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We introduce new frames, called metaplectic Gabor frames, as natural generalizations of Gabor 
frames in the framework of metaplectic Wigner distributions, cf. [7,8,5,17,27,28]. Namely, we 
develop the theory of metaplectic atoms in a full-general setting and prove an inversion formula 
for metaplectic Wigner distributions on ℝ𝑑 . Its discretization provides metaplectic Gabor frames.

Next, we deepen the understanding of the so-called shift-invertible metaplectic Wigner distribu-

tions, showing that they can be represented, up to chirps, as rescaled short-time Fourier trans-

forms. As an application, we derive a new characterization of modulation and Wiener amalgam 
spaces. Thus, these metaplectic distributions (and related frames) provide meaningful definitions 
of local frequencies and can be used to measure effectively the local frequency content of signals.

1. Introduction

Frames were originally introduced by Duffin and Schaeffer in [11] and today they have become popular in many different fields, 
such as sampling theory, phase retrival, operator theory (they almost diagonalize several classes of pseudodifferential and Fourier 
integral operators), PDE’s, nonlinear sparse approximation, wireless communications, signal processing, quantum mechanics and 
computing (cf. [1,2,6,10,19–21,23,25,27,28] and references therein). Any environment may require a suitable frame, tailored for the 
matter, so that the main concern is to find the right atoms to represent a function.

For a fixed window 𝑔 ∈ 𝐿2(ℝ𝑑 ) ⧵ {0}, define 𝑀𝜉𝑔(𝑡) ∶= 𝑒2𝜋𝑖𝜉⋅𝑡𝑔(𝑡), 𝜉 ∈ ℝ𝑑 , and 𝑇𝑥𝑔(𝑡) = 𝑔(𝑡 − 𝑥), 𝑥 ∈ ℝ𝑑 , the modulation and the 
translation operator, respectively. Their composition 𝜋(𝑧) =𝑀𝜉𝑇𝑥, 𝑧 = (𝑥, 𝜉), is called a time-frequency shift. Let Λ be a sequence of 
points in ℝ2𝑑 (that is, a discrete set in ℝ2𝑑 ). Then the Gabor system generated by 𝑔 and Λ is the set of time-frequency shifts

(𝑔,Λ) = {𝜋(𝜆)𝑔}𝜆∈Λ.
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The Gabor system is a Gabor frame if it is a frame: namely, if there exist 𝐴, 𝐵 > 0 such that the inequalities

𝐴‖𝑓‖22 ≤ ∑
𝜆∈Λ

|⟨𝑓,𝜋(𝜆)𝑔⟩|2 ≤ 𝐵‖𝑓‖22 (1)

hold for every function 𝑓 ∈𝐿2(ℝ𝑑 ). This implies the reproducing formula

𝑓 =
∑
𝜆∈Λ

⟨𝑓,𝜋(𝜆)𝑔⟩𝜋(𝜆)𝛾, (2)

for a suitable function 𝛾 ∈𝐿2(ℝ𝑑 ) (called dual window).

Observe that the elements of a Gabor frame are simply generated by time-frequency shifts of a single window function and are 
called Gabor atoms. They arise naturally from the discretization of the short-time Fourier transform (STFT), defined as

𝑉𝑔𝑓 (𝑥, 𝜉) = ⟨𝑓,𝑀𝜉𝑇𝑥𝑔⟩, (𝑥, 𝜉) ∈ℝ2𝑑 . (3)

In fact, the STFT decomposes a signal 𝑓 ∈𝐿2(ℝ𝑑 ) as integral superposition of the time-frequency shifts 𝜋(𝑥, 𝜉) as follows:

𝑓 = 1⟨𝛾, 𝑔⟩ ∫
ℝ2𝑑

𝑉𝑔𝑓 (𝑥, 𝜉)𝜋(𝑥, 𝜉)𝛾𝑑𝑥𝑑𝜉, 𝑓 ∈𝐿2(ℝ𝑑 ), (4)

where 𝑔, 𝛾 ∈𝐿2(ℝ𝑑 ), 𝛾, 𝑔 ∈𝐿2(ℝ𝑑 ) satisfy ⟨𝛾, 𝑔⟩ ≠ 0, and the integral is intended in the weak sense of vector-valued integration.

In the practice, integrals are approximated by the partial sums of their Riemann sums, so that, using the equality |𝑉𝑔𝑓 (𝜆)| =|⟨𝑓, 𝜋(𝜆)𝑔⟩|, the Gabor reproducing formula in (2) can be viewed as a discretization of (4). Equivalently, it expresses 𝑓 as a discrete 
superposition of fundamental atoms.

In this paper we are mainly concerned with the characterization of the fundamental spaces in time-frequency analysis: modulation 
and Wiener amalgam spaces. They were introduced by H. Feichtinger in the 80’s [13] (cf. Galperin and Samarah [16] for the quasi-

Banach setting) and have become popular in the last twenty years, since they have been proved to be the right environment for many 
different topics: signal analysis, PDE’s, quantum mechanics, approximation theory [3,6].

Let 𝑚 be a 𝑣-moderate weight, see Section 2.1 below for details. We say that a tempered distribution 𝑓 belongs to the modulation 
space 𝑀𝑝,𝑞

𝑚 (ℝ𝑑 ), 0 < 𝑝, 𝑞 ≤∞, if 𝑉𝑔𝑓 ∈ 𝐿𝑝,𝑞𝑚 (ℝ2𝑑 ). Consequently, these spaces are used to measure the local time-frequency content of 
signals in terms of Lebesgue (quasi-)norms.

Differently from the framework of 𝐿𝑝 spaces, where the convolution is not even well-defined for 𝐿𝑝 functions with 0 < 𝑝 < 1, 
discrete convolution inequalities hold also in the quasi-Banach setting. These facts, together with Gabor theory, are used to prove 
the atomic decomposition of modulation spaces [18,16]. Namely, if (𝑔, Λ) is a Gabor frame, formula (2) holds with unconditional 
convergence in 𝑀𝑝,𝑞

𝑚 (ℝ𝑑 ) (0 < 𝑝, 𝑞 <∞) and with weak-∗ convergence in 𝑀∞
1∕𝑣(ℝ

𝑑 ) otherwise. Moreover,

‖𝑓‖𝑀𝑝,𝑞
𝑚

≍ ‖(𝑉𝑔𝑓 (𝜆1, 𝜆2))(𝜆1 ,𝜆2)∈Λ‖𝓁𝑝,𝑞𝑚 (Λ)

=
⎛⎜⎜⎝
∑
𝜆2

(∑
𝜆1

|𝑉𝑔𝑓 (𝜆1, 𝜆2)|𝑝𝑚(𝜆1, 𝜆2)𝑝)𝑞∕𝑝⎞⎟⎟⎠
1∕𝑞

.

In this paper we extend the characterization above to more general frames, including the Gabor ones. As well as Gabor frames 
arise as discretization of the reproducing formula for the STFT, we introduce frames that come from discretizations of a more general 
class of TF-representations, including the STFT. Namely, the latter representation, as well as the 𝜏-Wigner distributions (see Section 2.3

below), are examples of the so-called metaplectic Wigner distributions, introduced in [7] and studied in [8,5,17].

For a fixed metaplectic operator ̂ ∈𝑀𝑝(2𝑑, ℝ), the metaplectic Wigner distribution 𝑊 is defined by

𝑊(𝑓, 𝑔) = ̂(𝑓 ⊗ 𝑔̄), 𝑓 , 𝑔 ∈𝐿2(ℝ𝑑 ). (5)

We refer to Section 2.5 for the definition of metaplectic operators. If the pointwise evaluations 𝑊(𝑓, 𝑔)(𝑥, 𝜉), 𝑥, 𝜉 ∈ ℝ2𝑑 , are well 
defined, 𝑊(𝑓, 𝑔)(𝑥, ⋅) can also be used to represent the local frequency content of the signal 𝑓 at time 𝑥 differently and more 
suitably, according to the context. For this reason, it is important to establish whether a metaplectic Wigner distribution can be used 
to measure the local frequency content of signals or, stated differently, when

‖𝑓‖𝑀𝑝,𝑞
𝑚

≍ ‖𝑊(𝑓, 𝑔)‖𝐿𝑝,𝑞𝑚 . (6)

For any metaplectic Wigner distribution 𝑊 there exists a matrix 𝐸 ∈ℝ2𝑑×2𝑑 such that

|𝑊(𝜋(𝑤)𝑓, 𝑔)(𝑧)| = |𝑊(𝑓, 𝑔)(𝑧−𝐸𝑤)|, 𝑤 ∈ℝ2𝑑 ,

and 𝑊 is shift-invertible if 𝐸 ∈ 𝐺𝐿(2𝑑, ℝ). It was shown in [4] that if 𝑊 is shift-invertible and 𝐸 is upper-triangular, then (6)

holds for all 1 ≤ 𝑝, 𝑞 ≤∞. Nevertheless, the nature of shift-invertible Wigner distributions was still poorly-understood and no explicit 
characterization of them was provided.
2
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In the attempt to prove (6) for the quasi-Banach setting 0 < 𝑝, 𝑞 ≤ ∞, the question arises whether an equivalent of (4) can be 
proved for metaplectic Wigner distributions. Roughly speaking, Moyal’s identity:

⟨𝑊(𝑓, 𝑔),𝑊(𝜑, 𝛾)⟩ = ⟨𝑓,𝜑⟩⟨𝑔, 𝛾⟩, 𝑓 , 𝑔,𝜑, 𝛾 ∈𝐿2(ℝ𝑑 ),

implies that

⟨𝑓,𝜑⟩ = 1⟨𝛾, 𝑔⟩ ∫
ℝ2𝑑

𝑊(𝑓, 𝑔)(𝑧)𝑊(𝜑, 𝛾)(𝑧)𝑑𝑧. (7)

This suggests to define the metaplectic atoms 𝜋(𝑧), 𝑧 ∈ℝ𝑑 , implicitly on (ℝ𝑑 ) as the distributions characterized by:

⟨𝜑,𝜋(𝑧)𝛾⟩ =𝑊(𝜑, 𝛾)(𝑧), 𝜑 ∈ (ℝ𝑑 ),
so that (7) becomes the vector-valued integral:

𝑓 = 1⟨𝛾, 𝑔⟩ ∫
ℝ2𝑑

𝑊(𝑓, 𝑔)(𝑧)𝜋(𝑧)𝛾𝑑𝑧.

A metaplectic Gabor system of 𝐿2(ℝ𝑑 ) is defined as the family

(𝑔,Λ) = {𝜋(𝜆)𝑔}𝜆∈Λ,
with 𝑔 ∈ 𝐿2(ℝ𝑑 ) and Λ ⊂ ℝ2𝑑 a discrete set. If the family above is a frame, that is, it satisfies the inequalities in (1) with 𝜋(𝜆)𝑔 in 
place of 𝜋(𝜆)𝑔, we call it a metaplectic Gabor frame.

In this work, we develop the theory of metaplectic Gabor frames, showing that the related frame operator enjoys similar property 
to the Gabor one. In particular, in Theorem 6.4 below, under the shift-invertibility assumption of 𝑊 it is shown the equivalence of 
the following statements:

(i) (𝑔, Λ) is a metaplectic Gabor frame with bounds 𝐴, 𝐵;

(ii) (𝛿𝑔, 𝐸−1 Λ) is a Gabor frame with bounds | det(𝐸)|𝐴, | det(𝐸)|𝐵;

with 𝛿 being a suitable metaplectic operator called deformation operator, see Definition 4.5 in the sequel.

Special instances of metaplectic Gabor frames are the ℏ-Gabor frames introduced by M. de Gosson in [9], see Example 6.3 in 
Section 6. This result generalizes [9, Proposition 7] because in our case 𝐸 needs not to be symplectic.

Another outcome of this manuscript is given by the characterization of the shift-invertibility property of 𝑊. We prove that 𝑊 is 
shift-invertible if and only if 𝑊 is, roughly speaking, a STFT up to linear change of variables and products-by-chirps (Corollary 4.4

in Section 4):

𝑊 is shift-invertible if and only if, up to a sign, for any 𝑓, 𝑔 ∈𝐿2(ℝ𝑑 )

𝑊(𝑓, 𝑔)(𝑧) = |det(𝐸)|−1∕2Φ𝑁 (𝐸
−1 𝑧)𝑉𝛿𝑔𝑓 (𝐸

−1 𝑧), 𝑧 ∈ℝ2𝑑 ,

where Φ𝑁 (𝑡) = 𝑒
𝜋𝑖𝑡⋅𝑁𝑡, 𝑡 ∈ℝ𝑑 , with an appropriate matrix 𝑁.

This characterization shows that the property of measuring local time-frequency content of signals is basically a typical feature 
of the STFT.

As application, we complete the characterization of modulation and Wiener amalgam spaces started in [8,5,4], cf. Theorem 7.1

below. This result shows that, under the shift-invertibility assumption, the characterization in (6) holds for every 0 < 𝑝, 𝑞 ≤∞.

Outline. This work is divided as follows. We present preliminaries and notation in Section 2. Section 3 is devoted to metaplectic 
atoms, defined implicitly as in (7), and to an equivalent of inversion formula (4) for metaplectic Wigner distributions. In Section 4, 
we characterize shift-invertible Wigner distributions in terms of the STFT. We compute the metaplectic atoms of the distributions 
which belong to the Cohen’s class in Section 5. In Section 6 we define metaplectic Gabor frames, characterizing those related to 
shift-invertible distributions. In Section 7 we complete the characterization of modulation spaces and Wiener amalgams in terms 
of shift-invertibility. We devote the Appendix to the proof of an intertwining formula between metaplectic operators and complex 
conjugation, which is used to obtain the expression of the adjoint of metaplectic atoms in Section 3.

2. Preliminaries

Notation. We denote 𝑥𝑦 = 𝑥 ⋅ 𝑦 (scalar product on ℝ𝑑 ). The space (ℝ𝑑 ) is the Schwartz class, which is a Frechét space with 
seminorms

𝜌𝛼,𝛽 (𝑓 ) ∶= sup
𝑥∈ℝ𝑑

|𝑥𝛼𝐷𝛽𝑓 (𝑥)|, 𝛼, 𝛽 ∈ℕ𝑑 ,

whereas its dual  ′(ℝ𝑑 ) is the space of tempered distributions. The brackets ⟨𝑓, 𝑔⟩ denote the extension to  ′(ℝ𝑑 ) ×(ℝ𝑑 ) of the inner 
product ⟨𝑓, 𝑔⟩ = ∫ 𝑓 (𝑡)𝑔(𝑡)𝑑𝑡 on 𝐿2(ℝ𝑑 ) (conjugate-linear in the second component). We write a point in the phase space (or time-
3
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frequency space) as 𝑧 = (𝑥, 𝜉) ∈ℝ2𝑑 , and the corresponding phase-space shift (time-frequency shift) acts on a function or distribution 
as

𝜋(𝑧)𝑓 (𝑡) = 𝑒2𝜋𝑖𝜉⋅𝑡𝑓 (𝑡− 𝑥), 𝑡 ∈ℝ𝑑 . (8)

In the following, we will use the composition law of time-frequency shifts: for all 𝑧 = (𝑧1, 𝑧2), 𝑤 = (𝑤1, 𝑤2) ∈ℝ2𝑑 ,

𝜋(𝑧)𝜋(𝑤) = 𝑒−2𝜋𝑖𝑧1⋅𝑤2𝜋(𝑧+𝑤). (9)

Trivially 𝜋(0) = 𝑖𝑑𝐿2 and it is easy to verify that

𝜋(𝑧)−1 = 𝜋(𝑧)∗ = 𝑒−2𝜋𝑖𝑧1⋅𝑧2𝜋(−𝑧). (10)

Time-frequency shifts are isometries of 𝐿2(ℝ𝑑 ). If 𝑡 ∈ℝ𝑑 , the Dirac delta distribution 𝛿𝑡 ∈  ′(ℝ𝑑 ) is characterized by

⟨𝛿𝑡,𝜑⟩ ∶= 𝜑(𝑡) 𝜑 ∈ (ℝ𝑑 ).
The notation 𝑓 ≲ 𝑔 means that there exists 𝐶 > 0 such that 𝑓 (𝑥) ≤ 𝐶𝑔(𝑥) holds for all 𝑥. The symbol ≲𝑡 is used when we stress that 

𝐶 = 𝐶(𝑡). If 𝑔 ≲ 𝑓 ≲ 𝑔 or, equivalently, 𝑓 ≲ 𝑔 ≲ 𝑓 , we write 𝑓 ≍ 𝑔. For two measurable functions 𝑓, 𝑔 ∶ ℝ𝑑 → ℂ, we set 𝑓 ⊗ 𝑔(𝑥, 𝑦) ∶=
𝑓 (𝑥)𝑔(𝑦). If 𝑋, 𝑌 are vector spaces, 𝑋 ⊗ 𝑌 is the unique completion of span{𝑥 ⊗ 𝑦 ∶ 𝑥 ∈𝑋, 𝑦 ∈ 𝑌 }. If 𝑋(ℝ𝑑 ) = 𝐿2(ℝ𝑑 ) or (ℝ𝑑 ), the 
set span{𝑓 ⊗ 𝑔 ∶ 𝑓, 𝑔 ∈𝑋(ℝ𝑑 )} is dense in 𝑋(ℝ2𝑑 ). Thus, for all 𝑓, 𝑔 ∈  ′(ℝ𝑑 ), the operator 𝑓 ⊗ 𝑔 ∈  ′(ℝ2𝑑 ) is defined by its action on 
𝜑 ⊗𝜓 ∈ (ℝ2𝑑 ) by

⟨𝑓 ⊗ 𝑔,𝜑⊗𝜓⟩ = ⟨𝑓,𝜑⟩⟨𝑔,𝜓⟩
extends uniquely to a tempered distribution of  ′(ℝ2𝑑 ).

