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Abstract

In this work we propose a nonparametric method for density estima-
tion over two-dimensional domains. Following a functional data analysis
approach, we consider a penalized likelihood estimator, with a roughness
penalty based on a differential operator. This approach allows for the es-
timation of densities on any planar domain, including those with complex
boundaries or interior holes. We develop an estimation procedure based on
finite elements. Thanks to the use of this numerical technique, the proposed
method has great flexibility and high computational efficiency.

1 Introduction

It the recent years there has been an increasing cross-contamination of techniques
from functional data analysis and from spatial data analysis; see, e.g., the special
issue [19] and the review in [9]. Here in particular we consider the problem of
estimating a density function f on a two-dimensional domain with a complex
shape. For example, Figure 1 illustrates crime locations in the municipality of
Portland, Oregon. The interest is to study the distribution of crimes in order to
identify critical and dangerous areas in the city. Here the complex geographical
conformation of the domain, and in particular the presence of the river, is crucial
in the study of the phenomenon. There is a clear difference between the West-
side, characterized by a lower number of crimes, and the East-side, characterized
by a higher number of crimes. The difference is particularly pronounced in the
Northern and in the Southern part of the city.
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Figure 1: On the left, points distributed over a complex domain with boundaries.
On the right, the constrained Delaunay triangulation of the same domain.

The analysis of data observed over domains with complex shapes has lately
drawn lots of attention. [21] and [26] propose smoothing methods with a regu-
larization based on a differential operator; [22] extends these models to spatial
regression and [2] considers two regularizing terms involving general partial dif-
ferential equations; [3] deals with spatially dependent functional data over com-
plex domains, and [18] tackles the case of object data. The problem of density
estimation in this complex setting as not been addressed yet.

In this work we present a flexible density estimation method for data dis-
tributed over complex regions. The model formulation is based on a nonpara-
metric likelihood approach, with a regularization that involves partial differential
operators. In the univariate case, a similar approach is considered in [13] and
later developed in [23]. In the multivariate setting, the proposal in [14] develops
a spline model that can be used for simple tensorized domains. All these meth-
ods are nonetheless not easily generalizable to the case of complex multivariate
domains.

The method we propose leverages on advanced numerical analysis techniques
to address the estimation problem. In particular, we use the finite element
method, often used in engineering applications to solve partial differential equa-
tions. The main advantage of these techniques consists in the possibility of
considering spatial domains with complex shapes, instead of simple tensorized
domains, as considered by [14] and by the other available methods for density
estimation. Moreover, the proposed method for density estimation does not im-
pose any shape constraint; on the contrary, it permits the estimation of fairly
complex structures. In particular, thanks to the finite element formulation, the
method is able to capture highly localized features, and lower dimensional struc-
tures such as ridges. This ability also makes the method particularly well suited
in research areas such as density based clustering [6] and ridge estimation [11].
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2 Methodology

2.1 The standard approach

Let us first introduce the problem of nonparametric maximum likelihood esti-
mation in the univariate case, proposed for the first time in [13]. Let X1, . . . , Xn

be i.i.d. observations with distribution function F and density f on a bounded
domain Ω ⊂ R. The idea is to maximize a functional

L(f)− λR(f) (1)

where L(f) =
∑

i log f(xi) is the log-likelihood, R(f) is the roughness penalty,
and the parameter λ > 0 controls the amount of smoothness. The penalty R(f)
is necessary to have a well defined likelihood, that would otherwise be unbounded
because of the infinite class of functions we are considering. The idea is to reduce
the space of possible solution in order to avoid trivial solutions such as the sum
of delta functions at the observations. This can be achieved by penalizing too
rough estimates. To measure the roughness or complexity of the estimate, in [13]
the authors consider the functional R(f) = ||(

√
f)(1)||22. Further developments

of this model are presented in [23], where the authors consider a regularization
functional of the form R(f) = ||(log f)(3)||22.

2.2 Proposed model and estimation procedure

We now consider the problem of estimating a density function f on a complex
spatial domain. Let X1, . . . ,Xn be i.i.d. observations drawn from a distribution
F with density f on a bounded planar domain Ω ⊂ R2. Likewise in in [23] we
consider the logarithm tranform g = log(f), where g is a real function on Ω.

