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Abstract—Optimization problems are one of the main focus of
scientific research. Their computational-intensive nature makes
them prone to be parallelized with consistent improvements in
performance. This paper sheds light on different parallel models
for accelerating Karmarkar’s Interior-point method. To do so, we
assess parallelization strategies for individual operations within
the aforementioned Karmarkar’s algorithm using OpenMP, GPU
acceleration with CUDA, and the recent Parallel Standard C++
Linear Algebra library (PSTL) executing both on GPU and
CPU. Our different implementations yield interesting benchmark
results that show the optimal approach for parallelizing interior
point algorithms for general Linear Programming (LP) problems.
In addition, we propose a more theoretical perspective of the
parallelization of this algorithm, with a detailed study of our
OpenMP implementation, showing the limits of optimizing the
single operations.

Index Terms—Optimization problems, stdblas, PSTL, GPU
programming, parallel computing, Linear programming.

I. INTRODUCTION

Linear optimization problems have been a flourishing re-
search area for computer scientists since their introduction
[13], [10]. Determining the optimal value of a linear objec-
tive function with linear constraints within computationally
feasible time constitutes the main goal of the development of
algorithms for LP problems, which are prevalent in diverse
industrial domains with numerous practical scenarios [29],
[23], [27], [30], [11]. Despite its wide range of applications,
the research in LP problems is built upon two main algorithms.
The first one, introduced in 1947, is the Simplex method.
Despite its mathematical simplicity, it has been the leading
method for many years, and still today specific variations of
this algorithm have shown leading performances in different
types of problems [13]. However, when it comes to large-
scale problems, the simplex method tends to perform poorly
because of its exponential worst-case complexity [21]. To
overcome this issue in 1984 it’s been introduced the second
main algorithm: Karmarkar’s Interior point method [19].

Karmarkar’s algorithm outperformed the state-of-the-art of
that time, such as the Ellipsoid method [20], and yielded a

primary competitor to the Simplex method, serving as the
foundational method for extensive further investigations and
studies [15], [5]. The key point of Karmarkar’s algorithm is to
redefine linear problems as non-linear, which in return enables
progress toward the minimum without testing each possible
solution. In fact, Interior points methods are used both for
linear optimization [28], [31] and for non-linear optimization
[7].

The key distinction from the Simplex method is that each
interior-point iteration is computationally expensive but makes
significant progress toward the solution, whereas the Simplex
method requires a larger number of inexpensive iterations as
it works its way around the boundary of the feasible polytope,
testing vertices until it finds the optimal one.

It’s been widely studied in the literature that LP solvers
can benefit from parallelized operations, especially on GPUs.
In fact, parallel versions of the Simplex method are already
available [26], [22], as well as for the Revised Simplex Method
[9], [6]. Interior point methods benefit consistently from paral-
lelization since their structure involves more computationally
expensive operations. In fact, GPU implementations of the
interior-point methods have already been proposed [14], [24],
[18], confirming that GPU acceleration boosts consistently
the performances for Karmarkar’s algorithm and in general
interior-point methods. However, different parallel program-
ming models yield different performances, depending also on
the available hardware. In this work, we want to analyze the
parallel performance of Karmarkar’s algorithm using OpenMP,
CUDA, and the C++ parallel standard template linear algebra
library (PSTL-stdblas) [17]. In addition, to the best of our
knowledge and effort, we were not able to find any parallel,
open-source implementation of this algorithm.
As a consequence, the contribution of this work is twofold:

• We provide a comparison between different paralleliza-
tion schemes when applied to Karmarkar’s LP solver:
OpenMP, GPU-acceleration with CUDA and PSTL;



• we provide detailed results about the scaling behavior
for the OpenMP implementation, providing insights on
the theoretical perspective of the parallelization of Kar-
markar’s algorithm.

With this work, we want to bring attention to the comparison
between different possible parallel implementations that may
require various levels of effort and consequently bring different
levels of performance improvements.

The paper is structured in the following way: after a section
of related works, we present in detail Karmarkar’s algorithm
with all the operations involved. Then, we explain our par-
allelized version of the algorithm with OpenMP, CUDA, and
PSTL. Consequently, we show the results of a simulated large-
scale problem, involving a study on the scaling property of the
OpenMP implementation.

