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QUANTITATIVE RESULTS FOR FRACTIONAL OVERDETERMINED

PROBLEMS IN EXTERIOR AND ANNULAR SETS

GIULIO CIRAOLO AND LUIGI POLLASTRO

Abstract. We consider overdetermined problems related to the fractional capacity. In
particular we study s-harmonic functions defined in unbounded exterior sets or in bounded
annular sets, and having a level set parallel to the boundary. We first classify the solu-
tions of the overdetermined problems, by proving that the domain and the solution itself
are radially symmetric. Then we prove a quantitative stability counterpart of the sym-
metry results: we assume that the overdetermined condition is slightly perturbed and we
measure, in a quantitative way, how much the domain is close to a symmetric set.

1. Introduction

In the present paper we prove quantitative symmetry results for overdetermined problems
involving the fractional Laplacian in unbounded exterior sets or bounded annular sets.
These problems originate from the study of capacity of a set and relative capacity which,
in the classical setting, are given by

cap(Ω) := inf

{
1

2

∫

Rn

|∇v|2dx : v ∈ C∞
c (Rn), v|Ω ≥ 1

}
,

and

cap(Ω;D) := inf

{
1

2

∫

D
|∇v|2dx : v ∈ C∞

c (Ω), v|D ≥ 1

}
,

respectively; here D and Ω are bounded open sets, with D ⊂ Ω ⊂ R
n, n ≥ 3, and ∇v is

the gradient of the function v.
Instead of the classical notion of capacity, in this paper we consider the capacity in a frac-

tional setting. For a parameter s ∈ (0, 1), the fractional capacity of order s (or s-capacity)
of the set Ω is defined as follows:

caps(Ω) := inf{[v]2s | v ∈ C∞
c (Rn), v|Ω ≥ 1} , (1)

where [v]s is the Gagliardo seminorm of v which is defined by

[v]2s :=

∫

R2n

|v(x) − v(y)|2

|x− y|n+2s
dxdy .

Analogously, one can define the relative fractional capacity of order s of the couple of sets
(Ω,D) by

caps(Ω;D) := inf{[v]2s | v ∈ C∞
c (Ω), v|D ≥ 1} . (2)
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The Euler-Lagrange equations associated to (1) and (2) are both related to the so-called
fractional Laplacian of order s (or s-Laplacian), which is denoted by (−∆)s and it is given
by

(−∆)su(x) := cn,s P.V.

∫

Rn

u(x)− u(z)

|x− z|n+2s
dz,

for u ∈ C∞
c (Rn), where

cn,s = s (1− s) 4sπ−n/2Γ(n/2 + s)

Γ(2− s)
(3)

(see for example [DNPV12]). It can be proved that caps(Ω) and caps(Ω;D) are uniquely
achieved by two functions uΩ, uΩ,D ∈ Hs(Rn) which satisfy





(−∆)suΩ = 0 in R
n \ Ω,

uΩ = 1 in Ω,

uΩ(x) → 0 as |x| → +∞ ,

(4)

and 



(−∆)suΩ,D = 0 in A := Ω \D,

uΩ,D = 1 in D,

uΩ,D = 0 in R
n \ Ω ,

(5)

respectively. The function uΩ is sometimes called the s-capacitary potential.
Overdetermined problems for (4) and (5) have been considered in [SV19] where the

overdetermined condition is given on the normal s-derivative at the boundary, which is
assumed to be constant in the spirit of Serrin’s overdetermined problem.

In this paper we consider a somehow discrete version of Serrin’s overdetermined condition,
and we instead assume that the solution is constant on a surface parallel to the boundary.1

In this setting, our main results can be considered as the generalization of the results in
[CDP+23] to exterior and annular domains.

In order to clearly state our results, we recall that the Minkowski sum of two sets A and
B is defined by

A+B = {x+ y | x ∈ A y ∈ B}.

Our first result deals with solutions of problem (4) with the overdermining assumption
that the solution is constant on a surface parallel to ∂Ω.

Theorem 1.1. Let Ω be a bounded domain in R
n. Let R > 0 and assume that G := Ω+BR

is such that ∂G of class C1. Then, there exists a solution u ∈ Hs(Rn)∩C(Rn) of (4) such
that

u = c on ∂G (6)

for some constant c if and only if G and Ω are concentric balls and u is radially symmetric.

1Regarding problem (5), it is more precise to say that the solution is constant on each connected com-
ponent of the parallel surface, see Theorem 1.3 below.
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We will prove Theorem 1.1 by using the method of moving planes. Once symmetry is
established, one can investigate the quantitative stability result for Theorem 1.1. The idea
is to assume that the overdetermined condition (6) is replaced by a weaker condition which
implies that the solution is close to a constant on ∂G. In this direction, it is useful to
consider the Lipschitz seminorm [u]Γ of u on Γ = ∂G, which is given by

[u]Γ := sup
x,y∈Γ, x 6=y

|u(x)− u(y)|

|x− y|

and the parameter

ρ(Ω) := inf{|t− s| | ∃p ∈ Ω such that Bs(p) ⊂ Ω ⊂ Bt(p)} , (7)

which controls how much the set Ω differs from a ball (clearly, ρ(Ω) = 0 if and only if Ω is
a ball).

