectories for each type of i)
therapy (i.e., early and late therapy, and the healthy an MS cases without
therapy), ii) quantity of DAC injected, and iii) the drug potency. The ODC
irreversibly damaged at the end of the two years are plotted with the blue
boxplot contour (referring to the left blue y-axis), differently the areas under
the antigen curve over the whole two years interval are showed with the red
boxplot contour (referring to the right red y-axis).

to easily modified the same ESSN model to simulate different scenarios and

biological systems characterizing the RRMS disease. In details, we started

from an ESSN model composed only by the biological entities which play the

key role in the immune system. Hence, we showed the ability of the model to

reproduce the typical oscillatory behavior relating to the onset of RRMS by

supposing a breakdown of the cross-balance regulation mechanisms at the pe-

ripheral level. Moreover, considering different what-if analysis by simulating

a specific therapy, such as with Daclizumab, it might help scientists to define

the mechanisms of actions of this drug and to theorize the possible causes of

its observed side-effect on the patients. While, the experiments simulating

RRMS in pregnant women can contribute to define the mechanisms at the

basis of the variation of the Treg and Teff cells.

Successively, we studied the RRMS considering a tissue portion explicitly

modeled through a cubic grid. Thus, we proposed to extend the model in-

174

8.2. Multiple Sclerosis

troduced above by adding color classes to model the different positions that

each cell may have. Indeed, this study was a perfect example to show how the

model symmetries can be exploited to reduce its complexity. In this case, we

were able to reduce the original ODEs system composed by 433 equations to

an equivalent symbolic ODEs (ÔDEs) system characterized by 49 equations

only. A further reduction is represented by the number of terms in each ÔDE,

representative of each group of ODEs, with respect to the number of terms

appearing in the ODEs in the equivalence class. Finally, the results obtained

by simulating this model agree with those proposed in previous section, since

the number of irreversibly damaged ODCs decreases in the case with DAC

administration with respect to the case in which no drug is injected.

In the last version, we decided to further extend our first model (the one in-

troduced in Section 8.2.2) by including different actors of the pathogenetic

mechanisms of MS, as the blood brain barrier and some cytokines produced

by self-reactive Teff cells that in MS overcome the BBB and reach the CNS

where they damage ODCs [148, 42]. Interestingly, we identified two parame-

ters configurations representing respectively an healthy and MS patient, which

configuration differed just in the two parameters associated to the activation

of Teff and and Treg cells. By increasing the Teff and reducing the Treg

ones, we were able 1) to fit the real data and 2) to represent the Teff-Treg

cell balance characterizing the healthy subject and its unbalance in the MS

patient. In particular, following the administration of DAC, a reduction of

Teff cells activation was observed. Furthermore, this reduction was visible for

Treg cells too, which normally expose the CD25 on their surface and use it to

sequester IL-2 to Teff cells which result in an indirect inhibition mechanism

of Teff cells by IL-2 competition [144]. On the other hand, NK cells, trying to

make up for the lack of T cells, undergo a selective expansion, as expected [61].

In conclusion, some aspects of our model can be further improved and

others have to be implemented in order to assert its reliability in represent-

ing the disease course even in presence of other disease modifying therapies.

More specifically, the success of therapies tailored against B cells in MS (e.g.

ocrelizumab) has shown how B cells can contribute to the pathogenesis of MS

[55], that for a long time was erroneously attributed to T cells only. Also DAC

itself has a reduction effect on the B cell population in MS [55]. It is worth

mentioning that the role of B cells in MS seems to relate on both antibody-

175

8.3. COVID-19

dependent and antibody-independent functions of these cells [8]. Antibody-

independent functions are represented by the presentation of the antigen to

T cells and modulation of T cell function by secreting pathogens and / or

protective cytokines in the CNS [55]. Indeed, the secondary reactivation in

the CNS is known to be mediated by contact between antigen-presenting cells

(e.g. B cells) and self-reactive T cells. These important aspects of the relation-

ship between B and T cells in MS pathogenesis are worth to be investigated.

Moreover, the inclusion of different components and cell types in the model

will give us the opportunity to model the action of other therapies besides

DAC.

8.3 COVID-19

In this section we showed how GreatMod framework was exploited for the last

case study regarding the recently coronavirus epidemics considering the Pied-

mont region. In particular, we used the ESSN formalism to model an extended

version of the Susceptible-Exposed-Infected-Removed-Susceptible (Susceptible-

Exposed-Infected-Recovered-Susceptible (SEIRS)) model accounting for pop-

ulation age structure. The infectious population is divided into three sub-

groups: (i) undetected infected individuals, (ii) quarantined infected individ-

uals and (iii) hospitalized infected individuals. Moreover, the strength of the

government restriction measures and the related population response to these

are explicitly represented in the model. More details regarding the model

are reported in Section 8.3.2. Successively to the model definition, in Section

8.3.3 we showed how the calibration phase was carried out to fit the model

outcome with the infection and death data from February 24th to May 2nd

2020. Given the good level of accordance with the available data we proposed

in Section 8.3.4 multiple what-if analysis to investigate different scenarios of

the COVID-19 spread and the implementation of different infection-control

measures and testing approaches. We also forecast the optimal combination

of individual-level measures and community surveillance to contain the new

wave of COVID-19 spread after the re-opening work and social activities. In

conclusion, our model introduces important novelties in the modeling strate-

gies used to investigate the COVID-19 outbreak, and may be used to support

government decision-makers.

176

8.3. COVID-19

8.3.1 The COVID-19 disease and how can be modeled

Italy was the first European country affected by the coronavirus 2 (SARS-

CoV-2) outbreak, with the first autochthonous case identified in Lombardy

on February, 21st, 2020 [26]. During the following weeks the number of peo-

ple who tested positive for SARS-CoV-2 swab rapidly increased, exceeding

100,000 cases by the end of March 2020 [43, 147].

Undetected infections, being generally characterized by mild or no symp-

toms, can expose a large portion of the population to the virus and play

a relevant role in the SARS-COV2 transmission. To reduce the spread of

COVID-19, the Italian government introduced different restrictions, starting

in the northern regions, where the first cases were detected, and then in the

entire country. The first line of control was addressed to the closure of schools

and museums. Later, people were encouraged to start smart working, and

all the sports events were performed behind closed doors (February, 25th).

The second intervention was focused on the closure of all the public activities

involving crowd of people, restaurants and commercial activities; moreover,

it was forbidden to cross the municipal borders (March, 8th). Finally, the

latest control strategy imposed the total lockdown of the country halting non-

essential production, industries and businesses (March, 21st). In the weeks

following the third restriction, a slow but constant decrease of the infected

cases was registered showing that the adopted control strategies had been ef-

fective in limiting the outbreak progression.

Starting from May 4th, these restrictions were gradually relaxed by the Ital-

ian government. In particular, work activities as manufacturing and whole-

sale were re-activated, and outdoor activities and the movements within each

region boundaries were permitted. A complete reactivation of all the work

activities was planned for the first week of June, while the school re-opening

was postponed to September. At the same time, the government has required

the intensification of infection-control measures (i.e., mask, gloves, social dis-

tancing), including specific rules to be adopted in workplaces, public places

and transportation. The potential of tracing the cases’ contacts and test-

ing was also increased. In these contexts, computational models can be very

helpful for evaluating COVID-19 epidemic evolution, and the effects of differ-

ent infection-control strategies such as human interaction controls, and other

social measures that can impact on disease spreading dynamics.

Several models, often with conflicting results [73], have been proposed to

177

8.3. COVID-19

investigate the COVID-19 pandemic. Models can be roughly classified as phe-

nomenological and mechanistic. The former [131, 105] are formulated with

the main aim of describing the epidemic pattern and make short-term predic-

tions. The latter, such as the one we are proposing here, model the disease

spread under various assumptions about the transmission process and the hu-

man and social contexts of the epidemic. These are used to obtain long-term

forecasts and, possibly more important, to simulate different scenarios mod-

ulating the parameters that characterize variations in disease features and

control measures. The model proposed by Ferguson and colleagues [53] had

a strong impact in shaping the policies of several European countries and the

US. In another influential model, Kissler and colleagues [80] explored the dy-

namics of COVID-19 over a period of several years, raising the possibility that

repeated lockdowns may be necessary to keep levels of COVID-19 hospitalisa-

tions and deaths to manageable levels. Specific models have been proposed to

describe the Italian epidemic development. The modeling study proposed by

the Imperial College team [163] evaluates different scenarios for a relaxation of

isolation measures, using increase in mobility as a proxy, and attempts to pre-

dict the second wave in terms of infection and death excesses. Another model,

proposed by Giordano and colleagues [60] takes into account the distinction

between diagnosed and non-diagnosed cases and points to the necessity of com-

bining social-distancing measures with widespread testing and contact tracing

to control the epidemic. A similar result was proposed in [89], in which the

authors showed the key contributions of symptomatic and asymptomatic in-

fections to onward transmission, considering the municipality of Vo’, in the

Veneto region. In particular they showed that viral transmission could be

effectively and rapidly suppressed by combining the early isolation of infected

people with community lockdown. Another interesting and differently work

is proposed in [65], in which the authors proposed to exploit the Markovian

Agents [17], a modeling technique with spatial features, to study the evolution

of COVID-19 in Italy. This approach is based on agents that stochastically

evolve among states coherently with the SIR logic, by taking in account both

the spatial location of the population and, in particular, the impact of the

infection among the Italian regions.

In this case study, we proposed an extended version of the SEIRS model

to investigate COVID-19 spread disease. In particular, the novelties and

178

8.3. COVID-19

strengths of this model can be summarized as follows: (i) the division of the

infected subjects in three categories: undetected, quarantined, and hospital-

ized; (ii) the explicit representation of the population age structure; (iii) the

usage of age-specific and location-specific contact matrices; (iv) the modeling

of the government actions and the corresponding population response depend-

ing on the public perception of the disease severity; (v) the modeling of dif-

ferent infection-control measures, including individual-level measures, whose

efficacy is subjected to the public perception of current disease severity, and

SARS-CoV-2 swab testing capability. Our model is then used to investigate

different scenarios of COVID-19 diffusion in the Piedmont region by taking

into account for the next three months following the gradual re-opening of

May 4th. In particular, in the next sections we studied how the COVID-19

spread in Piedmont could be kept under control by the implementation of the

infection-control measures based on the use of individual-level measures (i.e.,

mask, gloves and social distancing), and on the intensification of the surveil-

lance methods including contact tracing, the identification of undetected cases

by swab testing, and early isolation of infected individuals.

8.3.2 The ESSN model

We propose an extended version of the SEIRS model to account for the pop-

ulation age distribution, that was classified into three groups: young individ-

uals 0-19 years, adults 20-69 years, old adults aged at least 70 years. The

corresponding transmission flow diagram for a specific age class i is shown

in Fig. 8.33A, where the circles represent population partitions and the arcs

describe the disease progression.

179

8.3. COVID-19

Figure 8.33: SEIRS model and surveillance data on Piedmont region. (A)
The transmission flow diagram of our age-dependent SEIRS model. (B) Age-
specific and location-specific contact matrices. The intense of the color indi-
cates higher propensity of making contact. (C) Cumulative number of infected
cases as sum of quarantined (Iqi) and hospitalized (Ihi) infected (light green)
and deaths (Di) (dark green) from February 24th to May 2nd. The periods
of the activation of the three control strategies are reported below the stacked
bars plot.

The population of the age class i is partitioned in the following seven com-

partments: susceptible (Si), exposed (Ei), undetected infected(Iui), quaran-

tined infected (Iqi), hospitalized infected (Ihi), recovered (Ri), dead (Di). The

partition of the infectious population allows to model quarantine practices and

the effects of government control strategies specifically for each sub-class of

individuals. Similarly, the division of population in three-age groups allows

to define age-dependent rates for the system events (e.g., infection, recovery,

. . .). We can thus model a scenario in which younger individuals, known to be

more often asymptomatic or pauci-symptomatic, are more likely undetected

than the older ones.

With respect to the classical SEIRS model, we have added a transition from

Iui to Iqi to model the possibility to identify undetected cases and isolate

them. In this way an individual in Iui tested as positive to the SARS-CoV-2

swab will be moved in the quarantine regime, Iqi. This feature is crucial to

capture the time varying diagnostic ability throughout the epidemic evolu-

tion, as shown by the increasing number of tests performed [124], as well as

180

8.3. COVID-19

to forecast the effect of enhanced or decreased testing capabilities.

The social mixing pattern in the population is described by the age-specific

and location-specific contacts depicted in the matrices reported in Fig. 8.33B.

Social contacts change across contexts (i.e. home, work, school and other lo-

cations) and age-groups [123]. The effect of the public restrictions imposed

by the Italian government was simulated by reducing social mixing contacts

in all categories.

The force of infection (FOI) adopted in the model is a time and age class

dependent function and includes the following four terms:

• the infection rate, depending on the age classes of both the susceptible

and the infected individuals who come into contact according to the

contact matrix;

• the strength of governmental restriction defined through a time-depended

step function, modeling the severity of the public restrictions;

• the compliance with the governmental restriction, reporting how effec-

tively the population adheres to the restriction measures imposed by the

Italian government. The higher the disease severity (i.e., the severity of

the epidemic in terms of number of deaths and hospitalized individuals

in the last 40 days), the better the population compliance [91];

• the compliance with individual-level measures, considering how different

infection-control measures are properly adopted by the population.

All demographic changes in the population (i.e., births, deaths, and ageing)

are explicitly disregarded in our model as negligible due to the short time

interval considered in our study.

Let us now introduce the mathematical details and the ESSN model de-

picted in Fig. 8.34. In the ESSN model we modeled the seven compartments

introduced above with five modules characterized by 46 places and 66 tran-

sitions. The Susceptible module is characterized by the place s represent-

ing the susceptible individuals, and it models individuals not exposed to the

pathogen and may be infected if get in touch with an infected patient, through

the Infection transition, becoming an exposed patient. The exposed patient,

modeled by the e place, does not show symptoms until 5 to 15 days are elapsed.

Such phenomena is known as incubation period, and it is modelled through

181

8.3. COVID-19

the Exposed module. At the end of the incubation period, exposed subjects

start showing infection symptoms becoming infectious, which are modeled by

the i place in the Infected module. In particular, three transitions may oc-

cur: Lu, Lq and Lh, to distinguish if the infected patient will be undetected,

quarantined or hospitalized, respectively. Indeed, in the first case when the

infected patient is undetected, the patient keeps on with its social interactions

and the contact matrix is not reduced. Differently, when an individual is de-

tected, i.e. the quarantine or hospitalization occur, its interaction with other

peoples are strongly reduced. Furthermore, the Detection transition which

moves the undetected infected in quarantine modeling the surveillance meth-

ods including contact tracing, the identification of undetected cases by swab

testing, and early isolation of infected individuals.

After a certain time period the infected patients may:

1. recover becoming a recovered patient, which is not contagious anymore.

In this case we are moving from the i place in Infected module to the

r place in Recovered module. Let us note that until the recovered

patient returns susceptible through the ReturnS transition, he/she can

not be infected again remaining out of the disease dynamics;

2. die moving from the i place in Infected module to the d place in Death

module. Let us note that we are considering the patient death may

occur only for the hospitalized infected considering the last two age

classes. In particular, the death rate of the Old class is greater than the

Adult one, given the strong age gradient in risk of death [159].

The remaining places, denominated c ∗, need to count how many times the

respectively input transition fires. Thus, the place c Lu represents the cumu-

lative number of the undetected cases.

182

8.3. COVID-19

Figure 8.34: The ESSN model regarding the COVID-19 spreading.

The color classes in the model are: Age and Symptom. The former is sub-

divided in three sub classes A0, A1, and A2, representing the population age

structure which is defined by three age sub-classes A = {ai| a1 ∈ (0 ∼ 19],

a2 ∈ [20 ∼ 69], a3 ∈ 70+}. Within each age class, individuals are homoge-

neous both for their usual social activities and for the susceptibility to the

disease. The latter color class represents the category of infected which a sus-

ceptible may become after the infection, and it is defined by three sub color

classes: undetected, quarantine and hospitalized.

Furthermore, this layered population enables the model to track age specific

incidence of the disease and the age specific social activity patterns. Specifi-

cally, we consider four different contact types, as reported in [122]: within the

family unit (Home), at school (School), at work (Work) and other contacts

(Other). Clearly, direct contacts are the main driver in the diffusion of the

pathogen, while the quarantine regimes (η), the actions undertaken by the

policy-makers (α) and the adoption of Personal Protective Equipment (p) are

targeted to reduce them.

183

8.3. COVID-19

We report here the compartmental model formulation:

dSi
dt

= −
|A|∑
j=1

ιiSi
(B(i, j, t, u)Iuj +B(i, j, t, q)Iqj +B(i, j, t, h)Ihj)

Nj
+ νRi

dEi
dt

=

|A|∑
j=1

ιiSi
(B(i, j, t, u)Iuj +B(i, j, t, q)Iqj +B(i, j, t, h)Ihj)

Nj
− (λu + λq + λh)Ei

dIui
dt

= λuEi − ρIui − θ(i, t)Iui

dIqi
dt

= λqEi − ρIqi + θ(i, t)Iui

dIhi
dt

= λhEi − (σi + ρ) Ihi

dRi
dt

= ρIui + ρIqi + ρIhi

dDi

dt
= σiIhi

dP

dt
=
∑|A|
i=1 (σiIhi + λhEi)− µP

Ni = Si + Ei + Iui + Iqi + Ihi +Ri,

(8.1)

where B(i, j, t, s) represents the FOI and it is defined as a time t, age class

i, j, and infected categories s dependent function

B(i, j, t, s) = ω(t) p(t)
∑
c∈C

α(t, c) ηs,c β
c
i,j , i, j ∈ A ∧ s ∈ S. (8.2)

In details,

• A, S represent the set of age classes and infected categories, respectively;

• α(t, c) is the strength of governmental action, defined as a step function

depending on the time period;

• ηs,c is the amount of social interaction considering the contact category

c ∈ C of the infectious sub-class s ∈ S ;

• βci,j is a constant contact rate, depending on (1) the age classes of both

the susceptible (i) and the infected (j) individuals, and (2) the contact

categories [122];

• p(t) describes the comply the Personal Protective Equipment (PPE) and

social distancing measures imposed by the Italian government;

184

8.3. COVID-19

• ω(t) represents the intensity of the population response given the disease

severity (k) with respect to the number of deaths and hospitalized in-

fected individuals by CODIV-19 (P) in the last 40 days, assuming that

the higher is P , the more prone to reduce the contacts is the population

[91]. This is defined as follow:

ω (t) =

(
1− P (t)∑|A|

i=1Ni

)k
. (8.3)

Furthermore, Table A.10 in the Appendix provides a detailed description

of the parameters used in the compartmental model and further provides the

values of those known parameters together with the reference to the original

contribution.

8.3.3 Model calibration

The surveillance Piedmont data available at the website of the Italian Ministry

of Health / Civil Protection [124] were used to calibrate our model. Among

the data, the surveillance report publishes three categories of monitored in-

dividuals: quarantined infected (Iqi), hospitalized infected (Ihi) and deceased

(Di), whose cumulative trends are reported in Fig. 8.33C. In the same Figure,

the time points at which the control strategies were imposed are also shown.

The calibration phase was performed to fit the deterministic model outcome

with the infection (Iqi + Ihi) and death (Di) data from February 24th to May

2nd using squared error estimator via trajectory matching.

From the ODEs system in Eq. 8.1, 13 parameters are characterized by a high

uncertainty, due to the recent onset of the disease and their difficulty of being

empirically measured. In details, three parameters represent the probability

of infection for each age class, four parameters reflect the governmental ac-

tion strength at time epoch t (i.e., α(t) with t ∈ { March 8th,March 21st}),
one parameter describes the intensity of the population response (i.e., k),

two parameters represent the death rate for the hospitalized patients (i.e.,

σi, i = 2, 3, fixing σ1 = 0), two parameters are the initial condition for the

undetected and quarantine infected individuals, and the remainder parameter

represents the detection rate for the third age class starting from the 1st April.

Due the great number of these parameters, in addition to well reproduce the

available data, their estimation is further controlled by the reproduction num-

ber R0, calculated by exploiting the Next Generation Matrix method [157].

185

8.3. COVID-19

Nonetheless, the available information in [124] only provides an aggregated

overview of the number of quarantine infected individuals with mild symp-

toms, the number of hospitalized infected individuals with moderate or severe

symptom and the number of deaths, without taking into account any age

subdivision. Therefore, in order to provide a realistic distribution of cases

in the population classes defined as in A, the number of real cases has been

distributed according to the disease incidence reported in Table 8.8 for the

Piedmont region. Furthermore, the model calibration was carried out con-

sidering the proportion between undetected and detected infected individuals

(i.e., given by the sum of the quarantined and hospitalized infected individu-

als) to be one-to-one on average as reported in [108]. Neglecting the fraction

of undetected, the remaining portion of the cases is divided into Ih and Iq

as reported in [124]. The number of hospitalised patients, which is in average

on the time interval from 24th February to the 4th May the 45% of the total

reported cases, is considered for simplicity equal for each age class.

