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1 Introduction

Correlation functions of half-BPS superconformal primary operators in 4d N = 4 super
Yang-Mills theory (SYM) have played a major role in the context of Quantum Field Theories
and holography. Their two- and three-point functions are known to be fully protected [1],
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while many relevant results have recently been obtained for the four-point function both in
weak [2–5] and strong coupling regime [6–14] (see [15] for a review with further references). A
new approach for four-point correlators introduced by [16] involves integrating the spacetime
dependence over a supersymmetric invariant measure. The resulting integrated correlators
can be computed exactly by supersymmetric localisation [17] in terms of a matrix model
on a four-sphere and provide powerful tools to go beyond the perturbative approach and to
explore non-perturbative and exact properties of N = 4 SYM (see [18] for a recent review on
some of the developments about integrated correlators and the relevant references).

All these developments have been focusing on correlators of superconformal primaries
with fixed conformal dimension p, which in general does not scale with N .1 They transform in
the [0, p, 0] representation of SO(6)R symmetry group of N = 4 SYM, and can be written as a
combination of traces of fundamental fields over the gauge algebra su(N), see definitions (2.1)
and (2.2). In the holographic correspondence, these operators are dual to gravitons (for
p = 2) and higher Kaluza-Klein modes (for p > 2) in type IIB string theory.

In this paper we also study a different kind of half-BPS and gauge invariant operator,
defined as determinants over the gauge algebra su(N), see (2.6) for a general definition
and (2.7) for the definition of the maximal determinant operator. Determinant operators
have been introduced in the AdS/CFT context [22–27], and have represented one of the most
successful tests in holography. The maximal determinant operator has a protected conformal
dimension, ∆D = N . Hence in the large-N limit it is the ideal probe particle of AdS spacetime
without deforming the geometry, and is known as the giant graviton. For the case discussed
in this paper, the dual picture of a pair of determinant operators is a D3-brane extended over
an S3 ⊂ S5 direction and moving along AdS5 geodesics in the dual type IIB string theory.

From a field theory perspective, the interest in determinant operators lies in their baryonic-
like behaviour, being gauge singlets composed of N constituents. As heavy operators in
planar N = 4 SYM, they have represented the ideal playground to explore non-perturbative
physics by using integrability techniques [28–32], which have mostly been used for exploring
the spectrum of small deformations. However, due to the subtleties of heavy operators, far
fewer results have been obtained for correlation functions involving determinant operators.
Some classes of three-point functions with determinant operators have been studied in the
literature, in particular in the half-BPS case the three-point correlator can be computed in the
free field limit via Wick contractions [33–35], and several new techniques have been developed
in [36, 37] for the non-BPS sector, where integrability techniques have been combined with a
worldsheet interpretation of three-point functions, in terms of overlaps of a boundary state
with a closed string state. However, very little is known about the four-point functions
involving determinant operators [36–38], especially compared with the extensive set of results
of four-point correlators of trace operators with fixed dimensions.

1Integrated correlators of a special class of maximal multi-trace operators (O2)p (and its similar gener-
alisations) with general p were studied in [19, 20]. In particular, the explicit regimes p ∼ N and p ∼ N2

were considered for (O2)p in [19]; and recently the geometry of the gravity dual of such a heavy maximal
multi-trace operator has been constructed in [21]. Despite their scaling, these operators are very different
from the determinant operators that we are considering here. The integrated correlators with such operators
obey some special recursion relations (i.e. the Laplace-difference equations), and their large-N properties are
relatively more under control.
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In this paper, we consider the correlator ⟨O2O2DD⟩, where O2 is the half-BPS super-
conformal primary operators of dimension two and D is the determinant operator. This
observable has been studied in the weak ’t Hooft coupling regime in [36, 37] at one and
two loops, and recently the same computation has been pushed to three-loop order [39]. To
explore new techniques to go beyond the perturbative approach, we show that the recent
ideas of integrated correlators can also apply to this observable. Schematically we study the
following observable (see section 2.2 for a proper definition):

CD(τ, τ̄ ;N) =
∫

dν(xi)⟨O2(x1)O2(x2)D(x3)D(x4)⟩ , (1.1)

where τ is the complexified Yang-Mills coupling and the precise form of the integration
measure dν(xi) is given in (2.17). This integrated correlator can be computed using a matrix
model on S4 via supersymmetric localisation. In particular, the double insertion of O2 is
associated with the mass deformation of N = 4 SYM, the so-called N = 2∗ theory, whereas
the insertions of determinant operators can be formally implemented as combinations of
multitrace chiral primary operators with dimension N , after performing the Gram-Schmidt
orthogonalisation procedure to unmix the operators between R4 and S4 [40–42].

As a first result, we compute the integrated correlator (1.1) in the standard ’t Hooft
limit, with λ = g2

YMN fixed and large N , where the instanton contributions are exponentially
suppressed. The standard large-N matrix model techniques do not directly apply for insertions
scaling with N , and the canonical Gram-Schmidt procedure for determinant operators when
N is very large appears to be very complicated. Hence we develop a special methodology,
by rewriting the four-point integrated correlator as an infinite sum of BPS three-point
functions in the presence of two determinant operators, which can be evaluated via free field
theory results. The coefficients of the sum are evaluated through the recursive methods for
Gaussian matrix models developed in [43–46]. Remarkably, we are able to obtain closed-form
formulas for the weak coupling expansion of the integrated correlator to all orders in ’t
Hooft coupling in the planar limit and at next-to-leading order in 1/N . More explicitly, the
integrated correlator (1.1) in the ’t Hooft limit can be expressed in terms of the following
topological expansion2

CD(λ;N) =
∞∑

g=0
N1−g C(g)

D (λ) . (1.2)

We find the leading large-N expression for the integrated correlator is given by the following
closed form expansion in λ:

C(0)
D (λ) = 4

∞∑
ℓ=1

(−1)ℓζ(2ℓ+1)

(2ℓ + 1
ℓ

)2

−
(
2ℓ + 1

ℓ

)( λ

16π2

)ℓ

, (1.3)

2The large-N expansion for this observable is expressed in terms of powers of 1/N , instead of the usual
genus expansion in powers of 1/N2 for correlators of operators with fixed conformal dimensions. This is
consistent with the fact that the determinant operators are dual to D3-branes which introduce boundaries of
the worldsheet. Therefore the first two orders in the large-N expansion C(0)

D and C(1)
D can be interpreted as the

disc and annulus amplitudes in string theory, respectively.
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and the subleading order in the large-N expansion takes a similar form:

C(1)
D (λ) = 2

∞∑
ℓ=1

(−1)ℓ−1ζ(2ℓ+1) (ℓ+1)

(2ℓ + 1
ℓ

)2

− (ℓ + 2)
(
2ℓ + 1

ℓ

)( λ

16π2

)ℓ

. (1.4)

These all-loop expressions represent the first important results of this paper. Then the
perturbative results (1.3) and (1.4) can be resummed to exact functions of the ’t Hooft
coupling λ, as shown in (5.24) and (5.25). Using Mellin-Barnes integrals, we further expand
the exact formula in the strong coupling regime, and discuss the resurgence properties of the
strong coupling expansion that can be interpreted as a sum over worldsheet instantons.

Next, we discuss the modular properties of our result, and its comparison with the
expected structures from scattering amplitudes in the dual string theory. As expected for
correlators of superconformal primaries in N = 4 SYM, the four-point function ⟨O2O2DD⟩
is SL(2,Z)-invariant, due to the S-duality of N = 4 SYM [47]. This property can also be
understood from the holographic interpretation at large N . Indeed, associating the boundary
DD pair insertion to a D3-brane in the bulk (see figure 2 in section 6), we expect the
four-point function to be SL(2,Z) invariant, since D3-branes are self-dual under SL(2,Z).
Therefore, the integrated correlator (1.1) must be described by modular functions. We justify
this statement by studying the large-N fixed-τ limit of the integrated correlator. After
proposing the SL(2,Z) completion of the results in terms of particular modular functions,
the non-holomorphic Eisenstein series, we check this proposal against explicit instanton
computations that are relevant in the large-N fixed-τ limit, and we find a perfect agreement.
The proposed modular functions are also consistent with the expectations from flat space
string amplitudes at finite string coupling [48–53].

The rest of the paper is structured as follows. In section 2 we introduce the relevant
half-BPS operators, distinguishing trace operators (with fixed dimensions) and determinant
operators. In section 3, we review the computation of integrated correlators from supersym-
metric localisation, and we extend this definition to determinant operators. In section 4, we
lay out our method of computing the integrated correlator with determinant operators in
the large-N expansion. The final closed forms of the integrated correlator in the large-N
limit and beyond are displayed in section 5, together with the strong coupling expansion
and their resurgence properties. Finally in section 6 we incorporate the non-perturbative
instanton contributions and propose the SL(2,Z) completion of our result, which agrees
with one-instanton computations as well as with the expectations from dual string theory
scattering results. We conclude and comment on future research directions in section 7.

The paper also includes five appendices. Appendix A describes the formalism and
the recursive techniques for the matrix model computation of integrated correlators. In
appendix B, we apply the matrix model recursive techniques for a detailed computation of
Gram-Schmidt orthogonalisation for trace operators, especially in the large-N expansion.
Appendix C combines the partial contraction formula of determinant operators with matrix
model techniques to compute the three-point coefficients. Appendix D describes the Gram-
Schmidt orthogonalisation for the determinant operators and discusses their relation with
the single-particle operators (SPO). Finally, appendix E discusses the comparison between
our results for the integrated correlator and the field theory perturbative computation of
the un-integrated correlator in the literature.
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2 Field theory set up and the integrated correlator

2.1 Trace and determinant operators: two- and three-point functions

The first class of operators we introduce are the half-BPS trace operators with fixed conformal
dimension in N = 4 SYM with SU(N) gauge group. These operators can be expressed in
terms of multiple traces over the gauge algebra of the scalar fields ΦI (with I = 1, · · · , 6),
and take the following form:

Op⃗ (x, Y ) = p1 . . . pm

p
O[p1](x, Y ) · · · O[pm](x, Y ) , (2.1)

where each O[p](x, Y ) is a single-trace operator,

O[p](x, Y ) = 1
p

YI1 · · ·YIp Tr
(
ΦI1(x) · · ·ΦIp(x)

)
, (2.2)

and YI is a null SO(6) vector (Y · Y = 0) that conveniently sums over the R-symmetry index
I. Let us explain the notation in (2.1), that we use throughout the paper. We denote by
p⃗ the vector p⃗ := [p1, · · · , pm], |p⃗| = m is the number of traces defining the operator, and
p =

∑m
i=1 pi is the conformal dimension fixed by supersymmetry.

These operators enjoy several properties, in particular their two- and three-point functions
are protected by supersymmetry and do not receive any quantum corrections [1]. In particular
the two-point function of identical operators reads〈

Op⃗(x1, Y1)Op⃗(x2, Y2)
〉
= Rp⃗(N)(d12)p , (2.3)

where dij is the free-field Wick contraction combining spacetime and R-symmetry vectors as

d12 = Y1 · Y2
x2

12
, (2.4)

and Rp⃗(N) is an N -dependent normalization constant, which can be fixed arbitrarily. For
a generic multitrace operator like (2.1), Rp⃗(N) is conveniently fixed by free theory Wick
contractions in the large-N limit as

Rp⃗(N) = p!
|σp⃗|

(N)p + O(Np−2) , (2.5)

where |σp⃗| is the size of the conjugacy class associated with the operator, see appendix B.1
for the explicit expression.

In this paper, we will also consider a different class of half-BPS operators, defined out
of the determinant over gauge algebra su(N) indices:

det
k

X = 1
k!ϵi1...ikℓ1...ℓN−k

ϵj1...jkℓ1...ℓN−kXi1...ik
j1...jk

, (2.6)

where in, jn, ℓn = 1, . . . , N are fundamental indices of su(N). These operators can be
considered the N = 4 version of QCD baryons, being gauge singlets scaling with the
number of colours. In particular, the main object of the present paper is the maximal
determinant operator

D(x, Y ) = det
N

ϕI(x)Y I , (2.7)
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which has a protected conformal dimension ∆D = N . For finite and fixed values of N , D(x, Y )
can be expressed as a linear combination of the trace operators Op⃗(x, Y ) with dimension p = N .
We will come back to this point in section 3.3 and further details can be found in appendix D.

The property ∆D = N becomes significantly problematic when considering the large-N
limit. From the four-dimensional field theory perspective the notion of planarity in the large-
N expansion is hard to define, and the large-N properties of physical observables involving
D(x, Y ) become much more subtle with respect to operators with fixed dimensions. From
the holographic point of view, the determinant operators D(x, Y ) are dual to maximal giant
gravitons, which are D3-branes wrapping an S3 inside the S5 of the AdS5 × S5 supergravity
background [23, 24]. Now we briefly review the results for correlation functions involving
determinant operators that are needed for this paper.

The two-point function for determinant operators is protected by supersymmetry like (2.3),
and is given by

⟨D(x1, Y1)D(x2, Y2)⟩ = RD(N)(d12)N , (2.8)

where RD(N) is the normalization constant, that can be computed by free field combina-
torics [33] and scales as RD(N) ∼ N !. Higher-point functions involving only determinant
operators have been computed in the free field limit [35, 54] and at one loop [38]. In this
paper, we are interested in correlation functions involving both determinant operators and
trace operators with fixed conformal dimensions.

The first example is the three-point function of two determinant operators and one half-
BPS operator (2.1) of dimension p, which is again protected by superconformal symmetry.
The normalised three-point function is given as〈

D(x1, Y1)D(x2, Y2)Op⃗(x3, Y3)
〉

⟨D(x1, Y1)D(x2, Y2)⟩
= (Rp⃗)

1
2 Dp⃗ ×

(
d23d31

d12

) p
2

, (2.9)

where Rp⃗ is the two-point normalization given in (2.5), Dp⃗ are the structure constants, and
the last term corresponds to the spacetime and R-symmetry kinematic factor, which is fixed
by superconformal symmetry. The structure constants Dp⃗ only depend on combinatorics,
and have been computed at large-N for single-trace operators p⃗ = [p] in [36] using both field
theory and a large-N effective action approach (see for example their eq. (3.58)). For our
purposes we define the normalised three-point coefficient Cp⃗ as

Cp⃗(N) ≡ (Rp⃗)
1
2 Dp⃗ . (2.10)

Starting from the result at leading order in N for C[p] in [36], we extend the computation
of C[p] to the next order in the large-N expansion, and we also compute the leading order
at large N for the multi-trace three-point coefficient Cp⃗. Both these results extending [36]
will be relevant for our computations in section 5.