𝐺𝐿(𝑑, ℝ) denotes the group of 𝑑 × 𝑑 invertible matrices.

2.1. Weighted mixed norm spaces

We denote by 𝑣 a continuous, positive, even, submultiplicative weight function on ℝ2𝑑 , i.e., 𝑣(𝑧1 + 𝑧2) ≤ 𝑣(𝑧1)𝑣(𝑧2), for all 𝑧1, 𝑧2 ∈
ℝ2𝑑 . We say that 𝑤 ∈𝑣(ℝ2𝑑 ) if 𝑤 is a positive, continuous, even weight function on ℝ2𝑑 that is 𝑣-moderate: 𝑤(𝑧1 + 𝑧2) ≲ 𝑣(𝑧1)𝑤(𝑧2)
for all 𝑧1, 𝑧2 ∈ℝ2𝑑 . Fundamental examples are the polynomial weights

𝑣𝑠(𝑧) = (1 + |𝑧|)𝑠, 𝑠 ∈ℝ, 𝑧 ∈ℝ2𝑑 . (11)

Two weights 𝑚1, 𝑚2 are equivalent if 𝑚1 ≍𝑚2. For example, 𝑣𝑠(𝑧) ≍ (1 + |𝑧|2)𝑠∕2.
If 𝑚 ∈𝑣(ℝ2𝑑 ), 0 < 𝑝, 𝑞 ≤∞ and 𝑓 ∶ℝ2𝑑 →ℂ measurable, we set

‖𝑓‖𝐿𝑝,𝑞𝑚 ∶=
⎛⎜⎜⎜⎝∫ℝ𝑑

⎛⎜⎜⎝∫ℝ𝑑 |𝑓 (𝑥, 𝑦)|𝑝𝑚(𝑥, 𝑦)𝑝𝑑𝑥⎞⎟⎟⎠
𝑞∕𝑝

𝑑𝑦

⎞⎟⎟⎟⎠
1∕𝑞

= ‖𝑦↦ ‖𝑓 (⋅, 𝑦)𝑚(⋅, 𝑦)‖𝑝‖𝑞 ,
with the obvious adjustments when min{𝑝, 𝑞} =∞. The space of measurable functions 𝑓 having ‖𝑓‖𝐿𝑝,𝑞𝑚 <∞ is denoted by 𝐿𝑝,𝑞𝑚 (ℝ2𝑑 ). 
We recall the following partial generalization of the results in [15], which gathers the content of [4, Theorems A2 and A3]:

Proposition 2.1. (i) Consider 𝐴, 𝐷 ∈𝐺𝐿(𝑑, ℝ), 𝐵 ∈ℝ𝑑×𝑑 and 0 < 𝑝, 𝑞 ≤∞. Define the upper triangular matrix

𝑆 =
(

𝐴 𝐵
0𝑑×𝑑 𝐷

)
. (12)

The mapping 𝔗𝑆 ∶ 𝑓 ∈𝐿𝑝,𝑞(ℝ2𝑑 ) → | det(𝑆)|1∕2𝑓◦𝑆 is an isomorphism of 𝐿𝑝,𝑞(ℝ2𝑑 ) with bounded inverse 𝔗𝑆−1 .

(ii) Let 𝑚 ∈𝑣(ℝ2𝑑 ), 𝑆 ∈ 𝐺𝐿(2𝑑, ℝ) and 0 < 𝑝, 𝑞 ≤∞. Consider the operator (𝔗𝑆 )𝑚 ∶ 𝑓 ∈ 𝐿𝑝,𝑞𝑚 (ℝ2𝑑 ) ↦ | det(𝑆)|1∕2𝑓◦𝑆. If 𝑚◦𝑆 ≍ 𝑚, then 
𝔗𝑆 ∶𝐿𝑝,𝑞(ℝ2𝑑 ) →𝐿𝑝,𝑞(ℝ2𝑑 ) is bounded if and only if (𝔗𝑆 )𝑚 ∶𝐿𝑝,𝑞𝑚 (ℝ2𝑑 ) →𝐿𝑝,𝑞𝑚 (ℝ2𝑑 ) is bounded.

2.2. Fourier transform

In this work, the Fourier transform of 𝑓 ∈ (ℝ𝑑 ) is defined as

𝑓 (𝜉) = ∫
ℝ𝑑

𝑓 (𝑥)𝑒−2𝜋𝑖𝜉⋅𝑥𝑑𝑥, 𝜉 ∈ℝ𝑑 .

If 𝑓 ∈  ′(ℝ𝑑 ), the Fourier transform of 𝑓 is defined by duality as the tempered distribution characterized by

⟨𝑓, 𝜑̂⟩ = ⟨𝑓,𝜑⟩, 𝜑 ∈ (ℝ𝑑 ).
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We denote with 𝑓 ∶= 𝑓 the Fourier transform operator. It is a surjective automorphism of (ℝ𝑑 ) and  ′(ℝ𝑑 ), as well as a surjective 
isometry of 𝐿2(ℝ𝑑 ).

If 𝑓 ∈ (ℝ2𝑑 ), we set 2𝑓 (𝑥, 𝜂) ∶= ∫ℝ𝑑 𝑓 (𝑥, 𝑦)𝑒−2𝜋𝑖𝜂⋅𝑦𝑑𝑦, the partial Fourier transform with respect to the second variables, which 
is a surjective isomorphism of (ℝ2𝑑 ) to itself. This definition extends to 𝐿2(ℝ2𝑑 ) by density and to  ′(ℝ2𝑑 ) by duality. Namely, if 
𝑓 ∈  ′(ℝ2𝑑 ),

⟨2𝑓,𝜑⟩ = ⟨𝑓,−1
2 𝜑⟩, 𝜑 ∈ (ℝ2𝑑 ).

2.3. Time-frequency analysis tools

The short-time Fourier transform of 𝑓 ∈𝐿2(ℝ𝑑 ) with respect to the window 𝑔 ∈𝐿2(ℝ𝑑 ) is the time-frequency representation defined 
as

𝑉𝑔𝑓 (𝑥, 𝜉) = ∫
ℝ𝑑

𝑓 (𝑡)𝑔(𝑡− 𝑥)𝑒−2𝜋𝑖𝜉⋅𝑡𝑑𝑡, (𝑥, 𝜉) ∈ℝ2𝑑 .

This definition extends to (𝑓, 𝑔) ∈  ′(ℝ𝑑 ) × (ℝ𝑑 ) by antilinear duality as 𝑉𝑔𝑓 (𝑥, 𝜉) = ⟨𝑓, 𝜋(𝑥, 𝜉)𝑔⟩. The reproducing formula for the 
STFT reads as follows: for all 𝑔, 𝛾 ∈𝐿2(ℝ𝑑 ) such that ⟨𝑔, 𝛾⟩ ≠ 0,

𝑓 = 1⟨𝛾, 𝑔⟩ ∫
ℝ2𝑑

𝑉𝑔𝑓 (𝑥, 𝜉)𝜋(𝑥, 𝜉)𝛾𝑑𝑥𝑑𝜉, (13)

where the identity holds in 𝐿2(ℝ𝑑 ) as a vector-valued integral in the weak sense (see, e.g., [6, Subsection 1.2.4]).

In high-dimensional complex features information processing 𝜏-Wigner distributions (𝜏 ∈ ℝ) play a crucial role [26]. They are 
defined as

𝑊𝜏 (𝑓, 𝑔)(𝑥, 𝜉) = ∫
ℝ𝑑

𝑓 (𝑥+ 𝜏𝑡)𝑔(𝑥− (1 − 𝜏)𝑡)𝑒−2𝜋𝑖𝜉⋅𝑡𝑑𝑡, (𝑥, 𝜉) ∈ℝ𝑑 , (14)

for 𝑓, 𝑔 ∈𝐿2(ℝ𝑑 ). The cases 𝜏 = 0 and 𝜏 = 1 are the so-called (cross-)Rihacek distribution

𝑊0(𝑓, 𝑔)(𝑥, 𝜉) = 𝑓 (𝑥)𝑔̂(𝜉)𝑒−2𝜋𝑖𝜉⋅𝑥, (𝑥, 𝜉) ∈ℝ𝑑 , (15)

and (cross-)conjugate Rihacek distribution

𝑊1(𝑓, 𝑔)(𝑥, 𝜉) = 𝑓 (𝜉)𝑔(𝑥)𝑒2𝜋𝑖𝜉⋅𝑥, (𝑥, 𝜉) ∈ℝ𝑑 . (16)

2.4. Modulation spaces [3,12,13,18,16,22,24]

Fix 0 < 𝑝, 𝑞 ≤∞, 𝑚 ∈𝑣(ℝ2𝑑 ), and 𝑔 ∈ (ℝ𝑑 ) ⧵ {0}. The modulation space 𝑀𝑝,𝑞
𝑚 (ℝ𝑑 ) is classically defined as the space of tempered 

distributions 𝑓 ∈  ′(ℝ𝑑 ) such that

‖𝑓‖𝑀𝑝,𝑞
𝑚

∶= ‖𝑉𝑔𝑓‖𝐿𝑝,𝑞𝑚 <∞.

If min{𝑝, 𝑞} ≥ 1, the quantity ‖⋅‖𝑀𝑝,𝑞
𝑚

defines a norm, otherwise a quasi-norm. Different windows give rise to equivalent (quasi-)norms. 
Modulation spaces are (quasi-)Banach spaces and the following continuous inclusions hold:

if 0 < 𝑝1 ≤ 𝑝2 ≤∞, 0 < 𝑞1 ≤ 𝑞2 ≤∞ and 𝑚1, 𝑚2 ∈𝑣(ℝ2𝑑 ) satisfy 𝑚2 ≲ 𝑚1:

(ℝ𝑑 )↪𝑀
𝑝1 ,𝑞1
𝑚1

(ℝ𝑑 )↪𝑀
𝑝2 ,𝑞2
𝑚2

(ℝ𝑑 )↪  ′(ℝ𝑑 ).

In particular, 𝑀1
𝑣 (ℝ

𝑑 ) ↪𝑀𝑝,𝑞
𝑚 (ℝ𝑑 ) whenever 𝑚 ∈ 𝑣(ℝ2𝑑 ) and min{𝑝, 𝑞} ≥ 1. We denote with 𝑝,𝑞

𝑚 (ℝ𝑑 ) the closure of (ℝ𝑑 ) in 
𝑀𝑝,𝑞

𝑚 (ℝ𝑑 ), which coincides with the latter whenever 𝑝, 𝑞 <∞. Moreover, if 1 ≤ 𝑝, 𝑞 <∞, (𝑀𝑝,𝑞
𝑚 (ℝ𝑑 ))′ =𝑀𝑝′ ,𝑞′

1∕𝑚 (ℝ𝑑 ), where 𝑝′ and 𝑞′

denote the Lebesgue conjugate exponents of 𝑝 and 𝑞 respectively. Finally, if 𝑚1 ≍𝑚2, then 𝑀𝑝,𝑞
𝑚1

(ℝ𝑑 ) =𝑀𝑝,𝑞
𝑚2

(ℝ𝑑 ) for all 𝑝, 𝑞.

2.5. The symplectic group 𝑆𝑝(𝑑, ℝ) and the metaplectic operators

A matrix 𝑆 ∈ℝ2𝑑×2𝑑 is symplectic, we write 𝑆 ∈ 𝑆𝑝(𝑑, ℝ), if

𝑆𝑇 𝐽𝑆 = 𝐽 , (17)

where the matrix 𝐽 is defined as

𝐽 =
(

0𝑑×𝑑 𝐼𝑑×𝑑
−𝐼𝑑×𝑑 0𝑑×𝑑

)
. (18)

In this work, 𝐼𝑑×𝑑 ∈ℝ𝑑×𝑑 is the identity matrix and 0𝑑×𝑑 is the matrix of ℝ𝑑×𝑑 having all zero entries.
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We represent 𝑆 ∈ 𝑆𝑝(𝑑, ℝ) as a block matrix

𝑆 =
(
𝐴 𝐵
𝐶 𝐷

)
(19)

with 𝐴, 𝐵, 𝐶, 𝐷 ∈ℝ𝑑×𝑑 . It is straightforward to verify that 𝑆 ∈ℝ2𝑑×2𝑑 is symplectic if and only if the following conditions hold:

(𝑅1) 𝐴𝑇𝐶 = 𝐶𝑇𝐴,

(𝑅2) 𝐵𝑇𝐷 =𝐷𝑇𝐵,

(𝑅3) 𝐴𝑇𝐷 −𝐶𝑇𝐵 = 𝐼𝑑×𝑑 ,

and it can be proved that det(𝑆) = 1 and the inverse of 𝑆 is explicitly given in terms of the blocks of 𝑆 as

𝑆−1 =
(
𝐷𝑇 −𝐵𝑇
−𝐶𝑇 𝐴𝑇

)
. (20)

For 𝐸 ∈𝐺𝐿(𝑑, ℝ) and 𝐶 ∈ℝ𝑑×𝑑 , 𝐶 symmetric, we define

𝐸 ∶=
(
𝐸−1 0𝑑×𝑑
0𝑑×𝑑 𝐸𝑇

)
and 𝑉𝐶 ∶=

(
𝐼𝑑×𝑑 0
𝐶 𝐼𝑑×𝑑

)
. (21)

𝐽 and the matrices in the form 𝑉𝐶 (𝐶 symmetric) and 𝐸 (𝐸 invertible) generate the group 𝑆𝑝(𝑑, ℝ).