Another relevant quantity which we need to quantify the stability results is the radius of
the touching ball condition. More precisely, given a set E we denote the optimal exterior
and interior radii in the touching ball condition by r

e
E and r

i
E , respectively.

Hence, our main goal is to obtain quantitative bounds on ρ(Ω) in terms of [u]∂G, as done
in the following theorem.

Theorem 1.2. Let Ω be a bounded domain of Rn with ∂Ω of class C2. Let R > 0 and let
G = Ω + BR be such that ∂G is of class C2. Let u ∈ Cs(Rn) be a solution of (4). Then,
we have that

ρ(Ω) ≤ C∗ [u]
1

s+2

∂G , (8)

with C∗ = C∗(n, s,R,diam(Ω), |Ω|, reΩ) > 0, where diam(Ω) and |Ω| denote the diameter and
the volume of Ω, respectively, and r

e
Ω is the radius of the exterior touching ball condition at

Ω.

In the second part of the article we consider an overdetermined problem involving annular
sets. More precisely, let D,Ω ⊂ R

n be bounded open domains such that D ⊂ Ω, set

A := Ω \D , (9)

and we consider solutions to (5). It is clear that, since ∂Ω and ∂D do not touch, we have
that

d := dist(D,Rn \Ω) > 0 . (10)

By choosing a positive parameter R < d/2 we have that the set

ΓA
R := {x ∈ A | dist(x, ∂A) = R} (11)

can be written as
ΓA
R = ΓD

R ∪ ΓΩ
R , (12)

with 2

ΓD
R := {x ∈ A | dist(x, ∂D) = R},

ΓΩ
R := {x ∈ A | dist(x, ∂Ω) = R},

2Notice that ΓA
R = ∂((Ωc +BR) \ (D +BR)).
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with ΓD
R ∩ΓΩ

R = ∅. On each of these hypersurfaces we assume that the solution satisfies the
overdetermined condition

u = α on ΓD
R ,

u = β on ΓΩ
R,

(13)

where α and β are two positive constants.

We have the following symmetry result.

Theorem 1.3. Let A and ΓA
R be given by (9) and (11), respectively, where R is such that

ΓA
R is of class C1.
Let u ∈ Hs(Rn) ∩ C(Rn) be a solution of (5) satisfying the overdetermined conditions

(13). Then, D and Ω are concentric balls and u is radially symmetric.

Now we describe the quantitative stability result that we obtain for Theorem 1.3. In
this case, we replace the overdetermined condition (5) by assuming that the solution has
small Lipschitz seminorm on each connected component of ΓA

R. For this reason we define
the following deficit

defA(u) := max{[u]ΓD
R
, [u]ΓΩ

R
}, (14)

and we have the following result.

Theorem 1.4. Let A and ΓA
R be given by (9) and (11), respectively, and assume that ∂A

and ΓA
R are of class C2.

Let u ∈ Cs(Rn) be a solution of (5). Then

ρ(D) + ρ(Ω) ≤ C∗defA(u)
1

s+2 , (15)

with ρ given by (7) and C∗ = C∗(n, s,R,diam(Ω), |Ω|, |D|, reD , r
i
Ω) > 0, where r

e
D and r

i
Ω are

the radius of the uniform exterior touching ball to D and of the interior touching ball to Ω,
respectively.

Theorems 1.2 and 1.4 are the main results of this paper, and they are obtained by using
a quantitative approach to the method of moving planes, which was originally developed
in [ABR99] (see also [CV18], [CMS16], [CMS15], [CFMN18], [CDP+23]). This approach
presents many differences when applied in a classical local settings and in a fractional
framework, and in this paper we prefer to tackle fractional problems. We mention that
all the symmetry and quantitative symmetry results in this paper have their classical local
counterpart, which can be still attacked by using the method of moving planes and it will
be considered in a future work.

We finally notice that, in Theorems 1.1-1.4, we assumed that Ω and D are domains and
then they are connected. The connectedness assumption is not necessary and it can be
easily removed, and hence our results can be extended in that setting. However, this has
a cost in managing the notation and it would worsen the presentation and clarity of the
paper. For this reason, we preferred to assume that Ω and D are connected.

The paper is organized as follows. In Section 2 we present some preliminary notions and
results, including a weak maximum principle for s-harmonic functions in an unbounded
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domain. Section 3 is devoted to the results for exterior sets and includes the standard
machinery for the method of moving planes. In Section 4 we consider the problems involving
annular domains.

Acknowledgements. The authors have been partially supported by the “Gruppo Nazionale
per l’Analisi Matematica, la Probabilità e le loro Applicazioni” (GNAMPA) of the “Istituto
Nazionale di Alta Matematica” (INdAM, Italy). The authors thank the anonymous referee
for the valuable comments and suggestions.

2. Preliminaries and notation

In this section we introduce some notation and recall some results which will be useful
in the rest of the paper.