The normalised three-point coefficient for single-trace operators is given by

C[p](N) = −
(
ip + (−i)p)N p

2

[
1− 3p(p − 2)

8N

]
+ O(N

p
2−2) . (2.11)

The leading term was given in [36], while the subleading contribution can be obtained in
a similar way, by using the “partially contracted giant graviton” formula of [36] (see their

– 6 –



J
H
E
P
0
7
(
2
0
2
4
)
0
4
9

eq. (4.7)). The idea is to express the partial Wick contraction of two determinant operators
DD in terms of trace operators, then to compute the two-point functions of trace operators.3

We show how to compute the three-point coefficient and obtain the result (2.11) with the
help of Gaussian matrix model techniques in appendix C.

From the same set of techniques we can compute Cp⃗ for the multi-trace operators at
leading order in N :

Cp⃗(N) =
(
ip + (−i)p)(−1)m N

p
2 + O(N

p
2−1) , (2.12)

where p =
∑m

i=1 pi with even pi and pi > 0. The result can be viewed as a product of the
three-point functions of single-trace operators given in (2.11), as a result of the large-N
factorisation. For the goals of this paper, in the case of the multi-trace operators in (2.12), we
have only kept the leading-order contribution, and the cases with any odd pi are suppressed.

These three-point coefficients (2.11) and (2.12) are the crucial ingredients for computing
the integrated four-point correlator, which we now introduce.

2.2 Integrated correlators with determinant operators

Let us now turn to the four-point function of interest,

⟨O2(x1, Y1)O2(x2, Y2)D(x3, Y3)D(x4, Y4)⟩ . (2.13)

Because of the constraints from superconformal symmetry, the correlator can be decomposed
as follows [55, 56]:

⟨O2(x1, Y1)O2(x2, Y2)D(x3, Y3)D(x4, Y4)⟩ = Gfree(xi, Yi) + I4(xi, Yi) dN−2
34 HD(U, V ; τ, τ̄) ,

(2.14)
where Gfree(xi, Yi) is the free part, which may be computed by free-field Wick contractions,
whereas the second term incorporates the quantum corrections. The full R-symmetry
dependence can be factorized in the term I4(xi, Yi) (and dN−2

34 ), which is completely fixed by
superconformal symmetry. Its explicit expression can be found in the literature, e.g. in [57]
(see their equation (2.11)), and is not needed for our purposes. The function HD(U, V ; τ, τ̄)
is the main focus of this paper and contains all the dynamics of this observable. It is a
function of the Yang-Mills coupling

τ := τ1 + i τ2 = θ

2π
+ i 4π

g2
YM

, (2.15)

and the cross ratios

U = x2
12x2

34
x2

13x2
24

, V = x2
14x2

23
x2

13x2
24

. (2.16)

The function HD has been computed in perturbation theory at one and two loops in [36, 37]
and more recently at three loops in [39], see appendix E for a review of these achievements
and a comparison with our result. No results beyond perturbation theory have been obtained
for this observable yet.

3The partial contraction formula in [36] is derived for U(N) gauge group. However, as we show in
appendix C, the SU(N) correction does not affect the leading and next-to-leading orders in large-N that we
consider in this paper.
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In this paper, we apply the idea of integrated correlators, providing a fully non-
perturbative method to study the determinant four-point function (2.13). This idea was
originally derived for different classes of four-point functions, involving only trace opera-
tors. More specifically, we define the integrated correlator associated with HD(U, V ; τ, τ̄) by
integrating over the cross ratios with a certain measure [16]4

CD(τ, τ̄ ;N) = − 2
π

∫ ∞

0
dr

∫ π

0
dθ

r3 sin2 θ

U2 HD(U, V ; τ, τ̄) , (2.17)

where U = 1 − 2r cos θ + r2 and V = r2, and we have made it clear that the result also
depends on N of gauge group SU(N). The integration measure over the cross-ratios can be
obtained by placing the N = 4 theory on a 4-sphere S4 and deforming it by a mass parameter
m that preserves N = 2 supersymmetry. The partition function of the resulting N = 2∗

theory on the four-sphere can be computed via supersymmetric localisation in terms of a
matrix model [17], so that the integrated correlator CD(τ, τ̄ ;N) can be expressed in terms
of a matrix model, as we now review in more detail.

3 Integrated correlators as a matrix model

3.1 Review of integrated correlators for trace operators

The integrated four-point function in N = 4 SYM can be obtained from its massive deforma-
tion N = 2∗ SYM. By using the localisation techniques, the partition function of N = 2∗

theory on a four-sphere can be described by a matrix model [17], in terms of an N × N

Hermitian matrix a taking values in the su(N) gauge algebra.
Explicitly, the partition function can be written in terms of an integral over the eigenvalues

of a as follows:

Z(τ,τ ′;m)=
∫

dµ(ai)

∣∣∣∣∣∣exp
(
iπτ

∑
i

a2
i +i

∑
p>2

πp/2τ ′
p

∑
i

ap
i

)∣∣∣∣∣∣
2

Z1-loop(a;m)
∣∣Zinst(τ,τ ′,a;m)

∣∣2 ,

(3.1)
and we have defined

dµ(ai) =
N∏

i=1
dai

∏
i<j

a2
ij δ

(∑
i

ai

)
, (3.2)

where the integration variables ai are constrained by the su(N) tracelessness condition∑N
i=1 ai = 0. The exponential term contains the classical action proportional to the gauge

coupling τ , as well as the dependence on the higher dimensional couplings τ ′
p which act as

4As shown in [58], after factoring out some appropriate factors, the integral measure can also be written as∫
d4x1d4x2d4x3d4x4

vol[SO(2, 4)] ,

which is more convenient for evaluating the integrals. This is especially useful when the correlators are
expressed in terms of conformal Feynman integrals in perturbation theory, then the integrated correlators can
be viewed as a sum of periods of the Feynman integrals. We will utilise this approach when we compare our
results with explicit weak coupling calculations of the four-point correlator in the literature in appendix E.
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sources for chiral primary operators on the four-sphere; Z1-loop and Zinst correspond to the
perturbative one-loop determinant and the non-perturbative instanton contributions [59],
respectively. In particular:

Z1-loop(a;m) = 1
H(m)N

∏
i<j

H2(aij)
H(aij + m)H(aij − m) , (3.3)

and H(x) is a product of Barnes G-functions G(x):

H(x) = e−(1+γ)x2
G(1 + ix)G(1− ix) . (3.4)

We postpone the introduction of the explicit expression for Zinst to section 6 when we consider
SL(2,Z) modular properties of the correlator.

For m = τ ′
p = 0, both Z1-loop(a;m) and Zinst(τ, τ ′, a;m) reduce to 1 and the matrix

model becomes exactly Gaussian. In this case, the partition function reads

Z0 ≡ Z(τ, 0; 0) =
∫

dµ(ai) exp
(
− 2πτ2

∑
i

a2
i

)
, (3.5)

and after rescaling the matrix a as:

a → a√
2πτ2

, (3.6)

one can write down any observable f(ai) evaluated in the Gaussian matrix model as:

⟨f(ai)⟩0 = 1
Z0

∫
dµ(ai) exp

(
−
∑

i

a2
i

)
f(ai) , (3.7)

which in general will be some function of N .
We can now illustrate the procedure to compute integrated correlators from the N = 2∗

partition function (3.1). As derived in [16, 60], taking multiple derivatives of (3.1) is associated
with the insertion of operators on the four-sphere. As an example, the quantity

∂4
m logZ(τ, τ ′;m) |τ ′,m=0 , (3.8)

corresponds to the integrated correlator of four O2 operators, after using the idea that the
mass deformation switches on a special R-symmetry channel (the so-called moment map
operator) of the 20′ operator in N = 4 SYM. The localisation formula (3.8) computes
⟨O2O2O2O2⟩ integrated over a different integration measure to (2.17) (it has an additional
one-loop box integral). Further properties of this second class of integrated correlators can
be found in [60–62].

A similar idea holds when taking derivatives with respect to the mass m as well as the
couplings τ, τ ′

p and their complex conjugates. As originally derived in [42], taking derivatives
of (3.1) with respect to the couplings τ, τ ′

p and their complex conjugates is associated with
the insertion of chiral/antichiral operators on the North/South poles of the four-sphere.
In particular ∂τ ′

p
is associated to the insertion of the operator Op(ai) = tr ap =

∑
i ap

i .
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The action of multiple derivatives ∂τ ′
p1,...,pm

:= ∂τ ′
p1

. . . ∂τ ′
pm

corresponds to the insertion of
multitrace operators

Op⃗(a) = O[p1,...,pm] = tr ap1 . . . tr apm . (3.9)

However, the S4 operators do not directly correspond to chiral primaries on R4. Due to
the additional dimensionful parameter (i.e. the radius of S4), the operators with different
dimensions on S4 can mix, and in particular, unlike chiral operators on flat space, their
two-point functions do not vanish. To create a correspondence between S4 and R4, we need
to perform a normal-ordering procedure, namely to impose orthogonality with respect to all
the lower-dimensional (single and multi-trace) operators via the Gram-Schmidt procedure,
as prescribed in [42, 43, 46, 63] in the context of extremal correlators in N = 2 SCFTs (see
also [16, 19, 20, 57, 64] for the application of the Gram-Schmidt procedure to integrated
correlators in N = 4 SYM). Therefore, given Op⃗(a) as defined in (3.9) on the sphere, its
normal ordered version (which is the proper matrix model version of the operators (2.1)
defined in R4) is given by:5

Op⃗(a) ≡:Op⃗(a) := Np⃗

Op⃗(a) +
∑

q⃗ ⊢q<p

αp⃗,q⃗(N) Oq⃗(a)

 , (3.10)

where the sum in (3.10) runs over all the operators defined by the vector q⃗ = [q1, . . . , qn]
with dimension q =

∑n
i=1 qi, following the notation6∑

q⃗ ⊢q

≡
∑

partitions of q
. (3.11)

For SU(N) we exclude all the partitions with any qi = 1, because this is associated with
a dimension-one operator, which vanishes due to the tracelessness condition; therefore the
partitions only include vectors with elements qi ≥ 2. We will use the shorthand notation (3.11)
throughout the paper.

Moreover, the coefficient Np⃗ denotes a normalization factor, which can be fixed by
computing the two-point functions, see appendix B.1. Explicitly, we want the matrix model
two-point function (computed in (B.10)) to be consistent with the field theory convention (2.5):〈

Op⃗(a)Op⃗(a)
〉

0 = Rp⃗(N) , (3.12)

which determines Np⃗ to be

Np⃗ = 2
p
2 . (3.13)

The coefficients αp⃗,q⃗(N) are rational functions of N , which can be obtained by imposing
for each p⃗ the following set of equations:〈

Op⃗(a)Or⃗(a)
〉

0 = 0 , ∀r < p and ∀ partitions of r , (3.14)
5In this paper, we use straight capital letters for operators on S4 and calligraphic letters for the corresponding

normal ordered operators.
6Comparing with the previous literature [16, 19, 20, 57, 64], the coefficients αp⃗,n⃗ here correspond to vµ

p

there, with superscript µ running over all the operators with dimension lower than p. As we will see in the
following, for our purposes it is convenient to stick to the notation αp⃗,n⃗ where the distinction between single
and multi-trace operators is more evident.
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where ⟨ ⟩0 stands for correlators in the Gaussian matrix model, as in (3.7). The orthogo-
nalisation procedure (3.14) in general is rather involved; in appendix A we describe a more
refined way to compute the Gaussian integrals and to explicitly write down the normal
ordered operators (3.10).

Therefore, a general normalized integrated correlator (with the integration measure
given in (2.17)) of two O2 operators and two general chiral operators Op⃗, Oq⃗ with an equal
dimension reads:7

Cp⃗,q⃗(τ, τ̄ ;N) =

∑
r⃗ ,s⃗

αp⃗,r⃗ αq⃗,s⃗ ∂τ ′
r⃗
∂τ̄ ′

s⃗
∂2

m logZ(τ, τ ′;m) |τ ′,m=0∑
r⃗ ,s⃗

αp⃗,r⃗ αq⃗,s⃗ ∂τ ′
r⃗
∂τ̄ ′

s⃗
logZ(τ, τ ′; 0) |τ ′=0

. (3.15)

This localisation formula computes the integrated correlator as defined in (2.17). The
integrated correlators Cp⃗,q⃗(τ, τ̄ ;N) have been studied extensively in [19, 20, 64], especially
when the dimensions of the operators Op⃗, Oq⃗ are independent of N .

3.2 Normal ordered trace operators

We now use the recursive techniques, originally developed in [43–46] in the context of N = 2
SCFTs and reviewed in appendix A, to evaluate Gaussian matrix model observables in an
efficient way, and in particular to compute normal ordered operators as prescribed in (3.10)
and (3.14).

Starting from the Gaussian integral (3.5), it is convenient to rewrite it in terms of a full
N×N Hermitian matrix integral.8 Hence equations (3.5) and (3.7) can be rewritten as follows:

Z0 =
∫

da e−tra2
, ⟨f(a)⟩0 =

∫
da e−tra2

f(a) , (3.16)

where the measure is normalised such that Z0 = 1.
We use the matrix-model techniques to compute the mixing coefficients αp⃗,n⃗ as defined

in (3.10), using (3.14) for any given values of p. Using the Gaussian recursive formulas
displayed in (A.8), we write down the complete finite-N coefficients up to very high values
of p. We explicitly write here an example for p⃗ = [4, 2]:

O[4,2] =N[4,2]

[
O[4,2]−

N2+7
2 O[4]−

2N2−3
N

O[2,2]+
3(2N2−3)(N2+3)

4N
O[2]−

(N2−1)(N2+3)(2N2−3)
8N

]
,

(3.17)

where the last coefficient corresponds to the mixing with the identity operator. We refer
to (B.3) for other explicit formulas for normal ordered operators.

7We will only focus on the cases where the two operators Op⃗, Oq⃗ are the same; in particular they will be
the determinant operators. It is worth mentioning that when the operator Op⃗ is not identical to Oq⃗, one needs
to choose the normalisation factor

∑
αp⃗,r⃗αq⃗,s⃗ ∂τ ′

m⃗
∂τ̄ ′

s⃗
log Z(τ, τ ′; 0) |τ ′=0 in the denominator more carefully

since it may vanish for some values of p⃗ and q⃗, and the choice of the normalisation also plays an important
role for the integrated correlators to obey simple Laplace-difference equations [64].

8The integral over the eigenvalues of a is performed over a Cartan direction of su(N) Lie algebra, hence
the matrix integral over the full matrix a is also referred as the full Lie algebra approach. As described by a
direct comparison in [45], the full Lie algebra approach is more efficient for obtaining finite-N results.
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For future convenience, we invert the relations (3.10), and express all the multitrace
operators on the sphere (3.9) in terms of the normal ordered operators:

Oq⃗(a) = Ôq⃗(a) +
∑

p⃗⊢p<q

βq⃗,p⃗(N) Ôp⃗(a) , (3.18)

where we have defined the normalized normal ordered operator as:

Ôp⃗(a) ≡
Op⃗(a)
Np⃗

. (3.19)

For example:

O[4,2] = Ô[4,2]+
N2+7

2 Ô[4]+
2N2−3

N
Ô[2,2]+

3(2N2−3)(N2+3)
4N

Ô[2]+
(N2−1)(N2+3)(2N2−3)

8N
.