According to [168], we assumed that the initial system state is S1 = 733130, S2 =

2780600, S3 = 842676,; while the initial number of infected individuals is es-

timated as Iq2 = 4, Iu1 + Iu2 + Iu3 = 100, where the undetected individuals

were distributed proportionally to the age class population size. All the other

compartments are set to zero.

Table 8.8: Incidence of COVID-19 infections and deaths in Piedmont

Age classes Reference
Updated at 0− 19 20− 69 70 + +

percentage of infection

2020-03-17 1% 60.1% 38.9% [46]
2020-03-22 0.8% 61.7% 37.5% [47]
2020-04-16 0.89% 55.1% 44.01% [44]
2020-04-26 1.3% 53.55% 45.15% [45]

percentage of death 2020-04-15 0% 16.5% 83.5% [151]

Finally, the estimated parameter values are reported in Table 8.9, and

the basic reproduction number resulting from such parameters is R0 = 2.7

considering the initial stage of the pandemic in Piedmont the period from

February 21st to February 25st.

As since April 1st a tangible increment of the SARS-CoV-2 swab tests

in long-stay residential care homes was implemented in Piedmont [153], we

186

8.3. COVID-19

Table 8.9: Estimated parameters of the best fitting trajectory, where ιi rep-
resents the age class (i) dependent probability of infection given a contact,
σi the death rate for patients with sever symptoms in age class i, α(t, c) the
governmental action strength at time t considering the contact c, and k the
intensity of the population response.

Parameter Value

i = 1 2 3
ιi 0.0095 0.08 0.285
σi - 0.019 0.33

α(t, c)
t =

c =
Work Other

March 8th 0.75 0.65
March 21st 0.4 0.3

k 60
Iq2 4
Iu1 + Iu2 + Iu3 100
θ (3,April 1st) 0.12

explicitly modeled the diagnostic ability to identify undetected cases among

the old adults (70+) starting from the beginning of April.

The plots in Fig. 8.35A and 8.35B show the time evolution of infected and

deceased individuals derived by the model considering the optimal parameter

values estimated by the calibration phase (Table A.12 in the Appendix). In

details, the stacked bar chart in Fig. 8.35A shows the proportion of infected

individuals in each of the three infectious sub-classes considered. The purple

line represents the simulated number of cases diagnosed in the elderlies, that

would have been undetected, had the testing procedures not changed since

April 1st, while the red line reports the detected infected individuals derived

from the surveillance data.

Fig. 8.35A reveals a good level of accordance between the infected individuals

derived by the surveillance data and those derived by the calibrated model

(i.e., given by the sum of the Iqi reported with light blue bars and Ihi reported

by blue bars). Consistently, Fig. 8.35B shows that the calibrated model is able

to mimic consistently the observed death cases (red line). The plots reporting

infected and deceased individuals for each age class in the same time interval

are shown in Fig.s A.4 and A.5 in the Appendix.

187

8.3. COVID-19

1st public restriction

2nd public restriction

3rd public restriction
F

eb
−

17

F
eb

−
24

M
ar

−
02

M
ar

−
09

M
ar

−
16

M
ar

−
23

M
ar

−
30

A
pr

−
06

A
pr

−
13

A
pr

−
20

A
pr

−
27

M
ay

−
04

0

10000

20000

30000

40000

50000

Days

C
om

ul
at

iv
e

in
fe

ct
ed

 c
as

es

Ih

Iq

Iu

Surveillance

Detection

A

1st public restriction

2nd public restriction

3rd public restriction

F
eb

−
17

F
eb

−
24

M
ar

−
02

M
ar

−
09

M
ar

−
16

M
ar

−
23

M
ar

−
30

A
pr

−
06

A
pr

−
13

A
pr

−
20

A
pr

−
27

M
ay

−
04

0

500

1000

1500

2000

2500

3000

Days

D
ea

th
s

D
Surveillance
 data

B

Figure 8.35: (A) Stacked bars plot reports the cumulative trend of the in-
fected individuals in which the undetected infected are showed in orange, the
quarantine infected in light blue, and hospitalized infected in blue. The pur-
ple line reports the cumulative trend of the undetected cases diagnosed by
the simulated SARS-CoV-2 swab tests. (B) Histogram shows the cumulative
trend of deaths. In both histograms the surveillance data are reported as red
line.

8.3.4 Model analysis

The COVID-19 spread and the government control interventions.

To study how the government control interventions and the corresponding

population response affected COVID-19 diffusion, we focused on the third

restriction, when a strict lockdown was enforced in Italy between from March

21
st

to May 1
st

. In particular, we used our model to compare the infection

188

8.3. COVID-19

spread under the following three scenarios: (i) the third restriction is activated

from March 21
st

and the population response is estimated by the surveillance

data; (ii) the model extends the second restriction beyond March, 21
st

without

implementing the third restriction and the population response is the one

estimated from surveillance data; and (iii) the third restriction is activated

from March 21
st

and the population response is higher than the one estimated

by the surveillance data.

3rd public restriction

0

25000

50000

75000

100000

F
e
b
−

2
1

F
e
b
−

2
8

M
a
r−

0
6

M
a
r−

1
3

M
a
r−

2
0

M
a
r−

2
7

A
p
r−

0
3

A
p
r−

1
0

A
p
r−

1
7

A
p
r−

2
4

M
a
y
−

0
1

Days

C
o

m
u

la
ti

v
e

 i
n

fe
c

te
d

 c
a

s
e

s

0.00000 0.00005 0.00010 0.00015 0.00020 0.00025

Density

First scenario

Second scenario

Third scenario

Figure 8.36: Stochastic simulation results reported as traces (on the left) and
as density distributions (on the right). Three scenarios are implemented. In
the First scenario the model is calibrated to fit the surveillance data (yellow).
In the Second scenario the model extends the second restriction beyond March,

21
st

without implementing the third restriction (blue). In the Third scenario
the model consider a higher population compliance to the third governmental
restriction (green).

Figure 8.36 shows the stochastic simulation traces (on the left) and the

density distributions on May 1th (on the right) of the total number of de-

tected infected individuals, considering the three scenarios proposed above:

yellow, blue and green for the first, second and third scenario, respectively.

For each scenario 10’000 traces are simulated and the corresponding median

trace is reported as a bold line. It is possible to appreciate that the third re-

striction was effective in containing the spread of the virus. In particular, the

distribution under the first scenario, representing the observed data, is much

closer to the third scenario, in which an almost complete compliance with the

restriction is simulated, than to the second scenario assuming no lockdown

189

8.3. COVID-19

and yielding a dramatically higher number of cases.

COVID-19 epidemic containment strategies.

From May, 4
th

the restrictions imposed by the Italian government were grad-

ually relaxed: the roadmap for lifting COVID-19 restrictions defined by the

Italian Government sets out three reopening phases that are depicted in Fig-

ure 8.37. In this context, our model can be effectively used to forecast the

daily trend of the infected individuals until September 1st considering this pro-

gressive increment of the social mixing patterns and implementing different

infection-control measures.

1st public restriction

2nd public restriction

3rd public restriction

1st reopening phase

2nd reopening phase

3rd reopening phase

0

1000

2000

3000

4000

5000

F
e
b
−

2
1

M
a
r−

0
6

M
a
r−

2
0

A
p
r−

0
3

A
p
r−

1
7

M
a
y−

0
1

M
a
y−

1
5

M
a
y−

2
9

Ju
n
−

1
2

Ju
n
−

2
6

Ju
l−

1
0

Ju
l−

2
4

A
u
g
−

0
7

A
u
g
−

2
1

S
e
p
−

0
4

Days

N
e
w

 D
a
il
y
 I
n

fe
c
te

d
 c

a
s
e
s

Ih Iq Iu Surveillance Detection

Work
contacts

Other
contacts

From May,4th 50% 35%

From May, 18th 60% 40%

From June, 1st 90% 50%

Figure 8.37: The daily evolution of infected individuals computed by the
stochastic simulation. The stacked bars report the undetected infected (or-
ange), the quarantine infected (light blue), and hospitalized infected (blue).
The red line shows the trend of the infected cases from surveillance data. The
purple line is the cumulative trend of the undetected cases diagnosed by the
modeled SARS-CoV-2 swab tests.

Figure 8.37 shows a pessimistic scenario in which the gradual reopening

is not counterbalanced by any infection-control strategies. The stacked bars

report the predicted infected cases (blue and light blue) and the number of un-

detected individuals (orange), whereas the red line shows the surveillance data

until May 1st. Moreover, the purple line reports the daily trend of otherwise

undetected cases diagnosed by SARS-CoV-2 swab tests by the model.

After a first constant increment of the infected individuals in February and

March, a plateau was reached from April, 3rd to May, 1st. From that moment,

the gradual re-opening of the working activities would cause a new increment

of infected individuals, reaching a peak of about 7,000 daily new infected cases

190

8.3. COVID-19

on July, 20th when a gradual decrease would be produced by the population

response to the severity of the epidemic. Starting from this worst-case sce-

nario, we analyzed the cost-benefit trade-off between the implementation of

infection-control measures and the relaxation of public restrictions. In par-

ticular, we consider 15 different scenarios arising from the combination of

different levels of implementation/efficacy of two control measures: (i) use of

individual-level measures, and (ii) increased case detection by contact tracing,

swab testing and early quarantine regime of identified cases.

191

8.3. COVID-19

1
st

 p
u
b
lic

 r
e
st

ri
ct

io
n

2
n
d
 p

u
b
lic

 r
e
st

ri
ct

io
n

3
rd

 p
u
b
lic

 r
e
st

ri
ct

io
n1
st

 r
e
o
p
e
n
in

g
 p

h
a
s
e

2
n
d
 r

e
o
p
e
n
in

g
 p

h
a
s
e

3
rd

 r
e
o
p
e
n
in

g
 p

h
a
se

1
st

 p
u
b
lic

 r
e
st

ri
ct

io
n

2
n
d
 p

u
b
lic

 r
e
st

ri
ct

io
n

3
rd

 p
u
b
lic

 r
e
st

ri
ct

io
n1
st

 r
e
o
p
e
n
in

g
 p

h
a
s
e

2
n
d
 r

e
o
p
e
n
in

g
 p

h
a
s
e

3
rd

 r
e
o
p
e
n
in

g
 p

h
a
se

1
st

 p
u
b
lic

 r
e
st

ri
ct

io
n

2
n
d
 p

u
b
lic

 r
e
st

ri
ct

io
n

3
rd

 p
u
b
lic

 r
e
st

ri
ct

io
n1
st

 r
e
o
p
e
n
in

g
 p

h
a
s
e

2
n
d
 r

e
o
p
e
n
in

g
 p

h
a
s
e

3
rd

 r
e
o
p
e
n
in

g
 p

h
a
se

1
st

 p
u
b
lic

 r
e
st

ri
ct

io
n

2
n
d
 p

u
b
lic

 r
e
st

ri
ct

io
n

3
rd

 p
u
b
lic

 r
e
st

ri
ct

io
n1
st

 r
e
o
p
e
n
in

g
 p

h
a
se

2
n
d
 r

e
o
p
e
n
in

g
 p

h
a
se

3
rd

 r
e
o
p
e
n
in

g
 p

h
a
se

1
st

 p
u
b
lic

 r
e
st

ri
ct

io
n

2
n
d
 p

u
b
lic

 r
e
st

ri
ct

io
n

3
rd

 p
u
b
lic

 r
e
st

ri
ct

io
n1
st

 r
e
o
p
e
n
in

g
 p

h
a
se

2
n
d
 r

e
o
p
e
n
in

g
 p

h
a
se

3
rd

 r
e
o
p
e
n
in

g
 p

h
a
se

1
st

 p
u
b
lic

 r
e
st

ri
ct

io
n

2
n
d
 p

u
b
lic

 r
e
st

ri
ct

io
n

3
rd

 p
u
b
lic

 r
e
st

ri
ct

io
n1
st

 r
e
o
p
e
n
in

g
 p

h
a
se

2
n
d
 r

e
o
p
e
n
in

g
 p

h
a
se

3
rd

 r
e
o
p
e
n
in

g
 p

h
a
se

1
st

 p
u
b
lic

 r
e
st

ri
ct

io
n

2
n
d
 p

u
b
lic

 r
e
st

ri
ct

io
n

3
rd

 p
u
b
lic

 r
e
st

ri
ct

io
n1
st

 r
e
o
p
e
n
in

g
 p

h
a
se

2
n
d
 r

e
o
p
e
n
in

g
 p

h
a
se

3
rd

 r
e
o
p
e
n
in

g
 p

h
a
se

1
st

 p
u
b
lic

 r
e
st

ri
ct

io
n

2
n
d
 p

u
b
lic

 r
e
st

ri
ct

io
n

3
rd

 p
u
b
lic

 r
e
st

ri
ct

io
n1
st

 r
e
o
p
e
n
in

g
 p

h
a
se

2
n
d
 r

e
o
p
e
n
in

g
 p

h
a
se

3
rd

 r
e
o
p
e
n
in

g
 p

h
a
se

1
st

 p
u
b
lic

 r
e
st

ri
ct

io
n

2
n
d
 p

u
b
lic

 r
e
st

ri
ct

io
n

3
rd

 p
u
b
lic

 r
e
st

ri
ct

io
n1
st

 r
e
o
p
e
n
in

g
 p

h
a
se

2
n
d
 r

e
o
p
e
n
in

g
 p

h
a
se

3
rd

 r
e
o
p
e
n
in

g
 p

h
a
se

1
st

 p
u
b
lic

 r
e
st

ri
ct

io
n

2
n
d
 p

u
b
lic

 r
e
st

ri
ct

io
n

3
rd

 p
u
b
lic

 r
e
st

ri
ct

io
n1
st

 r
e
o
p
e
n
in

g
 p

h
a
se

2
n
d
 r

e
o
p
e
n
in

g
 p

h
a
se

3
rd

 r
e
o
p
e
n
in

g
 p

h
a
se

1
st

 p
u
b
lic

 r
e
st

ri
ct

io
n

2
n
d
 p

u
b
lic

 r
e
st

ri
ct

io
n

3
rd

 p
u
b
lic

 r
e
st

ri
ct

io
n1
st

 r
e
o
p
e
n
in

g
 p

h
a
se

2
n
d
 r

e
o
p
e
n
in

g
 p

h
a
se

3
rd

 r
e
o
p
e
n
in

g
 p

h
a
se

1
st

 p
u
b
lic

 r
e
st

ri
ct

io
n

2
n
d
 p

u
b
lic

 r
e
st

ri
ct

io
n

3
rd

 p
u
b
lic

 r
e
st

ri
ct

io
n1
s
t
re

o
p
e
n
in

g
 p

h
a
se

2
n
d
 r

e
o
p
e
n
in

g
 p

h
a
se

3
rd

 r
e
o
p
e
n
in

g
 p

h
a
se

1
st

 p
u
b
lic

 r
e
st

ri
ct

io
n

2
n
d
 p

u
b
lic

 r
e
st

ri
ct

io
n

3
rd

 p
u
b
lic

 r
e
st

ri
ct

io
n1
s
t
re

o
p
e
n
in

g
 p

h
a
se

2
n
d
 r

e
o
p
e
n
in

g
 p

h
a
se

3
rd

 r
e
o
p
e
n
in

g
 p

h
a
se

1
st

 p
u
b
lic

 r
e
st

ri
ct

io
n

2
n
d
 p

u
b
lic

 r
e
st

ri
ct

io
n

3
rd

 p
u
b
lic

 r
e
st

ri
ct

io
n1
s
t
re

o
p
e
n
in

g
 p

h
a
se

2
n
d
 r

e
o
p
e
n
in

g
 p

h
a
se

3
rd

 r
e
o
p
e
n
in

g
 p

h
a
se

1
st

 p
u
b
lic

 r
e
st

ri
ct

io
n

2
n
d
 p

u
b
lic

 r
e
st

ri
ct

io
n

3
rd

 p
u
b
lic

 r
e
st

ri
ct

io
n1
s
t
re

o
p
e
n
in

g
 p

h
a
se

2
n
d
 r

e
o
p
e
n
in

g
 p

h
a
se

3
rd

 r
e
o
p
e
n
in

g
 p

h
a
se

0
%

2
0

%
4

0
%

6
0

%

0% 10% 20% 30%

Feb−21

Mar−06

Mar−20

Apr−03

Apr−17

May−01

May−15

May−29

Jun−12

Jun−26

Jul−10

Jul−24

Aug−07

Aug−21

Sep−04

Feb−21

Mar−06

Mar−20

Apr−03

Apr−17

May−01

May−15

May−29

Jun−12

Jun−26

Jul−10

Jul−24

Aug−07

Aug−21

Sep−04

Feb−21

Mar−06

Mar−20

Apr−03

Apr−17

May−01

May−15

May−29

Jun−12

Jun−26

Jul−10

Jul−24

Aug−07

Aug−21

Sep−04

Feb−21

Mar−06

Mar−20

Apr−03

Apr−17

May−01

May−15

May−29

Jun−12

Jun−26

Jul−10

Jul−24

Aug−07

Aug−21

Sep−04

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0 0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0 0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

D
a
y
s

New Daily Infected cases

Ih
Iq

Iu
S

u
rv

e
ill

a
n
ce

D
e
te

ct
io

n

In
d

iv
id

u
a

l−
le

v
e

l
m

e
a

s
u

re
s

Community surveillance

Figure 8.38: The daily evolution (median of stochastic simulations) of infected
individuals is shown varying on the columns the the efficacy of individual-level
measures and on the rows the efficacy of community surveillance. The sudden
increment associated with May, 1st is due to the increasing of the surveillance
from that time. 192

8.3. COVID-19

Specifically, in Figure 8.38 we show the daily forecasts of the number of

infected individuals with the efficacy of individual-level measures ranging from

0% to 60% on the columns (increasing by steps of 20%) and, on the rows,

increasing capability (from 0% to 30%, by 10% steps) of identifying otherwise

undetected infected individuals. These results are obtained as median value

of 5000 traces for each scenario obtained from the stochastic simulation.

Comparing results in Figure 8.38 with the pessimistic scenario of Fig-

ure 8.37 it is important to notice that, regardless the efficacy combination we

pick, the employment of infection-control strategy always exhibits a positive

effect on the number of infected individuals, either flattening the peak or the

number of infected individuals toward zero. Furthermore, the proposed set

of scenarios shows that the combination of the two infection-control measures

leads to envisage reasonable levels of protection arising from the adoption of

individual-level measures (in the range of 20-40%) and the necessity to identify

a feasible fraction of undetected cases. It is important to notice that the frac-

tion of revealed undetected cases is not the reference measure for the number

of people to test for Sars-CoV-2 infection. This rather represents the fraction

of all undetected patient that, thanks to an enhanced testing approach, are

eventually tested and identified. To reach this goal, the actual number of

swabs to perform depends on the positive predictive value of the test, which,

in turns, depends on the prevalence of SARS-CoV-2 positive individuals in

the tested population. Thus, the same result can be achieved with a thor-

ough contact tracing and targeted testing in high risk groups or with a larger

number of untargeted (or less targeted) tests. The former approach is more

efficient and feasible.

8.3.5 Discussion

In this study, we exploited our modeling framework to analyse a multi-group

SEIRS model, considering an age-structured population. Differentiating age

classes allows us to mimic the real incidence of COVID-19 both for infections

and fatalities. We also introduced a further layer to characterize categories of

infected, so that also the severity of the infection and its associated quarantine

regime can be modeled. The multi-group nature of our model allows us to in-

vestigate the peculiarities of the COVID-19 transmission, including different

incidences or symptoms severity in different age classes. In our model, the

time evolution of the infection is affected by governmental policies and the

193

8.3. COVID-19

associated population awareness. Given the complex dynamics driving the

behaviour of the population, we further modeled the perception of the hazard

of COVID-19, relating it with the number of fatalities.

The high level of parametrization and the flexibility provided by the frame-

work gives the possibility to study different scenarios to simulate 1) the impact

of the control strategies to limit contacts in the population, and 2) the con-

tainment strategies based on individual-level measures. Firstly, we focused on

the impact of the control strategies by modulating the parameters that modify

the strength of the governmental restriction and the population compliance

with these restriction. Intervention scenarios that intensify the limitation of

the person-to-person interactions correspond to an increase in these terms.

We investigated the impact of the third public government restrictions on

the evolution of the COVID-19 epidemic in Piedmont and found that the

strict national lockdown and the related population response had a strong

impact on the epidemic control. Model outcomes clearly highlight that the

implementation of the sole second restriction would have not been enough to

counteract the outbreak. Secondly, we pinpointed the optimal combination

of containment strategies based on individual-level measures and community

surveillance to cope with the COVID-19 spread. In particular, considering the

roadmap for lifting COVID-19 restrictions defined by the Italian Government,

the model shows that if none of the infection-control measures is applied, the

number of infected cases is bound to increase, leading to a second wave of in-

fections. However, this can be substantially contained when infection-control

measures are implemented. In particular, the model results highlight that the

combinations of individual-level measures with undetected infection diagno-

sis can be effective to controlling the virus spread even when their singular

implementation does not reach a high level of efficacy (e.g. 40% and 20%,

respectively).