We recall that given two functions u, v ∈ Hs(Rn) the Gagliardo seminorm of u is defined
as

[u]2s :=
cn,s
2

∫

Rn

∫

Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy,

and the scalar product in Hs(Rn) between u and v is defined as

E(u, v) =
cn,s
2

∫

Rn

∫

Rn

(u(x)− u(y))(v(x) − v(y))

|x− y|n+2s
dxdy ,

where cn,s is given by (3).
In order to write a Hopf’s boundary point lemma in a quantitative form, it is useful to

consider the solution ψBr(x0) to the fractional torsion problem in a ball of radius r > 0
centered x0, i.e. ψBr(x0) satisfies

{
(−∆)sψBr(x0) = 1 in Br(x0)

ψBr(x0) = 0 in R
n \Br(x0) ,

(16)

and it is given by
ψBr(x0)(x) := γn,s(r

2 − |x− x0|
2)s+ (17)

for any x ∈ R
n, where γn,s is a constant depending only on n and s.

Lemma 2.1. Let Ω ⊂ R
n be an open set and let u ∈ Hs(Rn) be a solution of

{
(−∆)su ≥ 0 in Ω,

u ≥ 0 in R
n \ Ω .

Let x0 ∈ Ω and r > 0 be such that Br(x0) ⊆ Ω. Let K ⊂ R
n be a compact set such that

|K| > 0 , dist(K,Br(x0)) > 0 , essinfKu > 0 .

Then
u ≥ CH ψBr(x0) in Br(x0) ,

where

CH := cn,s
|K| essinfKu

(2r + dist(K,Br(x0)) + diam(K))n+2s
, (18)



6

with cn,s and ψBr(x0) given by (3) and (17), respectively.

Lemma 2.1 was already proved in [GS16] and [ROS14]. Here, inspired by [FJ15] and
[CDP+23], we give a proof which allows us to explicitly write the constant CH given by
(18), and to show its dependency on the parameters which are relevant in our problem.
This will be useful when we will prove the quantitative results.

Proof of Lemma 2.1. We consider the barrier function

w(x) := ψB(x) + δ χK(x) ,

where B = Br(x0), χK is the characteristic function of K ⊂ R
n and δ > 0 is a constant

that will be chosen later.
Let ϕ ∈ Hs

0(Ω) be a nonnegative test function. We have

E(w,ϕ) = E(ψB , ϕ) + δ E(χK , ϕ) =

∫

B
ϕ− δ cn,s

∫

K

∫

B

ϕ(y)

|x− y|n+2s
dy dx ≤

≤ (1− δ C)

∫

B
ϕ,

which is less or equal than zero if we choose δ ≥ C−1 with

C = cn,s |K| inf
x∈K,y∈B

1

|x− y|n+2s
.

By setting

τ := essinfKu/δ = CessinfKu

and applying the weak maximum principle for s-harmonic functions to

v := u− τ w ,

we get that

u ≥ cn,s
|K| essinfKu

(diam(B) + dist(K,B) + diam(K))n+2s
ψB inB,

which is the desired result. �

Since our approach is based on the method of moving planes, a particular attention must
be given to antisymmetric s-harmonic functions. More precisely, we will have to consider
functions which are antisymmetric with respect to a hyperplane which can be chosen to be
{x1 = 0} (up to a translation and rotation).

In order to list these results, we need to introduce some notation: we setH+ := {x1 > 0},
H− := {x1 < 0} and T := {x1 = 0}. Let

Q : Rn → R
n , y 7→ y′ = (−y1, y2, . . . , yn) ,

be the reflection with respect to T and, for a given set E we call E+ := E ∩ H+ and
E− := E ∩H−.

The first result is a weak maximum principle for s-harmonic antisymmetric functions,
which is stated in [FJ15, Proposition 3.1] on domains that are bounded, although for
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homogeneous equations this condition is not needed. We report this proposition here and
we sketch a proof.

Lemma 2.2 (Weak maximum principle for antisymmetric functions). Let Ω ⊂ R
n be a

compact set and let u ∈ Hs(Rn) be an antisymmetric (w.r.t. T = {x1 = 0}) solution of
{
(−∆)su = 0 in Ωc,

u ≥ 0 in Ω+.

Then, u ≥ 0 a.e. in H+.

Proof. Since u is s-harmonic in Ωc then for every ϕ ∈ Hs
0(Ω

c) we have

E(u, ϕ) = 0. (19)

Let ϕ = u−χH+ ∈ Hs
0(Ω

c), where χH+ is the characteristic function of H+. Following
the same computations as in [FJ15, Proposition 3.1] we get

0 ≤ E(u, ϕ) ≤ −E(ϕ,ϕ) = −[ϕ]2s , (20)

which immediately implies that ϕ = 0 a.e. and hence u− = 0 a.e. in H+. �

An analogous weak maximum principle holds for nonnegative functions in Hs(Rn). More
precisely we have

Lemma 2.3 (Weak maximum principle). Let Ω ⊂ R
n be a compact set and let u ∈ Hs(Rn)

be a solution of {
(−∆)su = 0 in Ωc,

u ≥ 0 in Ω.

Then, u ≥ 0 a.e. in R
n.

Proof. The proof is analogous to the one of Lemma 2.2, since it is enough to consider
ϕ = u−. �

As an immediate consequence we have the following comparison principle for s-capacitary
functions.

Corollary 2.1. Let E ⊂ F ⊂ R
n be open bounded domains, and let uE and uF be the corre-

sponding capacitary functions, i.e. the solutions to (4) for Ω = E and Ω = F , respectively.
Then we have

uE ≤ uF (21)

in R
n.

