
  

Università degli Studi di Torino 

 

 
 

Scuola di Dottorato in 

Scienze della Natura e Tecnologie Innovative 

 

Dottorato in 

Scienze Farmaceutiche e Biomolecolari 

(XXX ciclo) 
 

 
 

MULTIDISCIPLINARY APPROACHES  

IN FOODOMIC STUDIES: analytical and chemometric 

relationships between sensory evaluation and chemical 

composition of different coffees 

 
 
Candidato: Davide Bressanello                                    Tutor: Dr. Erica Liberto, PhD 

 

  



 

 
 

 

Università degli Studi di Torino 

 

 
 

Dottorato in 

Scienze Farmaceutiche e Biomolecolari 

 

Tesi svolta presso il 

Dipartimento di Scienza e Tecnologia del Farmaco 

 

 

XXX 
 

 

Multidisciplinary approaches in foodomic studies: 

analytical and chemometric relationships between 

sensory evaluation and chemical composition  

of different coffees 
 

 
 

 

CANDIDATO: Davide Bressanello 

TUTOR: Dr. Erica Liberto, PhD 

COORDINATORE SCUOLA DOTTORATO: Prof. Dr. Gianmario Martra 

 

ANNI ACCADEMICI: 2014/15 

   2015/16 

   2016/17 

 

SETTORE SCIENTIFICO-DISCIPLINARE DI AFFERENZA: CHIM10  



  

  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

Acknowledgments 
 

Davide Bressanello is indebted with “Luigi Lavazza s.p.a” (Torino, Italy) R&D Division 
for the financial support to his PhD thesis.  
Erica Liberto, Carlo Bicchi and Davide Bressanello are grateful to Dr. Gloria 
Pellegrino and Dr. Manuela Rosanna Ruosi for helpful discussion and advice. 
 
 
 
Davide Bressanello is grateful to Prof. Dr. Peter Schieberle for the guest period at 
the DFA, the helpful discussion and advice. 
 
 
  



  

 



 

 
 

SUMMARY 

ABSTRACT ............................................................................................................................................ 8 

1. Introduction ............................................................................................................................. 10 
1.1 Food Flavour: a complex, multisensory perception ......................................................................... 12 

FLAVOUR EVALUATION: A KEY STEP TO IMPROVE FOOD QUALITY ..................................................... 20 
1.2 Comfort foods and coffee in modern dietary scenario .................................................................... 24 

COFFEE, ONE OF THE MOST IMPORTANT COMFORT FOODS CONSUMED WORLDWIDE ..................... 27 
COFFEE FLAVOUR QUALITY EVALUATION ........................................................................................... 36 

1.3 The role of analytical chemistry in food analyses: platforms for the analysis of food flavour in 

foodomic studies ................................................................................................................................... 40 
ANALYTICAL PLATFORMS FOR FOOD FLAVOUR IN FOODOMIC EVALUATIONS .................................... 44 

2. Experimental Part ..................................................................................................................... 74 
2.1 Coffee aroma: chemometric comparison of the chemical information provided by three different 

samplings combined with GC-MS to describe the sensory properties in cup ........................................ 78 
0. GRAPHICAL ABSTRACT ................................................................................................................... 80 
1. INTRODUCTION ............................................................................................................................. 82 
2. MATERIALS AND METHODS ........................................................................................................... 83 
3. RESULTS AND DISCUSSION ............................................................................................................. 86 
4. CONCLUSIONS ............................................................................................................................... 99 

2.2 Coffee sensory notes sensometric definition and inter-approach validation ................................ 102 
0. GRAPHICAL ABSTRACT ................................................................................................................. 104 
1. INTRODUCTION ........................................................................................................................... 106 
2. MATERIALS AND METHODS ......................................................................................................... 109 
3. RESULTS AND DISCUSSION ........................................................................................................... 111 
4. CONCLUSIONS ............................................................................................................................. 124 

2.3 Sensometric and molecular sensory science: inter-approach validation ....................................... 128 
0. GRAPHICAL ABSTRACT ................................................................................................................. 130 
1. INTRODUCTION AND OBJECTIVES ................................................................................................ 132 
2. MATERIALS AND METHODS ......................................................................................................... 137 
3. RESULTS AND DISCUSSION ........................................................................................................... 139 
4. CONCLUSIONS ............................................................................................................................. 148 

2.4 Multiple analytical platforms for coffee flavour investigations ..................................................... 150 
0. GRAPHICAL ABSTRACT ................................................................................................................. 152 
1. INTRODUCTION ........................................................................................................................... 154 
2. MATERIALS AND METHODS ......................................................................................................... 155 
3. RESULTS AND DISCUSSION. .......................................................................................................... 157 
4. CONCLUSIONS ............................................................................................................................. 165 

2.5 Development of a practical tool to define coffee sensory quality in routine controls ................... 168 
0. GRAPHICAL ABSTRACT ................................................................................................................. 170 
1. INTRODUCTION ........................................................................................................................... 172 
2. MATERIALS AND METHODS ......................................................................................................... 173 
3. RESULTS AND DISCUSSION ........................................................................................................... 174 
4. CONCLUSIONS ............................................................................................................................. 179 

3. Conclusions ............................................................................................................................ 182 
SCIENTIFIC PUBLICATIONS ................................................................................................................... 186 
CONGRESSES CONTRIBUTIONS............................................................................................................ 187 

4. Appendix ................................................................................................................................ 190 
 



 
 

 



 

8 
 

ABSTRACT 

The detailed investigation of food chemical composition has become a crucial task because of the 
remarkable increase of consumers’ demand not only about safety, but also about traceability and 
sensory pleasant products. 
The needs to satisfy this extended concept of quality encouraged the migration from conventional 
analytical approaches to new and more comprehensive strategies. 
Among the “-omics” disciplines “Foodomics”1,2 is the analytical approach that, in food chemistry, 
aims at an even more global characterization of the food to define its chemical, physical, sensory 
and nutritional properties in order to link them to its biological impact. 
The particular branch of foodomics focused on linking the chemical composition to the sensory 
properties of a food assumes particular relevance in the case of comfort foods (such as coffee), 
whose choice and consumption is more driven by the pleasure given by its intake than by its 
nutritional properties. 
 
This doctorate thesis aims to investigate the relationship between the chemical composition of 
coffee flavour and its sensory impact through an “-omic” approach. 
In addition, a considerable importance has been given to the exploitation of this relationship to 
develop a tool suitable to be integrated with the routine coffee sensory evaluation. 
 

In the first part, three different HCC sampling approaches combined with gas-
chromatography-mass spectrometry have been used to simulate the three different steps of the 
official SCAA sensory evaluation protocol. Collected chemical data have been compared to 
investigate their consistency and if, as actually happens during the sensory analysis, they are all 
necessary to fully characterize coffee samples with macroscopic sensory differences. 
HS-SPME-GC-MS of the roasted coffee powder demonstrated to be a highly satisfactory platform 
both in terms of characterizing power and possibility of automation. 

Then a pool of samples, suitable to define the evolution of seven different sensory notes, 
have been analysed with the aforementioned technique and the collected chemical fingerprints 
used to develop a data elaboration workflow with the final aim to define predictive models able to 
attribute to the six sensory notes used to describe a given sample, a sensory score comparable to 
those measured by the panel. 
In this part of the project six different sensory notes have been modelled with encouraging results 
and acceptable model performance parameters.  

However, the lack of a direct relationship between the pool of chemicals used in the 
models and their sensory description stressed the need to support the sensometrically defined 
chemical fingerprints with an inter-approach validation. Molecular sensory science approach was 
therefore applied to investigate the pool of compounds able to characterize the woody and 
flowery notes. This compounds selection has been compared to that used to build the predictive 
models with a good consistency.  
 Within the pool of notes, some of them are known to be “taste attributes”. In this step of 
the project, the non-volatile fraction, whose fingerprint was obtained by HPLC-UV/DAD analysis of 
the filtered brew, has been included in the modelling workflow to better understand its 
contribution in the flavour definition. The inclusion of the non-volatile fraction not only did not 
provide any significant improvement in the performance of the prediction models, but also made 
the whole workflow unsuitable for routine implementation. 
 In the last part of the project the developed models have been optimized and tested with a 
new samples selection trying to simulate their use in routine quality control. Last, all chemical 
fingerprints have been merged to develop a unique model able to make statistical inference on all 
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the sensory notes together with rather satisfactory results, although some compromises had to be 
accepted. 
 

Core of the project has been the data elaboration by chemometric tools such as PCA, MFA, PLS-
DA, parametric and non-parametric regressions. 
The –omic approach together with chemometric tools are an important step forward compared to 
the conventional food flavour analysis because afford a better and more comprehensive 
investigation of the complex interactions behind the food flavour. If reliably and robustly 
developed, the chemical analysis can become a valid support for quality control purposes3, 
although sensory panel contribution still continue to play an irreplaceable role.  
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multisensory perception 
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Food, is going to move from being considered just a source of energy to a source of pleasure and 
well-being. Some but not all of human eating behaviours are indeed guided by basic homeostatic 
regulation. Other influences in this behaviour include cognition, emotion and reward and may lead 
to eating beyond, or below homeostasis, e.g. obesity or anorexia respectively. 
Pleasure and reward mechanisms play a central role in the control of human food intake together 
with other factors such as genetics, circadian rhythms, reproductive status and social factors. 
Evidence for the complexity of eating behaviour can be found in the influence of all five primary 
sensory systems as well as the visceral sensory system and gut–brain interactions.1 
Recent neurophysiological studies in particular made by Kringelbach and its group evidenced that 
the pleasure evoked by food is remarkably similar to that of other rewards, suggesting a unitary 
pleasure system, whether engaging with food, sex, social or higher-order rewards.  
 

To understand physiological concept of pleasure, it is important to consider the main challenge for 
the brain which is to balance resource allocation successfully for survival and procreation.  
Different rewards compete for resources over time to achieve this balance. It can be useful to 
consider the typical cyclical time course shared between all rewards with distinct appetitive, 
consummation and satiety phases defined as Pleasure Cycle to understand the multi-faceted 
nature of pleasure, (Figure1.1.1A).  
Many other neurological and tonic changes occur in the same time cycle described by the pleasure 
cycle and therefore the Figure 1.1.1A can be expanded into an elaborate multilevel model of food 
intake. (Figure 1.1.1). In addition, foods, with their peculiar composition, contribute actively and 
influence this circle. 
The model links the pleasure cycle with the cyclical changes in hunger levels related to the 
initiation and termination of meals and the way food intake is ruled by the interaction of given 
signals from the body, e.g. from the oral cavity, brain, stomach and intestines etc… 
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Figure 1.1.1 Multilevel model of food intake over time. The changes at each level before, during and after meals are 
shown in each column which summarises the episodic and tonic changes over time (moving from top to bottom): A) 
pleasure cycle, B) the levels of hunger, C) satiation/satiety cascade (sensory, cognitive, post- ingestion and post-
absorptive signals), D) origin of signals (gut-brain, oral cavity, stomach and intestines, liver and metabolites and body 
mass) and signal carriers, E) brain processing, F) behavioural changes including digestive system and G) general 
modulatory factors 2 

 
Food choice and intake are therefore influenced by each of these levels; but, a high portion of 
what we perceive concerning the food we assume, pass through the five classic senses (vision, 
hearing, smell, taste, and touch).1–4 
Among this group, smell and taste are perhaps the two most important senses involved in eating 
nevertheless, food pleasure is not simply given by the sum of these stimuli but is something more: 
a cognitive perception defined flavour.  
Taste and olfaction are mediated by molecules with different properties and by different 
physiological structures and are considered “chemical senses” because they convert chemical 
signals into action potentials in sensorial neuronal fibres (Figure 1.1.2) 
 

 
 

Figure 1.1.2 Scheme of the Flavour composition 
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Many scientific efforts have been made in the last years to understand better how all the different 
perceptions interact in the “construction” of flavours.  
One possible strategy to decrypt the complex flavour perception is to classify its components in 
intrinsic and extrinsic factors5; intrinsic factors include taste, smell and part of the texture while 
aspects like food colours, sounds, packaging are extrinsic. 
Food flavour is hence defined as a multisensory phenomenon, given by the integration of taste, 
olfactory, and other sensory (e.g. somatosensory) information into a perceived property of the 
food.5 
It is therefore clear that the interactions between flavour components determine what we 
perceive and what we like in foods and drive the consumers’ choices.  
 
Sense of taste 

The sense of taste is mediated by taste cells mainly located on the surface of the tongue and 
palate. The taste receptors are present on the apical region of these cells; they belong up to four 
morphological types: I (dark), II (light), III (intermediate) and IV (round). 
Cells with different receptors perceive different tastes (e.g. type II allows the perception of sweet, 
bitter and umami tastes whereas type III cells perceive sour and salty tastes). 
 
Groups from 50 to 100 cells aggregate to form taste buds; these buds present a pore where 
chemical compounds responsible for taste feelings can enter and interact with the receptors. 
The transduction of the taste signals is different depending on the stimuli; direct ion channels 
mediates salt and sour, ion channels mediate for sour and bitter, while protein G receptors 
mediate for bitter, sweet and umami perceptions. 
Taste signals are transmitted to the solitary tract in the brainstem and then retransmitted to the 
thalamus from where they reach the primary gustation cortex in the insula.  
 

Taste active compounds present high molecular weight and a low/null volatility. Each of the five 
basic taste modalities is induced by chemical compounds with specific structures: (i) inorganic ions 
such as sodium, calcium, potassium are responsible for the salty perception, (ii) compounds able 
to induce a variation of the H+ ions on the surface of the tongue are responsible for the sourness, 
while (iii) a wide range of chemical structures including poly-alcohols, aldehydes, ketones and 
aromatic molecules mediate for sweet, bitter and umami feelings. 
A key factor about taste stimuli is that they elicit the most basic human emotions of pleasure 
(sweet) and disgust (bitter), which are not learned; they are hard-wired in the brainstem from 
birth.6 
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Sense of smell 

Differently from the taste the olfaction is mediated by volatiles characterised by a low polarity and 
molecular weight (usually below 300 Dalton).  
The odour perception starts when volatile compounds come into contact with the Odour 
Receptors (OR) expressed on olfactory sensory neuron (OSNs) cilia at the level of the olfactory 
epithelium (regio olfactoria). 
The sense of smell can be splitted in two main perceptions: 

- Orthonasal perception, when the odorants reach their receptors through the nostrils; 
- Retronasal perception, when the odorants achieve the region olfactoria from the mouth 

cavity through the pharynx, i.e. food aroma is perceived during eating, and in particular 
during swallowing. 
 

The odour perception is mediated by about 400 receptors (mainly belonging to the G protein 
family) able to recognise thousands of volatile compounds7. After binding, the sensorial olfactory 
nerve starts an action potential conducting information to the olfactory bulb (OB). Recently on the 
basis of psychophysical studied, Bushdid et al8 indicated in around 1012 the number of human’s 
detectable odorants; this huge number, combined to the limited number of OR shapes, suggests 
that at the olfaction implies that odours are detected by a combinatorial code mediated by the 
brain. Unlike taste, the neurological and cognitive responses to odour stimuli seemed mostly due 
to a learning process that can be the basis of the wide variability of odour perceptions and of the 
complexity behind this sensory stimulus6. 
At a physiological level, several characteristics distinguish olfaction from other sensory 
perceptions and makes it more complex and fascinating to be studied. It includes: i) the 
multiplicity of ORs, ii) the processing of the olfactory signal in the OB, iii) the direct projection to 
the cortex, and iv) the difficulty for humans to provide a verbal description of odour perceptions9. 
 

Aroma and taste deeply interact one another in the definition of flavours with a Cross-modal 
sensory integration. 
This integration has been inferred from the influence of one modality on responses to another. 
Commonly, this is an enhanced (sometimes supra-additive) response to information from one 
sensory system due to concurrent input from another modality. Odour qualities, indeed, when 
added to tastants in a solution, can modify the taste intensity and vice-versa; this modification is 
often an enhancement as demonstrated by the use of strawberry or vanilla aroma compounds to 
enhance the sweetness of sucrose solutions 10,11. 
A further but important consideration in the perspective of foodomic studies is the evidence that 
the odour-taste interaction can modify the perception of aroma and taste components present 
singularly in sub-threshold levels. Psychophysical studies detect that the sensitivity to 
benzaldehyde was significantly increased by the presence of a subthreshold concentration of 
saccharin in the mouth 12. 
Integration of information from physiologically distinct sensory modalities is a general property of 
the mammalian nervous system.  
Integration across sensory modalities is reflected in the presence of multimodal neurons that 
receive converging sensory information; these neurons may indeed respond specifically to 
combinations of different sensory inputs, or sensory-specific neurons may respond to modulations 
of other sensory pathways.  
This neural enhancement is then behaviourally reflected in responses to multimodal stimuli. Like 
many other cross-modal sensory integrations also those aroma-taste depends on the temporal 
synchrony and moreover, the integration is stronger when both the stimuli are consistent one 
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another13. In order to form a new flavour, olfactory and taste information have to reach the 
receptorial structures together and at the same time.  
Compared to other multimodal sensory pairs (e.g. audio-visual) those involving aroma and taste 
are less sensitive to onset discrepancies; this higher flexibility is a marker of a high adaptability of 
chemosensory binding. 
In order to face this complexity several neurophysiological studies have been carried out at the 
beginning by considering taste and aroma separately and then putting them together. 
In humans, the taste pathway ascends from the nucleus of the solitary tract in the brainstem to 
the hypothalamus and to the taste area of the somatosensory thalamus, and, from there, it 
extends to the primary taste cortex.  
At the neocortical level, taste stimuli alone activate the primary taste centers in the tongue area 
and insula, whereas, as previously mentioned, odor stimuli by themselves activate the primary 
olfactory receiving area in the orbitofrontal region of prefrontal cortex. 
When both taste and odor are stimulated together, an enhanced activity in several regions 
activated by the independent stimulations as well as additional activity in contiguous areas around 
the primary receiving areas is observed. This enhancement indicates that the flavour perception is 
more complex than that would occur through simple addition of taste and smell pathways. 
Physiological studies suggest that odor (in particular) and taste are heavily conditioned by multi-
sensory inputs and are heavily dependent on context and learning/rewards mechanisms. 
Figure 1.1.3 reports the principal neurological pathways that lead the signals from the sensory 
receptors to the brain elaboration areas 
 

 
 

Figure 1.1.3 Brain systems involved on ortho and retronasal olfaction a and b ; blue and pink lines show the 
trasmission ways from the taste and odour receptors and the brain cortex. Green, Yellow and Red lines correspond to 
Texture, Vision and Motor pathways respectively. Legenda: ACC, accumbens; AM, amygdala; AVI, anterior ventral 
insular cortex; DI, dorsal insular cortex; LH, lateral hypothalamus; LOFC, lateral orbitofrontal cortex; MOFC, medial 
orbitofrontal cortex; NST, nucleus of the solitary tract; OB, olfactory bulb; OC, olfactory cortex; OE, olfactory 
epithelium; PPC, posterior parietal cortex; SOM, somatosensory cortex; V, VII, IX, X, cranial nerves; VC, primary visual 
cortex; VPM, ventral posteromedial thalamic nucleus. 6 

. 
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As reported in figure 1.1.4 the flavour perception involves many different food attributes to be 
collected and elaborated by a “sensory packaging centre” in the brain; that’s why flavour is 
considered a cognitive perception6. 
 

 
Figure 1.1.4 The human brain flavour system. The diagram shows the areas involved in the perceptual, emotional, 
memory-related, motivational and linguistic aspects of food evaluation mediated by flavour inputs. On the left all 
different food properties playing a role in food flavour definition red and green square reports the brain systems that 
mediate flavour perceptions. Red squares involved conscious perceptions while green ones are related to unconscious 
regulation6. 

 
The building of complex food flavours involves different modes of interaction within sensory 
modalities; the blending of odors to form completely new odors is defined as a synthetic 
interaction (similar to the blending of the light wavelengths) in which the final perception may not 
be linked to the odor descriptions of each single odorant. By contrast, the mixing of tastes is seen 
as an analytic process, because individual taste qualities do not fuse to form new qualities and can 
be distinguished from one another in the mixtures, similarly to what happens with single 
instruments of an orchestra during a concert.  
The cognitive nature of flavour implies the introduction of a further new category of interactions, 
named fusion, in which different sensations (arising from olfaction and gustation senses) are 
combined to form a new perception rather than a new sensation like in synthetic interactions14,15. 
 

Food flavour can thus be intended as a functionally distinct sense which is cognitively 
“constructed” from the integration of distinct, physiologically defined sensory systems (mainly 
olfaction and taste) in order to perceive and identify objects that are important for our survival or 
pleasure 16,14. 
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FLAVOUR EVALUATION: A KEY STEP TO IMPROVE FOOD QUALITY 

Food flavour, despite its complexity is one of the major determinants of food choice and usually 
represent a key feature in food selection 17. 
Sensory aspects of foods are easily evaluable from the consumer and are essential for its 
satisfaction. Since flavour drives food quality, consumer acceptance and demand of evaluation 
and clear understanding of sensory aspects of foods are becoming of high importance for food 
industry18. The reported scheme19 shows the main processes behind food choice and intake in 
which the perception of sensory properties is one of the pillars. The importance of the three main 
blocks can variate according to the food nature; in the case of comfort food, for example, the 
nutritional block is less important compared to the perception block20 (Figure 1.1.5). 
 

 
 

Figure 1.1.5 Scheme of the factors involved in food choice. 

 
Many efforts have been performed by food industries to evaluate and control the sensory impact 
of their products. Thus food sensory evaluation has become a powerful tool for (1) lowering 
product costs, (2) recipe optimization, (3) innovation & product development, (4) quality 
monitoring and benchmarking, and (5) analysis of the “drivers or likeability”18. 
 
Food sensory evaluation 

The field of sensory evaluation grew in parallel with the processed food industries. The food 
industries needed and still need to know the sensory properties of their products; this information 
is precious in many steps of the production chain (to evaluate the impact of some technological 
changes on the final product quality), in the development of new products according to consumers 
expectations and demands.21  
Sensory evaluation is defined by Stone and Sidel22 as “the scientific discipline used to evoke, 
measure, analyze, and interpret human reactions to those characteristics of foods and beverages 
as they are perceived by the senses of sight, smell, taste, touch, and hearing.”  
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With this definition, the field of sensory analyses is intended as a pool of scientific methodologies 
that requires precise rules and protocols23. 
Sensory evaluation guidelines indeed provide instructions for samples selection, preparation and 
analysis. The second word included in the definition is “measure”; sensory evaluations is a 
quantitative science in which numerical data are collected to establish a well-defined relationship 
between products characteristics and human perception24. 
Likewise, in many other quantitative science, one essential part of the approach concerns the data 
elaboration and this statement is even more true for sensory evaluation. 
The human responses, and the sensory tests, include many sources of variation and most of them 
cannot be controlled and limited by a standardized and meticulous analytical protocol. 
Examples include the mood and motivation of the participants, their innate physiological 
sensitivity to sensory stimulation, and their past history and familiarity with similar products. 
At the end of the food sensory analysis the data interpretation is important to change data into 
results; it is therefore important to look everything within the context, the background and the 
objectives that has to be achieved. 
Nowadays, most sensory testing is performed in an industrial environment as a support for 
business concerns and strategic decisions. Sensory analyses are often used as a tool to reduce the 
risk and uncertainty in decision making. 
In addition, sensory testing is of particular importance in the development of new food product 
where the final perception of the product has to be checked. 
Beyond their importance in product development sensory evaluation may provide information to 
many different parts of the “food life”, from the packaging to the shelf-life.  
In the recent years the quality control program of many foods and comfort foods in particular, 
include a sensory evaluation step. The current sensory evaluation methods comprise a set of 
measurement techniques with established protocols and rules used both in industry and in 
academic research. 
 

One of the primary issues about sensory testing concerns the selection of the suitable test; 
sensory test can be classified in three groups according to their primary purpose and most valid 
use. Each group has a different goal and is carried out with participants selected with different 
criteria: 
 

- Difference testing: these are the simplest sensory test ad they aim to answer whether any 
perceptible difference exist between two types of product. A classic example of this 
category is provided by triangle test, where two products were from the same batch while 
the third one was different. Judges would be asked to pick the odd sample among the 
three.  

- Descriptive analyses: in this category, the perceived intensities of the sensory 
characteristics of a product are quantitatively determined. One of the most important 
methods is termed Quantitative Descriptive Analysis® or QDA® that merges the 
completeness of the human perception with the modern experimental design techniques. 
Descriptive analysis has proven to be the most comprehensive and informative sensory 
evaluation tool. It is applicable to the characterization of a wide variety of product changes 
and research questions in food product development. The information can be related to 
consumer acceptance information and to instrumental measures by means of statistical 
techniques such as regression and correlation.  
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- Novel methods: these methods have been developed as alternatives to classical descriptive 
analysis with the advantage of flexibility, fastness and possibility to be performed by 
experts, trained assessors or even by untrained consumers. 
First example of these new sensory methods is the “Sorting Task”; in this test, the 
assessors have to sort the samples according to their similarities within the parameters 
under evaluation. 
The main inconvenience of this test is that it is based on similarities between samples and 
the sensory attributes remains in the background. Flash profiling is a combination of free 
choice profiling (FCP) and ranking methods that try to merge the power of a descriptive 
method and the speed of these novel techniques. Flash profiling consist of two steps; in 
the first the assessors are asked to observe, smell or taste the samples and to generate a 
set of attributes able to discriminate the samples while in the second steps the assessors 
have to rank the samples from the least to the most on each of their attributes. 
Check All That Apply (CATA) technique was applied to understand consumer’s preferences; 
it provides easy to read and interpret data maps. Assessors have to select among those 
provided with a questionnaire the attributes (or the phrases) suitable for defining the 
sample in test. 
The evaluation of the data obtained from these new sensory tests requires the application 
or multivariate statistical analyses such as the general procrustes analysis of the multiple 
factorial analysis. 
In addition, since these techniques are based on comparative methods (they make the 
sensory analysis possible also for untrained assessors), the use of a stable reference within 
the test is often needed. 

 

Today most of food consumption is linked to the pleasure perceived during its intake and 
therefore the evaluation of food sensory impact became an integral part of the quality control 
(QC) and quality assurance. Sensory tests can proficiently be used in the sensory assessment of the 
incoming raw material, semi-finished products final product quality monitoring but can also be 
employed in routine programs for shelf-life assessment.  
 

Due to the time and the resources needed to assemble and train the panel, prepare the samples 
for testing, analyse and report sensory data, it can be quite challenging to apply sensory 
techniques to quality control as an-online assessment. For this reason, one of the needs of 
modern comfort (but not only) food industries is to establish a relationship between sensory 
response and instrumental measures. If it is correctly performed, the instrumental measure can be 
complementary to sensory data and in some (rare) cases, can even substitute the human 
contribution. One of these possible scenarios is represented by those conditions that requires a 
rapid turnaround not always in compliance with human rhythms. Substitution of instrumental 
measurements for sensory data may also be useful if the evaluations are likely to be fatiguing to 
the senses, repetitive, involve risk in repeated evaluations (e.g. insecticide fragrances). 
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Food and eating play an increasingly central role in individual lives. Food science, over the last fifty 
years, has been focused on issues concerning food supply, safety and nutrition but at the present, 
and in our society, these needs are adequately satisfied by a lot of manufacturers; then other 
issues are coming out1. 
Today, one of the main aspects of food consumption is that consumers wants to enjoy their food. 
Many foods of our daily diet are chosen and consumed because of the pleasure perceived during 
their intake. 
This wide and heterogeneous class of foods are known as “comfort foods”. Over the years these 
foods have been defined in many ways; Wansink and Sangerman offered a general and versatile 
definition: “a comfort food is a specific food consumed under a specific situation to obtain 
psychological comfort”. A similar definition has also been provided by Locher defining a comfort 
food as “any food consumed by individuals, often during periods of stress, that evokes positive 
emotions and is associated to significant social relationships”.  
Studies on comfort foods classifies this category of foods in three main groups: 

Nostalgic Foods: Comfort foods whose consumptions evokes in the consumer a sense of 
familiarity. These foods are chosen according to the experience of the people who make the 
choice, they are linked to particular memories like events of their childhood that make them feel 
better. 

Convenience Foods: When people seek comfort, the need is immediate; foods able to 
provide effortless gratification can thus be considered comfort foods. Generally, this group 
contains foods like chocolate, ready to eat frozen foods, home-delivered pizza, potato chips etc… 
The convenience foods the comfort does not come only from the food itself but also by its 
immediate availability. 

Physical Comfort Foods: this group includes foods that offer comfort either through their 
physical attributes or the changes they make on the consumer’s body. Examples of these physical 
comfort foods are alcoholic drinks and coffee. 
Although food consumption has always been linked to the pleasure perceived during food intake, 
only in the last decade the notion of comfort foods begun appearing regularly in popular 
magazines, televisions, literature and advertising. This increase of interest might be due to the fact 
that the daily life in modern world is even more stressful, competitive and put the people more 
under pressure than in the past so that they need the positive emotions given by comfort foods1–

3,4. 
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COFFEE, ONE OF THE MOST IMPORTANT COMFORT FOODS CONSUMED WORLDWIDE  

Many people all over the world consider coffee as a comfort food and drink it because of the 
pleasure linked to its peculiar flavour. Coffee flavour is the final expression of a long chain of 
cultivation and transformation that links the seed to the cup. This long journey has been 
summarized by Yeretzian in the Handbook of Odour (ed. Springer)5 in three key factors: 
Predisposition, Transformation and Consumption.  
Within this definition, the consumption is considered a real part of coffee value creation chain 
because the experience offered by coffee consumption is strictly related to how the final 
consumers prepares and drinks the beverage. 
The Predisposition considers all the pre-harvesting properties of the coffee; each variety is 
genetically characterized by a specific pool of aroma precursors that origin different aroma 
signatures. 
The transformation regards all the steps from the harvested bean up to the final roasted product; 
these processes are essential to obtain a high-quality product. 
Thanks to its worldwide diffusion, coffee is the most important (in financial terms) agricultural 
commodity after petroleum.  
According to the 2015-2016 annual review of the International Coffee Organization (ICO) the 
coffee consumption has continued to increase reaching a record of 151.3 millions of bags 
consumed worldwide; the main player of this increase is the Asia & Oceania market that 
registered a 3.75% of increment (ICO 2016). Europe is the principal coffee consuming continent 
with a consumption around 50 million bags. 
 