(3.20)

Quite strikingly, the change of basis is highly symmetric, so that the coefficients αq⃗,p⃗ and
βq⃗,p⃗ are equal up to alternating signs:

βq⃗,p⃗(N) = (−1)
q−p

2 αq⃗,p⃗(N) . (3.21)

This change of basis turns out to be crucial to evaluate the massive deformation in the matrix
model, especially in the study of the large-N limit of the integrated correlator in the presence
of determinant operators which we will consider now.

3.3 Determinant operators in the matrix model

On the four-sphere, the determinant operator is defined as a product over the eigenvalues of a:

D(ai) =
N∏

i=1
ai . (3.22)

As explained in the previous section, the integrated correlator should be defined for the
corresponding normal ordered version D(ai), due to the mixing problem between S4 and R4.
In appendix D we thoroughly explain the Gram-Schmidt procedure to uplift the determinant
operator on the four-sphere (3.22) to its normal ordered version D(ai) (we also comment
on the relation between the determinant operator and the single-particle operator in the
large-N limit [65]). The explicit procedure described in appendix D shows the difficulties
in the Gram-Schmidt orthogonalisation of operators with dimension ∆ = N .

In analogy with (3.15), we can formally define the matrix model version for the integrated
correlator (2.17) in the presence of determinant operators D as follows:

CD(τ, τ̄ ;N) = ∂D∂D∂2
m logZ(τ, τ ′;m) |τ ′,m=0

∂D∂D logZ(τ, τ ′;m) |τ ′,m=0
, (3.23)

where the notation ∂D indicates the insertion of a determinant operator. More explicitly,
for fixed values of N , as shown in (D.1), we can express the determinant operator in terms
of trace operators. Therefore, in principle, one may express the integrated correlator CD
as a linear combination of Cp⃗,q⃗ given in (3.15). However, computing CD in this way clearly
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becomes extremely difficult when N is large, where the number of terms Cp⃗,q⃗ in the linear
combinations grows exponentially with N .

To circumvent this complexity when computing the integrated correlator CD in ’t Hooft
limit, we will follow a new methodology in order to bypass the Gram-Schmidt procedure on
determinant operators. Following the definition (3.23) we will insert D(ai) without explicitly
performing the normal ordering, and we will rather apply the Gram-Schmidt procedure
on the mass deformed term. This reformulation represents the key point to carry out the
computations of CD in the large-N expansion, as described in the following sections.

4 Integrated correlators as a sum of three-point functions

In this section we focus on studying the integrated correlator CD (3.23) from a perturbative
approach of the matrix model. Here we are interested in the ’t Hooft limit with large-N and
fixed-λ. In this regime, the instanton contribution is exponentially suppressed, so that we
can simply drop the instanton partition function. The instanton effects will be discussed
later in section 6 when we consider the large-N expansion of the integrated correlator with
fixed-τ and study its modular properties.

The goal of this section is to re-interpret the matrix model expression for CD in order to
avoid explicitly performing the Gram-Schmidt orthogonalization for the determinant operators
and to express the matrix-model expression of the integrated correlator in terms of three-point
functions on R4. Let us outline the strategy. After expanding Z1-loop perturbatively, we
use the inverse Gram-Schmidt procedure (3.18) to rewrite Z1-loop purely in terms of normal
ordered operators. The final outcome for the integrated correlator CD is an infinite sum
of BPS and normal-ordered three-point functions in the presence of determinant operators,
which can be evaluated using the explicit R4 planar results (2.11).9 This method is powerful
enough to derive closed-form formulas for the perturbative expansion for the leading and
subleading orders of large-N expansion.

4.1 Mass deformation as an insertion in Gaussian matrix model

Let us rewrite the partition function (3.1) for τ ′
p = 0 in the zero-instanton sector (|Zinst|2 = 1)

as the following integral over the matrix a, rescaled as in (3.6)

Z(m, g2
YM) =

∫
da e− tr a2

Z1-loop(a;m, g2
YM) . (4.1)

By expanding the Barnes G-functions (3.4), it is possible to rephrase the 1-loop term (3.3) in
terms of traces on the matrix a, and in the limit of small m we can expand it perturbatively
in g2

YM [66]:

logZ1-loop = −m2
[ ∞∑

ℓ=1

2ℓ∑
j=0

(−1)ℓ+j

(
g2

YM
8π2

)ℓ(2ℓ

j

)
(2ℓ + 1)ζ(2ℓ + 1) tr a2ℓ−j tr aj

]
+ O(m4) .

(4.2)
9The procedure can be applied to any other integrated correlators of the form given in (3.15); here, we will

only focus on the integrated correlator involving the determinant operators, for which some other approaches
become difficult, as we have emphasised.
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At leading order in the mass, we can view the mass deformation as an insertion in the
Gaussian matrix model, so that we rewrite the partition function as

∂2
m logZ(m, g2

YM)
∣∣∣
m=0

=
∫

da e− tr a2 M2(a, g2
YM) ≡

〈
M2(a, g2

YM)
〉

0
, (4.3)

where M2 can be seen as an infinite sum of operators on the sphere

M2(a, g2
YM) = −2

∞∑
ℓ=1

2ℓ∑
j=0

(−1)j+ℓ(2ℓ + 1)
(
2ℓ

j

)
ζ(2ℓ + 1)

(
g2

YM
8π2

)ℓ

O[2ℓ−j,j] . (4.4)

It is now useful to change basis and rewrite M2 in terms of the normal-ordered operators
Op⃗(a), by following the transformation rule in (3.18) and the definition (3.19):

M2(a,g2
YM)=−2

∞∑
ℓ=1

2ℓ∑
j=0

(−1)j+ℓ(2ℓ+1)
(
2ℓ

j

)
ζ(2ℓ+1)

(
g2

YM
8π2

)ℓ
Ô[2ℓ−j,j]+

∑
p⃗⊢p<2ℓ

β[2ℓ−j,j],p⃗ Ôp⃗

 .

(4.5)

Let us stress the idea behind this rewriting: we trade the insertion of the operator (4.4)
containing only double traces (but with no direct physical meaning on R4) with the oper-
ator (4.5) written in terms of all the normal ordered multi-trace operators, which are the
matrix model equivalent of the R4 operators.

4.2 Integrated correlator with determinant operators

After inserting the massive deformation in the Gaussian matrix model as in (4.3) we can
rewrite the integrated correlator in the presence of determinant operators (3.23) as follows:

CD(g2
YM;N) =

〈
D(a)D(a)M2(a, g2

YM)
〉

0
⟨D(a)D(a)⟩0

−
〈
M2(a, g2

YM)
〉

0
≡
〈
M2(a, g2

YM)
〉
D

, (4.6)

where we defined the notation ⟨ ⟩D to identify the connected normalized three point function
in the presence of determinant operators. Using (4.5), we get:

CD(g2
YM;N) = −2

∞∑
ℓ=1

2ℓ∑
j=0

(−1)j+ℓ(2ℓ + 1)
(
2ℓ

j

)
ζ(2ℓ + 1)

(
g2

YM
8π2

)ℓ

〈Ô[2ℓ−j,j]
〉
D
+

∑
p⃗⊢p<2ℓ

β[2ℓ−j,j],p⃗
〈
Ôp⃗

〉
D

 .

(4.7)

Note that the sum over p⃗ does not include the identity (so p > 0), because this would provide
a disconnected contribution which vanishes in the definition (4.6).

We have now reduced the matrix model computation for the integrated correlator in the
presence of determinant operators to an infinite sum over three-point functions of normal
ordered operators. We will now study the ’t Hooft large-N expansion of the integrated
correlator utilising the large-N expansion of the three-point functions and the properties
of β-coefficients.
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4.2.1 Large-N expansion

Since all the operators are now normal ordered, we can directly apply the large-N field
theory results of the three-point functions and the β-coefficients that appear in (4.7). In
order to calculate the integrated correlator at leading and subleading order in N , we expand
both the three-point functions and the β-coefficients in the large-N limit. We find that, in
general, the three-point functions behave as〈

Ôp⃗

〉
D
=
〈
Ôp⃗

〉(0)

D
N

p
2 +

〈
Ôp⃗

〉(1)

D
N

p
2−1 + . . . , (4.8)

where all the pi in p⃗ are even and pi > 0. From the field theory result (2.11) we can read the
coefficients for the single-trace operators which are relevant to our computation:〈

Ô[2p]
〉(0)

D
= (−1)p−1 21−p ,

〈
Ô[2p]

〉(1)

D
= 3p(p − 1)(−1)p2−p , (4.9)

where we have also taken into account the normalisation factor (3.13). For multi-trace
operators we only need the leading-order contribution shown in (2.12), and after including
the normalisation factor (3.13) we find:〈

Ô[2p1,...,2pm]
〉(0)

D
= 21−p (−1)p−m , (4.10)

where again p =
∑m

i=1 pi and pi > 0. In all the expressions (4.8), (4.9) and (4.10), we have
required all the elements in p⃗ to not be 0. As shown in (A.7), each ‘0’ in p⃗ would contribute
with an additional factor of N to (4.8). For instance, in (4.7) the j = 0 term generates a
contribution

〈
Ô[2ℓ,0]

〉
D

that can be evaluated as follows:

〈
Ô[2ℓ,0]

〉
D
= N

〈
Ô[2ℓ]

〉
D
=
〈
Ô[2ℓ]

〉(0)

D
N ℓ+1 +

〈
Ô[2ℓ]

〉(1)

D
N ℓ + . . . . (4.11)

The other ingredients that determine the scaling with N are the mixing coefficients. The
large-N properties of βq⃗,p⃗ are analysed in appendix B. From many specific examples obtained
from the general recursive techniques of the matrix model, we find they behave as:

βq⃗,p⃗ = β
(0)
q⃗,p⃗ N

q−p
2 +n−m + β

(1)
q⃗,p⃗ N

q−p
2 +n−m−2 + . . . , (4.12)

where p =
∑m

i=1 pi and q =
∑n

i=1 qi, and m and n are the lengths of the vectors p⃗ and q⃗

respectively. Furthermore, all the elements in q⃗ and p⃗ are even, since ⟨Ôp⃗⟩D and βq⃗,p⃗ with
any odd terms are suppressed in large-N to the order we consider. See appendix B for the
explicit expressions of βq⃗,p⃗ that are used for the present analysis.

Let us remark the difference between the large-N expansions of ⟨Ôp⃗⟩D in (4.8) and the
coefficients βq⃗,p⃗ in (4.12). The expansion for ⟨Ôp⃗⟩D is organised in powers of 1/N , whereas
the expansion parameter of βq⃗,p⃗ is 1/N2. This is expected and has also a deeper meaning.
The determinant operators are dual to D3-branes introducing boundaries for open strings,
and the three-point coefficient (4.8) can be seen as overlaps with boundary states. On the
other hand, the mixing coefficients βq⃗,p⃗ come from two-point functions of half-BPS operators
with fixed dimensions, which are dual to the closed-string KK modes in type IIB string theory.
So their expansion in the large-N limit follows the usual genus expansion in powers of 1/N2.
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Using (4.8), (4.12) and (4.11), we can therefore expand the terms in (4.7) in the large-N
limit. We see that the weak-coupling expansion gets naturally organised in terms of the ’t Hooft
coupling λ = Ng2

YM. Collecting the leading and subleading terms in the large-N limit, we find

CD(λ;N) = − 2
∞∑

ℓ=1
(−1)ℓ(2ℓ + 1) ζ(2ℓ + 1)

(
λ

8π2

)ℓ

× (4.13)

(
N

[
2
〈
Ô[2ℓ]

〉(0)

D
+

ℓ∑
j=0

(
2ℓ

2j

)
ℓ−1∑
p=1

β
(0)
[2ℓ−2j,2j],[2p]

〈
Ô[2p]

〉(0)

D

]

+
[
2
〈
Ô[2ℓ]

〉(1)

D
+

ℓ∑
j=0

(
2ℓ

2j

)
ℓ−1∑
p=1

β
(0)
[2ℓ−2j,2j],[2p]

〈
Ô[2p]

〉(1)

D
+

ℓ−1∑
j=1

(
2ℓ

2j

)〈
Ô[2ℓ−2j,2j]

〉(0)

D

+
ℓ∑

j=0

(
2ℓ

2j

)
ℓ−1∑
p=2

⌊ p
2 ⌋∑

p1=1
β

(0)
[2ℓ−2j,2j],[2p1,2p−2p1]

〈
Ô[2p1,2p−2p1]

〉(0)

D

])
+ O(N−1) ,

where we have kept the leading and subleading terms and omitted the higher order terms.
In particular, the coefficients β

(1)
q⃗,p⃗ in (4.12) do not contribute since they differ from the

leading-order term by 1/N2.
In the next section, we will examine each order in N separately using the explicit

expressions of the three-point functions
〈
Ô

k⃗

〉
D

and the coefficients β
(0)
q⃗,p⃗ . This analysis will

allow us to obtain exact expressions as functions of ’t Hooft coupling λ for the integrated
correlator CD(λ;N) in the large-N expansion.

5 Exact results at weak and strong coupling

In this section, we consider the large-N ’t Hooft expansion of the integrated correlator. As
we can see from (4.13), CD is organised in terms of the following topological expansion:

CD(λ;N) =
∞∑

g=0
N1−g C(g)

D (λ) . (5.1)

As we mentioned in the introduction, the large-N expansion for this observable is decomposed
in powers of 1/N , instead of the usual 1/N2 for correlators of trace operators with fixed
conformal dimensions. This is consistent with the holographic interpretation that the
determinant operators are dual to D3-branes in the string theory. In this paper we will
concentrate on the Leading order C(0)

D and Next-to-Leading order C(1)
D in the expansion (5.1),

which in the dual string theory interpretation correspond to the disc string amplitude and
the annulus amplitude respectively. We will come back to this interpretation in section 6.

5.1 Weak coupling results in large-N expansion

Using the ingredients discussed in the previous section, we now derive the all-order expression
for the large-N expansion of the integrated correlator CD(λ;N) in the leading planar limit
and the next-to-leading correction. We then resum the perturbative results to obtain exact
expressions for CD(λ;N), valid for any ‘t Hooft coupling λ, and we analyse the strong coupling
expansion and the associated resurgent properties.
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5.1.1 Leading-N expression and comparison with field theory results

We begin with the leading-N contribution. From (4.13), the leading-N term can be written as

C(0)
D (λ) = − 2

∞∑
ℓ=1

(−1)ℓ(2ℓ + 1) ζ(2ℓ + 1)
(

λ

8π2

)ℓ

[
2
〈
Ô[2ℓ]

〉(0)

D
+

ℓ−1∑
p=1

〈
Ô[2p]

〉(0)

D

ℓ∑
j=0

(
2ℓ

2j

)
β

(0)
[2ℓ−2j,2j],[2p]

]
.