As discussed in the previous Section, some type of regularization is necessary
to avoid an unbounded likelihood. Here we consider a regularization functional
of the form

R(g) =

∫
Ω

(∆g)2 dx where ∆g =
∂2g

∂x2
1

+
∂2g

∂x2
2

.

where x = (x1, x2). The functional ∆g is called Laplacian, and represents a mea-
sure of local curvature of g. It therefore controls the smoothness of the estimates
while reducing the space of possible solutions. A key feature of the Laplacian
is the invariance with respect to Euclidean transformations of the spatial coor-
dinates. It therefore ensures that the concept of smoothness does not depend
on the orientation of the coordinate system. Under appropriate boundary con-
ditions, the density corresponding to the null family of the operator, i.e. when
λ→ +∞, is the uniform ditribution over Ω.

From a theoretical perspective, an analogous regularized nonparametric like-
lihood approach has been considered in the context of simple multidimensional
domains in [14], using spline basis. The authors develop an elegant theoret-
ical framework to study the asymptotic properties of such penalized density
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estimators. The generalization to multivariate domains with complex shapes is
nonetheless not obvious. The main problems rely on the form of the regularizing
functional and the discretization used, based on splines.

Here we propose a novel solution that exploit advanced numerical techniques,
such as the finite element method. At first, we consider an appropriate discretiza-
tion of the domain Ω. Since we are dealing with bounded domains, we can use
constrained triangulations (see Figure 1). We then define a piecewise polyno-
mial function over the discretized domain. In particular, let ψ := (ψ1, . . . , ψK)>

be the vector of linear finite element basis associated with the triangulation.
Such basis are locally supported piecewise linear functions. We can define the
discretized version of the function g as g>ψ(x), where g ∈ RK is the vector of co-
efficients of the basis expansion. The penalization functional can be discretized
by the quadratic form g>R1R

−1
0 R1g, with

R0 =

∫
Ω

(ψψ>) and R1 =

∫
Ω

(ψx1ψx1
> +ψx2ψx2

>) ,

where ψx1 = (∂ψ1/∂x1, . . . , ∂ψk/∂x1)> and ψx2 = (∂ψ1/∂x2, . . . , ∂ψk/∂x2)>.
For details on the derivation of the discretized regularization functional, see for
instance [22].

3 Future research

In this Section we discuss some possible extensions of the proposed density es-
timation method. A first possibility is to consider higher dimensional and non-
euclidean domain. For example, two-dimensional surfaces or complex three-
dimensional bounded regions. Modern applications often require the analysis of
data observed over these complex domains (see, e.g., [20]). In neuroscience re-
searches for instance, brain studies are carried out on the cerebral cortex, a two
dimensional curved domain with an highly convoluted nature [16, 8], or consider
the brain as a whole, a three-dimensional domain with highly complex internal
and external boundaries. In other fields, such as geoscience, data are often dis-
tributed over bounded non-planar domains. Flexible density estimation methods
are therefore required to overcome the classical concept of Euclidean distance.
In the case of Riemaniann manifolds, some proposals based on exponential maps
are offered by [17, 4]. The finite element formulation in the proposed framework
gives enough flexibility for possible extensions to curved two-dimensional do-
mains and to complex three-dimensional domains. In particular, we can resort
to surface finite elements, as in [16], and to volumetric finite elements.

Another possibility is to develop time-dependent density estimators. This
type of modelization allows for the study of the evolution of underlying processes
generating the data. The topic has drawn very little attention, especially in more
than one dimension (see, e.g., [12] and references therein, for some first proposals
in this regard). In the proposed approach, the generalization might consider
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two regularizations, one in time and one in space, or alternatively a unique
regularization involving a time-dependent differential operator, in analogy to
the spatio-temporal regression methods presented in [3] and [1].

Finally, a fascinating alternative is to tell the whole story from a bayesian
perspective. The penalization has indeed the form of a Gaussian prior over a
graph, the triangulation. This may lead to interesting considerations in terms
of random processes, especially in the case of Poisson intensity estimation.
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