194

Chapter 9

Conclusion and future work

In this thesis three original contributions were presented, concerning a) the

definition of new high level formalisms based on the PN, and b) the devel-

opment of general and efficient analysis techniques for modeling biological

complex systems. These theoretical results are then gathered into a new gen-

eral modeling framework, which can be exploited even by researchers without

advanced mathematical and computational skills.

In details, the first contribution regards the extension of PN formalism to

provide a more general tool able to simulate the general dynamics governing

the events of a system. The two new formalisms, namely Extended Stochas-

tic Petri Net (ESPN) and Extended Sthocastic Symmeric Net (ESSN), ob-

tained by extending the Sthocastic Petri Net and Sthocastic Symmeric Net

respectively, are introduced in Chapter 5. We showed the advantages of these

extended formalisms considering three complex case studies: the Pertussis

disease, the Multiple Sclerosis disease, and the COVID-19 epidemic. In par-

ticular, thanks to the high level of parametrization and flexibility provided by

these graphical formalisms it is possible to model more complex dynamics with

respect to the ones defined by the MA law, but also to combine different net-

works (e.g., signaling, metabolic, and regulatory networks) in a unique model,

as we showed in Section 6.2. Considering these formalisms, as future works,

we will investigate 1) how spatial constraints could efficiently be introduced,

195

for instance, considering partial differential equations instead of the ODEs,

and 2) how to use the power of the ESSN to model systems with higher level

of details typical of the agent based model [143].

The second contribution consists of three new computational techniques de-

veloped to make more efficiently the analysis of complex and general models,

described through ESPN and ESSN formalisms. The first technique is pre-

sented in Section 6.1, and it is a new method to automatically derive the re-

duced ODEs system from the ESSN model exploiting the systems symmetries,

by avoiding the complete net unfolding. In particular, we started defining this

new method considering the SSN formalims, and then we discussed which

constrains have to be defined on the functions characterizing the general tran-

sitions in the ESSN. The second technique is described in Section 6.2, in which

we showed that the ESPN formalism can be exploited as a “metaformalims”

to create hybrid model characterized by some sub-components detailed as a

mechanism model and others as a constraint model. This is motivated by

the needs of an increasingly importance of integrating into unique model data

coming from different sources. Thus, in this thesis we provided some indica-

tions on how this integration can be carried out. In particular, we showed how

the FBA approach can be used whenever the knowledge of the rate coefficients

of every reaction of a net component is missing. Of course, this assumes that

all the components solved through FBA reach their steady state faster than

all the other components. Obviously, when this assumption is not satisfied,

then an approximation of model behavior is introduced. As future work in

this area, we will apply this new approach for modeling a more complex and

real case study, such as the Colon cancer disease by combining the bacteria

behaviour (modeled through the FBA model) and the Cancer growth (mod-

eled through the ODEs system).

Finally, in Section 6.3 we presented the third technique, that is a generalisa-

tion of the τ -leaping algorithm to deal with generic dynamics as those allowed

by ESPN and ESSN formalisms. Indeed, we highlighted that, differently from

the SSA, the τ−leap approach depends on the transition velocity law and its

partial derivatives, which are needed to correctly derive τ . Therefore, if the fir-

ing intensities are defined as continuous functions, then it is no longer possible

to know in advance the propensity functions and so their partial derivatives.

To overcome this problem we proposed to exploit a method of approximation

of derivatives, called Richardson’s Extrapolation, showing good results by

196

comparing the simulations obtained from the classical τ−leaping approach

and our extended version.

The last contribution concerns the development of GreatMod (Chapter 7), a

general modeling framework for the analysis of biological and epidemiological

systems, in which all the theoretical results proposed in this thesis are im-

plemented. The novelties and strengths of the proposed framework can be

summarized as follows: (1) the use of graphical formalisms (i.e., ESPN and

ESSN) for the model creation; (2) a user-friendly interface based on R lan-

guage; (3) framework portability and reproducibility of the results; (4) the

possibility to integrate user-defined workflows. The implemented functionali-

ties can be grouped into four classes: (i) model generation implementing the

generation of the stochastic and deterministic process underlying the graph-

ical model; (ii) sensitivity analysis implementing Partial Rank Correlation

Coefficient analysis; (iii) model calibration adjusting the model parameters

to obtain a best fit between the model outcomes and real data; (iv) model

analysis solving the model and generating an output representing the time

evolution of the model. As future works related to this framework, we are

evaluating the possibility to introduce new calibration algorithms, the multi-

objective optimization paradigm and parallel evolutionary algorithms will be

taken into account, in particular with the possibility to port some of the op-

timizations algorithms on GPU architecture to further speed up the model

calibration step.

The effectiveness of this framework and the theoretical results is shown through

three different case studies in which we investigated i) the Pertussis epidemi-

ology in Italy and its vaccination policy (Section 8.1), ii) the Multiple Sclero-

sis disease and its treatments (Section 8.2), and iii) the COVID-19 epidemic

spread in Piedmont (Section 8.3). In particular, by using the GreatMod func-

tions, in all these case studies we are able 1) to easily create the model and its

underlying mathematical processes, 2) to analyse the model parameters, and

3) to simulate different scenarios.

For all these reasons we believe that this framework represents a substantial

advance in the field of computational epidemiology and system biology, and

will be beneficial for the entire community. For instance, we are already apply-

ing GreatMod to study the spreading of the West Nile Virus (WNV) disease in

Piedmont, one of the most recent emerging mosquito-borne diseases in Europe

and North America.

197

Appendix A

Appendix

198

A.1. GreatMod installation

A.1 GreatMod installation

The installation of the workflow requires the downloading of

1. the extended version of the GreatSPN editor at http://www.di.unito.

it/~amparore/mc4cslta/editor.html,

2. Docker https://docs.docker.com/engine/installation/,

3. the R library at https://github.com/qBioTurin/epimod.

In particular, a step by step guide to use and install the framework is reported

at https://qbioturin.github.io/epimod/.

Finally, after installing these three requirements, the R function

download images() prepares the docker environment downloading the docker

images needed by the framework.

A.2 Supplementary information: Pertussis model

A.2.1 Parameters

All the parameters file reporting their values can be found at the following

link https://github.com/qBioTurin/epimod/.

Contact rates. We are considering the contact matrix provided by [107],

in which the Italian contact rates depending on the age are reported.

a1 a2 a3

a1 0.2136752137 0.5586592179 0.1438848921
a2 0.5586592179 0.0205212395 0.0364033491
a3 0.1438848921 0.0364033491 0.0063742988

Table A.1: Contact rates between patients divided by the class they belong
to, obtained from [107]

.

Initial marking. The initial marking is a vector defined by 179 variables,

that are all the places of our ESSN associated with all the corresponding color

199

http://www.di.unito.it/~amparore/mc4cslta/editor.html
http://www.di.unito.it/~amparore/mc4cslta/editor.html
https://docs.docker.com/engine/installation/
https://github.com/qBioTurin/epimod
https://qbioturin.github.io/epimod/
https://github.com/qBioTurin/epimod/

A.2. Supplementary information: Pertussis model

classes combinations (given by the color domain A, V, and L). Since the sim-

ulations start from the 1974, from when we are considering no vaccination, all

the places with colors different to NV (i.e., no vaccination) are settled to zero.

For obvious reasons, all the places representing counters (birth, vaccination,

and infection counting) are settled to zero. From [62] and the surveillance

data, we were able to estimate the number of infects in each age class in the

1974. In details, during the whole year there were reported 7’400 cases dis-

tributed as follow: 15% in N, 80% in Y, and 5% in O. Supposing for simplicity:

(1) to split as equals the number of infects between the Ip and Is places, and

(2) to obtain the mean initial number of infects to scale their values with a

factor of 21/365, since the mean length of the infectious period is 21 days.

This is necessary because the time scale of our simulations is days.

Finally, the remaining places to estimate their initial markings are given by:

the susceptible in each age class (S a1, S a2, S a3), and the recovered with-

out vaccination in each age and resistance level class (R a1 nv l4, R a2 nv l2,

R a2 nv l3, R a2 nv l4, R a3 nv l2, R a3 nv l3, R a3 nv l4). For simplicity

we consider R a1 nv l1, R a1 nv l2, R a1 nv l3 equal to zero since the time

necessary to decrease the immunity level is greater than 1 year.

Since it is known the size during the 1974 of the Italian populations and how

they are distributed among the age classes, removing the infects, we have

to estimate through the sensitivity and calibration analysis their distribution

among the susceptible and recovered, and the resistance levels as well.

Initial condition Value
Ip a1 3.198904e+01
Ip a2 1.748466e+02
Ip a3 6.415068e+00

Is a1 nv 3.198904e+01
Is a2 nv 1.748466e+02
Is a3 nv 6.415068e+00

S a1 + R a1 nv l4 866703
S a2 + R a2 nv l1+ R a2 nv l2 + R a2 nv l3 + R a2 nv l4 15685693
S a3 + R a3 nv l1+ R a3 nv l2 + R a3 nv l3 + R a3 nv l4 37837299

Table A.2: Initial conditions.

200

A.2. Supplementary information: Pertussis model

Vaccination rate. The vaccination rate is defined through the vaccination

policy and the properties characterizing the Exponential Negative Distribu-

tion. So to estimate the vaccination rate χ let us introduce three i.i.d. random

variables :

1. death in the first year: D ∼ Exp(δa1),

2. growth from the first age class to the second one: G ∼ Exp(λa1,a2),

3. vaccination: V ∼ Exp(χ), (equal for each vaccination dose),

and the events (i) Vi = {ithvaccination dose is submitted}, i = 1, 2, 3, and (ii)

A1 = {belonging to the first age class}. Therefore, requiring that the proba-

bility to complete the vaccination cycle in absence of disease during first year

is equal to p, i.e.

P{(3vaccination doses are submitted)|(before the first year)} =

P{V1 ∩ V2 ∩ V3|A1} = p,

(A.1)

we are able to deduce that

P{V1 ∩ V2 ∩ V3|A1} =
3∏
i=1

P{Vi|A1}

= (P{V1|A1})3

= (P{V = min(D,G, V)})3 (A.2)

= (
χ

χ+ δa1 + λa1,a2

)3 = p. (A.3)

Where we suppose that the random variables D, G, V are i.i.d., the three

events Vi, i = 1, 2, 3 as well, and that one vaccination dose is submitted iif

the transition modeling the vaccination fires before the transitions modeling

the death or the growth (and so the exit form the first age class). Then,

the properties characterizing the exponential distributions 1 are exploited to

obtain an analytic formula depending on the unknown parameter χ, and the

known parameters δa1 , λa1,a2 , p. Indeed solving the following equation

(
χ

χ(ν) + δa1(ν) + λa1,a2

)3 − p(ν) = 0,

1Let X1, . . . , Xn be independent random variables, with Xi having an Exp(λi) distri-
bution, respectively. Then the distribution of min(X1, . . . , Xn) is Exp(λ1 + · · ·+ λn), and

the probability that the minimum is Xi is
λi

λ1 + · · ·+ λn
.

201

A.2. Supplementary information: Pertussis model

we are able to estimate the vaccinate rate χ depending on the vaccine policy

defined a priori. The probabilities p were calculated from the percentage

of newborns who completed the vaccination cycle. These percentages were

reported every year from 1994 to 2016. For this reason p is time dependent,

and they were obtained from [62, 171].

Birth rate. The birth rate has been computed directly from data provided

by ISTAT for the period 1974 ∼ 2016. In details, it is defined as the average

births per day in the reference period with a dependence on the year.

Death rates. Similarly to the birth rate, the death rates are defined as the

average deaths per day from 1974 to 2016, with a dependence on the age class

and the year.

A.2.2 General transition functions

In this section we describe in details the firing rate function associated with

the generic transitions in our Pertussis model. Let us recall that:

1. f〈t,c〉(x̂(ν), ν) is the speed of the transition t ∈ Tg and x̂(ν) represents

the vector of the average number of tokens for all the input places of t.

For brevity when the function does not depend on the color instance c

then we omit it reporting only the transition t, i.e. ft(x̂(ν), ν).

2. given a transition with a specific color domain, the unfolding proce-

dure generates automatically the transition name combined with all the

possible combinations of the color classes associated. For instance, the

transition ContactS IpToIp is unfolded into ContactS IpToIp a1 a1,

ContactS IpToIp a1 a2, ContactS IpToIp a1 a3, etc.

All the general transitions of the model are now explained in details and all

the constants are summarized in Tables A.3.

Transitions modeling the contacts. All the transitions representing the

contact between a person belonging to the age class ai with one from aj , which

202

A.2. Supplementary information: Pertussis model

Symbol Parameter Value

γ Recovery rate 21 days

θvacc
Decay of the resistance

derived from vaccination
7 years

(21 months per level)

θinf
Decay of the resistance
derived from infection

14 years
(42 months per level)

X0 Initial population distribution see Sec. A.2.1

χ(ν)
Vaccinations rate

(calculated imposing a fixed vaccine coverage)

Minimum of
exponential distributions

see Sec. A.2.1

µ(ν)
Birth rate

depending on the time
Obtained from ISTAT

see Sec A.2.1

δai(ν)
Death rates

depending on time and
on the age class

Obtained from ISTAT
see Sec A.2.1

λa,b
Contact rates between subjects in the age

classes a and b
see Table A.1

prob boost
prob. of a natural boost

occurrence
To be estimated

prob infetionS
prob. of infection success

of a susceptible
To be estimated

prob infetionR l1
prob. of infection success

of a recovered with
minimum resistance

To be estimated

Table A.3: Parameters of the ESSN model.

are grouped in the following set:

Tcontact = {ContactV i IpToRii ai aj , ContactV i IsToRii ai aj ,

ContactV IpToIs ai aj , ContactV IsToIs ai aj ,

ContactR IpToIs ai aj , ContactR IsToIs ai aj ,

ContactRi IpToRii ai aj , ContactRi IsToRii ai aj ,

ContactS IpToIp ai aj , ContactS IsToIp ai aj}i,j=1,2,3

203

A.2. Supplementary information: Pertussis model

are defined by the following function:

ft(x̂(ν), ν) = prob(t) ∗
λai,aj
xtotaj (ν)

∏
i

x̂i(ν) (A.4)

where t ∈ Tcontact, xtotaj (ν) represents the number of people in the aj class

at time ν, λai,aj the contact rate between the ai and aj classes corresponds

to the i-row and j-column of the contact matrix A.1. prob(t) is a function

which returns depending on the transition t if its rate has to be multiplied by

a specific probability and it is defined as follows

prob(t) =



prob infectionS t ∈ {ContactS IpToIp ai aj , ContactS IsToIp ai aj}

prob boost t ∈ {ContactRi IpToRii ai aj , ContactRi IsToRii ai aj ,

ContactV i IpToRii ai aj , ContactV i IsToRii ai aj}

prob infectionR l1 t ∈ {ContactV IpToIs ai aj , ContactV IsToIs ai aj ,

ContactR IpToIs ai aj , ContactR IsToIs ai aj}

Finally,
∏
i x̂i(ν) is the product of the average numbers of individuals in the

input places of the transition t.

Transitions modeling deaths. Let us define the set of the transitions

modeling the death of a person in age class ai as

Tdeath = {DeathS ai, DeathIp ai, DeathIp ai,

DeathR ai, DeathV ai}i=1,2,3.

Then we can define the function providing the speed of a transitions t ∈ Tdeath
as

ft(x̂(ν), ν) = δai(ν)x̂(ν) (A.5)

where δai(ν) is the death rate with respect the age class ai, and it changes its

value depending on the current year:

δai(ν) = death[i, ν], (A.6)

where death[i, ν] is the death rate referred to the year given by ν and the age

class ai considering the rates matrix defined from 1974 to 2016 (columns) for

each of three age classes (rows), reported in https://github.com/qBioTurin/

epimod/.

204

https://github.com/qBioTurin/epimod/
https://github.com/qBioTurin/epimod/

A.2. Supplementary information: Pertussis model

Transitions modeling births. The birth events are modeled by the tran-

sition Birth, which is characterized by the following function:

ft(x̂(ν), ν) = µ(ν)xtot(ν), (A.7)

where µ(ν) is the birth rate per person estimated from 1974 to 2016, obtained

from the ISTAT. Since this rate represents the mean number of Italian new-

borns (in the year ν) per person, it must be multiplied by the total number

of Italians (in the year ν), i.e. xtot(ν).

Transitions modeling vaccination. The vaccination process starts with

the transition FirstVaccination, and continues (for the administrations of two

further doses) by the Vaccination transition. Both of them are characterized

by the following function:

ft(x̂(ν), ν) = χ(ν)x̂(ν), (A.8)

where χ(ν) is administration rate of one vaccine dose, computed as explained

in Sec.A.2.1. This rate is then multiplied by x̂(ν), which represents the num-

ber of newborns without vaccination, so in the color class NV, (referring to

the FirstVaccination transition), or the number of newborns already vacci-

nated one or two times, (referring to the Vaccination transition). When the

possibility of vaccination failure is also considered, than the function A.8 is

multiplied to the vaccination failure probability pv, obtaining the following

rated for the FirstVaccination and Vaccination transitions:

ft(x̂(ν), ν) = χ(ν)x̂(ν) ∗ (1− pv). (A.9)

To model the vaccination failure further transitions are drawn in the model for

simulating the vaccine administrations without an increasing of the resistance

level, their rates are defined as follows:

ft(x̂(ν), ν) = χ(ν)x̂(ν) ∗ (pv). (A.10)

A.2.3 Package functions

The epimod package exposes four main functions that enable the user to per-

form all the steps required to design, develop and analyse an epidemiolog-

ical model of disease diffusion. Indeed, the main framework functions can

be exploited to implement a workflow for studying the diffusion of a disease

205

A.2. Supplementary information: Pertussis model

in a population over the years. Starting from the graphical model epimod

main functions allow one to derive (model generation), calibrate (sensitiv-

ity analysis and model calibration) and to perform analysis through the de-

veloped model (model analysis). Each step of the pipeline is self-contained in

one function.

In the following, we provide the R commands used to generate the results

presented in the paper. Furthermore, we show some examples of the input

files required to run the analysis. For the complete script used for the paper

analysis, please visit https://github.com/qBioTurin/epimod.

Function model generation

The model generation function provides the necessary tools to convert the

graphic model to an executable one.

Parameters

• net fname .PNPRO file storing the model as ESPN. In case there are

multiple nets defined within the PNPRO file, the first one in the list is

the will be automatically selected;

• functions fname C++ file defining the functions managing the behaviour

of general transitions.

library(epimod)

model_generation(net_fname = "~/input/Pertussis.PNPRO",

functions_fname = "~/input/transitions.cpp")

Example Files and functions

The header of a C++ function, to be correctly included and used in the solver,

have to match the following specification:

• return value: double value representing the transition speed in the cur-

rent marking;

• function name: the name specified as transition rate field in the Great-

SPN GUI.

• Its input arguments:

206

https://github.com/qBioTurin/epimod

A.2. Supplementary information: Pertussis model

– double *Value: data structure encoding the current marking;

– map <string,int>& NumTrans: data structure providing a match

between transitions’ name and their numeric identifier within the

solver;

– map <string,int>& NumPlaces: data structure providing a match

between places’ names and their numeric identifiers within the

solver;

– const vector<string> & NameTrans: data structure listing all tran-

sitions’ names;

– const struct InfTr* Trans: transition’s input places;

– const int T : identifier of the transition for which the speed must

be computed;

– const double& time: current solution time;

double compute_transition_intensity(double *Value, map <string,int>&

NumTrans, map <string,int>& NumPlaces,const vector<string> &

NameTrans, const struct InfTr* Trans, const int T,

const double& time)

{

ifstream f("params_file_name");

double param =; /* Read parameters value from file*/

double intensity = 1.0;

for (unsigned int k=0; k<Trans[T].InPlaces.size(); k++)

{

intensity *= pow(Value[Trans[T].InPlaces[k].Id],

Trans[T].InPlaces[k].Card);

}

return param * intensity;

}

Listing A.1: Example C++ function providing the behaviour of a general

transition, following the Mass Action Law

Function sensitivity analysis

The function sensitivity analysis preforms a Monte Carlo sampling of the in-

put model parameters. The user has to specify what parameters to be explored

and how to generate them, providing either a base R function or a customised

207

A.2. Supplementary information: Pertussis model

one. In the latter case, functions can be provided through a R file and a

.csv file listing all the functions to call, the parameters to use and a name

file where the parameters will be saved. The list in the .csv file is used to

link a specific function to a (set of) parameter(s). The user must be define a

file name coherently with the one used in the general transitions file. After

generating the necessary configurations, simulations are executed. The out-

put of such simulations will be used to compute the PRCC, pinpointing the

most relevant parameters. To this aim, the function finds out which parame-

ters change through all the configurations generated and computes the PRCC

only to them. The user must provide a function combining the model outputs

to define the model response used in PRCC analysis.

Eventually, the function computes a ranking associating a score to each

solver output. Again, the user has to provide a function to compute such score

with respect to a reference data set and the model response.

Parameters

• parameters fname .csv file listing all the parameters to generate through

either base R functions or user defined ones.