(5.2)

As discussed in appendix B, we find that the coefficients β
(0)
[2l−2j,2j],[2p] are given by

β
(0)
[2ℓ−2j,2j],[2p] = 2p−ℓ

[
Cj

(
2ℓ − 2j

ℓ − j + p

)
+ Cℓ−j

(
2j

j + p

)]
, (5.3)

where Cn denote the Catalan numbers, defined as Cn = 1
n+1

(2n
n

)
. The two terms in (5.2) can

be written in a more unified form, using the following property:

ℓ∑
j=0

(
2ℓ

2j

)
β

(0)
[2ℓ−2j,2j],[2l] = 2 . (5.4)

Because of this relation, the first term in (5.2) can be absorbed into the sum over p in the
second term, so that we rewrite

C(0)
D (λ) = −2

∞∑
ℓ=1

(−1)ℓ(2ℓ + 1) ζ(2ℓ + 1)
(

λ

16π2

)ℓ

quad
ℓ∑

p=1

〈
Ô[2p]

〉(0)

D
2p

ℓ∑
j=0

(
2ℓ

2j

)[
Cj

(
2ℓ − 2j

ℓ − j + p

)
+ Cℓ−j

(
2j

j + p

)]
.

(5.5)

The sum over j of the above expression can be further simplified using the symmetry of
the binomial and Vandermonde’s identity:

ℓ∑
j=0

(
2ℓ

2j

)[
Cj

(
2ℓ − 2j

ℓ − j + p

)
+ Cℓ−j

(
2j

j + p

)]
= 2

ℓ∑
j=0

(
2ℓ

2j

)(
2j

j + p

)
Cℓ−j

= 2
2ℓ + 1

(
2ℓ + 1

ℓ + p + 1

)(
2ℓ + 1
ℓ + p

)
,

(5.6)

and so

C(0)
D (λ)=−4

∞∑
ℓ=1

(−1)ℓ ζ(2ℓ+1)
(

λ

16π2

)ℓ ℓ∑
p=1

2p

(
2ℓ+1

ℓ+p+1

)(
2ℓ+1
ℓ+p

)〈
Ô[2p]

〉(0)

D
. (5.7)

Finally, substituting in the result of
〈
Ô[2p]

〉(0)

D
given in (4.9), we arrive at

C(0)
D (λ) = −8

∞∑
ℓ=1

(−1)ℓ+1ζ(2ℓ + 1)
(

λ

16π2

)ℓ ℓ∑
p=1

(−1)p

(
2ℓ + 1

ℓ + p + 1

)(
2ℓ + 1
ℓ + p

)
. (5.8)
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The summation over p in the above expression can be done explicitly, and we find that the
integrated correlator in the large-N limit is given by the following remarkably simple formula:

C(0)
D (λ) = 4

∞∑
ℓ=1

(−1)ℓ+1ζ(2ℓ+1)

(2ℓ + 1
ℓ

)2

−
(
2ℓ + 1

ℓ

)( λ

16π2

)ℓ

. (5.9)

This all-loop expression of the integrated correlator at leading order in the planar limit is
one of our main results. As an example, we write down the first few perturbative orders
of the integrated correlator:

C(0)
D (λ) = 3λζ(3)

2π2 − 45λ2ζ(5)
32π4 + 595λ3ζ(7)

512π6 − 7875λ4ζ(9)
8192π8 + O(λ5) . (5.10)

Comparison with perturbative results in Feynman integrals. The perturbative
expansion for the integrated correlator (5.10), obtained from the localised matrix model,
can be checked against the explicit computation for the un-integrated four-point correlator
⟨O2O2DD⟩, which has been computed at one and two loops [36, 37] and more recently at
three loops [39]. More specifically, the integral of the (un-integrated) correlator over the
measure (2.17) should reproduce (5.10) order by order in perturbation theory. We perform
this analysis in detail in appendix E.

We find that our result (5.10) matches exactly the expression given in [36, 37, 39] by
integrating out the spacetime dependence of the correlator for the first two loops. However,
the O(λ3) three-loop result in (5.10) does not agree with the proposed expression given in [39]
(once again after integrating out the spacetime dependence). We believe the integral basis
used in [39] for constructing the three-loop integrand for ⟨O2O2DD⟩ may not be complete,
which is the reason for the discrepancy at three loops. See appendix E for a more detailed
discussion about the agreement at one and two loops and the mismatch at three loops.

5.1.2 Subleading-order expression

We now analyse the subleading contribution in the large-N expression. From (4.13), the
integrated correlator at the subleading order can be written as

C(1)
D (λ)= (5.11)

−2
∞∑

ℓ=1

(−1)ℓ(2ℓ+1)ζ(2ℓ+1)
(

λ

8π2

)ℓ

×[
2
〈
Ô[2ℓ]

〉(1)

D
+

ℓ∑
j=0

(
2ℓ

2j

) ℓ−1∑
p=1

β
(0)
[2ℓ−2j,2j],[2p]

〈
Ô[2p]

〉(1)

D
+

ℓ−1∑
j=1

(
2ℓ

2j

)〈
Ô[2ℓ−2j,2j]

〉(0)

D

+1
2

ℓ∑
j=0

(
2ℓ

2j

)ℓ−1∑
p=2

p−1∑
p1=1

β
(0)
[2ℓ−2j,2j],[2p1,2p−2p1]

〈
Ô[2p1,2p−2p1]

〉(0)

D
+

⌊ ℓ−1
2 ⌋∑

p=1
β

(0)
[2ℓ−2j,2j],[2p,2p]

〈
Ô[2p,2p]

〉(0)

D

] .

Similarly to the leading-N case, using (5.3), the first two terms evaluate to

2
〈
Ô[2ℓ]

〉(1)

D
+

ℓ∑
j=0

(
2ℓ

2j

)
ℓ−1∑
p=1

β
(0)
[2ℓ−2j,2j],[2p]

〈
Ô[2p]

〉(1)

D
=

ℓ∑
p=1

2p−ℓ+1

2ℓ+1

(
2ℓ+1

ℓ+p+1

)(
2ℓ+1
ℓ+p

)〈
Ô[2p]

〉(1)

D
.

(5.12)
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To proceed, we use the expression for β
(0)
[2ℓ−2j,2j],[2p1,2p−2p1] as given in (B.7):

β
(0)
[2ℓ−2j,2j],[2p1,2p−2p1] =

2p−ℓ

1 + δp1,p−p1

[(
2j

j−p+p1

)(
2ℓ−2j

ℓ−j−p1

)
+
(

2j

j−p1

)(
2ℓ−2j

ℓ−j−p+p1

)

+ ℓ−j−p

j+1

(
2j

j

)(
2ℓ−2j

ℓ−j−p

)
+ j−p

ℓ−j+1

(
2ℓ−2j

ℓ−j

)(
2j

j−p

)]
.

(5.13)

We then note that the two terms in the final line of (5.11) can be combined to

1
2

ℓ∑
j=0

(
2ℓ

2j

)
ℓ−1∑
p=2

p−1∑
p1=1

2p−ℓ

[(
2j

j−p+p1

)(
2ℓ−2j

ℓ−j−p1

)
+
(

2j

j−p1

)(
2ℓ−2j

ℓ−j−p+p1

)

+ ℓ−j−p

j+1

(
2j

j

)(
2ℓ−2j

ℓ−j−p

)
+ j−p

ℓ−j+1

(
2ℓ−2j

ℓ−j

)(
2j

j−p

)]〈
Ô[2p1,2p−2p1]

〉(0)

D
.

(5.14)

Similarly to the leading-N case, the above binomial sums can be simplified further. In partic-
ular, we can perform the j sum first, using the symmetry of the binomial and Vandermonde’s
identity. Doing so, we find the final line of (5.11), namely (5.14), reduces to

ℓ−1∑
p=2

p−1∑
p1=1

2p−ℓ

(
2ℓ

ℓ−p

)[( 2ℓ

ℓ−p+2p1

)
+
(

2ℓ

ℓ+p+1

)]〈
Ô[2p1,2p−2p1]

〉(0)

D
. (5.15)

Note that if p = ℓ in the above equation, then it becomes
ℓ−1∑

p1=1

(
2ℓ

2p1

)〈
Ô[2p1,2l−2p1]

〉(0)

D
=

ℓ−1∑
j=1

(
2ℓ

2j

)〈
Ô[2ℓ−2j,2j]

〉(0)

D
. (5.16)

Therefore the
∑ℓ−1

j=1
(2ℓ

2j

)〈
Ô[2ℓ−2j,2j]

〉(0)

D
term in the second line of (5.11) can be absorbed into

the sum over p1 in the final line as given in (5.15). In conclusion, (5.11) becomes

C(1)
D (λ) = − 2

∞∑
ℓ=1

(−1)ℓ(2ℓ + 1) ζ(2ℓ + 1)
(

λ

8π2

)ℓ

× (5.17)

[
ℓ∑

p=1

2p−ℓ+1

2ℓ + 1

(
2ℓ + 1

ℓ + p + 1

)(
2ℓ + 1
ℓ + p

)〈
Ô[2p]

〉(1)

D

+
ℓ∑

p=2

p−1∑
p1=1

2p−ℓ

(
2ℓ

ℓ−p

)(( 2ℓ

ℓ−p+2p1

)
+
(

2ℓ

ℓ+p+1

))〈
Ô[2p1,2p−2p1]

〉(0)

D

]
.

Using the expression of
〈
Ô[2p]

〉(1)

D
given in (4.9) and

〈
Ô[2p1,2p−2p1]

〉(0)

D
from (4.10), we obtain

C(1)
D (λ) =− 4

∞∑
ℓ=1

(−1)ℓ(2ℓ + 1) ζ(2ℓ + 1)
(

λ

16π2

)ℓ

× (5.18)

[
2

ℓ∑
p=2

(
2ℓ

ℓ − p

)
(−1)p

p−1∑
p1=1

(
2ℓ

ℓ−p+2p1

)

+
ℓ∑

p=2
(−1)p(p − 1)

( 3p

2ℓ + 1

(
2ℓ + 1
ℓ+p+1

)(
2ℓ + 1
ℓ + p

)
+ 2

(
2ℓ

ℓ + p

)(
2ℓ

ℓ + p + 1

))]
.
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The first line sums to

2
ℓ∑

p=2
(−1)p

(
2ℓ

ℓ−p

) p−1∑
p2=1

(
2ℓ

ℓ−p+2p2

)
= 2

(
2ℓ−1

ℓ

)2

−
(
2l

l

)
, (5.19)

while the second line sums to

ℓ∑
p=2

(−1)p(p−1)
[ 3p

2ℓ+1

(
2ℓ+1

ℓ+p+1

)(
2ℓ + 1
ℓ + p

)
+ 2

(
2ℓ

ℓ+p

)(
2ℓ

ℓ+p+1

)]
= 1

2

(
2ℓ

ℓ

)((
2ℓ

ℓ−1

)
− ℓ

)
.

(5.20)

Substituting these into (5.18), we find the subleading term is given by the following compact
expression:

C(1)
D (λ)= 2

∞∑
ℓ=1

(−1)ℓ−1ζ(2ℓ+1)(ℓ+1)

(2ℓ+1
ℓ

)2

−(ℓ+2)
(
2ℓ+1

ℓ

)( λ

16π2

)ℓ

, (5.21)

which is very similar to the leading order term C(0)
D (λ) as given in (5.9). We can write down

the first few perturbative orders:

C(1)
D (λ) = −45λ2ζ(5)

32π4 + 525λ3ζ(7)
256π6 − 4725λ4ζ(9)

2048π8 + O(λ5) . (5.22)

We note that the 1/N correction begins at two loops. The four-point correlator has only
been computed in the strictly planar limit, up to three loops [36, 37, 39], as we reviewed
in appendix E. Therefore we cannot compare the subleading contribution in (5.21) with
any results in the literature, as we did in the case of the leading planar contribution.
However, (5.21) can represent a useful constraint for any future field theory computation
on R4 beyond the planar limit.

5.2 Exact result in λ and strong coupling expansion

It is easy to see that the perturbative series in both the leading large-N limit, namely (5.9),
and its subleading contribution, (5.21), are convergent with a finite convergent radius |λ| < π2,
in analogy with many physical quantities in N = 4 SYM. We can then resum the perturbative
series and obtain a closed form result for CD(λ) at each order in 1/N that is exact for any
λ. This can be done by using the following integral representation of ζ(2ℓ+1):

ζ(2ℓ+1) = 22ℓ

Γ(2ℓ+2)

∫ ∞

0
dw

w2ℓ+1

sinh2(w)
. (5.23)

Therefore the resummation of the perturbative expansion (5.9) for C(0)
D using (5.23) leads to

the following exact expression, written in terms of Bessel functions of the first kind Jν(x):

C(0)
D (λ) = −

∫ ∞

0

8w dw

sinh(w)2
(J0 (v)− 1) J1 (v)

v
, (5.24)
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where v = w
√

λ/π. The same analysis applies to the subleading contribution (5.21), and
we find

C(1)
D (λ) =

∫ ∞

0

2w dw

sinh(w)2

[
J1 (v)

(
J1 (v)−

v

2

)
− (J0 (v)− 1)2

]
. (5.25)

The above integral representations are the analytic continuations of the perturbation ex-
pansions given in (5.9) and (5.21), and are well-defined for any λ > 0, in particular beyond
the convergence radius, i.e. λ > π2.

The exact results allow us to go beyond weakly coupled perturbation theory, so we can
study the strong-coupling expansion of the integrated correlator. We express the Bessel
function and the product of Bessel functions in terms of Mellin-Barnes type of integrals

Jν(x) =
1
2πi

∫ i∞

−i∞

Γ(−t)xν+2t

2ν+2t Γ(ν + t + 1) ,

Jµ(x)Jν(x) =
1
2πi

∫ i∞

−i∞

Γ(−t)Γ(2t + µ + ν + 1)xµ+ν+2t

2µ+ν+2t Γ(µ + t + 1)Γ(ν + t + 1)Γ(µ + ν + t + 1) .