II. RELATED WORKS

Linear Programming research is a flourishing field, and the
parallelization of algorithms for solving linearly constrained
problems is very important from a practical and theoretical
point of view.

The literature related to the Simplex method is particularly
rich. Our work presents some similarities with [32], where it is
shown that single operations involved in the simplex method
can be consistently improved with sophisticated programming
frameworks. However, while they introduce a detailed study
and a novel implementation of a single task (Basis Update) in
the Simplex method, we focus on the whole implementation
of Karmarkar’s algorithm.

In a similar way, but always related to the Simplex method,
in [25] the authors focus on different parallel schemes imple-
mentations of the Simplex method enabling GPU acceleration
and hybrid CPU/GPU approach. In [22] they provide a multi-
gpu implementation of the Simplex method.

Taking inspiration from these works, our main focus is
Karmarkar’s interior-point method, for which different op-
erations are involved and represent a more reliable solution
to large-scale problems. Parallel implementations can boost
the performances thanks to recent framework implementations
[32], and our goal is to empirically show that this is possible
through modern parallelization techniques.

In [1], an efficient implementation of Karmarkar’s algorithm
is presented, describing a family of interior point power series
affine scaling algorithms, that are variants of Karmarkar’s
original algorithm. In particular, they were able to reach the
performances of the simplex method on publicly available
datasets. Their implementation was based on FORTRAN and
built on specific code intended primarily for the solution
of constrained non-linear programming problems. We mainly
focus on the original algorithm rather than its variants, since
we focus on simulated problems as in [22] and concentrate on
the comparison between different parallel schemes. A parallel
implementation was already available in 1988 [34], but was
developed in Occam2 and at the best of our effort, we could
not find the source code. Our work builds upon C++ with

a specific implementation for GPU accelerators programmed
with CUDA and PSTL.

To conclude, with respect to the existing literature, we fill
the gap in benchmarking parallelization techniques for solv-
ing LP problems through Karmarkar’s interior-point method,
which enables consistent improvement in performance but is
not deeply studied in the existing literature and lacks an open-
source implementations.

III. ALGORITHM

In this section, we are going to present Karmarkar’s interior-
point method [19]. Karmarkar’s algorithm is an interior-point
method for which the current guess for the solution does not
follow the boundary of the feasible set (as in the Simplex
method), but follows a central path through the interior of the
feasible region, improving the approximation of the optimal
solution and converging to that [33], [12]. To be solved with
this algorithm, a problem must be in canonical form, that is:
for a given dimension n we have c, x ∈ Rn, A ∈ Rm,n,
1 = (1, . . . , 1)t, e = (1/n, . . . , 1/n)t:

1) Constraints are the following:

v := min
x

ctx

Ax = 0

1x = 1

x ≥ 0

(1)

2) v = 0;
3) A1 = 0;
4) The rows of A are linearly independent.

Karmarkar’s algorithm operates in the n-dimensional unit
simplex. A n-dimensional unit simplex S is the set of points
(x1, x2, . . . , xn) satisfying:

x1 + x2 + ...+ xn = 1

xj ≥ 0

j = 1, 2, . . . , n.

Karmarkar’s algorithm wants to generate a sequence of points
x0, x1, x2, . . . , xk having decreasing values of the objective
function in 1. In particular, at the k-th step, the point xk

is brought into the center of the simplex by a projective
transformation, which enables to creation of a direct path
towards the minimum, optimizing the objective function and
weighting properly the length of the steps. To do so there are
three main concepts to be discussed:
• Projection of a vector onto the set of X satisfying AX =

0;
• Karmarkar’s centering transformation;
• Karmarkar’s potential function.

A. Projection

As we said, the goal is to generate a feasible point x1

from another feasible point x0, that for a fixed vector c,
will have a smaller value than ctx0. The direction towards



x1, d = (d1, d2, . . . , dn) is identified in the solution of the
following optimization problem:

min
d

ctd,

Ad = 0,

d1 + d2 + ...dn = 0

‖d‖ = 1.

The direction d that solves this optimization problem is the
projection of c onto X satisfying Ax = 0 and x1 + x2 +
... + xn = 0 and is given by solving BBtw = Bc̄;, where
Bt := (Āt, 1t) and c̄ = cdiag(x̄). A crucial aspect in our
implementation of the algorithm is that BBt is symmetric and
positive definite, which means that the solution to this linear
system can be performed using the Cholesky factorization.