Let 𝜌 be the Schrödinger representation of the Heisenberg group, that is

𝜌(𝑥, 𝜉; 𝜏) = 𝑒2𝜋𝑖𝜏𝑒−𝜋𝑖𝜉⋅𝑥𝜋(𝑥, 𝜉),

for all 𝑥, 𝜉 ∈ℝ𝑑 , 𝜏 ∈ℝ. We will use the following tensor product property: for all 𝑓, 𝑔 ∈𝐿2(ℝ𝑑 ), 𝑧 = (𝑧1, 𝑧2), 𝑤 = (𝑤1, 𝑤2) ∈ℝ2𝑑 ,

𝜌(𝑧; 𝜏)𝑓 ⊗ 𝜌(𝑤; 𝜏)𝑔 = 𝑒2𝜋𝑖𝜏𝜌(𝑧1,𝑤1, 𝑧2,𝑤2; 𝜏)(𝑓 ⊗ 𝑔).

For all 𝑆 ∈ 𝑆𝑝(𝑑, ℝ), 𝜌𝑆 (𝑥, 𝜉; 𝜏) ∶= 𝜌(𝑆(𝑥, 𝜉); 𝜏) defines another representation of the Heisenberg group that is equivalent to 𝜌, i.e., 
there exists a unitary operator 𝑆̂ ∶𝐿2(ℝ𝑑 ) →𝐿2(ℝ𝑑 ) such that

𝑆̂𝜌(𝑥, 𝜉; 𝜏)𝑆̂−1 = 𝜌(𝑆(𝑥, 𝜉); 𝜏), 𝑥, 𝜉 ∈ℝ𝑑 , 𝜏 ∈ℝ. (22)

This operator is not unique, but if 𝑆̂′ is another unitary operator satisfying (22), then 𝑆̂′ = 𝑐𝑆̂, for some constant 𝑐 ∈ ℂ, |𝑐| = 1. 
The set {𝑆̂ ∶ 𝑆 ∈ 𝑆𝑝(𝑑, ℝ)} is a group under composition and it admits a subgroup that contains exactly two operators for each 
𝑆 ∈ 𝑆𝑝(𝑑, ℝ). This subgroup is called metaplectic group, denoted by 𝑀𝑝(𝑑, ℝ). It is a realization of the two-fold cover of 𝑆𝑝(𝑑, ℝ)
and the projection

𝜋𝑀𝑝 ∶𝑀𝑝(𝑑,ℝ)→ 𝑆𝑝(𝑑,ℝ) (23)

is a group homomorphism with kernel ker(𝜋𝑀𝑝) = {−𝑖𝑑𝐿2 , 𝑖𝑑𝐿2 }.

Throughout this work, if 𝑆̂ ∈𝑀𝑝(𝑑, ℝ), the matrix 𝑆 (without the caret) will always be the unique symplectic matrix such that 
𝜋𝑀𝑝(𝑆̂) = 𝑆.

Proposition 2.2. [14, Proposition 4.27] Every operator 𝑆̂ ∈𝑀𝑝(𝑑, ℝ) maps (ℝ𝑑 ) isomorphically to (ℝ𝑑 ) and it extends to an isomor-

phism on  ′(ℝ𝑑 ).

For 𝐶 ∈ℝ𝑑×𝑑 , define

Φ𝐶 (𝑡) = 𝑒𝜋𝑖𝑡⋅𝐶𝑡, 𝑡 ∈ℝ𝑑 . (24)

If we add the assumptions 𝐶 symmetric and invertible, then we can compute explicitly its Fourier transform, that is

Φ̂𝐶 = |det(𝐶)|Φ−𝐶−1 . (25)

Example 2.3. For certain 𝑆̂ ∈𝑀𝑝(𝑑, ℝ), the projection 𝑆 is known. Let 𝐽 , 𝐿 and 𝑉𝐶 be defined as in (18) and (21), respectively. 
Then,

(i) 𝜋𝑀𝑝( ) = 𝐽 ;

(ii) if 𝔗𝐸 ∶= | det(𝐸)|1∕2 𝑓 (𝐸⋅), then 𝜋𝑀𝑝(𝔗𝐸 ) =𝐸 ;

(iii) if 𝜙𝐶𝑓 =Φ𝐶𝑓 , then 𝜋𝑀𝑝(𝜙𝐶 ) = 𝑉𝐶 ;

(iv) if 𝜓𝐶 = Φ−𝐶−1, then 𝜋𝑀𝑝(𝜓𝐶 )𝑓 = 𝑉 𝑇 ;
𝐶

6



E. Cordero and G. Giacchi Applied and Computational Harmonic Analysis 68 (2024) 101594
(v) if 2 is the Fourier transform with respect to the second variables, then 𝜋𝑀𝑝(2) =𝐹𝑇 2, where 𝐹𝑇 2 ∈ 𝑆𝑝(2𝑑, ℝ) is the 4𝑑 × 4𝑑
matrix with block decomposition

𝐹𝑇 2 ∶=

⎛⎜⎜⎜⎜⎝
𝐼𝑑×𝑑 0𝑑×𝑑 0𝑑×𝑑 0𝑑×𝑑
0𝑑×𝑑 0𝑑×𝑑 0𝑑×𝑑 𝐼𝑑×𝑑
0𝑑×𝑑 0𝑑×𝑑 𝐼𝑑×𝑑 0𝑑×𝑑
0𝑑×𝑑 −𝐼𝑑×𝑑 0𝑑×𝑑 0𝑑×𝑑

⎞⎟⎟⎟⎟⎠
. (26)

2.6. Metaplectic Wigner distribution

Let ̂ ∈𝑀𝑝(2𝑑, ℝ). The metaplectic Wigner distributions associated to ̂ is defined for all 𝑓, 𝑔 ∈𝐿2(ℝ𝑑 ) as

𝑊(𝑓, 𝑔) = ̂(𝑓 ⊗ 𝑔̄).

All the time-frequency representations of Section 2.3 are metaplectic Wigner distributions. Namely, 𝑉𝑔𝑓 = 𝐴̂𝑆𝑇 (𝑓 ⊗ 𝑔̄) and 𝑊𝜏 (𝑓, 𝑔) =
𝐴̂𝜏 (𝑓 ⊗ 𝑔̄), where:

𝐴𝑆𝑇 =

⎛⎜⎜⎜⎜⎝
𝐼𝑑×𝑑 −𝐼𝑑×𝑑 0𝑑×𝑑 0𝑑×𝑑
0𝑑×𝑑 0𝑑×𝑑 𝐼𝑑×𝑑 𝐼𝑑×𝑑
0𝑑×𝑑 0𝑑×𝑑 0𝑑×𝑑 −𝐼𝑑×𝑑
−𝐼𝑑×𝑑 0𝑑×𝑑 0𝑑×𝑑 0𝑑×𝑑

⎞⎟⎟⎟⎟⎠
(27)

and

𝐴𝜏 =

⎛⎜⎜⎜⎜⎝
(1 − 𝜏)𝐼𝑑×𝑑 𝜏𝐼𝑑×𝑑 0𝑑×𝑑 0𝑑×𝑑

0𝑑×𝑑 0𝑑×𝑑 𝜏𝐼𝑑×𝑑 −(1 − 𝜏)𝐼𝑑×𝑑
0𝑑×𝑑 0𝑑×𝑑 𝐼𝑑×𝑑 𝐼𝑑×𝑑
−𝐼𝑑×𝑑 𝐼𝑑×𝑑 0𝑑×𝑑 0𝑑×𝑑

⎞⎟⎟⎟⎟⎠
. (28)

We recall the following continuity properties.

Proposition 2.4. Let 𝑊 be a metaplectic Wigner distribution. Then,

(i) 𝑊 ∶𝐿2(ℝ𝑑 ) ×𝐿2(ℝ𝑑 ) →𝐿2(ℝ2𝑑 ) is bounded;

(ii) 𝑊 ∶ (ℝ𝑑 ) × (ℝ𝑑 ) → (ℝ2𝑑 ) is bounded;

(iii) 𝑊 ∶  ′(ℝ𝑑 ) ×  ′(ℝ𝑑 ) →  ′(ℝ2𝑑 ) is bounded.

Moreover, since metaplectic operators are unitary, for all 𝑓1, 𝑓2, 𝑔1, 𝑔2 ∈𝐿2(ℝ𝑑 ),

⟨𝑊(𝑓1, 𝑓2),𝑊(𝑔1, 𝑔2)⟩ = ⟨𝑓1, 𝑔1⟩⟨𝑓2, 𝑔2⟩. (29)

The projection of a metaplectic operator ̂ ∈𝑀𝑝(2𝑑, ℝ) is a symplectic matrix  ∈ 𝑆𝑝(2𝑑, ℝ) with block decomposition

 =

⎛⎜⎜⎜⎜⎝
𝐴11 𝐴12 𝐴13 𝐴14
𝐴21 𝐴22 𝐴23 𝐴24
𝐴31 𝐴32 𝐴33 𝐴34
𝐴41 𝐴42 𝐴43 𝐴44

⎞⎟⎟⎟⎟⎠
. (30)

For a 4𝑑 × 4𝑑 symplectic matrix with block decomposition (30), relations (𝑅1) - (𝑅3) read as:

⎧⎪⎨⎪⎩
(𝑅1𝑎) 𝐴𝑇11𝐴31 +𝐴𝑇21𝐴41 =𝐴𝑇31𝐴11 +𝐴𝑇41𝐴21,

(𝑅1𝑏) 𝐴𝑇11𝐴32 +𝐴𝑇21𝐴42 =𝐴𝑇31𝐴12 +𝐴𝑇41𝐴22,

(𝑅1𝑐) 𝐴𝑇12𝐴32 +𝐴𝑇22𝐴42 =𝐴𝑇32𝐴12 +𝐴𝑇42𝐴22,⎧⎪⎨⎪⎩
(𝑅2𝑎) 𝐴𝑇13𝐴33 +𝐴𝑇23𝐴43 =𝐴𝑇33𝐴13 +𝐴𝑇43𝐴23,

(𝑅2𝑏) 𝐴𝑇13𝐴34 +𝐴𝑇23𝐴44 =𝐴𝑇33𝐴14 +𝐴𝑇43𝐴24,

(𝑅2𝑐) 𝐴𝑇14𝐴34 +𝐴𝑇24𝐴44 =𝐴𝑇34𝐴14 +𝐴𝑇44𝐴24,⎧⎪⎪⎨⎪⎪⎩

(𝑅3𝑎) 𝐴𝑇11𝐴33 +𝐴𝑇21𝐴43 − (𝐴𝑇31𝐴13 +𝐴𝑇41𝐴23) = 𝐼𝑑×𝑑 ,
(𝑅3𝑏) 𝐴𝑇11𝐴34 +𝐴𝑇21𝐴44 =𝐴𝑇31𝐴14 +𝐴𝑇41𝐴24,

(𝑅3𝑐) 𝐴𝑇12𝐴33 +𝐴𝑇22𝐴43 =𝐴𝑇32𝐴13 +𝐴𝑇42𝐴23,

(𝑅3𝑑) 𝐴𝑇12𝐴34 +𝐴𝑇22𝐴44 − (𝐴𝑇32𝐴14 +𝐴𝑇42𝐴24) = 𝐼𝑑×𝑑 .

We identify four 2𝑑 × 2𝑑 submatrices of 4𝑑 × 4𝑑 symplectic matrices. Namely, if  ∈ 𝑆𝑝(2𝑑, ℝ) has block decomposition (30), we set:
7
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𝐸 =
(
𝐴11 𝐴13
𝐴21 𝐴23

)
, 𝐹 =

(
𝐴31 𝐴33
𝐴41 𝐴43

)
, (31)

and

 =
(
𝐴12 𝐴14
𝐴22 𝐴24

)
,  =

(
𝐴32 𝐴34
𝐴42 𝐴44

)
. (32)

A simple comparison shows that relationships (𝑅1𝑎) − (𝑅3𝑑) read, in terms of these four submatrices, as

⎧⎪⎨⎪⎩
𝐸𝑇𝐹 − 𝐹𝑇𝐸 = 𝐽 ,
𝑇 −𝑇 = 𝐽 ,
𝐸𝑇 − 𝐹𝑇 = 0𝑑×𝑑 .

(33)

We will also consider

𝐵 =

(
𝐴13

1
2 𝐼𝑑×𝑑 −𝐴11

1
2 𝐼𝑑×𝑑 −𝐴

𝑇
11 −𝐴21

)
. (34)

Finally, the following matrices will appear ubiquitously throughout this work:

𝐿 =
(
0𝑑×𝑑 𝐼𝑑×𝑑
𝐼𝑑×𝑑 0𝑑×𝑑

)
𝑎𝑛𝑑 𝑃 =

(
0𝑑×𝑑 𝐼𝑑×𝑑
0𝑑×𝑑 0𝑑×𝑑

)
. (35)

Lemma 2.5. Let  ∈ 𝑆𝑝(2𝑑, ℝ) have block decomposition (30) and 𝐸, 𝐹, ,  be defined as in (31) and (32). Let 𝐿 be defined as in 
(35).

If 𝐸 ∈𝐺𝐿(2𝑑, ℝ), then,

(i)  =𝐸−𝑇 𝐹𝑇;

(ii) the matrix 𝐺 ∶=𝐿𝐸−1  is symplectic;

(iii)  ∈𝐺𝐿(2𝑑, ℝ) and det() = (−1)𝑑 det(𝐸).
If  ∈𝐺𝐿(2𝑑, ℝ), then,

(iv) 𝐹 = −𝑇 𝑇𝐸;

(v) the matrix 𝔊 =𝐿−1 𝐸 is symplectic;

(vi) 𝐸 ∈𝐺𝐿(2𝑑, ℝ) and det(𝐸) = (−1)𝑑 det().
In particular, 𝐸 is invertible if and only if  is invertible.

Proof. Relation (𝑖) follows directly from the third equation in (33), using the invertibility of 𝐸 .

Item (𝑖𝑖) is a consequence of (33) and (𝑖). For, observe that 𝐿𝐽𝐿 = −𝐽 , so that:

𝐺𝑇𝐽𝐺 = (𝐿𝐸−1 )𝑇 𝐽 (𝐿𝐸−1 ) = 𝑇𝐸−𝑇 (𝐿𝐽𝐿)𝐸−1 
= −𝑇𝐸−𝑇 𝐽𝐸−1  = 𝑇𝐸−𝑇 (𝐹𝑇𝐸 −𝐸𝑇𝐹)𝐸−1 
= 𝑇(𝐸−𝑇 𝐹𝑇 − 𝐹𝐸−1 ) = 𝑇(𝐸−𝑇 𝐹𝑇) − (𝑇𝐹𝐸−1 )
= 𝑇 −𝑇 = 𝐽 .

Finally, (𝑖𝑖𝑖) follows directly from (𝑖𝑖). Items (𝑖𝑣)-(𝑣𝑖) are proved analogously. □

3. Metaplectic atoms

We start by generalizing the definition of time-frequency shifts. Differently from the classical theory, where time-frequency shifts 
are defined in terms of translations and modulations, and then used to define the STFT, we define them implicitly from metaplectic 
Wigner distributions.

Definition 3.1. Let 𝑊 be a metaplectic Wigner distribution and 𝑧 ∈ℝ2𝑑 . The metaplectic atom 𝜋(𝑧) is the operator defined by 
its action on all 𝑓 ∈ (ℝ𝑑 ) as

⟨𝜑,𝜋(𝑧)𝑓 ⟩ ∶=𝑊(𝜑,𝑓 )(𝑧), 𝜑 ∈ (ℝ𝑑 ).
Observe that if 𝑓, 𝜑 ∈ (ℝ𝑑 ), 𝑊(𝜑, 𝑓 )(𝑧) is well-defined for all 𝑧 ∈ℝ2𝑑 , by Proposition 2.4.

Remark 3.2. Definition 3.1 says that metaplectic atoms play the game of time-frequency shifts for the STFT.