(5.26)

We therefore rewrite the integrated correlator in the following Mellin-Barnes integral:

C(0)
D (λ) = − 1

2π i

∫ i∞

−i∞

∫ ∞

0

dw

sinh2(w)
λtw2t+1Γ(−t)

22t−2 π2tΓ(t + 2)

22t+1Γ
(
t + 3

2

)
π

1
2Γ(t + 2)

− 1


= − 1

2π i

∫ i∞

−i∞

λtΓ(−t)ζ(2t + 1)Γ(2t + 2)
24t−2 π2tΓ(t + 2)

22t+1Γ
(
t + 3

2

)
π

1
2Γ(t + 2)

− 1

 ,

(5.27)

where in the second line we used the integral identity (5.23). Closing the contour along
positive t and picking the residues at t = 1, 2, . . . reproduces the perturbative result as
given in (5.9), whereas closing the contour on the negative t side and picking the residues at
t = 0,−1,−3/2,−5/2, . . . leads to the strong coupling expansion of the integrated correlator.
Explicitly, the strong coupling expansion for C(0)

D takes the following form:

C(0)
D (λ)|strong ∼ 2− 4π2

3λ
−

∞∑
n=1

16nζ(2n + 1)Γ
(
n − 1

2

)2
Γ
(
n + 1

2

)
λn+ 1

2 π3/2 Γ(n)
. (5.28)

Proceeding in a similar way for the subleading contribution C(1)
D , we find that its strong

coupling expansion is given by

C(1)
D (λ)|strong ∼−2γE−2−log

(
λ

16π2

)
+

∞∑
n=1

8nζ(2n+1)Γ
(
n− 1

2

)
Γ
(
n+ 1

2

)2

λn+ 1
2 π3/2Γ(n)

, (5.29)

where γE is the Euler-Mascheroni constant.
In the holographic dictionary, λ = L4/α′2 (where α′ is the square of the string length

scale and L is the AdS5 length scale), so the 1/λ terms correspond to the small-α′ corrections
in the dual type IIB string theory. Therefore, the leading term (i.e. the constant term) is the
supergravity contribution to the integrated correlator and the rest corresponds to the stringy
corrections. We will discuss the holographic interpretation in more detail in the next section,
and we will see that the result agrees with the expectations from type IIB string theory.
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5.2.1 Resurgent analysis of the strong coupling expansion

It is important to notice that, unlike the small-λ expansion (5.9), the large-λ expansion (5.28)
is only asymptotic (as is the subleading contribution). We now analyse the asymptotic
series by the modified Borel transformation following [67] (see also [68, 69] in the context
of integrated correlators in N = 4 SYM). For an asymptotic series, denoted as f(x), we
have the modified Borel transform

B : f(x) =
∞∑

n=1
cn x−2n−1 → f̂(z) =

∞∑
n=1

cn

ζ(2n+1)Γ(2n+2)(2z)2n+1 , (5.30)

and the Borel resummation of f(x) is then given by

Sθf(x) = x

2

∫ eiθ∞

0

dz

sinh2(xz)
f̂(z) , (5.31)

where we have again used the integral identity (5.23). The function Sθf(x) defines an analytic
function for x > 0 and θ ∈ (−π/2, π/2), if the integral (5.31) is well-defined.

In our case, x =
√

λ, and for the leading large-N expansion, as shown in (5.28), the
coefficients cn are given by

cn =
16n ζ(2n + 1)Γ

(
n − 1

2

)2
Γ
(
n + 1

2

)
π3/2 Γ(n)

. (5.32)

The above procedure, in particular the formula (5.31), leads to the Borel resummation
of (5.28), which takes the following form:

SθC
(0)
D (λ)|strong = 2− 4π2

3λ
− 16

√
λ

3

∫ eiθ∞

0

z3 dz

sinh2(z
√

λ) 3F2

(1
2 ,

1
2 ,

3
2; 1,

5
2; z

2
)

. (5.33)

We see, however, that for the asymptotic series (5.28), the Borel resummed result given
above is not well defined, because the hypergeometric function 3F2 has a cut along [1,∞]
and the integral (5.33) on the real axis is ill-defined. This implies that the asymptotic
series (5.28) is not Borel resummable. The standard resurgence arguments suggest that
the large-λ expansion (5.28) requires the addition of exponentially small non-perturbative
terms, which are obtained as

∆C(0)
D (λ)|strong := (Sθ→+0 − Sθ→−0)C

(0)
D (λ)|strong

= − 16
√

λ

3

∫ ∞

1

z3 dz

sinh2(z
√

λ)
Disc 3F2

(1
2 ,

1
2 ,

3
2; 1,

5
2; z

2
)

. (5.34)

The discontinuity of 3F2 is given by10

Disc 3F2

(1
2 ,

1
2 ,

3
2; 1,

5
2; z

2
)
= 3 i

π2 G2,3
3,3

(
z2| −

1
2 , 1

2 , 1
2

0, 0,−3
2

)
− 3 iπ

4z3 , (5.35)

10The discontinuity can be obtained using the relation ∂z

[
z3

3F2
(

1
2 , 1

2 , 3
2 ; 1, 5

2 ; z2)] = 3z2
2F1
(

1
2 , 1

2 ; 1; z2)
and the known discontinuity of 2F1(a, b; c; x).
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where G2,3
3,3 is the Meijer G-function. To perform the integral, we shift the integration variable

z → z + 1 and we expand sinh2(z
√

λ) as an infinite sum of exponential functions, getting to:

∆C(0)
D (λ)|strong =−i64

√
λ

π2

∞∑
n=1

ne−2n
√

λ
∫ ∞

0
dz e−2n

√
λz

[
(z+1)3G2,3

3,3

(
(z+1)2| −

1
2 , 1

2 , 1
2

0,0,−3
2

)
−π3

4

]

=−i
∞∑

n=1
e−2n

√
λ
[ 32√

λn
+ 24

λn2 +
5

λ3/2 n3 −
9

4λ2 n4 +
123

64λ5/2 n5 +. . .

]
,

(5.36)

where we have expanded the integrand in small z to perform the z integral. The expression
may also be written in terms of Polylogarithms:

∆C(0)
D (λ)|strong = −i

[32Li1(u)√
λ

+ 24Li2(u)
λ

+ 5Li3(u)
λ3/2 − 9Li4(u)

4λ2 + 123Li5(u)
64λ5/2 + . . .

]
,

(5.37)

where we have denoted u := e−2
√

λ.
Applying the same analysis to the subleading result C(1)

D given in (5.29), we find

∆C(1)
D (λ)|strong =

∫ ∞

1

√
λ dz

sinh2(z
√

λ)

4z3 Disc 3F2
(

1
2 , 3

2 , 3
2 ; 1, 5

2 ; z
2
)

3 , (5.38)

and the discontinuity is given by

Disc 3F2

(1
2 ,

3
2 ,

3
2; 1,

5
2; z

2
)
= 6 i

π2 G2,3
3,3

(
z2
∣∣∣∣∣−1

2 ,−1
2 , 1

2
0, 0,−3

2

)
+ 3 iπ

2 z3 . (5.39)

Performing the z-integral explicitly yields the final result, which is given as

∆C(1)
D (λ)|strong = i

[
16Li0(u)+

4Li1(u)√
λ

+5Li2(u)
2λ

+Li3(u)
8λ3/2 − 21Li4(u)

128λ2 +. . .

]
. (5.40)

Let us briefly comment on the results (5.36) and (5.40). We can interpret these formulas
as perturbative expansions around different ‘worldsheet instanton’ configurations. Indeed,
when translated into the holographic dual string theory language, each exponential term
in (5.36) is mapped as e−2

√
λ = e−2L2/α′ . In the holographic picture, such exponential terms

act as instanton weights for the worldsheet instanton contributions and the perturbative
expansion around each exponential term corresponds to fluctuations around a worldsheet
classical solution. Furthermore, a similar resurgent analysis has been performed in [68, 69]
for the integrated correlator ⟨O2O2O2O2⟩. In the case of ⟨O2O2O2O2⟩, it was found in [70]
that the modular function corresponding to the ‘instanton factor’ e−2n

√
λ, after summing

over its SL(2,Z) images, can be written in terms of modular-invariant functions and may be
interpreted as the worldsheet instantons of (p, q)-strings. We expect the same interpretation
to hold for both ∆C(0)

D (λ)|strong and ∆C(1)
D (λ)|strong.
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6 SL(2,Z) completion

In this section, we discuss the SL(2,Z) properties of the determinant integrated correlator
CD. Correlation functions of superconformal primary operators in N = 4 SYM with SU(N)
gauge group are SL(2,Z) invariant [19, 20, 47, 57, 64, 71], because these operators are
neutral under the bonus U(1)Y symmetry [72, 73].11 Therefore, CD(τ, τ̄ ;N) is also SL(2,Z)
invariant, as it can be viewed as a linear combination of correlators of superconformal
primary operators. To achieve this, we work in a different regime compared to the previous
sections, by taking N large while keeping τ fixed (instead of the ’t Hooft limit), for which
the instanton contributions are important. We propose the SL(2,Z) completions for the first
few terms from the strong coupling expansions in the zero instanton sector (5.28) and (5.29),
by promoting the perturbative terms to the appropriate modular functions. This proposal
can be checked against explicit instanton calculations from the matrix model. The analytic
evaluation of instanton contributions in the large-N fixed-τ limit turns out to be complicated,
so we compute the contributions for many different values of N , and extrapolate the result
numerically to large N . We find that the numerical result matches the expectations from
SL(2,Z) completion of our results. We further compare our SL(2,Z)-invariant expression
with some known results for string amplitudes in flat space, where the large-N expansion
(with fixed Yang-Mills coupling) of the correlator is mapped to the small-α′ expansion (with
fixed string coupling) in string theory.

6.1 Modular invariance

To infer the modular properties of the integrated correlator CD(τ, τ̄ ;N), we rewrite the strong
coupling expansion (5.28) by converting λ into the (complexified) Yang-Mills coupling τ :=
τ1 + i τ2 as given in (2.15), using the relation λ = 4πN/τ2. We then combine N · C(0)

D (λ)|strong

from (5.28) with C(1)
D (λ)|strong given in (5.29) and get

CD(τ, τ̄ ;N) = N

(
2− πτ2

3N
− 1

N3/2
ζ(3)τ3/2

2
π3/2 + O(N−5/2)

)
− log(N)

+
(
−2γE − 2 + log (4πτ2) + O(N−3/2)

)
+ . . . . (6.1)

A few comments about this expression are in order. Firstly, we need to be careful when
translating λ to τ2, since different orders of the ’t Hooft 1/N expansion can mix with each
other in the large-N fixed-τ expansion. For example, we see already that the term of order
O(N0) in (6.1) receives contributions from both N · C(0)

D (λ)|strong and C(1)
D (λ)|strong. As we

will see shortly, these two terms in fact must combine together to form a modular function.
Moreover, we have only kept the first few orders at large N , because, as we will see, these are
the terms that have been computed in the holographic dual picture in string theory in flat
space, where the correlator is dual to two gravitons scattering off a D3-brane travelling along
the geodesic. We can therefore make an explicit comparison with the string-theory results.
We also note that, from the results we have, namely N · C(0)

D (λ)|strong and C(1)
D (λ)|strong given

11Correlation functions of operators that are charged under the bonus U(1)Y symmetry (for example chiral
Lagrangians) should in general transform non-trivially under SL(2,Z) transformation. See [74, 75] for the
study of integrated correlators of this type.
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in (5.28) and (5.29), the higher-order terms in the large-N fixed-τ expansion are in form of
half-integer powers of 1/N ; this is similar to what has been found for integrated correlators
of operators with fixed dimensions [68, 77]. Finally, let us also comment on the log(N) term,
which arises when translating λ to τ2. It should correspond to the logarithmic contribution
in small-α′ expansion of the annulus amplitude, which accompanies the log(τ2) term.12

In the rest of the section we concentrate on the τ2-dependent terms, which should be
completed to SL(2,Z)-invariant modular functions. To do so, as we discussed in the above,
we reorganise the large-N expansion of CD(τ, τ̄ ;N) in (6.1) as follows

CD(τ, τ̄ ;N) = (2N − 2)− log(N)−
[
2γE + πτ2

3 − log (4πτ2)
]

− 1
N1/2

ζ(3)τ3/2
2

π3/2 + O(N−3/2) . (6.2)

We now analyse the modular property of each term. The τ -independent constants are of course
already modular invariant, and holographically they are dual to the supergravity contributions
(corresponding to the tree level and loop contributions). All the other τ -dependent terms,
corresponding to stringy corrections, should be completed by modular functions. For any
given N , the determinant integrated correlator CD(τ, τ̄ ;N) can in principle be expressed as a
linear combination of integrated correlators of trace operators ⟨O2O2OpOp⟩. Therefore, we
expect the same class of modular functions that are relevant for the integrated correlators
⟨O2O2OpOp⟩ to appear in the large-N fixed-τ expansion of CD(τ, τ̄ ;N). From the previous
results for integrated correlators ⟨O2O2OpOp⟩ with the same integration measure (2.17) [19,
20, 57, 64, 70, 77], we know these modular functions are the non-holomorphic Eisenstein
series, which are defined in terms of lattice sums as follows:

E(s; τ, τ̄) =
∑

(m,n) ̸=(0,0)

1
πs

τ s
2

|m + nτ |2s
=
∑
k∈Z

Fk(s; τ2)e2πi kτ1 . (6.3)

The second equality corresponds to the Fourier mode expansion. In particular, the zero
Fourier-mode coefficient is given by

F0(s; τ2) =
2ζ(2s)

πs
τ s

2 +
2
√

π Γ
(
s − 1

2

)
ζ(2s − 1)

πsΓ(s) τ1−s
2 . (6.4)

This should be compared with the zero-instanton expansion for the integrated correlator.
Analogously, the k-th Fourier mode, corresponding to the k-instanton sector, is proportional
to a K-Bessel function:

Fk(s; τ2) =
4

Γ(s) |k|
s− 1

2 σ1−2s(|k|)
√

τ2 Ks− 1
2
(2π|k|τ2) , with k ̸= 0 , (6.5)

where σq(k) :=
∑

d>0,d|k dq is the sum of the divisor of k. A special case arises for s = 1,
which will be relevant to our discussion. Indeed, the definition of E(1; τ, τ̄) given in (6.3)

12A similar term appears in the context of integrated correlators of ⟨O2O2(O2)p(O2)p⟩ and their generalisa-
tions as considered in [19, 20] (see also [76]), where one also finds a universal log(p) term in the large-charge
(i.e. large-p) expansion.
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requires a regularisation by subtracting a divergent τ -independent constant. Explicitly, the
Fourier-mode expansion of E(1; τ, τ̄) is given by

E(1;τ, τ̄)=
∑′

(m,n) ̸=(0,0)

1
π

τ2
|m+nτ |2

=2γE+πτ2
3 −log(4πτ2)+2

∞∑
k=1

∑
m|k

1
m

(
e2πikτ +e−2πikτ

)
,

(6.6)

where the “primed sum” indicates the regularisation of subtracting the pole 1/(s − 1) term,
and the zero modes are obtained from (6.4) by setting s = 1 after the regularisation.