B. Karmarkar’s centering transformation

If xk is a point in S, where S is the simplex, the centering
transformation f(·|xk) : S → S is defined as follows:

f(x|xk)j = yj =

xj

xk
j∑n

r=1
xr

xk
r

.

The properties of the centering transformation are the follow-
ing:

1) xk is mapped into the center of the transformed unit
simplex;

2) it is a one-on-one mapping from S to S;
3) A point x ∈ S will satisfy Ax = 0 if ADkf(x‖xk) = 0,

where Dk = diag(xk).
To recap, this centering transformation transforms the working
space centering the current solution. Thanks to property 2 we
can transform yk+1 back into xk+1, and xk+1 will be feasible
for the original LP. Furthermore, property 4 is very useful to
define clearly the constraints of feasibility.

C. Karmarkar’s potential function

Once we detect the right direction and after providing the
centering transformation, the problem becomes the length
of the step towards the solution. At this end, Karmarkar
introduced the Karmarkar’s potential function:

ψ(x) := n log(ctx)−
∑
i

log(xi).

Karmarkar showed that if we project cDt onto the feasible
region in the transformed space, then for some δ > 0, it will
be true that for k = 0, 1, 2, . . .

ψ(xk)− ψ(xk+1) ≥ δ.

This means that the decreasing difference is bounded, and it is
crucial when choosing the length of the step α for a feasible
solution, which becomes:

α̂ = arg min
α

ψ̄(e+ αd), (2)

where ψ̄(x) = n log(c̄tx) −
∑
i log(xi), x̄ is the current

solution, c̄ = cdiag(x̄) and Ā = Adiag(x̄). Thanks to this

α we are able to detect the correct step for not exiting the
solution space. However, due to simplicity, we decided not to
optimize this α and to keep a constant step of:

α̂ = αr =
n− 1

3n

1√
n(n− 1)

, (3)

where r is the ray of the maximum sphere included in the
affine space of S centered in e and inside S. This ensures that
yk+1 will remain in the interior of the transformed simplex.
The resulting algorithm is the following:

Algorithm 1 Karmarkar’s algorithm
Require: (A,c,ε);

Let x := e
α̂ := αr = n−1

3n
1√

n(n−1)
;

while ctx > ε do:
c̄ := ctdiag(x̄);
Ā := Adiag(x̄);
Bt := (Āt, 1t);
solve BBtw = Bc̄;
c̄′ = c̄−Btw
d = −c̄′/‖c̄′‖;
y := e + α̂d;
x′ := diag(x)y/(1tdiag(x)y);
x := x′;

end while
output(x);

As we can see there are many parts of the algorithm
that can be optimized. For what concerns the complexity of
Karmarkar’s algorithm, denoting n as the number of variables
and L as the number of bits of input to the algorithm, Kar-
markar’s algorithm requires O(n3.5L) operations on O(L)-
digit numbers, as compared to O(n6L) such operations for
the ellipsoid algorithm [20].

IV. PARALLELIZATION

Thanks to recent research and development, many paral-
lelization techniques are available on every kind of hardware
and in every programming language, empowering the capacity
to use the total computation capability of a computer. As a
consequence, the optimization of a code should be the main
focus of a good programmer, as the demand for greater com-
putational power keeps growing [35]. Our work mainly builds
upon C++ implementations, providing a flexible framework
for Karmarkar’s Interior-point method.

In particular, for what regards our experience with this
algorithm, at first glance, it appears not to be parallelizable.
This is due to the dependent iterations, and thus it is impossible
to start multiple iterations simultaneously. If we look more
closely at the algorithm, we can see that most of its steps are
actually extremely prone to parallelization. As a consequence,
in our implementation, we focused not on running multiple
iterations at the same time, but on parallelizing each step of
the algorithm.



This methodology is in line with [2] and [8], where it
is explained how to parallelize an end-to-end application.
In particular, loops are numerous in Algorithm 1, and we
want to compare different techniques to parallelize them,
both with huge and minimal code-redesigning, namely CUDA
implementation and OpenMP/PSTL implementation.

For each parallelization model, we implemented Algorithm
1 and every operation involved, using when possible functions
provided in the available libraries, as we will explain in this
section.