Proof. Since uE is a s-capacitary function, from [War15, Lemmas 2.6 and 2.7] we have that
0 ≤ uE ≤ 1 in R

n \ E. Then, by applying Lemma 2.3 to v := uF − uE we obtain the
result. �

From Lemma 2.2, we can also recover a quantitative version of the Hopf lemma for
antisymmetric functions as proved in [CDP+23], that we recall below.
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Lemma 2.4 (Lemma 4.1 in [CDP+23]). Let Ω be an open set in H− and B ⊂ Ω a ball of
radius R > 0 such that dist(B,H+) > 0. Let v ∈ Hs(Rn) be antisymmetric and a solution
of {

(−∆)sv ≥ 0 in Ω,

v ≥ 0 in H−.

Let K ⊂ H− be a set of positive measure such that K ⊂ (H− \B) and essinfKv > 0. Then
we have that

v ≥ C
[
dist(K,H+) |K| essinfKv

]
ψB in B, (22)

with

C :=
2(n+ 2s)C(n, s) dist(B,H+)n+2s+1

(dist(B,H+)n+2s + γn,sC(n, s) |B|R2s) (diam(B) + diam(K) + dist(Q(K), B))n+2s+2
.

Remark 2.1. Lemma 4.1 in [CDP+23] actually requires that v ∈ Cs(Ω), but it is straight-
forward to verify that the proof is still valid if one assumes v ∈ Hs(Rn). For this reason we
omit the proof of Lemma 2.4.

It is clear that Lemma 2.4 provides a quantitative version of the strong maximum prin-
ciple for antisymmetric s-harmonic functions, which still holds when Ω is not bounded, as
already noted in [SV19, Proposition 2.1].

Lemma 2.5 (Strong maximum principle for antisymmetric functions). Let Ω be an open
set with Ω ⊂ H− and let v ∈ C(Ω) be antisymmetric and a solution of

{
(−∆)sv ≥ 0 in Ω,

v ≥ 0 in H−.

Then, either v > 0 in Ω or v ≡ 0 in R
n.

Proof. From the weak maximum principle in Lemma 2.2 we have that v ≥ 0 in Ω. Now
assume there exists x0 ∈ Ω such that v(x0) = 0 and choose a ball B centered in x0 and
such that B ⊂ Ω. Let K ⊂ Ω be a compact set such that dist(B,K) > 0 and |K| > 0. If
we furthermore choose B and K such that infK v > 0, by applying Lemma 2.4 we have

v ≥ C
[
dist(K,H+) |K| inf

K
v
]
ψB in B,

and in particular v(x0) > 0, which is a contradiction. �

Another tool from [CDP+23] that we will need in our proof is the boundary Harnack
inequality for s-harmonic antisymmetric functions that we report here for clarity.

Lemma 2.6 (Lemma 2.1 in [CDP+23]). Let u ∈ C2(BR) ∩C(Rn) be a solution of




(−∆)su = 0 in BR,

u(x′) = −u(x) for every x ∈ R
n,

u ≥ 0 in H+.
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There exists a constant K > 1 only depending on n and s such that, for every z ∈ B+
R/2

and for every x ∈ BR/4(z) ∩B
+
R we have

1

K

u(z)

z1
≤
u(x)

x1
≤ K

u(z)

z1
. (23)

3. Exterior sets

In this section we consider the exterior overdetermined problem and prove Theorems 1.1
and 1.2.

3.1. The method of moving planes: notation. We introduce some notation in order
to exploit the moving planes method. Given e ∈ S

n−1, a set E ⊂ R
n and λ ∈ R, we define

Tλ = T e
λ = {x ∈ R

n |x · e = λ} a hyperplane orthogonal to e,

Hλ = He
λ = {x ∈ R

n |x · e > λ} the “positive” half space with respect to Tλ

Eλ = E ∩Hλ the “positive” cap of E,

x′λ = x− 2(x · e− λ) e the reflection of x with respect to Tλ,

Q = Qe
λ : Rn → R

n, x 7→ x′λ the reflection with respect to Tλ.

If E ⊂ R
n is an open bounded set with boundary of class C1 then we define

Λe := sup{x · e |x ∈ E}

and

λe = inf{λ ∈ R |Q(Eλ̃) ⊂ E, for all λ̃ ∈ (λ,Λe)}.

From this point on, given a direction e ∈ S
n−1, we will refer to Tλe

= T e and Eλe
= Ê as

the critical hyperplane and the critical cap with respect to e, respectively, and will call λe
the critical value in the direction e. We now recall from [Ser71] that, for any given direction
e, at least one of the following two conditions holds:

Case 1 - The boundary of the reflected cap Qe(Ê) becomes internally tangent to the
boundary of E at some point P 6∈ T e;

Case 2 - the critical hyperplane T e becomes orthogonal to the boundary of E at some
point Q ∈ T e.

3.2. The symmetry result. We start with the symmetry result given in Theorem 1.1.

Proof of Theorem 1.1. Let e ∈ S
n−1 be a fixed direction. Withouth loss of generality we

assume e = e1. We recall that we are considering a solution u ∈ Cs(Rn) of (4) satisfying
(6) and that G = Ω+BR, with ∂G of class C1.

