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Abstract—Deep generative modeling (DGM) is an increasingly
popular approach that can create novel and unseen data, starting
from a given data set. As the technology shows promising
applications, many ethical issues also arise. For example, their
misuse can enable disinformation campaigns and powerful phish-
ing attempts. Research also shows different biases affect deep
learning models, leading to social issues such as misrepresen-
tation. In this work, we formulate a novel setting to deal with
similar problems, showing that a repurposed anomaly detection
system effectively generates novel data, avoiding generating
specified unwanted data. We propose Variational Auto-encoding
Binary Classifiers (V-ABC): a novel model that repurposes and
extends the Auto-encoding Binary Classifier (ABC) anomaly
detector using the Variational Auto-encoder (VAE). We survey
the limitations of existing approaches and explore many tools
to show the model’s inner workings in an interpretable way.
This proposal has excellent potential for generative applications:
models that rely on user-generated data could automatically
filter out unwanted content, such as offensive language, obscene
images, and misleading information.

Index Terms—anomaly detection, variational auto encoder,
deep generative model

I. INTRODUCTION

Deep Generative Models (DGMs) are on the rise [1], [2].
Powered by deep learning, DGM had a remarkable impact,
as these models nowadays can generate convincing people’s
faces [3] and news articles [4]. Novel applications are still
researched, as they have been proven effective in many
tasks, such as model-based reinforcement learning and semi-
supervised learning [5].

A recent work highlighted the need for tools to control
the generative capabilities of a DGM is crucial for an eth-
ical and social standpoint [6]. For example, state-of-the-art
language models, despite having near human-like performance
for specific tasks, have a troublesome behavior: they have been
shown to favor misrepresentation, amplify social biases, favor
stereotypes and even generate derogatory language. Trivial
filtering techniques on training data have not been effective
in dealing with the issue [6]. Moreover, powerful language
models can be abused. Their misuse can enable automated
disinformation campaigns and powerful phishing attempts.
Research organizations in the world opted for locking such
models behind APIs out of fear of abuse [4]. We firmly believe
that innovation cannot be driven by an opaque system: we

should be able to independently assess learning models to
constantly improve them. Ideally, we should strive to create
generative models that can be instructed to avoid generating
specified inappropriate data, removing the capability to gen-
erate it altogether.

Anomaly detection systems based on Variational Autoen-
coders (VAEs) [7], [8] have been a solid inspiration for
this task. Although they are generally employed to perform
classification, their generative formulation enables them to
perform sampling. Moreover, their neural architecture can
be easily adapted to different domains. VAE-based anomaly
detection systems have been proved effective and resilient,
showing to outclass PCA-based methods [7], random forests
[8], classic deep neural networks and one-class SVM [9].

Following these research directions, the main contribu-
tions of this paper are two-fold: (1) we propose a novel
negative-unlabeled setting in which generative methods can
be instructed to avoid the generation of unwanted data (e.g.,
outliers, malicious data); (2) we extend an autoencoder-based
anomaly detector to a VAE inspired formulation to achieve
this ambitious goal. Understanding and promoting this under-
explored setting is important for real-world applications that
require a specific removal of sensitive topics from DGM, such
as language modeling [6] and image synthesis [3].

The rest of the paper is structured as follows. In Section II,
we present a brief survey about the applications of generative
methods in settings similar to the proposed one. Section III
summarizes important notions and terminology which are used
throughout the paper. Section IV presents our novel negative-
unlabeled setting and detailedly describes the proposed V-ABC
model. Section V presents a comparison between a standard
VAE and V-ABC in our novel setting, using both toy and
real-world data sets. Section VI discusses the results found and
shows the ability of V-ABC to avoid generating unwanted data.
Section VII wraps up the paper and presents possible future
directions.

II. RELATED WORK

Anomaly detection systems, also known as outlier analysis,
have been researched for decades. These approaches have
been successfully applied in many scenarios, such as quality



control, finance, cybersecurity, medical diagnosis, social mon-
itoring, earth science, and data cleaning [10]. Novel graph-
based approaches [11] are used to scale up to real-world big
data applications. Variational autoencoders (VAEs) [2] have
been successfully applied to anomaly detection tasks in both
supervised [12], [13] and unsupervised [7], [8] settings.