A. OpenMP

1) Sequential implementation: Since we were unable to
locate an open-source implementation of the Karmarkar al-
gorithm, our initial step was to create our own version of the
algorithm, which can be found in detail on github1. At this end,
we developed from scratch the namespace Algebrakitwith
all the operations involved.

2) OpenMP Implementation: The strategy we followed for
the implementation with OpenMP, has been to parallelize the
for loops whenever there was no data dependency. To this
end, every operation had to be implemented from scratch.
This strategy allowed us to maintain a single codebase for the
sequential implementation and the OpenMP implementation.
In fact, due to OpenMP’s use of precompiler directives, we
were able to seamlessly adapt the code used for the sequential
algorithm. OpenMP offers a wide range of configurable param-
eters that can be adjusted by adding options to the precompiler
instructions. In our pursuit of optimizing performance, we
conducted experiments with several parameters. However, we
found that the default values consistently delivered the best
performance results.

The implementation with OpenMP was as simple as it was
effective. In fact, we will show the overall good performances
reached, and focus on the resulting weak scaling and strong
scaling behavior. In addition, it allowed us to study in detail
the scaling behavior both for Ahmdal’s [4] and Gustavfson’s
law [16]. Despite it’s been useful for studying the paralleliza-
tion of the algorithm, to boost consistently the performances
leveraging maintained libraries is necessary.

B. CUDA

CUDA 2, short for Compute Unified Device Architecture, is
a framework developed by NVIDIA. It serves as a platform for
creating Single Instruction, Multiple Thread (SIMT) programs
designed to run on NVIDIA GPUs. CUDA acts as an extension
of C++, fully compatible with C (similar to OpenMP). The
main elements of CUDA are the kernels: and functions to be
executed on CUDA-enabled devices. NVIDIA also provides
additional frameworks built on top of CUDA to simplify
programming tasks. Notably:

1Github code repository
2https://developer.nvidia.com/cuda

• CuBLAS3(CUDA Basic Linear Algebra Subsystem):
CuBLAS offers a collection of routines that implement
basic, highly efficient linear algebra operations.

• CuSOLVE: CuSOLVE is a set of routines built on CUDA,
providing tools to solve linear equation systems. One of
the solvers in CuSOLVE utilizes Cholesky decomposi-
tion.

In our project, we leveraged these frameworks extensively.
Specifically, we employed CuBLAS for efficient and fast
matrix multiplication kernels and CuSOLVE for solving linear
equation systems. We turned to CUDA to develop custom
kernels when neither CuBLAS nor CuSOLVE offered the
required functionality. The complexity of our implementation,
for each iteration, is O(n3), and in general is:

8O(n) + 3O(n2) + 3O(n3) = O(n3)

The cubic component of the complexity of our algorithm
is given by the LEVEL 3 BLAS: two calls are done
to cusolverDnDpotrs and a single call is done to
cublasDgemm. Some of the level 2 BLAS functions that
we used are cublasDdot and cublasDgemv, while some
of the level 1 blas functions that we used are cublasDscal,
cublasDdot and cublasDnrm2.

We show here the code for the body of the main iteration
of the algorithm written in CUDA.

1 sym_rank1<<< ... >>>(c_vec_dev,x_vec_dev,Ncol);
2 sym_rank2<<< ... >>>(A_vec_dev,x_vec_dev,Nrow,Ncol);
3 cudaMemcpy(B_vec_dev, A_vec_dev, ... );
4 cublasDgemv( ... ,Ncol,Nrow+1,&ONE,B_vec_dev,Ncol,

c_vec_dev,1,&ZERO,c_vec1_dev,1);
5 cublasDgemm( ... ,CUBLAS_OP_N,m,n,k,&ONE,B_vec_dev,k

,B_vec_dev,k,&ZERO,BB_vec_dev,m);
6 cusolverDnDpotrf( ... , n, BB_vec_dev, n, buffer,

bufferSize, info);
7 cudaMemcpy(w_vec_dev, c_vec1_dev, ... );
8 cusolverDnDpotrs( ... , uplo, n, 1, BB_vec_dev, n,

w_vec_dev, n, info);
9 cublasDgemv( ... ,Ncol,Nrow+1,&MONE,B_vec_dev,Ncol,

w_vec_dev,1,&ONE,c_vec_dev,1);
10 cublasDnrm2(handle, Ncol, c_vec_dev, 1, &norm);
11 double tmp=-alpha/norm;
12 dsum<<< ... >>>(d_vec_dev,1.0/Ncol,Ncol);
13 cublasDaxpy(...,Ncol,&tmp,c_vec_dev,1,d_vec_dev,1);
14 cublasDdot(...,Ncol,x_vec_dev,1,d_vec_dev,1,&