Now, if we assume the SL(2,Z) completion of CD(τ, τ̄ ;N) is indeed given by the non-
holomorphic Eisenstein series as in the case of ⟨O2O2OpOp⟩, we can infer the following
SL(2,Z) completion rule to be applied to the zero-instanton sector computed via the matrix
model by inverting the Fourier zero-mode (6.4):

2ζ(2s) τ s
2

πs
→ E(s; τ, τ̄) . (6.7)

Applying this on our result (6.1) we get:

πτ2
3 → E(1; τ, τ̄) ,

ζ(3) τ
3/2
2

π3/2 → E(3/2; τ, τ̄)
2 , (6.8)

so that the proposed SL(2,Z) completion of the integrated correlator reads:

CD(τ, τ̄ ;N) = (2N − 2)− log(N)− E(1; τ, τ̄)− E(3/2; τ, τ̄)
2N1/2 + O(N−3/2) . (6.9)

It is worth emphasising that in the case of E(1; τ, τ̄), all the terms in the zero instanton sector
(namely the τ2 term and log(τ2) term) match non-trivially the perturbative results from the
matrix model computation, one arising from N ·C(0)(λ)|strong and the other from C(1)(λ)|strong.
This is clearly a non-trivial confirmation of the proposal. Furthermore, from (6.4) we
see that, besides the term ζ(3)τ3/2

2 , the zero mode of E(3/2; τ, τ̄) also contains a term
proportional to τ

−1/2
2 . Such a term must arise from the NNLO contribution in the planar

expansion, which we have not computed in this paper. More concretely, the NNLO integrated
correlator N−1 · C(2)

D (λ)|strong must contain N−1 ·λ1/2 ∼ N−1/2τ
−1/2
2 with a precise coefficient

−2ζ(2)/π3/2, so that it can be combined with the N−1/2ζ(3)τ3/2
2 term to form E(3/2; τ, τ̄).

Hence we see that the SL(2,Z) completion is rather powerful, allowing us to predict NNLO
contributions in the ’t Hooft expansion. The predictive power from SL(2,Z) completion goes
beyond the zero-instanton sector. Indeed, considering the higher Fourier coefficients for non-
holomorphic Eisenstein series as given in (6.6) for E(1; τ, τ̄) and (6.5) for E(s; τ, τ̄) with s > 1,
they predict the instanton contributions to the integrated correlator CD(τ, τ̄ ;N). In particular,
the expectation for the one-instanton term for the first few orders in the 1/N expansion is

CD; 1-inst(τ, τ̄ ;N) = e2 iπτ
[
−2− 1

N1/2

( 2√
π
+ O(τ−1

2 )
)
+ . . .

]
, (6.10)

where the leading large-N term comes from E(1; τ, τ̄) and the N−1/2 term is from E(3/2; τ, τ̄).
This prediction can be checked against explicit instanton computations from the matrix

model, as we will discuss in the next subsection.
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6.2 Match with instanton computations in the matrix model

To confirm the proposed SL(2,Z) completion of our result, we will now check the predicted
non-perturbative instanton contributions explicitly. It turns out that it is enough to consider
only the one-instanton contribution. As argued in [71], due to SL(2,Z)-invariance the multi-
instanton contributions are in fact determined by the zero- and one-instanton terms. Therefore,
the goal is to confirm the one-instanton expression as given in (6.10). From a technical point
of view, we will treat the instanton contributions similarly to the zero-instanton perturbative
analysis from sections 3 and 4. More specifically, we show that the instanton contributions can
be decomposed into infinite sums of normalised three-point and two-point functions of normal
ordered operators in the presence of determinant operators. The procedure that leads to this
rewriting is very similar to section 4, so in this section we will just outline the main steps.

We return back to the localised partition function (3.1) to include the one-instanton
sector. The one-instanton contribution to the integrated correlator comes from the following
term from the partition function:13

Z1-inst(τ, τ ′;m) = e2πiτ
∫

dµ(ai)
∣∣Zclassic(τ, τ ′, a)Z1-inst(τ ′, a;m)

∣∣2 , (6.11)

where the measure dµ(ai) is given in (3.2), and

Zclassic(τ, τ ′, a) = exp
(
iπτ

∑
i

a2
i + i

∑
p>2

πp/2τ ′
p

∑
i

ap
i

)
, (6.12)

and the one-instanton partition function Z1-inst(τ ′, a;m) is given by [78]

Z1-inst(τ ′,a;m)=−m2
N∑

ℓ=1
exp

−i
∑
p>2

πp/2τ ′
p

(
ap

ℓ+(aℓ+2i)p−2(aℓ+i)p)∏
j ̸=ℓ

(aℓj+i)2−m2

(aℓj+i)2+1 .

(6.13)

From the definition (3.23), the one-instanton contribution to the integrated correlator
⟨O2O2DD⟩ can be formally written as

CD; 1-inst(τ, τ̄ ;N) = ∂D∂D̄∂2
mZ1-inst(τ, τ ′;m) |m=0,τ ′=0

∂D∂D̄Z(τ, τ ′;m) |m=0,τ ′=0
−

∂2
mZ1-inst(τ, τ ′;m) |m=0,τ ′=0

Z(τ, τ ′;m) |m=0,τ ′=0
. (6.14)

As we did for the 1-loop determinant Z1-loop in section 4, we can rewrite Z1-inst as a sum
over multitrace normal ordered operators, schematically,

∂2
mZ1-inst(a;m) |m=0 =

∞∑
ℓ=0

(2πτ2)−ℓ/2 ∑
r⃗ ⊢r≤ℓ

cℓ; r⃗ Or⃗ , (6.15)

where the coefficients cℓ; r⃗ are not τ2-dependent. As discussed in section 3.3, the partial
derivative ∂D defines the insertion of a determinant operator, and can be expressed as a

13Please note the difference between the calligraphic Z(1)
inst(τ, τ ′

p; m), representing the whole one-instanton
contribution to the partition function (already integrated over the eigenvalues), and the integrand Z

(1)
inst(τ ′

p, a; m),
corresponding to the one-instanton Nekrasov partition function.
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linear combination of ∂τ ′
p
. When both ∂D and ∂D̄ act on Zclassic(τ, τ ′, a), one gets a sum

of three-point functions:
∞∑

ℓ=1
(2πτ2)−ℓ

∑
r⃗ ⊢r≤2ℓ

c2ℓ; r⃗
⟨DDOr⃗⟩0
⟨DD⟩0

, (6.16)

where ⟨ ⟩0 is defined according to (3.7). Similarly to the weak coupling case (4.6), the sum is
constrained to r > 0 because the contribution from the identity operator (i.e. the constant
term) cancels with the second term in (6.14). Furthermore, it is clear that only operators
with even dimensions can contribute, so that r and ℓ are even numbers.

Compared to the zero-instanton case, here we also encounter contributions from two-point
functions of a determinant operator and a trace operator. When ∂D acts on Z1-inst(a, τ ′;m)
and ∂D̄ acts on Zclassic(τ, τ ′, a), we can expand as in (6.15):

∂D∂2
mZ1-inst(τ ′, a;m) |m=0,τ ′=0 =

∞∑
ℓ=0

(2πτ2)−ℓ/2 ∑
r⃗ ⊢r≤ℓ

dℓ; r⃗ Or⃗ , (6.17)

where again the coefficients dℓ; r⃗ are independent of τ . Therefore, we obtain the second
contribution to (6.14) in terms of two-point functions:

∞∑
ℓ=0

(2πτ2)
N−ℓ

2
∑

r⃗ ⊢r≤ℓ

dℓ; r⃗
⟨DOr⃗⟩0
⟨DD⟩0

, (6.18)

where the additional factor of (2πτ2)N/2 is due to the fact that there is an additional D
operator in the denominator, which scales as (2πτ2)N/2 when we rescale ai → ai/

√
2πτ2. Due

to the properties of normal ordered operators and the orthogonality of two-point functions,
for any given N the above expression (6.18) only receives contributions from operators Or⃗

with r = N . This implies that the summation range is restricted to ℓ ≥ N . Putting all
these together, in summary the one-instanton contribution to the integrated correlator can be
expressed as infinite sums of three-point and two-point functions in the Gaussian matrix model:

CD;1-inst(τ, τ̄ ;N)= e2πiτ

 ∞∑
ℓ=1

(2πτ2)−ℓ
∑

r⃗⊢r≤2ℓ

c2ℓ; r⃗
⟨DDOr⃗⟩0
⟨DD⟩0

+
∞∑

ℓ=N

(2πτ2)
N−ℓ

2
∑
r⃗⊢N

dℓ; r⃗
⟨DOr⃗⟩0
⟨DD⟩0

 ,

(6.19)

where again the first term only receives contributions from operators Or⃗ with even r. As
expected, we note that (6.19) representing the perturbative expansion around the one-
instanton background starts with (τ2)0.

We can now apply the matrix model techniques reviewed in appendix A to evaluate the
Gaussian integrals that appear in (6.19), and obtain the one-instanton contribution to the
integrated correlator, which then can be compared against the expected result (6.10) from
the SL(2,Z) completion. In particular, focusing on the τ2-independent contributions (i.e.
−2− 1

N1/2
2√
π

in (6.10)), they can only arise from the second term in (6.19). Furthermore,
we can exploit the relation between the determinant operators and SPOs, as described in
appendix D. In particular, in the large-N limit the determinant operator can be identified
with the SPO with dimension N and the difference is irrelevant for the order we consider here.
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Figure 1. The one-instanton results at the order O(τ0
2 ) computed from the matrix model, up

to N = 21.

Since any SPO is orthogonal to all multi-trace operators, see (D.3), only the single-trace
operators contribute to (6.18). This further simplifies the one-instanton calculations. However,
even with all these simplifications, an analytic analysis of the instanton contribution in the
large-N limit (with fixed τ) is still rather difficult. Therefore, we follow a numerical approach.
We compute the one-instanton contribution at fixed values of N , up to N = 21, with the
explicit data as shown in figure 1. As one can see that the data clearly shows the asymptotic
behaviour approaching −2 from below, in agreement with −2 − 1

N1/2
2√
π
≈ −2.24623 for

N = 21. We can also extrapolate the large-N properties by fitting the finite-N data with
appropriate 1/N1/2 Taylor series. Doing so, we once again find that the numerical analysis
after the large-N extrapolation indeed agrees with the one-instanton result (6.10) as expected
from the proposed SL(2,Z) completion.

6.3 Holographic interpretation from string theory

Finally, we comment on the comparison between the result (6.1) and its SL(2,Z) comple-
tion (6.9) with the holographic string dual picture of the correlator.

The determinant operators are known to be dual to D3-branes wrapping an S3 inside the
S5 in the holographic dual type IIB string theory in AdS5 × S5. Therefore, the four-point
function ⟨O2O2DD⟩ that we study in this paper is dual to the physical process of two
gravitons scattering off a D3-brane that moves along the geodesic. This scattering process
is schematically shown in figure 2. Importantly, D3-branes are self-dual under SL(2,Z)
transformation and gravitons are also neutral under SL(2,Z), therefore this scattering process
is modular invariant. This is consistent with the SL(2,Z)-invariance of the correlator from
the point of view of N = 4 SYM.

Recall the AdS/CFT dictionary τ = τs and λ = L4

α′2 , where τs is the string coupling and L

is the AdS radius. This implies that the large-N fixed-τ expansion of the correlator is mapped
to the small-α′ fixed-τs expansion of string amplitudes. The disc and annulus contributions
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D

D

2O

D

D

2O
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2O

Figure 2. The holographic description of the four-point correlation function of two determinant
operators and two half-BPS operators with dimension two. The determinant operators in the large-N
limit create a D3-brane in the bulk that travels along the geodesics in AdS, and half-BPS operators
represented by the red wavy line are gravitons, which scatter off the D3-brane.

to the Brane-Bulk amplitude, which are holographically dual to the planar limit and next-to-
planar limit of the four-point correlator we consider here, have been computed in the flat space
in [79, 80] and [81, 82], respectively. More importantly, the SL(2,Z) completion of this Brane-
Bulk amplitude, at least for the first few orders in the α′ expansion, is also known. It has been
shown that the leading stringy correction [48, 49] as well as the subleading correction [50, 51]
to this scattering process can be completely determined using supersymmetry and SL(2,Z)
invariance. The result can be conveniently summarised as higher derivative terms that
contribute to the effective action of the D3-brane. Schematically it reads:∫

d4x
√

g
(
πE(1;τs, τ̄s)α′2R2+π3/2E(3/2;τs, τ̄s)α′3D2R2+higher derivatives

)
, (6.20)

where we have only kept the derivative corrections of the type D2kR2 that are relevant for
the scattering process dual to the four-point correlator we consider here. We see that these
string corrections are indeed in perfect agreement with the large-N fixed-τ expansion of the
integrated correlator CD(τ, τ̄) we discussed earlier. In particular, α′2R2 is mapped to the
first 1/N correction (i.e. the third term) in (6.9) and α′3D2R2 is mapped to the second 1/N

correction (i.e. the fourth term) in (6.9). More explicitly, the τ2 term in E(1; τ, τ̄) corresponds
to the disc amplitude contribution, whereas the log(τ2) term is associated with the annulus
amplitude, and the instanton contributions are due to the D(-1)-instanton effects. Similar
interpretations can be given to the terms in E(3/2; τ, τ̄).

7 Conclusion and discussion

In this paper, we provided a large set of results for the integrated correlator of two chiral
primary operators with dimension two in the presence of two determinant operators using
supersymmetric localisation. Starting from a weak coupling approach from the matrix model
in the large-N and fixed-λ regime in the planar limit and beyond, we developed new techniques
to compute matrix model observables in terms of Gaussian integrals. Using such techniques,
we were able to obtain expressions for the all-loop expansion of the integrated correlator in
the leading and next-to-leading planar limit. We further fully resummed the perturbative
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expansion in terms of exact functions of the ’t Hooft coupling λ, which we then expanded at
strong coupling, while keeping track of their resurgent properties.

Furthermore, we explored the large-N fixed-τ regime, and proposed the SL(2,Z) comple-
tion of the perturbative results. The proposal is supported by explicit instanton calculations.
In particular, we computed the one-instanton contribution for fixed values of N and we
extrapolated the result to the large-N fixed-τ regime. These contributions nicely agree with
the proposed SL(2,Z) completion in terms of the non-holomorphic Eisenstein series. The
SL(2,Z) completion also agrees with the results of the D3-brane/graviton scattering results
in string theory in flat space.

These achievements leave a long list of open questions and possible research directions to
be addressed in the future, both from the pure field theory side and from the holographic
dual picture.

First of all, there are some technical points about the matrix model computation that
would require further analysis to go beyond the order we consider in this paper. The
recursive methods described in appendix A are valid at finite and parametric N . Hence,
it would be very interesting to develop a systematic methodology to treat the recursive
formulas order by order in N , therefore allowing us to study the higher orders in the large-N
expansion of the integrated correlator. It would be even more interesting to obtain some
recursive formula for the ⟨O2O2DD⟩ integrated correlator that is the analogue of the Laplace-
difference equations discovered for many different classes of integrated correlators of trace
operators [19, 20, 57, 64, 83].

Similarly, using the same recursive methods, it would be extremely interesting to have
full analytic control over the instanton computations at large-N (at least for low instanton
corrections), going beyond the extrapolation performed in section 6. This technical advance
could then be applied also to different observables and different models.