A common solution for constrained sampling uses fully
labeled data to produce samples with a specified class [14].
This model is ineffective in the setting we propose, since
the labeling process is noisy and it would aim to reproduce
the same noisy distribution. Considering negative constraints
for generative models has been researched using statistical
learning tools [15], formulating the Generative Modeling with
Negatives task. Their contribution is mainly theoretical, while
our work has a stronger applicative focus. Alternative settings
for generative models that learn from partially labeled data
sets have been studied for the positive-unlabeled case [16], re-
porting a setting that requires generalizing the positive concept
starting from a small positive set and a larger unlabeled data set
for generative modeling (e.g., to perform density estimation).

III. BACKGROUND

In this section, we provide some useful notation used
throughout the paper and present the background knowledge
that forms the basis of our method.

A. Notation

Bold notation is used to differentiate between vectors,
e.g., x = [3.2, 2.1], and scalars, e.g., α = 5. Probability
distributions are denoted with lower case letters, e.g., p(·).
Parametric distributions are denoted as pθ(·), where θ is a
vector of parameters. With z ∼ p(z), we indicate a sampling
of some vector z from distribution p(z). p(x|z) denotes the
probability distribution of x conditioned by z. A training set
X of N examples is denoted as X = {x(i)}Ni=1, where x(i) is
the ith example of X.

B. Autoencoders

Autoencoders (AEs) are unsupervised machine learning
models based on neural networks. Their purpose is to learn
an identity function that reconstructs the original input while
compressing data in the process. These models are based on
two neural networks, namely an encoder fϕ and a decoder
gθ, parameterized by ϕ and θ, respectively. The encoder
learns a function which maps a high-dimensional input x
into a lower dimensional vector z, while the decoder learns
how to reconstruct the original input x from z. We refer to
the reconstructed version of x with x̃. So, given an input
x, an autoencoder learns functions fϕ and gθ such that
fϕ(gθ(x)) = x̃ ≈ x.

C. Variational autoencoders

Variational autoencoders are generative models based on
variational inference, with an architecture similar to vanilla
autoencoders. VAEs assume the input x ∈ X is generated
according to the following generative process: z ∼ pθ∗(z)

and x ∼ pθ∗(x|z), with dim(z) ≪ dim(x). In other words,
VAEs assume that the input vector x is modeled as a function
of an unobserved random vector z of lower dimensionality.

The objective of VAE is to estimate parameters θ∗ by
maximizing the likelihood of the data (Maximum Likelihood
Estimation, MLE), i.e., θ̂ = argmaxθ∈Θ pθ(x).

Computing the MLE requires solving pθ (x) =∫
pθ(x|z)pθ(z)dz, which is often intractable. However,

in practice, for most z, pθ(x|z) ≈ 0, namely these z provide
a minimal contribution to compute pθ(x). For this reason,
the main idea of VAE is to sample values of z that are
likely to have produced x, and compute pθ(x) just from
those. However, for doing that, we need to compute the
posterior distribution pϕ(z|x), which is also intractable.
For this reason, VAEs rely on variational inference, which
allows the approximation of the intractable posterior via
qϕ(z|x), known as recognition model in VAE parlance. To
make the approximation feasible, qϕ is assumed to follow a
specific family of parametric distributions, usually a Gaussian
distribution with 0 mean and unitary variance. The closeness
between qϕ(z|x) and the true posterior distribution pθ(z|x)
is ensured by the minimization of the Kullback-Liebler
divergence (KL), which can be written as:

KL(qϕ(z|x)∥pθ(z|x)) =
Eqϕ(z|x) [log qϕ(z|x)− log pθ(x, z)] + log pθ(x). (1)

After some rearrangements of Equation (1), it is possible
to obtain the so-called Evidence Lower BOund (ELBO) [2],
which defines the objective function that a VAE tries to
maximize:

log pθ(x) ≥ Eqϕ(z|x) [log pθ(x|z)]− KL(qϕ(z|x)∥pθ(z))
= L (x;θ,ϕ) .

(2)
This equation can be interpreted as a reconstruction error

(first term), plus the so-called KL loss, which acts as a
regularization term.