• functions fname File hosting the user defined functions to generate in-

stances of the parameters

• solver fname .solver file (generated in with the function model generation)

• f time Final solution time

• s time Time step at which explicit estimates for the system are desired

• reference data Data to compare with the simulations’ results

• distance measure fname File containing the definition of a distance mea-

sure to rank the simulations’. Such function takes 2 arguments: the

reference data and a simulation output. It has to return a vector with

the same dimension as the input ones, containing the distance between

the two input vectors. Please, note that file name and function name

must match.

• target value fname File providing a function to obtain the relevant mea-

sure to evaluate the output. Please, note that file name and function

name must match.

208

A.2. Supplementary information: Pertussis model

sensitivity_analysis(n_config = 2^12,

parameters_fname = "~/input/Functions_list.csv",

functions_fname = "~/input/Functions.R",

solver_fname = "~/Pertussis.solver",

f_time = 365*21,

s_time = 365,

timeout = "1d",

parallel_processors=40,

reference_data ="~/input/reference_data.csv",

distance_measure_fname="~/input/msqd.R",

target_value_fname="~/input/infects.R"

)

Example Files and functions

params <- function(n_params)

{

x <- runif(n_params)

return(x / sum(x))

}

Listing A.2: Example function to generate n params summing up to 1

parms_file_name, parms, 5

other_parms_file_name, runif, 5

Listing A.3: Example list controlling the generation of two subsets of

parameters, one through the user defined function params and the other

through the base R function runif

209

A.2. Supplementary information: Pertussis model

infects<-function(output)

{

ynames <- names(output)

col_names <- "(InfectCount_a){1}[0-9]{1}"

col_idxs <- c(which(ynames %in% grep(col_names, ynames,

value=T)))

Reshape the vector to a row vector

ret <- rowSums(output[,col_idxs])

return(as.data.frame(ret))

}

Listing A.4: A example of function combining the model outputs to define the

model response used in PRCC analysis

msqd<-function(reference, output)

{

ynames <- names(output)

col_names <- "(InfectCount_a){1}[0-9]{1}"

col_idxs <- c(which(ynames %in% grep(col_names, ynames,

value=T)))

infects <- rowSums(output[,col_idxs])

infects <- infects[-1]

diff<-c(infects[1],diff(infects,differences = 1))

ret <- sum((diff - reference)^2)

return(ret)

}

Listing A.5: Example a function to compute a score with respect to a reference

data set and the model response.

Output files The function sensitivity analysis generates several output files.

Supposing that the out fname parameter being set as sensitivity, the rel-

evant file produced are: seeds sensitiviy.RData, ranking sensitivity.RData,

parms prcc sensitivity.RData and prcc sensitivity.RData.

The function stores configurations information in seeds sensitiviy.RData

and parms prcc sensitivity.RData files. Initial and final seeds used in the

execution are saved to seeds sensitiviy.RData and they can be used either

to extend the current experiment or to reproduce it. The file parms prcc -

sensitivity.RData contains all the details concerning the simulation’s settings.

210

A.2. Supplementary information: Pertussis model

Results concerning the ranking and the PRCC analysis are stored respec-

tively in ranking sensitivity.RData and in prcc sensitivity.RData. The first file

contains two columns, one for the simulation identifier and the other its score.

To get the configuration used to run a specific simulation, users have to employ

the identifier to index the configuration stored in parms prcc sensitivity.RData

file.

In addition to this files, all the simulation’s traces are saved into file match-

ing the following pattern: out fname-identifier.trace (e.g., sensitivity-1.trace).

Function model calibration

The function model calibration searches for a parameter combination provid-

ing the most accurate match w.r.t. reference data. In order to generate

configuration, the user has to provide base R functions or customised func-

tions to modify all the parameters not defined in the graphical model. This

functions corresponds to those passed to the sensitivity analysis function but

must accept an additional parameter (refer Listing 6).

To drive the optimization process it is necessary to provide a scoring func-

tion used as objective function to be minimized. The user has to provide such

function by following the same step as specified for the sensitivity analysis

function. Furthermore, the model calibration function can be exploited to

perform the calibration of several types of model solutions, just by changing

the solver type parameter.

Parameters

• parameters fname .csv file listing all the parameters to generate through

either stock R functions or user defined ones.

• functions fname File hosting the user defined functions to generate in-

stances of the parameters;

• solver fname .solver file (generated in with the function model generation);

• solver type controls the type of solution adopted (ODE-E or ODE-RKF

or ODE45 or LSODA or HLSODA or (H)SDE or HODE or SSA or

TAUG or STEP);

• f time Final solution time;

211

A.2. Supplementary information: Pertussis model

• s time Time step at which explicit estimates for the system are desired;

• reference data Data to compare with the simulations’ results;

• distance measure fname File containing the definition of a distance mea-

sure to rank the simulations’. Such function takes 2 arguments: the

reference data and a simulation output. It has to return a vector with

the same dimension as the input ones, containing the distance between

the two input vectors. Please, note that file name and function name

must match;

• target value fname a function combining the model outputs to define the

model response used in PRCC analysis. Please, note that file name and

function name must match;

• ini v Vector providing the initial condition of the optimization problem;

• ub v vector defining the upper bound limits on the optimization problem

variables;

• lb v vector defining the lower bound limits on the optimization problem

variables.

212

A.2. Supplementary information: Pertussis model

library(epimod)

model_calibration(parameters_fname = "~/input/Functions_list.csv",

functions_fname = "~/input/Functions.R",

solver_fname = "~/Pertussis.solver",

f_time = 365*21,

s_time = 365,

timeout = "1d",

parallel_processors=40,

reference_data = "~/input/reference_data.csv",

distance_measure_fname = "~/input/msqd.R",

Vectors to control the optimization

ini_v = c(0.05, 0.07, 0.1, 1, 0, 1, 0, 0, 0, 0, 1, 0,

0, 0, 0),

ub_v = c(0.25, 0.1, 0.25, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1),

lb_v = c(0, 0, 0, 1e-7, 1e-7, 1e-7, 1e-7, 1e-7, 1e-7,

1e-7,

1e-7, 1e-7, 1e-7, 1e-7, 1e-7),

ini_vector_mod = TRUE

)

Example Files and functions

params <- function(total, x)

{

allocation <- total * x / sum(x)

return(allocation)

}

Listing A.6: Example function to allocate some resource according to an

allocation vector x.

Output files The function model calibration generates several output files.

Supposing that the out fname parameter being set as calibration, the relevant

file produced are: seeds calibration.RData, calibration optim.RData, calibra-

tion optim-trace.csv.

The function stores initial and final seeds used in the execution to seeds -

calibration.RData. The output of the optimization is stored to calibration -

optim.RData (refer to GenSA package for further details). Nonetheless, the

213

A.2. Supplementary information: Pertussis model

optimization process is tracked through the output file calibration optim-trace.csv,

where at each optimization iteration the function stores the identifier, the score

and the vector used to compute the current solution.

In addition to this files, all the simulation’s traces are saved to file matching

the following pattern: out fname-identifier.trace (e.g., calibration-1.trace).

Function model analysis

The function model analysis allows one to execute and test the behaviour

of the developed model. Furthermore, by changing the input parameters,

it is possible to perform what-if analysis or forecasting the evolution of the

diffusion process in the future.

The mechanism employed to provide the required parameters are the same

used in the aforementioned functions.

Parameters

• parameters fname .csv file listing all the parameters to generate through

either stock R functions or user defined ones.

• functions fname File hosting the user defined functions to generate in-

stances of the parameters;

• solver fname .solver file (generated in with the function model generation);

• solver type controls the type of solution adopted (ODE-E or ODE-RKF

or ODE45 or LSODA or HLSODA or (H)SDE or HODE or SSA or

TAUG or STEP);

• int fname File containing the initial marking, if required;

• f time Final solution time;

• s time Time step at which explicit estimates for the system are desired;

• ini v Vector providing the initial condition of the optimization problem;

214

A.3. Supplementary information: RRMS model

library(epimod)

model_analysis(solver_fname = "~/Pertussis.solver",

f_time = 365*43,

s_time = 365,

n_config = 1,

n_run = 2^8,

parallel_processors = 40,

solver_type = "SSA",

parameters_fname = "~/input/Functions_list_wif.csv",

functions_fname = "~/input/Functions.R",

timeout = ’1d’,

ini_v = c(0.1028314,0.06422971,0.1173022,0.3996977,

0.04611963,1.082384,0.2943042,0.02526472,

0.01475493,8.009888e-08,0.9688963,0.3208456,

0.06788778,0.000676801,0.0001424256),

ini_vector_mod = TRUE)

Output files Supposing that the out fname parameter being set as analysis,

the function model analysis generates one output storing initial and final seeds

used in the execution (seeds analysis.RData). In addition to this file, all the

simulation’s traces are saved to file matching the following pattern: out fname-

identifier.trace (e.g., analysis-1.trace).

A.3 Supplementary information: RRMS model

A.3.1 Second model

General transitions

Let us note that in the next section we extend the functions already intro-

duced in Sub Section 8.2.2, except those characterizing the movements, in

order to consider the new color instances regarding the positions, which were

not present in that section. In particular, we recall that transitions which rep-

resent i) the killing of a cell, e.g., TregKillsTeff or TeffKillsODC, ii) the entry

of cells into the system, such as EBVinj, iii) the activation of T cells, e.g.,

TeffActivation, iv) the duplication of a cell, e.g., such as TregDup, and v) the

cell movements e.g., TregMovements, are all modelled as general transitions

215

A.3. Supplementary information: RRMS model

because they do not follow the Mass Action (MA) law.

Let us recall the following notations:

• f〈t,c〉(x̂(ν), ν) is the speed of the transition t ∈ Tg and x̂(ν) represents

the vector of the average number of tokens for all the input places. For

brevity, when the function will not depend on the color instance c, we

will omit the c and we will simplify the specification of the function in

the following way ft(x̂(ν), ν).

• exp(− y

Cost
) represents a coefficient varying in [0, 1] and it is directly

related to the y value. This is usually multiplied by a constant rate, so

that an increase of y involves a decrease in the associated rate.

• xtot〈px,py,pz〉
(ν) is the total number of cells in the grid cell with coordi-

nates 〈px, py, pz〉 at time ν. For simplicity, we will omit the indication of

the position 〈px, py, pz〉 and of the time ν, so in the case of xtot〈px,py,pz〉
(ν),

it will be xtot. In general the notation will be xName〈px,py,pz〉
(ν) = xName.

All the general transitions of the model are now explained in details and all

the constants are summarized in Tables 8.3 and 8.6.

• EBVinj and DACinj inject into the system specific quantities of EBV

and DAC respectively at fixed time points;

• FromTimoREG, FromTimoEFF, and NKentry are the transitions which

keep in a constant range the number of RestingTreg, RestingTeff , and

NK respectively. Their speed is defined as

f〈FromTimoREG,px,py ,pz〉(xResTreg, ν) = qRestTreg ∗ (1− xResTreg/63);

f〈FromTimoEFF,px,py ,pz〉(xResTeff , ν) = qRestTeff ∗ (1− xResTeff/1687);

f〈NKentry,px,py ,pz〉(xNK , ν) = qNK ∗ (1− xNK/375),

where xResTreg, xResTeff , and xNK are the numbers of cells in the

input places (i.e. RestingTreg for FromTimoREG, etc) at time ν and

position 〈px, py, pz〉. Then q− corresponds to the quantity injected in the

output place to preserve the cell quantity, i.e. 63 for the RestingTreg,

1687 for the RestingTeff and 375 for the NK.

• TregActivation and TeffActivation transitions model the activation of

the Teff and Tref cells. In particular, these are specified as general

216

A.3. Supplementary information: RRMS model

transitions to simulate a reduced Teff activation velocity with respect to

a decreasing virus presence, and a Treg activation velocity proportional

to the number of Teffs and inversely proportional to the number of EBV

particles (allowing the Teff to annihilate the virus). So the functions are

defined as

f〈TregActivation,px,py ,pz〉(x̂(ν), ν) = rTregA ∗
xTeff

(xTeff + xEBV + 1)

∗ xResTreg;

f〈TeffActivation,px,py ,pz〉(x̂(ν), ν) = rTeffA ∗ (1− exp(− xEBV
CEBV

))

∗ xResTeff ,

where rTregA and rTeffA are the activation constant rates for the Treg

and Teff respectively. x̂(ν), in case of the TregActivation transition,

consists of the variables xResTreg, xEBV , xTeff corresponding respectively

to places RestingTeff,EBV and Teff ; differently the TeffActivation

transition speed depends on xResTeff and xEBV . Finally constant CEBV

is related to the EBV particles and it is meant to reduce the activation

rate with the decreasing of the virus presence.

• MemActivation is defined as

f〈MemActivation,px,py ,pz〉(x̂(ν), ν) =

0 ν < t2inj ,

rMemA ∗ xMem(ν) ν ≥ t2inj ,

where

rMemA = 2 ∗ rTeffA ∗ (1− exp(−xMem(ν)

CMem
) ∗ (1− exp(− xEBV

CEBV
),

and t2inj is the time corresponding to the second EBV injection. We

considere this velocity as zero since the T Memory effectors start to

react after the first virus occurrence. x̂(ν) = (xMem(ν), xEBV (ν)) is the

marking vector storing the number of T Memory effectors (no position

dependency) and EBV particles in the place 〈px, py, pz〉, respectively at

time ν. While CMem and CEBV constant related to the Memory and

EBV cells needed to slow down the activation rate with the decreasing

of EBV and Memory cells. This because we have to leave a minimum

number of T Memory effectors into the system. So when in the system

217

A.3. Supplementary information: RRMS model

there are large number of EBV particles and of T Memory effectors, the

activation speed reaches its maximum that is given by twice the velocity

of the Teff cells, rTeffA.

• The speed of all the transitions that model the killing of a specific cell

is defined as follows:

∀t ∈
{

TregKillsTeff,TeffKillsODC,TeffKillsEBV,NKKillsTcell
}

then

f〈t,px,py ,pz〉(x̂(ν), ν) =
1

xtot
∗ rt ∗

∏
i

x̂i(ν),

where
∏
i x̂i(ν) is the product of the average numbers of tokens in the

input places of transition t, rt is the constant rate associated with tran-

sition t , and
1

xtot
represents the probability that a specific meeting

between two different cells occurs in the specific grid cell.

• TregDup transition models the Treg duplication, its speed depends pro-

portionally on the amount of IL-2 and is inversely proportional on the

number of DAC cells (to simulate the reduced duplication velocity dur-

ing the daclizumab therapy), and it is defined as follows:

f〈TregDup,px,py ,pz〉(x̂(ν), ν) = ηTrD(x̂(ν), ν) ∗ xTreg ∗ xIL2 ∗
1

xtot
,

with

ηTrD(x̂(ν), ν) = rTregDup ∗ (1− exp(− xIL2

CIL2
)) ∗ (exp(− xDAC

CDAC
)).

where rTregDup is the constant Treg duplication rate,

x̂(ν) =
{
xTreg, xIL2, xDAC

}
and CIL2 and CDAC are the constants

related to the IL-2 and DAC cells to slow down the duplication velocity

with an increasing number of DACs and a decreasing number of IL-2

proteins.

• Considering the Teff duplication event we have to distinguish two possi-

ble cases: 1) the Teff symmetric duplication with probability pdupeff and a

Teff asymmetric duplication, implying the T Memory effector differenti-

ation, with probability pmemeff = 1−pdupeff . This is modeled exploiting two

different transitions: TeffDup Sym and TeffDup Asym. So let us define

reffdup = ηTeD(x̂(ν), ν) ∗ xTeff ∗ xIL2 ∗
1

xtot

218

A.3. Supplementary information: RRMS model

then the speed of these two transitions is defined as:

f〈TeffDup Sym〉,px,py ,pz(x̂(ν), ν) = pdupeff ∗ r
eff
dup

and

f〈TeffDup Asym,px,py ,pz〉(x̂(ν), ν) = pmemeff ∗ r
eff
dup ,

with

ηTeD(x̂(ν), ν) = rTeffDup ∗ (1− exp(− xIL2

CIL2
)) ∗ (exp(− xDAC

CDAC
)).

Where rTeffDup is the constant Teff duplication rate,

x̂(ν) =
{
xTeff , xIL2, xDAC

}
.

For clarity, the notation for the movements functions of the color com-

binations 〈px, py, pz〉 and 〈qx, qy, qz〉, representing the location coordinates, is

simplified to 〈p〉 and 〈q〉, respectively.

• TeffMovement simulates the movement of Teff cells from point (with

coordinates represented by the color combination) 〈p〉 to point 〈q〉. The

speed of this movement (the rate of transition TeffMovement) is inversely

related to the number of EBV cells in 〈p〉 and depends on the number

of EBV in 〈q〉 such that a greater number of EBV cells leads to a higher

probability to move into that location. This is captured by the following

formula

f〈TeffMovement,p,q〉(x̂(ν), ν) =rmoves ∗ (exp(−
xEBV〈p〉
CEBV

))

∗ pTeff〈q〉 ∗ xTeff〈p〉

where rmoves is an experimental coefficient that we set equal to 0.1;

exp(−
xEBV〈p〉
CEBV

) is a term that accounts for the fact that the velocity of

the movement is inversely related to the number of EBV cells in the

starting point going to 0 in a manner that is slower than 1/xEBV〈p〉 ;

pTeff〈q〉 =
xEBV〈q〉
EBVtot

represents the probability to move in the cell with

coordinates 〈q〉 where EBVtot is the total number of EBV in the grid

at time ν; and CEBV is an experimental constant that we set equal to

1000. All these quantities are functions of the time ν which is omitted

in the formula to keep the notation simpler.

219

A.3. Supplementary information: RRMS model

• TregMovement represents the movements of the Treg cells from point

〈p〉 to point 〈q〉. Similarly to what explained for transition TeffMove-

ment the speed is inversely related to the number of Teff cells in 〈p〉
(term exp(−

xTeff〈p〉
CTeff

)) and depends on the number of Teffs in 〈q〉 (term

pTreg〈q〉 =
xTeff〈q〉
Tefftot

), such that a greater number of Teffs leads to a higher

probability to reach that location.

f〈TregMovement,p,q〉(x̂(ν), ν) =rmoves ∗ (exp(−
xTeff〈p〉
CTeff

))

∗ pTreg〈q〉 ∗ xTreg〈p〉

Again, in our experiment we fixed rmoves = 0.1 and CTeff = 800.

• EBVMovement simulates the EBV movements from point 〈p〉 to point

〈q〉. In this case we assume that the probability to move is equally

distributed among all the grid cells.

f〈EBVMovement,p,q〉(x̂(ν), ν) = rmoves ∗ pEBV〈q〉 ∗ xEBV〈p〉

Also in this case, in our experiment we fixed rmoves = 0.1.

• DACMovement simulates the DAC movements from point 〈p〉 to point

〈q〉. This is inversely related to the number of T-cells (Treg + Teff)

in 〈p〉 as for the TeffMovement and TregMovement cases and directly

proportional to the number of T-cells in 〈q〉.

f〈DACMovement,p,q〉(x̂(ν), ν) =rmoves ∗(exp(−
xTcells〈p〉
CTcell

)) ∗ pDAC〈q〉

∗ xDAC〈p〉

The quantities rmoves = 0.1 and CTcell = 1000 were used in this last

case.

A.3.2 Third model

General transitions

Let us recall that by the definition of the ESSN formalism, transitions which do

not follow the MA law are modelled as general transitions because. In details

220

A.3. Supplementary information: RRMS model

DACInjection

IL10_in IL17_in

Resting_Treg_in

Resting_Treg_temp

Resting_Treg_out

Treg_out

Treg_in

Effector
Memory

IL10_out

IFNg_out

IL17_out
Antigen

NK_out
Teff_out

Teff_in

BBB

Resting_Teff_out

Resting_Teff_temp

ODC

Resting_Teff_in

IFNg_in

IL10Consuption_out

NK_prod_IL10

Treg_prod_IL10
AntigenInjection

TeffKillsA

IFNgConsuption_out

IL17Consuption_out Teff_prod_IL

NK_prod_IFNgTeff_prod_IFNg

NKentry

NKDegradation

NKkillsTeff_out
TeffDup_Sym_out

FromTimoEff

DACkillTeff

DACDegradation

DACkillTreg
TregDup_out

Treg_death

TregActivation_out

FromTimoReg

TeffDup_Asym_out

MemActivation

TregKillsTeff_out

Teff_pass_BBBTreg_pass_BBB
IL17_BBB

TregActivation_in

Treg_to_NLT

TregDup_in

Treg_prod_IL10_in

IL10Consuption_in

Teff_prod_IFNg_in

TeffDup_Sym_in

Teff_prod_IL17_in

Teff_to_NLT

TeffActivation_in

Remyelinization

TeffKillsODC

IL17Consuption_inIFNgConsuption_in

DAC

NKdup

Figure A.1: RRMS model represented by exploiting the ESSN graphical for-
malism. Name of the places are represented in bold text.