Metaplectic atoms map (ℝ𝑑 ) to  ′(ℝ𝑑 ), see Proposition 3.8 below. We put this detail aside and take it for granted in favor of 
some prior example.
8
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Example 3.3. The metaplectic atoms associated to the STFT are the time-frequency shifts. In fact, for all 𝑓, 𝜑 ∈ (ℝ𝑑 ) and all 𝑧 ∈ℝ2𝑑

⟨𝜑,𝜋𝐴𝑆𝑇 (𝑧)𝑓 ⟩ = 𝑉𝑓𝜑(𝑧) = ⟨𝜑,𝜋(𝑧)𝑓 ⟩.
This implies that 𝜋𝐴𝑆𝑇 (𝑧)𝑓 and 𝜋(𝑧)𝑓 are tempered distributions with the same action on (ℝ𝑑 ), i.e. 𝜋𝐴𝑆𝑇 (𝑧)𝑓 = 𝜋(𝑧)𝑓 .

Example 3.4. For ℏ > 0, consider the time-frequency representation defined for all 𝑓, 𝑔 ∈𝐿2(ℝ𝑑 ) by

𝑉 ℏ
𝑔 𝑓 (𝑥, 𝜉) = ⟨𝑓, (2𝜋ℏ)−𝑑∕2𝜋ℏ(𝑥, 𝜉)𝑔⟩, (𝑥, 𝜉) ∈ℝ2𝑑 ,

where 𝜋ℏ(𝑥, 𝜉)𝑔(𝑡) ∶= 𝑒𝑖(𝜉𝑡−𝑥⋅𝜉∕2)∕ℏ𝑔(𝑡 − 𝑥). These are essentially the time-frequency representations considered by M. de Gosson in [9]. 
For all ℏ > 0, up to a sign,

𝑉 ℏ
𝑔 𝑓 (𝑥, 𝜉) = (2𝜋ℏ)−𝑑∕2𝑒2𝜋𝑖

𝑥⋅𝜉
4𝜋ℏ 𝑉𝑔𝑓

(
𝑥,

𝜉

2𝜋ℏ

)
, (𝑥, 𝜉) ∈ℝ𝑑 , 𝑓 , 𝑔 ∈𝐿2(ℝ𝑑 ),

so that 𝑉 ℏ
𝑔 𝑓 =𝑊ℏ

(𝑓, 𝑔), where

ℏ =

⎛⎜⎜⎜⎜⎝
𝐼𝑑×𝑑 −𝐼𝑑×𝑑 0𝑑×𝑑 0𝑑×𝑑
0𝑑×𝑑 0𝑑×𝑑 2𝜋ℏ𝐼𝑑×𝑑 2𝜋ℏ𝐼𝑑×𝑑
0𝑑×𝑑 0𝑑×𝑑

1
2 𝐼𝑑×𝑑 −1

2 𝐼𝑑×𝑑
− 1

4𝜋ℏ 𝐼𝑑×𝑑 − 1
4𝜋ℏ 𝐼𝑑×𝑑 0𝑑×𝑑 0𝑑×𝑑

⎞⎟⎟⎟⎟⎠
. (36)

In this case, we observe that

𝐸ℏ
=
(
𝐼𝑑×𝑑 0𝑑×𝑑
0𝑑×𝑑 2𝜋ℏ𝐼𝑑×𝑑

)
. (37)

The metaplectic atoms associated to 𝑉 ℏ are

𝜋ℏ
(𝑥, 𝜉)𝑔 = (2𝜋ℏ)−𝑑∕2𝑒−𝑖

𝑥⋅𝜉
2ℏ 𝜋

(
𝑥,

𝜉

2𝜋ℏ

)
𝑔 = |det(𝐸ℏ

)|−1∕2𝑒−𝑖 𝑥⋅𝜉ℏ 𝜋(𝐸−1ℏ
(𝑥, 𝜉))𝑔,

(𝑥, 𝜉) ∈ℝ2𝑑 , 𝑔 ∈ (ℝ𝑑 ).

Example 3.5. We compute the metaplectic atoms associated to the 𝜏-Wigner distribution 𝑊𝜏 (0 < 𝜏 < 1). For, let 𝑧 = (𝑥, 𝜉) ∈ℝ2𝑑 and 
𝑓, 𝜑 ∈ (ℝ𝑑 ). Then,

𝑊𝜏 (𝜑,𝑓 )(𝑥, 𝜉) = ∫
ℝ𝑑

𝜑(𝑥+ 𝜏𝑡)𝑓 (𝑥− (1 − 𝜏)𝑡)𝑒−2𝜋𝑖𝜉⋅𝑡𝑑𝑡

= 1
𝜏𝑑 ∫

ℝ𝑑

𝜑(𝑠)𝑓
(
𝑥− (1 − 𝜏)

( 𝑠− 𝑥
𝜏

))
𝑒−2𝜋𝑖𝜉⋅(

𝑠−𝑥
𝜏

)𝑑𝑠

= ∫
ℝ𝑑

𝜑(𝑠)𝑓
( 1
𝜏
𝑥− 1 − 𝜏

𝜏
𝑠
)
𝑒−2𝜋𝑖𝜉⋅

𝑠
𝜏 𝑒2𝜋𝑖𝜉⋅

𝑥
𝜏
𝑑𝑠
𝜏𝑑

= ⟨𝜑,𝜋𝐴𝜏 (𝑥, 𝜉)𝑓 ⟩,
where, if 𝔗𝜏𝑓 (𝑡) =

(1−𝜏)𝑑∕2
𝜏𝑑∕2

𝑓
(
−1−𝜏

𝜏
𝑡
)

,

𝜋𝐴𝜏 (𝑥, 𝜉)𝑓 (𝑡) =
1
𝜏𝑑
𝑒−2𝜋𝑖

𝜉⋅𝑥
𝜏 𝑒2𝜋𝑖𝑡⋅

𝜉
𝜏 𝑓

((
−1 − 𝜏

𝜏

)(
𝑡− 1

1 − 𝜏
𝑥
))

= 1
𝜏𝑑∕2(1 − 𝜏)𝑑∕2

𝑒−2𝜋𝑖
𝑥⋅𝜉
𝜏 𝑀 𝜉

𝜏
𝑇 𝑥

1−𝜏
𝔗𝜏𝑓 (𝑡).

Observe that 1
𝜏𝑑∕2|𝜏−1|𝑑∕2 = | det(𝐸𝐴𝜏 )|−1∕2, so

𝜋𝐴𝜏 (𝑥, 𝜉)𝑓 = |det(𝐸𝐴𝜏 )|−1∕2𝑒−2𝜋𝑖 𝑥⋅𝜉𝜏 𝜋( 1
1 − 𝜏

𝑥,
1
𝜏
𝜉
)
𝔗𝜏𝑓

= |det(𝐸𝐴𝜏 )|−1∕2𝑒−2𝜋𝑖 𝑥⋅𝜉𝜏 𝜋(𝐸−1
𝐴𝜏

(𝑥, 𝜉))𝔗𝜏𝑓 .

Example 3.6. Consider the (cross)-Rihacek distribution 𝑊0 , defined for all 𝑓, 𝑔 ∈𝐿2(ℝ𝑑 ) as

𝑊0(𝑓, 𝑔)(𝑥, 𝜉) = 𝑓 (𝑥)𝑔̂(𝜉)𝑒−2𝜋𝑖𝜉⋅𝑥, (𝑥, 𝜉) ∈ℝ2𝑑 .

Then, if 𝑧 = (𝑥, 𝜉) ∈ℝ2𝑑 , 𝑓, 𝑔 ∈ (ℝ𝑑 ),

9
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⟨𝜑,𝜋𝐴0
(𝑧)𝑓 ⟩ = 𝜑(𝑥)𝑓 (𝜉)𝑒−2𝜋𝑖𝜉⋅𝑥 = ⟨𝜑,𝑓 (𝜉)𝑒2𝜋𝑖𝜉⋅𝑥𝑇𝑥𝛿0⟩. (38)

Observe that 𝜋𝐴0
(𝑥, 𝜉)𝑓 = 𝑓 (𝜉)𝑒2𝜋𝑖𝜉⋅𝑥𝑇𝑥𝛿0 is a tempered distribution that does not define a function.

Example 3.7. Let 𝑆̂ ∈ 𝑆𝑝(𝑑, ℝ) with 𝑆 = 𝜋𝑀𝑝(𝑆̂) having block decomposition

𝑆 =
(
𝐴 𝐵
𝐶 𝐷

)
(39)

and consider the metaplectic Wigner distribution defined in [4, Example 4.1 (ii)] as

̃𝑔𝑓 (𝑧) = 𝑉𝑔(𝑆̂𝑓 )(𝑧) =𝑊(𝑓, 𝑔)(𝑧) = ⟨𝑓, 𝑆̂−1𝜋(𝑧)𝑔⟩ = ⟨𝑓,𝜋(𝑆−1𝑧)𝑆̂−1𝑔⟩,
𝑓 , 𝑔 ∈𝐿2(ℝ𝑑 ), 𝑥, 𝜉 ∈ℝ𝑑 , where

 =

⎛⎜⎜⎜⎜⎝
𝐴 −𝐼𝑑×𝑑 𝐵 0𝑑×𝑑
𝐶 0𝑑×𝑑 𝐷 𝐼𝑑×𝑑

0𝑑×𝑑 0𝑑×𝑑 0𝑑×𝑑 −𝐼𝑑×𝑑
−𝐴 0𝑑×𝑑 −𝐵 0𝑑×𝑑

⎞⎟⎟⎟⎟⎠
.

Clearly, 𝐸 = 𝑆 and 𝜋(𝑧)𝑔 = 𝜋(𝑆−1𝑧)𝑆̂−1𝑔 for all 𝑧 ∈ℝ2𝑑 .

As aforementioned, in the previous examples we took on trust that metaplectic atoms map (ℝ𝑑 ) to  ′(ℝ𝑑 ). This technicality, 
along with the linearity of metaplecitc atoms, is proved in the proposition that follows. Nevertheless, Example 3.6 shows that in 
general 𝜋(𝑧)𝑓 , 𝑓 ∈ (ℝ𝑑 ), is a tempered distribution that is not induced by any locally integrable function.

Proposition 3.8. Let 𝑊 be a metaplectic Wigner distribution. For all 𝑧 ∈ℝ2𝑑 , 𝜋(𝑧) is a well-defined linear operator that maps (ℝ𝑑 ) to 
 ′(ℝ𝑑 ).

Proof. Let 𝑓 ∈ (ℝ𝑑 ). By definition, for any 𝜑, 𝜓 ∈ (ℝ𝑑 ) and 𝛼 ∈ℂ,

⟨𝛼𝜑+𝜓,𝜋(𝑧)𝑓 ⟩ =𝑊(𝛼𝜑+𝜓,𝑓 )(𝑧) = ̂((𝛼𝜑+𝜓)⊗𝑓 )(𝑧)

= ̂(𝛼𝜑⊗ 𝑓 +𝜓 ⊗𝑓 )(𝑧) = 𝛼̂(𝜑⊗𝑓 )(𝑧) + ̂(𝜓 ⊗𝑓 )(𝑧)

= 𝛼𝑊(𝜑,𝑓 )(𝑧) +𝑊(𝜓,𝑓 )(𝑧) = 𝛼⟨𝜑,𝜋(𝑧)𝑓 ⟩+ ⟨𝜓,𝜋(𝑧)𝑓 ⟩.
Then, we need to prove that 𝜋(𝑧)𝑓 ∶ 𝜑 ∈ (ℝ𝑑 ) ↦ ⟨𝜑, 𝜋(𝑧)𝑓 ⟩ ∈ ℂ is continuous. Using the boundedness of 𝑊 ∶ (ℝ𝑑 ) × (ℝ𝑑 ) →
(ℝ2𝑑 ),

|⟨𝜑,𝜋(𝑧)𝑓 ⟩| = |𝑊(𝜑,𝑓 )(𝑧)| ≤ ‖𝑊(𝜑,𝑓 )‖𝐿∞(ℝ2𝑑 ) = 𝜌0,0(𝑊(𝜑,𝑓 ))

≤ 𝐶
𝑁∑
𝑗=1

𝜌𝛼𝑗 ,𝛽𝑗 (𝜑)
𝑀∑
𝑗=1

𝜌𝛾𝑗 𝛿𝑗 (𝑓 ) = 𝐶̃
𝑁∑
𝑗=1

𝜌𝛼𝑗 ,𝛽𝑗 (𝜑).

Thus, it remains to check the linearity of 𝜋(𝑧). For, let 𝛼 ∈ℂ, 𝑓, 𝑔 ∈ (ℝ𝑑 ). For every 𝜑 ∈ (ℝ𝑑 ),
⟨𝜑,𝜋(𝑧)(𝛼𝑓 + 𝑔)⟩ =𝑊(𝜑,𝛼𝑓 + 𝑔)(𝑧) = ̂(𝜑⊗ (𝛼𝑓 + 𝑔))(𝑧)

= 𝛼̄̂(𝜑⊗𝑓 )(𝑧) + ̂(𝜑⊗ 𝑔̄)(𝑧)

= 𝛼̄𝑊(𝜑,𝑓 )(𝑧) +𝑊(𝜑,𝑔)(𝑧)
= 𝛼̄⟨𝜑,𝜋(𝑧)𝑓 ⟩+ ⟨𝜑,𝜋(𝑧)𝑔⟩
= ⟨𝜑,𝛼𝜋(𝑧)𝑓 + 𝜋(𝑧)𝑔⟩.

This concludes the proof. □

The first question that we address is the validity of an equivalent of the inversion formula (13) for metaplectic Wigner distribu-

tions.

Theorem 3.9. Let 𝑊 be a metaplectic Wigner distribution and 𝑓, 𝑔 ∈𝐿2(ℝ𝑑 ). If 𝛾 ∈ (ℝ𝑑 ) satisfies ⟨𝛾, 𝑔⟩ ≠ 0, then

𝑓 = 1⟨𝛾, 𝑔⟩ ∫
ℝ2𝑑

𝑊(𝑓, 𝑔)(𝑧)𝜋(𝑧)𝛾𝑑𝑧 (40)

where the integral must be interpreted in the weak sense of vector-valued integration.
10
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Proof. We use the definition of vector-valued integral. For 𝜑 ∈ 𝐿2(ℝ𝑑 ), using (29),

⟨ 1⟨𝛾, 𝑔⟩ ∫
ℝ2𝑑

𝑊(𝑓, 𝑔)(𝑧)𝜋(𝑧)𝛾𝑑𝑧,𝜑⟩ = 1⟨𝛾, 𝑔⟩ ∫
ℝ2𝑑

𝑊(𝑓, 𝑔)(𝑧)⟨𝜋(𝑧)𝛾,𝜑⟩𝑑𝑧
= 1⟨𝛾, 𝑔⟩ ∫

ℝ2𝑑

𝑊(𝑓, 𝑔)(𝑧)𝑊(𝜑, 𝛾)(𝑧)𝑑𝑧 = 1⟨𝛾, 𝑔⟩ ⟨𝑊(𝑓, 𝑔),𝑊(𝜑, 𝛾)⟩
= 1⟨𝛾, 𝑔⟩ ⟨𝑓,𝜑⟩⟨𝑔, 𝛾⟩ = ⟨𝑓,𝜑⟩.

This shows (40). □

In what follows, we use the definitions of the submatrices 𝐸, 𝐹,  and  given in (31) and (32).