As a consequence of this ever-increasing demand of coffee, the need of quality assessment and 
control protocols is increasing as well. 
The acquisition of a deep knowledge about their products is becoming mandatory for coffee 
industry, not only on the final product, and/or at the end of the production chain, but also at its 
beginning. The quality assessment and control of the raw material is crucial to design and produce 
coffees in line with consumers desires and expectations. 
 

Coffee quality assessment involves many different parameters that are summarized in figure 1.2.1 
Among all these parameters, aroma and taste are considered as coffee primary quality attributes 
and their evaluation is mandatory for the product quality definition at each step of the production 
chain. 
 

 
Figure 1.2.1 Food properties important in its quality definition (UN. (2007). Safety and quality of fresh fruit and 
vegetables: A training manual for trainers. United Nations. Retrieved from http://www.unctad.org/en/docs/ 
ditccom200616_en.pdf (Accessed 15/02/2015).) 
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Despite the huge number of researches in this field, the chemistry behind the relationship 
between coffee flavour and the elicited sensory perception is still a challenge from a scientific and 
industrial point of view due to the complexity of this fascinating attribute5–10. 
Nowadays, human trained panels make the evaluation of the sensory properties of a good coffee. 
Sensory analyses have been the object of a lot of work oriented to the standardization and the 
objectivation of coffee evaluations, although they still are affected by panel’s subjectivity and by 
being time-consuming in terms of panel training, alignment and number of assessments per day.  
This PhD thesis deals on a multidisciplinary study on the relationship between the chemicals of the 
coffee’s flavour and its sensory properties. 
 

Coffee come from the botanical genus Coffea belonging to the family of Rubiaceae. 
Among the 70 species of Coffea genus, only three are cultivated: Coffea arabica, Coffea canephora 
and Coffea liberica which cover respectively 75%, 25% and less than 1% of the market share. 
The coffee shrub grows in high tropical altitudes (600–1200m) with an annual average 
temperature of 15–25 °C. They need moderate moisture and cloudiness. 
The plant produces up to 40 years but the maximum yield is obtained after 10–15 years11. 
 

The fruits of the coffee shrub, or berries have a green skin that becomes a deep red when the 
ripening is complete. A scheme of the morphology if a coffee berry is reported in figure 1.2.2. 
 

 
Figure 1.2.2 Scheme of a coffee bean Source: www.feedipedia.org 

 
After the outer skin (pericarp), the berry consists of the sweet mesocarp (or pulp) and more in 
depth the real coffee beans (the endocarp or parchment). The beans are two elliptical 
hemispheres with flatten adjacent sides. The beans are singularly covered by a thin spermoderm 
layer called silver skin. Each berry usually contains two beans, but in the 10-15% of the cases some 
berries contains just one single bean; in these cases, it is called “peaberry” or “caracol” and it is 
sold at a higher price. 
Coffee harvesting occurs from December to February and from May to August according to the 
geographical region and can be done by hand-picking (more expensive and accurate) or by strip-
picking (cheaper but less accurate). 
The main difference between these two techniques is that by hand-picking just the full-ripe berries 
are harvested while in the strip-picking all the berries from the brunch are collected. 
Processing started with the removing of the pulp that can be by a dry of wet procedure: the dry 
protocol involved the spreading of the whole fruit on sun-drying terraces. Coffee beans are 
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collected after the shrinking of the pulp. The wet procedure generally leads to a better-quality 
coffee and found application for Arabica coffees.  
Fresh berries are squeezed by a rotating cylinder; during the squeezing the seeds are detached 
from the pulp without any damage. The mucilaginous layer that surrounds the beans is then 
removed by enzymes during the 12-48h of fermentation. Fermented beans covered by the 
silverskin are dried (naturally or by machines) and dehulled before being shipped. 
Green beans are heat treated in a process called roasting that is the main responsible of the 
formation of the typical coffee aroma. 
The roasting procedure is characterized by four steps that changes the chemical composition of 
the coffee beans: (i) the drying; at almost 50°C the proteins denature and the water evaporates, 
then (ii) the development occurs at 100/150°C when the browning starts and volatiles are released 
(water, CO2 and CO), (iii) the decomposition; at 180°C/200°C the beans pop and burst with a 
release of smoke and coffee aroma, finally (iv) the full roasting status is reached when the total 
amount of moisture drops at 1.5-3.5%. 
Roasting is a very important step of the whole coffee production chain and it is fundamental to 
obtain a high-quality coffee aroma. For this reason, despite it is electronically controlled, it 
requires experience to be correctly carried out. 
 
Non-volatile coffee components and their impact on the flavour  

The final coffee flavour have its origin in the green raw beans. The chemical composition of raw 
green beans in the raw material on which the roasting process acts, is at the origin of the pool of 
volatiles of coffee aroma6,12. Figure 1.2.3 reports an overview of the chemical composition of 
green and roasted Arabica and Robusta coffee. Labels reports the % on the dry matter. 
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Figure 1.2.3 percentage composition of both Arabica and Robusta coffees. Both green and roasted beans have been 
considered. 

Carbohydrates are products of the photosynthesis in plants and are the main portion of the 
coffee bean. By far the polysaccharides form the largest part of the green coffee and among them 
the main ones are mannan (gaclatomannan) and arabinogalactan fractions. 
Polysaccharides are degraded and depolymerized during the roasting process where they play an 
important role as precursors in flavour generation. 
In roasted coffee, polysaccharides play an important role in retaining volatiles and contribute to 
the perceived viscosity of the coffee brew. The amounts of sucrose in mature beans contribute to 
the coffee sweet note 
 

Melanoidins are a heterogeneous group of nitrogen-containing colored polysaccharides; 
they can be at both high and low molecular weight but in coffee, the high molecular weight 
(HMW) fraction is prevalent (59%). 
Melanoidins are of the particular interest both from a scientific and industrial view points since 
they are not chemically fully characterized but they confer the brown color to the brews that is 
intimately associated in consumers’ minds to a high-grade product of desirable texture and 
flavour. Melanoidins are formed during the roasting process by cyclization, dehydrations, retro-
aldolization, rearrangement, isomerization, and condensation of low molecular weight products of 
the Maillard reaction. They showed antioxidant properties in many in vitro and in vivo studies 
mainly based on a radical scavenging activity and on the metal chelating capacity13. 
 

Amino acids are present mainly as constituents of peptides and proteins, but free amino 
acids are also important on the coffee flavour formation. 
The free amino acid fraction is largely transformed during the roasting by the Maillard reaction: 

- sulfurated amino acids, cysteine and methionine, in green coffee are mostly bound in 
proteins, during roasting these amino acids react with reducing sugars in the Maillard 
reaction to form a pool of aroma active compounds as furfurylthiol, thiophenes and 
thiazoles. 

- the reaction of hydroxy-amino acids (serine and threonine) with sucrose produce volatile 
heterocyclic compounds such as alkylpyrazines, 

- pyrroles, pyrrolizidines, pyridines but also alkyl-, acyl- an furfurylpyrroles originate from 
the reaction of the Maillard intermediates with proline and hydroxyproline. 

 
The proteic content of green coffee is around 10-13%. Roasting have an impact on the protein 
content that is fragmented, polymerized and integrated in melanoidins. 
Among the nitrogenous compounds caffeine and trigonelline are very important. 
These secondary metabolites are alkaloids whose biosynthesis takes place in the leafs or in the 
pericarp. Caffeine is produced by the plant for defense against herbivory, mollusks, insects, fungi 
and bacteria. The caffeine content in coffee is not affected by post-harvest process and roasting, it 
is extracted during the brewing procedure and assumed during coffee drinking. After 
consumption, caffeine is absorbed from the gastrointestinal tract and within 1h it is distributed in 
the body; it carries out its physiological stimulating effects after passing the blood-brain barrier. 
Although caffeine as a pure chemical is assigned of a marked bitter taste (so that is used as a 
bitterness reference), its role in coffee bitterness is not so important. 
Contrary to caffeine, trigonelline is rapidly degraded during roasting producing nicotinic acid, 
methyl-pyrazines, pyridines and pyrroles. Because of its reactivity, trigonelline has an impact on 
the overall aromatic perception of coffee and can thus be considered as an aroma precursor. 
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 Lipids are present, in green coffee mainly at the level of the beans endosperm as coffee 
oils; therefore, some lipids are also present as waxes outside the bean. Lipids in coffee are 
important as carriers of flavours and contribute to the perceived texture and mouthfeel in the 
brew. 
The lipid fraction consists of several classes of compounds: triacylglycerols, diterpenes and 
diterpenes esters, steroids, tocopherols and coffee wax. This fraction is responsible of the crema 
emulsion in espresso coffee preparation that carries flavour volatiles. 
 
Acidity in an important attribute in coffee flavour and is often conversely associated to sweetness. 
The acid content of green coffee is around the 11% and is given by citric, malic, chlorogenic and 
quinic acids. This percentage decreases to 6% in roasted coffee because the degradation of these 
compounds to form volatile aroma compounds such as guaiacole and 4-vinylguaiacole. The heat 
treatment lead to the formation of formic, acetic, glycolic and lactic acids. 
 

Chlorogenic Acids are present in the coffee beans in relatively high quantities. This group of 
chemicals comes from the conjugation of quinic acid (tetrahydroxy-cyclohexane carboxylic acid) 
with caffeic acid (3,4-dihydroxycinnamic acid). This conjugation originates a wide pool of isomers 
that makes the chlorogenic acids so numerous. The most common Chlorogenic acid in coffee is 5-
O-caffeoyl-quinic acid (5-CQA). 
Chlorogenic acids are biosynthesized in the perisperm and accumulated in the beans’ endosperm; 
their content is progressively reduced during roasting. One of the transformation occurring during 
the heat treatment is the formation of the Chlorogenic lactones in the quinic portion of CQA. 
These lactones are characterized by bitterness and possible biological effects14. 
The biological effects of chlorogenic acids are under study, in particular they have been assigned 
of a potential antioxidant activity and a protective effect against degenerative diseases such as 
cardiovascular disease, cancers and diabetes II. In sensorial terms, these secondary metabolites 
contribute to bitterness and astringency. 
 
Coffee volatiles and impact on coffee flavour 

Aroma is one of the reasons (if not the main) for coffee consumption as a comfort food. Over the 
years, coffee aroma has been of interest for both its complexity and the role it has in the coffee 
value chain and in the dynamics behind coffee consumption. Volatile Organic Compounds (VOCs), 
responsible for the classical coffee aroma are arguably the most important quality-determinant of 
coffee. The pool of volatiles identified in the coffee aroma counts around 1000 compounds that 
range in concentration from ppm (part per million) to ppt (part per trillion). Among these 
compounds the studies on molecular sensory science pointed out a group of about 30 
components defined as coffee key aroma compounds. A suitable mixing of these compounds in 
agreement with their odor activity values (OAV) affords to reproduce the well-known aroma of 
coffee15 quite accurately. 
Despite these important findings a question is still open: is the coffee aroma so simple? How the 
other 970 compounds impact on the different modulation of the overall coffee aroma? It is 
because of this question that the studies on coffee aroma are still a fascinating field of research16. 
As previously discussed, coffee volatiles derived from a large number of precursors present in the 
green coffee beans that are submitted to a series of reactions during coffee processing. The main 
chemical reactions occurring during roasting include Maillard reactions, phenolic acid and 
carotenoids degradation, Strecker degradation, breakdown of sulphur amino acids, hydroxyl-
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amino acids, proline and hydroxyproline, degradation of trigonelline, chlorogenic acids and quinic 
acids and so on… 
 Furans are one of the most important class of volatiles from a quantitative point of view. 
They originate from the thermal degradation of carbohydrates, ascorbic acid and unsatured fatty 
acids during roasting. A summary of the most important furans is reported in table 1.2.1. 
 
Table 1.2.1 Important Furans for coffee aroma 

VOC CAS n° Aroma Description 
Sensory Threshold 

(ppb) 

Furfural 98-01-1 sweet woody almond fragrant baked bread 280 
2-
((methylthio)methyl)furan 1438-91-1 onion garlic sulfury pungent vegetable horseradish - 

2-furanemethanol acetate 623-17-6 sweet fruity banana horseradish - 
2-methylfuran 534-22-5 ethereal acetone chocolate - 
5-methyl-2-
furancarboxyaldehyde 620-02-0 Sweet, caramellic, bready, brown, coffee-like 6000 

furfurylformate 13493-97-5 ethereal - 
furfurylmethyl ether 6270-56-0 sweet spicy - 

furfuryldisulfide 57500-00-2 Roasted coffee, sulfurous cooked meat and liver, 
onion and garlic nuances. Slight eggy undertones - 

 
Furans are characterized by a general malty/sweet aroma perceptible in relative high odor 
threshold if compared to those of other odorants, but they are important for coffee aroma 
because they are present in high concentrations (3-115 ppm). 
 

Pyrazines are the second most abundant class of chemicals present in high concentration 
combined and with a low odor threshold. 
Pyrazines are mainly formed during roasting from Maillard reactions between amino acids and 
sugars17, they are characterized by nutty, earthy, roasty aromas. Among this group the most 
important pyrazines are 2-methoxy-3-isopropylpyrazine, 2-ethyl-3,5-dimethylpyrazine and 2,3-
diethyl-5-methylpyrazine. 
 
Table 1.2.2 Important pyrazines in coffee aroma definition 

VOC CAS n° Aroma Description 
Sensory Threshold 

(ppb) 

2,3-dimethylpyrazine 5910-89-4 Musty, nut skins, cocoa powdery and 
roasted with potato and coffee nuances 800 

2,5-dimethylpyrazine 123-32-0 
Nutty, peanut, musty, earthy, powdery and 
slightly roasted with a cocoa powder 
nuance 

80 

2,3-diethyl-5-
methylpyrazine** 18138-04-0 Musty, nut skin, earthy, toasted, potato bin, 

green and meaty 0.09 

2-ethenyl-3,5-
dimethylpyrazine 157615-33-3 earthy musty 0.000012 

2-ethenyl-3-ethyl-5-
methylpyrazine 181589-32-2 earthy 0.000014 

2-ethyl-3,5-
dimethylpyrazine** 13925-07-0 Peanut, nutty, caramel, coffee, musty, 

cocoa, pyrazine and roasted 0.04 

2-ethyl-3,6-dimethylpyrazine 27043-05-6 nutty 8.6 

2-methoxy-3,5- 92508-08-2 earthy 0.006 
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VOC CAS n° Aroma Description 
Sensory Threshold 

(ppb) 

dimethylpyrazine 

2-methoxy-3,2-
methylpropylpyrazine 24683-00-9 green pea green bell pepper green pea 

galbanum - 

2-methoxy-3-
isopropylpyrazine 25773-40-4 pea earthy beany chocolate nutty 0.002 

3-ethenyl-2-ethyl-5-
methylpyrazine 181589-32-2 earthy - 
6,7-dihydro-5-methyl-5H-
cyclopentapyrazine 23747-48-0 Sweet, nutty, roasted, toasted, grainy, 

coffee and corn with savory, meaty nuances - 

ethylpyrazine 13925-00-3 Nutty, musty, fermented, coffee, 
roasted,cocoa and meaty nuances 4000 

 
 Thiols and sulphur compounds are qualitatively considered among the most significant 
contributors to coffee flavour. This importance is due to their sensory potency. 
Table 1.2.3 reports the main sulphur compounds described in the literature as coffee aroma 
components. 
 
Table 1.2.3 Sulphur compounds important for coffee aroma 

VOC CAS n° Aroma Description 
Sensory 

Threshold (ppb) 

Sulphur-containing compounds 

dimethyl trisulfide 3658-80-8 
sulfureous, alliaceous, cooked, savory, meaty, 
eggy and vegetative with a fresh, green, onion 
topnote 

0.001 

bis(2-methyl-3-
furyl)disulphide** 28588-75-2 

Sulfurous, strong roasted meaty with a note 
reminiscent of sulfurol, savory, au jus and 
chicken nuances 

0.00076 

Methional ** 3268-49-3 
Vegetable oil. Creamy tomato, potato skin and 
French fry, yeasty, bready, limburger cheese with 
a savory meaty brothy nuance 

0.2 

Thiols 
3-mercapto-3-
methylbutylformate 50746-10-6 sulfurous catty caramelised onion; roast coffee, 

roast meat, with a tropical nuance on dilution 0.0035 

2-furfurylthiol ** 98-02-2 
Roasted coffee, sulfurous, with a burnt match 
note. It is savory meaty with chicken and fried 
onion nuances. 

0.01 

2-methyl-3-furanthiol ** 28588-74-1 SuIfureous, meaty, fishy, metallic and roasted 
chicken-like 0.007 

3-mercapto-3-
methylbutylacetate 50746-09-3 roasty, fruity sulfurous sweet - 

3-methyl-2-butene-1-thiol ** 5287-45-6 sulfurous smoke leek onion skunky 0.0003 

methanethiol 74-93-1 Vegetable oil, alliaceous, eggy, creamy with 
savory nuances 0.02 

Thiophene 

3-methylthiophene 616-44-4 fatty winey - 

Thiazole 
2,4-dimethyl-5-ethylthiazole 
** 38205-61-7 nutty roasted meaty earthy - 

 



Comfort foods and coffee in modern dietary scenario 

34 
 

Among the pool of sulphur compounds reported in table 1.2.3 those with ** are also part of the 
pool of coffee key aroma compounds defined by Grosch et al.15. These compounds are 
characterized by roasted (coffee-like), sulfury, meaty notes.  
 

Furanones are mainly responsible for sweet caramel notes. This class of compounds 
originate from the Maillard reaction followed by aldol condensation. 
 
Table 1.2.4 Furanones important for coffee aroma. Compounds marked with ** have been selected as coffee key 
aroma compounds thanks to their Odour Activity Values (OAVs) by Grosch et al 10. 

VOC CAS n° Aroma Description 
Sensory 

Threshold (ppb) 

dihydro-2-methyl-3(2H)-
furanone 3188-00-9 Sweet and solvent-like with a brown, rummy 

and nut-like nuance 0.005 

2-ethyl-4-hydroxy-5-methyl-
3(2H)-furanone 27538-09-6 Sweet, caramellic, bready, maple, brown sugar 

with burnt undernotes 20 

3-hydroxy-4,5-dimethyl-
2(5H)-furanone (sotolone)** 28664-35-9 extremely sweet strong caramel maple burnt 

sugar coffee 20 

4-hydroxy-2,5-dimethyl-
3(2H)-furanone (furaneol)** 3658-77-3 Sweet, slightly burnt brown caramellic, cotton 

candy with a savory nuance 10 

5-ethyl-3-hydroxy-4-methyl-
2(5H)-furanone (abhexon)** 698-10-2 Sweet, fruity, sweet caramel with a maple like 

nuance 7.5 

5-ethyl-4-hydroxy-2-methyl-
3(2H)-furanone 27538-09-6 Sweet, caramellic, bready, maple, brown sugar 

with burnt undernotes 1.15 

 
Phenolic compounds are the last group of the main coffee aroma compounds. 

These compounds originate from the thermal degradation of the chlorogenic acids (ferulic, caffeic 
and quinic acids) and their concentration after roasting is proportional to that of their precursors 
in the green beans. 
The concentration of phenolic compounds is related to the species (Robusta is richer than Arabica) 
and to the geographical origin; it can range between 3 to 56 ppm. Phenolic compounds are 
characterized by a spicy sensory note; their smell is so peculiar to be defined as “phenolic”.  
Vanillin diverge from the guaiacoles sensory description and elicit a sweet sensation that can be 
defined as “vanilla-like”. 
Table 1.2.5 reports the main phenolic compounds defining coffee aroma. 
 
Table 1.2.5 Phenolic compounds important in coffee aroma 

VOC CAS n° Aroma Description 
Sensory 

Threshold (ppb) 

Guaiacol** 93-51-6 Sweet, candy, spice, eugenol, vanilla, leather, 
spicy, smoky 2.5 

4-ethylguaiacol ** 2785-89-9 picy and clove-like with medicinal, woody and 
sweet vanilla nuances 25 

4-vinylguaiacol ** 7786-61-0 dry woody fresh amber cedar roasted peanut 0.75 

Vanillin ** 121-33-5 Sweet, vanilla, vanillin, creamy and phenolic 25 
 
In addition to these classes of chemicals, the coffee volatile fraction is rich of many other 
compounds that are summarized in table 1.2.6 
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Table 1.2.6 Miscellaneous compounds characterizing the coffee volatile fraction 

VOC CAS n° Aroma Description Sensory Threshold 
(ppb) 

Aldehydes 

2-methylbutanal 96-17-3 
Musty, chocolate, nutty, furfural and 
iaovaleraldehyde-like with malty and fermented 
nuances 

1.3 

2-methylpropanal 78-84-2 fresh aldehydic floral - 

3-methylbutanal 590-86-3 malty 0.35 

(E)-2-nonenal** 18829-56-6 green, cucumber, aldehydic, fatty with a citrus 
nuance 0.08 

3-methylpropanal 78-84-2 fresh aldehydic floral - 

acetaldehyde 75-07-0 pungent fresh aldehydic refreshing green 0.7 
methylpropanal 78-84-2 fresh aldehydic floral 0.7 

p-anisaldehyde** 123-11-5 Sweet, powdery, vanilla, anise, woody, coumarin 
and creamy with a spicy nuance 27 

Phenylacetaldehyde*
* 122-78-1 Honey, floral rose, sweet, powdery, fermented, 

chocolate with a slight earthy nuance - 

propanal 123-38-6 Ethereal, pungent 10 
Ketones 

1-octen-3-one 4312-99-6 
Intense earthy, metallic, mushroom-like with 
vegetative nuances of cabbage and broccoli. It has 
minor savory notes of fish and chicken 

0.0036 

2,3-hexadione 3848-24-6 Sweet, creamy, caramellic, buttery with a fruity 
jammy nuance - 

2,3-butanedione 431-03-8 strong butter sweet creamy pungent caramel 0.3 

2,3-pentanedione 600-14-6 Buttery, nutty, toasted, caramellic, diacetyl and 
acetoin notes 20 

4-(4'-hydroxyphenyl)-
2-butanone 5471-51-2 Berry, sweet, woody and raspberry with a ripe, 

jammy, seedy character 1-10 

1-(2-furanyl)-2-
butanone 4208-63-3 slight rum-like - 

Acids 

2-methylbutyric 
acid** 116-53-0 Acidic, fruity, dirty, cheesey with a fermented 

nuance 10 

3-methylbutyric 
acid** 503-74-2 Cheese, dairy, acidic, sour, pungent, fruity, stinky, 

ripe fatty and fruity notes 700 

Esters 

ethyl-2-
methylbutyrate 7452-79-1 Fruity, estry and berry with fresh tropical nuances 0.5 

ethyl-3-
methylbutyrate 108-64-5 Sweet, diffusive, estry, fruity, sharp, pineapple, 

apple, green and orange 0.6 

Pyridines 

pyridine 110-86-1 sickening sour putrid fishy amine 77 

Pyrroles 

1-methyl pyrrole 96-54-8 powerful smoky woody herbal  
Terpenes 

Linalool** 78-70-6 Citrus, orange, floral, terpy, waxy and rose 0.17 

limonene 5989-54-8 terpene pine herbal peppery 4 

geraniol 106-24-1 Floral, sweet, rosey, fruity and citronella-like with a 
citrus nuance 1.1 
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This selection includes aldehydes, ketones, acids, esters, pyridine, pyrroles and terpenes and 
confirms the complexity of coffee aroma. Aldehydes comes from the Strecker degradation of 
amino acids and/or the autoxidation of unsatured fatty acids present in the green beans. Among 
the aldehydes (E)-2-nonenal, p-anisaldehyde and phenylacetaldehyde are in the list of coffee key 
aroma compounds and are characterized by green, fatty, sweet notes.  
The ketones are produced from the pyrolysis of carbohydrates; they show quite different aromatic 
notes, from the mushroom like odor of 1-octen-3-one, to the caramellic sweet notes of the 
diketones. 
Acids originate from the oxidation of the corresponding Strecker aldehydes and are responsible 
for fruity and fresh notes. 
 

COFFEE FLAVOUR QUALITY EVALUATION 

Defining the quality of coffee is not a simple task, several publications and coffee experts have 
proposed different definitions and discussions on the subject 18 
Despite this huge work, the definition has remained elusive although a rational approach to 
quality is becoming increasingly important also because the increasing importance of the specialty 
coffee community.  
Cupping or cup quality would be the final determining factor for purchase or rejection of a 
consignment and for its price determination. The presence of defects could result in an unclean 
cup and thus lower the cup quality and price. 19 
Sensory evaluation comprises a set of well-established methods providing useful information 
about the human perception of food flavour. Cupping has always been at the heart of coffee world 
and production. Coffee cuppers first select green coffee and then other expert coffee tasters (the 
roaster, the brewer, and the barista will all do sensory assessments to judge the flavour of coffee 
within their own specific skills to know more about their product and its potentialities. 
 
The key actors of coffee sensory assessments can be collected in three groups: the expert coffee 
tasters, the sensory analysts and the consumers. These figures are obviously involved in three 
different levels along the value chain and give different contributions. 
Expert coffee tasters have been trained to define each single flavour note within the overall 
perception trying to limit the influence of the cognitive processes (e.g. memories, emotions) in 
their final evaluations. They provide very detailed descriptions of coffee sensory profiles that are 
important for coffee selection and prizing but that may seldom be perceived by the consumer.  
On the other hand, the consumers, have a limited knowledge of the product but they are the final 
target of the whole chain and they express their evaluations in terms of enjoyment or whether or 
not the final product meets their expectations. 
The sensory analyst role is to be the link between green coffee suppliers, roasters, and other 
production personnel, brewers, barista, and marketers. They are responsible for the product 
description that has to be done using a common language agreed upon among professionals. The 
accuracy of these descriptions is critical because they are the base of the product identity 
throughout the value chain20. The examination of sensory data with production parameters or 
consumer reference may give information of bond the technological sources of certain flavour 
attributes and the characteristics appreciated by the consumers. 
 

A suitable sensory assessment is especially important in coffee because, as a natural crop product, 
its quality is in constant evolution, and consumer preferences evolve over time. Thanks to the 
continuous innovation in the discipline, methods are becoming more flexible, faster, and 
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adaptable to the business reality, but they require more than ever the know-how of the sensory 
professional(s)20. 
The Specialty Coffee Association of America (SCAA) proposed a detailed protocol to provide an 
accurate assessment of the coffee cup quality21. This cupping test, also known as “Brazilian 
method”, is the worldwide standard method to define the quality of the incoming raw beans 
before the next steps of coffee transformation. It is used to select beans for specialty coffee for 
mono-origin or blends and to establish the price of the raw material besides the bean visual 
appearance properties (i.e. color, bean uniformity, and lack of “defective beans”).  
The cupper’s quality perceptions are determined by the analysis of different specific flavour 
attributes that are rated on a numerical scale. The scores between samples can then be 
compared: coffees that receive higher scores should be noticeably better than those that receive 
lower scores. 
 

The protocol reports all details about each step of the evaluation in order to maximize the level of 
standardization. The instructions include not only roasting and grinding parameters but also 
temperatures, times and number of stirring between all steps 
Of particular interest is the detailed evaluation procedure reported below: 
 
Step #1 – Fragrance/Aroma 

- Within 15 minutes after samples have been ground, the dry fragrance of the samples 
should be evaluated by lifting the lid and sniffing the dry grounds.  

- After infusing with water, the crust is left unbroken for at least 3 minutes but not more 
than 5 minutes. Breaking of the crust is done by stirring 3 times, then allowing the foam to 
run down the back of the spoon while gently sniffing. The Fragrance/Aroma score is then 
marked on the basis of dry and wet evaluation. 

Step #2 – Flavour, Aftertaste, Acidity, Body, and Balance 

- When the sample has cooled to 160º F (71º C), in about 8-10 minutes from infusion, 
evaluation of the liquor should begin. The liquor is aspirated into the mouth in such a way 
as to cover as much area as possible, especially the tongue and upper palate. Because the 
retro nasal vapors are at their maximum intensity at these elevated temperatures. Flavour 
and Aftertaste are rated at this point. 

- As the coffee continues to cool (160º F (71.1°C) - 140º F (60°C)), the Acidity, Body and 
Balance are rated next. Balance is the cupper’s assessment of how well the Flavour, 
Aftertaste, Acidity, and Body fit together in a synergistic combination. 

- The cupper’s preference for the different attributes is evaluated at several different 
temperatures (2 or 3 times) as the sample cools. To rate the sample on the 16-point scale, 
circle the appropriate tick-mark on the cupping form. If a change is made (i.e. if a sample 
gains or loses some of its perceived quality due to temperature changes), re-mark the 
horizontal scale and draw an arrow to indicate the direction of the final score.  

Step #3 – Sweetness, Uniformity, and Cleanliness 

- As the brew approaches room temperature (below 100º F (37.8°C)) Sweetness, Uniformity, 
and Clean Cup are evaluated. For these attributes, the cupper makes a judgment on each 
individual cup, awarding 2 points per cup per attribute (10 points maximum score). 