We apply the method of moving planes described in Subsection 3.1 by letting E = G.
Without loss of generality, we can assume that λe = 0 (that is, the critical hyperplane
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T goes through the origin), and we simplify the notation by setting H− := {x1 < 0},
Ω− := H− ∩ Ω and considering

v(x) := u(x)− u(Q(x)) for x ∈ R
n,

where Q : Rn → R
n, x 7→ x′ is the reflection with respect to T . We have





(−∆)sv = 0 in H− \ Ω−

v ≥ 0 in Ω−

v(Q(x)) = −v(x) for every x ∈ R
n.

By using Lemma 2.2 we know that v ≥ 0 in H− and then Lemma 2.5 tells us that either
v > 0 in H− \ Ω− or v ≡ 0 in R

n. Now we show that if we assume that v > 0 in H− \ Ω−

then we obtain a contradiction.
Case 1 - Let P be a critical point on ∂G. Since both P and its reflection P ′ belong to

∂G and (6) holds, we immediately get

v(P ) = u(P )− u(P ′) = 0,

which is a contradiction.

Case 2 - In this case e1 is tangent to ∂G at a point Q ∈ ∂G, and therefore we have that
∂1v(Q) = 0. On the other hand, since Q is far away from the boundary ∂Ω, we can use
Lemma 2.6 to show that ∂1v(Q) < 0, which is a contradiction.

Indeed, setting z = (−R/4, Q2, . . . , Qn) and x = xt = (−t,Q2, . . . , Qn) ∈ BR/4(z), with
0 < t < R/8, we have that

v(xt)

−t
≥ −

4

RK
v(z), (24)

where K > 1 is a constant only depending on n and s. Being z ∈ H− \ Ω−, we have that
v(z) > 0, and the claim follows from (24) by letting t→ 0+. �

3.3. Almost symmetry in one direction. Now we consider the quantitative stability
result and prove Theorem 1.2. This will be done in two subsequent steps: we first prove
the quantitative stability estimate in one direction and then, in the proof of Theorem 1.2
we will sketch a general idea of how to use the result in one direction to obtain the final
quantitative estimate; the proof can be found in details in Section 6 of [CDP+23].

We start by proving a preliminary result which gives the behaviour of the solution to (4)
close to the boundary.

Lemma 3.1. Under the assumptions of Theorem 1.2, let u be a solution of (4) and let
v := 1− u. For any r ≤ r

e
Ω we have

v(x) ≥ Ccap (dist(x, ∂Ω))
s in (Ω +Br) \ Ω, (25)

where

Ccap :=
cn,s γn,s ωn

4

rn+s

(2r + r0 diam(Ω))n+2s

and r0 > 0 is a constant depending on n and s.
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Proof. Without loss of generality, we can assume that the origin O is contained in Ω and
consider the s-capacitary solution ũ of the ball Bdiam(Ω) centered at the origin and of radius
diam(Ω): 




(−∆)sũ = 0 in R
n \Bdiam(Ω),

ũ = 1 in Bdiam(Ω),

ũ(x) → 0 as |x| → +∞.

Since 0 ≤ ũ ≤ 1 and ũ is radial, non-increasing and continuous (see for instance [SV19,

Theorem 1.10], there exists a radius R̃ = R̃(diam(Ω)) > 0 such that

ũ < 1/2 in R
n \BR̃.

Moreover, from Corollary 2.1 we have that ũ ≥ u in the whole space. From this we get that

v = 1− u ≥ 1− ũ ≥ 1/2 in R
n \BR̃. (26)

We now choose K = Br
e
Ω
((R̃ + r

e
Ω) e1). For x0 ∈ ∂Ω, we now apply Lemma 2.1 to v with

B = Br
e
Ω
(x0) and K and get

v(x) ≥
cn,s γn,s ωn

2

Rn+s

(4R+ dist(K,B))n+2s
(R− |x|)s in B.

We now repeat the same argument on the whole boundary ∂Ω by keeping each time the
same fixed set K. We notice that in every case we have dist(K,B) ≤ 2R̃, and by using the
previous inequality we obtain (25), where the constant Ccap > 0 can be written as

Ccap :=
cn,s γn,s ωn

4

Rn+s

(2R+ R̃)n+2s
.

In order to complete the proof, we show how R̃ depends on diam(Ω). We consider the
solution uB1

to the capacitary problem (4) with Ω = B1, and we set

r0 = inf{ |x| | uB1
(x) < 1/2} .

By scaling properties, it is clear that R̃ = r0 diam(Ω). This completes the proof. �

With this result at hand, we can prove a quantitative estimate which involves the measure

of Ω− \ Q(Ω̂).

We fix a direction e ∈ S
n−1. Without loss of generality, we can assume that e = e1 and

that the associated critical hyperplane is T = {x1 = 0}, with Q : Rn → R
n, x 7→ x′ the

reflection with respect to T . For the proof of the next lemma we will use the following
notation: we set for t ≥ 0

Ωt := Ω +Bt(0), Ω̂t := Ωt ∩H
+, Ω−

t := Ωt ∩H
− Ut := Q(Ω̂t).

Note that G = ΩR.
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Lemma 3.2. Given P ∈ UR with B = BR/8(P ) such that dist(B, ∂U0) ≥ R/8, for δ > 0,
we have that

|Ω− \ Q(Ω̂) | ≤ C̃ (δ−(1+s)v(P ) + δ), (27)

where C̃ > 0 is a constant depending only on n, s, R, reΩ and diam(Ω).