Lemma 3.10. Let 𝑊 be a metaplectic Wigner distribution. Then, for 𝑧 ∈ℝ2𝑑 , 𝑓, 𝑔 ∈𝐿2(ℝ𝑑 ), we have

𝑊(𝜋(𝑧)𝑓, 𝑔) = Φ−𝑀 (𝑧)𝜋(𝐸𝑧,𝐹𝑧)𝑊(𝑓, 𝑔),
where, if  = 𝜋𝑀𝑝(̂) has block decomposition (30), 𝑀 is the symmetric matrix

𝑀 =

(
𝐴𝑇11𝐴31 +𝐴𝑇21𝐴41 𝐴𝑇31𝐴13 +𝐴𝑇41𝐴23

𝐴𝑇13𝐴31 +𝐴𝑇23𝐴41 𝐴𝑇13𝐴33 +𝐴𝑇23𝐴43

)
. (41)

Proof. We use formula (41) in [4]. By definition of metaplectic operator, for all 𝜏 ∈ℝ, 𝑧 = (𝑥, 𝜉) ∈ℝ2𝑑 ,

̂(𝜌(𝑧; 𝜏)𝑓 ⊗ 𝑔̄) = ̂(𝜌(𝑥,0, 𝜉,0; 𝜏)𝑓 ⊗ 𝑔̄)

= 𝜌((𝑥,0, 𝜉,0); 𝜏)̂(𝑓 ⊗ 𝑔̄)

= 𝜌(𝐸𝑧,𝐹𝑧; 𝜏)𝑊(𝑓, 𝑔).
The assertion follows using that 𝜋(𝑥, 𝜉) = 𝑒𝑖𝜋𝑥⋅𝜉𝜌(𝑥, 𝜉; 0):

𝑊(𝜋(𝑥, 𝜉)𝑓, 𝑔) =𝑊(𝑒𝑖𝜋𝑥⋅𝜉𝜌(𝑥, 𝜉; 0)𝑓, 𝑔)
= 𝑒𝑖𝜋𝑥⋅𝜉𝜌(𝐸(𝑥, 𝜉), 𝐹(𝑥, 𝜉); 0)𝑊(𝑓, 𝑔)
= 𝑒𝑖𝜋𝑥⋅𝜉𝑒−𝑖𝜋𝐸

𝑇𝐹(𝑥,𝜉)⋅(𝑥,𝜉)𝜋(𝐸(𝑥, 𝜉), 𝐹(𝑥, 𝜉))𝑊(𝑓, 𝑔).
Using the definitions of 𝐸 and 𝐹, as well as the matrix 𝐿 in (35), so that we rewrite the scalar product as

𝑥 ⋅ 𝜉 =𝐿(𝑥, 𝜉) ⋅ (𝑥, 𝜉),

we infer

𝑒𝑖𝜋𝑥⋅𝜉𝑒−𝑖𝜋𝐸
𝑇𝐹(𝑥,𝜉)⋅(𝑥,𝜉) = 𝑒−𝑖𝜋𝑀(𝑥,𝜉)⋅(𝑥,𝜉),

where

𝑀 =

(
𝐴𝑇11𝐴31 +𝐴𝑇21𝐴41 𝐴𝑇11𝐴33 +𝐴𝑇21𝐴43 − 𝐼𝑑×𝑑
𝐴𝑇13𝐴31 +𝐴𝑇23𝐴41 𝐴𝑇13𝐴33 +𝐴𝑇23𝐴43

)
.

The relations (𝑅1𝑎), (𝑅2𝑎) and (𝑅3𝑎) imply that 𝑀 is symmetric and it can be written as in (41). □

Remark 3.11. We stress that (41) introduces a new matrix associated to 𝑊. Throughout this work, if 𝐸 and 𝐹 are defined as in 
(31), whereas 𝑃 is the matrix given in (35), 𝑀 denotes the symmetric 2𝑑 × 2𝑑 matrix defined as 𝑀 =𝐸𝑇𝐹 − 𝑃 .

Theorem 3.12. Let ̂ ∈𝑀𝑝(2𝑑, ℝ),  = 𝜋𝑀𝑝(̂) and 𝑊 be the associated metaplectic Wigner distribution. Consider the matrix ∗ ∈
𝑆𝑝(2𝑑, ℝ) defined in (76) below. Then, for every 𝑧 ∈ℝ2𝑑 ,

⟨𝜋(𝑧)𝑓, 𝑔⟩ = ⟨𝑓,𝜋∗
(𝑧)𝑔⟩, ∀𝑓, 𝑔 ∈ (ℝ𝑑 ).

In particular, if 𝜋(𝑧) extends to a bounded operator on 𝐿2(ℝ𝑑 ), then

𝜋(𝑧)∗ = 𝜋 (𝑧), 𝑧 ∈ℝ2𝑑 . (42)

∗

11
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Proof. It is an immediate consequence of Corollary A.3 below. In fact, for all 𝑓, 𝑔 ∈ (ℝ𝑑 ),
⟨𝜋(𝑧)𝑓, 𝑔⟩ =𝑊(𝑔,𝑓 )(𝑧) =𝑊∗

(𝑓, 𝑔)(𝑧) = ⟨𝜋∗
(𝑧)𝑔,𝑓 ⟩ = ⟨𝑓,𝜋∗

(𝑧)𝑔⟩. □

4. Shift-invertibility unmasked

Among all metaplectic Wigner distributions, shift-invertible Wigner distributions are known to play a fundamental role in time-

frequency analysis. It was proved in [8,4] that they can be used to replace the STFT in the definition of modulation spaces 𝑀𝑝,𝑞
𝑚 (ℝ𝑑 ), 

for 1 ≤ 𝑝, 𝑞 ≤ ∞ and 𝑚 ∈ 𝑣(ℝ2𝑑 ) satisfying some inoffensive symmetry condition. In [4] it is observed that shift-invertibility is 
necessary for this characterization to hold, otherwise not even the 𝑀𝑝(ℝ𝑑 ) spaces can be defined in terms of shift-invertible Wigner 
distributions. In this section, we investigate the properties of metaplectic atoms related to shift-invertible metaplectic Wigner distri-

butions and characterize them in terms of the matrices 𝐸, 𝐹, ,  and 𝑀 defined in (31), (32) and (41), respectively.

Take any metaplectic Wigner distribution 𝑊, and 𝑧, 𝑤 ∈ℝ2𝑑 . Then Lemma 3.10 entails the equality

𝑊(𝜋(𝑤)𝑓, 𝑔)(𝑧) = Φ−𝑀 (𝑤)𝜋(𝐸𝑤,𝐹𝑤)𝑊(𝑓, 𝑔)(𝑧), 𝑓 , 𝑔 ∈𝐿2(ℝ2𝑑 ),

so that |𝑊(𝜋(𝑤)𝑓, 𝑔)(𝑧)| = |𝑊(𝑓, 𝑔)(𝑧 −𝐸𝑤)|.
Definition 4.1. A metaplectic Wigner distribution 𝑊 is shift-invertible if 𝐸 ∈𝐺𝐿(2𝑑, ℝ).

We shall need the following lifting-type result, proved in [4, Theorem B1]:

Lemma 4.2. Let 𝑆̂1, 𝑆̂2 ∈𝑀𝑝(𝑑, ℝ) have block decompositions

𝑆𝑗 =
(
𝐴𝑗 𝐵𝑗
𝐶𝑗 𝐷𝑗

)
(𝑗 = 1, 2). Then, the bilinear operator

𝑇 (𝑓, 𝑔) = 𝑆̂1𝑓 ⊗ 𝑆̂2𝑔

extends to a metaplectic operator 𝑆̂ ∈𝑀𝑝(2𝑑, ℝ), where

𝑆 =

⎛⎜⎜⎜⎜⎝
𝐴1 0𝑑×𝑑 𝐵1 0𝑑×𝑑
0𝑑×𝑑 𝐴2 0𝑑×𝑑 𝐵2
𝐶1 0𝑑×𝑑 𝐷1 0𝑑×𝑑
0𝑑×𝑑 𝐶2 0𝑑×𝑑 𝐷2

⎞⎟⎟⎟⎟⎠
. (43)

If 𝑆̂ ∈𝑀𝑝(𝑑, ℝ) and 𝑇̂ (𝑓 ⊗ 𝑔) = 𝑓 ⊗ 𝑆̂𝑔, we set

Lift(𝑆) = 𝜋𝑀𝑝(𝑇̂ ) ∈ 𝑆𝑝(2𝑑,ℝ), (44)

the corresponding matrix in (43).

Theorem 4.3. Let 𝑊 be a shift-invertible metaplectic Wigner distribution and 𝐺 = 𝐿𝐸−1  be the matrix of Lemma 2.5, with 𝐿 as in 
(35). Then,

 =𝐸−1 𝑉𝑀𝑉
𝑇
𝐿 Lif t(𝐺),

where Lif t(𝐺) is defined in (44).

Proof. We use the matrix

 ∶=

⎛⎜⎜⎜⎜⎝
𝐼𝑑×𝑑 0𝑑×𝑑 0𝑑×𝑑 0𝑑×𝑑
0𝑑×𝑑 0𝑑×𝑑 𝐼𝑑×𝑑 0𝑑×𝑑
0𝑑×𝑑 𝐼𝑑×𝑑 0𝑑×𝑑 0𝑑×𝑑
0𝑑×𝑑 0𝑑×𝑑 0𝑑×𝑑 𝐼𝑑×𝑑

⎞⎟⎟⎟⎟⎠
,

that permutes the central columns of 4𝑑 × 4𝑑 matrices. This yields the following block decomposition of :

 =
(
𝐸 
𝐹 

)
.

Since 𝐸 ∈𝐺𝐿(2𝑑, ℝ), we can write
12
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 =
(

𝐸 02𝑑×2𝑑
02𝑑×2𝑑 𝐸−𝑇

)(
𝐼2𝑑×2𝑑 𝐸−1 
𝐸𝑇𝐹 𝐸𝑇

)
 =𝐸−1

(
𝐼2𝑑×2𝑑 𝐸−1 
𝐸𝑇𝐹 𝐸𝑇

)
.

We proved in Lemma 3.10 that the matrix 𝑀 =𝐸𝑇𝐹−𝑃 is symmetric, where 𝑃 is defined as in (35). Therefore, 𝑉𝑀 is a symplectic 
matrix and we have:

 =𝐸−1

(
𝐼2𝑑×2𝑑 02𝑑×2𝑑
𝑀 𝐼2𝑑×2𝑑

)(
𝐼2𝑑×2𝑑 𝐸−1 
𝑃 𝐸𝑇 −𝑀𝐸−1 

)


=𝐸−1 𝑉𝑀

(
𝐼2𝑑×2𝑑 𝐸−1 
𝑃 𝐸𝑇 −𝑀𝐸−1 

)


⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶′

.

The matrix ′ is symplectic, since ′ = 𝑉−𝑀𝐸 is the product of symplectic matrices. Getting rid of , we obtain

′ =

⎛⎜⎜⎜⎜⎝
𝐼𝑑×𝑑 𝐴′

12 0𝑑×𝑑 𝐴′
14

0𝑑×𝑑 𝐴′
22 𝐼𝑑×𝑑 𝐴′

24
0𝑑×𝑑 𝐴′

32 𝐼𝑑×𝑑 𝐴′
34

0𝑑×𝑑 𝐴′
42 0𝑑×𝑑 𝐴′

44

⎞⎟⎟⎟⎟⎠
,

for suitable matrices 𝐴′
𝑖𝑗 , 𝑖 = 1, 2, 3, 4, 𝑗 = 2, 4. Observe that

𝐸−1  =
(
𝐴′
12 𝐴′

14
𝐴′
22 𝐴′

24

)
.

The symplectic relations (𝑅1𝑏), (𝑅1𝑐), (𝑅2𝑏), (𝑅2𝑐), (𝑅3𝑏), (𝑅3𝑐) and (𝑅3𝑑) for ′ ∈ 𝑆𝑝(2𝑑, ℝ) read respectively as

(𝑆1) 𝐴′
32 = 0𝑑×𝑑 ,

(𝑆2) 𝐴′
12
𝑇 𝐴′

32 +𝐴
′
22
𝑇 𝐴′

42 =𝐴
′
32
𝑇 𝐴′

12 +𝐴
′
42
𝑇 𝐴′

22,

(𝑆3) 𝐴′
44,=𝐴

′
14,

(𝑆4) 𝐴′
14
𝑇 𝐴′

34 +𝐴
′
24
𝑇 𝐴44 =𝐴′

34
𝑇 𝐴14 +𝐴′

44
𝑇 𝐴24

(𝑆5) 𝐴′
34 = 0𝑑×𝑑 ,

(𝑆6) 𝐴′
12 =𝐴

′
42

(𝑆7) 𝐴′
12
𝑇 𝐴′

34 +𝐴
′
22
𝑇 𝐴′

44 − (𝐴′
32
𝑇 𝐴′

14 +𝐴
′
42
𝑇 𝐴24) = 𝐼𝑑×𝑑 .

The others being trivially satisfied. This yields:

′ =

⎛⎜⎜⎜⎜⎝
𝐼𝑑×𝑑 𝐴′

12 0𝑑×𝑑 𝐴′
14

0𝑑×𝑑 𝐴′
22 𝐼𝑑×𝑑 𝐴′

24
0𝑑×𝑑 0𝑑×𝑑 𝐼𝑑×𝑑 0𝑑×𝑑
0𝑑×𝑑 𝐴′

12 0𝑑×𝑑 𝐴′
14

⎞⎟⎟⎟⎟⎠
.

Observe that(
𝐴′
22 𝐴′

24
𝐴′
12 𝐴′

14

)
=𝐿𝐸−1  =𝐺, (45)

which is symplectic by Lemma 2.5. A simple computation shows that ′ = 𝑉 𝑇
𝐿
Lif t(𝐺), as desired. □

The characterization of shift-invertible Wigner distributions is straightforward.

Corollary 4.4. Let 𝑊 be a metaplectic Wigner distribution. Then, 𝑊 is shift-invertible if and only if, up to a sign,

𝑊(𝑓, 𝑔) =𝔗𝐸−1 Φ𝑀+𝐿𝑉𝛿𝑔𝑓 , 𝑓 , 𝑔 ∈𝐿2(ℝ𝑑 ), (46)

where

𝛿𝑔 ∶=  ̂
𝐺𝑔, (47)

and ̂𝐺 is the metaplectic operator defined in Proposition A.2 below. In particular, if 𝑊 is shift-invertible then, up to a sign,

𝜋(𝑧) = |det(𝐸)|−1∕2Φ−𝑀−𝐿(𝐸−1 𝑧)𝜋(𝐸−1 𝑧)𝛿, 𝑧 ∈ℝ2𝑑 , (48)

and
13
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(i) 𝜋(𝑧) is a surjective quasi-isometry of 𝐿2(ℝ𝑑 ) with

‖𝜋(𝑧)𝑓‖2 = |det(𝐸)|−1∕2‖𝑓‖2, 𝑓 ∈𝐿2(ℝ𝑑 );

(ii) 𝜋(𝑧) is a topological isomorphism on (ℝ𝑑 );
(iii) 𝜋(𝑧) is a topological isomorphism on  ′(ℝ𝑑 ).

Proof. By Theorem 4.3,  is shift-invertible if and only if

 =𝐸−1 𝑉𝑀𝑉
𝑇
𝐿 Lif t(𝐺).

Let 𝐴𝑆𝑇 be the symplectic matrix associated to the STFT, cf. (27). Observe that

𝐴𝑆𝑇 = 𝑉−𝐿𝑉 𝑇
𝐿 𝐹𝑇 2,

where 𝐹𝑇 2 is the symplectic matrix associated to the partial Fourier transform with respect to the second variable defined in (26). 
Then,

 =𝐸−1 𝑉𝑀 (𝑉𝐿𝑉−𝐿)𝑉
𝑇
𝐿 (𝐹𝑇 2−1

𝐹𝑇 2)Lif t(𝐺) =𝐸−1 𝑉𝑀+𝐿𝐴𝑆𝑇−1
𝐹𝑇 2 Lif t(𝐺).