- Evaluation of the liquor should cease when the sample reaches 70º F (21º C) and the 
overall score is determined by the cupper and given to the sample as “Cupper’s Points” 
based on ALL of the combined attributes. 

Step #4 – Scoring 

After evaluating the samples, all the scores are added as described in the “Scoring” section below 
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and the Final Score is written in the upper right hand box  
Although sensory evaluation is normally carried out by trained panelists, there are some 
limitations such as low repeatability and reproducibility in the results because of many subjective 
(e.g., sensory susceptibility of the person, health, fatigue) and objective (conditions under which 
the analysis is performed) parameters, as well as the time needed for its implementation. 
 

In this perspective, several studies have been focused in the investigation of the relationship 
between sensory and compositional properties of food matrices and in particular about coffee. 
This thesis deals with a multidisciplinary study on the relationship between the chemicals of the 
coffee flavour and its sensory properties. The knowledge of the chemical signature of different 
coffee aroma notes linked to their sensory perception to define the quality of the beans can be 
used as an objective tool in routine control in view of supporting the panel in cupping routine 
work in the sensory assessment of the coffee quality. 
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Food analysis is, nowadays, one of the most important application field of analytical chemistry due 
to the even-increasing need to be in compliance with legal standards on health risks, environment, 
animal welfare and ethical requirements. In addition, food analyses are becoming crucial in the 
assessment of food sensory impact that is becoming even more a key parameter for the quality 
evaluation.  
 

Food quality is an extended concept that is traditionally mainly related to food safety. For this 
reason, the first goal of food analysis has been and still is to ensure this essential criterion. 
In addition to food safety, food quality definition pass through the evaluation of several other 
characteristics for which analytical chemistry plays a crucial role. For instance, i) food analyses are 
important in detecting adulteration and frauds; ii) in the analysis of microbiological properties, iii) 
in the evaluation of food (or part of it) biological effects iv) and in the study of food rheology, 
morphology, structure or surface and its chemical composition is fundamental to standardize a 
product or to improve its characteristics or, else, to design new foods. 
 

The definition of food quality is undoubtedly becoming a challenging and complex issue because in 
recent years it has moved from the “simple” concept of healthy to a more holistic food 
characterization. The development of new analytical strategies (informative, fast, automated, and 
sensitive) and applications, has grown together with the knowledge the consumers have acquired 
about what they eat or drink. 
The knowledge of the chemical composition of a food is therefore essential to understand the 
changes occurring along the whole production chain, from the raw materials up to the final- 
products and to evaluate their shelf-life.  
 

Another important challenge in food analysis is to improve our limited understanding of the roles 
of food compounds at the molecular level (i.e., their interaction with genes and their subsequent 
effect on proteins and metabolites) for the rational design of strategies to manipulate cell 
functions through diet, which is expected to have an extraordinary impact on our health and well-
being. 
Food scientists are therefore pushed to develop new tools, standards and approaches also moving 
from their classical procedures to modern analytical techniques that allowing them to give an 
adequate answer to the global quality control demand. 
 

As in depth discussed in the previous sections a great portion of food quality definition involves its 
sensory impact summarized by the concept of flavour (more details in section 1.1). 
The key role of chemical senses as smell and taste in food flavour definition and in food decision 
making procedures confirms the importance of the food chemical composition in this complex 
scenario1. Because of its complexity, food flavour chemical characterization cannot be based only 
on a list of preselected compounds. Moreover, its conventional definition considers the features 
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under study singularly without taking into account the relationships among them and how 
characteristics influence one another. 
The efforts in this direction lead to the development of analytical approaches, defined as –omic 
approaches, able to achieve a global food characterization and to define its chemical, physical and 
biological characteristics. 
Thanks to the omics approach, it is now possible to connect food components, diets, individuals, 
health, and diseases, but this broad vision needs not only the application of advanced 
technologies, but also and mainly the ability of looking at the problem with a different approach, a 
‘‘foodomics approach’’1,2. 
 

“Foodomics” is a comprehensive strategy that has many different definitions according to the field 
of application; someone says that foodomics is “a discipline that studies the food and nutrition 
domains through the application and integration of advanced omics technologies to improve 
consumer’s well-being, health and confidence”, others define it as “the comprehensive, high-
throughput approach for the exploitation of food science in the light of an improvement of human 
nutrition” or, else, as “a new approach to food and nutrition that studies the food domain as a 
whole with the nutrition domain to reach the main objective, the optimization of human health 
and well-being”.3 Despite these definitions differs more or less markedly one another, all of them 
share a comprehensive multidisciplinary characterization of food that will give information and 
tools useful to improve the consumers health and well-being. According to the –omic approach 
this characterization requires the integration of advanced analytical techniques and bioinformatics. 
Compared to the past, the Foodomic approach requires a very important data elaboration step 
that affords to transform the information and the data collected from foods into results. 
 

The number of opportunities (e.g., new methodologies, new generated knowledge, new products, 
etc.) derived from this trend are impressive and for example, it includes the possibility to account 
for food products tailored to promote the health and well-being of groups of population identified 
on the basis of their individual genomes. The introduction, in this area of research, of advanced 
“omics” approaches such as Foodomics have allowed food scientists to face problems unthinkable 
a few years ago.  
Just to make some examples, the –omic approach allows: 

- to understand the effect of bioactive food constituents on crucial molecular pathways and 
understand the bio-chemical, molecular and cellular mechanisms behind the beneficial and 
adverse effects of these components, 

- to determine the genetic differences among individuals in response to specific nutrients or 
sensory stimuli and to understand how the diet can be modulated in the perspective of 
diseases prevention or well-being improvement, 

- to understand the molecular basis of biological processes with agronomic interest and 
economic relevance, such as the changes during food shelf-life, food consumption and the 
stress adaptation responses of/to food pathogens to improve food hygiene, processing and 
conservation. 

- the comprehensive assessment of food safety, quality and traceability. 
 

In spite of the huge potential of foodomics, it has to be highlighted the methodological difficulties 
to carry it out. The approach is not easy and requires a high degree of complementary knowledges 
coming from different fields, typically including analytical chemistry, biology/medicine, 
bioinformatics, and statistics. 
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ANALYTICAL PLATFORMS FOR FOOD FLAVOUR IN FOODOMIC EVALUATIONS 

The approach to analysis has radically changed with the introduction of -omic sciences. The 
development of global and high-throughput analytical strategies has been supported by the rapid 
evolution of analysis and detection techniques managing high numbers of samples and screening 
simultaneously several analytes.  
Moreover, these needs prompted the development of new approaches for sample preparation 
and analysis and led to the definitive inclusion of data elaboration as an active step of the entire 
analytical procedure.  
Foodomic analyses provide highly complex data sets that requires heavy treatments to be 
translated into results 4,5. 
Both routine and research laboratories, where large numbers of homogeneous samples are 
processed every day, have therefore focused their investigations on the development of 
automatic systems, in which “sample preparation, analysis data and interpretation” are merged in 
a single step, in the so-called total analysis systems (TASs)6. 
During the development of an analytical protocol each block must be chosen according to i) the 
aim of the project, ii) the matrix investigated and iii) the required level of information. 
 

Sample Preparation: a key step of food analyses 

Over the last years, several and important results have been achieved in instrumentation 
development achieving ever better performance. 
The same effort has been made for sample preparation. Sampling is the first step of the analytical 
process and it is crucial for the correct interpretation of the results; an error at this stage can no 
longer be corrected  and affects the whole analytical process7,8,9. 
Advance in sample preparation should minimize solvent use and hazardous waste production, 
save time and cost per sample, and, at the same time, improve the efficiency of the analytes 
isolation. 
 

Foods are very complex samples and require specific sample preparation procedures able to 
exploit i) the chemical and physical properties of the compounds of interest (volatility, polarity, 
solubility and thermal, oxidative, and hydrolytic stability), and ii) the interactions of the analytes 
with other components in the sample (matrix). 
A rapid analyte isolation is essential to minimize or prevent the typical alterations occurring in 
food samples because of enzymatic activity, lipid oxidation, microbial growth and physical 
changes.  
Sampling of liquid matrices must ensure their uniformity and use non-invasive methods (e.g., 
avoid the formation of precipitates by mild heating). 
 

The most critical aspect of sample preparation in flavour analyses concerns the volatile 
compounds that is typically based on their volatility and/or solubility. The sampling techniques 
suitable for -omic studies have to fulfil some key requisites: 

- provide a consistent picture of the informative analytes  
- minimize the artefacts formation, 
- tune the extraction parameters by optimizing physico-chemical operative conditions 

(temperature, time, pressure etc..) , 
- be reproducible and effective enough to match the instrumental sensitivity,  
- be simple, fully automatable and suitable to be integrated in the analytical system,  
- be environmental and economically sustainable 
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Traditionally, the extraction of volatiles have been performed by extraction/concentration 
techniques like simultaneous distillation/extraction (SDE)10, steam distillation techniques, direct 
organic solvent extraction, solvent assisted flavour evaporation (SAFE)11 or even with ultrasounds  
and microwaves assisted techniques. 
The extraction conditions have to be optimized to maximize the speed and the recovery of the 
analytes. If necessary, the extraction step can be followed by a purification step to remove the 
inferring molecule or reduce the matrix complexity. 
In spite of their effectiveness, in the flavour field, these techniques are laborious, not 
environmental friendly, and, above all not suitable for an “–omic” food flavour analysis. 
 

A great development in this field has been represented by the solid phase extraction (SPE); this 
extraction is based on the use of specific cartridges or columns pre-packed with various stationary 
phases (reverse phase C4, C8, or C18, ion exchange etc). 
The liquid sample is loaded through the SPE column where target analytes are selectively retained 
from the sorbent while other interfering and matrix components are washed out with dedicated 
solvents or vice versa. 
Miniaturized SPE, specifically designed for sample preparation in foodomic analysis, are 
commercialized by several manufacturers and have become increasingly popular because of their 
easy and fast use. They allow single-step desalting, concentration, and purification of food 
samples for sensitive downstream analyses, for instance proteomics and metabolomics. 
Solid Phase Micro-extraction (SPME) technique is an example of solid phase extraction largely 
used in food and beverages analyses. 
SPME belongs to the High Concentration Capacity (HCC) techniques. 
These techniques were introduced by Arthur and Pawliszyn in the early 90’s. The idea behind 
them is to keep the advantages of SPE while increasing the technique’s sensitivity (i.e. increasing 
the concentration factor CF). 
In the HCC techniques, volatiles and semi-volatiles are accumulated and extracted from the matrix 
(liquid or gaseous) into a polymeric coating of different nature and then recovered by liquid or 
thermal desorption. In addition, the HCC techniques often avoid the use of solvents making them 
environmentally friendly. 
The HCC techniques exploit two main extraction mechanisms (depending on the nature of the 
polymer) to capture the analytes: sorption or adsorption9. 
During sorption, the analytes are partitioned in the polymeric material while during adsorption the 
analytes are retained on the polymers active surface where a fixed number of adsorptive sites are 
present. In adsorption, a competition between the analytes can occur, since the number of 
bonding sites is limited. 
The selection of the polymer not only conditions the extraction principle but also should be done 
according to the chemical properties of the analytes.  
Polydimethylsiloxane (PDMS) is one of the most common polymer coating used in HCC 
techniques; it acts by sorption and it is most suitable for non-polar analytes. 
Polyacrilate (PA) and Divinylbenzene (CVB) are used to recover polar and highly polar analytes.  
The combination of polymers operating in different modes have been applied to several HCC 
devices because it extends the range of polarity and/or increases the analyte recovery by 
exploiting both the adsorption and sorption mechanisms. 
The HCC techniques have been chosen as sampling approach in the experimental part of this 
thesis. In particular, Solid Phase Microextraction and the Stir Bar Sorptive Extraction will briefly be 
described below. 
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Direct Immersion-Solid Phase Microextraction (di-SPME) 

SPME was the first HCC sampling techniques introduced by Pawliszyn in 1990; it is a solvent-free 
sampling technique where the analytes are sorbed and/or adsorbed exposing the sampling 
material to the sample. The device consists of a polymer-coated fused silica fibre, which is 
assembled in a dedicated needle of a special holder (Figure 1.3.1). 
 

 
Figure 1.3.1 Scheme of the conventional SMPE device (www.chromedia.org) 

 
During sampling (Extraction) the fibre is immersed in the liquid sample by pushing the plunger out 
of the device. Analytes are then extracted from the matrix and concentrate into the polymer 
coating and then transferred in the analytical system by thermal desorption at high temperatures 
or liquid desorption by solvents (Figure 1.3.2). 
 
 
 
 
 
 
 
 
 
 

 
 
 

One of the main advantages of the SPME is the possibility to choose the polymeric coating 
depending on the analytes under study. 
Fibres can be coated with a single material such as polydimethylsiloxane (PDMS) and polyacrylate 
(PA) or with multi components materials, in particular PDMS (e.g 
Polydimethylsiloxane/Divinylbenzene/Carboxen DVB/CAR/PDMS) to extend the range of 
recovered analytes (in terms of polarity and volatility) and to exploit both sorption and adsorption 
mechanisms. 
 

Thanks to its simplicity and versatility, the use of SPME in food analysis increased exponentially, in 
particular in the studies on food aroma composition and contaminants; this flexibility is due to the 

SPME fibre 
Liquid 

Sample 

Figure 1.3.2 Direct immersion-SPME sampling scheme 
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different and new polymeric coatings affording to cover a wide range of polarity and volatility as 
well as when designed for specific applications (i.e. – polymeric ionic liquids)12.  
In spite of its diffusion, SPME show a relatively limited concentration capacity because of the small 
volume of polymers involved in the extraction. 
 
Solid Phase Sorptive Extraction (SBSE)  

This technique has been developed in the 1999 to overcome the main limit of the SPME: the 
concentration capacity. 
SBSE is based on a glass-coated magnetic stir bar in its turn coated by a thick film of polymers in 
which analytes are concentrated. The device is commercially known as Twister®. Sampling is done 
by directly introducing the SBSE device into the aqueous sample; in the original experiments, the 
analytes sampled during a given time were recovered by thermal desorption and then on-line 
transferred to a gas chromatographic (GC) or a GC–MS (mass spectrometry) system for analysis. 
Later, liquid desorption in combination with high performance liquid chromatography (HPLC) was 
also applied, mainly for analytes not compatible with GC. (Figure 1.3.3) 
The most common polymeric coating is PDMS that affords to recover non-polar and medium to 
high volatility compounds at high rate. The PDMS apolarity is its main limit that can be overcome 
by combining two or more materials operating on different principles (e.g., sorption and 
adsorption) to capture a wider range of compounds (e.g: Polydimethylsiloxane 
(PDMS)/polyethylene glycol (EG); Polydimethylsiloxane (PDMS)/Polyacrilate (PA) etc.) 9,13,14. 
Another approach includes the so-called dual-phase (DP) Twister that consists of a PDMS tube 
with an inner cavity packed with adsorbent materials such as Carbopack B, Tenax GC, a bisphenol-
PDMS copolymer and Carbopack coated with 5% of Carbowax 15. The concentration capability of 
dual-phase twisters is therefore the result of the sorption of the analytes onto PDMS from liquid 
or vapour phase, followed by their diffusion through the PDMS layer and the adsorption onto the 
inner phase. The effectiveness of dual-phase stir bars therefore depends on the permeability of 
the outer PDMS layer to the investigated analytes, the adsorption capability of the inner material, 
and, last but not least, the strength  of the analyte–inner phase interaction, that must be 
reversible to afford their total release through thermal desorption14, 21, 16.  
 

Compared to di-SPME, SBSE provides a better concentration capability thanks to the higher 
amount of polymer coating the twister but, on the other hand, its main limited is the small 
number of polymer coatings commercially available, the analyte recovery from the polymers after 
liquid sampling and the need of specific and expensive devices for stir bar thermal desorption 
(TDU or TDS). 
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Figure 1.3.3 SBSE sampling scheme 
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High Concentration Capacity (HCC) sampling techniques applied to sample headspace (HS) 

Before discussing applications and advantages of HCC techniques the basic concept of headspace 
sampling and the physical laws that rule its composition have to be described. 
Headspace (HS) Sampling techniques exploit a peculiar property of aroma compounds i.e. their 
volatility17. 
Considering a sealed vial, the headspace refers to the vapour phase directly above the sample 
(solid or liquid). The idea behind Static Headspace sampling is to reach the equilibrium between 
the condensed and the vapour phases; therefore, in many cases the need of not too long analyses 
(suitable for routine purposes) has to be met. Non-equilibrium conditions are by definition 
exploited in dynamic Headspace sampling (D-HS) where the volatile compounds are continuously 
extracted from the matrix using a gas as carrier18.  
 

!(#$%) ↔ !	()*+,) [1] 
 

- =
[0(1234)]

[0(678)]
     [2] 

 
The equilibrium between vapour and condensed phases is summarized in equation [1] where A is 
the analyte of interest. 
The analyte partition between the vapour and the condensed phase is ruled by the partition 
coefficient (K) defined by equation [2]. 
Another important factor affecting the partition of the analytes in the headspace is the phase ratio 
(β) defined as the ratio between the volumes of the gaseous and the condensed phases [3]: 
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At the equilibrium, K and β are constant and the composition of the gas phase is representative of 
that of the condensed phase (sample). 
The partition coefficient K depends on several variables: 

- the temperature, 
- the analyte vapour pressure, 
- the activity coefficient of the analyte (matrix effect). 

 

These parameters are ruled by three basic laws: Dalton’s, Raoult’s and Henry’s laws. 
 

Dalton’s law states that the total pressure of as mixture of gases (the headspace of every matrix) is 
the sum of the partial pressures of ith components of the mixture: 
 

%<2<7= = ∑ %?
3
?@A  [4] 

 
the partial pressure of each analyte can be related to its molar fraction (B?) through the Raoult’s 
law: 
 

%? = CB?				DℎFGF	C = %?
2 [5] 

 
the proportion constant (k) is function of %?2; the vapour pressure of the analyte at a given 
temperature. 
The proportion constant k is usually known as Henry’s constant (H). 
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These rules therefore are valid just for ideal solutions and not for non-ideal solutions that are the 
majority of real-world samples. 
To compensate this equation the activity coefficient (H?) has been introduced.  
This coefficient considers the real portion of the molar fraction of an analyte really available in the 
vapour phase. This factor depends on the nature of the analyte and reflects the intermolecular 
interactions between the analyte and other sample components, for example the solvent or the 
texture or the composition of the matrix.  
 

%? = %?
2H?B? [6] 

 
In other words, the partial pressure of an analyte in the headspace (%?) is given by the interaction 
between its vapour pressure (%?2), the activity coefficient of the matrix (H?) and its molar fraction 
(B?). 
Furthermore, the vapour pressure (%?2) and the activity coefficient (H?) are inversely proportional 
to the partition coefficient (K) that rules the distribution of the analyte between the condensed 
and the gaseous phases. 
The vapour pressure is linked to the temperature as shown in equation: 
 

I*J%?
2 ∝

L

M
+ O [7] 

 
where B and C are specific constants of the analyte and T is the temperature. This equation 
suggests that the increase of the sampling temperature implies the increase the vapour pressure 
and thereby of the headspace sensitivity. 
 

In summary, the headspace sensitivity (P) is strictly related to the phase ratio (B) and the partition 
coefficient (K) as confirmed by the equation: 
 

P =
A

QRL
 [8] 

 
The parameters to tune to increase the headspace sensitivity are therefore: 

- the temperature of the system; 
- the volume of the sample (i.e. the phase ratio); 
- the chemical characteristics of the matrix (e.g. salting out effect); 
- the chemical properties of the analyte (changing its volatility through derivatization). 

 

Since its introduction, static headspace sampling (S-HS) in combination with GC has successfully 
been employed in the flavour and fragrance field for several applications.  
Its success was due to its simplicity, rapidity and to the possibility of automation that this sampling 
approach offers. Despite these important advantages, the S-HS main limitation is its low 
sensitivity. This characteristic limits its application between ppm and percent concentrations. 
 

The introduction of high concentration capacity techniques (HCC) has increased the complexity of 
the system, since the sampling material influences the recovery equilibrium. In HCC techniques 
two equilibria have to be considered: 1) the partition of the analytes between the matrix (liquid or 
solid) and the vapour phase, 2) the partition of the analytes between the vapour and the 
polymeric phases.  
 

Consequently, further parameters, in addition to those used in the headspace, have to be 
considered19: 
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- the partition coefficient between the headspace and the polymer, 
- the nature of the polymer, its volume and its size, 
- ionic strength. 

 

One of the most popular HCC-HS sampling technique is the headspace-Solid Phase 
Microextraction (HS-SPME). This technique found many applications in food flavour analyses 
because it exploits the concentration capacity of SPME and therefore enhances the sensibility of 
conventional S-HS. 
The quantitation accuracy and reliability of HS-SPME technique has been investigated and 
demonstrated in 2011 by Bicchi et al.20. Furan in roasted coffee was analysed by HS-SPME-GC-MS 
and quantified by Multiple Headspace Extraction (MHE), Standard Addition (SA) and Stable 
Isotopes Dilution Analysis (SIDA) showing consistent results. 
 

To improve the sensitivity of HS-SPME due to the low volume of fiber coating the use of the SBSE 
was extended almost immediately to vapour phase sampling (headspace) by Bicchi et al.21 and 
Tienpont et al.14 with the name of Headspace Sorptive Extraction (HSSE). In HSSE, sampling is in 
static mode by suspending the PDMS stir bar in the vapour phase in equilibrium (or not) with the 
solid or liquid matrix. Again, accumulated analytes are recovered by thermal desorption combined 
and on line analysed by GC or GC–MS. 
A schematic view of HS-SPME and HSSE sampling techniques is reported in figure 1.3.4. 
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Figure 1.3.4 Schematic view of HS-SPME (A) and HSSE (B) sampling techniques 
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Analytical platforms for food analyses 

Core of each TAS is the analytical platform. In the recent decades, the technological development 
made available new and powerful platforms providing ever more extended information.  
Analysis is addressed to study several aspects of a food therefore requiring different analytical 
platforms including (i) spectroscopic techniques such as mass spectroscopy (MS), nuclear magnetic 
resonance (NMR), infrared (IR), etc.; (ii) separation techniques such as high performances liquid 
chromatography (HPLC) and gas chromatography (GC), capillary electrophoresis (CE), supercritical 
fluid chromatography (SFC) mainly combined with mass spectrometry, (iii) biological, 
immunological techniques, etc. 
Despite the spectroscopic techniques are gaining importance and are widely used in particular in 
quality control, the separation techniques still are still the most valid and effective tool for the –
omic food analysis22,23. 
The development of spectroscopic techniques can be explained because they can be easily 
coupled with chemometric and statistic data treatment. These data elaboration tools are 
appropriate and useful for the evaluation of the encrypted information deriving from the 
spectroscopic analyses. 
Separative techniques still represent a reference for the analysis of foods since they afford to 
separate the components in complex mixtures and the identification of the pool of chemicals 
responsible for the characteristics under study. 
The choice of the analytical platform has to be done in agreement with the level of information 
needed; today the scenario is wide and can be splitted in two main classes: chromatographic and 
direct spectroscopic techniques.  
 
Chromatographic techniques & detection 

The advent of modern chromatography in the 50’s23 changed food analysis affording the 
separation of the components of complex matrices. 
Food analyses mainly exploit gas (GC) and liquid chromatography (LC). 
The introduction of GC allowed the separation, identification and determination of volatile or 
volatilizable chemical compounds in complex mixtures. On the other hand, the potential of LC, 
which can differently be approached (e.g. reverse phase, ion exchange, affinity, etc.), has been 
enormously increased with the introduction of HPLC (early 70’) and more recently (late 90’) by 
ultra-high-performance liquid chromatography (UPLC).  
Chromatographic techniques can be associated with a large array of detectors based on different 
principles and able to detect a wide range of  compounds with different chemical structure or to 
be selective for specific structural characteristics3. 
The data acquired from a chromatographic method include retention times, peak intensity (area 
or height) and mass spectra, of course when in combination with MS. 
When combined with chromatography, the MS fragmentation differs depending on the interface 
and ionization mode, and on the architecture of the analyser (high or low-resolution MS).  
In GC, where direct electron impact (EI) is the most common, the fragmentation provides a great 
number of more or less diagnostic fragments, whose pattern can be used to identify the analytes 
by comparison with those contained in commercial or home-made libraries.  
In LC the fragmentation depends on interface and ion source and the resulting MS pattern has a 
different diagnostic impact; generally, LC-MS is characterized by a less fragmentation that can be 
exploited in isotopic peaks detection24. 
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The versatility of the chromatographic methods affords the analyst to interact on both separation 
and detection to acquire an analytical set of data with at the maximum level of information, as 
well as to select the data suitable for a further treatment.  
Gas Chromatography (GC-FID, GC-O, GC-Ms) 

In gas-chromatography, the analytes must be vaporizable (or derivatized to make them volatile) 
and thermo-stable since temperature conditions injection and the chromatographic process). 
The stationary phase is bonded or coated on the inner surface of a fused silica capillary column. In 
gas-liquid chromatography (GLC), the most widely used coating materials are highly-viscous non-
volatile polymeric liquids unlike in gas solid chromatography (GSC) where it is solid: 
In a GC system, the sample is introduced in the column through an injection system; the column is 
placed into a temperature-controlled oven where the separation take place: the end of the 
column is connected to a detector.  
During the chromatographic run, each analyte is eluted in agreement with its distribution 
coefficient that drives the partition between the stationary and the mobile phases. During the run 
the molecule are move forward by the carrier gas. 
One the most important GC advantages is its flexibility; it can be coupled to several detectors with 
different characteristics. 

GC-FID: Flame Ionization Detector is one of the simplest and universal detectors used in 
GC: the signal originates from the ions generated during the combustion of organic compounds in 
a hydrogen-rich flame that are submitted to a polarizing voltage generating a current proportional 
to the amount of eluting analyte. 
A scheme of the FID detector is reported in figure 1.3.5: 
 

 
Figure 1.3.5 Scheme of a FID “www. teaching.shu.ac.uk” 

 
Because of its simplicity the GC coupled to a FID found several applications in food analyses, in 
particular when (i) high sensitivity, reproducibility, and stability, (ii) inexpensive and (iii) easy, rapid 
instrumentation is needed. 
Over the last ten years the methods of the –omic approach has been adopted in food quality 
determination of different food matrices using FID as detector. Thanks to its routine suitability, a 
large amount of work has been carried out to relate the chemical profiles to the sensory data for 
predictive purposes25,26. The chemical fingerprints by GC-FID were widely used to investigate for 
example the study the ageing of wine, or to classify beers according to a portion of their volatile 



The role of analytical chemistry in food analyses:  
platforms for the analysis of food flavour in foodomic studies 

53 
 

fraction. Other examples involved beer, wine, cheese, green tea, balsamic vinegars and 
coffee25,26,27,28,29,30.  
All these papers highlight the FID advantages and demonstrate its usefulness in particular in food 
production sites; reasons behind this statement are the following: 

- GC-FID is inexpensive and therefore available even in small factories; 
- FID is a universal detector, sensitive for a wide variety of organic compounds; 
- FID has a wide dynamic range and affords analyte quantitation over a wide range of 

concentrations; 
- FID provides accurate quantitative data since its range of acquisition frequency is very wide 

unlike many routine MS detectors(quadrupoles). 
 

Despite these practical advantages FID provides only limited information on the chemical nature 
of the analytes effectively separated. 
All studies previously reported indeed combine the GC-FID fingerprinting to a GC-MS investigation 
of the peaks in order to identify target compounds. 
A further dimension of data is sometimes added to the FID in the platform: Gas Chromatography-
Olfactometry (GC-O) combines the GC separation to the detection of the human nose. In GC-O 
trained analysts (sniffers) detect, measure the intensity and provide a sensory description of each 
peak eluting from the GC column. 
In GC-O, the gas flow eluting from the chromatographic column is splitted in two, the first lead to 
the sniffing port while the second is connected to a FID or a MS detector in order to obtain a 
reference instrumental trace. 
A schematic view of the instrumentation is reported in figure 1.3.6. 
 

 
Figure 1.3.6 Schematic view of a GC-O/FID instrumentation 

 
Olfactometry is used for screening purposes. Two main screening techniques have been 
developed over the years: Aroma Extract Dilution Analysis (AEDA) and Comprehensive High-
throughput Array for Relative Methylation (CHARM) analysis developed by Grosh’s et al and 
Acree’s groups respectively. These techniques both evaluate a series of rationally diluted samples 
dilution of an original aroma extract using GC/O to select the characterizing odorants in it.  AEDA 
will more in depth be discussed in a dedicate session (2.3) in the experimental part. 
A more quantitative data analysis have been obtained by GC-O with Gas Chromatography- Surface 
of Nasal Impact Frequency (GC-SNIFF) developed by Chaintreau et al. in 199731. In this method, 
the potencies of the odorants are based on the frequencies of detection of the odorants perceived 
at the sniffing port. 
The GC-O is not properly an –omic friendly technique since needs long analyst’s training and does 
not afford the screening of a large number of samples in short periods of time. However, its 
application is important to define the odour description or potency of particular odorants of off-
flavour arising from an –omic study. 