221

A.3. Supplementary information: RRMS model

the speed of general transition t ∈ Tg is defined by a function f〈t,c〉(x̂(ν), ν),

where x̂(ν) represents the vector of the average number of tokens for all the

transition input places at time ν and 〈t, c〉 is the instance transition. Given

that the place ODC is the only place with an associated color domain, just

the functions associated with transitions connected with this place will de-

pend on the color instance c, for the other cases the function will be defined

as ft(x̂(ν), ν).

In the ESSN representing the RRMS depicted in Fig. A.1, the general tran-

sitions are 15 modeling the i) the killing of a cell, e.g., TregKillsTeff in or

TeffKillsODC, ii) the entry of NK cells into the system, NKentry, iii) the ac-

tivation of T cells, e.g., TeffActivation in, iv) the duplication of a cell, e.g.,

such as TeffDup in, and v) the injections of the DAC and Antigen into the

system, i.e., DACInjection and AntigenInjection.

Duplication. Considering the Teff duplication event we have to distin-

guish two possible cases: 1) the Teff symmetric duplication with probability

ρdup = 2/3 and a Teff asymmetric duplication, implying the T Memory effector

differentiation, with probability ρmem = 1− ρdup. This is modeled exploiting

three different transitions: TeffDup Sym out(in) and TeffDup Asym out. In

the CNS we model only the symmetric differentiation. The asymmetric dif-

ferentiation give rise to the production of Effector memory cells. These last

remain in blood circulation and are able to respond faster to antigen stimu-

lation.The asymmetric differentiation occurs in peripheral blood circulation,

then the produced effector memory cells can migrate to all other tissues (e.g.

CNS).

So let define

rindup = xTeff in(ν) ∗ pTeff Dup
routdup = xTeff out(ν) ∗ pTeff Dup

then these two transitions are defined as:

fTeffDup Sym in(x̂(ν), ν) = ρdup ∗ rindup
fTeffDup Sym out(x̂(ν), ν) = ρdup ∗ routdup

and

fTeffDup Asym out(x̂(ν), ν) = ρmem ∗ routdup,

222

A.3. Supplementary information: RRMS model

Where pTeff Dup is the constant Teff duplication rate, see Table A.9, and

x̂(ν) = xTeff in when the transition considered is the TeffDup Sym in, other-

wise x̂(ν) = xTeff out.

Activation. The TeffActivation out and TeffActivation in transitions model

the activation of the Teff cells in the peripheral lymphonode/blood vessel

(out) and the CNS (in).

The activation of the Teff cells is modeled by the following functions

fTeffActivation out(x̂(ν), ν) = pTeffActivation ∗ xRestingTeff out(ν) ∗ xAntigen(ν)

∗ (0.5 + exp(−xIFNg out(ν)/Cifn));

f〈TeffActivation in,l〉(x̂(ν), ν) = pTeffActivation ∗ xRestingTeff in(ν) ∗ xODC l(ν)

∗ (0.5 + exp(−xIFNg in(ν)/Cifn)),

where pTeffActivation is the constant Teff activation rate, see Table A.9, and

x̂(ν) = {xRestingTeff out, xAntigen, xIFNg out} when the transition considered is

the TeffActivation out, otherwise x̂(ν) = {xRestingTeff in, xODC l, xIFNg in}l∈cd(ODC)

. Let us note that the term (0.5 + exp(−xIFNg in(out)(ν)/Cifn)) is a coeffi-

cient varying in [0.5, 1.5] respectively to the concentration of IFNγ, more is

present into the system slower is the velocity. In particular when there is no

IFNγ then to the velocity is associated the highest value, (i.e., 1.5). otherwise

it decreases until 0.5 .

Similarly, the transition MemActivation modeling the activation of T Mem-

ory effectors only in the peripheral lymphonode/blood vessel is defined as

fMemActivation(x̂(ν), ν) =

0 ν < t2inj ,

rMemA ∗ xEffectorMemory(ν) ν ≥ t2inj ,

where

rMemA = 2∗pTeffActivation ∗xAntigen(ν)∗(0.5+exp(−xIFNg out(ν)/Cifn)),

and t2inj is the time corresponding to the second antigen injection. We are

considering the velocity of this transition as zero ∀ν < t2inj , since we are

assuming that the T Memory effectors start to react after the first virus oc-

currence, with twice the velocity of the Teff cells (for this reason we have

2 ∗ pTeffActivation).

223

A.3. Supplementary information: RRMS model

NK entry. The NKentry transition keeps in a constant range around 30

([121, 87]) the number of NK out. It is defined by the following function:

fNKentry(x̂(ν), ν) =

0 xNK out(ν) > 30,

0.267 ∗ (30− xNK out(ν)) xNK out(ν) ≤ 30.

Killing. The general transitions modeling the killing of specific cell are the

following:

• the TregKillsTeff out and TregKillsTeff in modeling the controlling ac-

tion of the Treg over the Teff cells. These are defined as follows:

fTregKillsTeff out(x̂(ν), ν) = pTregKillsTeff ∗ xTreg out(ν) ∗ xTeff out(ν)

∗ (1− exp(−xIL10 out(ν)/cIL10)),

fTregKillsTeff in(x̂(ν), ν) = pTregKillsTeff ∗ xTreg in(ν) ∗ xTeff in(ν)

∗ (1− exp(−xIL10 in(ν)/cIL10)),

where the coefficient (1−exp(−xIL10 in(ν)/cIL10)) varies in [0,1] repre-

senting the Treg cell needs IL-10 for suppression of the Teff cells. Indeed,

with an increasing number of IL-10 (i.e., the coefficient goes to 1) the

transition velocity increases, otherwise it decreases.

• The TeffkillsA and TeffKillsODC modeling the annihilation of the pathogen

by the Teff action and the ODC damage due to Activated Teff cells, re-

spectively, are defined as follows:

fTeffkillsA(x̂(ν), ν) = pTeffkillsA ∗Θout(ν) ∗ xAntigen(ν) ∗ xTeff out(ν),

f〈TeffKillsODC,l〉(x̂(ν), ν) = pTeffKillsODC ∗Θin(ν) ∗ xODCl
(ν) ∗ xTeff in(ν),

with l ∈ cd(ODC), Let define Θin(/out) as a coefficient varying in [0.5, 1.5]

which takes in account the pro- (IL-17, IFNγ) and anti-inflammatory

(IL-10) cytokines in order to increase the velocity of the Teff action

when more pro-inflammatory cytokines are present into the system, or

224

A.3. Supplementary information: RRMS model

decrease it otherwise. These coefficients are defined as follows:

Θout = 1 + 0.5 ∗
xIL17 out(ν) + xIFNg out(ν)− xIL10 out(ν)

xIL17 out(ν) + xIFNg out(ν)− xIL10 out(ν)
,

Θin = 1 + 0.5 ∗
xIL17 in(ν) + xIFNg in(ν)− xIL10 in(ν)

xIL17 in(ν) + xIFNg in(ν)− xIL10 in(ν)
.

• Finally the Daclizumab action to control the Treg and Teff cells spread-

ing is modeled by the transitions DACkillTeff and DACkillTreg, whose

functions are defined as follows:

fDACkillTeff (x̂(ν), ν) = pDACkill ∗
xTreg out(ν)

xTreg out(ν) + xTeff out(ν)
∗ xDAC(ν)

fDACkillTreg(x̂(ν), ν) = pDACkill ∗
xTeff out(ν)

xTreg out(ν) + xTeff out(ν)
∗ xDAC(ν)

where the coefficient
1

xTreg out(ν) + xTeff out(ν)
scales the velocity with

respect to the number of Teff and Treg cells.

The parameters pTransition name are defined in Table A.9.

Injections. The AntigenInjection and DACinjection transitions inject into

the system specific quantities of Antigen and Daclizumab respectively at fixed

time points. These transitions are modeled by the occurrence of discrete events

during the simulation which modify the model marking in specific time points

(feature implemented in the Epimod Package).

Data

For the calibration of the model we used biological data from eight relapsing

MS patients and eight healthy donors (HDs). A blood sample and a cere-

brospinal fluid (CSF) sample of MS subjects were collected at the onset of the

disease. Since CSF withdrawal is an invasive practice, for HDs only a blood

sample was obtained. The flow cytometer cell counts have been used to set

the initial marking of the net. In details, the cells were isolated from blood

and in-vitro activated as specified in the methods section of [129]. After 18

hours cells were “tagged” with a mixture of fluorescent antibodies directed

225

A.3. Supplementary information: RRMS model

towards proteins that identify the culture of interest. Regarding T cells, the

combinations of multiple antibodies can be used to identify a specific cellular

subtype of interest. In our case, the total of CD4+ T cells / ml of blood or

CD4+ T cells / ml of CSF was counted, and, among them, the percentage

of cells producing IL-17, IFNγ or IL-10 in blood and CSF was identified, see

Table A.5. Referring to the Table A.5 in the main paper, we related those

numbers to 1 ul and identified the values to be included in our model. In

particular, we infer the numbers of T effector cells from the sum of IFNg val-

ues and IL-17 values, and the the number of regulatory T cells from IL-10

values. Differently, to attribute a value for circulating cells in the CNS in

healthy subjects we identified a threshold value from the literature and then

attributed random values below this threshold [41].

The individual cell counts of MS patients and healthy subjects were used to

fit the model parameters.

Tables and Figures

Place Number of cells/mmˆ 3 Reference

Resting Teff out 1689 [116]
Resting Treg out 63 [116]

N K out 30 [121, 87]
I L-17 out 8 [129]
I L-10 out 13 [129]
I FNg out 42 [129]
I L-17 in 1 [129]
I L-10 in 1 [129]
I FNg in 1 [129]

ODC Lmax 500 [116]

Table A.6: Initial marking of the model.

226

A.3. Supplementary information: RRMS model

Patient
ID

IFNγ-
producing
cells
(blood)

IL17-
producing
cells
(blood)

IL10-
producing
cells
(blood)

IFNg-
producing
cells
(CSF)

IL17-
producing
cells
(CSF)

IL10-
producing
cells
(CSF)

MS1 169.22 30.83 3.52 13.24 3.31 0.06
MS2 21.56 5.33 1.02 5.59 1.71 0.06
MS3 71.10 15.45 2.46 16.10 0.60 0.10
MS4 15.44 21.34 1.54 3.36 0.88 0.04
MS5 148.65 28.66 2.27 17.80 2.87 0.10
MS6 60.31 15.80 4.38 12.27 1.18 0.14
MS7 377.13 53.86 5.13 29.64 2.29 0.11
MS8 156.74 21.87 8.26 10.15 1.64 0.13
mean MS 117 25 3 12.77 1.85 0.09

HD1 42.37 21.19 26.98 0.30 0.30 0.40
HD2 2.40 13.20 16.80 0.80 0.20 1.00
HD3 8.70 7.83 8.18 0.20 0.80 1.00
HD4 69.30 3.15 11.76 1.00 1.00 1.00
HD5 16.15 2.38 8.27 0.10 0.80 0.10
HD6 18.45 1.64 6.48 2.00 1.00 2.00
HD7 63.00 7.88 10.94 0.10 0.10 0.80
HD8 97.27 13.70 12.06 0.20 1.90 1.90
mean HD 42 8 13 0.59 0.76 1.03

Table A.5: Biological data from eight relapsing MS patients and eight HD
subjects. Values are expressed as number of cells/mmˆ 3.

Transition Rate value

FromTimoREG 0.317
FromTimoEFF 0.296
NKdup 1/24h−1

NKDegradation 1/24h−1

Teff death 1/24h−1

Teff to NLT 1/24h−1

Treg death 1/24h−1

Treg to NLT 1/24h−1

Treg prod IL10 2 0.05556
Teff prod IL17 0.00895
Teff prod IFNg 0.0466
DACDegradation 3 0.001444057

Table A.8: List of the fixed parameters.
227

A.3. Supplementary information: RRMS model

Healthy MS
Parameter Transition Value

pTeff Activation TeffActivation out
MemActivation
TeffActivation in l le1
TeffActivation in l le2
TeffActivation in l le3
TeffActivation in l le4
TeffActivation in l le5

0.015 0.018

pTreg Activation TregActivation in
TregActivation out

4e-04 7e-05

pTreg Dup TregDup in TregDup out 0.006 –

pTeff Dup TeffDup Asym out
TeffDup Sym in
TeffDup Sym out

0.04 –

pTeffKillsODC TeffKillsODC l le1
TeffKillsODC l le2
TeffKillsODC l le3
TeffKillsODC l le4

6e-04 –

pTrkTe TregKillsTeff in
TregKillsTeff out

0.02 –

pTekA TeffkillsA 6e-04 –

pPass BBB treg Treg pass BBB 0.45 –

pPass BBB teff Teff pass BBB 0.005 –

pNKkillsTeff NKkillsTeff out 0.01 –

pNK prod IFNg NK prod IFNg 0.03 –

pNK prod IL10 NK prod IL10 0.045 –

pIL17 BBB IL17 BBB 0.0115 –

pIL10 BBB IL10 BBB 0.0765 –

pRemyelinization Remyelinization l le2
Remyelinization l le3
Remyelinization l le4

0.01 –

pIL10Consuption IL10Consuption out
IL10Consuption in

0.09 –

pIL17Consuption IL17Consuption out
IL17Consuption in

0.03 –

pIFNgConsuption IFNgConsuption out
IFNgConsuption in

0.05 –

Cifn as pTeff Activation 20 –

CIL10 as pTregKillsTeff 10 –

Table A.9: List of the calibrated parameters to fit with the real data, in both
the healthy and MS patient.

228

A.3. Supplementary information: RRMS model

Healthy MS DP 0.01; DAC 1000 DP 0.01; DAC 2000 DP 0.01; DAC 5000 DP 0.01; DAC 10000 DP 0.01; DAC 15000 DP 0.03; DAC 1000 DP 0.03; DAC 2000 DP 0.03; DAC 5000 DP 0.03; DAC 10000 DP 0.03; DAC 15000

A
ntigen

D
A

C
Teff_out

IF
N

g_out
IL17_out

Treg_out
IL10_out

N
K

_out
B

B
B

Teff_in
IF

N
g_in

IL17_in
Treg_in

IL10_in
O

D
C

 irr. dam
aged

0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0

0
100
200
300
400

0
5000

10000
15000
20000

0

50

100

150

50

100

0

10

20

30

0
5

10
15
20

0
25
50
75

100

0
50

100
150
200

0

2

4

6

0
10
20
30
40
50

0
10
20
30
40

0.0
2.5
5.0
7.5

10.0
12.5

0
2
4
6
8

0
1
2
3
4
5

0
100
200
300
400

Days

Q
ua

nt
ity

Healthy MS 1000 2000 5000 10000 15000

Figure A.2: Stochastic simulations considering the early therapy. Different
colors are associated with quantity of DAC injected for each scenario, from
1000 to 15000 cells. The first two column represent the healthy and MS
scenarios. Two drug potencies (called DP) are showed, i.e., 0.01 e 0.03.

229

A.3. Supplementary information: RRMS model

Healthy MS DP 0.01; DAC 1000 DP 0.01; DAC 2000 DP 0.01; DAC 5000 DP 0.01; DAC 10000 DP 0.01; DAC 15000 DP 0.03; DAC 1000 DP 0.03; DAC 2000 DP 0.03; DAC 5000 DP 0.03; DAC 10000 DP 0.03; DAC 15000

A
ntigen

D
A

C
Teff_out

IF
N

g_out
IL17_out

Treg_out
IL10_out

N
K

_out
B

B
B

Teff_in
IF

N
g_in

IL17_in
Treg_in

IL10_in
O

D
C

 irr. dam
aged

0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0 0

20
0

40
0

60
0

0
100
200
300
400

0
5000

10000
15000
20000

0

50

100

150

50

100

0

10

20

30

0
5

10
15
20

0
25
50
75

100

0
50

100
150
200

0

2

4

6

0
10
20
30
40

0
10
20
30
40

0.0
2.5
5.0
7.5

10.0
12.5

0
2
4
6
8

0
1
2
3
4
5

0
100
200
300
400

Days

Q
ua

nt
ity

Healthy MS 1000 2000 5000 10000 15000

Figure A.3: Stochastic simulations considering the late therapy. Different
colors are associated with quantity of DAC injected for each scenario, from
1000 to 15000 cells. The first two column represent the healthy and MS
scenarios. Two drug potencies (called DP) are showed, i.e., 0.01 e 0.03.

230

A.3. Supplementary information: RRMS model

231

A.4. Supplementary information: COVID19 model

A.4 Supplementary information: COVID19 model

A.4.1 Parameter

Symbol Value Description

A {1, . . . , 3} Set of age classes. Each age
class corresponds to one of the
following age ranges: 0-19, 20-
69, and 70++

Assumption

S {u, q, h} Set of infected categories. u:
undetected infected individuals;
q: quarantine infected individ-
uals with mild symptoms; h:
hospitalized infected individuals
with moderate or severe symp-
toms

Assumption

C {Home, Work,
School, Other}

Set of contact categories. [122]

ηs,c, s ∈ S, c ∈ C see Table A.12 Amount of social interaction of
the infected category s

Assumption

λs, s ∈ S 0.2 rs Rates at which an exposed indi-
vidual becomes an infected indi-
vidual in sub-class s. It is com-
puted as the inverse of the incu-
bation period time (5 days) mul-
tiplied by the ratio (rs) of new
infected in category s (see Ta-
ble A.11).

[88]

βc
i,j , i, j ∈ A, c ∈ C Contact rate between a suscep-

tible of age class i and an infect
of class j, considering the con-
tact category c.

[122]

ιi, i ∈ A Age dependent probability of
infection given a contact.

Estimated

ρ 0.2 The reciprocal of the mean in-
fectious period (5 days). The
time of infectiousness was de-
rived from empirical estimates
of the serial interval, the time
between successive cases in a
chain of transmission.

[109]

σi, i ∈ A Death rate for patients with
sever symptoms in age class i.

Estimated

α(t, c), c ∈ C see Table A.13 Governmental action strength
at time t

Estimated

k Intensity of the population re-
sponse w.r.t the COVID-19 per-
ceived hazard

Estimated

θ(i, t), i ∈ A Age and time dependent detec-
tion rate with which an unde-
tected infected individual is dis-
covered becoming a quarantine
infected individuals

Estimated/Assumption

µ 0.025 Mean duration of public reac-
tion (40 days)

Assumption

ν 0.001826 The reciprocal of the mean im-
munization period of the re-
covered individuals, equal to
1.5 years. This is an average
value computed considering the
immunity values of SARS and
MERS

[175]

Table A.10: COVID19 model notation.

232

A.4. Supplementary information: COVID19 model

Scenario u q h

One-to-one 0.50 0.275 0.225

Table A.11: Ratio rs of new infected in category s (u, q and h).

Infect category Home Work School Other

u 1 1 1 1
q 0.1 0 0 0
h 0 0 0 0.05

Table A.12: Contact restriction due to the infection.

Date Home Work School Other

February 25th 1 1 0 1
March 8th 1 0.75 0 0.65
March 21st 1 0.4 0 0.3
May 4th 1 0.5 0 0.35
May 18th 1 0.6 0 0.4
June 1st 1 0.9 0 0.5

Table A.13: Governmental actions strength for each contact category charac-
terized by three restrictions (first three rows) and three releases (last three
rows).

A.4.2 Contact Matrix

We exploited the Italian synthetic age-specific contact matrix estimated in

[122]. In particular, this matrix is defined as a linear combination of four

matrices depending on the location of contact, i.e, Home, School, Work,

and Other. Since our model is defined for three age classes (0-19, 20-69 and

70++), while in [122] the age classes are defined as 5-year bands until age

70 years and a single category aged 75++ (resulting in 16 age categories),

we have to scale the rates proportionally to the size and number of the new

age classes. In Fig. A.7 the age-specific and location-specific contact matrices

are reported. In details, the columns represent the location of contact, while

the rows report the seven phases in the simulation window: the usual contact

rates, namely Normal, the three public restrictions, and the three re-opening

phases. The intense of the color indicates higher propensity of making the

233

A.4. Supplementary information: COVID19 model

contact considering a specific phase.

A.4.3 Further results

Figures A.4 and A.5 show the time evolution of infected individuals and the

deaths due to Sars-CoV-2 derived by the model considering the optimal pa-

rameter values estimated in the calibration phase. In details, the stacked bar

charts in Figure A.4d) shows the proportion of infected individuals in the

population. Comparing this surveillance data with those obtained by our cal-

ibrated model (i.e, given by the sum of the light blue and blue-gray bars in

Fig.A.4) we can clearly point out that a good level of accordance is achieved.

Similar conclusion can be derived when we focus on the deaths due to Sars-

CoV-2. Indeed Fig.A.5 d) shows certainly that the calibrated model is able

to consistently mimic the measured death cases (i.e., red line) too, for both if

we look at the aggregated information and if we compare single age classes.

Furthermore, Figures A.4 from a) to c) provide a detailed overview on how the

infects spread across the different age classes. Figure A.6 shows 5000 different

stochastic realization of our mechanistic model with the corresponding me-

dian trend and interquartile range. It can be noted that in the initial stages of

the pandemic the stochastic behaviour of our model foresees a slightly higher

number of infected cases, but starting from March 21st the Surveillance data

(red line) lies within the interquaritle range, depicted as a light-green shaded

area.