Proof. We set Kδ := (Ω− \ Q(Ω̂)) \ (Eδ ∪ Fδ), where

Eδ := Q(Aδ) ∩ (Ω− \ Q(Ω̂)) with Aδ := {x ∈ Ωc | dist(x, ∂Ω) < δ},

Fδ := {x ∈ Ω− \ Q(Ω̂) |dist(x, T ) < δ}.

Using Lemma 2.4 with B := BR/8(P ) and K := Kδ we obtain

v ≥
⋆
C
[
dist(Kδ,H

+) |Kδ | inf
Kδ

v
]
ψB in B,

where
⋆
C > 0 is an explicit constant depending on n, s, R and diam(Ω). Here we used that,

in the present situation, we have K ⊂ Ω and that dist(B,U0) ≤ R.

Since Kδ ⊆ (Ω− \ Q(Ω̂)) \ Fδ, then

dist(Kδ,H
+) ≥ δ.

We now point out that in Kδ we have v = u−u′ = 1−u′; we can therefore apply Lemma
3.1 and get

v(x) ≥ Ccap(n, s, r
e
Ω) δ

s = Ccap δ
s for every x ∈ Kδ.

Moreover, we have

|Kδ| = |Ω− \ UR| − |Eδ ∪ Fδ| ≥ |Ω− \ UR| − (|Eδ|+ |Fδ|). (28)

By definition of Fδ, we have that

|Fδ| ≤ diam(Ω)n−1δ. (29)

By using Lemma 5.2 in [CDP+23], since Eδ ⊆ Aδ, we have

|Eδ| ≤

[
2n|Ω|

R

]
δ. (30)

Putting together (28), (29) and (30) we get

|Kδ | ≥ |Ω− \ UR| − c̃ δ,

where c̃ is a positive constant depending on n, diam(Ω) and r
e
Ω.

Hence we have proved that

v(P ) ≥
⋆
C Ccap (R/8)

2s γn,sδ
1+s

(
|Ω− \ UR| − c̃ δ

)
,

and, by choosing

C̃ := max





82s

CcapRs
⋆
C
, c̃



 ,

we get the desired inequality (27). �
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Once Lemma 3.2 is proved we can follow [CDP+23] to get the almost symmetry in
one direction and, with the same reasoning as in [CDP+23, Section 6], obtain the same
quantitative stability estimate required for the proof of Theorem 1.2. For this reason we
only sketch the main ideas in the following proof.

Proof of Theorem 1.2. Once we have inequality (27), we can argue as in Lemma 5.6 of
[CDP+23] to obtain the estimate for the almost symmetry in one direction, namely

|Ω− \ Q(Ω̂)| ≤ C[u]
1

s+2

∂G , (31)

where C := max{1,diam(Ω),K (R/2)} C̃ , with C̃ as in (27) and K = K(n, s) ≥ 1 is the
constant that appears in the boundary Harnack inequality in Lemma 2.6.

Now, up to a translation we can assume that the critical hyperplanes with respect to the
N coordinate directions T ej coincide with {xj = 0} for each j = 1, . . . , N , that is, they all
intersect at the origin.

The idea is then the following: for a given direction e ∈ Sn−1 we slice Ωλe
in (a finite

number of) sections depending on the critical value λe and consider their measure, namely

mk := | {x ∈ Ω | (2k − 1)λe ≤ x · e ≤ (2k + 1)λe} |, for k ≥ 1.

Since Ω is bounded, mk > 0 only up to an index k0 which behaves like the inverse of λe.
The key observation is that, by reflecting with respect to the origin and using (31), one has

m1 = | {x ∈ Ω | − λe ≤ x · e ≤ λe} | ≤ (n+ 3)C [u]
1

s+2

∂G ; (32)

moreover, by the moving plane procedure, mk ≤ m1 for every k up to k0 and therefore one
can then write the expression

|Ωλe
| ≤

k0∑

k=1

mk ≤ k0m1 ≤ (n+ 3) diam(Ω)C
1

λe
[u]

1

s+2

∂G . (33)

Inequalities (33) and some further calculations (see section 4 in [CDP+23]) yield

|λe| ≤ 4 (n + 3)
diam(Ω)

|Ω|
C[u]

1

s+2

∂G . (34)

Now it remains to establish a relationship between |λe| and ρ(Ω). We set ρmin :=
minz∈∂Ω |z|, ρmax := maxz∈∂Ω |z| and choose x, y ∈ ∂Ω such that |x| = ρmin and |y| = ρmax.
We then consider the unit vector

e :=
x− y

|x− y|

and the corresponding critical hyperplane T e. By construction, we know that dist(x, T e) ≥
dist(y, T e) and therefore some simple calculations lead to

ρ(Ω) ≤ ρmax − ρmin = |y| − |x| ≤ 2 dist(0, T e) = 2|λe|. (35)

Combining (34) and (35) leads to (8). It is worth pointing out that the new constants
appearing in (32) and onward only depend on the dimension n, the diameter diam(Ω) and
the volume |Ω|. �
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4. Annular sets

In this section we consider annular domains and prove Theorems 1.3 and 1.4. The
strategy that we use is still via the method of moving planes and it is similar to the
previous one; nevertheless, the method has to be carefully adapted to this situation. We
recall that we are considering solutions to (5), where A = Ω\D, with D ⊂ Ω bounded open
domains.