Therefore, up to a sign,

𝑊(𝑓, 𝑔)(𝑧) = ̂(𝑓 ⊗ 𝑔̄)(𝑧) = ̂𝐸−1 𝑉𝑀𝑉
𝑇
𝐿

̂Lif t(𝐺)(𝑓 ⊗ 𝑔̄)(𝑧)

= ̂𝐸−1 𝑉𝑀+𝐿𝐴𝑆𝑇−1
2

̂Lif t(𝐺)(𝑓 ⊗ 𝑔̄)(𝑧)

= |det(𝐸)|−1∕2Φ𝑀+𝐿(𝐸−1 𝑧)𝐴𝑆𝑇 (𝑓 ⊗ (−1𝐺𝑔̄))(𝐸−1 𝑧).

Let ̂𝐺 be the symplectic operator such that 𝐺𝑔̄ = ̂
𝐺𝑔, cf. Proposition A.2. Then,

−1𝐺𝑔̄ = −1 ̂𝐺𝑔 =  ̂
𝐺𝑔 =∶ 𝛿𝑔.

Therefore,

𝑊(𝑓, 𝑔)(𝑧) = |det(𝐸)|−1∕2Φ𝑀+𝐿(𝐸−1 𝑧)𝑉𝛿𝑔𝑓 (𝐸
−1 𝑧),

which can also be restated as:

𝑊(𝑓, 𝑔)(𝑧) = ⟨𝑓,𝜋(𝑧)𝑔⟩,
where 𝜋(𝑧) is the operator in (48). Items (𝑖) - (𝑖𝑖𝑖) are trivial consequences of (48). □

The metaplectic operator defined in (47) plays a crucial role in the characterization of metaplectic Gabor frames for shift-invertible 
metaplectic Wigner distributions. For this reason, it is worth giving it a name, in the spirit of the terminology used by M. de Gosson 
in [9]:

Definition 4.5. We call the metaplectic operator 𝛿 in (47) the deformation operator associated to 𝑊.

Example 4.6. 𝜏-Wigner distributions can be rephrased as rescaled STFT, up to chirps, as in (46). Precisely, for 0 < 𝜏 < 1, set 𝔗𝜏𝑔(𝑡) =
(1−𝜏)𝑑∕2
𝜏𝑑∕2

𝑔(− 1−𝜏
𝜏
𝑡) as in Example 3.5. We proved in the same Example that

𝑊𝜏 (𝑓, 𝑔)(𝑥, 𝜉) =
⟨
𝑓,

1
𝜏𝑑∕2(1 − 𝜏)𝑑∕2

𝑒−2𝜋𝑖
𝑥⋅𝜉
𝜏 𝜋

(
𝑥

1 − 𝜏
,
𝜉

𝜏

)
𝔗𝜏𝑔

⟩
(49)

for all 𝑓, 𝑔 ∈𝐿2(ℝ𝑑 ) and 𝑥, 𝜉 ∈ℝ𝑑 . Consequently, we retrieve the expression of 𝑊𝜏 as a rescaled STFT:

𝑊𝜏 (𝑓, 𝑔)(𝑥, 𝜉) =
1

𝜏𝑑∕2(1 − 𝜏)𝑑∕2
𝑒2𝜋𝑖

𝑥⋅𝜉
𝜏 𝑉𝔗𝜏 𝑔𝑓

(
𝑥

1 − 𝜏
,
𝜉

𝜏

)
.

We proved that metaplectic atoms of shift-invertible Wigner distributions are surjective isometries of 𝐿2(ℝ𝑑 ) and their adjoints 
are the atoms associated to 𝑊∗

, where ∗ is the matrix defined in the statement of the Theorem 3.12.

We conclude this section with the explicit computation of 𝜋(𝑧)−1 and 𝜋(𝑧)∗ for shift-invertible Wigner distributions.

Theorem 4.7. Let 𝑊 be a shift-invertible Wigner distribution and 𝛿 the related deformation operator, cf. (47). Consider the matrices 𝐿
and 𝑃 defined as in (35) and the following matrices:
14
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𝑄 =
(
𝐼𝑑×𝑑 0𝑑×𝑑
0𝑑×𝑑 −𝐼𝑑×𝑑

)
= −𝐿𝐽,

𝛿 = −𝐸−1 𝑄. (50)

Then, for every 𝑧 ∈ℝ2𝑑 , up to a sign, the inverse 𝜋(𝑧)−1 and the adjoint 𝜋(𝑧)∗ operators can be explicitly computed as

𝜋(𝑧)−1 = |det(𝐸)|1∕2Φ𝑀+𝐿∕2(𝐸−1 𝑧)Φ𝐿∕2(−1 𝑧)𝜋(𝑄−1 𝑧)𝛿
−1
, (51)

and

𝜋(𝑧)∗ = |det(𝐸)|−1𝜋(𝑧)−1. (52)

Proof. We use the explicit expression of metaplectic Gabor atoms for shift-invertible 𝑊 in (48), which yields

𝜋(𝑧)−1 = |det(𝐸)|1∕2Φ𝑀+𝐿(𝐸−1 𝑧)𝛿
−1
𝜋(𝐸−1 𝑧)−1. (53)

By (10), if 𝐸−1 𝑧 = ((𝐸−1 𝑧)1, (𝐸−1 𝑧)2),

𝜋(𝐸−1 𝑧)−1 = 𝑒−2𝜋𝑖(𝐸
−1 𝑧)1⋅(𝐸−1 𝑧)2𝜋(−𝐸−1 𝑧) = Φ−𝐿(𝐸−1 𝑧)𝜋(−𝐸−1 𝑧).

Also, by (22), for all 𝑧 ∈ℝ2𝑑 and 𝜏 ∈ℝ,

𝛿
−1
𝜌(−𝐸−1 𝑧; 𝜏)𝛿 = 𝜌(−𝛿−1 𝐸−1 𝑧; 𝜏).

Using the definition of 𝜌, for 𝜏 = 0 this is equivalent to

𝛿
−1
𝜋(−𝐸−1 𝑧) = 𝑒𝑖𝜋(𝐸

−1 𝑧)1⋅(𝐸−1 𝑧)2𝑒−𝑖𝜋(𝛿
−1 𝐸−1 𝑧)1⋅(𝛿−1 𝐸−1 𝑧)2𝜋(−𝛿−1 𝐸−1 𝑧)𝛿

−1
, (54)

where 𝛿−1 𝐸−1 𝑧 = ((𝛿−1 𝐸−1 𝑧)1, (𝛿−1 𝐸−1 𝑧)2). We compute explicitly the matrix 𝛿−1 𝐸−1 . For, let us denote with

𝐺 =
(
𝐴 𝐵
𝐶 𝐷

)
the block decomposition of the symplectic matrix 𝐺 , so that

𝐺−1 =
(
𝐷𝑇 −𝐵𝑇
−𝐶𝑇 𝐴𝑇

)
, 𝐺 =

(
𝐴 −𝐵
−𝐶 𝐷

)
𝑎𝑛𝑑 𝐺𝑇 =𝐺

𝑇
=
(
𝐴𝑇 −𝐶𝑇
−𝐵𝑇 𝐷𝑇

)
.

By definition, 𝛿 = 𝜋𝑀𝑝(𝛿) = 𝜋𝑀𝑝( ̂
𝐺), so that

𝛿 = 𝐽𝐺.

This, together with 𝐺𝐽𝐺
𝑇
= 𝐽 and 𝐺 =𝐿𝐸−1 , yields to:

𝛿−1 𝐸−1 = (−𝐺
−1
𝐽 )(𝐿𝐺−1 ) = (−𝐽𝐺

𝑇
)(𝐿𝐺−1 ),

where the invertibility of  is guaranteed by Lemma 2.5. We use the block decompositions of the matrices at stake to get:

𝛿−1 𝐸−1 =
(
0𝑑×𝑑 −𝐼𝑑×𝑑
𝐼𝑑×𝑑 0𝑑×𝑑

)(
𝐴𝑇 −𝐶𝑇
−𝐵𝑇 𝐷𝑇

)(
0𝑑×𝑑 𝐼𝑑×𝑑
𝐼𝑑×𝑑 0𝑑×𝑑

)
𝐺−1

=
(
𝐵𝑇 −𝐷𝑇

𝐴𝑇 −𝐶𝑇

)(
0𝑑×𝑑 𝐼𝑑×𝑑
𝐼𝑑×𝑑 0𝑑×𝑑

)
𝐺−1

=
(
−𝐷𝑇 𝐵𝑇

−𝐶𝑇 𝐴𝑇

)
𝐺−1

=
(
−𝐼𝑑×𝑑 0𝑑×𝑑
0𝑑×𝑑 𝐼𝑑×𝑑

)
𝐺−1 𝐺−1 = −𝑄−1 .

This proves (50). A simple computation shows that

(𝛿−1 𝐸−1 𝑧)1 ⋅ (𝛿−1 𝐸−1 𝑧)2 = (𝑄−1 𝑧)1 ⋅ (𝑄−1 𝑧)2 = −(−1 𝑧)1 ⋅ (−1 𝑧)2, (55)

that entails

𝑒−𝑖𝜋(𝛿
−1 𝐸−1 𝑧)1⋅(𝛿−1 𝐸−1 𝑧)2 = 𝑒𝑖𝜋(−1 𝑧)1⋅(−1 𝑧)2 = Φ𝐿∕2(−1 𝑧).

Plugging all the information in (53), we find

𝜋(𝑧)−1 = |det(𝐸)|1∕2Φ𝑀 +𝐿(𝐸−1𝑧)Φ−𝐿∕2(𝐸−1𝑧)Φ𝐿∕2(−1𝑧)𝜋(𝑄−1𝑧)𝛿
−1
.
    

15
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This proves (𝑖).
To prove (𝑖𝑖), we prove that 𝜋(𝑧)∗ is expressed by (53), up to the determinant factor. For, let 𝑓, 𝑔 ∈𝐿2(ℝ𝑑 ) and 𝑧 ∈ℝ2𝑑 . By (48),

⟨𝜋(𝑧)∗𝑓, 𝑔⟩ = ⟨𝑓,𝜋(𝑧)𝑔⟩
= ⟨𝑓, |det(𝐸)|−1∕2Φ−𝑀−𝐿(𝐸−1 𝑧)𝜋(𝐸−1 𝑧)𝛿𝑔⟩
= ⟨|det(𝐸)|−1∕2Φ𝑀+𝐿(𝐸−1 𝑧)𝛿

−1
𝜋(𝐸−1 𝑧)−1𝑓, 𝑔⟩

= ⟨|det(𝐸)|−1𝜋(𝑧)−1𝑓, 𝑔⟩
and the assertion follows. □

5. Atoms of covariant metaplectic Wigner distributions

In this section we derive the expression of metaplectic atoms of covariant metaplectic Wigner distributions. We recall their 
definition, cf. [8]

Definition 5.1. A metaplectic Wigner distribution 𝑊 is covariant if

𝑊(𝜋(𝑧)𝑓,𝜋(𝑧)𝑔) = 𝑇𝑧𝑊(𝑓, 𝑔)
holds for every 𝑧 ∈ℝ2𝑑 and all 𝑓, 𝑔 ∈𝐿2(ℝ𝑑 ).

The following result summarizes [8, Proposition 2.10 and Theorem 2.11] and states that covariance characterizes the Cohen’s 
class of metaplectic Wigner distributions.

Proposition 5.2. Let ̂ ∈𝑀𝑝(2𝑑, ℝ) and 𝑊 be the associated metaplectic Wigner distribution. The following statements are equivalent:

(i) 𝑊 is covariant.

(ii) The matrix  = 𝜋𝑀𝑝(̂) has block decomposition

 =

⎛⎜⎜⎜⎜⎝
𝐴11 𝐼𝑑×𝑑 −𝐴11 𝐴13 𝐴13
𝐴21 −𝐴21 𝐼𝑑×𝑑 −𝐴𝑇11 −𝐴𝑇11
0𝑑×𝑑 0𝑑×𝑑 𝐼𝑑×𝑑 𝐼𝑑×𝑑
−𝐼𝑑×𝑑 𝐼𝑑×𝑑 0𝑑×𝑑 0𝑑×𝑑

⎞⎟⎟⎟⎟⎠
, (56)

with 𝐴13 =𝐴𝑇13 and 𝐴21 =𝐴𝑇21.
(iii) 𝑊 belongs to the Cohen’s class, namely

𝑊(𝑓, 𝑔) = Σ ∗𝑊 (𝑓, 𝑔), 𝑓 , 𝑔 ∈𝐿2(ℝ𝑑 ), (57)

where Σ = −1Φ−𝐵 , with 𝐵 defined as in (34).

Theorem 5.3. Let 𝑊 be a covariant metaplectic Wigner distribution,  and 𝐵 be as in (56) and (34), respectively. Then,

(i) for every 𝑧 ∈ℝ2𝑑 ,

𝜋(𝑧)𝑔
′
= 2𝑑 ∫

ℝ2𝑑

Φ𝐵 (𝑧−𝑤)Φ−2𝐿(𝑤)𝜋(2𝑤)𝑔𝑑𝑤, (58)

where 𝑔(𝑡) = 𝑔(−𝑡) and the integral must be interpreted in the weak sense of vector-valued integration.

(ii) If also 𝐵 ∈𝐺𝐿(2𝑑, ℝ), then, for every 𝑧 ∈ℝ2𝑑 ,

𝜋(𝑧)𝑔
′
= 2𝑑 ∫

ℝ2𝑑

Φ−𝐵−1 (𝑧−𝑤)Φ−2𝐿(𝑤)𝜋(2𝑤)𝑔𝑑𝑤, 𝑔 ∈ (ℝ𝑑 ) (59)

holds in the weak sense of vector-valued integration.

(iii) If ∗ is the matrix defined in (76), then 𝑊∗
is covariant with 𝐵∗

= −𝐵 and, consequently,

𝜋(𝑧)∗𝑔
′
= 2𝑑 ∫

ℝ2𝑑

Φ−𝐵 (𝑧−𝑤)Φ−2𝐿(𝑤)𝜋(2𝑤)𝑔𝑑𝑤,

for all 𝑔 ∈ (ℝ𝑑 ) and every 𝑧 ∈ℝ2𝑑 . If 𝐵 is invertible, then

𝜋(𝑧)∗𝑔
′
= 2𝑑 ∫

ℝ2𝑑

Φ𝐵−1 (𝑧−𝑤)Φ−2𝐿(𝑤)𝜋(2𝑤)𝑔𝑑𝑤,

for every 𝑔 ∈ (ℝ𝑑 ) and 𝑧 ∈ℝ2𝑑 .
16
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Proof. (𝑖) By Proposition 5.2, for all 𝜑, 𝑔 ∈ (ℝ𝑑 ) and all 𝑧 ∈ℝ2𝑑 ,

⟨𝜑,𝜋(𝑧)𝑔⟩ =𝑊(𝜑,𝑔)(𝑧)
= Σ ∗𝑊 (𝜑,𝑔)(𝑧)

= ∫
ℝ2𝑑

Σ(𝑧−𝑤)𝑊 (𝜑,𝑔)(𝑤)𝑑𝑤

= ∫
ℝ2𝑑

Φ𝐵 (𝑧−𝑤)⟨𝜑,𝜋𝐴1∕2
(𝑤)𝑔⟩𝑑𝑤

=

⟨
𝜑, ∫

ℝ2𝑑

Φ𝐵 (𝑧−𝑤)𝜋𝐴1∕2
(𝑤)𝑔𝑑𝑤

⟩
,

where we used that −1Φ−𝐵 = Φ𝐵 . Consequently,

𝜋(𝑧)𝑔 = ∫
ℝ2𝑑

Φ𝐵 (𝑧−𝑤)𝜋𝐴1∕2
(𝑤)𝑔𝑑𝑤.

Plugging 𝜏 = 1∕2 in (49), we infer the explicit metaplectic atom of the Wigner distribution: for 𝑤 = (𝑥, 𝜉) ∈ℝ2𝑑 ,

𝜋𝐴1∕2
(𝑥, 𝜉)𝑔(𝑡) = 2𝑑𝑒−4𝜋𝑖𝑥⋅𝜉𝜋(2𝑥,2𝜉)𝑔(𝑡) = 2𝑑Φ−2𝐿(𝑤)𝜋(2𝑤)𝑔(𝑡).