norm_dot);
15 sym_rank1<<<...>>>(x_vec_dev,d_vec_dev,Ncol);
16 norm_dot=1/norm_dot;
17 cublasDscal(...,Ncol,&norm_dot,x_vec_dev,1);
18 cublasDdot(...,Ncol,co_vec_dev,1,x_vec_dev,1,&res);
19 cudaMemcpy(x_vec.data(),x_vec_dev, ...);

Listing 1. ”...” means code has been omitted.

C. C++ PSTL
The C++ Parallel Standard Template library (PSTL) was

officially introduced for the first time in the 2017. This stan-
dard allowed the parallel execution of algorithms specifying
an execution policy:
• std::execution::seq → The sequenced policy

(since C++17). This policy forces the execution of an
algorithm to run sequentially on the CPU.

3https://developer.nvidia.com/cublas

https://github.com/alpha-unito/parallel-interior-point-solver
https://developer.nvidia.com/cuda
https://developer.nvidia.com/cublas


• std::execution::unseq → The unsequenced pol-
icy (since C++20). With this policy, the calling algorithm
is executed using vectorization on the calling thread.

• std::execution::par→ The parallel policy (since
C++17). This policy tells the compiler that the algorithm
could be run in parallel.

• std::execution::par_unseq → The parallel un-
sequenced policy (since C++20). This policy allows the
algorithm to be run in parallel on multiple threads each
able to vectorize the calculation.

Proposal [17] aims to include in the standard C++26 a
linear algebra layer of abstractions that allow user to use
Basic Linear Algebra Subprograms (BLAS) directly from
C++. In this work, we used an experimental version of
stdblas provided by NVIDIA in the hpc_sdk toolkit 4. We
re-wrote the CUDA code using C++ parallel algorithms like
std::transform,std::copy and stdblas linear algebra
algorithms with mdspan. In particular, we used wrappers
to BLAS level 3 functions like matrix_product,
triangular_matrix_vector_solve, wrappers to
BLAS level 2 function matrix_vector_product and
wrappers to BLAS level 1 function vector_norm2,
dot. The library can be used to offload C++ and linear
algebra algorithms on GPU setting the flags -stdpar=gpu
-cudalib=cublas at compile time. In this way the
CuBLAS library is used as a back-end for linear algebra
algorithms. The same code can be executing on multicore
CPU adding the flags -stdpar=multicore and linking
the OpenBLAS library5 -lblas. For our experiments we
used the par policy which allows for very intuitive and
easy parallelization of the code, and the broad range of
linear algebra built-in functions enables an easy usage of this
framework. The complexity of our implementation is O(n3),
and in particular the complexity of out implementation is:

9O(n) + 3O(n2) + 3O(n3) = O(n3)

The cubic component of the complexity of our al-
gorithm is given by the two calls that are done
to stdex::linalg::matrix_product, and by the
cholesky solver.

V. RESULTS

In this section, we are going to illustrate our results. In
particular, we will comment on the weak and strong scalability
of our algorithm with OpenMP and on the performances at var-
ious problem sizes for the CUDA and PSTL implementations.
The experiments were run on an EpiTO [3] ARM machine,
which consists of:
• Ampere Altra Q80-30 CPU (80-core Arm Neoverse N1),
• 512GB of memory,
• 2 x NVIDIA A100 GPU (40GB vram).

We compile the code with the following library versions: gcc
12.2.0, nvhpc 23.5 and CUDA 11.8.

4https://developer.nvidia.com/hpc-sdk
5https://www.openblas.net/

Similarly to [22], we chose to benchmark the numerical
aspect of our implementation rather than a real problem,
by generating random positive definite matrices with Python.
Moreover, from Algorithm 1, we had to choose m < n,
otherwise the problem becomes a closed solution of a linear
system.

We are going to present separately the OpenMP results and
the others since the OpenMP code is not aligned with the other
implementations. On the contrary, the other implementations
are aligned and comparable. In addition, OpenMP is more suit-
able for a theoretical treatment of the parallel algorithm, since
every operation was implemented from scratch, providing a
naive overview of the algorithm. The tests were performed by
executing 10 iterations and then computing the average time
required per iteration. Furthermore, we conducted a sanity
check on small problems to ensure the correctness of our
implementations.