Now for a fixed direction e and a parameter λ ∈ R we let Tλ, Hλ, Qλ be as in the previous
section. We now consider

Σλ := (Ω ∩Hλ) \ Qλ(D)

which is the cap of the annulus Ω \D. Moreover, for a given set E, we define

dE := inf{λ ∈ R | Tµ ∩ E = ∅}

λE := inf{λ ≤ dE | for every µ > λ, (E ∩Hµ)
µ ⊂ (E ∩Hµ

µ) and ν(x) · e > 0 ∀x ∈ Tµ ∩ ∂E},

and the critical parameter λ is given by

λ := max{λD, λΩ}.

We mention that both the function u and its reflection u′ are s-harmonic in Σλ, as we
are going to use in in the proof of Theorem 1.3. We also notice that, thanks to our choices,
λ is the critical value for A with respect to the direction e, and now the critical position
can occur in four possible cases (namely, Cases 1 and 2 in Subsection 3.1 for both D and
Ω).

In order to avoid further technicalities we ask for the domains D and Ω to be regular
(namely, with boundaries ∂G and ∂Ω of class C2); the proof works in the same way if we
instead assume that ∂A is just of class C1, and ΓG

R and ΓΩ
R of class C2.

4.1. Symmetry result. With this setting, we are now ready to give a proof of the sym-
metry result for annular sets.

Proof of Theorem 1.3. We fix a direction e = e1 and reach the critical value λ. Without loss
of generality, we assume that T = {e1 = 0} and define the function w(x) := u(x) − u(x′)
for every x ∈ R

n. To simplify the notation we set Q = Qλ. Our aim is to show that
w is actually identically zero in Q(Σλ). This implies that both the function w and the
set A itself are symmetric with respect to direction e; since the direction e can be chosen
arbitrarily, the proof is then complete.
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Hence we have to show that w ≡ 0 in Q(Σλ). We notice that the function w is antisym-
metric with respect to e = e1 and

(−∆)sw(x) = 0 for x ∈ Q(Σλ),

w(x) = u(x)− u(x′) = 1− u(x′) ≥ 0 for x ∈ D ∩ Q(Ω̂),

w(x) = u(x)− u(x′) = u(x) ≥ 0 for x ∈ Ω− \ Q(Ω̂),

w(x) = 0 for x ∈ H− \ Ω−.

In particular, the last three inequalities tell us that w ≥ 0 in H− \ Q(Σλ). The weak
maximum principle for antisymmetric solutions in Lemma 2.2 implies that w ≥ 0 in Q(Σλ);
then, from the strong maximum principle in Lemma 2.5 we get that either w > 0 in Q(Σλ)
or w ≡ 0 in Q(Σλ).

In order to conclude, we notice that in this case we have four possible critical cases,
all of which can be treated as in the proof of Theorem 1.1. The conclusion then follows
straightforwardly. �

4.2. Almost symmetry in one direction. In order to prove almost symmetry in one
direction for the annular set, we need to make use again of the quantitative Hopf’s type
lemma ([CDP+23, Lemma 4.1]) and adapt it to the current problem.

We start with a lemma which gives the behaviour of the solution u of (5) inside the
annulus A with respect to the distance from the boundary. We start with a simple remark.

Remark 4.1. If u ∈ Cs(Rn) solves (5) with ∂A ∈ C1, then we have

0 < u < 1 in A. (36)

Indeed, applying the maximum principles for an s-harmonic function in A we get that
u has to be strictly positive in A. By using the same argument for ũ := 1 − u we get the
latter part of (36).

We have the following lemma.

Lemma 4.1. Under the assumptions of Theorem (1.4), let u be a solution of (5); then

min{u, 1− u}(x) ≥ C∗ (dist(x, ∂A))s in A, (37)

where

C∗ :=
cn,s γn,s
4n+2s+1

|D| min{riΩ, r
e
D, d/2}

s

diam(Ω)n+2s
.

Proof. We first prove (37) for the function u. This inequality follows by an application of
Lemma 2.1 and therefore we fix a compact set K1 ⊂ D such that |K1| = |D|/4. Since K1

is compact and D is open, then dist(K1, ∂D) > 0.
Let x ∈ A. Assume dist(x, ∂A) = dist(x, ∂Ω) and let x ∈ ∂Ω be such that dist(x, ∂Ω) =

dist(x, x) =: r. We apply Lemma 2.1 with K = K1 and B = Br(x) and get

u ≥ cn,s
|K1| infK1

u

(2r + dist(K1, Br(x)) + diam(K1))n+2s
ψBr(x) in Br(x). (38)
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Since u = 1 in K1 and

2r + dist(K1, Br(x)) + diam(K1) ≤ 4diam(Ω) ,

by evaluating (38) at x we have

u(x) ≥
cn,s γn,s
4n+2s+1

|D|

diam(Ω)n+2s
r2s =

cn,s γn,s
4n+2s+1

|D|

diam(Ω)n+2s
dist(x, ∂Ω)2s. (39)

Up until now we didn’t make use of the interior radius of the touching ball condition r
i
Ω >

0. If dist(x, ∂Ω) ≥ r
i
Ω the equation (39) immediately gives (37). If instead dist(x, ∂Ω) < r

i
Ω

we set r1 := min{riΩ, d/2}, x̃ ∈ A such that x ∈ ∂Ω ∩ ∂Br1(x̃) and apply Lemma 2.1 for
K = K1 and B = Br1(x̃) to get

u(x) ≥
cn,s γn,s
4n+2s+1

|D|

diam(Ω)n+2s
(r1 + |x− x̃|)s (r1 − |x− x̃|)s, (40)

which together with the fact that r1 − |x− x̃| = dist(x, ∂Ω) gives (37).