Injector 

GC Oven 

FID Sniffing 
Port 
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GC-MS: mass spectrometry, in combination with separation techniques such as chromatography 
and with statistical and bioinformatic tools, is today a key analytical technique on which the –omic 
approaches are based3. Mass spectrometric detection is a universal detector that usually improves 
the selectivity of an analytical system, because it extends the GC ability to study a complex 
mixture by providing a further and orthogonal information specific for each separated analyte (i.e., 
its spectrum). Mass spectrometers are based on the ionization and fragmentation of a compound 
(for examples through electron impact (EI)), followed by the physical separation and detection of 
the charged diagnostic ions (fragments).  
A mass spectrometer mainly consists of an ion source (site of the ions generation), an analyzer 
(where fragments generated in the ion source are separated according to their m/z ratios) and a 
detector. MS data are recorded in a 2D plot displaying the ion intensity vs. the mass-over-charge 
(m/z) ratio known as mass spectra. 
Mass spectra are highly indicative of the analyte original structure, being virtually the diagnostic 
fingerprint of a molecule. The method is thereby a powerful tool to identify sample components. 
The most popular Mass Analyzer used for food analyses is the Quadrupole Mass Spectrometer 
(qMS). It consists of four cylindrical rods, set parallel to each other. The disposition of these rods 
creates a tunnel in which the ions produced in the ion source are separated according to their 
mass-to-charge (m/z) ratio. Oscillating electric fields and constant radiofrequency are alternatively 
applied to the rods in alternative combination and only the ion with the m/z ratio compatible with 
the electric field will be able to pass through the quadrupole and reach the detector. 
MS quadrupoles are able to cover a mass range between 2 and 4000 amu; acquire data in Full-
scan and/or in SIM or MIM (Single or Multiple Ion Monitoring) modes and provide a relatively fast 
scan. 
qMS can be successfully applied to both conventional and multidimensional GC thanks to their 
ability to achieve a 20000 amu/s scan speed and 50Hz scan frequency using a restricted 290amu 
mass range 7,32 but sufficient for highly volatile compounds. 
Figure 1.3.7 report a scheme of a MS Quadrupole analyzer 
 

 
Figure 1.3.7 MS Quadrupole analyser "www.Schimadzu.com" 

 
The MS quadrupole analyzed results to be a flexible, efficient and relatively cheap analyzer and 
therefore found application in many foodomic studies. 
Over the last years the qMS have been applied to many studies aiming to classify, predict, identify 
and authenticate different food matrices. 
The development of Time of Flight MS (TOF-MS) analyzers has extended the possibilities MS as 
detector for GC to high-speed or high-resolution GC-MS. 
The most flexible geometry is the orthogonal acceleration time of flight mass spectrometer (oa-
TOF MS); this analyzer can successfully be coupled with several ion sources including the electron 
and chemical ionizations (EI and CI).  
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Figure 1.3.8 Scheme of an Agilent TOF MS analysed www.agilent.com/chem 

 
Figure 1.3.8 reports a scheme of a oa-TOF MS analyser. In this instrumentation, ions generated in 
the ion source are shaped in a parallel beam by the transfer ion optics and directed to the fight 
tube where mass separation take place. 
A TOF-MS analyser discriminates the ion fragments on their flight time. The ion beam reaches the 
ion pulser, a stack of plates each (except the back plate) with a centre hole, where, the ions are 
accelerated in the flight tube by a high voltage pulse. The ions travel through the flight tube (1m 
long), are reflected by a two-stage, electrostatic ion mirror and reach the detector where their m/z 
ratio is measured. 
 

When dealing with complex sample matrices, such as food, adequate mass resolution is often 
essential. 
High resolution mass spectrometry can be performed by a q-TOF instrumentation (Figure 1.3.9). 
Unlike the conventional TOF-ms the ion source is followed by a mass filter (generally a 
quadrupole) where the ions are separated and sent in the collision cell.  
The collision cell consists of six small parallel metal rods to witch a Radio Frequency (RF) is applied 
to confine the ions with a particular mass in the open center of the rod set.  
A collision gas (generally Argon) in the cell enables collision induced dissociation (CID) and forms 
new ions from those selected by the radio frequency. 
At the exit of the collision cell, ions are shaped in a parallel beam by the transfer ion optics and 
directed to the flight tube to be separated. 
 

 
Figure 1.3.9 Scheme of an Agilent q-TOF MS analysed www.agilent.com/chem 
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Two types of GC–TOFMS are currently available33: 
 
1. GC coupled to high-resolution (HR)TOF MS achieving mass accuracy as low as 5 ppm, with a 
moderate acquisition speed (maximum acquisition rate 20 s−1), and linearity range of 
approximately three orders of magnitude; 
 
2. GC coupled to high-speed MS instruments (HS)TOF (maximum acquisition frequency 500 s−1), 
with unit-mass resolution and linearity of approximately four orders of magnitude; high-speed TOF 
MS are in particular useful for detection and quantitative analysis in fast and ultra-fast GC, or 
comprehensive 2D-GC. 
 
High sensitivity in full-scan mode, together with the high mass resolution power and accuracy 
provided, make GC–TOF MS very attractive in qualitative analysis, especially for screening 
purposes and identification of unknowns.34,35 
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Liquid Chromatography (LC-UV-DAD, LC-MS) 

Liquid chromatography (LC) is the technique of choice for non-volatile compounds within a wide 
range of polarities, and it is very popular in foodomic studies involving proteins and non-volatile 
metabolites. 
The main separation modes in HPLC are (i) normal phase (NP) and (ii) reverse phase (RP). In NP, 
the stationary phase is polar and the analytes are separated by elution with an ever increasing 
polarity mobile phase, while, in RP, the stationary phase is non-polar and an ever decreasing 
polarity such as water or acetonitrile is used. 
A high number of –omic studies focuses on food identitation, classification, authentication and 
properties prediction through the phenolic/flavonoidic fraction. These fractions are deeply 
involved in many interesting properties of foods mainly because of their antioxidant activity and 
their bitter taste and astringent sensations.  
In literature the phenolic and flavonoid fractions have been studied on several matrices such as 
green tea34,36–40, red wine41,42, honey43 and, of course, coffee44, by coupling HPLC (High Pressure 
Liquid Chromatography) to a UV/DAD as detector. UV detector suffers of some limitations, in 
particularly for analytes without UV chromophores, but it is the best compromise between 
sensitivity, linearity, versatility, and reliability versus costs.45  
Many foodomic target analytes absorb UV light in the range of 200–550 nm, including substances 
with conjugated double bonds and/or un-shared and easy to excite electrons. 
Three types of UV detectors are available: fixed wavelength, multiple wavelength, or photodiode 
array (DAD). The fixed-wavelength detector is the cheapest and has high intrinsic sensitivity 
because the lamp emits light at specific wavelengths. The multiple-wavelength, although less 
sensitive, is more versatile since it can operate at different wavelength during the same 
chromatographic run. UV-DAD provides the full UV spectrum of each peak and in combination 
with HPLC offers for the UV characterization of all separated analytes with diagnostic 
chromophores, (e.g. phenolics, polyketides, alkaloids, and terpenoids46). DAD-UV detection 
records the absorbance at all wavelengths of an analyte simultaneously. Limits of detection (LODs) 
can reach 10–8g/mL, with a linear dynamic range of about three orders of magnitude. 
 

HPLC-MS is a key technique for the online identification of food components. Besides detection, 
mass spectrometry gives the possibility of generating either nominal mass molecular ions, or 
accurate mass measurements for the determination of empirical formulas45.  
An LC–MS system includes the autosampler, the HPLC system, the ionization source (which 
interfaces the LC to the MS) and the mass analyzer. 
It should be noted that coupling an HPLC with MS is more complex than coupling it with GC 
because HPLC operates with a liquid mobile phase at atmospheric pressure while MS 
spectrometer works in gas phase under high vacuum. This condition imposes some restrictions to 
the mobile phase composition and flow rate. 
A number of interfaces/ionization sources have been developed. The most popular are (i) 
electrospray ionization (ESI) and (ii) atmospheric pressure chemical ionization (APCI); both 
interfaces are nowadays available in LC–MS systems. For both ESI and APCI, the ionization occurs 
at atmospheric pressure and is obtained by a combination of high voltage and heat.47 
In ESI, the high voltage (3–5 kV) produces nebulization of the HPLC effluent resulting in charged 
droplets that are focused toward the mass analyzer. These droplets get ever smaller because of 
solvent evaporation as they approach the entrance to the mass analyzer forming individual ions 
(the so called ‘ion-evaporation’) These ions are then separated in the MS analyzer. 
In APCI, heat vaporizes the column effluent and then a corona discharge is used to ionize solvent 
molecules, which then produce the analyte ions via chemical ionization mechanisms.  
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More recently, a third ionization mode, atmospheric pressure photoionization (APPI), has become 
available. In APPI, heat is used to vaporize the column effluent (similarly to APCI), but ionization is 
produced with an ultraviolet (UV) lamp that produces 10 eV photons. APPI methods in general 
provide a soft ionization and mainly molecular ion species in the form of either protonated 
molecules [M +H]+ (positive-ion mode, PI) or deprotonated molecules [M – H]– (negative-ion 
mode, NI). Different adducts (e. g., [M + Na]+ (PI) or [M+ HCOO]– (NI)) are also produced, 
depending on solutes and modifiers.  
 

Recently some promising results has been achieved by Termopoli et al. that developed an 
interface combining a conventional HPLC system to a conventional Electron Ionization (EI) mass 
spectrometer 48. This new interface called liquid-EI (LEI) aims to fill the lack of structural 
information gap with ESI ion source which are of high interest for –omic approaches in food 
analyses 48. 
 

Several analyzers are available for interfacing with HPLC: 
- Single quadrupole mass analyzer; this system will provide a mass spectrum (or better 

molecular or quasi-molecular ion(s)) for each chromatographic peak eluting from the LC 
column. 

- high resolution time-of- flight (HR-TOF) mass analyzer, which also provides exact masses at 
four to five decimal figures of each eluting component.  

- Triple-quadrupole (QQQ) MS-MS systems are is the most commonly used in particular for 
bioanalysis and metabolite identification assays or specific quantification in complex 
matrices through Multiple Reaction Monitoring (MRM).  

- HPLC-ion-trap mass spectrometry which has the unique capability of producing MSn data 
that are important in structure elucidation studies  
 

In addition, a growing number of additional analyzers, including hybrid systems are now available. 
Hybrid mass spectrometers combine two of the basic MS analyzers to make a specialty system; an 
example of a hybrid mass spectrometer is the ‘Q-TOF’ MS–MS system, which combines a 
quadrupole analyzer with a TOF analyzer.  
 

High resolution mass spectrometry (HRMS) improved the field of application of LC-MS technique 
affording to discriminate compounds on their exact masses and gives new tools to investigate 
complex samples49.  
Among HRMS analyzers coupled to HPLC and UHPLC systems [(magnetic sector, time-of-flight 
(TOF), Orbitrap, and Fourier transform ion cyclotron (FT-ICR)], TOF and Orbitrap are the most 
commonly used in -omic applications. 
Compared to TOF analyzers the Orbitrap has an advantage given by the relative stability of its 
mass calibration.  
The high accuracy on mass measurements achieved with this kind of instruments enhances the 
possibility to unambiguously determine the elemental composition of known and new 
constituents with a high level of accuracy. A recent study on polyphenols in food50 and the 
foodomic study of mycotoxins51 are examples in witch this informative power has been fully 
exploited. 
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Multidimensional Chromatographic techniques 

The important increase in hyphenated separations supports the idea that more information is 
needed to decipher the high complexity of food samples and their real effects on human health. 
A measure of sample complexity is given by the parameter “sample dimensionality s” introduced 
by Giddings at the end of the 80s 52–54 which corresponds to the number of independent variables 
that have to be defined to decrypt the sample composition. In his studies Giddings demonstrates 
that as much system dimensionality (n) and the sample dimensionality (s) are close one another as 
much the separation pattern is ordered and its complexity resolved. 
Multidimensional chromatography is a precious tool in the analysis of complex samples (as foods) 
because, improving system dimensionality (n), it provides a peak capacity enhancement by far 
higher than any improvement or optimization on mono-dimensional separations. 
A common compositional characteristic of complex food samples is the highly variable abundance 
[from traces (ng/g) to several percent (g/100 g)] of their components, which mainly consists of 
groups of chemically correlated compounds such as hydrocarbons, alcohols, carbonyl derivatives, 
acids, and esters. In addition, when technological processes are applied to transform a raw 
material into a food end-product, sample compositional complexity increases.  
A clear example is the roasting process, applied to several raw materials such as green coffee, 
cocoa beans, and hazelnuts, that must be carefully monitored and controlled in order to obtain 
products corresponding to the desired standards of quality 7. 
These compounds sometimes show similar chromatographic retention behavior and MS 
fragmentation patterns that make their one-dimensional characterization and quantitation 
difficult. Multidimensional techniques can overcome these limitations, thanks to their increased 
separation power and to the possibility to adopt different separation mechanisms in the two 
chromatographic dimensions. 
Multidimensional chromatography affords combination of two or more independent or nearly 
independent separation steps (first 1D and second 2D dimensions), increasing significantly the 
separation power (or more correctly the peak capacity) of the corresponding one-dimensional 
techniques and, therefore, the physical separation of compounds in complex samples.1 
Multidimensional techniques can be splitted basically in heart-cutting multidimensional 
approaches (e.g., LC−LC, GC−GC, LC−GC, LC−CE) and comprehensive two-dimensional techniques 
(LC×LC, GC×GC). 
Despite they both exploit the concept of orthogonality to separate analytes in complex mixture, in 
the heart-cut multidimensional chromatography MDGC (heart-cut 2DGC), only a limited number of 
1D regions (defined heart-cuts), where coelutions occur, are transferred to the second dimension 
(column - 2D) to improve the separation55.  
Sampled fractions should have low duration to prevent the overlapping of transferred peaks on 2D 
column; for this reason, the conventional Heart Cut Multidimensional chromatographic (H/C MDC) 
experiments can be considered a limited multidimensional separation method because it can only 
be applied to selected portion(s) of the chromatogram. The main advantage is the possibility of an 
ad-hoc tuning of the 2D column selectivity depending on each specific targeted analytical problem.  
 
On the other hand, in a comprehensive platform (GC×GC or LC×LC), each component eluting from 
the first column is on-line and automatically trapped, refocused, and re-injected into a second 
column through a modulator, a thermal or valve-based focusing device. The time between each 
trapping, refocusing and re-injection events is called modulation time; it is fixed (usually between 
4 and 8 s) and correspond to the the time available for the second-dimension analysis 56. 
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The main technical issues of multidimensional chromatography is the connection of the two 
dimensions; they are related, for instance, to the relatively costly operation conditions in GC×GC 
or to the loss in sensitivity in LC×LC.  
New solutions are now available to facilitate dimension combination as well as to increase the 
orthogonality of the systems and, thereby, their separation power and possibility of applications 
to food analysis.  
The development of sample preparation methods and techniques online combined with 
multidimensional systems and powerful MS detectors would ever more extend their use in food 
analysis. 
 

The great development of two-dimensional chromatography has found many applications in the 
flavour and fragrance fields by providing accurate aroma fingerprints of complex samples and a 
better food aroma blueprints.  
Multidimensional techniques may be a valuable tool for the assessment of food quality and 
authenticity, the control of technological processes, the determination of nutritional value, and 
the detection of molecules with a possible beneficial effect on human health. 22,57,58,59,60,61,62 

This full samples characterization can be exploited for many purposes like food design and off-
flavours unveiling. 
Multidimensional techniques have also been used to study the impact of particular food 
metabolites on health, to detect possible markers of diet-induced metabolic derangements or 
metabolic diseases on biological fluids 63,64,65,66–68,69. 
 

Both scientific and technological world make important efforts to make the multidimensional 
techniques simpler, cheaper and faster70 since these multidimensional techniques require 
dedicated laboratories, equipment, and highly trained personnel to be properly managed. 
Despite the technological progress makes the huge amount of information provided by 
multidimensional techniques easier to handle this full characterization (and moreover all the 
related complexity) is not always needed in particular for those applications that need to be 
implemented on a routine-based scenario. 
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Direct mass spectroscopy techniques and Electronic noses 

In recent years, the development of rapid, direct mass spectrometric techniques has achieved an 
increasing interest in flavour analysis due their potential to study flavour release , while, the 
conventional electronic noses (e-noses) simulate the human olfactory system by an array of 
chemical sensors able to screen (without providing a chemical information) a rather wide range of 
odorants.22 
These techniques have in common the absence of a previous separative step that makes the 
statistical data elaboration (usually performed by chemometric tools) ever more crucial to decode 
the resulting signal. 
The mains advantages of non-separative techniques are the short analysis time and the possibility 
of an on-line monitoring of the samples headspace. Several requirements are needed from an 
instrument for a reliable real-time analysis in a flavour release study, among others high sensitivity 
for detection of aroma markers and a fast analytical response time without the need for sample 
pre-treatment. Among others, direct MS techniques have become the most promising because of 
their signal stability, higher flexibility and information potential.  
Several approaches have been used in this respect, including both the sampling techniques such as 
SHS and HS-SPME and mass spectrometric techniques such as proton transfer reaction mass 
spectrometry (PTR-MS)71, atmospheric pressure chemical ionization mass spectrometry (APCI-MS) 
and selected ion flow tube mass spectrometry (SIFT-MS)72. Another direct MS technique with a 
great potential in real-time flavour analysis is Direct Analysis in Real Time Mass Spectrometry 
(DART-MS), where molecules from the sample (solid, liquid, or gas) are ionized by a beam of 
neutral metastable species generated by a glow discharge plasma. The introduction of TOF 
analyzer positively contributed in terms of speed and specific structural information and opened 
the non separative mass-based techniques field to many different applications. 

Electronic noses (e-noses) are different from most other instruments used in flavour 
analyses since they are mainly designed to recognize gas mixtures as a whole without identifying 
individual chemical species within the mixture. This technique codifies any odor stimulus as a 
distinctive electronic pattern or fingerprint, which is further classified by comparisons with 
reference electronic patterns in a database. In spite of some drawbacks (e.g. sensor poisoning, 
sensitivity to moisture, poor linearity, etc.), over the recent years, e-noses found many 
applications in food industries mainly in objective quality assessments, off-flavour detection etc. 
73,74. 
Non-separative MS methods, better known as mass spectrometry-based electronic nose (MS-EN), 
were introduced by Marsili75 to study off-flavours in milk; they have since successfully been 
applied to characterizing several matrices in the food field. 
They provide a representative, diagnostic, and generalized mass spectrometric fingerprint of the 
volatile fraction of a sample, directly analyzed without prior chromatographic separation, in which 
each m/z ratio acts as a “sensor”, whose intensity derives from the contribution of each 
compound producing that fragment. These methods, in combination with appropriate 
chemometric elaboration, can be used to quickly characterize and discriminate samples within a 
set and to correlate them with a technological process, specific geographic origin or sensory 
characteristics. MS-EN can also be used to monitor target compounds in a group of samples, 
provided that specific and diagnostic ions are obtained with a compatible ion generation mode (EI, 
CI, APCI, PTR, etc.).  
Examples of interesting applications of MS-EN on coffee aroma studies are those published in 
2008 by our group on monitoring of the coffee roasting degree 76 and by Lindinger et al., who 
predicted the coffee sensory profiles by PTR-MS71. 
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Chemometrics and Data Elaboration a crucial step of foodomic studies 

Applications of foodomics include studies of foods for control, safety, functionality, authenticity, 
traceability, freshness, contaminants, toxicity, bioactivity and effects on human health.  
Foodomics studies are thus often designed to investigate well-defined scientific questions related 
to food and its consumption.77 
Modern platforms provide with an ever-increasing number of complementary signals that can be 
measured within a single run. Datasets become not only gradually larger but also structurally more 
complex, and the information from hundreds or even thousands of metabolites together with the 
natural biological variation of individuals make exploration of the data not-easy. 
Challenges related to the use of this wealth of data include: i) the extraction of relevant elements 
within massive amounts of signals possibly spread across different tables, ii) reduction of 
dimensionality, and iii) summarization of the information in an understandable and easy way to 
display for interpretation purposes. The complexity of a chemical system necessarily affects the 
intrinsic complexity of the system itself. Foodomics thus cannot be developed without taking into 
account the current methodologies for exploring and exploiting patterns and relations in the 
mega/multivariate set of data that are generated.  
 

For these reasons, the last but not least part of a TAS mainly concerns the data elaboration tools 
which, are becoming at least important as the sampling/analytical techniques in the achievement 
of the final results of a foodomic (or more in general omic) study. 
Chemometric or multivariate data analysis are mathematical-statistical tools that try to separate 
"useful" information from all those contained in the data set, i.e. experimental noise, redundant 
information due to the correlation of some variables, information of good quality, but not directly 
interesting for the studied problem. Therefore, to face problems of "high complexity", it is 
necessary to extract the relevant information from the experimental data. 
Multivariate data structures are included in tables of numbers (the data matrix) consisting of a 
number of observations, each one represented by variables that describe the observations. 
A common data table is in general a matrix, whose nx rows represent the objects (samples, 
experiments, etc.) and the ny columns indicate the variables describing each object (figure 1.3.10). 
 

The variables can be distinguished into two logical groups: X predictors (the independent 
variables) and the Y block of the responses (the dependent variables). Depending on the problem 
dealt with, a variable can belong to the block X or to the block Y. 
Objects can also be associated to a vector, based on a predefined criterion, which contains the 
information of each object belonging to one of the predefined G classes (categories, groups, etc.). 
In other words, each object corresponds to a number, which identifies the class to which it 
belongs.  
The variables are the quantities used to study a given phenomenon and to describe the 
observations as a whole and can be theoretical and/or experimental. 
The objects are the samples analyzed to understand the investigated phenomenon, to build the 
models, and to confirm the hypotheses formulated. A sample in foodomics is represented by 
several experimental measures: the objects are here defined as multivariate. The set of 
measurements performed on a sample is featured by the variables selected to describe the object; 
the set of values defining it is the datum. In many cases, the available samples are not 
homogeneous since they come from different populations or belong to different classes or 
categories. The practical limit is the presence of a significant number of objects able to describe 
each class adequately. 
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Figure 1.3.10 scheme of a common data matrix 

 
Chemometric tools can be classified into two main groups (i) unsupervised methods, they are 
exploratory methods just showing the data as they are used to visualize the natural distribution of 
a sample in a three-dimensional space, and (ii) supervised methods, they look for determined 
features within data, explicitly oriented to address particular issues. In particular, when a model is 
developed with the purpose of predicting a qualitative or quantitative property of interest, its 
reliability in prediction should be assessed prior to using the model in practice. Prediction ability 
values should be presented together with their confidence interval, which depends on the number 
of samples used for the validation. The most common validation strategies divide the available 
samples into two subsets: a training (or calibration) set used to calculate the model and an 
evaluation set used to assess its reliability. The estimation of the predictive ability on new 
samples, not used for building the models, is a fundamental step in any modeling process and 
several procedures have been deployed to this purpose. No information from the test set can be 
used in building the model and in the pre-processing stages, otherwise the prediction ability may 
be overestimated. 78,79 
In several modeling techniques, some parameters are optimized looking for a setting that provides 
the maximum predictive ability for the model for a given sample subset. In the next paragraph, 
some of these parameters are discussed in function of the chemometrics tools and purposes (i.e. 
exploratory data analysis or prediction). 
 

The purpose of unsupervised learning is to summarize, explore and discover encrypted data 
information without any a priori knowledge. Unsupervised learning is usually the first step in data 
analysis and can help to visualize the data or to verify any intrinsic relationship in the data matrix. 
Among the unsupervised learning methods, two common methods used in metabolomics data 
analysis are here described and discussed: 

- Principal Component Analysis (PCA); 
- Multiple Factor Analysis (MFA) 

  



The role of analytical chemistry in food analyses:  
platforms for the analysis of food flavour in foodomic studies 

64 
 

Unsupervised data elaboration 

Principal Component Analysis (PCA) 

PCA is one of the most powerful tools to perform datasets reduction; it allows to find only a few 
combinations of the original variables (those measured in the experiments) that best explain the 
total variation in the original dataset. 
PCA can be considered as the starting point of multivariate data analyses; its main objective is to 
replace all correlated variables by a much smaller number of uncorrelated variables, often 
referred as Principal Components (PCs), that still retain most of the information in the original 
dataset. 
In practice, PCA builds hyperplanes in the original feature space that are linear combinations of 
the original variables (those measured in the experiments) and describes the data according to 
these new variables. The inspection of PCA scores highlights the relationships among the 
distribution of samples that may reveal groups while loading plots encloses the variables 
describing the groupings. 
The data can be visualized with a two-dimensional or three-dimensional plot (called scores and 
loadings plots) in which the large proportion of variation in the data is explained. 
The first variable (Principal Component 1, PC1) must have the largest possible variance to cover 
the largest amount of variability inside of the data set. The second principal component (PC2) 
must be orthogonal to the first one in order to explain the larger amount of the remaining 
variance. The other components are computed likewise. 
There is no rule for how many PCs to keep; the decision is usually made by checking the ‘‘variance 
explained’’ measure mentioned above or using a screen plot. 
Each observation is described on the new variables by values that are called factors scores; these 
values can be interpreted as the projections of the observation onto each principal component. 
PCA elaboration provides many outputs but, for data exploration purposes the most important 
information are reported as follow: 

- Total Explained Variance: since PCA provides a reduction of data dimension, it is important 
to verify that the amount of variance explained by the PCs considered is sufficient to 
explain and summarize the phenomenon under study.  

- Pearson’s Correlation Matrix: this matrix contains the Pearson’s correlation coefficient 
calculated between one original variable and each of the other variables. The Pearson’s 
correlation coefficient ranges between 0 and 1 and indicates the degree of correlation 
between two variables; a high correlation between two variables mean that they provide 
the same information. 

- Scores Plot: it is a 2 or 3D plot where each observation is plotted versus the two or three 
principal components chosen. This diagram is particularly useful to highlight if the pool of 
observations is grouped or clusterized by PCs. 

- Loadings Plot: this diagram plots the original variables versus the PCs. The projection of 
each variable on the PCs indicates the weight of the original variables in the definition of 
score samples. While the scores plot is useful to observe how the samples are scattered on 
the PCs space, the loadings plot affords to point out the original variables mostly 
responsible for this scattering. 

  



The role of analytical chemistry in food analyses:  
platforms for the analysis of food flavour in foodomic studies 

65 
 

Figure 1.3.11 represents PCA workflow: objects (rounds and triangles) are described by variables 
(X1, X2 and X3). The elaboration provides two plots; the Scores and the Loadings plots where the 
objects and the variables are plotted according to the PCs selected (t1 and t2). In this simple 
scheme, the interpretation is quite simple; circles are almost well separated from triangles 
according to the first PC (here called t1). The Loadings plot show that circles are characterized by 
the variable X3 while the triangles by variables X1 and X2. 

 

 
Figure 1.3.11 PCA elaboration scheme  

 
Multiple Factor Analysis (MFA) 

This unsupervised analytical tool, introduced by Escofier and Pages at the beginning of the 90th80, 

affords to analyse simultaneously several tables of variables, and to obtain results, in particular 
charts, to study the relationship between the observations, the variables and the tables. 
It takes into account the contribution of all active groups of variables to define the distance 
between individuals. The number of variables in each group may differ and the nature of the 
variables (qualitative or quantitative) can vary from one group to the other but the variables 
should be of the same nature in a given group. The goal of MFA is to integrate different groups of 
variables describing the same observations81. In MFA analyses the observations are described by 
several “blocks" or sets of variables. MFA seeks for the common structures present in all or some 
of these sets. MFA is performed in two steps. First, a principal component analysis (PCA) is 
performed on each data set that is then “normalized” by dividing all its elements by the square 
root of the first eigenvalue obtained from of its PCA. Second, the normalized data sets are merged 
to form a unique matrix and a global PCA is performed on this matrix82. The individual data sets 
are then projected onto the global analysis to analyse communalities and discrepancies. The 
weighting of the tables makes it possible to prevent that the tables including more variables not 
weighting too much in the analysis. MFA is used in very different domains such as sensory 
evaluation, economy, ecology, and chemistry. 
 

The most interesting information obtained by the MFA are listed below: 
- Within the global elaboration, the contribution of each group of variables on the PCs is 

reported in form of percentage; 
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- LG Coefficients: the LG coefficients measures how the tables are related two by two. The 
more variables of a first table are related to the variables of the second table, the higher 
the LG coefficient. 

- RV Coefficients: these values are more intuitive than LG coefficients; they are related to LG 
coeff. but, for an easier interpretation they range between 0 and 1. This value can be 
assumed as a generalization of the Pearson’s correlation coefficient. 

 

The potentials of this data elaboration technique have been exploited during section 2.4 of the 
experimental part, where some Aroma and Taste features have been compared in their 
consistency in describing the pool of samples (observations) under study. 
 
Supervised data elaboration tools 

Supervised learning methods are widely used to discover biomarkers, classification, and 
prediction. 
Supervised learning deals with problems or datasets with response variables. These variables can 
be either discrete or continuous. When the variables are discrete, e.g., control group versus 
diseased group, the problems are called classification problems. When the variables are 
continuous, e.g., metabolite concentration or gene expression level, the problems are called 
regression problems. The purpose of supervised learning is to determine the association between 
the response variable and the predictors (often referred to as covariates) and to make accurate 
predictions.  This operation is called supervised learning because one or more response variables 
are used to guide the training of the models. Usually a training and an evaluation step are included 
while building and test the fit of the model, and then the testing dataset is used to evaluate the 
predictive power77.  
 