234

A.4. Supplementary information: COVID19 model

1st public restriction

2nd public restriction

3rd public restriction

1st public restriction

2nd public restriction

3rd public restriction

1st public restriction

2nd public restriction

3rd public restriction

1st public restriction

2nd public restriction

3rd public restriction

70++ years old Comulative

0−19 years old 20−69 years old

F
e

b
−

1
7

F
e

b
−

2
4

M
a

r−
0

2

M
a

r−
0

9

M
a

r−
1

6

M
a

r−
2

3

M
a

r−
3

0

A
p

r−
0

6

A
p

r−
1

3

A
p

r−
2

0

A
p

r−
2

7

M
a
y
−

0
4

F
e

b
−

1
7

F
e

b
−

2
4

M
a

r−
0

2

M
a

r−
0

9

M
a

r−
1

6

M
a

r−
2

3

M
a

r−
3

0

A
p

r−
0

6

A
p

r−
1

3

A
p

r−
2

0

A
p

r−
2

7

M
a
y
−

0
4

F
e

b
−

1
7

F
e

b
−

2
4

M
a

r−
0

2

M
a

r−
0

9

M
a

r−
1

6

M
a

r−
2

3

M
a

r−
3

0

A
p

r−
0

6

A
p

r−
1

3

A
p

r−
2

0

A
p

r−
2

7

M
a
y
−

0
4

F
e

b
−

1
7

F
e

b
−

2
4

M
a

r−
0

2

M
a

r−
0

9

M
a

r−
1

6

M
a

r−
2

3

M
a

r−
3

0

A
p

r−
0

6

A
p

r−
1

3

A
p

r−
2

0

A
p

r−
2

7

M
a
y
−

0
4

0

5000

10000

15000

20000

25000

30000

0

10000

20000

30000

40000

50000

0

50

100

150

200

250

300

350

400

450

500

0

5000

10000

15000

20000

Days

C
o

m
u

la
ti

v
e

 i
n

fe
c

te
d

 c
a

s
e

s

Ih Iq Iu Surveillance Detection

�) b)

�)�)

Figure A.4: Model fitting of the surveillance data. Histogram’s bars show the
number of infected individuals for each age class (a) Age class 0− 19; b) Age
class 20−69; c) Age class 70++; d) Overall population) with severe symptoms
Ih, under quarantine restriction in their houses Iq and undetected infects Iu.
The red curve represents the surveillance data, which does not account for
undetected cases.

Comulative

20−69 years old 70++ years old

Mar 01 Mar 15 Apr 01 Apr 15 May 01

Mar 01 Mar 15 Apr 01 Apr 15 May 01 Mar 01 Mar 15 Apr 01 Apr 15 May 01

0

1000

2000

0

200

400

0

1000

2000

3000

Days

D
e

a
th

s

D
Surveillance
data

�) b)

�)

Figure A.5: Model fitting of the surveillance data considering the number
of deaths for each age class (a) Age class 20 − 69; b) Age class 70 + +; c)
Overall population). The age class 0−19 is not showed because no deaths are
reported in Piedmont region. The red curve represents the surveillance data,
which does not account for undetected cases.

235

A.4. Supplementary information: COVID19 model

1st public restriction 2nd public restriction 3rd public restriction

0

5000

10000

15000

20000

25000

30000

35000

40000

F
e

b
−

2
1

F
e

b
−

2
8

M
a

r−
0

6

M
a

r−
1

3

M
a

r−
2

0

M
a

r−
2

7

A
p

r−
0

3

A
p

r−
1

0

A
p

r−
1

7

A
p

r−
2

4

M
a
y
−

0
1

Days

C
o

m
u

la
ti

v
e
 i
n

fe
c
te

d
 c

a
s
e
s

Surveillance data

Median

Simulated data

25th−75th quantiles

Figure A.6: Stochastic simulations of the one-to-one ratio scenario. 5000
stochastic traces spanning the time period from February 21th to May 1st.
The light-green shaded area shows the range containing traces within the 25th

to 75th quantiles. The dark-green line is the median of all the traces and the
red line is the surveillance. Vertical dashed lines mark the division between
two time epoch.

0-19 20-70 >70 0-19 20-70 >70 0-19 20-70 >70 0-19 20-70 >70
0-19 1.94626091 1.85788621 0.05751326 3.59022198 2.65505839 0.19290783 0.01111344 0.0120437 6.56E-06 5.18483237 0.68061173 0.0001179
20-70 0.66185773 2.150229 0.06691802 0.68828975 6.14448455 0.36851142 0.21203735 3.74408731 2.60E-05 1.22937062 0.36937897 0.00087144
>70 0.43331945 1.24103351 0.45030494 0.14779459 4.41545631 0.44487167 2.76E-06 0.00022143 1.24E-05 1.90E-64 4.74E-66 6.75E-92

0-19 20-70 >70 0-19 20-70 >70 0-19 20-70 >70 0-19 20-70 >70
0-19 1.94626091 1.85788621 0.05751326 3.59022198 2.65505839 0.19290783 0.00111134 0.00120437 6.56E-07 0 0 0
20-70 0.66185773 2.150229 0.06691802 0.68828975 6.14448455 0.36851142 0.19083362 3.36967858 2.34E-05 0 0 0
>70 0.43331945 1.24103351 0.45030494 0.14779459 4.41545631 0.44487167 2.48E-06 0.00019929 1.11E-05 0 0 0

0-19 20-70 >70 0-19 20-70 >70 0-19 20-70 >70 0-19 20-70 >70
0-19 1.94626091 1.85788621 0.05751326 2.33364429 1.72578795 0.12539009 0.00833508 0.00903278 4.92E-06 0 0 0
20-70 0.66185773 2.150229 0.06691802 0.44738834 3.99391496 0.23953242 0.15902801 2.80806548 1.95E-05 0 0 0
>70 0.43331945 1.24103351 0.45030494 0.09606649 2.8700466 0.28916658 2.07E-06 0.00016607 9.29E-06 0 0 0

0-19 20-70 >70 0-19 20-70 >70 0-19 20-70 >70 0-19 20-70 >70
0-19 1.94626091 1.85788621 0.05751326 1.07706659 0.79651752 0.05787235 0.00444537 0.00481748 2.62E-06 0 0 0
20-70 0.66185773 2.150229 0.06691802 0.20648692 1.84334537 0.11055342 0.08481494 1.49763492 1.04E-05 0 0 0
>70 0.43331945 1.24103351 0.45030494 0.04433838 1.32463689 0.1334615 1.10E-06 8.86E-05 4.95E-06 0 0 0

0-19 20-70 >70 0-19 20-70 >70 0-19 20-70 >70 0-19 20-70 >70
0-19 1.94626091 1.85788621 0.05751326 1.25657769 0.92927044 0.06751774 0.00555672 0.00602185 3.28E-06 0 0 0
20-70 0.66185773 2.150229 0.06691802 0.24090141 2.15056959 0.128979 0.10601868 1.87204365 1.30E-05 0 0 0
>70 0.43331945 1.24103351 0.45030494 0.05172811 1.54540971 0.15570508 1.38E-06 0.00011072 6.19E-06 0 0 0

0-19 20-70 >70 0-19 20-70 >70 0-19 20-70 >70 0-19 20-70 >70
0-19 1.94626091 1.85788621 0.05751326 1.43608879 1.06202336 0.07716313 0.00666806 0.00722622 3.94E-06 0 0 0
20-70 0.66185773 2.150229 0.06691802 0.2753159 2.45779382 0.14740457 0.12722241 2.24645238 1.56E-05 0 0 0
>70 0.43331945 1.24103351 0.45030494 0.05911784 1.76618252 0.17794867 1.65E-06 0.00013286 7.43E-06 0 0 0

0-19 20-70 >70 0-19 20-70 >70 0-19 20-70 >70 0-19 20-70 >70
0-19 1.94626091 1.85788621 0.05751326 1.79511099 1.32752919 0.09645391 0.01000209 0.01083933 5.91E-06 0 0 0
20-70 0.66185773 2.150229 0.06691802 0.34414487 3.07224228 0.18425571 0.19083362 3.36967858 2.34E-05 0 0 0
>70 0.43331945 1.24103351 0.45030494 0.0738973 2.20772816 0.22243583 2.48E-06 0.00019929 1.11E-05 0 0 0

Third
reopening

phase
N

orm
al

First
restriction

Second
restriction

Thrid
restriction

First
reopening

phase

Second
reopening

phase

Home Other Work School

Home Other Work School

Home Other Work School

Home Other Work School

Home Other Work School

Home Other Work School

Home Other Work School

Figure A.7: The age-specific and location-specific (columns) contact matrices
are reported for each phase (rows) in the simulation window. The intense of
the color indicates higher propensity of making the contact.

236

Abbreviations

ÔDE Symbolic ODE. 24–27, 29, 65, 69, 72, 75–78, 80, 81, 158–160, 175

AIC Akaike Information Criterion. 122

aP acellular Pertussis. 111

BBB Blood-Brain Barrier. 133, 135, 161–163, 166, 167, 170, 175

BDF Backward Differentiation Formula. 88, 106, 121

CDF Cumulative Distribution Function. 96, 97

CK Chapman-Kolmogorov. 12, 13

CME Chemical Master Equation. 12–14, 31, 32

CNS Central Nervous System. 134, 135, 156, 161–163, 167, 170, 175, 176,

222, 223, 226

CSF cerebrospinal fluid. 225–227

CTMC Continuous Time Markov Chain. 5, 9, 12–14, 17, 23, 35, 36

DAC Daclizumab. 134–139, 144, 147–149, 152, 154, 155, 157–163, 167, 170–

176, 216, 218, 220, 222

DFBA Dynamic Flux Balance Analysis. 38, 42, 43, 87

237

Abbreviations

DOA Dynamic Optimization Approach. 42

EBV Epstein-Barr Virus. 135–142, 144, 145, 147, 148, 152, 153, 156–161,

167, 216–220

ECDC European Centre for Disease Prevention and Control. 111

ECDF Empirical Cumulative Distribution Function. 97, 129–131

ESPN Extended Stochastic Petri Net. 5, 6, 45–49, 54–56, 81–83, 86, 88–96,

98, 99, 102, 103, 105, 195–197

ESSN Extended Stochastic Symmetric Net. 5, 6, 47–49, 54–57, 60, 79, 80,

92, 102, 103, 105, 112, 114, 117, 118, 133, 136, 155, 156, 162, 164, 173,

174, 176, 181, 183, 195–197, 220–222

FBA Flux Balance Analysis. 3, 6, 38, 40–43, 56, 81–84, 86–92, 196

FOI force of infection. 181, 184

FVA Flux Variability Analysis. 41

HD Healthy Donor. 165–167, 225, 227

HERVs Human Endogenous RetroViruses. 161

HHV-6 Human Herpes Virus 6. 161

IFNγ Interferon gamma. 133, 135, 161–163, 165, 167, 223, 224, 226

IL-10 Interleukin-10. 133, 161, 163, 167, 224, 226

IL-17 Interleukin-17. 133, 135, 161–163, 165, 167, 224, 226

IL-2 Interleukin-2. 136–140, 154, 157, 171, 175, 218

IL-2R Interleukin-2 receptor. 135, 170

LHS Latin Hypercube Sampling. 141, 142, 144

LPP Linear Programming Problem. 40–43, 82–84, 86–89

MA Mass Action. 13, 14, 18, 45, 46, 48, 52, 56, 60, 62, 70, 71, 74, 76, 79, 81,

82, 84, 88, 92–96, 99, 113, 138, 195, 216, 220

238

Abbreviations

MCS Monte Carlo Sampling. 106

MS Multiple Sclerosis. 6, 103, 108, 133–136, 139–141, 150, 156, 161, 162,

165–168, 171–176, 225–227

NK Natural Killer. 136–140, 147, 157, 158, 161–163, 171, 175, 222

ODC Oligodentrocytes. 135, 137–145, 147–150, 157, 158, 160, 161, 163, 165–

167, 170, 171, 174, 175, 224

ODE Ordinary Differential Equation. 5, 6, 9, 13, 14, 20, 23–26, 32, 36, 38,

43, 46, 47, 49, 51, 56, 57, 62, 64, 69, 71, 81, 82, 84, 86–89, 91, 95, 105,

106, 118, 119, 121, 132, 140, 155, 158–160, 165, 175, 185, 196

OP Optimization Problem. 107

PDA Pancreatic Ductal Adenocarcinoma. 88, 90

PDE Partial Differential Equation. 111

PDF Probability Density Function. 96, 97

PN Petri Net. 4–6, 9–12, 15, 32, 37, 45, 48, 89, 103, 105, 195

PRCC Partial Rank Correlation Coefficient. 106, 107, 119, 121, 140, 141

RBP Reproducible Bioinformatics Project. 104, 109

REA Reaction Essentiality Analysis. 41

RG Reachability Graph. 11, 12, 23

RRMS Relapsing Remitting Multiple Sclerosis. 133–138, 144, 147, 149, 151,

155, 156, 158, 161, 162, 164, 167, 173, 174, 221, 222

RS Reachability Set. 11, 13

SEIRS Susceptible-Exposed-Infected-Recovered-Susceptible. 176, 178–180,

193

SIR Susceptible-Infected-Recovered. 12, 21, 22, 29, 45, 47, 48

SIRS Susceptible-Infected-Recovered-Susceptible. 57, 62, 77, 78, 112

239

Abbreviations

SM Symbolic Marking. 21–24, 80

SOA Static Optimization Approach. 42

SPN Stochastic Petri Net. 9, 12–14, 18, 20, 32, 35, 36, 45, 51, 52, 54, 105

SRG Symbolic Reachability Graph. 23

SSA Stochastic Simulation Algorithm. 5, 12, 13, 31–35, 92, 94, 98, 99, 106,

134, 166, 196

SSN Stochastic Symmetric Net. 9, 15–23, 27–29, 32, 45, 48, 52–54, 56, 57,

59, 60, 65–67, 69–71, 74, 76–78, 105, 196

Teff T Effector. 137–142, 145, 149–155, 157, 158, 161–163, 167, 170, 171,

175, 216–220, 222–225

Treg T Regulatory. 135–141, 145, 149–154, 157, 158, 161, 163, 166, 167, 170,

171, 175, 217, 218, 220, 224, 225

VZV Varicella Zoster Virus. 161

wP whole-cell Pertussis. 119

240

Bibliography

[1] S. I. Ahmed, K. Aziz, A. Gul, S. S. Samar, and S. B. Bareeqa. Risk of

multiple sclerosis in epstein–barr virus infection. Cureus, 11(9), 2019.

[2] T. Aittokallio and B. Schwikowski. Graph-based methods for analysing

networks in cell biology. Briefings in bioinformatic, 7, 2006.

[3] H. Akaike. Information theory and an extension of the maximum like-

lihood principle. In Selected papers of hirotugu akaike, pages 199–213.

Springer, 1998.

[4] A. Al-Mawali, A. D. Pinto, R. Al-Busaidi, R. H Al-Lawati, and M. Morsi.

Comprehensive haematological indices reference intervals for a healthy

omani population: First comprehensive study in gulf cooperation council

(gcc) and middle eastern countries based on age, gender and abo blood

group comparison. PloS one, 13(4):e0194497, 2018.

[5] E. G. Amparore, G. Balbo, M. Beccuti, S. Donatelli, and G. Franceschi-

nis. 30 years of GreatSPN. In Principles of Performance and Reliability

Modeling and Evaluation, pages 227–254. Springer, 2016.

[6] J. Babar, M. Beccuti, S. Donatelli, and A. S. Miner. GreatSPN enhanced

with decision diagram data structures. In Application and Theory of

Petri Nets.PETRI NETS 2010, volume 6128 of LNCS, pages 308–317.

2010.

[7] H. H Balfour Jr, C. J Holman, K. M Hokanson, M. M Lelonek, J. E Gies-

brecht, D. R White, D. O Schmeling, C. Webb, W. Cavert, D. H Wang,

and et al. A prospective clinical study of epstein-barr virus and host

interactions during acute infectious mononucleosis. Journal of Infectious

Diseases, 192(9), 2005.

241

Bibliography

[8] A. Bar-Or, M. P Pender, R. Khanna, L. Steinman, H.-P. Hartung,

T. Maniar, Ed Croze, B. T Aftab, G. Giovannoni, and M. A Joshi.

Epstein–barr virus in multiple sclerosis: theory and emerging im-

munotherapies. Trends in molecular medicine, 26(3):296–310, 2020.

[9] M. Beccuti, E. Bibbona, A. Horvath, R. Sirovich, A. Angius, and

G. Balbo. Analysis of petri net models through stochastic differential

equations. In International Conference on Applications and Theory of

Petri Nets and Concurrency, pages 273–293. Springer, 2014.

[10] M. Beccuti, C. Fornari, G. Franceschinis, S.M. Halawani, O. Ba-Rukab,

A.R. Ahmad, and G. Balbo. From symmetric nets to differential equa-

tions exploiting model symmetries. Computer Journal, 58(1):23–39,

2015.

[11] M. Beccuti, L. Capra, M. De Pierro, G. Franceschinis, and S. Per-

nice. Deriving symbolic ordinary differential equations from stochas-

tic symmetric nets without unfolding. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 11178 LNCS:30–45, 2018. doi:

10.1007/978-3-030-02227-3 3.

[12] M. Beccuti, L. Capra, M. De Pierro, G. Franceschinis, L. Follia, and

S. Pernice. A tool for the automatic derivation of symbolic ode from

symmetric net models. volume 2019-October, pages 36–48, 2019. doi:

10.1109/MASCOTS.2019.00015.

[13] D. Besozzi. Reaction-based models of biochemical networks. In A. Beck-

mann, L. Bienvenu, and N. Jonoska, editors, Pursuit of the Universal,

pages 24–34, Cham, 2016. Springer International Publishing. ISBN 978-

3-319-40189-8.

[14] L. R Bisset, T. L Lung, M. Kaelin, E. Ludwig, and R.W Dubs. Ref-

erence values for peripheral blood lymphocyte phenotypes applicable

to the healthy adult population in switzerland. European journal of

haematology, 72(3):203–212, 2004.

[15] J. C Blackwood, D. AT Cummings, H. Broutin, S. Iamsirithaworn, and

P. Rohani. Deciphering the impacts of vaccination and immunity on

242

Bibliography

pertussis epidemiology in thailand. Proceedings of the National Academy

of Sciences, 110(23):9595–9600, 2013.

[16] A. Bobbio, M. Gribaudo, and M. Telek. Analysis of large scale interact-

ing systems by mean field method. In 2008 Fifth International Confer-

ence on Quantitative Evaluation of Systems, pages 215–224, 2008. doi:

10.1109/QEST.2008.47.

[17] A. Bobbio, D. Cerotti, M. Gribaudo, M. Iacono, and D. Manini. Marko-

vian Agent Models: A Dynamic Population of Interdependent Marko-

vian Agents, pages 185–203. Springer International Publishing, Cham,

2016. ISBN 978-3-319-33786-9. doi: 10.1007/978-3-319-33786-9 13.

URL https://doi.org/10.1007/978-3-319-33786-9_13.

[18] A. Burden, R. Burden, and J. Faires. Numerical Analysis, 10th ed. 01

2016. ISBN 1305253663. doi: 10.13140/2.1.4830.2406.

[19] Patricia Therese Campbell, James M. McCaw, and Jodie McVernon.

Pertussis models to inform vaccine policy. In Human vaccines & im-

munotherapeutics, 2015.

[20] Y. Cao and L. Petzold. Accuracy limitations and the measurement

of errors in the stochastic simulation of chemically reacting systems.

Journal of Computational Physics, 212(1):6–24, 2006.

[21] Y. Cao and D. C Samuels. Discrete stochastic simulation methods for

chemically reacting systems. Methods in enzymology, 454:115–140, 2009.

[22] Y. Cao, H. Li, and L. Petzold. Efficient formulation of the stochastic

simulation algorithm for chemically reacting systems. The journal of

chemical physics, 121(9):4059–4067, 2004.

[23] Y.g Cao, D. Gillespie, and L. Petzold. Avoiding negative populations in

explicit poisson tau-leaping. The Journal of chemical physics, 123(5):

054104, 2005.

[24] L. Capra, M. De Pierro, and G. Franceschinis. A high level language for

structural relations in well-formed nets. In G. Ciardo and P. Darondeau,

editors, Applications and Theory of Petri Nets 2005, pages 168–187,

Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-

31559-9.

243

https://doi.org/10.1007/978-3-319-33786-9_13

Bibliography

[25] L. Capra, M. De Pierro, and G. Franceschinis. Computing structural

properties of symmetric nets. In Proceedings of the 15th International

Conference on Quantitative Evaluation of Systems (QEST 2015), QEST

’15, Madrid, ES, 2015. IEEE Computer Society.

[26] F. Carinci. Covid-19: Preparedness, Decentralisation, and the Hunt for

Patient Zero. British Medical Journal, 368:1–2, 2020.