The autoencoder comes into play when qϕ and pθ are
parameterized by two (deep) neural networks, i.e., the encoder
(fϕ) and the decoder (gθ), respectively. The parameters of fϕ
and gθ are optimized using stochastic gradient ascent with
the aid of the reparameterization trick [2], which enables the
computation of the gradient w.r.t. ϕ. To this end, given an input
vector x, the encoder network provides the parameters which
define the probability distribution over the z that are likely to
produce x, i.e., qϕ(z|x). This Gaussian distribution is defined
by the two outputs of the encoder, namely the mean µϕ(x) and
the diagonal co-variance matrix Σϕ(x). The sampling over
this distribution is performed via an additional input ϵ, which
allows the reparameterization z = µϕ(x)+ϵ⊙Σϕ(x), where
⊙ is the Hadamard product.

D. Auto-encoding Binary Classifiers

The Auto-encoding Binary Classifier (ABC) [9] is a su-
pervised anomaly detector based on the vanilla autoencoder.
The authors’ major contribution is the proposal of a hybrid



approach in anomaly detection. Instead of using a purely
supervised or unsupervised method, ABC exploits a binary
classifier built in an autoencoder. On the one hand, purely
supervised methods have been shown to have low resilience
to unknown anomalies; on the other hand, purely unsupervised
methods are not able to distinguish negative from positive data,
limiting their use in anomaly detection tasks. Using a hybrid
approach makes it is possible to merge the advantages of the
two methods while addressing their limitations.

The architecture of ABC is based on an autoencoder.
We indicate with fϕ the encoder and with gθ the decoder,
parameterized by ϕ and θ, respectively. ABC assumes that the
data set X = {(x(i), y(i))}Ni=1 is subdivided in two sets: a set
of “normal” data (y = 1), and a set of anomalous data (y = 0).
The objective of ABC is to discriminate between normal data
and anomalies. To this end, ABC uses the supervision given
by y to change dynamically the training objective depending
on the class of the example. The main idea is to penalize
the reconstruction of the anomalies, while minimizing the
reconstruction error on normal data. After the training, the
model can be used to discriminate between anomalies and
normal data by using the reconstruction error.

The ABC loss function is defined as follows, where the
reconstruction term for vector x(i) is defined as LAE(x

(i)) =
∥x(i)−gθ(fϕ(x

(i)))∥, and ∥·∥ is an arbitrary distance function.
The ℓ2-norm was used in the paper.

− log pθ(y
(i)|x(i)) =

y(i)LAE(x
(i))− (1− y(i)) log(1− e−LAE(x

(i))) (3)

The first term has to be intended as a reconstruction error,
while the second term can be interpreted as an anomaly
reconstruction penalty. Given this objective, ABC will learn
how to reconstruct effectively desired data while returning
wrong reconstructions for anomalies. In this paper, we show
how this idea of penalizing anomalies can be used to avoid
the generation of unwanted data on variational autoencoders.

IV. PROPOSED METHOD

This section introduces a novel problem formulation for
generative methods and presents our V-ABC model.

A. Problem formulation

We describe a novel negative-unlabeled setting for gen-
erative methods. Let us assume that we have an unlabeled
data set X = {x(i)}Ni=1, where x(i) is a vector of features
describing the ith example. Then, suppose that our data set
contains some examples that might be anomalous or undesired,
for example, explicit songs or scary faces. We refer to these
examples as unwanted data, in the sense that our model
should avoid modeling and generating them. Figure 1 depicts
an instance of the negative-unlabeled setting. The unlabeled
examples are depicted in blue circles, while unwanted data is
depicted by using red circles. Unwanted data may overlap with
unlabeled data, which is what makes this setting challenging.
For this reason, we define a negative concept, namely an area

in the (input) space in which unlabeled data lives together
with unwanted data, and a positive concept, namely an area
of the space in which we have only evidence of unlabeled
data. In the figure, the negative concept is surrounded by
a red dashed line, while the positive concept is surrounded
by a green dashed line. In general, these two concepts are
defined by two different probability distributions. We denote
with p(x|+) the probability distribution which models the data
set examples in the positive concept, and with p(x|−) the
probability distribution which models the data set examples in
the negative concept. The objective of our approach is to learn
p(x|+) and use it for generating desired (i.e., not anomalous)
data.

In this paper, we use a label y to differentiate between
unlabeled (y = 1) and unwanted data (y = 0). This leads
us to a labeled data set, denoted with X = {(x(i), y(i))}Ni=1.