Assuming now dist(x, ∂A) = dist(x, ∂D) we can now repeat the same arguments with
r2 := min{reD, d/2} in place if r1 and we obtain (40) with r1 replaced by r2.

The proof of (37) for v := 1− u can be carried out in the same way; we only have to fix
a compact set K2 ⊂ R

n \Ω such that

dist(K1, Br(x)) + diam(K1) ≤ 2diam(Ω) ,

and |K2| = |D|/4, and then apply Lemma 2.1 with K = K2 as done before. �

We are now ready to state a version of Lemma 3.2 for the annulus, under the assumptions
of Theorem 1.4. The ball B will be chosen inside of a set where the antisymmetic function
w := u − u′ is s-harmonic (this time, it will be Q(Σλ)); in this case, the compact set K
consists of two components, in such a way that we can take into account the symmetric
differences between the sets Ω and G and their respective reflections via the moving plane
method. We define

L := Ω− \ Q(Ω̂)

M := D− \ Q(D̂)

K̃ := L ∪ (M ∩ Q(Ω̂)).

We have the following lemma.

Lemma 4.2. Given P ∈ Q(Σλ) with B = BR/8(P ) such that dist(B,Q(Σλ)) ≥ R/8 and
given δ > 0, we have that

|K̃| ≤ C̃ (δ−(1+s)v(P ) + δ), (41)

where C̃ > 0 is a constant depending only on n, s, R, reD, riΩ, diam(Ω), |D| and |Ω|.
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Proof. We set Kδ := K̃ \ (Eδ ∪ Fδ) where

Eδ := [ {x ∈ Ω | dist(x, ∂Ω) < δ} ∩ (Ω− ∪ Q(Ω̂)) ] ∪ [G− \ Q(Ĝ+Bδ)) ],

Fδ := {x ∈ Ω | dist(x,H+) < δ}.

We apply Lemma 2.4 with B := BR/8(P ) and K := Kδ to get (22), i.e.

v ≥
⋆
C
[
dist(Kδ,H

+) |Kδ | inf
Kδ

v
]
ψB in B. (42)

By arguing as done for (28), (29) and (30) we get that

|K̃δ| ≥ |Ω− \ Q(Ω̂)|+ |G− \ Q(Ĝ)| − c̃ δ , (43)

and plugging (43) into (42), together with Lemma 4.1 and the fact that dist(K̃δ,H
+) ≥ δ

we get (41). �

The way to use Lemma 4.1 to establish almost symmetry in one direction and then
prove Theorem 1.4 is again the one sketched in the proof of Theorem 1.2. We just need to
highlight some minor differences with the annular case, that we report below.

Proof. The first goal is to obtain the almost symmetry in one direction from (41). While in
the proof of Theorem 1.2 we need to take into account the two possible critical Cases 1 and
2 for the moving plane method, with the first one being further divided into cases 1a and
1b, now the critical position can be reached for both the set D and the set Ω, resulting in
a total of six possible critical cases. Nonetheless, they are tackled in the same exact way;
the only thing that we need to point out is that in each of the critical cases we can write

v(P ) ≤ c⋆ max{[u]ΓR
Ω
, [u]ΓR

G
} = c⋆ defA(u) , (44)

where c⋆ := max{1,diam(Ω),K R/2}. From (44) we can then recover the inequality

|Ω− \ Q(Ω̂)|+ |G− \ Q(Ĝ)| ≤ C defA(u)
1

s+2 , (45)

where C = c⋆C̃. The slicing of the two sets can then be performed in the same way, which
leads to an estimate of type

|λe| ≤ 4 (n+ 3)
diam(Ω)

|Ω|
C defA(u)

1

s+2 , (46)

where now again the bound depends on the seminorms on both of the parallel surfaces.
We now only need to make sure that formula (35) still applies. Again, for the set Ω we
define ρmin := minz∈∂Ω |z|, ρmax := maxz∈∂Ω |z|, choose x, y ∈ ∂Ω such that |x| = ρmin

and |y| = ρmax and consider the direction e = y − x up to normalization with its critical

hypeplane T e. Since we are now in the annular case λ
e
= max{λ

e
D, λ

e
Ω} and therefore the

moving plane might stop before reaching the cricial position for the set Ω itself. However
we can still write

ρ(Ω) ≤ ρmax − ρmin = |y| − |x| ≤ 2 dist(0, T e) = 2|λ
e
| ≤ 2 |λ

e
Ω|. (47)

Combining (46) and (47) and repeating the same argument for G lead us to (15). �
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