[27] P. Castagno, S. Pernice, G. Ghetti, M. Povero, L. Pradelli, D. Paolotti,

G. Balbo, M. Sereno, and M. Beccuti. A computational framework

for modeling and studying pertussis epidemiology and vaccination.

BMC bioinformatics, 21:344, 2020. doi: 10.1186/s12859-020-03648-6.

URL https://www.scopus.com/inward/record.uri?eid=2-s2.

0-85091129070&doi=10.1186%2fs12859-020-03648-6&partnerID=

40&md5=4170c151da6019f5324230e4d0553f2f.

[28] P. Cazzaniga, C. Damiani, D. Besozzi, R. Colombo, S.M. Nobile,

D. Gaglio, D. Pescini, S. Molinari, G. Mauri, L. Alberghina, and

M. Vanoni. Computational strategies for a system-level understanding

of metabolism. Metabolites, 4(4):1034–1087, 2014.

[29] S.P. Chapman, C. M. Paget, G. N. Johnson, and J.-M. Schwartz. Flux

balance analysis reveals acetate metabolism modulates cyclic electron

flow and alternative glycolytic pathways in chlamydomonas reinhardtii.

Frontiers in plant science, 6:474, 2015.

[30] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic

well-formed coloured nets for symmetric modelling applications. IEEE

Tran. Comput., 42(11):1343–1360, 1993.

[31] J. Choi, S. J. Lee, Y. A Lee, H.G. Maeng, J.K. Lee, and Y. W. Kang.

Reference values for peripheral blood lymphocyte subsets in a healthy

korean population. Immune network, 14(6):289–295, 2014.

[32] J. Colom and M. Silva. Convex geometry and semiflows in p/t nets.

a comparative study of algorithms for computation of minimal p-

semiflows. pages 79–112, 06 1989.

[33] A Compston and A Coles. Multiple sclerosis. lancet (lond, engl) 372:

1502–1517, 2008.

244

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091129070&doi=10.1186%2fs12859-020-03648-6&partnerID=40&md5=4170c151da6019f5324230e4d0553f2f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091129070&doi=10.1186%2fs12859-020-03648-6&partnerID=40&md5=4170c151da6019f5324230e4d0553f2f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091129070&doi=10.1186%2fs12859-020-03648-6&partnerID=40&md5=4170c151da6019f5324230e4d0553f2f

Bibliography

[34] F. Cordero, M. Beccuti, C. Fornari, S. Lanzardo, L. Conti, F. Cav-

allo, G. Balbo, and R. Calogero. Multi-level model for the investiga-

tion of oncoantigen-driven vaccination effect. BMC Bioinformatics, 14

(SUPPL6), 2013.

[35] C. Cosner, D. L DeAngelis, J. S Ault, and D. B Olson. Effects of spatial

grouping on the functional response of predators. Theoretical population

biology, 56(1):65–75, 1999.

[36] M. W Covert and B. Ø Palsson. Transcriptional regulation in

constraints-based metabolic models of escherichia coli. Journal of Bio-

logical Chemistry, 277(31):28058–28064, 2002.

[37] M.W. Covert, N. Xiao, T.J. Chen, and J.R. Karr. Integrating metabolic,

transcriptional regulatory and signal transduction models in escherichia

coli. Bioinformatics, 24(18):2044–2050, 2008.

[38] F. da Veiga Leprevost, B. A Grüning, S. Alves Aflitos, H. L Röst,

J. Uszkoreit, H. Barsnes, M. Vaudel, P. Moreno, L. Gatto, J. Weber,

M. Bai, R. C Jimenez, T. Sachsenberg, J. Pfeuffer, R. Vera Alvarez,

J. Griss, A. I Nesvizhskii, and Y. Perez-Riverol. BioContainers: an

open-source and community-driven framework for software standardiza-

tion. Bioinformatics, 33(16):2580–2582, 03 2017. ISSN 1367-4803.

[39] B. W Dale, L. G Adams, and R T. Bowyer. Functional response of

wolves preying on barren-ground caribou in a multiple-prey ecosystem.

Journal of Animal Ecology, pages 644–652, 1994.

[40] M. D. de Cellès, F.MG Magpantay, A. A King, and P. Rohani. The im-

pact of past vaccination coverage and immunity on pertussis resurgence.

Science translational medicine, 10(434), 2018.

[41] F. Deisenhammer, H. Zetterberg, B. Fitzner, and U. K Zettl. The cere-

brospinal fluid in multiple sclerosis. Frontiers in immunology, 10:726,

2019.

[42] C.A Dendrou, L. Fugger, and M. A Friese. Immunopathology of multiple

sclerosis. Nature Reviews Immunology, 15(9):545–558, 2015.

245

Bibliography

[43] Italy Department of Civil Protection. Covid-19 italia. http:

//opendatadpc.maps.arcgis.com/apps/opsdashboard/index.html#

/b0c68bce2cce478eaac82fe38d4138b1. Accessed March 23, 2020.

[44] C. Di Pietrantonj. Epidemia COVID-19 regione piemonte: situazione al

16.04.2020 ore 10:00. https://www.seremi.it/, 2020. Version: 2020-

04-16.

[45] C. Di Pietrantonj. Epidemia COVID-19 regione piemonte: situazione al

26.04.2020 ore 10:00. https://www.seremi.it/, 2020. Version: 2020-

04-26.

[46] C. Di Pietrantonj and et al. Epidemia COVID-19 regione piemonte:

Report del 17 marzo 2020. https://www.seremi.it/, 2020. Version:

2020-03-17.

[47] C. Di Pietrantonj and et al. Epidemia COVID-19 regione piemonte:

Report del 22 marzo 2020. https://www.seremi.it/, 2020. Version:

2020-03-22.

[48] L. Durelli, L. Conti, M. Clerico, D. Boselli, G. Contessa, P. Ripellino,

B. Ferrero, P. Eid, and F. Novelli. T-helper 17 cells expand in multiple

sclerosis and are inhibited by interferon-β. Annals of Neurology: Of-

ficial Journal of the American Neurological Association and the Child

Neurology Society, 65(5):499–509, 2009.

[49] R. Dutta and B. D Trapp. Mechanisms of Neuronal Dysfunction and

Degeneration in Multiple Sclerosis. Prog. Neurobiol., 93(1):1–12, jan

2011. ISSN 0301-0082. URL http://www.ncbi.nlm.nih.gov/pmc/

articles/PMC3030928/.

[50] P. Érdi and J. Tóth. Mathematical models of chemical reactions: theory

and applications of deterministic and stochastic models. Manchester

University Press, 1989.

[51] European Centre for Disease Prevention and Control. Pertus-

sis - annual epidemiological report for 2017. Technical re-

port, 2018. URL https://ecdc.europa.eu/sites/portal/files/

documents/AER_for_2017-pertussis.pdf.

246

http://opendatadpc.maps.arcgis.com/apps/opsdashboard/index.html#/b0c68bce2cce478eaac82fe38d4138b1
http://opendatadpc.maps.arcgis.com/apps/opsdashboard/index.html#/b0c68bce2cce478eaac82fe38d4138b1
http://opendatadpc.maps.arcgis.com/apps/opsdashboard/index.html#/b0c68bce2cce478eaac82fe38d4138b1
https://www.seremi.it/
https://www.seremi.it/
https://www.seremi.it/
https://www.seremi.it/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030928/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030928/
https://ecdc.europa.eu/sites/portal/files/documents/AER_for_2017-pertussis.pdf
https://ecdc.europa.eu/sites/portal/files/documents/AER_for_2017-pertussis.pdf

Bibliography

[52] W. Feller. An Introduction to Probability Theory and Its Applications,

volume 1. Wiley, January 1968. ISBN 0471257087.

[53] NM Ferguson, D Laydon, G Nedjati-Gilani, N Imai, K Ainslie,

M Baguelin, S Bhatia, A Boonyasiri, Z Cucunubá, G Cuomo-

Dannenburg, A Dighe, I Dorigatti, and et al. Impact of non-

pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and

healthcare demand. Imperial College COVID-19 Response Team, pages

1–20, 2020.

[54] G. Franceschinis, L. Capra, and M. De Pierro. A tool for symbolic

manipulation of arc functions in symmetric net models. ICST, 1 2014.

doi: 10.4108/icst.valuetools.2013.254407.

[55] T. Gharibi, Z. Babaloo, A. Hosseini, F. Marofi, A. Ebrahimi-kalan, S. Ja-

handideh, and B. Baradaran. The role of b cells in the immunopatho-

genesis of multiple sclerosis. Immunology, 2020.

[56] M. A Gibson and J. Bruck. Efficient exact stochastic simulation of

chemical systems with many species and many channels. The journal of

physical chemistry A, 104(9):1876–1889, 2000.

[57] D. Gillespie. Exact stochastic simulation of coupled chemical reactions.

The journal of physical chemistry, 81(25):2340–2361, 1977.

[58] D. Gillespie. Approximate accelerated stochastic simulation of chemi-

cally reacting systems. The Journal of Chemical Physics, 115(4):1716–

1733, 2001.

[59] D. Gillespie and L. Petzold. Improved leap-size selection for accelerated

stochastic simulation. The Journal of Chemical Physics, 119(16):8229–

8234, 2003.

[60] G Giordano, F Blanchini, R Bruno, and et al. Modelling the COVID-19

epidemic and implementation of population-wide interventions in Italy.

Nature Medicine, pages 1–6, 2020.

[61] R. Gold, E. Radue, G. Giovannoni, K. Selmaj, E. K. Havrdova, X. Mon-

talban, D. Stefoski, T. Sprenger, R. R Robinson, and et al. Long-term

safety and efficacy of daclizumab beta in relapsing–remitting multiple

247

Bibliography

sclerosis: 6-year results from the selected open-label extension study.

Journal of Neurology, 2020.

[62] M V Gonfiantini, E Carloni, F Gesualdo, E Pandolfi, E Agri-

cola, E Rizzuto, S Iannazzo, M L Ciofi Degli Atti, A Vil-

lani, and A E Tozzi. Epidemiology of pertussis in italy: Dis-

ease trends over the last century. Eurosurveillance, 19(40):

20921, 2014. doi: https://doi.org/10.2807/1560-7917.ES2014.19.40.

20921. URL https://www.eurosurveillance.org/content/10.2807/

1560-7917.ES2014.19.40.20921.

[63] M. Gribaudo and A. Horváth. Modeling hybrid positive systems with

hybrid petri nets. In Positive Systems, pages 71–78. Springer, 2003.

[64] M. Gribaudo, A. Horváth, A. Bobbio, E. Tronci, E. Ciancamerla, and

M. Minichino. Fluid petri nets and hybrid model-checking: A compara-

tive case study. Reliability Engineering & System Safety, 81(3):239–257,

2003.

[65] M. Gribaudo, M. Iacono, and D. Manini. Covid-19 spatial diffusion: A

markovian agent-based model. Mathematics, 9(5):485, 2021.

[66] E. L Haseltine and J. B Rawlings. Approximate simulation of coupled

fast and slow reactions for stochastic chemical kinetics. The Journal of

chemical physics, 117(15):6959–6969, 2002.

[67] L. Heirendt and et al. Creation and analysis of biochemical constraint-

based models: the cobra toolbox v3.0. Nature protocols, 2018.

[68] M. Herajy, L. Fei, C. Rohr, and M. Heiner. Coloured hybrid petri nets:

An adaptable modelling approach for multi-scale biological networks.

Computational Biology and Chemistry, 76:87–100, 2018.

[69] H. W Hethcote. The mathematics of infectious diseases. SIAM review,

42(4):599–653, 2000.

[70] H. W Hethcote, P. Horby, and P. McIntyre. Using computer simulations

to compare pertussis vaccination strategies in australia. Vaccine, 22(17-

18):2181–2191, 2004.

248

https://www.eurosurveillance.org/content/10.2807/1560-7917.ES2014.19.40.20921
https://www.eurosurveillance.org/content/10.2807/1560-7917.ES2014.19.40.20921

Bibliography

[71] R. Hofestädt. A Petri net application of metabolic processes. Journal

of System Analysis, Modeling and Simulation, 16:113–122, 1994.

[72] CS Holling. The components of predation as revealed by a study of

small-mammal predation of the european pine sawfly. 1959.

[73] I Holmdahl and C Buckee. Wrong but Useful - What Covid-19 Epi-

demiologic Models Can and Cannot Tell Us. New England Journal of

Medicine, 10:1–7, 2020.

[74] S. A Juliano. Nonlinear curve fitting: predation and functional response

curves. Design and analysis of ecological experiments, 2:178–196, 2001.

[75] M. K. Molloy. Performance analysis using stochastic Petri nets. IEEE

Transaction on Computers, 31(9):913–917, September 1982.

[76] H. Kebir, K. Kreymborg, I. Ifergan, A. Dodelet-Devillers, R. Cayrol,

M. Bernard, F. Giuliani, N. Arbour, B. Becher, and A. Prat. Human

th 17 lymphocytes promote blood-brain barrier disruption and central

nervous system inflammation. Nature medicine, 13(10):1173–1175, 2007.

[77] R.J Keizer, A. DR Huitema, J. HM Schellens, and J. H Beijnen. Clin-

ical pharmacokinetics of therapeutic monoclonal antibodies. Clinical

pharmacokinetics, 49(8):493–507, 2010.

[78] B. Kendall, C. Briggs, W. Murdoch, P. Turchin, S. Ellner, E. McCauley,

R. Nisbet, and S. Wood. Why do populations cycle? a synthesis of

statistical and mechanistic modeling approaches. Ecology, 80(6):1789–

1805, 1999.

[79] A. P Kim and D. E Baker. Daclizumab. Hospital pharmacy, 51(11):

928–939, 2016.

[80] SM Kissler, C Tedijanto, E Goldstein, YH Grad, and M. Lipsitch. Pro-

jecting the transmission dynamics of SARS-CoV-2 through the postpan-

demic period. Science, pages 1–9, 2020.

[81] N. P Klein, J. Bartlett, A. Rowhani-Rahbar, B. Fireman, and R. Bax-

ter. Waning protection after fifth dose of acellular pertussis vaccine in

children. New England Journal of Medicine, 367(11):1012–1019, 2012.

249

Bibliography

[82] N. Kulkarni, L. Alessandŕı, R. Panero, M. Arigoni, M. Olivero, G. Fer-

rero, F. Cordero, M. Beccuti, and R.A. Calogero. Reproducible

bioinformatics project: A community for reproducible bioinformatics

analysis pipelines. BMC Bioinformatics, 19, 2018. doi: 10.1186/

s12859-018-2296-x.

[83] T. Kurtz. Solutions of ordinary differential equations as limits of pure

jump Markov processes. J. Appl. Probab., 1(7):49–58, 1970.

[84] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice

Hall PTR, Upper Saddle River, NJ, USA, 1981. ISBN 0136619835.

[85] K. Lange. Optimization. Springer, New York, NY, second edition, 2013.

[86] C. L Langrish, Y. Chen, W. M Blumenschein, J. Mattson, B. Basham,

J.D Sedgwick, T. McClanahan, R.A Kastelein, and D. J Cua. Il-23 drives

a pathogenic t cell population that induces autoimmune inflammation.

The Journal of experimental medicine, 201(2):233–240, 2005.

[87] A. Laroni and A. Uccelli. Cd56bright natural killer cells: A possible

biomarker of different treatments in multiple sclerosis. Journal of Clin-

ical Medicine, 9(5):1450, 2020.

[88] S. A Lauer, K. H Grantz, Q. Bi, F. K Jones, Qulu Z., H. R Meredith,

A. S Azman, N. G Reich, and J. Lessler. The Incubation Period of Coro-

navirus Disease 2019 (COVID-19) From Publicly Reported Confirmed

Cases: Estimation and Application. Annals of Internal Medicine, 2020.

[89] E. Lavezzo, E. Franchin, C. Ciavarella, G. Cuomo-Dannenburg, L. Bar-

zon, C. Del Vecchio, L. Rossi, R. Manganelli, A. Loregian, N. Navarin,

I. Dorigatti, and et al. Suppression of covid-19 outbreak in the munici-

pality of vo’, italy. MedRxiv, 2020.

[90] J. E Libbey, L. L McCoy, and R.S Fujinami. Molecular mimicry in mul-

tiple sclerosis. International review of neurobiology, 79:127–147, 2007.

[91] Q. Lin, S. Zhao, D. Gao, Y. Lou, S. Yang, S. S Musa, M. H Wang, Y. Cai,

W. Wang, L. Yang, and et al. A conceptual model for the outbreak of

Coronavirus disease 2019 (COVID-19) in Wuhan, China with individual

reaction and governmental action. International Journal of Infectious

Diseases, 93:211–216, 2020.

250

Bibliography

[92] F. Liu, M. Heiner, and M. Yang. An efficient method for unfolding

colored Petri nets. In Winter Simulation Conference, pages 1–12, Berlin,

Germany, Dec. 2012. IEEE Computer Society.

[93] A. J Lotka. Analytical theory of biological populations. Springer Science

& Business Media, 1998.

[94] FMG Magpantay, M D. de Cellès, P Rohani, and AA King. Pertus-

sis immunity and epidemiology: mode and duration of vaccine-induced

immunity. Parasitology, 143(7):835–849, 2016.

[95] R Mahadevan and CH Schilling. The effects of alternate optimal so-

lutions in constraint-based genome-scale metabolic models. Metabolic

engineering, 5(4):264–276, 2003.

[96] R. Mahadevan, J. S Edwards, and F. J Doyle III. Dynamic flux balance

analysis of diauxic growth in escherichia coli. Biophysical journal, 83(3):

1331–1340, 2002.

[97] D.C. Maranas and A.R. Zomorrodi. Optimization Methods in Metabolic

Networks. Wiley, 2016. ISBN 1119028493.

[98] S. Marino, I.B. Hogue, C.J. Ray, and D. E. Kirschner. A methodology

for performing global uncertainty and sensitivity analysis in systems

biology. Journal of Theoretical Biology, 254(1):178 – 196, 2008. ISSN

0022-5193. URL http://www.sciencedirect.com/science/article/

pii/S0022519308001896.

[99] A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis.

Modelling with Generalized Stochastic Petri Nets. J. Wiley, New York,

NY, USA, 1995.

[100] P. McCombe. The short and long-term effects of pregnancy on multiple

sclerosis and experimental autoimmune encephalomyelitis. Journal of

clinical medicine, 7(12):494, 2018.

[101] L. Michaelis and M. L. Menten. Die kinetik der invertinwirkung. Uni-

versitätsbibliothek Johann Christian Senckenberg, 2007.

[102] J. Min Lee, E. P. Gianchandani, J.A. Eddy, and J.A. Papin. Dynamic

analysis of integrated signaling, metabolic, and regulatory networks.

PLOS Computational Biology, 4(5):1–20, 05 2008.

251

http://www.sciencedirect.com/science/article/pii/S0022519308001896
http://www.sciencedirect.com/science/article/pii/S0022519308001896

Bibliography

[103] Ministero della Salute. Tavola storica 4.15: Casi denun-

ciati di alcune malattie soggette a denuncia obbligatoria, anni

1925-2009. http://seriestoriche.istat.it/fileadmin/documenti/

Tavola_4.15.xls, last accessed on 2020-05-08.

[104] L. K Misegades, K. Winter, K. Harriman, J. Talarico, N. E Messonnier,

T. A Clark, and S. W Martin. Association of childhood pertussis with

receipt of 5 doses of pertussis vaccine by time since last vaccine dose,

california, 2010. Jama, 308(20):2126–2132, 2012.

[105] G. Moirano, L. Richiardi, C. Novara, and M. Maule. Approaches to daily

monitoring of the SARS-CoV-2 outbreak in Northern Italy. Fronteirs

Public Health, in press:1–10, 2020.

[106] X. Montalban, R. Gold, A. J Thompson, S. Otero-Romero, M. P. Amato,

D. Chandraratna, M. Clanet, G. Comi, T. Derfuss, F. Fazekas, and et al.

Ectrims/ean guideline on the pharmacological treatment of people with

multiple sclerosis. Multiple Sclerosis Journal, 24(2):96–120, 2018.

[107] J. Mossong, N. Hens, M. Jit, P. Beutels, K. Auranen, R. Mikolajczyk,

M. Massari, S. Salmaso, G. S. Tomba, J. Wallinga, and et al. Social con-

tacts and mixing patterns relevant to the spread of infectious diseases.

PLOS Medicine, 5(3):1–1, 03 2008. doi: 10.1371/journal.pmed.0050074.

URL https://doi.org/10.1371/journal.pmed.0050074.

[108] Japan National Institute of Infectious Diseases. Field briefing: Di-

amond princess covid-19 cases. https://www.niid.go.jp/niid/en/

2019-ncov-e/9407-covid-dp-fe-01.html. Published: 2020-02-19.

[109] H. Nishiura, N. M Linton, and A. R. Akhmetzhanov. Serial interval of

novel coronavirus (2019-nCoV) infections. medRxiv, pages 1–6, 2020.

doi: 10.1101/2020.02.03.20019497.

[110] J. Oskari Virtanen and S. Jacobson. Viruses and multiple sclerosis.