2 1 0 1 2
6

4

2

0

2 Negative
Positive
Unlabeled
Unwanted

Fig. 1. Possible instance of a negative-unlabeled setting.

B. Variational ABC

Variational ABC (V-ABC) is an extension of ABC, based on
Variational Autoencoders, which enables generative modeling
capabilities of the original ABC model. In particular, we show
that V-ABC can be used to avoid the generation of unwanted
data. Some practical observations drive the extension of ABC
from an autoencoder-based architecture to a VAE-based one:

1) the ABC model is, at its heart, a classical autoencoder.
It simply uses a label y to define a different training
objective for desired and anomalous data;

2) the conversion from autoencoders to VAEs occurs by
first estimating the reconstruction error via a sampled
latent vector z and then adding a KL-divergence regu-
larization term.

Given these observations, we define the loss function of a
V-ABC model for a given input (x(i), y(i)) as:

LV-ABC = KL(qϕ(z|x(i))||pθ(z))

+ y(i)LVAE(x
(i))− (1− y(i)) log(1− e−γLVAE(x

(i)))

The first term is the classical KL loss of variational autoen-
coders, which forces the distribution qϕ(z|x(i)) returned by
the encoder to be similar to the prior pθ(z), while the second
term can be interpreted as a reconstruction error which changes
based on the value of y(i). Notice the similarities between this



latter term and Equation (3). In particular, instead of LAE we
have LVAE, which is defined as follows.

LVAE(x
(i)) =

1

2σ2
||x(i) − gθ(fϕ(x

(i)))||2

In this equation, fϕ and gθ are the encoder and decoder of
the V-ABC model, parameterized by ϕ and θ, respectively.
Then, σ2 is a hyper-parameter deriving from the instantiation
of the ELBO in Equation (2) for a Gaussian decoder [17],
i.e., pθ(x|z) ∼ N (gθ(z), σ

2 ∗ I). Another critical difference
between Equation (3) and LV-ABC is the hyper-parameter γ in
the anomaly reconstruction penalty. The purpose of γ is to
calibrate the weight of unwanted examples (y(i) = 0) for V-
ABC. As γ increases, the model becomes more similar to a
classical VAE. In particular, with γ → ∞ V-ABC becomes
a VAE, modeling only positive samples (y(i) = 1). In this
latter case, V-ABC will not enforce any reconstruction penalty
for unwanted data, but the KL term will constraint the latent
distributions to be similar to the prior. An advantage of this
formulation is the ability to adjust accurately the distance we
want to have from the negative concept distribution p(x|−).
Higher values of γ lead V-ABC to generate samples closer to
unwanted data, while lower values allow generating samples
further from unwanted data.

C. Anomaly detection

Although the main focus of the paper is data generation,
it is indeed possible to use the proposed method to perform
anomaly detection. Following existing methodology [7], a
VAE can be used to perform a Monte Carlo estimate using
Eqϕ(z|x)[log pθ(x|z)], i.e., the reconstruction probability, to
check whether new data is anomalous or not, according to
a threshold α.

V. EXPERIMENTS

In this section, we present the experiments performed with
V-ABC1. In particular, we conducted extensive trials on dif-
ferent toy and real-world data sets, seeking to answer the
following research questions:
Q1 Is V-ABC able to avoid the generation of unwanted data?
Q2 How do the different components of the model (e.g., en-

coder, decoder, labels) work together to avoid generating
unwanted data? Does the latent space of V-ABC show
any relevant property (e.g., continuity, completeness)?

Q3 Are the results consistent across different initial con-
ditions (e.g., seeds, data set sizes, hyper-parameters
choice)?

A. Data sets

We trained V-ABC on different toy and real-world data sets,
summarized in Table I. In the table, the number of examples
in the positive (⊕) and negative (⊖) concepts are presented,
as well as the number of unlabeled and unwanted examples,
following the nomenclature proposed in Section IV. Specifi-
cally, p is the proportion of negative examples considered as

1We make our source code available here: tinyurl.com/2uh5xjzz

unwanted data during the training of V-ABC, denoted with
y = 0 in our problem formulation. The remaining negative
examples are put in the unlabeled fold, together with the
positive examples. The unlabeled examples are denoted with
y = 1 instead. Our method is then trained on these two latter
folds, namely the unlabeled and unwanted folds. The class
column in the table indicates which class from the data set
has been chosen as negative concept. In the following, we
refer to negative data as the examples in the negative concept,
and to positive data as the examples in the positive concept.