Expression (58) follows consequently.

(𝑖𝑖) If 𝐵 is invertible, then Φ𝐵 =Φ−𝐵−1 , and (59) holds in the weak sense of vector-valued integration.

(𝑖𝑖𝑖) By (76) and (56), it follows that

∗ =

⎛⎜⎜⎜⎜⎝
𝐼𝑑×𝑑 −𝐴11 𝐴11 −𝐴13 −𝐴13

−𝐴21 𝐴21 𝐴𝑇11 𝐴𝑇11 − 𝐼𝑑×𝑑
0𝑑×𝑑 0𝑑×𝑑 𝐼𝑑×𝑑 𝐼𝑑×𝑑
−𝐼𝑑×𝑑 𝐼𝑑×𝑑 0𝑑×𝑑 0𝑑×𝑑

⎞⎟⎟⎟⎟⎠
.

Therefore, 𝑊∗
is covariant by Proposition 5.2 (𝑖𝑖), with

𝐵∗
=

(
−𝐴13

1
2 𝐼𝑑×𝑑 − (𝐼𝑑×𝑑 −𝐴11)

1
2 𝐼𝑑×𝑑 − (𝐼𝑑×𝑑 −𝐴11)𝑇 𝐴21

)

=

(
−𝐴13 𝐴11 −

1
2 𝐼𝑑×𝑑

𝐴𝑇11 −
1
2 𝐼𝑑×𝑑 𝐴21

)
= −𝐵.

So, (𝑖𝑖𝑖) follows by (𝑖) and (𝑖𝑖). □

6. Metaplectic Gabor frames

Definition 6.1. Let 𝑊 be a metaplectic Wigner distribution such that every 𝜋(𝑧) extends to a bounded operator on 𝐿2(ℝ𝑑 )
(𝑧 ∈ℝ2𝑑 ). Let 𝑔 ∈𝐿2(ℝ𝑑 ) and Λ ⊂ℝ2𝑑 be a discrete subset. We call the set

(𝑔,Λ) = {𝜋(𝜆)𝑔}𝜆∈Λ
a metaplectic Gabor system. We call metaplectic Gabor frame (of 𝐿2(ℝ𝑑 )) any metaplectic Gabor system (𝑔, Λ) such that the 
following property holds: there exist 𝐴, 𝐵 > 0 such that

𝐴‖𝑓‖22 ≤ ∑
𝜆∈Λ

|𝑊(𝑓, 𝑔)(𝜆)|2 ≤𝐵‖𝑓‖22, (60)

for all 𝑓 ∈𝐿2(ℝ𝑑 ).

Remark 6.2. By Remark 3.2, (60) is equivalent to

𝐴‖𝑓‖22 ≤ ∑
𝜆∈Λ

|⟨𝑓,𝜋(𝜆)𝑔⟩|2 ≤𝐵‖𝑓‖22, ∀𝑓 ∈𝐿2(ℝ𝑑 ).

Stated differently, a metaplectic Gabor frame is a frame for 𝐿2(ℝ𝑑 ).
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Example 6.3. In [9], M. de Gosson introduced ℏ-Gabor frames as follows. Consider 𝑔 ∈𝐿2(ℝ𝑑 ) and Λ a discrete subset of ℝ2𝑑 . Under 
the same notation of Example 3.4, a family ℏ(𝑔, Λ) = {𝜋ℏ(𝜆)𝑔}𝜆∈Λ is a ℏ-Gabor frame if

𝐴‖𝑓‖22 ≤ ∑
𝜆∈Λ

|⟨𝑓,𝜋ℏ(𝜆)𝑔⟩|2 ≤ 𝐵‖𝑓‖22, ∀𝑓 ∈𝐿2(ℝ𝑑 ),

for 𝐴, 𝐵 > 0. The time-frequency representation 𝑧 ↦ ⟨𝑓, 𝜋ℏ(𝑧)𝑔⟩ is, up to the constant (2𝜋ℏ)−𝑑∕2 (which is necessary to obtain a 
metaplectic operator in Example 3.4), the metaplectic Wigner distribution 𝑉 ℏ, as defined in Example 3.4. Hence, metaplectic Gabor 
frames ℏ

and ℏ-Gabor frames are basically the same objects. Namely, ℏ(𝑔, Λ) is a ℏ-Gabor frame with frame bounds 𝐴, 𝐵 if and 
only if ℏ

(𝑔, Λ) is a metaplectic Gabor frame with frame bounds (2𝜋ℏ)−𝑑𝐴 and (2𝜋ℏ)−𝑑𝐵.

Metaplectic Gabor frames associated to shift-invertible Wigner distributions are completely characterized by the following conse-

quence of Corollary 4.4.

Theorem 6.4. Let 𝑊 be shift-invertible and 𝛿 be the corresponding deformation operator (see Definition 4.5). Let 𝑔 ∈𝐿2(ℝ𝑑 ) and Λ ⊆ℝ2𝑑

be a discrete subset. The following statements are equivalent:

(i) (𝑔, Λ) is a metaplectic Gabor frame with bounds 𝐴, 𝐵;

(ii) (𝛿𝑔, 𝐸−1 Λ) is a Gabor frame with bounds | det(𝐸)|𝐴, | det(𝐸)|𝐵;

(iii) (𝑔, −𝑄−1 Λ) is a Gabor frame with bounds | det(𝐸)|𝐴, | det(𝐸)|𝐵.

Proof. Consider 𝑓 ∈𝐿2(ℝ𝑑 ). We use the representation of 𝜋 in (48):∑
𝜆∈Λ

|⟨𝑓,𝜋(𝜆)𝑔⟩|2 = ∑
𝜆∈Λ

|⟨𝑓, |det(𝐸)|−1∕2𝜋(𝐸−1 𝜆)𝛿𝑔⟩|2
= |det(𝐸)|−1 ∑

𝜇∈𝐸−1 Λ

|⟨𝑓,𝜋(𝜇)𝛿𝑔|2.
This proves the equivalence (𝑖) ⇔ (𝑖𝑖). Now, using (22), we can write

|det(𝐸)|−1 ∑
𝜇∈𝐸−1 Λ

|⟨𝑓,𝜋(𝜇)𝛿𝑔|2 = |det(𝐸)|−1 ∑
𝜇∈𝐸−1 Λ

|⟨𝑓, 𝛿𝜋(𝛿−1 𝜇)𝑔⟩|2
= |det(𝐸)|−1 ∑

𝜇∈𝐸−1 Λ

|⟨𝛿−1
𝑓,𝜋(𝛿−1𝜇)𝑔⟩|2

= |det(𝐸)|−1 ∑
𝜈∈𝛿−1𝐸−1 Λ

|⟨𝛿−1
𝑓,𝜋(𝜈)𝑔⟩|2.

Observing that 𝛿−1 𝐸−1 = −𝑄−1 ,

|det(𝐸)|−1 ∑
𝜇∈𝐸−1 Λ

|⟨𝑓,𝜋(𝜇)𝛿𝑔|2 = |det(𝐸)|−1 ∑
𝜈∈−𝑄−1 Λ

|⟨𝛿−1 𝑓,𝜋(𝜈)𝑔⟩|2.
Therefore, (𝑔, Λ) is a metaplectic Gabor frame with frame bounds 𝐴 and 𝐵 if and only if

𝐴‖𝑓‖22 ≤ |det(𝐸)|−1 ∑
𝜇∈−𝑄−1 Λ

|⟨𝛿−1 𝑓,𝜋(𝜇)𝑔⟩|2 ≤𝐵‖𝑓‖22, 𝑓 ∈𝐿2(ℝ𝑑 ). (61)

Since 𝛿
−1

is a unitary operator on 𝐿2(ℝ𝑑 ), it follows that (61) holds for all 𝑓 ∈𝐿2(ℝ𝑑 ) if and only if

|det(𝐸)|𝐴‖𝑓‖22 ≤ ∑
𝜇∈−𝑄−1 Λ

|⟨𝑓,𝜋(𝜇)𝑔⟩|2 ≤ |det(𝐸)|𝐵‖𝑓‖22
holds for every 𝑓 ∈𝐿2(ℝ𝑑 ). This proves the equivalence (𝑖) ⇔ (𝑖𝑖𝑖). □

Remark 6.5. For ℏ-Gabor frames, Example 6.3 shows that Theorem 6.4 applied to the metaplectic Wigner distributions of Exam-

ple 3.4 recovers [9, Proposition 7].

We now introduce the metaplectic Gabor frame operator and related properties.

First, consider a lattice Λ ⊂ ℝ2𝑑 and a metaplectic Gabor frame (𝑔, Λ) = {𝜋(𝜆)𝑔}𝜆∈Λ for 𝐿2(ℝ𝑑 ). We compute the expressions 
of coefficient, reconstruction and frame operators, see, e.g., [6, Definitions 3.1.8 and 3.1.13]. The coefficient (or analysis) operator 
𝐶 ∶𝐿2(ℝ𝑑 ) → 𝓁2(Λ) is given by

𝐶𝑓 = (⟨𝑓,𝜋(𝜆)𝑔⟩)𝜆∈Λ = (𝑊(𝑓, 𝑔)(𝜆))𝜆∈Λ, 𝑓 ∈𝐿2(ℝ𝑑 ). (62)
18



E. Cordero and G. Giacchi Applied and Computational Harmonic Analysis 68 (2024) 101594
Its adjoint 𝐷 = 𝐶∗ ∶ 𝓁2(Λ) →𝐿2(ℝ𝑑 ) is called the reconstruction (or synthesis) operator: for any sequence 𝑐 = (𝑐𝜆)𝜆∈Λ ∈ 𝓁2(Λ),

𝐷𝑐 =
∑
𝜆∈Λ

𝑐𝜆𝜋(𝜆)𝑔. (63)

The frame operator is defined as 𝑆 =𝐷𝐶 ∶𝐿2(ℝ𝑑 ) →𝐿2(ℝ𝑑 ):

𝑆𝑓 =
∑
𝜆∈Λ

⟨𝑓,𝜋(𝜆)𝑔⟩𝜋(𝜆)𝑔 = ∑
𝜆∈Λ

𝑊(𝑓, 𝑔)(𝜆)𝜋(𝜆)𝑔. (64)

Let us compute 𝜋(𝜇)−1𝑆𝜋(𝜇), for 𝜇 ∈Λ. We make use of the explicit expression of the inverse and the adjoint of the metaplectic 
atom (48) in (51), and (52), respectively. Observing that the phase factors cancel, we obtain

𝜋(𝜇)−1𝑆𝜋(𝜇)𝑓 =
∑
𝜆∈Λ

⟨𝜋(𝜇)𝑓,𝜋(𝜆)𝑔⟩𝜋(𝜇)−1𝜋(𝜆)𝑔
=
∑
𝜆∈Λ

⟨𝑓,𝜋(𝜇)∗𝜋(𝜆)𝑔⟩𝜋(𝜇)−1𝜋(𝜆)𝑔
= |det(𝐸)|−1 ∑

𝜆∈Λ
⟨𝑓,𝜋(𝜇)−1𝜋(𝜆)𝑔⟩𝜋(𝜇)−1𝜋(𝜆)𝑔

= |det(𝐸)|−1 ∑
𝜆∈Λ

⟨𝑓, 𝛿−1
𝜋(𝐸−1 𝜇)−1𝜋(𝐸−1 𝜆)𝛿𝑔⟩

× 𝛿
−1
𝜋(𝐸−1 𝜇)−1𝜋(𝐸−1 𝜆)𝛿𝑔

= |det(𝐸)|−1 ∑
𝜆∈Λ

⟨𝑓, 𝛿−1
𝜋(𝐸−1 (𝜆− 𝜇))𝛿𝑔⟩𝛿−1

𝜋(𝐸−1 (𝜆− 𝜇))𝛿𝑔

= |det(𝐸)|−1 ∑
𝜆∈Λ

⟨𝑓, 𝛿−1
𝜋(𝐸−1 𝜆)𝛿𝑔⟩𝛿−1

𝜋(𝐸−1 𝜆)𝛿𝑔

=
∑
𝜆∈Λ

⟨𝑓, 𝛿−1
𝜋(𝜆)𝑔⟩𝛿−1

𝜋(𝜆)𝑔

=
∑
𝜆∈Λ

⟨𝛿𝑓,𝜋(𝜆)𝑔⟩𝛿−1
𝜋(𝜆)𝑔

= 𝛿
−1
𝑆𝛿𝑓,

since 𝛿
−∗

= 𝛿.

The equality

𝜋(𝜇)−1𝑆 = 𝛿
−1
𝑆𝛿𝜋(𝜇)−1

yields

𝑆−1 𝜋(𝜇) = 𝜋(𝜇)𝛿
−1
𝑆−1 𝛿.

Hence the canonical dual frame of (𝑔, Λ) is still a metaplectic Gabor frame

(𝛾,Λ) = {𝜋(𝜆)𝛾}𝜆∈Λ (65)

with canonical dual window

𝛾 = 𝛿
−1
𝑆−1 𝛿𝑔. (66)

Consequently, if (𝑔, Λ) is a frame with bounds 0 < 𝐴 ≤ 𝐵, then every 𝑓 ∈𝐿2(ℝ𝑑 ) possesses the expansions

𝑓 =
∑
𝜆∈Λ

⟨𝑓,𝜋(𝜆)𝑔⟩𝜋(𝜆)𝛾 (67)

=
∑
𝜆∈Λ

⟨𝑓,𝜋(𝜆)𝛾⟩𝜋(𝜆)𝑔 (68)

with unconditional convergence in 𝐿2(ℝ𝑑 ). Besides, we have the norm equivalences

𝐴‖𝑓‖22 ≤∑
𝜆∈Λ

|⟨𝑓,𝜋(𝜆)𝑔⟩|2 ≤ 𝐵‖𝑓‖2
𝐵−1‖𝑓‖2 ≤∑|⟨𝑓,𝜋(𝜆)𝛾⟩|2 ≤𝐴−1‖𝑓‖22.
𝜆∈Λ
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7. Characterization of time-frequency spaces

A direct application of the theory developed so far is the whole characterization of modulation spaces. Namely, the issue below 
generalizes Theorem 1.1 in [4] to the quasi-Banach space setting, extending the indices 𝑝, 𝑞 ∈ [1, ∞] to 0 < 𝑝, 𝑞 ≤∞. Whenever 𝑝 ≠ 𝑞
we need the assumption 𝐸 upper-triangular, that is, the 2 × 1 block of 𝐸 in (31) satisfies 𝐴21 = 0𝑑×𝑑 . This requirement is needed 
for the use of Proposition 2.1.

Theorem 7.1. Fix a non-zero window function 𝑔 ∈ (ℝ𝑑 ). Consider 0 < 𝑝, 𝑞 ≤ ∞, 𝑊 shift-invertible and a weight 𝑚 ∈ 𝑣(ℝ2𝑑 ) with 
𝑚 ≍𝑚◦𝐸−1 . Then

(i) For 0 < 𝑝 ≤∞ and we have

𝑓 ∈𝑀𝑝
𝑚(ℝ

𝑑 ) ⇔ 𝑊(𝑓, 𝑔) ∈𝐿𝑝𝑚(ℝ2𝑑 ), (69)

with equivalence of norms.

(ii) If we add the assumption that 𝐸 is upper-triangular, then

𝑓 ∈𝑀𝑝,𝑞
𝑚 (ℝ𝑑 ) ⇔ 𝑊(𝑓, 𝑔) ∈𝐿𝑝,𝑞𝑚 (ℝ2𝑑 ), (70)

with equivalence of norms.