Partial Least Square (PLS) Regression 

PLS regression is a recent technique that generalizes and combines features from principal 
component analysis and multiple regression. In particular, it is useful when we need to predict a 
set of dependent variables from a (very) large set of independent variables (i.e., predictors). 
Partial least squares modeling is a multivariate projection method for modeling a relationship 
between dependent variables (Y) and independent variables (X). The principle of PLS is to find the 
components (similar to those calculated in the PCA) in the input matrix (X) that describe as much 
as possible the relevant variations in the input variables, and, at the same time, have maximal 
correlation with the target value in Y, giving less weight to the irrelevant or noisy variations 
PLS therefore simultaneously models both X and Y to find the latent variables in X that will predict 
the latent variables in Y. PLS maximizes the covariance between matrices X and Y. An important 
feature of PLS is that it takes into account errors in both matrices, X and Y, and assumes that they 
are equally distributed. Moreover, PLS is suitable for data sets with fewer objects than variables 
and a high degree of inter-correlation between the independent variables 78. 
When the Y matrix is formed by qualitative variables, the PLS is used for discrimination purposes 
and takes the name of Partial Least Square Discriminant Analysis (PLS-DA).83 
The partial least squares discriminant analysis aims to find the variables and directions in the 
multivariate space which discriminate the established classes in the calibration set. The optimal 
number of latent variables can be estimated by an internal cross-validation or an evaluation test 
sets. In order to obtain a better model, it is important to work with a well-designed training set; in 
other words, it has to be representative of the phenomenon under study both in terms of 
variability and numerousness. The test set is a set of objects in which the dependent variable (Y) 
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has to be predicted by the PLS model. This dataset has to be totally external from the built model, 
i.e. it never has to be used in the model training steps.  
 
 
 
Most common parameters used to evaluate PLS regression model performance are reported as 
follow: 

- Q2 index; this is a model quality index, this value measures the global contribution of the 
components to the predictive quality of the model. The search of the maximum value of Q2 
is equivalent to finding the most stable model. 

- Determination Coefficient of the model (R2); this coefficient, whose value ranges between 
0 and 1, indicates the proportion of variability of the dependent variable explained by the 
model. The nearest to 1 R2 is the better is the model. 
The main issues of R2 is that it does not take into account the number of variables used to 
fit the model. Adjusted R2 can be used instead of R2 to overcome this limit. The number of 
variables used for the model development is important since the number of unnecessary 
variables penalizes the model; Adjusted R2, unlike R2, is sensitive to these penalties. 
Adjusted R2 can be calculated with the following formula: 
 

AdjTU = 1 − (1 − TU) ×
3XA

3X8
 

 
where R2 is the determination coefficient of the model, n and p are the number of 
observations and variables used to fit the model. 

- Root Mean Squared Error (RMSE) is defined as the square root of the Mean Squared Error 
that measures the average of the squares of the errors or deviations, that is the difference 
between the predicted values and what is measured. When the error is calculated on cross 
validation data takes the name of root mean squared error in Cross Validation (RMSECV) 
while when it is calculated on prediction data root mean squared error in prediction 
(RMSEP). 
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Non-linear and non-parametric regressions 

Although the relationship between dependent and independent variables is often assumed as 
linear, this assumption does not always provide the best prediction models. Non-linear and non-
parametric regression algorithms are therefore successfully used, in particular for biological 
phenomena as those monitored in foodomics. 
Examples of non-linear regression have been applied and developed by Abdel-Rahman et al in 
2009 84 and by Yoo et al. in 2004 85. In the first paper the Takagi–Sugeno–Kang (TSK) fuzzy 
inference system has been combined to PLS to overcome its limits in terms of flexibility when non-
linear relationships are involved. The Quadratic Fuzzy PLS (QFPLS) have been developed from the 
combination of the two approaches. A series of experiments carried out in the authors’ laboratory 
on several on data of different nature and sizes have shown that QFPLS clearly outperformed four 
other well-known methods (Linear Partial Least Square (LPLS), Quadratic Partial Least Square 
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(QPLS), Fuzzy Partial Least Square (FPLS), and Neural Net Partial Least Square (NNPLS) described in 
the literature.  
Kernel regression and LOWESS regression are part of non-parametric regressions. 
These approaches can be used when the hypotheses about the classical regression methods 
cannot be verified or when the interest is mainly focused only on predictive quality of the model 
and not on its structure (i.e. its equation). They are based on polynomial regression using and use 
three subsets of samples as already described before in the building up and testing the model. 

 
The non-parametric regression algorithm most frequently used is known as “LOWESS” (LOcally 
WEighted regression and Smoothing Scatter plots) curve. The acronym represents the idea of a 
locally weighted regression curve whose values, at a specific location along the x-axis, is 
determined by the points in that vicinity. As a consequence, the method does not imply any 
assumptions about the form of the relationship and affords to discover the trend using the data 
itself. 
This regression is in particular indicated when the interest is to improve the predictive quality and 
not to investigate the structure of the model. The lack of information about the structure of the 
models and their equation are the main limits to its application1. 
This last algorithm has been used to optimize the chemical fingerprints of the single notes in the 
last session of the experimental part (2.5). 
  

                                                        
1 (https://help.xlstat.com/customer/en/portal/articles/2062253-nonparametric-regression-kernel-lowess-
tutorial?b_id=9283) 
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Coffee aroma and flavour have in depth been studied but the chemistry behind the different 
modulations of this complex and attractive perception is still far to be fully clarified. 
The experimental part is divided into five sections in which the coffee flavour has instrumentally 
been studied for different purposes but always with the aim of building a bridge between the 
chemical characterization of coffee samples and their sensory description by a trained panel. 
The final goal is to exploit this knowledge to develop a complementary tool to the time-consuming 
conventional sensory analysis to be used in routine controls. 
Section 2.1:  

The analytical approach was based on different TASs in which the sampling step has been 
performed through different HCC approaches and the gas chromatography-mass spectrometry 
(GC-qMS) has been adopted as analytical platform. 
GC is the reference technique for volatiles analysis and MS provides a high level of information 
about sample composition; in addition, GC-MS is a relatively user-friendly and low-cost 
instrumentation that can usually be used in routine controls.  
Since the sample preparation is the first step of the TAS and conditions the analytical information 
provided by the whole platform, the first approach to study this topic has been the investigation 
of the data obtained changing the sampling technique and their relationship with sensory data.  
In order to be as close as possible to the panel experience, three different HCC samplings have 
been compared, each one simulating a step of the SCAA cupping protocol, (Specialty Coffee 
Association of America (SCAA)), officially adopted for the sensory evaluation of the incoming raw 
material. Chemical data handling has been performed by chemometric tools with the aim to 
compare the different sampling techniques to evaluate their ability to describe chemically the 
sensory characteristics of the samples investigated in compliance with the panel data, besides the 
possibility of a full automation. 
Section 2.2: 

The information collected in the first section have been exploited to define the chemical 
fingerprints of different coffee sensory notes by linking the monadic sensory profiling with their 
chemical composition by a Sensometric approach.  
The Sensometric approach involves the use of (unsupervised and supervised) chemometric tools 
to explore, reduce and model both sensory and chemical data. These tools afford to consider 
many variables together and are at the basis of data mining in -omics studies. 
Samples from all over the world have been selected and analysed, from a sensory point of view, 
through the standardized SCAA coffee cupping protocol to take into account the extreme 
variability around coffee sensory profiles. Coffee samples have here been described through seven 
different sensory notes. 
In the so called Qualitative Discriminant Analysis, samples distribution has been explored 
considering only sensory data to investigate if and how the sensory profiles (defined by the scores 
of the panel) could discriminate the samples.  
Then, the chemical data were included to select those chemicals chemometrically related to the 
expression of each sensory note. These compounds were at the basis of the sensory prediction 
models used as a validation tool of the signatures of the notes. 
In agreement with these preliminary results, the sensometric approach has shown to be 
discriminative, informative and predictive to define the chemical signature of different aroma 
notes.  
Section 2.3: 

The main limit of the sensometric approach here adopted is the lack of a direct correspondence 
between the odour of the pool of compounds involved in the fingerprint of each sensory note and 
the sensory impact of the note itself. 
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The effectiveness of this strategy has therefore been compared to the molecular sensory science 
approach that, for two decades, has been used to identify and quantify the molecules responsible 
in food flavours. 
In order to obtain an inter-approach validation of the fingerprints defined by Sensometrics, coffee 
“woody” and “flowery” sensory notes have been characterized with sensomics and sensometric 
approaches and the results compared. Both approaches resulted in a similar pool of compounds 
able to differentiate the two set of samples and thereby the expression of the “woody” and 
“flowery” sensory notes. 
It is clear that these approaches cannot be compared without considering their substantial 
differences but the good consistency between the compounds pointed out with each of them 
candidates the sensometric approach as a valid tool to face this important challenge. 

This part of the project has been carried out at the Deutsche Forschungsanstalt für 
Lebensmittelchemie (DFA), food chemistry institute of the TUM (Technische Universität München) 
under the supervision of Prof. Dr. Peter Schieberle. 
Section 2.4: 

The purpose of this section was to investigate in depth the complexity of coffee flavour perception 
to understand the limits of the sensometric approach. A Flavouromic approach has been adopted 
to link chemical information from volatile and non-volatile fractions to the panel flavour 
evaluations. 
Chemical information from HS-SPME-GC-MS analysis of coffee powders was integrated with the 
HPLC UV/DAD fingerprinting analyses targeted on specific wavelengths of non-volatile fractions to 
investigate the contribution of data fusion in flavour definition and prediction. 
The study is mainly focused on the Bitter note and then extended to the other sensory notes of 
interest. 
Section 2.5: 

The Sensometric approach discussed in section 2.2 and validated by the molecular sensory science 
(sec 2.3) is not only promising concerning the chemical characterization of different sensory notes 
but also proved to be suitable as an analytical tool complementary to the panel. 
The evaluation of coffee sensory profiles, however, is highly challenging since they can assume 
different shades depending on several factors (origin, post-harvest-treatments, harvesting period 
etc.) 
In this this section, the sensory notes prediction models have been optimized by a higher number 
of samples and with different regression algorithms able to better fit with the available data.  
In addition, the models have been tested on a new test set designed to reproduce a “real-world” 
application condition; the sample set consists of coffee samples harvested one year later including 
both the same origins used to train the models together with totally new origins. 

Finally, all these information have been exploited to merge all the prediction models into a 
single multi-note model able to predict the sensory score of all notes with one single elaboration. 
The use of a single multi-note model compared to the application of six different models impose 
some compromises in terms of performance and stability but afford a drastic reduction of the time 
needed to obtain a sensory profile that is an important advantage in a routine application of the 
proposed strategy.
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1. INTRODUCTION 

The quality of a cup of coffee and its distinctive sensory properties depend on the entire 
production chain. Some of the major factors influencing the final product are: geographical origin, 
climate, species, harvesting methods, technological processing (mainly roasting and grinding), 
storage conditions, and last but no less important, the brewing method 1,2. 
Aroma and Flavour are undoubtedly important hedonic aspects of a good coffee2, and thus these 
two aspects should be carefully considered in coffee classification during coffee-bean selection, in 
addition to their physical aspects, such as size, color and defective beans 
(http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm?commid=47950S. 
The Cupping Protocol of the Specialty Coffee Association of America (SCCA) 
(http://www.scaa.org/PDF/resources/cupping-protocols.pdf) provides an international standard 
for cup evaluation that, besides aroma and taste, also considers kind of roasting, equipment, and 
cupping preparation, among other factors. Assessment of sensory attributes consists of scoring 
the aroma, by smelling the dry milled sample and water infusion (Steps 1 and 2) and the Flavour 
plus other attributes, such as aftertaste, acidity, body, and balance, by tasting the brew (Step 3).  
A number of studies, some of them involving molecular sensory science, have been carried out to 
understand the chemistry behind the overall sensory perception given by a cup of coffee, in order 
to identify and define key aroma and Flavour compounds 2–6. Different analytical platforms have 
been used to study coffee aroma; gas-chromatography mass spectrometry and/or olfactometry 
(GC-MS, GC-O) were the analytical techniques of choice. Conversely, several sampling approaches 
were used to extract and concentrate the Flavour components directly from the ground coffee 
(powder) and/or from the coffee brew, including steam distillation (SD), solvent extraction (SE), 
fractionation of solvent extracts, simultaneous distillation–extraction (SDE), supercritical fluid 
extraction (SFE), pressurized-fluid extraction, Soxhlet extraction, solvent-assisted Flavour 
evaporation (SAFE), microwave-assisted hydrodistillation (MAHD), headspace (HS) techniques, and 
solid-phase microextraction (SPME)7. Whatever the approach, sample preparation is still the 
bottle-neck of the analytical process, since it must provide a consistent and meaningful picture of 
the sensory-informative components. An effective sample preparation technique requires some 
key requisites, including (a) the possibility of tuning extraction selectivity by modifying physico-
chemical characteristics of extractants and sampling conditions; (b) use of methods involving mild 
interactions to limit artifact formations (e.g. partition (sorption) versus adsorption as extraction 
mechanism); (c) the possibility of full automation, and of integrating the extraction step with the 
analytical system. 
However, both compositional data and sensory information alone do not fully explain the 
importance of key compounds, nor indicate which of them cause distinct sensory attributes. 
Recently, Dunkel et al. (2014) considered more than 10,000 volatiles detected in food and 
determined that the specific odor code of a food is due to between 3 and 40 key odorants. 
Moreover, Flavour implies a multisensory process involving distinct sensory properties (mainly 
odors and tastes) that are closely integrated and reinforce one another 8,9,10. These interactions 
may be due to different compounds that mutually influence the perceived Flavour, involving 
interactions between odorants (odor synesthesia) and/or odorants and tastes (chemesthesis)11. 
An important contribution to clarifying how our sense of olfaction deconvolves a complex food 
odor at the molecular level has been made by the genetic codification of the olfactory receptors, 
and the exploration of the chemistry-biology synergism of olfaction2,12. Very recently, Geithe et al. 
demonstrated that a recombined butter aroma, resulting from four odor-active compounds, each 
tested on in vitro class-I odor receptors, showed different and concentration-dependent patterns 
of activation 13.  
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Although several studies have sought to clarify the link between sensory properties and chemical 
composition, including through multivariate data analysis (MVA) 2,14–20, the challenge of explaining 
the pleasure of a coffee-experience at the molecular level still remains, mostly because of the 
limits of the strategies used to collect information (number and kind of samples, standardization 
of the samples, precision and accuracy)21. 
This study is part of a wider project exploring the correlation between the chemical composition of 
coffee volatile fraction and the sensory properties of the beverage; the end-goal is to develop an 
instrumental analysis approach complementary to human sensory profiling8,14,15,22. In particular 
the study compares chemical information related to coffee aroma and Flavour obtained with three 
different sampling approaches, combined in on-line or in off-line mode with GC-MS, taking the 
SCAA protocols for cup evaluation as reference. Because of the wide range of volatility, water 
solubility, and concentration of the most significant components of the coffee matrix, three 
different sampling approaches were tested for the reliability of characterization of the aroma and 
Flavour profiles, and to evaluate their compatibility with the cupping evaluation in coffee selection 
for quality control. Aroma evaluation (steps 1 and 2 of the SCAA cupping protocol) was associated 
to Headspace Solid Phase Microextraction (HS-SPME) of roasted coffee powders and the 
corresponding brews; aroma and taste evaluation (step 3) was combined with in-solution sampling 
of the brew by SBSE (Stir Bar Sorptive Extraction). The ability of each optimized method to 
discriminate and describe the investigated samples was compared by multivariate analysis, to 
determine whether it provided consistent and/or complementary information also in connection 
to the sample sensory properties defined by a trained panel according to SCAA cupping protocols. 
 

2. MATERIALS AND METHODS 

2.1 Reagents and Matrices.  

Coffees samples, consisting of roasted coffee ground to suit a coffee-filter machine, were kindly 
supplied over a period of 9 months by Lavazza Srl (Turin, Italy). 
Eight coffee samples with distinctive sensory notes, originating from different countries (Ethiopia, 
Papua New Guinea, Colombia, Brazil, India, Indonesia, Java, and Uganda), of the species Coffea 

Arabica L. (Arabica) and Coffea canephora Pierre (Robusta), were analyzed (Table 1). Each coffee 
origin was analyzed in five replicates; each replicate was produced by a fresh cycle of roasting and 
grinding, starting from the same batch of green coffee beans (n=40). The roasting degree of each 
sample was carefully measured by ground bean light reflectance, with a single-beam Neuhaus 
Neotec Color Test II instrument (Genderkesee, Germany) at a wavelength of 900 nm on 25-30g of 
ground coffee. Roasting degree was set at 55°Nh, in order to be close to the international 
standardization protocol for cupping (SCAA, 2015). Samples were roasted within 24 hours prior to 
cupping and left for at least 8 hours to stabilize. For clarity of exposition, samples in the text are 
labeled with their origins. 
The coffee brew was prepared from 18g of coffee powder and 300mL of water, using a Lavazza 
“Xlong” coffee filter machine. Tridecane (n-C13) in Dibuthylphtalate (DBP), used as internal 
standard (ISTD), were purchased from Sigma-Aldrich (Milan-Italy). 
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Table 5 List and characteristics of the coffee samples used in this study. 

Sample acronym Sample Name Species Treatment Sensorial Attribute 

BRA BRAZIL LA2 Arabica Natural Nutty, quite acid, rich 
COL COLOMBIA CL1 Arabica Washed Flowery, Acid 
JAV JAVA WB1 MB Robusta Washed Nutty  
UGA UGANDA STD Robusta Natural Spicy 
PNG PAPUA NG Y Arabica Washed Fruity  

INDIA INDIA ARAB CHERRY Arabica Natural Astringent, quite 
bitter 

INDO INDONESIA EK1 Robusta Natural Woody, Bitter  

KAFA ETIOPIA KAFA GR. 3 Arabica Natural Flowery/Fruity, rather 
Acid 

 

2.2. Sample preparation techniques.  

HS-SPME of the coffee powder: 1.500 ± 0.010 g of powder were weighed in a septum-sealed gas 
vial (20mL); the resulting headspace was sampled through the PDMS/DVB SPME fiber for 40 
minutes at 50°C with an agitation speed of 350rpm. The internal standard was loaded onto the 
fiber 23 in advance by sampling 5µL of a 1000mg/L solution of n-C13 in DBP into a 20mL headspace 
vial for 20 min at 50°C, agitation speed of 350rpm.  
HS-SPME of the brew: a volume of 4.5mL of brew in a septum-sealed gas vial (20mL) were sampled 
through the SPME fiber for 40 min at 50°C with an agitation speed of 350rpm. The internal 
standard was loaded onto the SPME fiber in advance by sampling 5µL of a 1000mg/L n-C13 in DBP 
solution in a 20mL headspace vial for 20 min at 50°C, agitation speed of 350rpm 23.   
SBSE of the brew: a volume of 13mL of the brew in a 20mL septum-sealed glass vial were added to 
5mL of the 1mg/L n-C13 in water solution and sampled with a PDMS Twister® for 40 min at 50°C.  
Brew preparation is already described in paragraph 2.1. Each sample was analyzed twice with each 
of the sampling methods adopted. 
 
2.3 Standardization of sampling techniques.  
SPME devices and PDMS/DVB fused silica 1 cm long fibers from the same lot were from Supelco 
(Bellefonte, PA, USA). Before use, all fibers were conditioned as recommended by the 
manufacturer, and tested to evaluate the consistency of their performance versus a reference 
roasted coffee sample 24. Normalized peak areas collected from the entire set of analyses (three 
replicates per sample) and from all fibers (n=9) were submitted to analysis of variance (ANOVA). 
Only fibers that do not showed statistical differences through the one-way ANOVA test 
(confidence interval 95%). The same protocol was applied to SBSE devices (1cm x 0.5mm PDMS 
coated Twister®, Gerstel GmbH & Co. KG). 
 
2.4 Analysis Conditions.  

HS-SPME analysis was carried out with a QP2010 GC-MS system (Shimadzu - Milan, Italy) equipped 
with an autosampler combi-PAL AOC 5000 Autoinjector (Shimadzu - Milan, Italy). 
SBSE sampled analytes were thermally desorbed from the Twisters® using a thermal desorption 
system (TDS-2; Gerstel, Mülheim, Germany) installed on an Agilent 6890plus gas chromatograph 
coupled with a MSD Agilent 5973D. A cooled injection system (CIS-4PTV; Gerstel, Mülheim, 
Germany) was used to focus the thermally desorbed analytes cryogenically at -50 °C with liquid 
carbon dioxide. 
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HS-SPME-GC-MS chromatographic conditions: injector temperature: 230°C; injection mode, 
splitless; carrier gas, helium (2mL/min); fiber desorption time and reconditioning, 5min; column, 
SGE SolGelwax (100% polyethylene glycol) 30 m x 0.25 mm dc x 0.25 µm df (SGE- Melbourne, 
Australia); temperature program, from 40°C (1min) to 200°C at 3°C/min, then to 250°C (5min) at 
10°C/min. MS conditions: ionization mode: EI (70eV); scan range: 35-350 amu; ion source 
temperature: 200°C; transfer line temperature: 250°C. 
SBSE-GC-MS chromatographic conditions: injector temperature: 250°C; injection mode, splitless; 
carrier gas, helium (1mL/min); column, SGE SolGelwax (100% polyethylene glycol) 30 m x 0.25 mm 
dc x 0.25 µm df (SGE- Melbourne, Australia); temperature program, from -30°C (0min) to 40°C 
(1min) at 60°C/min, then to 200°C (0min) at 3°C/min, then to 250°C (5 min) at 10°C/min. 
MS conditions: ionization mode: EI (70eV); scan range: 35-350 amu; ion source temperature: 
230°C; transfer line temperature: 280°C. 
TDS temperature program: from 30°C to 250°C at 60°C/min; hold time at final temperature: 
10min; delay time: 0min; initial time: 1 min. 
CIS temperature program: from -50°C to 250°C at 12°C/s; hold time at final temperature: 5min; 
equilibration time: 0.1min; initial time: 0 min. 
 
2.5 Identification of Volatile Components.  

Aroma compounds sampled from headspace of powder and from brew were identified by 
comparing their calculated linear retention indices and their mass spectra to those of authentic 
samples or, tentatively, to those collected in homemade or commercial libraries (Wiley 7N and 
Nist 05 ver 2.0 Mass Spectral Data) or reported in the literature. 
 
2.6 Sensory analysis 

The fourty samples were submitted to a sensory evaluation by a panel of five experts using 18 g of 
roasted and ground coffee in 300 mL of hot water according to the SCAA protocols (SCAA, 2014). 
The protocol implies three tasting steps after roasting to a fixed color (55-60° Nh) and eight hours 
of sample stabilization: i) evaluation of the aroma by sniffing the dry grounded coffee, ii) 
evaluation of the aroma by sniffing the brew three minutes after its preparation and stirring, and 
iii) 8-10 minutes after Flavour evaluation. Other attributes such as aftertaste, acidity, body, and 
balance are evaluated by tasting the brew by spraying it in the mouth to maximize retro-nasal 
vapors. The cup quality was assessed for several attributes, among them this study considered: 
Flavour (floral, fruity, woody, nutty, spicy), acidity, bitterness, body (mouthfeel), astringency, and 
overall quality. The quality and intensity of each attribute were evaluated simultaneously by using 
a scale varying from 1 to 10. 
 
2.7 Data processing. 

Data were collected with a Shimadzu GCMS Solution 2.5SU1, and an Agilent ChemStation 
D.02.00.275. Principal Component Analysis (PCA) was used to visualize sample groups and to 
compare information provided by each sampling. PCA based on Pearson correlation coefficient 
was carried out on normalized ISTD data. Statistical analysis one-way ANOVA and PCA were done 
by XLSTAT (version 2015.5.01.23164) copyright Addinsoft 1995-2015. non-polar 
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3. RESULTS AND DISCUSSION 

The objective evaluation of coffee quality, by correlating chemical analysis and sensory properties, 
requires an analytical platform that provides information appropriate to describing the human 
sensory experience. Coffee powder and brew, evaluated through SCAA protocols, were thus 
analyzed with three different sampling methods, each combined with GC-MS; this resulted in 
chemical information describing the coffee aroma and Flavour that was in line with that employed 
for cup evaluation. In the following, for short, the analytical platform will be identified by the 
sampling used, its on-line or off-line combination with GC-MS being implicit.  
 

3.1 Samplings comparison 

A total of 117 compounds were identified (or tentatively identified) (20 compounds were 
unknown or not identified unequivocally) with the above platforms. Table 2 reports the list of the 
compounds identified with each sampling with their Linear Retention Indices (ITs). The highest 
number of compounds (96) were identified in the headspace of the coffee powder, followed by 
HS-SPME (72) and SBSE (53) of the brew. 
 

Table 2 List of identified and *tentatively identified compounds in all sampling methods. 
(http://webbook.nist.gov/chemistry/name-ser.html) 

 

# Compound Name Calc. 
ITs 

Lit. 
ITs 

HS-SPME 
powder 

HS-SPME 
brew 

SBSE 
brew 

1 Acetaldehyde 706	 723	 X	 X	
	

2 Acetone 824 835 X X 
 

3 Methyl acetate 828 839 X X 
 

4 Furan, 2-methyl- 885 864 X X 
 

5 2-Butanone 906 905 X X 
 

6 Butanal, 2-methyl- 914 931 X X 
 

7 Butanal, 3-methyl- 918 936 X X 
 

8 Furan, 2,5-dimethyl- 950 939 X X 
 

9 2,3-Butanedione 978 963 X X 
 

10 2,3-Pentanedione 1058 - X X 
 

11 2-Vinylfuran 1071 1085 X X 
 

12 Hexanal 1080 1098 X 
  

13 2,3-Hexanedione 1130 1110 X 
  

14 1H-Pyrrole, 1-methyl- 1137 1140 X X X 
15 2-Vinyl-5-methylfuran 1151 1152 X 

 
X 

16 Pyridine 1177 1177 X X X 

17 Pyrazine 1209 1206 X X 
 

18 Furfuryl methyl ether 1238 - 
  

X 

19 pyrazine, methyl- 1262 1268 X X X 

20 2-butanone, 3-hydroxy- 1281 1285 X 
  

21 pyridine, 3-methyl- 1291 1297 
  

X 

22 2-propanone, 1-hydroxy- 1297 1318 X 
  

23 pyrazine, 2,5-dimethyl- 1317 1321 X X X 
24 pyrazine, 2,6-dimethyl- 1324 1327 X X X 

25 pyrazine, ethyl- 1329 1343 X X X 
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# Compound Name Calc. 
ITs 

Lit. 
ITs 

HS-SPME 
powder 

HS-SPME 
brew 

SBSE 
brew 

26 pyrazine, 2,3-dimethyl- 1341 1354 X X X 
27 1-hydroxy-2-butanone 1370 1381 X 

  
28 pyridine, 3-ethyl- 1374 1384 X X X 

29 pyrazine, 2-ethyl-6-methyl- 1382 1392 
  

X 
30 pyrazine, 2-ethyl-5-methyl- 1386 1399 X X X 

31 pyrazine, 2-ethyl-3-methyl- + pyrazyne, trimethyl 1399 1400 X X X 

32 unknown 1 1405 - X X 
 

33 2-n-propylpyrazine 1413 1425 X X X 

34 unknown 2 1418 - X X 
 

35 2-furanmethanethiol 1432 1440 X 
  

36 2-ethyl-3,6-dimethylpyrazine 1441 1449 X X X 

37 acetic acid 1446 1454 X X X 

38 pyrazine, 2,3-diethyl- 1451 1463 
  

X 
39 pyrazine, 2,6-diethyl- 1457 1458 X X X 

40 furfural 1462 1467 X X X 

41 acetoxyacetone 1468 1467 X X X 
42 furfuryl methyl sulphide 1483 1496 X X X 

43 pyrazine, 2-methyl-6-vinyl- 1483 1491 
  

X 

44 pyrazine, 3,5-diethyl-2-methyl- 1489 1491 X X X 
45 3(2h)-furanone, 2,5-dimethyl- 1496 1490 X 

  
46 furfurylformate 1497 1497 X 

  
47 2-acetylfuran 1500 1498 X X X 

48 
2-cyclopenten-1-one 3 methyl + 3,5-diethyl-2-

methylpyrazine 
1509 1509 X 

  
49 benzaldehyde 1512 1522 

  
X 

50 1h-pyrrole 1513 1525 X X 
 

51 1-(2-furyl)-2-propanone 1519 1519 
  

X 

52 
belzhaldehyde + 2-methyl-3(2h) tiophenone + 

furan-2-yl-propan-2-ol 
1519 1520 X X 

 
53 2 methoxy 3 isobutyl pyrazine 1523 1531 

  
X 

54 2-oxopropylpropanoate 1531 1531 X X 
 

55 furfuryl acetate 1538 1539 X X X 

56 unknown 4 1564 - X 
  

57 2-furancarboxaldehyde, 5-methyl- 1567 1558 
  

X 

58 5 methyl furfural 1570 1562 X X 
 

59 2,3-butandiolo + 1-(5-methyl-2-furyl)2-propanone 1575 1582 X 
  

60 pyrazine, (1-methylethenyl)- 1590 - X 
  

61 2-furanmethanol, propanoate 1598 1603 X X X 

62 furan, 2,2'-methylenebis- 1606 1606 
  

X 
63 2-furfurylfuran 1608 - X X 

 
64 (5h)-5-methyl-6,7-dihydrocyclopentapyrazine 1611 1611 X 

  
65 1h-pyrrole-2-carboxaldehyde, 1-methyl- 1614 1635 X X X 
66 butanoic acid, 4-hydroxy- 1621 - X X 
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# Compound Name Calc. 
ITs 

Lit. 
ITs 

HS-SPME 
powder 

HS-SPME 
brew 

SBSE 
brew 

67 unknown 6 1630 - X X 
 

68 2-isopropenylpyrazine 1633 1633 X X 
 

69 1-(2-furyl)-3-butanone 1641 1642 
  

X 

70 2,5-dihydro-3,5-dimethyl-2-furanone 1642 1640 X 
  

71 2-acetyl-1-methylpyrrole 1646 1667 
  

X 

72 
ethanone, 1-(1-methyl-1h-pyrrol-2-yl)-+2-acetyl-5-

methyl pyrrole 
1649 - X X 

 
73 furfuryl alcohol 1661 1664 X X X 
74 3-methylbutanoic acid 1667 1670 X X 

 
75 furan, 2-(2-furanylmethyl)-5-methyl- 1677 - 

  
X 

76 2-furfuryl-5-methylfurane 1678 - X X 
 

77 2-acetyl-3-methylpyrazine* 1686 1636 X X 
 

78 furfurylpentanoate + others unknown compounds 1694 1719 X 
  

79 pyrazine, 2-methyl-5-(1-propenyl)- 1702 1702 X X 
 

80 3-methyl-1,2-cicloheanedione 1708 1719 X X 
 

81 unknown 11 1709 - X 
  

82 1-acetyl-1,4-dihydropyridine* 1716 - X X 
 

83 unknown 12 1726 - X 
  

84 unknown 13 1729 - X X 
 

85 unknown 13b 1734 - X X 
 

86 unknown 14 1745 - X 
  

87 unknown 15 1750 - X X 
 

88 methyl salicylate 1758 1754 
  

X 
89 methyl nicotinate + others unknown compounds 1767 1778 X 

  
90 unknown 17 1772 - X 

  
91 unknown 18 1777 - X X 

 
92 unknown 19 1786 - X X 

 
93 unknown 20 1791 - X 

  
94 beta-damascenone 1810 1816 

  
X 

95 n-furfurylpyrrole 1820 1839 X X X 

96 guaiacol 1853 1866 X X X 

97 unknown 21 1860 - X X 
 

98 2-cyclopenten-1-one, 2-hydroxy-3-methyl- 1885 - X X 
 

99 2-cyclopenten-1-one, 3-ethyl-2-hydroxy- 1885 - X X 
 

100 unknown 21b 1893 - X X 
 

101 trans-furfurylideneacetone 1897 - X X 
 

102 benzeneethanol 1902 1912 X 
  

103 maltol 1952 1960 X X X 
104 2-acetylpyrrole 1962 1971 X X X 

105 difurfuryl ether 1980 1977 X X X 

106 phenol 1996 2013 
  

X 
107 unknown 23 1997 - X X 

 
108 1h-pyrrole-2-carboxaldehyde 2012 2035 X X X 
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# Compound Name Calc. 
ITs 

Lit. 
ITs 

HS-SPME 
powder 

HS-SPME 
brew 

SBSE 
brew 

109 4-ethyl-guaiacol 2021 2037 X X X 
111 unknown 23b 2073 - X X 

 
112 4-vinyl-guaiacol 2185 2193 X X X 

113 1-furfuryl-2-formyl pyrrole 2230 2234 
  

X 
114 1h-indole 2411 2443 

  
X 

115 benzophenone 2443 - 
  

X 

116 difurfuryldisulfide 2536 2536 X 
 

X 
117 caffeine 2838 - 

  
X 

 
 

a)   b)    

c)   
Figure 1 PCA score plots of a) HS-SPME of the coffee powder; b) HS-SPME of the brew; c) SBSE of the brew. Autoscale 
pre-processing. Legend: BRA: □; COL: ◊; JAV: Δ; UGA: X; PNG: *; INDIA: -; INDO: ⃝; KAFA: + 

 
The chemometric approach (PCA) was used to obtain as much information as possible from the 
three sampling methods: each sample (observations) is described by different compounds 
(variables), with their own analytical response. Figure 1 reports the PCA score plots of a) HS-SPME 
of coffee powder, b) HS-SPME of coffee brew, and c) SBSE of coffee brew. The comparison of the 
PCA results from the brews sampled by HS-SPME (b) and SBSE (c) shows a similar distribution of 
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the samples on the score plot. Similar discrimination of samples is also obtained by the HS-SPME 
of the powder (a); this means that independently of the sampling approach applied, the 
information derived from the chemical profiles of the samples is the same, as it is also evident 
from the total explained variance obtained with PCA elaborations. Two large groups were 
recognizable along the PC2 that, as expected, were chiefly characterized by species, i.e. Arabica or 
Robusta. INDIA samples were the only exception, being close to Robusta samples although 
classified as Arabica.  
 