TABLE I
DATA SETS INFORMATION

Data set class p #⊕ #⊖ #unlabeled #unwanted
Moons1 0 1 5000 5000 5000 5000
Moons2 0 0.8 5000 5000 5983 4017
MNIST 1 0.1 53258 6742 59328 672
MNIST 1 0.2 53258 6742 58686 1314
MNIST 1 0.3 53258 6742 57986 2014
MNIST 7 0.1 53735 6265 59375 625
MNIST 7 0.2 53735 6265 58777 1223
MNIST 7 0.3 53735 6265 58125 1875
MNIST 8 0.1 54149 5851 59414 586
MNIST 8 0.2 54149 5851 58858 1142
MNIST 8 0.3 54149 5851 58276 1724

a) Moons1: this synthetic data set is composed of two
interleaving half circles, also referred as moons by the clus-
tering research community. The lower moon contains only
positive data, while the upper moon contains negative data.
This data set presents a minimal, but existing, overlapping
between the two distributions (i.e., lower and upper moons).
Moons1 constitutes an easy setting, in the sense that the
unlabeled and unwanted folds contain exactly the positive and
negative data, respectively.

b) Moons2: the previous toy data set is extended to a
harder formulation, where the unlabeled fold contains a portion
(20%) of negative data, while the rest (80%) is moved on the
unwanted data fold.

c) MNIST: to show the versatility of V-ABC on real-
world scenarios, we employ a simple computer vision data
set comprising images of handwritten digits. The data set is
already subdivided into training and test sets. The training
examples related to one digit have been considered as negative
data, while all the others as positive data. Then, 10% of
the negative data has been selected as unwanted data for V-
ABC, while the remaining 90% make up the unlabeled fold,
together with the positive examples. In our experiments, we
tried different values for p (i.e., 0.1, 0.2, 0.3) and selected ‘1’,
‘7’, and ‘8’ as negative data in three different trials.

B. Model architecture

Depending on the data set, we used different architectures
for V-ABC.

a) Moons: We used a simple Multi-Layer Perceptron
(MLP) as encoder and decoder, with two hidden layers with 20
units each. The latent space dimension has been set to 1. ReLU
has been used as activation function for the hidden layers. For

tinyurl.com/2uh5xjzz


the output of the encoder, we used a linear activation. The
same is done for the output of the decoder. The final output
has been chosen to be linear since we interpret it as the mean
of the Gaussian distribution modelled by the probabilistic
decoder. A sample can be then visualized by sampling from
the aforementioned distribution, using the predicted mean and
by using 1 as variance, as we will see in our qualitative results.
During training, we fixed hyper-parameter σ2 = 1.

b) MNIST: We increased the number of hidden units to
300 and 100 for the outer and inner layers, respectively. Here, a
sigmoid function has been applied to the output of the network
to compute pixel values between 0 and 1. We fixed σ2 = 2.5.

C. Training procedure

During training, we balanced the unlabeled and unwanted
data in the mini-batches to mitigate the effect of unbalanced
data sets, by ensuring to sample an equal number of unwanted
and unlabeled examples for each mini-batch. We used a
sigmoidal annealing schedule [18] for hyper-parameter γ,
described as follows. (1) At the beginning of the training,
we set γ to a relatively high value (e.g., 4). This helps the
model in accurately learn the positive distribution without
penalizing it for reproducing negative samples in the early
stages of training. (2) During training, we decrement γ by
using a sigmoidal scheduling, forcing the model to consider
progressively negative examples and learn how to not generate
them. (3) γ is reduced until it reaches its desired final value
(e.g., 1).

For the annealing of the KL term, we followed the procedure
described by [18]. The annealing for the KL term and γ has
been performed only on the epochs of training. We refer to
this number of epochs as E′. In addition, for MNIST we used
early stopping as a regularization technique, using the test data
set to compute a validation score. The test loss function has
been used as validation metric. It is important to highlight that
the test set has been exclusively used for validation purposes.