Proof. Take 𝑓 ∈𝑀𝑝,𝑞
𝑚 (ℝ𝑑 ). From the equality (46) we infer

|𝑊(𝑓, 𝑔)|(𝑧) = |𝔗𝐸−1 Φ𝑀+𝐿𝑉𝛿𝑔𝑓 |(𝑧) = |𝔗𝐸−1 𝑉𝛿𝑔𝑓 |(𝑧)
= |det(𝐸)|−1∕2|𝑉𝛿𝑔𝑓 |(𝐸−1 𝑧).

Since 𝛿 ∶ (ℝ𝑑 ) → (ℝ𝑑 ), we can choose the window 𝛿𝑔 ∈ (ℝ𝑑 ) to compute the modulation space norm so that

‖𝑊(𝑓, 𝑔)‖𝐿𝑝,𝑞𝑚 ≍ ‖𝑉𝛿𝑔𝑓 (𝐸−1 ⋅)‖𝐿𝑝,𝑞𝑚 .
The conclusion follows from Proposition 2.1. □

In what follows we generalize [4, Corollary 3.12] to the quasi-Banach space setting 0 < 𝑝, 𝑞 ≤∞.

Theorem 7.2. Fix a non-zero window function 𝑔 ∈ (ℝ𝑑 ). Consider 0 < 𝑝, 𝑞 ≤ ∞, 𝑊 shift-invertible and 𝑚1, 𝑚2 ∈ 𝑣(ℝ𝑑 ) such that 
𝑚2 ≍ 𝑚2, with 𝑚2(𝑥) =𝑚2(−𝑥). Fix 𝑔 ∈ (ℝ𝑑 ) ⧵ {0} and define

𝐸̃ = 𝐽𝐸𝐽 , (71)

with the symplectic matrix 𝐽 defined in (18). (Observe that 𝐸−1 is lower triangular if and only if 𝐸̃ is upper triangular). If 𝑚1 ⊗ 𝑚2 ≍
(𝑚1 ⊗𝑚2)◦𝐸̃−1 and 𝐸 is lower triangular, then

‖𝑓‖𝑊 (𝐿𝑝𝑚1 ,𝐿𝑞𝑚2 ) ≍
(
∫
ℝ𝑑

(
∫
ℝ𝑑

|𝑊(𝑓, 𝑔)(𝑥, 𝜉)|𝑝𝑚1(𝜉)𝑝𝑑𝜉
)𝑞∕𝑝

𝑚2(𝑥)𝑞𝑑𝑥
)1∕𝑞

,

with the analogous for max{𝑝, 𝑞} =∞.

Proof. As in the proof of Corollary 3.12 in [4], assuming 𝑚2(−𝑥) =𝑚2(𝑥), we can write(
∫
ℝ𝑑

(
∫
ℝ𝑑

|𝑊(𝑓, 𝑔)(𝑥, 𝜉)|𝑝𝑚1(𝜉)𝑝𝑑𝜉
)𝑞∕𝑝

𝑚2(𝑥)𝑞𝑑𝑥
)1∕𝑞

≍ ‖𝑊̃0
(𝑓, 𝑔̂)‖𝐿𝑝,𝑞𝑚1⊗𝑚2 ,

̃0 =

⎛⎜⎜⎜⎜⎝
−𝐴23 𝐴24 𝐴21 −𝐴22
𝐴13 −𝐴14 −𝐴11 𝐴12
−𝐴43 𝐴44 𝐴41 −𝐴42
𝐴33 −𝐴34 −𝐴31 𝐴32

⎞⎟⎟⎟⎟⎠
,

so that 𝐸̃ =𝐸̃0
. The conclusion is due to Theorem 7.1 □

If 𝑝 = 𝑞 the additional assumption 𝐸−1 lower triangular is not needed. Observe that in this case ‖𝑓‖𝑊 (𝐿𝑝𝑚1 ,𝐿𝑝𝑚2 ) ≍ ‖𝑓‖𝑀𝑝
𝑚2⊗𝑚1

, and 
the norm equivalence follows from Theorem 7.1 above. In fact, notice that

(𝑚1 ⊗𝑚2)◦𝐸−1 ≍ (𝑚2 ⊗𝑚1)⊗ 𝐸̃−1.
 
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Consider a metaplectic Gabor frame (𝑔, Λ) and assume

𝑚 ≍𝑚◦𝐸−1 , (72)

then, for any 𝑓 ∈𝑀𝑝,𝑞
𝑚 (ℝ𝑑 ) we can use (48) to express the coefficient operator’s entries

|𝐶𝑓 (𝜆)| = |⟨𝑓,𝜋(𝜆)𝑔⟩| = |det(𝐸)|−1∕2|⟨𝑓,𝜋(𝐸−1 𝜆)𝛿𝑔⟩|.
Observe that 𝛿𝑔 ∈ (ℝ𝑑 ) for 𝑔 ∈ (ℝ𝑑 ), by Theorem 6.4 (𝑖𝑖); furthermore, (𝛿𝑔, 𝐸−1 Λ) is a Gabor frame with coefficient operator 

𝐶 satisfying ‖𝐶𝑓‖𝓁𝑝,𝑞𝑚 (𝐸−1 Λ) ≲ ‖𝑓‖𝑀𝑝,𝑞
𝑚

, so that the equivalence of weights in (72) gives

‖𝐶𝑓‖𝓁𝑝,𝑞𝑚 (Λ) = |det(𝐸)|−1∕2‖𝐶𝑓‖𝓁𝑝,𝑞𝑚 (𝐸−1 Λ) ≲ ‖𝑓‖𝑀𝑝,𝑞
𝑚
,

that is the boundedness of 𝐶 ∶𝑀𝑝,𝑞
𝑚 (ℝ𝑑 ) → 𝓁𝑝,𝑞𝑚 (Λ).

Using the relation between 𝜋(𝜆) and the time-frequency shift 𝜋(𝐸−1 𝜆) displayed in (48), and the equivalence of weights in (72), 
for any sequence 𝑐𝜆 ∈ 𝓁𝑝,𝑞𝑚 (Λ), the sequence 𝑐𝜇 ∶= 𝑐𝐸𝜇Φ𝑀+𝐿(𝜇) ∈ 𝓁𝑝,𝑞𝑚 (𝐸−1 Λ) so that

‖𝐷𝑐𝜆‖𝑀𝑝,𝑞
𝑚 (ℝ𝑑 ) =

‖‖‖‖‖
∑
𝜆∈Λ

𝑐𝜆𝜋(𝜆)𝑔
‖‖‖‖‖𝑀𝑝,𝑞

𝑚 (ℝ𝑑 )

≍
‖‖‖‖‖‖‖

∑
𝜇∈𝐸−1 Λ

𝑐𝜇𝜋(𝐸−1 𝜆)𝛿𝑔
‖‖‖‖‖‖‖𝑀𝑝,𝑞

𝑚 (ℝ𝑑 )

≲ ‖(𝑐𝜇)‖𝓁𝑝,𝑞𝑚 (𝐸−1 Λ) ≍ ‖(𝑐𝜆)‖𝓁𝑝,𝑞𝑚 (Λ).

For the Banach space case 𝑝, 𝑞 ∈ [1, +∞], the window class can be extended from (ℝ𝑑 ) to 𝑀1
𝑣 (ℝ

𝑑 ). In fact, under the assumption 
(72), the metaplectic operator 𝛿 and its inverse are bounded on 𝑀1

𝑣 (ℝ
𝑑 ), cf. [15, Theorem 4.6]. Hence, 𝑔 ∈𝑀1

𝑣 (ℝ
𝑑 ) ⟺ 𝛿𝑔 ∈

𝑀1
𝑣 (ℝ

𝑑 ). Arguing as for the Schwartz class and using the results for Gabor frames [18, Chapter 12] we infer that the coefficient 
operator 𝐶 is bounded from 𝑀𝑝,𝑞

𝑚 (ℝ𝑑 ) to 𝓁𝑝,𝑞𝑚 (Λ) and the other way round for the reconstruction operator 𝐷.

The observations above, together with the characterization of modulation spaces via Gabor frames (see, e.g., [6, Theorem 3.2.37]

and [16]) yield an equivalent discrete norm for modulation spaces in terms of metaplectic Gabor frames. Namely,

Theorem 7.3. Consider (𝑔, Λ) a metaplectic Gabor frame for 𝐿2(ℝ𝑑 ) with bounds 0 <𝐴 ≤ 𝐵, with 𝑔 ∈ (ℝ𝑑 ) and canonical dual window 
𝛾 in (66). Assume 𝑊 shift-invertible and 𝑚 ∈𝑣(ℝ2𝑑 ), with 𝑚 ≍𝑚◦𝐸−1 . Then,

(i) For every 0 < 𝑝, 𝑞 ≤∞, 𝐶 ∶𝑀𝑝,𝑞
𝑚 (ℝ𝑑 ) → 𝓁𝑝,𝑞𝑚 (Λ) and 𝐷 ∶ 𝓁𝑝,𝑞𝑚 (Λ) →𝑀𝑝,𝑞

𝑚 (ℝ𝑑 ) continuously. If 𝑓 ∈𝑀𝑝,𝑞
𝑚 (ℝ𝑑 ), then the expansions in 

(67) converge unconditionally in 𝑀𝑝,𝑞
𝑚 for 0 < 𝑝, 𝑞 <∞, and weak∗-𝑀∞

1∕𝑣 unconditionally if 𝑝 =∞ or 𝑞 =∞.

(ii) The following (quasi-)norms are equivalent on 𝑀𝑝,𝑞
𝑚 (ℝ𝑑 )

𝐴‖𝑓‖𝑀𝑝,𝑞
𝑚 (ℝ𝑑 ) ≤ ‖(⟨𝑓,𝜋(𝜆)𝑔⟩)𝜆∈Λ‖𝓁𝑝,𝑞𝑚 (Λ) ≤𝐵‖𝑓‖𝑀𝑝,𝑞

𝑚 (ℝ𝑑 ), (73)

𝐵−1‖𝑓‖𝑀𝑝,𝑞
𝑚 (ℝ𝑑 ) ≤ ‖(⟨𝑓,𝜋(𝜆)𝛾⟩)𝜆∈Λ‖𝓁𝑝,𝑞𝑚 (Λ) ≤𝐴−1‖𝑓‖𝑀𝑝,𝑞

𝑚 (ℝ𝑑 ). (74)

Remark 7.4. Assume 𝑔, 𝛾 ∈𝑀1
𝑣 (ℝ

𝑑 ) with 𝑣 satisfying (72) and such that

𝑆,𝑔,𝛾 =𝐷,𝛾𝐶,𝑔 = 𝐼, on 𝐿2(ℝ𝑑 ).

For 𝑝, 𝑞 ∈ [1, ∞], the statements of the previous theorem hold in the larger window class 𝑀1
𝑣 (ℝ

𝑑 ), with the canonical dual window 𝛾
replaced by 𝛾 .
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Appendix A

In [8], the authors proved the following result, cf. [8, Proposition 2.6]:
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Proposition A.1. Let ̂ ∈𝑀𝑝(2𝑑, ℝ) and 𝑊 be the corresponding metaplectic Wigner distribution. Then, there exists ̂∗ ∈𝑀𝑝(2𝑑, ℝ) such 
that for all 𝑓, 𝑔 ∈𝐿2(ℝ𝑑 ),

𝑊(𝑔,𝑓 ) =𝑊∗
(𝑓, 𝑔) (75)

up to a sign.

In what follows we shall improve Proposition A.1, carrying over the explicit expression of the projection ∗ in (75). First, we 
need to compute the intertwining relation between complex conjugation and metaplectic operators.

Proposition A.2. Let 𝑆̂ ∈𝑀𝑝(𝑑, ℝ) be a metaplectic operator and 𝑆 = 𝜋𝑀𝑝(𝑆̂) have block decomposition (19). Define

𝑆̄ ∶=
(
𝐴 −𝐵
−𝐶 𝐷

)
.

Then, for all 𝑓 ∈𝐿2(ℝ𝑑 ),

𝑆̂𝑓 = ̂̄𝑆𝑓 .

Proof. Let 𝑇 the operator defined by

𝑇𝑓 = 𝑆̂𝑓 , 𝑓 ∈𝐿2(ℝ𝑑 ).

Since 𝑆̂ is a unitary operator on 𝐿2(ℝ𝑑 ), 𝑇 is a unitary operator on 𝐿2(ℝ𝑑 ). We have to prove that 𝑇 satisfies the intertwining relation 
in (22) for  = 𝑆̄. For, let 𝑧 = (𝑥, 𝜉) ∈ℝ2𝑑 and take 𝜏 ∈ℝ. Then,

𝑇 𝜌(𝑧; 𝜏)𝑓 = 𝑆̂𝜌(𝑧; 𝜏)𝑓

= 𝑆̂𝜌(𝑥,−𝜉;−𝜏)𝑓

= 𝜌(𝑆(𝑥,−𝜉);−𝜏)𝑆̂𝑓

= 𝑒−2𝜋𝑖𝜏𝑒−𝑖𝜋(𝐴𝑥−𝐵𝜉)⋅(𝐶𝑥−𝐷𝜉)𝜋(𝐴𝑥−𝐵𝜉,𝐶𝑥−𝐷𝜉)𝑆̂𝑓

= 𝑒2𝜋𝑖𝜏𝑒−𝑖𝜋(𝐴𝑥−𝐵𝜉)⋅(−𝐶𝑥+𝐷𝜉)𝜋(𝐴𝑥−𝐵𝜉,−𝐶𝑥+𝐷𝜉)𝑆̂𝑓

= 𝜌(𝑆̄(𝑥, 𝜉); 𝜏)𝑇𝑓,

as desired. □

Corollary A.3. Under the assumptions of Proposition A.1, we have

∗ =𝐿

with the matrix 𝐿 defined in (35). Namely, if  has block decomposition (30), ∗ is given by

∗ =

⎛⎜⎜⎜⎜⎝
𝐴12 𝐴11 −𝐴14 −𝐴13
𝐴22 𝐴21 −𝐴24 −𝐴23
−𝐴32 −𝐴31 𝐴34 𝐴33
−𝐴42 −𝐴41 𝐴44 𝐴43

⎞⎟⎟⎟⎟⎠
. (76)

Proof. Observe that ̂𝐿𝐹 (𝑥, 𝑦) = 𝐹 (𝑦, 𝑥), so that, for every 𝑓, 𝑔 ∈𝐿2(ℝ𝑑 ),

𝑔 ⊗ 𝑓 (𝑥, 𝑦) = 𝑓 (𝑦)𝑔(𝑥) = 𝑓 ⊗ 𝑔(𝑦,𝑥) = 𝑓 ⊗ 𝑔(𝐿(𝑥, 𝑦)) = ̂𝐿(𝑓 ⊗ 𝑔)(𝑥, 𝑦).

By Proposition A.2, it follows that, up to a sign,

𝑊(𝑓, 𝑔) = ̂(𝑓 ⊗ 𝑔̄) = ̂(𝑓 ⊗ 𝑔) = ̂(𝑓 ⊗ 𝑔) = ̂𝐿(𝑔 ⊗ 𝑓 ) =𝑊∗
(𝑔,𝑓 ).

Assuming that  exhibits the block decomposition (30), a straightforward computation yields (76). This concludes the proof. □

Remark A.4. A straightforward computation shows that 𝑆𝑇 = 𝑆𝑇 . In fact, if 𝑆 has block decomposition (19),

𝑆
𝑇
=
(
𝐴𝑇 −𝐶𝑇
−𝐵𝑇 𝐷𝑇

)
,

22
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whereas

𝑆𝑇 =
(
𝐴𝑇 𝐶𝑇

𝐵𝑇 𝐷𝑇

)
, 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑆𝑇 =

(
𝐴𝑇 −𝐶𝑇
−𝐵𝑇 𝐷𝑇

)
= 𝑆

𝑇
.
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