Analysis of Robusta sample profiles showed that specimens from Indonesia (INDO) can clearly be 
discriminated from the two other origins (JAV and UGA) on the first two PCs (Figure 2). PCA 
analysis on Arabica samples showed similar distribution for the three different sampling 
approaches (Figure 3). 
 

a)  b)  

  c)  
 
Figure 2 Robusta PCA score plots: a) HS-SPME of the coffee powder b) HS-SPME of the brews; c) SBSE of the brews. 
Autoscale pre-processing Legend: JAV: Δ; UGA: X; INDO: ⃝ 
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a)  b)  

c)  
Figure 3 Arabica PCA score plots: a) HS-SPME of the coffee powder b) HS-SPME of the brews; c) SBSE of the brews. 
Autoscale pre-processing Legend: : BRA: □; COL : ◊; PNG: *; INDIA: -; KAFA: + 

 
3.2 Investigation on discriminant aroma compounds with the different sampling approaches 

The volatiles directly responsible for discrimination of the Robusta samples deriving from the 
vector projections of the original variables on PC1 and PC2 (variable cos2) are listed in Table 3, 
together with their odor description. For the sake of clarity, these components will henceforth be 
indicated as Direct Discriminant Compounds (DDCs). PCA determined different DDCs for each 
sampling method, partly because the methods are based on different principles, employ different 
sampling materials (PDMS/DVB SPME fibers for headspace, and PDMS Twistersâ for in-solution 
sampling), and are applied to different matrices (coffee powder and brew) (Table 3). Further, 
compounds directly responsible for sample discrimination in SBSE sampling of the brew, which 
may be considered the most representative sampling technique for Flavour evaluation, cannot be 
the same as those for HS-SPME sampling of the coffee powder, because the intrinsic physical-
chemical properties of those compounds influence their recovery. The relationship between the 
role of each compound in sample discrimination and their physico-chemical properties (EPI Suite 
v3.10 developed by the EPA’s Office of Pollution Prevention Toxics NS Syracuse Research 
Corporation (SRS) 2000 U.S.) was thus studied, to investigate in greater depth why different 
compounds may play the same roles in sample discrimination, independently of the technique 
adopted. Most of the DDCs with SBSE of the brew are slightly soluble in water and relatively non 
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polar, i.e. with high ko/w (Table 3). Conversely, DDCs in the HS-SPME volatile fraction of the coffee 
powder generally present high volatility (expressed as Vapour Pressure, VP) and low ko/w (below 1) 
(Table 3). Similarly to SBSE, HS-SPME of the brew includes compounds extracted during brewing 
whose relatively high water solubility has less influence on the composition of the headspace, 
since they are retained in the aqueous phase 25,26. Moreover, the coffee powder may be 
considered a fatty matrix, and thus polarity may also influence migration into the headspace, and 
non polar compounds (high ko/w values) may undergo a more severe matrix effect.  
 
Table 3 DDCs extracted from processing Robusta samples. Brews sampled by SBSE or HS-SPME and HS-SPME of the 
powder, with their relative odor descriptors and physico-chemical properties. Letters near the name indicate the 
sampling approaches where each compound was recovered: SBSE: A; HS-SPME pow: B; HS-SPME brew: C. * The Good 
Scents Company, & http://www.iso.org, + Blank et al. 

 
Compound Name Odour Description*, 

&,+ 
Water 

solubility 
(mg/L) 

Log KO/W VP (mm 
Hg at 25 

°C) 

Henrys LC 
(VP/Wsol) 

(atm-
m3/mole) 

1-acetyl-1,4-dihydropyridine (C ) - - - - - 

1H-Pyrrole-2-carboxaldehyde (A; B; C) Musty 3.43E+04 0.6 0.09 3.13E-07 

1-Hydroxy-2-butanone (B ) Sweet coffee musty 
grain malt 
butterscotch 

7.21E+05 -0.29 0.77 1.24E-07 

2,3-Butanedione (B ) Buttery 2.00E+05 -1.34 56.8 7.95E-06 
2,3-Pentanedione (B; C ) Buttery 6.16E+05 -0.85 31.1 6.65E-06 
2-Butanone, 3-hydroxy- (B ) Buttery 8.33E+05 -0.36 2 2.78E-07 
2-cyclopenten-1-one, 2-hydroxy-3-

methyl- (C ) 
Caramellic-spicy, 
maple-like 

8.50E+03 1.29 0 6.68E-08 

2-Furancarboxaldehyde, 5-methyl- (A ) Caramel 2.91E+04 0.67 1.38  

2-furfuryl-5-methylfurane (B ) - 6.40E+01 1.96 2.89 1.96E-04 
2-Furfurylfuran (B; C) Roast 2.14E+02 2.99 0.26 2.36E-04 
2-Oxopropylpropanoate (B ) - 1.10E+04 1.2 31.5 4.02E-04 
2-Propanone, 1-hydroxy- (B ) Caramel 7.44E+01 -0.78 1.74 1.70E-07 
2-Vinyl-5-methylfuran (B; C) - 2.21E+03 1.96 2.89 1.96E-04 
3(2H)-Furanone, 2,5-dimethyl- (B ) Fruity, caramellic 4.63E+04 0.43 1.66 5.29E-06 
4-Ethylguaiacol (A ) Spicy 6.94E+02 2.38 0.02  
5 Methyl Furfural (B;C) Caramel 2.91E+04 0.67 0.69 3.41E-06 
Acetaldehyde (B ) Pungent ethereal 

aldehydic fruity 
2.57E+05 -0.34 910 1.72E-04 

Acetic acid (B ) sharp pungent sour 
vinegar 

4.76E+05 -0.17 15.7 2.86E-06 

Acetoxyacetone (A; B; C) Fruity 1.52E+05 -0.19 1.49 1.50E-06 

Benzaldehyde (A ) Strong sharp sweet 
bitter almond 
cherry 

6.10E+03 1.71 1.01  

Butanal, 3-methyl- (C ) Aldehydic 1.12E+04 1.23 51.6 5.21E-04 
Difurfuryl ether (C ) Coffee, nutty, 

earthy 
7.11E+02 2.22 0.02 7.48E-06 

Furan, 2-(2-furanylmethyl)-5-methyl- (A 
) 

Hearthy, mushroom 6.41E+01 3.53 0.07  
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Compound Name Odour Description*, 

&,+ 
Water 

solubility 
(mg/L) 

Log KO/W VP (mm 
Hg at 25 

°C) 

Henrys LC 
(VP/Wsol) 

(atm-
m3/mole) 

Furan, 2,2'-methylenebis- (A ) Roast 2.17E+02 2.99 0.26  
Furfural (A, B; C) sweet woody 

almond fragrant 
baked bread 

5.36E+04 0.83 2.32 5.48E-06 

Furfuryl methyl sulphide (A ) Vegetable 1.84E+03 2 1.37  
Guaiacol (C ) Spicy 2.09E+03 1.88 0.06 5.16E-06 
4-ethyl-guaiacol (C ) Spicy 6.94E+02 2.38 0.02 7.16E-06 
4-vinyl-guaiacol (C ) Woody 9.26E+02 2.24 0.01 1.64E-06 
Hexanal (B ) fresh green fatty 

aldehydic grass 
leafy fruity sweaty 

3.52E+03 1.78 9.57 3.58E-04 

Pyridine, 3-ethyl- (A; B; C) Tobacco 8.48E+04 1.84 2.53 3.29E-06 

 
These considerations are clearly explained by the comparison of normalized percent areas of some 
DDCs obtained with the three sampling approaches. 3-Ethyl pyridine and furfural (i.e. two DDCs 
with similar physico-chemical characteristics) are differently recovered by SBSE, 3-ethyl pyridine 
predominating because of its higher ko/w, while furfural, being more polar, is less retained by the 
fatty matrix and more easily released into the headspace. Conversely, by comparing HS-SPME of 
the brew to SBSE, the more polar furfural is less recovered than does 3-ethyl pyridine from the 
headspace of the brew and recovered to a greater extent by SBSE (Figure 4). Acetoxyacetone is 
highly concentrated in the headspace of coffee powder and is recovered better by SBSE than by 
HS-SPME from the brew, because of its high solubility in water. 1-H-Pyrrole-2-carboxaldehyde 
contributes similarly to HS-SPME from coffee powder and brew, but having a medium-low ko/w, 
good water solubility and low VP, its accumulation in the headspace is limited. 
 

 
Figure 4 Comparison between normalized percentage contributions of the common direct discriminant compounds in 
the three sampling approaches under study. 
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Moreover, DDCs from SBSE can also be correlated to other compounds from the HS-SPME 
sampling, “indirect markers” or CDCs (Correlative Discriminant Compounds), which are indirectly 
involved in the discrimination of the coffee powder by HS-SPME. CDCs can be defined through the 
Pearson correlation coefficient (r), used here to assess the degree of linear association between 
variables (peak area vectors) defined by the different samplings, r values > 0.8 were taken as cut-
off point. From the chemometric standpoint, variables with high r values with DDCs, within the 
PCA elaboration of the HS-SPME of coffee powder, are redundant for the purpose of explaining 
sample behavior with this approach. Therefore, some of them may be eliminated without lacking 
in quality of discrimination, because they are dependent variables and provide the same 
information of DDCs, in terms of sample definition.  
 
Table 4 Compounds present in HS-SPME of the powder that are closely correlated with DDCs of SBSE. The DDCs in 
common between the two sampling techniques are in bold type. Compounds with a direct discriminant role in SBSE or 
HS-SPME of coffee powder are marked with an X; indirect markers (CDCs) are in italics. 
 

Compounds DDCs in SBSE 
of the brew 

DDCs in           
HS-SPME 

of the 
powder 

1-Hydroxy-2-butanone  X 
1H-Pyrrole-2-carboxaldehyde X X 

1H-Pyrrole-2-carboxaldehyde, 1-methyl-   
2-acetylpyrrole   
2-butanone   
2-Butanone, 3-hydroxy-  X 
2-oxopropylpropanoate  X 
2-Cyclopenten-1-one, 2-hydroxy-3-methyl-   
2-furfurylfuran  X 
2-n-propylpyrazine   
2-Propanone, 1-hydroxy-  X 
2-Vinyl-5-methylfuran  X 
2,3-butanedione  X 
2,3-pentanedione  X 
2-cyclopenten-1-one 3 methyl+ 3,5-diethyl-2-methylpyrazine   
3(2H)-Furanone, 2,5-dimethyl-  X 
5 methyl furfural  X 
Acetic acid  X 
Acetone   
Acetoxyacetone X X 

Acetylfuran   
Ethanone, 1-(1-methyl-1H-pyrrol-2-yl)- + 
2-acetyl-5-methyl pyrrole 

 

Furan, 2-methyl-   
Furfural X X 

Furfuryl alcohol   
Furfurylformate   
Furfuryl methyl sulphide X  
Guaiacol   
4-ethyl-guaiacol X  
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Compounds DDCs in SBSE 
of the brew 

DDCs in           
HS-SPME 

of the 
powder 

Hexanal  X 
Methyl acetate   
Pyrazine, (1-methylethenyl)-   
Pyrazine, 2-ethyl-3-methyl- + Pyrazyne, trimethyl  
Pyrazine, 2-methyl-6-(1-propenyl)-   
Pyrazine, 2,3-dimethyl-   
Pyrazine, 2,6-diethyl-   
Pyrazine, 3,5-diethyl-2-methyl-   
Pyridine   
Pyridine, 3-ethyl- X X 

Unknown 1  X 
Furfurylpentanoate + other unknown compounds   
Unknown 12  X 
Unknown 13  X 
Unknown 14  X 
Unknown 17  X 
Unknown 2  X 
Unknown 21  X 
Difurfuryl ether   
Unknown 23b   
(5h)-5-methyl-6,7-dihydrocyclopentapyrazine   
Unknown 6   
2-isopropenylpyrazine   
2,5-dihydro-3,5-dimethyl-2-furanone   
2-furfuryl-5-methylfurane   

 
The consistency between the three samplings was confirmed by including DDCs of the SBSE in the 
data correlation matrix of the HS-SPME; resulting in a close correlation with 56 compounds 
identified in the HS-SPME of the powder. Twenty-four of them were also HS-SPME DDCs, while the 
remaining 32 were CDCs of this method. Table 4) reports the compounds identified in the HS-
SPME-GC-MS profile of the coffee powder having high r (> 0.8) with SBSE DDCs. This means that 
DDCs from in-solution SBSE sampling, direct (DDCs) or indirect markers (CDCs) of the HS-SPME of 
the coffee powder, provide chemical information for sample differentiation that is related to the 
sample different chemical processing and sensory characteristics, and, as a consequence, to their 
chemical pathways of formation. In other words, a compound that is highly soluble in water may 
not play a direct role in the discrimination of coffee powder headspace but, thanks to its solubility, 
it may be solubilized during brewing in large amounts, and thus play an important role in the 
discrimination of beverages. Conversely, a CDC may have different physico-chemical properties 
but provides the same kind of chemical information as a DDC in the discrimination of samples with 
different sensory characteristics. Similar observations can be made for the role played by SBSE 
DDCs in samples discrimination obtained by the HS-SPME of the brews (Table 5). These 
considerations resulted also valid for the analysis of INDIA Arabica samples (data not reported). 
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Table 5 Compounds present in HS-SPME of the brew that are closely correlated with DDC of SBSE. The DDCs in 
common between the two sampling approaches are in bold type. Compounds with a direct discriminant role in SBSE 
or in HS-SPME of the brew are marked with an X; HS-SPME brew indirect markers (CDCs) are in italics. 

 
Compounds DDCs in SBSE DDCs in HS-SPME brew 
1-Acetyl-1,4-dihydropyridine   X 
1H-Pyrrole-2-carboxaldehyde X X 

1H-Pyrrole-2-carboxaldehyde, 1-methyl-   
unknown 23   
2-furfurylfuran    X 
2,3-pentanedione  X 
5 methyl furfural   X 
Acetoxyacetone X X 

Furfural X X 

Furfuryl methyl sulfide X  
Guaiacol   X 
4-ethyl-guaiacol X X 

4-vinyl-guaiacol   X 
Pyrazine, 2,3-dimethyl-   
Pyridine     
Pyridine, 3-ethyl- X X 

Unknown 2   X 
Unknown 21  X 
Unknown 21b     
Difurfuryl ether  X 
2-furfuryl-5-methylfurane   X 

 
The similarity of the sample discrimination achieved by the three sampling approaches indicates 
not only that they provide complementary data, but also that they may be used interchangeably 
to discriminate the chemical profiles of a set of samples and can thus be applied to the problem 
under study. This can be explained in two complementary ways: a) the first is related to the 
physico-chemical properties of the components referred to as DDCs, depending on the sampling 
approach under study; b) the second is due to the (r) value, which correlates compounds 
indicative of the same change(s) in sample discrimination, and, as a consequence, of a common 
chemical pathway of formation.  
This correlation is also clear from the chemical standpoint, if the behavior of groups of compounds 
of different nature (e.g. guaiacoles, pyridines, pyrazines and furans) is examined. The statistical 
analysis shows that these compounds are in all cases correlated with one another, irrespective of 
the sampling used. The comparison of data from the three approaches shows that different 
classes of compounds change as one, moving in the same direction, and that they always play a 
role in sample discrimination, irrespective of which component(s) is involved in the discrimination 
of a specific sampling. The formation pathways of these groups of components are induced by 
roasting, but also depend on the processing of the green beans. Pyrazines (generally having nutty, 
earthy, roasted, and green aromas) and pyridines (fishy note), principally arise from the Maillard 
reaction of amino acids and sugars, direct pyrolysis of amino acids and degradation of trigonelline. 
The roasting pathways for guaiacoles (spicy notes), for example, involve the decarboxylation of 
phenolic carboxylic acids and the thermal degradation of lignin; however, their formation (or 
concentration) in coffee aroma also depends on bacterial, fungal, and yeast enzymes, and on 
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glyosidic reactions occurring in the green beans  2,5. Furans, responsible for malty, caramel, and 
sweet-roast notes, are formed during the roasting process through the Maillard reaction of 
carbohydrates, thermal oxidation of lipids, and degradation of thiamine. The discriminant furanic 
compounds differ with the different sampling methods but are in any case involved in the 
discrimination of INDO samples within Robusta, and INDIA samples for Arabica. 
 

3.3 Relationship between chemical results and sensory cupping data 

A Lavazza-trained panel determined the sensory description of the set of investigated coffee 
samples. The panel considered the following sensory characteristics: acid, bitter, aromatic 
intensity, floral, fruity, woody, nutty, spicy, together with body and astringency. Each sensory 
attribute was classified by the panelists on a scale from 0 to 10, where 0 signified no attribute and 
10 a strong sensory attribute. Figure 5 reports the PCA scores (top) and loading plots (bottom) of 
the sensory evaluation of the Robusta (left) and Arabica (right) samples. Within the Robusta set, 
INDO samples were characterized by woody, spicy, and bitter notes; JAVA samples were slightly 
acid and nutty, and INDO and UGA samples were more spicy and aromatic than those from JAVA. 
In the Arabica set, INDIA samples were markedly woody and spicy, similarly to Robusta INDO, and 
presented a bitter note and strong body. BRA samples were astringent and nutty, while KAFA were 
the most fruity samples, also characterized by stronger acid and floral notes, followed by COL and 
PNG.  
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Figure 3 PCA scores (top) and loading plots (bottom) of the sensorial evaluation of the Robusta (left) and Arabica 
(right) samples Legend: BRA: □; COL: ◊; JAV: Δ; UGA: X; PNG: *; INDIA: -; INDO: ⃝; KAFA: + 

Most DDCs resulting from the chemical investigation in the different sampling approaches are 
known to be connected with these notes. In a chemometric investigation on Arabica samples, 
Ribeiro et al. showed that several compounds can be responsible for more than one sensory 
attribute. For instance, 3-ethyl pyridine may be responsible for acidity, Flavour, and bitterness, or 
4-vinyl guaiacol for Flavour and body. However, when considered as such, their sensory attributes 
are not always associable to the above characteristics18. In particular, DDCs from the chemometric 
analysis of INDO and INDIA respectively for Robusta and Arabica samples include components with 
sensory notes that can be related directly to the sensory characteristics highlighted for these 
samples (Table 1 and 3). However, the peculiar odor and Flavour of these samples are not only 
related to the presence or absence of some compounds, but also closely depend on their relative 
concentrations and odor thresholds, which together are responsible for their synergistic or 
antagonistic effect at the receptorial level, in eliciting the sensory experience. All sampling 
approaches, even if with different DDCs related together to the sampling peculiarity and 
compound physico-chemical characteristics, are coherent with the discrimination obtained with 
sensory evaluation. However, the direct HS-SPME sampling of the powder requires a limited 
sample manipulation since it does not include the brewing step, avoids possible water 
interference with the GC analysis, and results in a quicker analytical screening because of 
automation and shorter sampling procedure. 
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4. CONCLUSIONS 

Coffee samples were analyzed with three sampling approaches (HS-SPME of the coffee powder, 
HS-SPME of the brew, and in-solution SBSE of the brew) coupled with GC-MS; each sampling can 
be considered as a part of the sensory experience perceived during cupping coffee evaluation. 
Despite the differences between the three sampling approaches, data processing showed that the 
three methods provide the same kind of chemical information useful for sample discrimination, 
and that they could be used interchangeably to sample the coffee aroma and Flavour. Comparison 
of the multivariate analysis of the sensory data with the chemical fingerprint of the investigated 
samples showed that: a) sensory and chemical data are in good agreement, and b) sensory 
evaluation can be related to the different chemical composition of the samples investigated. The 
choice of sampling technique used for this purpose may thus be guided by factors such as 
simplicity, sensitivity, reliability, and possibility of automation. As a consequence, HS-SPME of the 
coffee powder is the approach providing the most satisfactory performance, because: a) the direct 
sampling of coffee powder does not require further operations, while the brewing process may be 
a source of variability, b) HS-SPME affords full and easier automation of the analytical procedure, 
and c) HS-SPME of the coffee powder provides the largest number of identified (or tentatively 
identified) components. 

Further in-depth studies will be necessary to correlate groups of compounds to a specific 
sensory note characterizing coffee samples, and to enable the development of a predictive model 
to support sensory panels in their sensory evaluation of coffee samples. In addition, knowledge on 
the odor active compounds correlated to a characteristic note, the concentrations of these 
compounds and their interactions, may open new perspectives in understanding the biological 
mechanisms underlying the pleasure related to the aroma and Flavour of coffee. 
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1. INTRODUCTION 

Coffee aroma and Flavour are the most important properties determining consumers’ preference 
and acceptance, and, together with price, are the main properties underlying a coffee’s 
commercial success 1–3. Coffee companies need to evaluate the quality of the beans they are going 
to buy to determine the best coffees to use in their blends, and/or which coffees are of sufficiently 
high quality to be commercialized as “single origin”. Several attributes are considered in qualifying 
a good coffee such as lack of defects, beans color and size and flavour but the latter evaluation is 
recognized as indispensable. Cupping protocols are international standards for cupping and 
grading coffees as a function of their sensory properties 4,5. 
 

However, sensory methods are expensive and time-consuming in terms of panel training and 
alignment, and sometimes not sufficiently precise for a critical and objective evaluation. Last but 
not least it is rather difficult to apply at-line for immediate feedback. The sensory approach 
adopted so far has been quantitative descriptive analysis, with studies at the molecular level to 
disclose relationships between chemical composition and sensory response. The sensory lexicon 
related to coffee is a descriptive tool used worldwide to define aroma and Flavour attributes 
quantitatively, through scaled scores. The lexicon used when measuring the sensory aspects of 
different Flavour attributes is therefore of great importance and must carefully be defined when 
chemical and sensory data have to be compared, because non-specific language may create 
confusion. This approach has successfully been used by trained professionals to evaluate coffee, 
enabling different panels to obtain the same intensity score for each attribute for a given sample 
6,7,8. However, well-designed and standardized chemo-sensory evaluation is the key point to 
identify the chemicals responsible for a given sensorial note. The definition of a relationship 
between chemical profile and aroma sensory impact is thus an important challenge, in both the 
analytical and industrial fields, because it may enable food industries to obtain an objective 
evaluation (independent or complementary to the panel subjectivity) of their products. 
 

Gas-chromatography combined with mass-spectrometry (GC-MS) is the analytical technique of 
election to study the composition of coffee aroma 9–11Conversely, several sampling approaches 
have been used to extract and concentrate the Flavour components, and more in general volatile 
compounds, directly from the ground coffee (powder) and/or from the coffee brew. Sample 
preparation is the crucial step in any analytical procedure, and must enable to recover the 
chemical components representative of each sensory informative note 3,10,12–23 Furthermore, in 
quality control the whole analytical procedure used to study chemicals related to the sensory 
experience should be integrated and fully automated.  
 

In this context, sensometrics acts as a bridge linking sensory properties to the chemical 
information underlying them; it can be used in quality assurance and control, in product/blend 
development, in benchmarking new products and to evaluate their probable market impact and in 
predicting preferences based on formulation changes 24,25. 
Furthermore, the sensometric approach can provide information about the chemicals that 
discriminate the sensory attributes and link them to sensory perception through correlation 
models. The conventional strategy in aroma studies implies that a single odorant is considered 
together with its sensory description. On the opposite, the correlation through sensometrics 
enables: i) to measure all compounds eliciting a peculiar sensory perception simultaneously, and 
ii) to link the quali-quantitative distribution of odorants and their mutual and cross-modal 
interactions to the odor perceived, through the sensory scores provided by the panel 13,18,22,26,27. 
However, reliable models that describe a sensory note representative of the variability of coffee 
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require: i) a large number of different coffee samples, and ii) fast analytical techniques also 
applicable at-line or on-line, as a complement to the decision of the sensory panel.  
Different studies have addressed the sensory-instrumental relationship as regards the sensory 
properties of coffee, but many of these looked at correlations between small and homogeneous 
pool of samples, without giving suitable representativeness to the wide variability of coffees due 
to origin, post-harvest processing, and roasting 18,28,29). 
This study is part of a wider project aiming at correlating the sensory characteristics of coffee 
aroma with its chemical composition, in order to provide an objective tool complementary to 
sensory evaluation, and to be applied for routine use.  
 