A. Sequential and OpenMP implementation

OpenMP results can provide insights for the scalability of
LP problems when the parallelization involves single opera-
tions within the algorithm. Analyzing Figure 1, we have the
average time per iteration, with an increasing problem size
and number of processors. To increase the number of proces-
sors we used OMP_NUM_THREADS environment variable to
control how many threads were used.

The average time per iteration in Figure 1 shows that when
the number of processors grows, the time increases consis-
tently. In this case, the number of columns was fixed at 10000
and the number of rows grew linearly: number of threads×
100.

We decided to compare the OpenMP implementation with
the PSTL implementation for CPU, which allows the limitation
of threads used. We can observe that using existing libraries
definitly improves the performances in terms of weak scalabil-
ity. In particular, if the times grow consistently with a higher
number of threads (and a higher dimension of the problem),
for PSTL-CPU the time increases very slowly.

Figure 1. Weak scaling analisys of OpenMP implementation.

https://developer.nvidia.com/hpc-sdk
https://www.openblas.net/


Since the OpenMP implementation is entirely from scratch,
it presents limited results. The parallelization of the single
operations instead of the whole algorithm is a limit. In fact,
as we can see from Figure 1, after 10 threads the performances
start to decrease.

However, we can notice from Figure 2 that the improvement
in performance is not negligible with respect to using a single
processor (sequential implementation), with an improvement
of up to 35 times for OpenMP and 50 for PSTL-CPU.

Figure 2 shows the strong scaling behavior with a fixed
problem size of 4000 × 8000, increasing the number of pro-
cessors. Ahmdal’s law evaluates whether a constant problem
size impacts a growing number of processors. It is important
to state that the OpenMP implementation does not use BLAS
libraries. This leads to some loss in performance in compar-
ison with the PSTL executed with multicore and OpenBLAS
library.

Figure 2. Strong scaling with OpenMP.

From Figure 2 it is evident the difference between our two
implementations that run on CPU. In particular, the OpenMP
implementation stops scaling after 50 threads, while PSTL-
CPU keeps improving its performance.

From this comparison, there are several important things to
highlight. Implementing from scratch the operations of this
algorithm allowed us to have an overview of how it worked,
with the possibility of assessing the OpenMP parallelization
techniques. However, this strategy has resulted in being less
performant than using PSTL, which is an advanced library that
operates in the most optimized way. Consequently, it is not fair
to compare OpenMP and PSTL, since the two implementations
are not perfectly aligned, but we will further detail this concept
in the following.

To conclude, the parallelization of this algorithm with
OpenMP brought a good improvement in performance with
respect to the sequential code, reaching a 35x speed up.
However, the weak scaling behavior has shown only limited
performances, probably due to the parallelization of the single
operations instead of a whole restructured algorithm.

B. OpenMP and PSTL implementation results

In this section, we are going to discuss the overall per-
formance of our implementations. This comparison is at the
core of this study and wants to give initial insights into the
impact of different parallel models when used for Interior-
point methods and for Karmarkar’s algorithm in particular. In
our testing, we managed to use the implementation on CPU up
to a matrix size of 16000 rows by 32000 columns. We could
not use OpenMP on bigger matrices, as the time required to
get a result wasn’t feasible.

On the one hand, comparing the OpenMP implementation
with PSTL on multi-core is unfair since the first one is
implemented from scratch and the other one is optimized.
However, we decided to put the overall results according to
whether it was run on a multi-core CPU or GPU. On the
other hand, as we can see from the comparison between Table
I and Table II(namely plotted in Figure 3 and Figure 4),
when the matrix size is small (less than 4k×8k) the PSTL
on CPU (PSTL-CPU) shows competitive results with its GPU
counterpart (PSTL-GPU). This is due to data movement and
cache effects, which is an interesting fact highlighting the
possibility of reaching performances similar to GPUs if the
problem is small enough and, most of all, using the same
code base.

Figure 3. Results of Table I.