Another immediate perspective is associated with the direct application of supersymmetric
localisation results to constrain the un-integrated four-point correlator ⟨O2O2DD⟩ both at
weak and strong coupling and the dual scattering amplitude, in analogy with the previous
results for integrated correlators of trace operators. As mentioned in section 5 and further
discussed in appendix E, our perturbative expansion coming from localisation can be used
as constraints for Feynman diagram computations at high-loop orders, even beyond the
proposed three-loop result from [39]; this becomes particularly fruitful by combining with
other methods like the analytic bootstrap.

As discussed in section 6, at strong coupling the four-point correlator ⟨O2O2DD⟩ can
be interpreted as a D3-brane/graviton scattering process in AdS5 × S5. In the case of
⟨O2O2O2O2⟩, by understanding the analytic structures of corresponding Mellin amplitudes,
it was possible to determine the Mellin amplitudes for the first few orders in large-N fixed-τ
expansion [61, 77], that reproduce exactly the known results in the flat-space limit [84–86].
It would be very interesting to reproduce the flat space D3-brane/graviton amplitudes given
in [48–51] in a similar manner.

In the context of more general four-point functions, one could consider the ⟨OpOpDD⟩
correlator, where Op are higher dimension trace operators dual to KK modes, and study
whether they are related to ⟨O2O2DD⟩ by some hidden ten-dimensional symmetry both for
the un-integrated correlators [5, 9] and for the integrated correlators following ideas of [87].
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Furthermore, it is worth discussing the possible extension to N = 2 superconformal field
theories. Thanks to the connection with localisation in N = 2∗ theory, several tools from the
integrated correlator literature derive from and can be applied to N = 2 SCFTs. Some results
on integrated correlators in N = 2 theories have been recently been obtained in [88–90].
Besides, there are no results for determinant operators in N = 2. These would be extremely
useful to shed some light on holographic properties of N = 2 SCFTs, especially for N = 2
superconformal QCD theory (with SU(N) gauge group and 2N fundamental hypermultiplets).
A first attempt would be the computation of the extremal correlator

〈
DD̄

〉
N=2

.
Let us also illustrate some intriguing connections with other classes of integrated correla-

tors, in the presence of a conformal defect. After the planar interpretation of the DD pair
as the giant graviton D3-brane, the integrated correlator CD is reminiscent of the ⟨LO2O2⟩
integrated correlator, recently studied in [91, 92] (see also [93]), where L is in general a line
defect, dual to a (p, q)-string extended in AdS. The two examples for L explicitly computed
from localisation in [91, 92] are the Wilson and ’t Hooft loop. In the holographic picture, the
⟨LO2O2⟩ correlator describes the scattering of two gravitons off an extended (p, q)-string.
A (p, q)-string transforms under SL(2,Z) in a non-trivial way (in field theory, for example,
a Wilson line is mapped to a ’t Hooft line under the inversion of SL(2,Z) transformation),
therefore unlike the integrated correlator CD considered in this paper, the observable ⟨LO2O2⟩
cannot be expressed in terms of modular invariant functions.14 It will be interesting to further
study the similarities and differences between these two observables in N = 4 SYM, and to
investigate possible extensions to other conformal defect set ups.

Finally, we would like to mention the worldsheet interpretation of [36, 37], where the
planar insertion of the DD pair is associated with a boundary state on the worldsheet, and
the three-point functions with non-BPS operators ⟨DDOnon−BPS⟩ are written as an overlap
of a boundary state with closed string states. In this picture, the non-BPS three-point
function has been computed at any coupling in the large-N limit by using a worldsheet
g-function method coming from integrability. The non-BPS three-point functions enter in
the un-integrated ⟨O2O2DD⟩ four-point function as its OPE limit (and this method was
used to compute the un-integrated four-point function at one- and two-loops). Similarly
the integrated correlator CD can be used as an input for the un-integrated correlator, giving
access to infinite sums over the BPS sector. It would be interesting to test this interplay
between integrability and localisation even for other sets of observables.
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A Gaussian matrix models and recursive formulas

In this appendix, we review the recursive techniques that are one of the most efficient tools for
the finite N Gaussian matrix model computations. Following closely the references [43–46],
we write the Gaussian partition function for a N × N matrix a taking values in the gauge
algebra su(N) as:

Z0 =
∫

da e−tra2
, a =

N2−1∑
b=1

ab Tb . (A.1)

The integration measure is normalised such that

da =
N2−1∏
b=1

dab√
2π

, (A.2)

ensuring that Z0 = 1, and the su(N) generators are normalized as:

tr Tb Tc = 1
2 δbc , trTb = 0 . (A.3)

Any observables can be inserted in the matrix model as

⟨f(a)⟩0 =
∫

da e−tra2
f(a) , (A.4)

and in order to preserve gauge invariance, f(a) is expected to be written in terms of traces of
powers of the matrix a, for which it is convenient to introduce the following notation:

tp⃗ = ⟨tr ap1 tr ap2 . . . tr apm⟩0 , (A.5)

where m is the length of p⃗. Expectation values of multitrace insertions (A.5) can be evaluated
at finite N through the basic Wick contraction ⟨ab ac⟩0 = δbc, as well as the following
su(N) matrix reduction formulas (also called fusion/fission identities) for arbitrary N × N

matrices X1 and X2:

trT bX1T bX2 = 1
2 trX1 trX2 −

1
2N

trX1X2 ,

trT bX1 trT bX2 = 1
2 trX1X2 −

1
2N

trX1 trX2 .
(A.6)

Using such relations and starting from the initial conditions

t[p] = 0 for p odd, and t[0] = N , (A.7)

we can evaluate the general expression for tp⃗ as a rational function in N from the following
recursion relations:

t[p1,p2,...,pm] =
1
2

p1−2∑
j=0

(
t[j,p1−j−2,p2,...,pm]

)
− p1 − 1

2N
t[p1−2,p2,...,pm]

+
m∑

k=2

pk

2

(
t[p1+pk−2,p2,..., /pk,...,pm] −

1
N

t[p1−1,p2,...,pk−1,...,pm]

)
,

(A.8)
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where p1, . . . , /pk, . . . , pm represents the sequence of t indices without the k-th one. Some
explicit examples are given by:

t[2] =
N2 − 1

2 , t[4] =
(N2 − 1)(2N2 − 3)

4N
,

t[2,2] =
N4 − 1

4 , t[6] =
5(N2 − 1)(N4 − 3N2 + 3)

8N2 ,

t[4,2] =
(N2 − 1)(N2 + 3)(2N2 − 3)

8N
, t[3,3] =

3(N2 − 1)(N2 − 4)
8N

.

(A.9)

This procedure can be easily implemented in Mathematica and greatly simplifies the com-
putations in the matrix model.

B Gram-Schmidt mixing coefficients and their large-N properties

We will now use the matrix model recursive techniques to compute the mixing coefficients
of normal-ordered operators arising from the Gram-Schmidt orthogonalisation procedure,
and to obtain the large-N properties of these mixing coefficients.

As discussed in the main text, to compute correlators using the matrix model, we need
to perform Gram-Schmidt orthogonalisation, as given in (3.10), which we quote below:

Ôp⃗(a) =
Op⃗(a)
Np⃗

= Op⃗(a) +
∑

q⃗ ⊢q<p

αp⃗,q⃗(N) Oq⃗(a) , (B.1)

where the coefficients αp⃗,q⃗(N) are determined by:〈
Ôp⃗(a)Or⃗(a)

〉
0
= 0 , ∀r < p and ∀ partitions of r . (B.2)

Here the Gaussian expectation value ⟨ ⟩0 is defined in (A.4), and therefore we can use
the recursive formulas reviewed in the previous subsection to perform the Gram-Schmidt
procedure.

Some examples of the normal ordering of operators with low dimensions of p ≤ 6 are
as follows:

Ô[2] =O[2]−
N2−1

2 , (B.3a)

Ô[4] =O[4]−
2N2−3

N
O[2]+

(N2−1)(2N2−3)
4N

, (B.3b)

Ô[2,2] =O[2,2]−(N2+1)O[2]+
N4−1

4 , (B.3c)

Ô[6] =O[6]−
3(2N2−5)

2N
O[4]−

3
2 O[2,2]+

15(N4−3N2+3)
4N2 O[2] −

5(N2−1)(N4−3N2+3)
8N2 ,

(B.3d)

Ô[4,2] =O[4,2]−
N2+7

2 O[4]−
2N2−3

N
O[2,2]+

3(2N2−3)(N2+3)
4N

O[2]

− (N2−1)(N2+3)(2N2−3)
8N

, (B.3e)
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Ô[3,3] =O[3,3]−
9
2 O[4]+

9
2N

O[2,2]+
9(N2−4)

4N
O[2]−

3(N2−4)(N2−1)
8N

, (B.3f)

Ô[2,2,2] =O[2,2,2]−
3(N2+3)

2 O[2,2]+
3(N2+3)(N2+1)

4 O[2]−
(N2+3)(N4−1)

8 . (B.3g)

From these expressions, we can read the explicit finite-N values of αp⃗,q⃗ for p ≤ 6. Proceeding
to higher-dimensional operators in a similar way, we have computed αp⃗,q⃗ for operators with
dimension p ≤ 20. Moreover, using (3.21) we can immediately extract the coefficients βq⃗,p⃗.
Below we display explicitly some mixing coefficients (up to q = 8) for arbitrary N :

β[4],[2] =2N− 3
N

, β[2,2],[2] =N2+1 , (B.4a)

β[6],[4] =3N− 15
2N

, β[6],[2,2] =
3
2 , β[6],[2] =

15N2

4 − 45
4 + 45

4N2 , (B.4b)

β[4,2],[4] =
N2

2 + 7
2 , β[4,2],[2,2] =2N− 3

N
, β[4,2],[2] =

3N3

2 + 9N

4 − 27
4N

, (B.4c)

β[3,3],[4] =
9
2 , β[3,3],[2,2] =− 9

2N
, β[3,3],[2] =

9N

4 − 9
N

, (B.4d)

β[2,2,2],[4] =0 , β[2,2,2],[2,2] =
3N2

2 + 9
2 , β[2,2,2],[2] =

3N4

4 +3N2+9
4 , (B.4e)

β[8],[6] =4N− 14
N

, β[8],[4,2] =4 , β[8],[3,3] =2 , β[8],[2,2,2] =0 ,

β[8],[4] =7N2+ 105
2N2 −

49
2 , β[8],[2,2] =7N− 21

N
, β[8],[2] =7N3−28N+105

2N
− 105
2N3 , (B.4f)

β[6,2],[6] =
N2

2 + 11
2 , β[6,2],[4,2] =3N− 15

2N
, β[6,2],[3,3] =0 , β[6,2],[2,2,2] =

3
2 ,

β[6,2],[4] =
3N3

2 + 39N

4 − 135
4N

, β[6,2],[2,2] =
9
2N2− 9

2+
45
4N2 , β[6,2],[2] =

5
2N4+5N2−30+ 75

2N2 ,

(B.4g)

β[5,3],[6] =
15
2 , β[5,3],[4,2] =− 15

2N
, β[5,3],[3,3] =

5N

2 − 5
N

, β[5,3],[2,2,2] =0 ,

β[5,3],[4] =15N− 105
2N

, β[5,3],[2,2] =−15
2 + 45

2N2 , β[5,3],[2] =
15N2

2 −45+ 60
N2 , (B.4h)

β[4,4],[6] =8 , β[4,4],[4,2] =4N− 6
N

, β[4,4],[3,3] =− 8
N

, β[4,4],[2,2,2] =0 ,

β[4,4],[4] =N3+35N

2 − 117
2N

, β[4,4],[2,2] =4N2−6+ 27
N2 , β[4,4],[2] =2N4+10N2− 99

2 + 135
2N2 ,

(B.4i)

β[4,2,2],[6] =0 , β[4,2,2],[4,2] =N2+9 , β[4,2,2],[3,3] =0 , β[4,2,2],[2,2,2] =2N− 3
N

,

β[4,2,2],[4] =
N4

4 +4N2+63
4 , β[4,2,2],[2,2] =

5N3

2 + 39N

4 − 81
4N

, β[4,2,2],[2] =N5+13N3

2 +3N− 45
2N

,

(B.4j)

β[3,3,2],[6] =0 , β[3,3,2],[4,2] =
9
2 , β[3,3,2],[3,3] =

N2

2 + 11
2 , β[3,3,2],[2,2,2] =

9
2N

,

β[3,3,2],[4] =
9N2

4 + 81
4 , β[3,3,2],[2,2] =−117

4N
, β[3,3,2],[2] =

3N3

2 + 3N

2 − 30
N

, (B.4k)
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β[2,2,2,2],[6] =0 , β[2,2,2,2],[4,2] =0 , β[2,2,2,2],[3,3] =0 , β[2,2,2,2],[2,2,2] =2N2+10 ,

β[2,2,2,2],[4] =0 , β[2,2,2,2],[2,2] =
3N4

2 +12N2+45
2 , β[2,2,2,2],[2] =

N6

2 + 9N4

2 + 23N2

2 + 15
2 .

(B.4l)

We have omitted the coefficients of the form βq⃗,[0], because they do not contribute to the
integrated correlator, as we discussed in section 4.2. Furthermore, we note that, in the large-N
limit, the coefficients βq⃗,p⃗ are suppressed if any of the pi ∈ p⃗ and qi ∈ q⃗ are odd integers.

From the above results as well as higher order terms, which we do not show explicitly
here, we are able to observe the large-N structures of these coefficients. We find in general
the β-coefficients can be written in the following form,

βq⃗,p⃗ = β
(0)
q⃗,p⃗ N

q−p
2 +n−m + β

(1)
q⃗,p⃗ N

q−p
2 +n−m−2 + . . . , (B.5)

where p⃗ = [p1, . . . , pm] and q⃗ = [q1, . . . , qn], and p =
∑m

i=1 pi and q =
∑n

i=1 qi.
For the first two orders in the large-N expansion of the integrated correlator, only the

β
(0)
p⃗,q⃗ with even pi, qi and qi > 0 are relevant. From all these explicit large-N expressions, we

find that for some simple cases of p⃗ and q⃗, the leading-N coefficients β
(0)
q⃗,p⃗ take very simple

forms. In particular, when p⃗ = [p] (i.e. the single-trace contribution), we have

β
(0)
q⃗,[p] = 2

p−q
2

(
n∏

i=1
C qi

2

)
n∑

i=1

1
C qi

2

(
qi

qi+p
2

)
, (B.6)

where Cn are the Catalan numbers. These coefficients are relevant for the leading planar
limit of the integrated correlator, as in (5.3). Other β-coefficients that are relevant for
the computation of the integrated correlator beyond the planar limit is the case where
q⃗ = [q1, q2], p⃗ = [p1, p2], for which we find,

β
(0)
[q1,q2],[p1,p2] =

2
p−q

2

δp1p2 + 1

[
C q2

2

(
q1

q1−p
2

)(
q1 − p

2

)
+ C q1

2

(
q2

q2−p
2

)(
q2 − p

2

)

+
(

q1
q1−p1

2

)(
q2

q2−p2
2

)
+
(

q1
q1−p2

2

)(
q2

q2−p1
2

)]
, (B.7)

where p = p1 + p2 and q = q1 + q2. These general expressions can be easily verified against
explicit results for any given p⃗, q⃗ that we displayed earlier (and we have checked the formulas
for the operators up to dimension q = 20). More generally, one may prove these expressions
by imposing the orthogonal conditions (3.14) order by order in the large-N expansion and
using the Gaussian matrix-model recursive formulas.