For each experiment, we used batch size equal to 80, and
Adam as an optimizer, with parameters set to default values.
For Moons, we trained V-ABC for 30 epochs with E′ = 10
and γ = 3, while for MNIST we used E′ = 5 and γ = 0.05.

D. Evaluation procedure

We evaluated the results on the Moons data sets in a
qualitative manner, by plotting the sampled data over the
original data. For the MNIST data set, we used a quantitative
evaluation. In particular, a Convolutional Neural Network
(CNN) classifier has been trained on the original positive
and negative labeled data. Then, this classifier is used to
measure the correctness of the generated samples after the
training of V-ABC. For each MNIST data set in Table I we
repeated the training procedure using 3 different random seeds
to investigate possible sensitivity to initial conditions.

We compared V-ABC to a vanilla VAE. We trained the
VAE on the unlabeled fold of the data sets by using the same
architecture as for V-ABC.

VI. RESULTS

This section presents the results of the experiments con-
ducted, subdividing them by research question and data set.

A. Negative concept avoidance (Q1)

In this section, we analyze the ability of V-ABC to avoid
generating negative data by evaluating the output of our model
in both a qualitative and quantitative way.

a) Moons: As shown in Figure 3 (Moons1), a VAE can
faithfully reproduce the selected distribution, but it occasion-
ally creates data that is similar to the negative concept. Addi-
tionally, it can create outliers. V-ABC increases the distance
of the generated samples from the negative distribution by
avoiding generating data near to the upper left of the lower
moon, since it is surrounded by negative data. In addition,
it also reduces the generation of outliers on the right side
of the lower moon. Despite unsupervised models are feasible
approaches for sufficiently separated data sets, the negative-
unlabeled setting is unfeasible to solve for a classic VAE. In
fact, as shown in Figure 4 (Moons2), the VAE spans the whole
unlabeled distribution. The V-ABC, instead, has a preferable
behavior, since it learns how to avoid the upper moon and
similar unlabeled data in the process. We observe that the
probability mass modeled by V-ABC is simply moved to a
safer place, increasing the frequency of generating data points
on the left. This is noteworthy, since one may be interested
in generating data that is similar as much as possible to
the unlabeled data distribution, without actually creating new
negative data.

b) MNIST: The performances on MNIST have been
quantitatively evaluated by using a simple CNN classifier
(which has a test accuracy equal to 99.16%) to assess the fre-
quency of unwanted data generated by V-ABC. We denote this
metric as negative generation error. The classifier used shows
an average negative generation error equal to 0.14%± 0.0016
for V-ABC, as opposed to 8.31%±0.0181 for VAE, as reported
in Figure 2.

VAE V-ABC
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Fig. 2. Negative generation error for MNIST data set (p = 0.2); VAE vs.
V-ABC.

B. Model analysis (Q2)

We exploited different visualization techniques to better
understand the model components.
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Fig. 3. VAE (left) and V-ABC (right) model samples; Moons1 data set. Green crosses are sampled data. Red plus signs are the mean of the distributions
used for sampling. y = 0 is unwanted data, y = 1 is unlabeled data. We display only 100 data points for each class to avoid clutter.
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Fig. 4. VAE (left) and V-ABC (right) model samples; Moons2 data set. Green crosses are sampled data. Red plus signs are the mean of the distributions
used for sampling. y = 0 is unwanted data, y = 1 is unlabeled data. We display only 100 data points for each class to avoid clutter.
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Fig. 5. Vector field of the gradient of LV-ABC w.r.t. the input grid, given unlabeled input y = 1 (left), and unwanted input y = 0 (right). We display only
100 data points for each class to avoid clutter.



a) Moons: A recent paper on GAN [19] shows an
effective way to visualize better the impact of a loss function
on a 2D data set. We applied this method to a VAE using a
simplified formulation. In particular, we computed the gradient
−∂LV-ABC(x)

∂x and found the direction of the steepest descent
of the loss function. By computing the gradient of the loss
function w.r.t. an input grid, we created a vector field, depicted
in Figure 5. To compute the gradient, we skipped the stochastic
step in the model by choosing z = µϕ(x). Avoiding sampling
makes the gradients behave as they would do on average.