A fair comparison between different parallel models is
not trivial since it depends on the alignment of the imple-
mentations: different implementations should imply the same
operations and the same optimization level. While the first
is achievable, the second represents an interesting challenge.
The results shown can be considered comparable (except for
OpenMP, which does not use BLAS routines), as we put much
effort into aligning PSTL and CUDA code. However, for future
work, our goal is to optimize our implementations further.

C. PSTL and CUDA native implementation results

In this section, we discuss the performance of the PSTL
implementation against a native CUDA implementation. From
the results shown in Table II, we can clearly see that the CUDA



Figure 4. Results of Table II.

native version yields better results than PSTL (though only
marginally). However, it must be noted that PSTL is still an
experimental library and more performance improvements are
to be expected in the future.

In particular, figure 4 highlights an overhead between
CUDA and PSTL when the matrices are small and do not
fill entirely the GPU. However, when the size of the matrices
grows, the bottleneck becomes the computation of level 3
BLAS, which are used in both CUDA and PSTL code, and
consequently, performance is similar.

Table I
FINAL TIMES OF OUR IMPLEMENTATIONS ON CPU.

Matrix size OpenMP (s) PSTL-CPU (s)

1k×2k 0.4947± 0.0492 0.0165± 0.0071

2k×4k 1.1702± 0.6588 0.0524± 0.0043

4k×8k 5.2870± 0.0894 0.2767± 0.0132

8k×16k 53.4493± 0.9770 1.9395± 0.0565

16k×32k 1022.0564± 10.6253 14.6499± 0.0659

Table II
FINAL TIMES OF OUR IMPLEMENTATIONS ON GPU.

Matrix size CUDA (s) PSTL-GPU (s)

1k×2k 0.0036± 0.0 0.1095± 0.0052

2k×4k 0.0102± 0.0 0.2115± 0.0074

4k×8k 0.0314± 0.0046 0.452± 0.0339

8k×16k 0.1627± 0.0017 1.1491± 0.0988

16k×32k 1.2372± 0.01 3.2508± 0.0387

16k×64k 2.6471± 0.0934 4.4214± 0.0375

32k×64k 11.5167± 0.0934 13.9629± 0.1048

On the other hand, it is surprising that through PSTL we get
competitive performances with CUDA native implementation.

This is very important from a programming point of view.
In fact, given a sequential code, the CUDA implementation
requires a complete restructuring of the code, and most of
the time is not trivial to achieve. With PSTL the code base
needed only marginal adjustments and reached competitive
performances. Of course, the CUDA version performs better,
but it must be noted that PSTL implementation is way more
portable and flexible.

To conclude, we stopped at dimension 32k×64k since we
reached the full GPU capacity with the biggest matrices
(40GB). We see this result as a possible step towards a unified,
user-friendly, and flexible language for optimizing the code
on GPUs for Linear Algebra operations, providing a valid and
feasible alternative to CUDA.

VI. CONCLUSIONS

So far we have discussed Karmarkar’s Interior-point method
and its parallelization through modern frameworks. In particu-
lar, we presented results that leveraged OpenMP, CUDA, and
PSTL, enabling GPU acceleration within our implementation.
Through the OpenMP implementation (every operation was
developed from scratch), we were able to assess the difficulty
in parallelizing this family of algorithms in an efficient and
scalable way. To produce valuable results, the use of BLAS
is needed and GPU acceleration can definitively boost the
performance. In particular, leveraging PSTL we were able to
develop a code base that could run both on multi-core and
on GPU, with minimal effort with respect to the sequential
version. On the other hand, through CUDA and the use of
BLAS, it is possible to improve consistently the performances,
reaching the best overall results.

PSTL is a library in development, so further improvements
are expected in the future. Nevertheless, the possibility of
having GPU acceleration with the same code base as the
sequential version paves the way to a unified and portable
programming language, and it needs to be considered as an
important step towards more friendly solutions with respect to
the development of code with CUDA, that most of the time
hinges the GPU-acceleration for non-expert programmers [2].

VII. FUTURE WORKS

This work might be considered a good starting point for
many possible future research directions. It provides a valid
open-source code base to be improved with more Interior-point
algorithms. In addition, Section IV-A has shown the limitations
of leveraging the parallelization of this algorithm only through
single operations optimizations. From an algorithmic point
of view, this work represents a benchmark in optimizing
Karmarkar’s Interior-point method, and we hope to develop
a parallel version of the whole algorithm, enabling more
comparisons and further alternatives to compute-intensive par-
allelization models.
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