CNS & Neurological Disorders-Drug Targets (Formerly Current Drug

Targets-CNS & Neurological Disorders), 11(5):528–544, 2012.

[111] B. Palsson. Systems Biology: Simulation of Dynamic Network States.

Cambridge University Press, 2011.

252

http://seriestoriche.istat.it/fileadmin/documenti/Tavola_4.15.xls
http://seriestoriche.istat.it/fileadmin/documenti/Tavola_4.15.xls
https://doi.org/10.1371/journal.pmed.0050074
https://www.niid.go.jp/niid/en/2019-ncov-e/9407-covid-dp-fe-01.html
https://www.niid.go.jp/niid/en/2019-ncov-e/9407-covid-dp-fe-01.html

Bibliography

[112] E. T. Papoutsakis. Equations and calculations for fermentations of bu-

tyric acid bacteria. Biotechnology and bioengineering, 26(2):174–187,

1984.

[113] G. R. D. Passos, D. K. Sato, J. Becker, and K. Fujihara. Th17 cells

pathways in multiple sclerosis and neuromyelitis optica spectrum dis-

orders: pathophysiological and therapeutic implications. Mediators of

inflammation, 2016, 2016.

[114] S. Pernice, M. Beccuti, P. Do, M. Pennisi, and F. Pappalardo. Estimat-

ing daclizumab effects in multiple sclerosis using stochastic symmetric

nets. pages 1393–1400, 2019. doi: 10.1109/BIBM.2018.8621259.

URL https://www.scopus.com/inward/record.uri?eid=2-s2.

0-85062527310&doi=10.1109%2fBIBM.2018.8621259&partnerID=40&

md5=5e8c050e8714b74ef884213a8671e9a5.

[115] S. Pernice, L. Follia, G. Balbo, G. Sartini, N. Totis, P. Lió, I. Merelli,

F. Cordero, and M. Beccuti. Integrating petri nets and flux balance

methods in computational biology models: a methodological and com-

putational practice. Fundamenta Informaticae, 2019.

[116] S. Pernice, M. Pennisi, G. Romano, A. Maglione, S. Cutrupi, F. Pap-

palardo, G. Balbo, M. Beccuti, F. Cordero, and R. A. Calogero. A

computational approach based on the colored petri net formalism for

studying multiple sclerosis. BMC bioinformatics, 2019.

[117] S. Pernice, G. Romano, G. Russo, M. Beccuti, M. Pennisi, and F. Pap-

palardo. Exploiting stochastic petri net formalism to capture the relaps-

ing remitting multiple sclerosis variability under daclizumab administra-

tion. pages 2168–2175, 2019. doi: 10.1109/BIBM47256.2019.8983368.

[118] S. Pernice, M. Beccuti, G. Romano, M. Pennisi, A. Maglione, S. Cutrupi,

F. Pappalardo, L. Capra, G. Franceschinis, M. De Pierro, G. Balbo,

F. Cordero, and R. Calogero. Multiple sclerosis disease: A computa-

tional approach for investigating its drug interactions. Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial In-

telligence and Lecture Notes in Bioinformatics), 12313 LNBI:299–308,

2020. doi: 10.1007/978-3-030-63061-4 26.

253

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062527310&doi=10.1109%2fBIBM.2018.8621259&partnerID=40&md5=5e8c050e8714b74ef884213a8671e9a5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062527310&doi=10.1109%2fBIBM.2018.8621259&partnerID=40&md5=5e8c050e8714b74ef884213a8671e9a5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062527310&doi=10.1109%2fBIBM.2018.8621259&partnerID=40&md5=5e8c050e8714b74ef884213a8671e9a5

Bibliography

[119] S. Pernice, P. Castagno, L. Marcotulli, M.M. Maule, L. Richiardi,

G. Moirano, M. Sereno, F. Cordero, and M. Beccuti. Im-

pacts of reopening strategies for covid-19 epidemic: a model-

ing study in piedmont region. BMC Infectious Diseases, 20

(1), 2020. doi: 10.1186/s12879-020-05490-w. URL https:

//www.scopus.com/inward/record.uri?eid=2-s2.0-85094138913&

doi=10.1186%2fs12879-020-05490-w&partnerID=40&md5=

d14fa879de47ee676244b12a524d859d.

[120] S. Pernice, L. Follia, A. Maglione, M. Pennisi, F. Pappalardo, F. Nov-

elli, M. Clerico, M. Beccuti, F. Cordero, and S. Rolla. Computational

modeling of the immune response in multiple sclerosis using epimod

framework. BMC bioinformatics, 21(17):1–20, 2020.

[121] A. Poli, T. Michel, M. Thérésine, E. Andrès, F. Hentges, and J. Zim-

mer. Cd56bright natural killer (nk) cells: an important nk cell subset.

Immunology, 126(4):458–465, 2009.

[122] K. Prem, A. R Cook, and M. Jit. Projecting social contact matrices

in 152 countries using contact surveys and demographic data. PLoS

computational biology, 13(9):e1005697, 2017.

[123] K Prem, AR Cook, and M Jit. Projecting social contact matrices in 152

countries using contact surveys and demographic data. Plos Computa-

tional Biology, 13(9):1–21, 2017.

[124] Presidenza del Consiglio dei Ministri - Dipartimento della Protezione

Civile. Italian survelliance data. https://github.com/pcm-dpc/

COVID-19. Accessed: 2020-03-28.

[125] Md S. Rahman and S. Chakravarty. A predator-prey model with disease

in prey. Nonlinear Analysis: Modelling and Control, 18(2):191–209,

2013.

[126] V. Reddy, M. Mavrovouniotis, and M. Liebman. Petri net representa-

tion in metabolic pathways. In Proc. Int. Conf. Intelligent Systems for

Molecular Biology, pages 328–336, 1993.

[127] L. F. Richardson. Ix. the approximate arithmetical solution by finite

differences of physical problems involving differential equations, with an

254

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094138913&doi=10.1186%2fs12879-020-05490-w&partnerID=40&md5=d14fa879de47ee676244b12a524d859d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094138913&doi=10.1186%2fs12879-020-05490-w&partnerID=40&md5=d14fa879de47ee676244b12a524d859d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094138913&doi=10.1186%2fs12879-020-05490-w&partnerID=40&md5=d14fa879de47ee676244b12a524d859d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094138913&doi=10.1186%2fs12879-020-05490-w&partnerID=40&md5=d14fa879de47ee676244b12a524d859d
https://github.com/pcm-dpc/COVID-19
https://github.com/pcm-dpc/COVID-19

Bibliography

application to the stresses in a masonry dam. Philosophical Transac-

tions of the Royal Society of London. Series A, Containing Papers of a

Mathematical or Physical Character, 210(459-470):307–357, 1911.

[128] P. Rohani, X. Zhong, and A. A King. Contact network structure explains

the changing epidemiology of pertussis. Science, 330(6006):982–985,

2010.

[129] S. Rolla, V. Bardina, S. De Mercanti, P. Quaglino, R. De Palma,

D. Gned, D. Brusa, L. Durelli, F. Novelli, and M. Clerico. Th22 cells

are expanded in multiple sclerosis and are resistant to ifn-β. Journal of

leukocyte biology, 96(6):1155–1164, 2014.

[130] S. Rolla, A. Maglione, S. F. De Mercanti, and M. Clerico. The meaning

of immune reconstitution after alemtuzumab therapy in multiple sclero-

sis. Cells, 9(6):1396, 2020.

[131] K. Roosa, Y. Lee, R. Luo, A. Kirpich, R. Rothenberg, J. M. Hyman,

and et al. Real-time forecasts of the COVID-19 epidemic in China from

February 5th to February 24th, 2020. Infect. Dis. Model, 5:256–263,

2020.

[132] M. Roy and S. D Finley. Computational model predicts the effects of

targeting cellular metabolism in pancreatic cancer. Frontiers in physi-

ology, 8:217, 2017.

[133] E. Saathoff, P. Schneider, V. Kleinfeldt, S. Geis, D. Haule, L. Maboko,

E. Samky, M. Souza, M. Robb, and M. Hoelscher. Laboratory reference

values for healthy adults from southern tanzania. Tropical Medicine &

International Health, 13(5):612–625, 2008.

[134] A. Saltelli, M. Ratto, S. Tarantola, and F. Campolongo. Sensitivity anal-

ysis for chemical models. Chemical Reviews, 105(7):2811–2828, 2005.

[135] S. Sánchez-Ramón, J. Navarroa, C. Aristimuño, M. Rodŕıguez-Mahou,

J.M. Bellón, E. Fernández-Cruz, and C. de Andrés. Pregnancy-induced

expansion of regulatory t-lymphocytes may mediate protection to mul-

tiple sclerosis activity. Immunology letters, 96(2), 2005.

[136] A. Santagostino, G. Garbaccio, A. Pistorio, V. Bolis, G. Camisasca,

P. Pagliaro, and M. Girotto. An italian national multicenter study for

255

Bibliography

the definition of reference ranges for normal values of peripheral blood

lymphocyte subsets in healthy adults. Haematologica, 84(6), 1999.

[137] C. H Schilling, J. S Edwards, D. Letscher, and B. Ø Palsson. Combining

pathway analysis with flux balance analysis for the comprehensive study

of metabolic systems. Biotechnology and bioengineering, 71(4):286–306,

2000.

[138] F. Schlögl. Chemical reaction models for non-equilibrium phase transi-

tions. Zeitschrift für physik, 253(2):147–161, 1972.

[139] D. Segal, C. Schmitz, and P. R Hof. Spatial distribution and density of

oligodendrocytes in the cingulum bundle are unaltered in schizophrenia.

Acta neuropathologica, 117(4):385, 2009.

[140] S. L Sheridan, R. S Ware, K. Grimwood, and S. B Lambert. Number and

order of whole cell pertussis vaccines in infancy and disease protection.

Jama, 308(5):454–456, 2012.

[141] M. Shirley. Daclizumab: a review in relapsing multiple sclerosis. Drugs,

77(4):447–458, 2017.

[142] M. Silva, J. M. Colom, J. M. Campos, and C Gamma. Linear algebraic

techniques for the analysis of petri nets. In In: Recent Advances in Math-

ematical Theory of Systems, Control, Networks, and Signal Processing

II, pages 35–42. Mita Press, 1992.

[143] M. Soheilypour and M. RK Mofrad. Agent-based modeling in molecular

systems biology. BioEssays, 40(7):1800020, 2018.

[144] D. K Sojka, Y. Huang, and D. J Fowell. Mechanisms of regulatory t-cell

suppression–a diverse arsenal for a moving target. Immunology, 124(1):

13–22, 2008.

[145] D. A Somerset, Y. Zheng, M. D Kilby, D. M Sansom, and M. T Drayson.

Normal human pregnancy is associated with an elevation in the immune

suppressive cd25+ cd4+ regulatory t-cell subset. Immunology, 112(1),

2004.

[146] J. Son, C. A Lyssiotis, H. Ying, X. Wang, S. Hua, M. Ligorio, R. M Per-

era, C. R Ferrone, E. Mullarky, Ng Shyh-Chang, and et al. Glutamine

256

Bibliography

supports pancreatic cancer growth through a kras-regulated metabolic

pathway. Nature, 496(7443):101, 2013.

[147] S. Spina, F. Marrazzo, M. Migliari, R. Stucchi, A. Sforza, and R. Fu-

magalli. The response of Milan’s Emergency Medical System to the

COVID-19 outbreak in Italy. The Lancet, 395:49–50, 2020.

[148] A. J Steelman. Infection as an environmental trigger of multiple sclerosis

disease exacerbation. Frontiers in immunology, 6:520, 2015.

[149] J. Stelling. Mathematical models in microbial systems biology. Opinion

in Microbiology, 7(S), 2004.

[150] D. T Gillespie. A rigorous derivation of the chemical master equation.

physica a 188, 404-425. Physica A: Statistical Mechanics and its Appli-

cations, 188:404–425, 09 1992.

[151] Task force COVID-19. Sorveglianza integrata covid-19 in italia. Isti-

tuto Superiore di Sanitá - Dipartimento Malattie Infettive e Servizio

di Informatica, Version: 2020-04-15, https://www.epicentro.iss.it/

coronavirus/bollettino/Infografica_15aprile%20ITA.pdf.

[152] N. Totis, L. Follia, C. Riganti, F. Novelli, F. Cordero, and M. Beccuti.

Overcoming the lack of kinetic information in biochemical reactions net-

works. SIGMETRICS Perform. Eval. Rev., 44(4):91–102, May 2017.

ISSN 0163-5999.

[153] M Trabucchi and D De Leo. Nursing homes or besieged castles: Covid-19

in northern italy. The lancet psychiatry, 5(5):387–388, 2020.

[154] B.D. Trapp and K.-A. Nave. Multiple Sclerosis: An Immune or Neu-

rodegenerative Disorder? Annu. Rev. Neurosci., 2008. ISSN 0147-006X.

[155] J. S Tzartos, M. A Friese, M.J Craner, J. Palace, J. Newcombe, M. M

Esiri, and L. Fugger. Interleukin-17 production in central nervous

system-infiltrating t cells and glial cells is associated with active dis-

ease in multiple sclerosis. The American journal of pathology, 172(1):

146–155, 2008.

[156] M Van Boven, HE De Melker, JFP Schellekens, and M Kretzschmar. A

model based evaluation of the 1996–7 pertussis epidemic in the nether-

lands. Epidemiology & Infection, 127(1):73–85, 2001.

257

https://www.epicentro.iss.it/coronavirus/bollettino/Infografica_15aprile%20ITA.pdf
https://www.epicentro.iss.it/coronavirus/bollettino/Infografica_15aprile%20ITA.pdf

Bibliography

[157] P. Van den Driessche and J. Watmough. Reproduction numbers and

sub-threshold endemic equilibria for compartmental models of disease

transmission. Mathematical biosciences, 180(1-2):29–48, 2002.

[158] A. Varma and B.O. Palsson. Stoichiometric flux balance models quanti-

tatively predict growth and metabolic by-product secretion in wild-type

escherichia coli w3110. Applied and environmental microbiology, 60(10):

3724–3731, 1994.

[159] R. Verity, L. C Okell, I. Dorigatti, P. Winskill, C. Whittaker, N. Imai,

G. Cuomo-Dannenburg, H. Thompson, P. GT Walker, H. Fu, and et al.

Estimates of the severity of coronavirus disease 2019: a model-based

analysis. The Lancet infectious diseases, 20(6):669–677, 2020.

[160] S. Vijayakumar, M. Conway, P. Lió, and C. Angione. Optimization of

multi-omic genome-scale models: Methodologies, hands-on tutorial, and

perspectives. In Methods in Molecular Biology, pages 389–408. Springer

New York, dec 2017. doi: 10.1007/978-1-4939-7528-0 18.

[161] S. Vijayakumar, M. Conway, P. Lió, and C. Angione. Seeing the wood

for the trees: a forest of methods for optimization and omic-network

integration in metabolic modelling. Briefings in Bioinformatics, may

2017. doi: 10.1093/bib/bbx053.

[162] J. Virtanen. Viruses and Multiple Sclerosis. CNS Neurol Disord Drug

Targets, pages 528–544, aug 2012. URL https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC4758194/.

[163] M Vollmer and et al. Using mobility to estimate the transmission inten-

sity of COVID-19 in Italy: A subnational analysis with future scenarios.

Imperial College COVID-19 Response Team, pages 1–17, 2020.

[164] M. W. Covert, C. H. Schilling, and B Palsson. Regulation of gene ex-

pression in flux balance models of metabolism. Journal of Theoretical

Biology, 213(1):73 – 88, 2001. ISSN 0022-5193.

[165] M. Warny, J. Helby, B. G. Nordestgaard, H. Birgens, and S. E. Bojesen.

Lymphopenia and risk of infection and infection-related death in 98,344

individuals from a prospective danish population-based study. PLoS

medicine, 15(11):e1002685, 2018.

258

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4758194/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4758194/

Bibliography

[166] M. R. Watson. Metabolic maps for the Apple II. Biochemical Society

Transactions, 12(6):1093–1094, 12 1984. ISSN 0300-5127. doi: 10.1042/

bst0121093. URL https://doi.org/10.1042/bst0121093.

[167] H. J Wearing and P. Rohani. Estimating the duration of pertussis immu-

nity using epidemiological signatures. PLoS pathogens, 5(10):e1000647,

2009.

[168] Website. Ministero della salute. resident population on 1st january in

piedmont. http://dati.istat.it/Index.aspx?QueryId=18540, 2020.

[169] Website. Atlas ecdc. italian statistics. https://atlas.ecdc.europa.

eu/public/index.aspx, last accessed on 2020-05-08.

[170] Website. Ministero della salute. bollettino nazionale delle notifiche delle

malattie infettive dal 1996. http://www.salute.gov.it/portale/

documentazione/p6_2_8_1_1.jsp?lingua=italiano&id=3, last ac-

cessed on 2020-05-08.

[171] Website. Ministero della salute. coperture vaccinali. http:

//www.salute.gov.it/portale/documentazione/p6_2_8_3_1.

jsp?lingua=italiano&id=20, last accessed on 2020-05-08.

[172] Website. Ministero della salute. statistics about the italian birth and

death rate. http://dati.istat.it, last accessed on 2020-05-08.

[173] A. M Wendelboe, A. Van Rie, S. Salmaso, and J. A Englund. Duration

of immunity against pertussis after natural infection or vaccination. The

Pediatric infectious disease journal, 24(5):S58–S61, 2005.

[174] H. Wickham. ggplot2: elegant graphics for data analysis. Springer, New

York, NY, USA, 2016.

[175] L Wu, N Wang, Y Chang, and et al. Duration of antibody responses

after severe acute respiratory syndrome. Emerging Infectious Diseases,

13(10):1562–1564, 2007.

[176] Y Xiang, S. Gubian, B. Suomela, and J. Hoeng. Generalized simulated

annealing for efficient global optimization: the GenSA package for R.

The R Journal, 2012. URL http://journal.r-project.org/. Forth-

coming.

259

https://doi.org/10.1042/bst0121093
http://dati.istat.it/Index.aspx?QueryId=18540
https://atlas.ecdc.europa.eu/public/index.aspx
https://atlas.ecdc.europa.eu/public/index.aspx
http://www.salute.gov.it/portale/documentazione/p6_2_8_1_1.jsp?lingua=italiano&id=3
http://www.salute.gov.it/portale/documentazione/p6_2_8_1_1.jsp?lingua=italiano&id=3
http://www.salute.gov.it/portale/documentazione/p6_2_8_3_1.jsp?lingua=italiano&id=20
http://www.salute.gov.it/portale/documentazione/p6_2_8_3_1.jsp?lingua=italiano&id=20
http://www.salute.gov.it/portale/documentazione/p6_2_8_3_1.jsp?lingua=italiano&id=20
http://dati.istat.it
http://journal.r-project.org/

Bibliography

[177] B. I. Yamout and R. Alroughani. Multiple Sclerosis. Semin Neurol, 38

(2):212–225, 04 2018.

[178] L. Yang, A. Ebrahim, C. J Lloyd, M. A Saunders, and B. O Palsson.

Dynamicme: Dynamic simulation and refinement of integrated models

of metabolism and protein expression. BMC systems biology, 13(1):2,

2019.

[179] A.L Zozulya and H. Wiendl. The role of regulatory t cells in multiple

sclerosis. Nature clinical practice Neurology, 4(7):384–398, 2008.

260

	Contents
	Introduction
	Background
	Petri Net formalism and its generalizations
	Petri Net formalism
	Stochastic Petri Net formalism
	Stochastic Symmetric Net formalism
	Exploiting symmetries in Symmetric Net
	Arc functions syntax

	Solution techniques
	Stochastic Simulation Algorithm
	-leaping approximation
	Deterministic approximation

	Flux Balance Analysis
	Flux Balance Analysis formalism
	Dynamic Flux Balance

	Theoretical results
	New PN formalisms for modeling complex systems
	Extended Stochastic Petri Net
	Extended Stochastic Symmetric Net
	Application example: Lotka-Volterra Model

	Extended solution techniques
	Symbolic formalism without complete unfolding
	Case study
	First step: partial unfolding
	Second step: symbolic ODE generation
	Application of the method to the case study
	Extension to the ESSN

	Hybrid Model
	Hybrid model implementation
	Application Example
	Discussion

	Stochastic Simulation
	Application of the method to the case study

	Applications and tool implementation
	GreatMod
	Framework
	The Epimod package

	Applications
	Pertussis and its vaccination policy in Italy
	The disease and its vaccination policy
	The model
	A workflow for studying the Pertussis in Italy
	Discussion

	Multiple Sclerosis
	The Multiple Sclerosis disease
	The temporal model
	The spatial-temporal model
	The temporal model: exploiting real data
	Discussion

	COVID-19
	The COVID-19 disease and how can be modeled
	The ESSN model
	Model calibration
	Model analysis
	Discussion

	Conclusion and future work
	Appendix
	GreatMod installation
	Supplementary information: Pertussis model
	Parameters
	General transition functions
	Package functions

	Supplementary information: RRMS model
	Second model
	Third model

	Supplementary information: COVID19 model
	Parameter
	Contact Matrix
	Further results

	Bibliography