This part of the study, in particular, focuses on the use of sensometrics as a tool to define the 
odorants characterizing the chemical signature of different coffee aroma notes and to validate it 
for sensory scores prediction (Figure 1). Coffee samples with peculiar sensory characteristics of 
different origins, species, and submitted to different post-harvest treatments, have been included 
as representative of commercial coffees as it is in quality control at the industrial level in the 
acceptance in incoming beans; specimens were analysed both sensorially and for their volatiles 
composition. Sensory evaluation was done by an expert coffee-cupping panel, through a 
quantitative descriptive analysis using a monadic approach. Sensory attributes included acidity, 
bitterness, woody, fruity, flowery, spicy, and nutty notes, aroma intensity, body, and astringency. 
Chemical analyses were carried out by Headspace Solid-Phase Micro-Extraction combined with gas 
chromatography mass spectrometry (HS-SPME-GC-MS).  
This technique may also be included within an automatic Total Analysis System (TAS), with which a 
large number of samples can be screened for quality control of in-cup coffee sensory quality9,30,31. 
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Figure 1 Sensometric data treatment workflow in revealing the signature of the coffee aroma notes 
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2. MATERIALS AND METHODS 

2.1 Reagents and Matrices. 

Lavazza Spa (Turin, Italy) kindly supplied coffee samples, consisting of roasted ground coffee 
suitable for a coffee-filter machine, over a period of 15 months. 
157 coffee samples with distinctive sensory notes, originating from different countries (Ethiopia, 
Papua New Guinea, Colombia, Brazil, India, Indonesia, Tanzania, Uganda, and Vietnam), of the 
species Coffea arabica L. (Arabica) and Coffea canephora Pierre (Robusta), were analysed in 
replicates. Table 1APX (in the appendix at page 19) reports the complete list of samples 
investigated in this study. Samples 1-8 were used during the first part of the study to determine 
which sample preparation method was the most suitable to study the relationship between 
chemical and sensory attributes (Bressanello et al. 2017). Samples 9 to 20 were a selection of 
samples specifically characterized by woody and bitter notes, with scores at the two extremes 
(highest-lowest) of a 0-10 scale. The roasting degree of each sample was carefully measured by 
ground bean light reflectance, with a single-beam Neuhaus Neotec Color Test II instrument 
(Genderkesee, Germany) at a wavelength of 900 nm, on 25-30g of ground coffee. Roasting degree 
was set at 55°Nh, to be close to the international standardization protocol for cupping5 samples 
were roasted within 24 hours prior to cupping, and left for at least 8 hours to stabilize. For clarity, 
samples are labelled in the text with their origins. Pure reference standards for identity 
confirmation acetic acid, 3-methyl butanoic acid, 3-methyl butanal, 2-methyl butanal, 2,3-
Dimethylpyrazine, 2,3,5-Trimethylpyrazine, 2,5-Dimethyl pyrazine, 2-Ethyl-3-methylpyrazine, 2,5-
Dimethyl-3(2H)-furanone, 2-ethyl-3,6-dimethyl pyrazine, 2–methyl pyrazined, 2-
Furanmethanethiol, 5-Methyl furfural, Furfural, furfuryl acohol, Fufuryl disulfide, Guaiacol, Ethyl 
guaiacol, Vinyl guaiacol, Maltol and n-alkanes (n-C9 to n-C25) for Linear Retention Index (ITS) 
determination were from Sigma-Aldrich (Milan, Italy).  
Internal standards (ISTDs) for analyte response normalization were n-C13. A standard stock 
solution of ISTDs at 1000 mg/L was prepared in dibuthylphtalate (Sigma-Aldrich, Milan, Italy) and 
stored in a sealed vial at -18°C. 
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2.2 Headspace solid phase microextraction (HS-SPME) sampling 

The fiber chosen was a Polydimethylsiloxane/Divinylbenzene (PDMS/DVB) df 65 μm, 1 cm length; 
it was conditioned before use as recommended by the manufacturer. The SPME device was from 
Supelco (Bellfonte, PA, USA). Coffee aroma compounds were sampled by automated Headspace 
Solid Phase Microextraction (auto-HS-SPME) using a Combi-PAL AOC 5000 (Shimadzu, Milan, Italy) 
assembled on-line in a Shimadzu QP2010 GC–MS system provided with Shimadzu GC–MS Solution 
2.51 software (Shimadzu, Milan, Italy).  
HS-SPME of the coffee powder: 1.500 ± 0.010 g of powder were weighed in a septum-sealed gas 
vial (20 mL); the resulting headspace was sampled through the PDMS/DVB SPME fiber for 40 
minutes at 50°C at a stirring speed of 350rpm. The internal standard had previously been loaded 
onto the fiber32 by sampling 5L of a 1000 mg/L solution of n-C13 in DBP in a 20mL headspace vial 
for 20 min at 50°C, stirring speed 350rpm. After sampling, the accumulated analytes were 
recovered by thermal desorption of the fiber for 5 min at 250°C into the GC injector, and then 
transferred on-line to the gas-chromatographic column. All samples were analysed in duplicate. 
 
2.3 GC-MS analysis conditions 

GC-MS analysis - Chromatographic conditions: injector temperature: 250°C, injection mode: 
splitless; carrier gas: helium, flow rate: 1 mL/min; fiber desorption and reconditioning times: 5 
min; column: SGE SolGelwax (100% polyethylene glycol) 30 m x 0.25 mm dc x 0.25 µm df (SGE- 
Melbourne, Australia). Temperature program, from 40°C (1min) to 200°C at 3°C/min, then to 
250°C (5min) at 10°C/min. 
MSD conditions: ionization mode: EI (70 eV), temperatures: ion source: 200°C; quadrupole: 150°C; 
transfer line: 250°C; scan range: 35-350 m/z.  
 
2.4 Identification of volatile components.  

Aroma compounds sampled from the headspace of the coffee powder were identified through 
their linear retention indices (ITS) and EI-MS spectra, compared to those of authentic standards or, 
tentatively, to those collected in-house or in commercial libraries (Wiley 7N and Nist 05 ver 2.0 
Mass Spectral Data). 
 
2.6 Descriptive sensory analysis of coffee aroma 

The samples were submitted to sensory evaluation through a quantitative descriptive analysis by 
the Lavazza trained panel expert in coffee evaluation following the Q cupping and grading protocol 
according to SCAA 4,5,33). The protocol entails three tasting steps, after roasting to a set colour (55-
60° Nh) and eight hours of sample stabilization: i) evaluation of the aroma by sniffing the dry 
ground coffee, ii) evaluation of the aroma by sniffing the brew three minutes after its preparation 
and stirring, and iii) Flavour evaluation after 8-10 minutes. The attributes aftertaste, acidity, body, 
and balance are evaluated by tasting the brew, spraying it into the mouth to maximize retro-nasal 
vapours. Cup quality was assessed for several attributes; those considered in this study were: 
Flavour (flowery, fruity, woody, nutty, spicy), acidity, bitterness, body (mouthfeel), astringency, 
and aroma intensity. The quality and intensity of each attribute were evaluated simultaneously, 
upon a scale from 0 to 10. ANOVA analysis was run to verify the panel alignment on each attribute 
under consideration. Averages from experts who had similarity were used as “main scores” for 
attributes under investigation.  
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2.7 Data processing 

Chromatographic data were collected using Shimadzu GCMS Solution 2.5SU1 software. 
Principal Component Analysis (PCA) was used to detect sample groups and outlier(s) within 
chemical and sensory data. Partial Least Square Discriminant Analysis (PLS-DA) was then 
performed on the sensory scaled samples (low-high score range) to identify the compounds most 
closely related to a sensory attribute, and Partial Least Square Regression (PLS) was used to 
correlate chemicals to sensory attributes, and to evaluate the ability of extracted chemical 
variables to predict sensory scores. HS-SPME-GC-MS profiles normalized to ISTD were used, and 
auto-scaling was applied as data pretreatment: this step ensured that the contribution of each X 
variable (odorants) to the Y variable (sensory scores) was unbiased. One-way ANOVA and t-test on 
the sensorial results, and PCA, PLS-DA, and PLS, were run by XLSTAT (version 2015.5.01.23164) 
software, copyright Addinsoft 1995-2015.  
 

3. RESULTS AND DISCUSSION 

3.1 Qualitative Descriptive Analysis (QDA) 

PCA is relevant in sensometrics mainly as a standard tool for Qualitative Descriptive Analysis 
(QDA). In QDA, a panel of trained assessors rates a number of samples for perceived intensities of 
distinct attributes on scales, according to reference protocols for specific food commodities (e.g. 
coffee, olive oil), depending on the panel’s experience and/or on the complexity of the matrix. By 
averaging these intensity ratings and replicates, it is possible to build up a data matrix, in which 
the rows are food samples, and the columns the relative sensory attributes used to describe them 
24,25. Analysis of this data matrix by PCA can give information both on how coffee samples are 
related, and on which sensory notes best describe each sample. PCA was applied to the mean QDA 
sensory scores for aroma and Flavour of eight samples analyzed in five replicates by five assessors; 
the bi-plot of scores and loadings is shown in Figure 2. The PCs that accounted for 75.4% (PC1) and 
14.4% (PC2) of the total variance were extracted. Focusing on sensory attributes, aroma intensity 
dominated Robusta samples (JAV, UGA INDO), and appeared to be correlated to spicy, woody, 
body, and bitter notes. Acid and bitter are normal taste attributes; however, previous studies 
demonstrated that correlations between volatiles and taste sensory attributes can be found, since 
several volatiles and non-volatiles have common reaction pathways during roasting 18,28,27. 
Moreover, panelists perceive odors via ortho- and retro-nasal pathways, as a result of both 
compound mutual interactions and of cross-modal effects between odorants and taste that can 
amplify or modify perception, which, physiologically, occurs in the brain. Conversely, this 
interaction does not occur at the molecular level 34–36.  
Bitter notes are also closely related to nutty and astringent notes. In contrast, fruity, flowery and 
acid showed vectors different from those of the above descriptors, and were positively correlated 
with Arabica samples (COL, PNG, INDIA, KAFA, BRA). Among these, the only exception is the India 
sample (INDIA ARAB CHERRY) that shows sensory characteristics more similar to Robusta samples.  
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Figure 2 Biplot of scores and factor loadings obtained by PCA for aroma descriptors of QDA for coffees 1-8 (n=40). 

 
3.2 From sensory evaluation to the related chemicals: a discriminative and informative guide 

A total of 95 compounds were identified (or tentatively identified; 17 compounds were unknown 
(or not unequivocally identified) by HS-SPME-GC-MS in the coffee powder samples. Table 1 
reports the list of identified compounds with their Linear Retention Indices (ITs). The coffee aroma 
chemical profile of the first 40 samples obtained by HS-SPME-GC-MS was processed by PCA, 
together with their sensory scores, to determine: a) whether groups and/or outliers were present, 
and b) the relationship between samples and chemical-sensory variables. As expected, as well as 
QDA analysis, PCA on the aroma chemical profile showed a discrimination ability, firstly driven by 
species (Figure 3A), and then within species, by the sensory characteristics peculiar of each origin 
(Figure 3C-E). The Loadings Plot (Figure 3B) clearly shows that the sensory notes are split into two 
groups: 1) the acid, flowery, fruity notes, which are located in the 1st quadrant of the Cartesian 
plane, i.e. the same as the Arabica samples, 2) the bitter, nutty, woody, and spicy notes, lying in 
the 3rd quadrant, i.e. the same as the Robusta samples. Several chemical variables are linked to 
this sample distribution, and thus to these sensory notes, but they may be present in more than 
one note (Figure 3B). 
Several pyrazines, (e.g 2-n-propylpyrazine, 2,6-diethylpyrazine, 2-methyl-3,5-diethylpyrazine, 
isopropenylpyrazine) and phenolic derivatives, such as guaiacols, characterize the Robusta 
samples and are more closely related to the roasty, tobacco, nutty, spicy, and woody notes, while 
furan derivatives, esters and ketones are linked to the sweet, fruity, and floral sensory attributes 
9,20,37. 
Within the Robusta samples, a) JAVA is the most nutty sample, characterized by the compounds 
#48 (unknowns 4) b) UGA samples have high acidity and are chemically described by 2,3-
butandione and 2,3-pentandione, acetoxyacetone, hexanal, acetic acid, 1-hydroxy-2-butanone, 
and 1H-pyrrole-2-carboxaldehyde, which elicit musty, sour, pungent, buttery notes that can be 
related to acid attributes, c) INDO is the most woody, spicy, and bitter sample, and is more full-
bodied and astringent, mostly characterized by several pyrazines and phenolic compounds, as 
previously mentioned. 
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Figure 3 Scores and loading plots of the coffee samples obtained by chemical and sensory analysis, A&B all samples, 
C&D Robusta ; E&F Arabica coffees. Legend: BRA: □; COL: ◊; JAV: Δ; UGA: X; PNG: * ; INDIA:  ; INDO: ⃝; KAFA: + 
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Within Arabica, separation between samples is achieved on PC1 and PC2: a) KAFAs are 
characterized by high body, fruity note, and aroma intensity; these sensory attributes are 
chemically described by furfuryl alcohol, methyl acetate, 5-methyl furfural, 2-cyclopenten-1-one-3 
methyl, all of which are characterized by sweet, fruity, malty, and nutty notes, b) conversely, PNG 
is mostly characterized by acetyl furan, 2-furfuryl-5-methylfurane, 2-furanmethanol propanoate, 
2-furfuryl furan, eliciting more fruity and floral attributes. Although HS-SPME implies 
discrimination of the analytes depending on their volatility/polarity, if used under standardized 
conditions it provides reliable information for fingerprinting studies and perfectly suitable for 
comparative analyses 38. However, despite the great informative potential of PCA applied to 
comprehensive sensory and chemical data, for the purpose of discriminating samples by their 
sensory characteristics, it is still challenging to define the chemical fingerprint of a note. It is 
therefore necessary to analyze the relationship between chemical compounds and sensory note 
descriptions in greater depth, looking at the chemical variables most closely correlated with each 
sensory note. Thus, the Pearson correlation coefficient was applied to the PCA correlation matrix 
for each sensory note, and only variables with a value above 0.5 were selected. Table 1 reports the 
variables related to each sensory attribute, (except for aroma intensity, body, and astringency), for 
which the Pearson coefficient was above the cut-off (taken at r ≥ 0.5). Table 1 shows that specific 
sensory notes (e.g. acid and flowery, or woody, bitter, nutty and spicy) are often described by the 
same variables, i.e. the components closely correlated with these notes are very often the same. 
These results confirm that a specific sensory note is described by component amounts and ratios, 
and rarely by single specific compounds 17. This may be due to the complexity of odor and taste 
perception and to their mutual influence on the actual perceived Flavour. Interactions among 
odorants gives odor synesthesia while interaction between odorants and tastants could give 
chemesthetic sensations1,2. Moreover, several examples have been reported showing that some 
compounds have odors directly related to the note (X-L) and others not (X), i.e., when alone they 
elicit a different sensorial perception 34. The percentage contribution of each compound to the 
whole-aroma chemical profile closely correlated to a given sensory attribute was monitored across 
all samples investigated, to study the relationship of the percentage contribution to the expression 
of a given sensory characteristic. 
 

 



 

 

Table 1 List of identified and *tentatively identified compounds. (http://webbook.nist.gov/chemistry/name-ser.html). Compounds with an “X” are related to each sensory note; 
“L” indicates that the compound alone directly elicits the peculiar note perception. Odour description is deriving from literature data 
(°http://www.thegoodscentscompany.com/, & www.flavornet.org, + Blank et al.). 

 Compound Name Odour Description°,&,+ Calc. ITs Lit. ITs Acid Fruity Flowery Bitter Nutty Woody Spicy 

1 Acetaldehyde  Fruity 706 723        
2 Acetone Ethereal, Apple, Pear 824 835        
3 Methyl acetate Ethereal, Sweet, Fruity 828 839        
4 2-methylfuran Chocolate, Nutty 885 864        
5 2-Butanone Ethereal 906 905        
6 2-Methylbutanal Chocolate 914 931        
7 3-Methylbutanal   Aldehydic 918 936        
8 2,5-dimethylfuran Meaty 950 939        
9 2,3-Butanedione Buttery 978 963        

10 2,3-Pentanedione   Buttery 1058 1060 X  X     
11 2-Vinylfuran Nutty, coffee 1071 1085        
12 Hexanal Green 1080 1098        
13 2,3-Hexanedione Buttery 1130 1110        
14 1-methyl-1H-Pyrrole Woody 1137 1140        
15 2-Vinyl-5-methylfuran - 1151 1152        
16 Pyridine Fishy 1177 1177        
17 Pyrazine Sweet, Floral 1209 1206    X    
18 Methylpyrazine Nutty 1262 1268    X    
19 3-Hydroxy-2-butanone Buttery 1281 1285        
20 1-Hydroxy-2-propanone   Sweet-Caramellic 1297 1318 X  X     
21 2,5-Dimethylpyrazine   Nutty-Roasted 1317 1321    X  X X 
22 2,6-Dimethylpyrazine Earthy-Chocolaty 1324 1327    X  X X 
23 Ethylpyrazine Nutty-roasted 1329 1343    X X-L X X 
24 2,3-Dimethylpyrazine Green, Nutty 1341 1354    X X-L X X 
25 1-Hydroxy-2-butanone Sweet-caramellic 1370 1381 X  X     



 
 

 
 

 Compound Name Odour Description°,&,+ Calc. ITs Lit. ITs Acid Fruity Flowery Bitter Nutty Woody Spicy 

26 3-Ethylpyridine Tobacco 1374 1384    X  X X 
27 2-Ethyl-5-methylpyrazine   Coffee-like 1386 1399    X X-L X X 

28 2-Ethyl-3-methylpyrazine+ 
Trimethylpyrazine Nutty 1399 1400    X X-L X X 

29 UNK 1(m/z: 54 [100%]; 43[78%]; 
42[16.75%])  1405 - X  X     

30 2-n-Propylpyrazine * Nutty 1413 1425    X X-L X X 

31 UNK 2(m/z: 112 [100%];  
68[73.76%]; 40[24.93%])  1418 - X  X     

32 2-Furanmethanethiol   Roasted, Burnt 1432 1440    X X X-L X 
33 2-Ethyl-3,6-dimethylpyrazine   Earthy, Baked 1441 1449    X-L X X X 
34 Acetic acid Sour, Pungent 1446 1454 X-L X-L      
35 2,6-Diethylpyrazine Nutty 1457 1458    X X-L X X 
36 Furfural Sweet, Woody, Bready 1462 1467 X  X     
37 Acetoxyacetone Fruity 1468 1467        
38 Furfurylmethylsulfide Sulphuraceous, Garlic 1483 1496    X  X X 
39 3,5-Diethyl-2-methylpyrazine Nutty 1489 1491    X X X-L X 
40 2,5-Dimethyl-3(2H)-furanone Caramellic 1496 1490 X  X-L     
41 Furfuryl formate Ethereal 1497 1497        
42 Acetylfuran   Sweet-caramellic 1500 1498 X  X     
43 3-Methyl-2-Cyclopenten-1-one + 

3,5-Diethyl-2-methylpyrazine Nutty 1509 1509    X X X-L X 

44 1-H-Pyrrole Nutty 1513 1525    X X X-L X 

45 
Belzaldehyde + 2-Methyl-3(2H)-
thiophenone *+ Furan-2-yl-
propan-2-ol  1519 1520        

46 2-Oxopropylpropanoate - 1531 1531        
47 Furfuryl acetate   Sweet, Fruity, Banana 1538 1539        
48 UNK 4(m/z: 110[100%]; 

109[86.72%]; 53[50.99%])  1564 -        
49 5-Methyl Furfural Caramellic 1570 1562 X  X     



 

 

 Compound Name Odour Description°,&,+ Calc. ITs Lit. ITs Acid Fruity Flowery Bitter Nutty Woody Spicy 

50 2,3-Butandiole + 1-(5-Methyl-2-
furyl)2-propanone  1575 1582        

51 1-methylethenylpyrazine Roasted, Nutty 1590 -    X X-L X X 
52 Furfuryl propanoate Fruity 1598 1603        
53 2-Furfurylfuran - 1608 -       X 

54 (5H)-5-Methyl-6,7-
dihydrocyclopentapyrazine Earthy 1611 1611    X X-L X X 

55 1-Methylpyrrole-2-
carboxaldehyde  Nutty 1614 1635        

56 4-Hydroxybutanoate - 1621 -        
57 UNK 6 (m/z: 137[100%]; 

94[61.57%]; 122[37.71%])  1630 -        
58 2-Isopropenylpyrazine Caramellic, Nutty 1633 1633    X X-L X X 

59 2,5-Dihydro-3,5-dimethyl-2-
furanone * - 1642 1640        

60 
1-(1-methyl-1H-pyrrol-2-yl) –
ethanone *+2-Acetyl-5-methyl 
pyrrole 

- 1649 -        

61 Furfurylalcohol   Bready 1661 1664        
62 3-Methylbutanoic acid Acid, Fruity, Sour 1667 1670 X-L X-L X-L     
63 3-Methyl-1,2-ciclohexanedione - 1678 -        
64 2-Furfuryl-5-methylfuran - 1686 1636        
65 2-Acetyl-3-methylpyrazine* Nutty 1694 1719    X X-L X X 
66 Furfurylpentanoate  1702 1702        
67 2-Methyl-6-(1-propenyl)-

pyrazine* Chocolate, Nutty 1708 1719    X X-L X X 

68 UNK 11 (m/z:69[84-54%]; 
41[100%];83 m/z[31.67%])  1709 -        

69 1-Acetyl-1,4-dihydropyridine*  1716 -    X    
70 UNK 12 (m/z: 140[100%]; 

43[55%]; 111[33.52%])  1726 -        

71 UNK 13 (m/z: 54[100%];  
82[73.67%] ;  110 [57.91%])  1729 -        



 
 

 
 

 Compound Name Odour Description°,&,+ Calc. ITs Lit. ITs Acid Fruity Flowery Bitter Nutty Woody Spicy 

72 UNK 13b (m/z : 67 [100%]; 
112[73.67%]; 53[55.59%])  1734 -        

73 UNK 14 (m/z: 55; 84[48.75%];  
54[26.45%])  1745 - X  X     

74 UNK 15 (m/z: 119[100%]; 
43[26.78%]; 64[25.39%])  1750 -        

75 Methyl nicotinate + other  1767 1778    X  X X 

76 UNK 17 (m/z: 95[100%]; 
43[28.81%]; 138 [17.56%])  1772 - X  X     

77 UNK 18 (m/z: 123; 122[74.34%]; 
126 [11.84%])  1777 -        

78 3-Methyl-2-butenoic acid Phenolic 1786 -        
79 UNK 20 (m/z:139; 43[12.25%]; 

154[50.48%])  1791 -    X    

80 2-Hydroxy-3-methyl-2-
cyclopenten-1-one Malty 1820 1839        

81 Furfurylpyrrole Vegetable 1853 1866    X  X X 
82 Guaiacol Spicy 1860 -    X  X X-L 
83 2-Acetyl-5-methylfuran Nutty 1885 - X  X     
84 3-Ethyl-2-hydroxy-2-

Cyclopenten-1-one Caramellic 1885 -        
85 trans-Furfurylideneacetone* - 1897 -        
86 Phenylethanol Floral 1902 1912    X  X X 
87 Maltol Sweet, Caramell 1952 1960        
88 2-Acetylpyrrole Musty 1962 1971    X   X 
89 Difurfurylether Nutty, Earthy 1980 1977    X   X 
90 Phenol deriv* - 1997 -    X  X X 
91 1H-Pyrrole-2-carboxaldehyde Musty 2012 2035        
92 4-Ethyl-guaiacol   Spicy 2021 2037    X  X X-L 
93 Nonanoic acid Waxy, Fatty 2150 2159        
94  4-Vinyl-guaiacol Woody 2185 2193    X  X-L X 
95 Difurfuryldisulfide Coffee 2536 2536        
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Figure 4 shows a “heat map” of the samples, scored on the normalized percentage contributions 
of components closely correlated with woody, nutty, and “fresh” notes (acid, flowery/fruity). The 
slots in each row are colored according to the magnitude of their values, from red (low 
percentage) to yellow (high percentage); for instance, guaiacol mainly contributes to the profiles 
of INDO, UGA and JAVA samples. INDO samples had the highest contribution from variables 
related to woody. INDIA samples, despite being Arabica, show sensory characteristics similar to 
Robusta, thus confirming the sensory scores given by the panel from the chemical standpoint 
(Table 1APX). Conversely, guaiacol, 1H-pyrrole-2-carboxaldehyde, (5H)-5-methyl-6,7-
dihydrocyclopentan pyrazine, 2-furanmethanethiol, and difurfuryldisulfide are directly involved in 
defining the woody note 17,39 
 

 
Figure 4 Percentage contribution of compounds correlated with: A) Woody, B) Nutty and C) Fresh notes (Acid, 
Flowery, Fruity) 

A 

B 

C 
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Little may be said about the compounds linked to the fruity, acid, and flowery notes, because of 
the similarity of the chemicals involved. However, these compounds give a higher contribution to 
Arabica than to Robusta samples 16,19,28), and COL contained their highest concentrations within 
the Arabica group. The variables found to be correlated to fruity, acid, and flowery notes are in full 
agreement with the sensory scores of those samples (Table 1APX). For instance, fruity related 
compounds, such as acetic acid and 3-methylbutanoic acid, are massively present in KAFA 
samples, which achieved the highest score for the fruity note. (Figure 4 c) 
Two aspects at present make it difficult to understand which compound specifically contributes to 
a given note, and how it contributes to it. The first is that the chemical definition of a sensory note 
(i.e. its aroma signature) of a sample is linked to its composition, not only qualitatively but also 
quantitatively, and, in particular, to the ratios between components. The second aspect is 
reflected in the narrow range of the scores of some notes, e.g. for nutty, from 0 to 3. When the 
range is very limited, seeking odorants to be correlated to the sensory note becomes challenging. 
To overcome these limitations, it is therefore necessary to maximize the range of sensory scores, 
by selecting those samples having “stressed” sensory notes, i.e. with high and low values, so as to 
define more precisely the aroma compounds describing the note, and to verify the method ability 
to correlate them with the sensory fingerprint.  
A selection of “stressed”2 sensory samples representative of each note considered, independently 
of species, origin, and post-harvest treatment, were analyzed and the chemical findings related to 
the sensory scores (Table 1APX). 
 
  

                                                        
2 “Stressed” samples means a panel selection of a new pool of samples with considerable differences of sensory score 
within a given note 
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3.2.1 Definition of note-related compounds, on representative “stressed” sensory samples 
A supervised chemometric tool (PLS-DA) was applied to study note-related compounds. PLS-DA 
describes samples by calculating new variables that maximize separation between groups while 
minimizing variability within groups. Samples with the lowest score (for each target note) were 
assigned to class 1, while those with the highest score were assigned to class 2. The impact of each 
compound on the separation of the pool of samples into the two classes (1 and 2) was evaluated 
by VIP (Variable Impact on Projections). The cut-off was arbitrarily chosen, for each note, as the 
point at which the VIP values dropped sharply in the histogram.  
 

 
Figure 5 Venn Diagram of note-related compounds extracted from PLS-DA and the refining step and used to build the 
note prediction model for woody, bitter, and nutty attributes. 

 
Figure 5 reports the compounds related to woody, bitter, and nutty notes, identified by the above 
procedure, and then used to build the prediction models. Some points were raised by this 
selection: 

a) a single compound can contribute to the score of more than one sensory note, as 
reported by Ribeiro et al. in a study on prediction models of the quality of Arabica coffee 
beverages27; 

b) the variables selected to describe the woody note are probably a consequence of clearer 
definition (in terms of maximized scores and in panel alignment on the lexicon) of the note across 
the group of samples, which led to more precise identification of the most significant note-related 
compounds. 
 

  

2-isopropenylpyrazine

2-n-proppyrazine

1-hydroxy-2-Propanone

Furfuryl methyl sulfide

furfuryl pentanoate

2-methyl-6-(1-propenyl)pyrazine

(5H)-5-met-6,7-dihydrocyclopentapyrazine
WOODY

1-Hydroxy-2-butanone

2-Acet-5-methylfuran

3-hydroxy-2-Butanone	

2-Et-3,6-dimepyrazine

2-Furancarboxaldehyde,5-methyl

2,5-dimethyl-3(2H)-Furanone

Acetic acid

Furaneol

Guaiacols

NUTTY BITTER

2,3-Pentanedione

2-Et-3,6-dimetlpyrazine

3,5-diet-2-met-pyrazine

2,3-Butanedione

3-methyl-2-Butenoic	 acid	

2-Furanmethanethiol

difurfuryl ether

Furfuryl acetate

Furfuryl formate

Pyrazine

1H-Pyrrol-2-carboxaldehyde

2,3-butandiolo

Furfpropionate

Hexanal

2,6-diet-pyrazine

Pyridine

t-Furflideneacetone

2-Butenoic	 acid,	3-methyl-

Propanoic acid,	ethenyl

ester



Coffee sensory notes sensometric definition and inter-approach validation 
 

122 

3.3 From chemistry to senses: sensometric driver tool for sensory notes prediction 

The compounds identified with PLS-DA for each sensory attribute (Figure 5) were used to study 
the correlation between chemical and sensory data on the whole data set, through a note-
prediction model with Partial Least Square Regression (PLS). Samples were randomly divided into 
three groups: a training set (131), a validation set (10), and a test set (15). Figure 6 lists the 
parameters used to build the model (A), together with the regression curve and validation set fit 
(B) and the ability to predict the sensory scores for the woody note on test samples (C). The results 
show correct sample distribution across the calibration interval, showing that the model is reliable 
for sensory score prediction. Prediction reliability was evaluated through deviation (Residues) 
from the predicted vs. experimental scores, calculated as follows [1]:  
 
Res.= Experimental Score-Predicted Score      [1] 
 
The model showed close correlation between odorants selected and sensory scores. The 
predictive ability was good, i.e. Q2= 0.66, with a prediction error of 0.59. Similar results, although 
to a different extent, were obtained for the other sensory attributes (Figure 1APX). The only 
exception was the nutty note, for which the model showed poor linearity (R2=0.467), a wide 
confidence limit (RMSE= 2.709) and very low predictive ability (mean error: 1.595), mainly due to 
the difficulty in the lexicon used to define nutty and, as a consequence, to determine odorants 
linked to it.  
Although to different extents, the results show good relationships between selected odorants and 
sensory scores, with an average standard error in score prediction of ± 1, thus cross-validating the 
link between the compounds selected and the sensory note description. 
In this perspective, the chemical composition of woody and flowery notes were also investigated 
by sensomics 40,41. The preliminary results of this inter-approach validation showed good 
consistency between sensometrics and sensomics for some of the target compounds. The 
compounds already confirmed by sensomics are listed in Figure 7. The sensometric-driven 
procedure can reveal the chemical aroma signature of the sensory attributes investigated. At 
present, both performance and predictive ability of the models are too closely related to the 
training set, and to its ability to cover the entire range of scores of the samples under study, i.e. 
woody vs. fruity. Compared to fruity, the woody note offers better prediction, thanks to its 
robustness, owing to two factors: the wide pool of samples, covering the whole sensory score 
range and thus avoiding the need to force the model; and the good panel alignment in the woody 
note lexicon recognition, providing a better estimate of an external test set. 26–28,42 
Although this discussion has focused on woody, nutty, and bitter notes, acid, spicy, and 
flowery/fruity notes were also considered (figure 1APX); they acted similarly to the notes 
discussed in depth, including positive aspects and limitations. 
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Figure 6 A) Parameters used to build the model, B) regression curve and validation set fit, C) results of sensory score 
prediction on the test samples for the woody note. 
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Figure 7 Compounds characterizing woody and flowery aroma notes confirmed by sensomics. 