B.1 Two-point function of multitrace operators from matrix model

With the normal ordered operators at hand, one can then compute the correlators in R4

using the same recursive techniques. As a simple example, we can compute the two-point
functions of normal ordered operators. A general multitrace operator on the sphere (3.9)
can be conveniently rewritten as follows:

Op⃗ = (tr aℓ1)k1 . . . (tr aℓt)kt , (B.8)
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where ℓ1 ̸= . . . ̸= ℓt (and ℓm ̸= 1 for SU(N) gauge group) count the independent traces,
k1, . . . , kt are the multiplicities for each trace. These two sets of indices define a partition of p:

t∑
m=1

ℓmkm = p , (B.9)

and hence a conjugacy class σp⃗ of the symmetric group Sp. After the normal ordering
procedure as described in the main text, we can compute the two-point functions of general
multi-trace operators in the Gaussian matrix model, again using the recursive formulas (A.8).
The general expression at large N is:

〈
Op⃗(a)Op⃗(a)

〉
0 = N 2

p⃗

p!
|σp⃗|

(
N

2

)p

+ O(Np−2) , (B.10)

where the size of the conjugacy class reads

|σp⃗| =
p!∏t

m=1 ℓkm
m km!

. (B.11)

The matrix model normalization Np⃗ is introduced to be consistent with the field theory
convention. In particular choosing

Np⃗ = 2
p
2 (B.12)

ensures that 〈
Op⃗(a)Op⃗(a)

〉
0 = Rp⃗(N) , (B.13)

as given in (2.5).

C Partial contraction of determinant operators and three-point
coefficients

We use the results from [36], after generalising to SU(N) gauge group, combined with the
matrix model techniques from the previous appendices to derive the field theory three-point
coefficients (2.11) and (2.12).

We first quote the result from appendix B of [36] (up to slightly different conventions for
the free propagator), where the key ingredient is the “partially contracted giant graviton”
(PCGG) formula, defined as the Wick contraction of N − ℓ pairs of scalar fields in the
determinants, while leaving ℓ pairs free:

D(x1,Y1)D(x2,Y2)
∣∣∣U(N)

partial contr
=

N∑
ℓ=0

dN−ℓ
12 GU(N)

ℓ (x1,Y1;x2,Y2) , (C.1)

GU(N)
ℓ (x1,Y1;x2,Y2)= (−1)ℓ(N−ℓ)!

∑
k1,...,kℓ∑

s
sks=ℓ

ℓ∏
u=1

(−tr [(Y1 ·Φ(x1)Y2 ·Φ(x2))u])ku

ukuku!
, (C.2)

where d12 is the spacetime/R-symmetry propagator as defined in (2.4). The analysis of [36]
is valid for the U(N) gauge group (as we emphasised in the above formulas), while our
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computation is for SU(N). However, as we will show below, the SU(N) correction to the
partial contraction formula up to NLO order at large N resides simply in an overall factor,
which cancels out when we compute the normalised three-point coefficients defined in (2.9).

The difference between U(N) and SU(N) in free theory computations lies in the free
propagator of scalar fields:〈

Y1 · Φi1
j1
(x1)Y2 · Φi2

j2
(x2)

〉U(N)

Wick
= d12 δi1

j2
δi2

j1
, (C.3)〈

Y1 · Φi1
j1
(x1)Y2 · Φi2

j2
(x2)

〉SU(N)

Wick
= d12

(
δi1

j2
δi2

j1
− 1

N
δi1

j1
δi2

j2

)
, (C.4)

where il, jl = 1, . . . , N are fundamental indices of the gauge group. The difference be-
tween (C.3) and (C.4) is given by the self-contraction term 1

N δi1
j1

δi2
j2

. When deriving the
partially contracted giant graviton formula by inserting at least one self-contraction term, the
combinatorial factor scales like (N − ℓ)!(N − ℓ − 1)! instead of (N − ℓ)!2. The details of this
computation can be found in appendix B of [36]. Therefore, as long as ℓ is finite, which will
be the case for computing the three-point function (C.6), the difference between the U(N)
PCGG formula from [36] and its SU(N) version in the large-N limit can be expressed as15

GSU(N)
ℓ (x1, Y1;x2, Y2) =

(
1− 1

N

)
GU(N)

ℓ (x1, Y1;x2, Y2) + . . . , (C.5)

where GU(N)
ℓ (x1, Y1;x2, Y2) is given by (C.2) and the ellipses denote the higher-order correc-

tions that are irrelevant for our computations at LO and NLO in the large-N limit.
Now, we can extract the normalised three-point coefficient of two determinants with a

BPS multitrace operator Op⃗, which can be obtained via the Wick contraction of (C.1) with Op⃗,

〈
D(x1, Y1)D(x2, Y2)Op⃗(x3, Y3)

〉
⟨D(x1, Y1)D(x2, Y2)⟩

= d
− p

2
12

〈
GSU(N)

p
2

(x1, Y1;x2, Y2)Op⃗(x3, Y3)
〉

GSU(N)
0 (x1, Y1;x2, Y2)

. (C.6)

The SU(N) correction given in (C.5) indeed cancels out for the orders we are considering,
and we can simply use the U(N) formula as given in (C.2).

We may compute the colour-dependent part of the Wick contraction (C.6) directly in the
field theory, or using the Gaussian matrix model techniques from appendix A. The matrix
model computation can be done by promoting each operator in Gℓ in (C.1) to the equivalent
matrix model normal ordered operator. We show some examples for low values of ℓ:

G1(a) = (N − 1)!O[2](a) , G2(a) =
(N − 2)!

2
(
O[2,2](a)−O[4](a)

)
,

G3(a) = (N − 3)!
(
O[2,2,2](a)

6 +
O[6](a)

3 −
O[4,2](a)

2

)
.

(C.7)

Then the normalised three-point coefficients (2.10) can be computed in the Gaussian matrix
model via the following two-point functions:

Cp⃗(N) = 1
N !
〈
G p

2
(a)O[p⃗]

〉
0

, (C.8)

15The minus sign comes from the minus sign in the 1/N correction in the SU(N) propagator as in (C.4).
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where we have used G0 = N !, namely the determinant two-point function for the U(N) theory.
Using the techniques from appendix A we can compute Cp⃗(N) for a general N , from which we
then extract the LO and NLO in the large-N expansion for the single-trace operators (2.11)
and verify the large-N factorisation formula (2.12) displayed in the main text.

D Determinant operators and single-particle operators

One way to write down the normal-order version of the determinant operators is to decompose
the determinant operators in terms of trace operators, and then use the properties of the
normal ordering of trace operators (3.10). This process leads to the planar identification of
determinant operators with the so-called single-particle operators (SPOs) introduced in [65].

We start with the decomposition:

D(ai) =
∑
p⃗⊢N

CD
p⃗ Op⃗ =

∑
p⃗⊢p≤N

CD,GS
p⃗ Op⃗ , (D.1)

where we have given both the expressions for D in terms of normal-ordered trace operators
Op⃗ and the trace operators on the sphere Op⃗. The corresponding coefficients are given by

CD
p⃗ = (−1)N+m |σp⃗|

N ! , (D.2a)

CD,GS
p⃗ = (−1)p+m |σp⃗|

p!

(N + 1)
N−p

2
(

1
2

)
N−p

2

N
N−p

2
, (D.2b)

where m is the length of the vector p⃗, and the size of the conjugacy class |σp⃗| associated
to the partition p⃗ is given in (B.11).

As shown by [65], in the large-N limit the determinant operators are in fact equivalent to
the single-particle operators. We denote an SPO with dimension p as Sp, which is defined as
the linear combination of trace operators that are orthogonal to all the multi-trace operators:16

⟨Sp O[q1,q2,...,qn]⟩ = 0 , for n ≥ 2 . (D.3)

The SPO, when expressed in terms of trace operators, is given by [65]

Sp =
∑
p⃗⊢p

CS
p⃗ Op⃗ , (D.4)

with coefficients

CS
p⃗ =

|σp⃗|
(p − 1)!

∑
s∈P({p1,...,pm})

(−1)|s|+1(N + 1− p)p−Σ(s)(N + p − Σ(s))Σ(s)
(N)p − (N + 1− p)p

, (D.5)

where, again, m is the length of p⃗. The sum is over all subsets s of the set {p1, . . . , pm}, as
the powerset P(S) of a set S is the set of all subsets of S.17 |s| is the number of elements
of the subset s, and Σ(s) =

∑
si∈s si.

16In the holographic dictionary, SPOs are dual to single particle states in AdS5 × S5, belonging to the
graviton multiplet when p = 2 and higher Kaluza-Klein modes on S5 when p > 2 [65]. Hence, multi-point
correlation functions of SPOs are dual to graviton/KK modes amplitudes on AdS5 × S5.

17For example, P({1, 2, 3}) = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
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Consider the SPO with dimension p = N , denoted as SN . In the large-N limit, the
coefficients CS

p⃗ are dominated by the subset s = {p1, . . . , pm}, i.e. the full set. In this case,
|s| = m and Σ(s) = N , and so

CS
p⃗⊢N

∣∣∣∣∣
N→∞

=
|σp⃗|

(N − 1)!
(−1)m+1(N)N

(N)N − (1)N
∼

|σp⃗|
(N − 1)!(−1)m+1 . (D.6)

By comparing the scaling of the coefficients (D.2a) with (D.6), we conclude that in the large-N
limit, the determinant operator is identical to the SPO SN (up to a normalisation factor).

E Matching with perturbation theory at one and two loops

In this appendix, we compare our exact result with explicit perturbative calculations of the
un-integrated four-point correlator ⟨O2O2DD⟩ in the literature. This correlator has been
computed up in the strict planar limit to two loops [36, 37], and more recently in [39] the
perturbative computation has been pushed to three-loop order. Here we show that our
matrix model result is perfectly consistent with the perturbative results at the one- and
two-loop orders. However, we find disagreement with the recent three-loop result of [39]. We
believe that the disagreement may be generated by an incorrect assumption in [39] about the
Feynman integral basis at three loops. We will now discuss the comparison in detail.

We begin by reviewing the one- and two-loop results, following [39]. At one loop, the
correlator is given by,18

HD(U, V ; τ, τ̄)
∣∣

1-loop = −N

(
λ

4π2

)
U

V
x2

13x2
24

∏
1≤i<j≤4

x2
ij

∫
d4x5
π2 f (1)(xi) , (E.1)

where f (1)(xi) is given by,

f (1)(xi) =
1∏

1≤i<j≤5 x2
ij

. (E.2)

At two loops, the result takes the following form,

HD(U, V ; τ, τ̄)
∣∣

2-loop = N

8

(
λ

4π2

)2 U

V
x2

13x2
24

∏
1≤i<j≤4

x2
ij

∫
d4x5 d4x6

π4 f (2)(xi) , (E.3)

where

f (2)(xi) =
p2(xi)− p1(xi)∏

1≤i<j≤6 x2
ij

, (E.4)

with the numerators given by

p1(xi) =
1
16x2

12x2
34x2

56 + P34;1256 , p2(xi) =
1
4x2

16x2
25x2

34 + P34;1256 , (E.5)

and P34;1256 represents summing over permutations on {3, 4} and {1, 2, 5, 6}.
18We have modified the overall normalisation of [39] to be consistent with our convention.
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As shown in [58] (see also [87]), the integrated correlator defined in (2.17) is simply
given by a sum of periods (with a minus sign) associated with the integrands f (ℓ)(xi), which
are defined as

Pf (ℓ) =
1

(π2)ℓ+1

∫
d4x1 . . . d4x4+ℓ

vol[SO(2, 4)] f (ℓ)(xi) . (E.6)

Therefore,

C(0)
D (λ)

∣∣
1-loop =

(
λ

4π2

)
Pf (1) , C(0)

D (λ)
∣∣

2-loop = −1
8

(
λ

4π2

)2
Pf (2) . (E.7)

At one loop, it is well-known that Pf (1) = 6ζ(3) [94, 95], so we have

C(0)
D (λ)

∣∣
1-loop = 3ζ(3)

2π2 λ . (E.8)

At two loops, each term in f (2)(xi) gives the same period as 20ζ(5) [94, 95]; there are 12 terms
from p2(xi) in (E.5) and three terms from p1(xi) in (E.5) but with a minus sign. Therefore,
Pf (2) = (12 − 3) × 20ζ(5). Putting everything together, we find,

C(0)
D (λ)

∣∣
2-loop = −45ζ(5)

32π4 λ2 . (E.9)

They agree precisely with the first two orders in (5.10).
The three-loop integrand for the correlator ⟨O2O2DD⟩ in the large-N limit was recently

proposed in [39]. As we mentioned in the main text, the resulting period of the three-loop
integrand given in [39] does not match our prediction from localisation. Explicitly, using
equation (4.24) of [39] (again after an appropriate normalisation to be consistent with our
conventions as for one- and two-loop computations), we find that the integrated result is
given by

1
32

(
λ

4π2

)3
× 36× 70ζ(7) = 315ζ(7)

256π6 λ3 . (E.10)

To arrive at the final expression, we have used the fact that each integral appearing in the
three-loop correlator has the same period, which is 70ζ(7) [58]. The result given in (E.10)
is indeed different from what we obtained from localisation computation, i.e. 595ζ(7)λ3

512π6 , as
shown in (5.10).19

In deriving the result, the authors of [39] made a critical assumption about the Feynman
integrals which can appear in the planar limit of the correlator ⟨O2O2DD⟩. In particular, it
was assumed that the Feynman integrals appearing in ⟨O2O2DD⟩ are of the same type as the
Feynman integrals for four-point correlators of half-BPS operators ⟨O2O2OpOp⟩, with Op

being single-trace operators with fixed conformal dimensions p [96]. We believe this may not be
a correct assumption, since, unlike operators of fixed dimensions, the determinant operators D
do participate in the large-N expansion, and we expect more general conformal integrals that

19We were informed by Frank Coronado that the three-loop result given in [39] also seems to be inconsistent
with CFT data in the OPE limits.
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were omitted in [39] to appear in perturbative computations.20 The most general conformal
integrals relevant to this correlator at three loops can be extracted from equations (4.2)
and (4.3) of [2] by breaking the full S7 permutation symmetry to S2 × S5. It would also be
very interesting to compute the three-loop contribution from standard Feynman diagram
techniques, for example by using Feynman rules in twistor space as developed in [97, 98].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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