The computation of the gradient allows to give an interpreta-
tion of how the model expects the data points to be positioned
in the space. High gradients show the model expects a data
point to be positioned in another location, while low gradients
show the model is confident that a point is correctly positioned.
As we can see in the figure, the gradient pushes unlabeled data
to be positioned near the lower moon, while unwanted data
has high gradients only for those data points that the model is
extremely confident they belong to the positive distribution.

b) MNIST: By using two latent dimensions, we can
easily represent the latent space and create a two-dimensional
manifold for MNIST. To plot the manifold, we selected
different values from a grid in the interval [−3, 3] for each
dimension of z, then we applied the decoder to each z value.
By using this method, it is possible to inspect the behavior of
the decoder, giving an intuitive way to reason on pθ(x|z). For
example, we may assess the area associated with each digit,
e.g. evaluating whether a digit is more frequent than another,
in a visual way. We can also get a general idea of the sample
quality. Figure 6 shows how the V-ABC latent space exhibits
a structure which is similar to the classic VAE counterpart.
By traversing it along any direction, digits slowly transform
in shape, stroke, or angle. A classic VAE can generate only the
digits supplied, making it useful and effective for fully labeled
data sets. In the negative-unlabeled setting, this model has a
clear disadvantage: the model cannot discern unwanted digits,
limiting itself to imitate the input distribution that contains
all the digits. The V-ABC manifold displays an important
difference: the unwanted digit ‘8’ is not generated.

Another way to assess an autoencoding model is to visualize
how data is reconstructed. An autoencoder reconstructs data
given as input, even if occluded or corrupted. Figure 7 shows,
in practice, how a VAE and V-ABC reconstruct the inputs.
For the VAE, the digits are reconstructed correctly, except
whenever a digit is misread; here, a different, plausible digit
is reconstructed. The V-ABC can reconstruct input data just
as well, but with a fundamental difference: it reconstructs
unwanted digits as different, plausible digits. The positive data
is recostructed, instead, correctly, similarly to the VAE.

In Figure 8, we visualize the encoder behavior by computing
µϕ(x) and Σϕ(x) on a training data subset. Hence, we give
an intuitive way to reason on the qϕ(z|x) distribution. These
values are visualized by creating an ellipse for each data point
considered; its mean locates its center, and its variance gives
the width and the height to the ellipse. The reparameterization

step in a VAE-based model selects with high probability2

a z inside this ellipse. The distribution qϕ(z|x) tries to be
similar to the Gaussian prior pθ(z), having mean 0 and
diagonal co-variance matrix I. In the figure, it is possible to
observe that different latent regions encode different digits,
with some overlapping because of ambiguous data. Negative
digits instead have a different behavior: in this case, the
distribution qϕ(z|x) is much closer to the prior, as it covers
the whole distribution. As long as the positive data covers well
the whole latent space, the decoder cannot reconstruct negative
data, and instead picks up a random z vector, drawn by the
uninformative prior.

C. Sensitivity to initial conditions (Q3)

To test the limits of V-ABC, we trained many model
instances, assessing their robustness to initial conditions (Q3).

a) Moons: V-ABC is resilient to the different initial
conditions tested, since it gives similar results by changing
the random seed and p. By increasing γ, the model reduces
its distance from the negative data distribution, while by
decreasing it, the model increases the distance. A very low
γ leads to distortion, changing the shape of the positive moon
to further increase the distance from negative data.

b) MNIST: We investigated how the performance varies
using different sizes for the unwanted data set. The first plot in
Figure 9 shows that the use of more unwanted samples leads
to lower negative generation error, while a lower number of
unwanted samples leads to a much higher error and variance,
showing that there is a clear trade-off between data set size
and the model capacity to avoid generating unwanted data.

Finally, we show how the performance changes using dif-
ferent values for γ. As shown in the second plot in Figure 9,
a higher γ increases the overall error. Instead, a lower γ can
reduce the average error. However, it is more sensitive to initial
conditions, as shown by the higher scores for outliers. This
behavior decreases the reliability of the model found.

VII. CONCLUSIONS

In this paper, we showed it is possible to control the
generative capabilities of VAEs. In particular, we repurposed
the autoencoding-based ABC anomaly detector, extending it
by regularizing its latent space. This novel model, named
V-ABC, has proved to be effective in tasks dominated by
uncertainty, as we showed in our experimentation in the
negative-unlabeled setting. We also contributed to the ABC
model by proposing to weight negative samples differently
using γ, and to use annealing techniques for training. This
resulted in better performances and training behavior for the
V-ABC model. As experimentally shown, the value of γ is
critical to the overall sample quality. Hence, it is needed to
adopt a rigorous hyper-parameter selection process.

We believe that further exploration of the negative-unlabeled
setting is imperative. Future work will focus on experimenting
with other state-of-the-art VAE-based anomaly detectors to
illustrate their generative capabilities.

2The area of each ellipse shows 2σ, corresponding to about 95% of data.



Fig. 6. Manifold: VAE (left) vs. V-ABC (right); MNIST data set (p = 0.2). The unwanted digit ‘8’ is removed by V-ABC.

Fig. 7. Reconstruction: VAE (upper) vs. V-ABC (lower); MNIST data set
(p = 0.2). Original and reconstructed data are alternated. Threshold filter
applied. The unwanted digit ‘8’ is reconstructed to the same digit only for
the VAE.
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Fig. 8. µϕ(x) and Σϕ(x) visualization, V-ABC; MNIST data set (p = 0.2).
Each color represents a different digit. Each ellipsis represents the area in
µϕ(x)± 2Σϕ(x). ‘8’ is the unwanted digit.
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Fig. 9. Negative generation error for different unwanted data set sizes (left),
and γ values (right).

REFERENCES

[1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. C. Courville, and Y. Bengio, “Generative adversarial nets,”
in NIPS, 2014.

[2] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” CoRR,
vol. abs/1312.6114, 2014.

[3] L. Maaløe, M. Fraccaro, V. Liévin, and O. Winther, “Biva: A very
deep hierarchy of latent variables for generative modeling,” ArXiv, vol.
abs/1902.02102, 2019.

[4] A. Radford, J. Wu, D. Amodei, D. Amodei, J. Clark, M. Brundage,
and I. Sutskever. (2019) Better language models and their implications.
[Online]. Available: https://openai.com/blog/better-language-models/

[5] I. J. Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,”
ArXiv, vol. abs/1701.00160, 2017.

[6] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, “On
the dangers of stochastic parrots: Can language models be too big?”
Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency, 2021.

[7] J. An and S. Cho, “Variational autoencoder based anomaly detection
using reconstruction probability,” Special Lecture on IE, vol. 2, no. 1,
pp. 1–18, 2015.

[8] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao,
D. Pei, Y. Feng, J. J. Chen, Z. Wang, and H. Qiao, “Unsupervised
anomaly detection via variational auto-encoder for seasonal kpis in web
applications,” Proceedings of the 2018 World Wide Web Conference,
2018.

[9] Y. Yamanaka, T. Iwata, H. Takahashi, M. Yamada, and S. Kanai,
“Autoencoding binary classifiers for supervised anomaly detection,”
ArXiv, vol. abs/1903.10709, 2019.

[10] C. C. Aggarwal, “Outlier analysis,” in Springer New York, 2013.
[11] X. Ma, J. Wu, S. Xue, J. Yang, Q. Z. Sheng, and H. Xiong, “A

comprehensive survey on graph anomaly detection with deep learning,”
ArXiv, vol. abs/2106.07178, 2021.

[12] A. A. Pol, V. Berger, C. Germain, G. Cerminara, and M. Pierini,
“Anomaly detection with conditional variational autoencoders,” 2019
18th IEEE International Conference On Machine Learning And Appli-
cations (ICMLA), pp. 1651–1657, 2019.

[13] Y. Kawachi, Y. Koizumi, and N. Harada, “Complementary set variational
autoencoder for supervised anomaly detection,” 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
2366–2370, 2018.

[14] K. Sohn, H. Lee, and X. Yan, “Learning structured output representation
using deep conditional generative models,” in NIPS, 2015.

[15] S. Hanneke, A. T. Kalai, G. Kamath, and C. Tzamos, “Actively avoiding
nonsense in generative models,” ArXiv, vol. abs/1802.07229, 2018.

[16] T. Basile, N. Mauro, F. Esposito, S. Ferilli, and A. Vergari, “Generative
probabilistic models for positive-unlabeled learning,” in Workshop on
NFMCP held with ECML/PKDD, 2017.

[17] C. Doersch, “Tutorial on variational autoencoders,” ArXiv, vol.
abs/1606.05908, 2016.

[18] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Józefowicz, and
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