 
4. CONCLUSIONS  

The sensometric-driven approach has been found to be discriminative, informative, and predictive 
in revealing the chemical signature of the different coffee aroma notes: a) discriminative, because 
it was able to point out samples with peculiar aroma notes , independently of species, post-
harvest treatment, and origins, b) informative, because it entails the complementary and 
simultaneous use of sensory and chemical data to define odorants able to describe the chemistry 
of aroma notes, stressing the method strengths and limitations, and c) predictive, because the 
panel-coherent sensory score prediction based on this sensometric approach confirms and 
reinforces the relevance and significance of the odorants selected by applying this procedure. The 
models developed are promising for predicting sensory scores from chemical data and appear to 
provide a complementary tool that can contribute to an objective sensory evaluation, despite the 
great variability of coffee samples (origins, species, treatments, qualities), that aim to reflect what 
happens at the industrial level in the selection of the raw beans to be used as monorigin or in 
blends.  
These results are a good background to build up a reliable mathematical model for a future 
application to routine quality control although further experiments are necessary on a more 
extended number of samples to improve the representativeness of the treated coffees, and a 
panel’s alignment on a more specific lexicon to define the notes.  
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1. INTRODUCTION AND OBJECTIVES 

The sensometric approach, developed in the previous steps of the project seemed promising in 
the definition of a correlation between sensory data and the chemical profiles of coffee samples. 
The fast and automatable TAS affords the screening of a high number of samples (mandatory in 
quality control) while the use of statistical tools (e.g. PLS-DA and PLS) makes possible to connect 
the sensory evaluation of the panel with the chemical profile obtained with the HS-SPME-GC-MS 
platform. 
Nevertheless, for a reliable validation, the results of this approach must be compared to those of 
molecular sensory science approach i.e. the reference approach adopted to identify and quantify 
the molecules responsible for different foods Flavours.  
 

The aim of this study is to apply the sensomic approach to selected coffee samples able to 
minimize and maximize both “Woody” and “Flowery” sensory notes. Key aroma compounds 
identified with the molecular sensory science approach were compared to those selected by 
sensometrics called Note Related Compounds (NRC) and used to develop the prediction models. 
 
This part of the project has been carried out at the Deutsche Forschungsanstalt für 
Lebensmittelchemie (DFA) of the Technische Universität München (TUM) under the supervision of 
Prof. Dr. Peter Schieberle 
 

Strategy for Molecular Sensory Science (or Sensomics) 

The molecular sensory science is also called “sensomics” since, as other –omic approaches, it 
includes a biological data dimension represented by the sensory perception and it is largely 
adopted in food aroma investigations.  
At the basis of the molecular sensory science approach there is the statement: “not all volatile 
compounds are actually responsible for the food aroma”. Developed by W. Grosh, P. Schieberle 
and their groups at the technical University of Munich, molecular sensory science became the gold 
standard for food aroma investigations1–3,4,5,6. 
The idea behind this approach is simple: extract aroma compounds from the matrix, separate and 
screen the mixture by GC-O/FID to select only the compounds with the highest odor impact and 
try to create with them a recombinant model able to elicit the same aroma of the food under 
study. 
The molecular sensory science is constituted by five main steps summarized in figure 1 
 

 
Figure 1 Summary of the steps of the Molecular Sensory Science approach
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Isolation 

Volatiles isolation is usually performed by Solvent Assisted Flavour Evaporation (SAFE). This 
technique, developed and introduced by Engel et al in 19997, is an evolution of simultaneous 
distillation-distillation (SDE) that overcomes its main limit linked to the high temperatures applied 
during the extraction that may lead to artefacts formation. 
According to its forefathers the SAFE affords to: 

- Keep the structures of the compounds of interest thanks to the low operative 
temperatures, 

- Avoid interference from the non-volatile fraction, 
- Provide a non-discriminant volatile extraction. 

 

Concerning this last statement, since the aroma compounds are extracted by a solvent, a certain 
degree of discrimination has to be considered. Among the pool of volatiles, those with a higher 
affinity with the solvent will easily be extracted compared to low affinity components. 
A schematic view of the SAFE equipment is reported in figure 2 
 

 
Figure 2 Scheme of the SAFE equipment. 

 
Once the system is installed and perfectly sealed, the body and the legs of the distillation unit are 
termostated between 20 and 30°C with a warm water flow; this step avoids the condensation of 
the volatiles in undesirable parts of the distillation unit. The distillation balloon is then heated in a 
water bath between 20 and 30°C. 
Then, the equipment is put under high vacuum (10-3Pa) by a diffusion pump. 
The condensation cold finger is hence filled by liquid nitrogen (-196°C) and the collection balloon 
immerged in liquid nitrogen. 
Now the distillation can start; the sample is poured into the funnel and by dropping small aliquots 
of it into the distillation balloon from where the volatiles are recovered. 
From the vapor spray, the volatiles are transferred to the distillation head where two glass 
propeller-shaped barriers are mounted to remove non-volatile compounds from the vapors. Then 
the volatile fraction reaches the cold trap, condenses and drops in the collection balloon.7 
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Screening: GC-O/FID and AEDA  

This step is the core of the sensomic strategy since the key aroma candidates are identified by GC-
O/FID within the Aroma Extract Dilution Analysis (AEDA) approach. 
The SAFE distillate after being concentrated by micro-distillation is analyzed by Gas 
Chromatography coupled to Olfactometry and Flame Ionization Detector (GC-O/FID).  
The analytical platform (described in section 1.3) implies a GC separation where, at the end of the 
column, the flow is splitted in two branches one directed to the sniffing port and the other to the 
FID detector that records the chromatogram. 
During each GC run, the panellist places his nose closely above the top of the sniffing port and 
evaluates the odour of the chromatographic effluent. When an odour is perceived, the odour 
quality is assigned to the corresponding peak in the chromatogram. The accuracy of the peaks 
detection and the odours recognition increased with the experience, the panellist’s training of the 
on pure reference compounds. This technique allows the combination of the sensory data of each 
odorant with its retention index (ITs). 
Despite its good potentialities, GC-O has some important drawbacks; the number of compounds 
detected depends on many factors such as the panellist’s experience and their concentration and 
perception threshold. Furthermore, in a single GC-O run is not possible to evaluate the intensity of 
an odour with a single sniffing and it is therefore not possible to understand if a compound is a key 
odorant or slightly contributes to the food aroma. These limitations are overcome by the Aroma 
Extract Dilution Analysis. This technique, developed by Grosch and Schieberle2,1 affords to 
determine the relative odour activity of each compound without knowing its chemical structure. 
AEDA is performed as follows: the volatile fraction is diluted stepwise 1:1 with solvent and each 
dilution analysed by GC-O/FID. The dilutions are continued until no odorants can be perceived in 
the GC effluent. The highest dilution to which each odorant can be perceived is called Flavour 
Dilution (FD) factor. 
The results of the AEDA are usually displayed as a diagram of the FD-factors vs. the ITs called FD-
chromatogram or Aromagram. This diagram makes possible to identify easily which peaks are 
more relevant in the definition of the overall aroma since they are characterized by a higher FD 
factor.  
Comparative AEDA (cAEDA) was here applied because the objective of this study was to point out 
the differences between two different samples with the highest and the lowest expression of two 
different sensory notes the. The cAEDA found application also in the detection of off-flavour 
within different food matrices. In this procedure, peaks are not only selected according to their FD 
factor but also considering the difference of FD factors between the samples under study. Peaks 
with high FD factor differences represent the compounds responsible for the sensory differences 
between the samples. 
The cAEDA has been performed as follow; the volatile fractions have been extracted from the 
same amount of both samples, worked-up, distilled and concentrated up to the same final volume. 
Assuming the same loss of volatiles in the samples preparation the comparison of single odorants 
in both samples on the basis of their FD-factors indicates which odorants are mainly responsible 
for the aroma differences. This comparison is done by comparing the aromagram in which each 
smelled peak is reported, and its retention index plotted vs. the FD factor assigned in each sample. 
In agreement with the literature, only peaks with difference of at least 2 dilution steps are 
considered. This cut-off is necessary to prevent the operator variability. 
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Peaks Identification 

The identification of the selected peaks is performed on the basis of three different criteria: ITs, 
Mass Spectrum and Odour Quality. The first step included the selection of some best candidates 
from a list of more than 1300 odour active compounds. Within this list, only compounds with a ITs 
and odour description compatible with those of the target peak on the aromagram are selected.  
Then both the samples are injected on a GCxGC-TOF-MS system and the mass spectra are 
acquired. These analyses are useful to refine the first candidates list, to confirm some of them and 
find out other possible compounds responsible for target peaks. The identification is not only 
based on the similarity with commercial spectral libraries but also by comparison with Pure 
Referent Compounds. 
 The third step of the identification includes the investigation of the target odour quality 
and potency. The pure reference compounds are injected on the GC-O system and their odour 
quality compared to the odour description of target peaks on the AEDA. The identification of some 
critical compounds can also be checked by diluting the Pure Reference Compound up to a 
concentration similar to that one in which the FD factor was assigned in order to evaluate both the 
odour description and the potency. 
 
Quantitation: Stable Isotopes Dilution Assay (SIDA) and determination of Odour Activity Values 

(OAV)  

The importance of each odorant in the food aroma is evaluated by the calculation of their Odour 
Activity Values (OAV).  
Before introducing the concept of OAV, it is important to define the Odour Threshold (OT): the 
Odour threshold is the minimum concentration at which the odour of a specific compound, in a 
given matrix (usually water, oil or air) can be perceived. 
The importance of this parameter, reviewed by Ternanishi et al 8, indicates the odour potency of a 
specific compound; the smaller OT is the higher is the odour potency. 
The OAV is defined as the ratio between the concentration of a compound in the matrix under 
study and its odour threshold as reported in the equation below: 
 

!"# = []'()*+'
!,'()*+'

 

 
Therefore, the absolute concentrations of the analytes have to be determined besides the odour 
thresholds. In molecular sensory science, the analytes concentration is determined by the Stable 
Isotopes Dilution Assay (SIDA) quantitation approach. The SIDA, introduced by Schieberle et al. 1, is 
a quantification method similar to the Standard Addition (SA) technique in witch isotopically 
labelled standards are used to determine analytes concentrations. 
This method uses isotope-labelled derivatives of the investigated components (in general, 2D or 
13C labelled compounds) as Internal Standards. They have the same physical-chemical properties 
of the investigated analytes and equal or very similar response factors and recoveries. Labelled 
compounds give also the same MS fragmentation pattern, but with a known increase in molecular 
weight, easily detectable by MS.9 
the fragments selected for the quantitation may have different MS-responses, despite analytes 
and standards have the same properties. The MS-response factors (Rf) must therefore be 
calculated to compensate these differences. 
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A calibration line with mixtures of different analytes/standard ratios (1+5, 1+3, 1+1, 3+1, 5+1) is 
built up and analysed on the GC-MS system. The Rf is calculated using the following formula: 
 

-. =
/(0( ∗ "2'3
/2'3 ∗ "40(

 

whereas: 
Rf= response factors. 
mAna= amount of unlabelled analyte, 
mStd= amount of labelled standard, 
AAna= peak area of ion m/z of unlabelled analyte, 
AStd= peak area of ion or sum of ions m/z of isotopically labelled standard 

 
Samples are spiked with labelled compounds and then worked-up; with this procedure, all the 
losses in the sample preparation can be normalized in the quantitation. 
The extracts are analysed on a GC-MS platform were peak areas of the labelled standard and of 
the analyte are determined only with the m/z fragments of interest. 
The concentrations of the analytes in the samples are calculated with the following formula: 
 

540( = -.
/2'3 ∗ "40(
6 ∗ "2'3

 

whereas: 
CAna= Concentration of the analyte, 
Rf= response factors, 
mStd= amount of labelled standard, 
g= amount of sample, 
AAna= peak area of ion m/z of unlabelled analyte, 
AStd= peak area of ion or sum of ions m/z of isotopically labelled standard. 
 
Aroma Recombinant 

This step is mandatory for the full application of the molecular sensory science approach.  
A model fragrance containing all the selected targets in proper concentration is built and its aroma 
is checked through sensory tests. 
The model fragrance aroma has to be as close as possible to the aroma of the foodstuff under 
investigation; in order to refine this mixture, omission tests are also performed. 
In omission tests, single or multiple analytes are removed from the mixture and the aroma is 
stepwise checked by sensory analysis to understand which are the so called “key aroma 
compounds”, in other words those necessary to replicate the original aroma correctly. 
In this session, the creation of the recombinant was a bit out of the main task but further studies 
should include the formulation of these kind of mixtures. 
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2. MATERIALS AND METHODS 

2.1 Samples Description 

Coffee samples has been selected according to their sensory profiles determined by the Lavazza’s 
sensory panel. The samples were selected to maximize the expression of the sensory notes of 
interest (Woody and Flowery). 
Coffees samples, consisting of roasted coffee ground to suit a coffee-filter machine were kindly 
supplied over a period of 9 months by Lavazza Srl (Turin, Italy). 
The Woody note was from a Vietnam GR2 coffee samples while the Flowery note was from a 
Burundi coffee samples. Tables 1 and 2 report the sensory scores assigned by the panel. 
Each sample was produced by a fresh cycle of roasting and grinding, starting from the same batch 
of green coffee beans. The roasting degree of each sample was carefully measured by ground 
bean light reflectance, with a single-beam Neuhaus Neotec Color Test II instrument (Genderkesee, 
Germany) at a wavelength of 900 nm on 25-30g of ground coffee. Roasting degree was set at 
55°Nh, in order to be close to the international standardization protocol for cupping (SCAA, 2015). 
Samples were roasted within 24 hours prior to cupping and left for at least 8 hours to stabilize. 
 
Table 1 Sensory Scores assigned to Vietnam coffee samples by the Lavazza's sensory panel 

VIETNAM GR2  
     

Acid Bitter Body Intensity Overall Quality Woody 
0 5 8 8.5 8 7 

 
Table 2 Sensory scores assigned to Burundi coffee samples by Lavazza's sensory panel 

BURUNDI 
     

Acid Bitter Body Intensity Overall Quality Flowery 
4 0 8 8.5 9 8 

 
2.2 Samples Preparation 

According to the literature10, 30g of coffee powder was extracted with 200mL of dichloromethane 
(DCM) under stirring conditions at ambient temperature for 1h. The extracts were then filtrated, 
and the volatiles were isolated by Solvent Assisted Flavour Evaporation (SAFE) distillation at 40°C. 
The distillates were then separated into the acid and neutro-basic fractions; acidic compounds 
were removed by treatment with aqueous sodium hydrogen carbonate (0.5 mol/L; three portions 
of 200mL total volume) to obtain the neutral and basic volatiles (NBV). The alkaline aqueous phase 
was washed twice with DCM (50mL), acidified at pH=2 with HCl (6M) and extracted with DCM 
(3x50mL) to obtain the acidic volatiles (AV). AV and NBV were dried over anhydrous with Na2SO4 
and each concentrated to 1 mL by a Vigreux column (50cm x 1 cm) followed by a microdistillation 
to reach a final volume of 200µL. 
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2.2 High-Resolution Gas Chromatography-Olfactometry (HRGC-O) 

For HRGC-O, a gas chromatograph (8160-Fisons Instruments, Mainz, Germany) was used. Helium 
at a pressure of 80 kPa served as the carrier gas. Samples were injected by cold-on-column 
injection onto capillaries DB-5 or DB-FFAP column (both 30 m, 0.32 mm i.d., 0.25 µm film 
thickness; J&W Scientific, Agilent Technologies, Waldbronn, Germany). The end of the capillary 
was connected to a deactivated Y-shaped glass splitter (Chromatographie Handel Mueller, 
Fridolfing, Germany) dividing the effluent of the column into two equal parts, which were then 
transferred via two deactivated fused silica capillaries (50 cm × 0.25 mm) to a sniffing port and a 
flame ionization detector (FID), respectively. The sniffing port consisted of a cylindrically shaped 
aluminium device (80 mm length, 25 mm diameter) with a bevelled top and a central drill hole (2 
mm) housing the capillary. It was mounted on one of the GC detector base and heated to 230 °C. 
The FID was operated at 250 °C with hydrogen (20 mL/min) and air (200 mL/min). Nitrogen (30 
mL/min) was used as the make-up gas. 
Injection volume: 1uL temperature program, from 40 °C (2 min) to 230 °C (5 min) at 6 °C/min. 
 
2.3 Stable Isotopes Dilution Analysis (SIDA) 

2,3-Pentandione, Furfurylthiol and 4-Ethylguaiacole were quantified by mean of the Stable Isotope 
Dilution Assay (SIDA). 
The standard/analyte response factors (Rf) were determined by analysing mixtures of known 
amounts of the unlabelled target compound and the respective isotopically labelled internal 
standard in five different ratios (5:1, 3:1, 1:1, 1:3, and 1:5) on a GCxGC-TOF platform.  
Table 3 reports the fragments selected as a Ti to quantify each odorant, the type of labelling and 
the parameters of the calibration (Response factors and R2). 
 
Table 3 SIDA compounds parameters 

 
 
5g of coffee powder were weighted and suspended in 100mL of Dichloromethane (DCM). The 
suspension was spiked with different amounts of the labelled standard in order to add an amount 
of standard as close as possible to the concentration of the analyte in the matrix.  
The mixtures were extracted at room temperature under stirring for 1h and then distilled by SAFE. 
The distillates were concentrate on a Vigreux columns and diluted 1:50 before being injected on a 
GCxGC-TOF-MS platform. Each sample was analyzed in two replicates; each replicate involved a 
complete new spiking, extraction and distillation protocol. 
  

Analyte	 Standard	
m/z m/z

2,3	Pentandione 43 13 C2 45 0.7062 0.9989

Furfurylthiol 114 2H2 116 0.7153 0.9977
4-ethylguaiacole 152 2H4 155-158 0.5576 0.9999

R2 	cal.	curveRfIsotope	labelOdorant
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3. RESULTS AND DISCUSSION 

3.1 AEDA, peak selection and identification 

Table 4 and 5 list the smelling peaks perceived during the AEDA of both NBV and AV fractions of 
Vietnam and Burundi samples. More than 30 smelling peaks were detected in the Neutro-Basic 
Fractions while 10 peaks were detected in the Acid Volatiles fraction. Each peak is characterized by 
its Retention Index, the odour description and the Flavour Dilution Factor (FD) assigned to the 
peak in both samples during the AEDA. As expected there are not significant qualitative variations 
between the volatiles fractions of the samples; with the exception of peaks #13 and #22, all other 
peaks have been perceived in both samples. 
The identification of highly volatile compounds (3-methylbutanal and 2,3-pentandione) was 
carried out on a static headspace HRGC-MS platform.  
The system consisted of a Thermo Scientific Trace Ultra gas chromatograph (Dreieich, Germany) 
with a Chrompack purge-and-trap (PTI/TCT) injection system 4001 (Frankfurt, Germany) coupled 
to a Varian ion-trap mass spectrometer Saturn 2100 T (Darmstadt, Germany).  
The headspace of different amounts of coffee powder (0.050 and 0.1g) were automatically 
sampled in different volumes (5000 and 500µL) by a Varian Combi Pal autosampler (Darmstadt, 
Germany) with a gastight syringe. After sampling, the volatile compounds were collected in a cryo 
trap cooled with liquid nitrogen at −150 °C. By rapidly heating the trap to 250 °C, the compounds 
were transferred (injected) onto the capillary column. The detection of the compounds was 
carried out by mass spectrometry, and the effluent was simultaneously sniffed using a Y-type glass 
splitter and two uncoated fused silica capillaries (50 cm × 0.3 mm i.d.). 
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Table 4 Important odorants perceived during the AEDA protocol in the NBV fractions of Vietnam (Woody) and Burundi 
(Flowery) samples. 

NBV 

# RI DB-FFAP Odour Description Vietnam Burundi 
1 943 Malty 128 32 
2 980 Fat-Buttery 512 512 
3 1020 Fresh-Berry 2 16 
4 1063 Sweet-Fat 16 256 
5 1095 Fresh-Berry 4 4 
6 1240 Roasty-Sweet 8 4 
7 1284 Solvent-Pungent 8 16 
8 1293 Nutty-Sweet 64 4 
9 1311 Roasty-Vegetables 16 64 
10 1328 Fresh-Sweet 32 4 
11 1337 Nutty 64 64 
12 1395 Sweet-Fruity 256 64 
13 1406 Brown-Cooked 512 - 
14 1416 Roasty-Baked-Woody 64 8 
15 1430 Earthy-Baked 256 512 
16 1446 Green-Berry 512 32 
17 1476 Malty-Roasty 256 1024 
18 1495 Pungent-Solvent 512 32 
19 1531 Pepper 512 1024 
20 1550 Woody-Paper-Leather 64 16 
21 1570 Sweet-Dry Fruit 16 32 
22 1628 Roasty-Baked 256 - 
23 1638 Sweet-Roasty-baked 32 128 
24 1651 Roasty 8 32 
25 1661 Cooked-Baked 512 32 
26 1675 Cooked-Boiled 128 128 
27 1831 Fruity 512 512 
28 1878 Candy 512 1024 
29 2004 Mushrooms 32 8 
30 2057 Spicy-Cloves 16 256 
31 2221 Cloves 512 1024 
32 2420 Faecal 256 32 
33 2472 Faecal 256 16 
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Table 5 Important odorants perceived during the AEDA of the AV fractions of Vietnam (Woody) and Burundi (Flowery) 
Samples. 

AV 

# RI DB-FFAP Odour Description Vietnam Burundi 
1 1672 Cheesy 512 512 
2 1692 Berry 4 4 
3 1718 Roasty 64 4 
4 1805 Spicy-Roasty 16 64 
5 1841 Spicy-Soup 256 256 
6 1876 Sweet-Candy 1024 512 
7 2052 Sweet-Baked 512 1024 
8 2105 Solvent-Pungent-Leather 1024 128 
9 2220 Cloves-Boiled Vegetables 1024 512 
10 2409 Spicy-Pungent 64 32 

 
In these tables, peaks with highest FD factors are the key aroma compounds of the investigated 
samples; the AEDA demonstrates their key role in the definition of the samples aroma.  
Some peaks (e.g. #2, 19, 26, 27, 28, 31 of the NBV fractions and #1, 5, 6, 7, 9 in the AV fractions) 
not only have high FD factors but their behaviour is similar in the two samples under investigation. 
These odorants may be part of the “coffee chemical odour code”; in other words, they may be 
part of the pool of chemicals able to compose the general coffee aroma. This hypothesis is 
supported by the fact that their contribution to the aroma do not change even if the coffee 
samples under study have very different aromatic properties. 
To find out the aromatic differences between these two samples in the Comparative AEDA peaks 
with high FD were not only considered but also all those peaks whose FD values differ between 
the two samples of at least two dilution points. This cut-off was chosen to minimize the errors in 
the peaks selection (figure 3). 
 

 
Figure 3 Compared Aromagram between Vietnam (Woody) and Burundi (Flowery) volatile fractions.Figure 3 show a 
visual representation of the FD factors of the 24 peaks selected as responsible for the aromatic differences between 
the two samples together with their FD factors. 

Among this group, peaks characteristics of each sample elicits perception not always in agreement 
with our expectations: Vietnam samples was expected to be characterized by peaks with Roasty 
and brown notes. This expectation was satisfied by “exclusive Vietnam peaks” # 13 and 22 (brown 
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and Roasty notes) and by peaks #1, 21, 26, 33, 34 (responsible for Malty, Cooked-Baked, and 
Faecal notes) but not by peaks 13 and 17 which elicit Fruity and Berry odours. These observations 
can be confirmed also on Burundi characteristic peaks. 
Table 6 Identification of Target peaks in the Neutro-Basic Fractions. 

# ITs Odour 
Description GC-
O 

Identification CAS n° Literature Odour 
description** 

Referen
ce ITs 

1 943 Malty 3-methylbutanal 590-68-3 Malty 933 

3 1020 Fresh-Berry Ethylbutanoate $ 105-54-4 Fruity-Juicy-Pineapple - 

4 1063 Sweet-Fat 2,3-Pentandione 600-14-6 Buttery 1058 

8 1293 Nutty-Sweet 4.Methylthiazole 693-95-8 Nutty 1280 

9 1311 Roasty-Veggie 2,5-dimethylpyrazine 123-32-0 Sweet-Green-Burnt 1314 

10 1328 Fresh-Sweet 1-Hydroxy-2-butanone 5077-67-8 Sweet-Malty-Coffee - 

12 1395 Sweet-Fruity 2-ethyl-,5-methylpyrazine + 
2-ethyl-6-methylpyrazine  

13360-64-0 
13925-03-6 Coffee-Nutty 1355-

1359 

13 1406 Brown-Cooked 2-Ethyl-3,5-
dimethylpyrazine 15707-34-3 Burnt-Roasted-Popcorn 1410 

15 1416 Roasty-Baked-
Woody Furfurylthiol 98-02-2 Sulphur-Roasty-Coffee 1391 

17 1446 Green-Berry 2,3 Diethylpyrazine 15707-24-1 raw, nutty, green pepper 1396 

18 1476 Malty-Roasty 2,3-diethyl-5-
methylpyrazine 18138-04-0 Musty/Nutty/Potato 1481 

19 1495 Pungent-
Solvent Acethylfuran 1192-62-7 Sweet-Almond - 

21 1550 Woody-Paper-
Leather Furfuryl Acetate 623-17-6 Green-Banana peel 1536 

22 1620 Roasty-Baked 1-methyl-2-pyrrole 
carboxyaldehyde $ 

1192-58-1 
 Roasted-Nutty - 

24 1638 Sweet-Roasty-
baked 

1-Methylpyrrole-2-
Carboxaldehyde 1192-58-1 Roasted-Nutty - 

25 1651 Roasty 2-Acethyl-1-methylpyrrole 932-16-1 Earthy-Nutty 1649 

26 1661 Cooked-Baked Furfuryl alcohol 98-00-0 Brown-Caramellic 1667 

30 2004 Mushrooms Difurfuryl ether$ 4437-22-3 Coffee-Mushrooms like - 

31 2057 Spicy-Cloves 4-Ethyl-guaiacol 2785-89-9 Spicy-Smoky-Woody 2034 

33 2420 Faecal Indole 120-72-9 Faecal 2454 

34 2472 Faecal 3-methyl-indole 83-34-1 Faecal 2504 

** Literature odour description has been found on The Good Scents Company website: 
http://www.thegoodscentscompany.com 

$ The identification still needs to be confirmed. 
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The identification of target peaks on both AV and NBV fractions has been obtained following the 
criteria described above; the results are reported in Tab 6 and 7. 
The identification of compounds marked with $ has been obtained only on the basis of their ITs, 
odour quality and MS spectra but was not possible to verify the identification with Pure Reference 
Compounds. 
 
Table 7 Identification of target peaks on the AV fractions. 

# RI 
Odour Description GC-
O Identification CAS n° 

Literature Odour 
description** Reference RI 

1 1718 Roasty 3,4 dimethyl-2,5-
furandione 766-39-2 - 1740 

3 1805 Spicy-Roasty 3-methylcyclopentane-
1,2-dione 765-70-8 Sweet-Coffee-

Caramel 1830 

4 2105 Solvent-Pungent-
Leather 3-methylphenol 108-39-4 Woody-Leather-

Phenolic  

** Literature odour description has been found on The Good Scents Company website: 
http://www.thegoodscentscompany.com 

 
3.2 Quantitative information determination 

2,3-Pentandione, Furfurylthiol and 4-Ethylguaiacole were quantified in both samples by mean of 
the Stable Isotope Dilution Assay (SIDA) in order to investigate if the concentrations were in 
agreement with the results of the AEDA and to obtain a further tool to compare the two 
approaches. 
 
Table 8 Quantitation Results; green and red arrows indicate witch samples present the higher and the lower value of 
concentration for each compound. 

 
 
Table 8 summarized the results of the quantitation performed by SIDA. 
 
  

Odorant Vietnam (mg/L) RSD% Burundi (mg/L) RSD%
2,3 Pentandione 2.03 5.60 9.40 0.75
Furfurylthiol 1.07 4.49 0.89 3.50
4-ethylguaiacole 8.54 1.24 2.05 5.09
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Another, simple but meaningful experiment has been performed on both the samples: an Internal 
Standard has been added to the suspensions before starting the work-up and then the targets 
normalized responses were compared between the samples. 
More in detail: 30g of coffee powder were weighted and suspended in 200mL of DCM; 5µL of 
Ethylcycloexanoate from a 1000µg/L solution was added to the mixture. This compound has been 
chosen because it has a higher polarity compared to the correspondent alkane and better fits with 
the coffee composition. 
Table 9 reports the targets normalized responses for both samples. Coloured arrows help to point 
out in which sample each compound has the higher normalized response. 
Table 9 Normalized Responses obtained injecting the SAFE distillate in the GCxGC-TOF-MS platform 

 

 
 
  

Vietnam Burundi

2,3-pentanedione 3.050 27.210
4-methylthiazole 4.080 2.630
2,5-dimethylpyrazine 98.360 119.130
1-Hydroxy-2-butanone 1.360 8.830
Pyrazine 2-ethyl-, 5-methyl + Pyrazine 
2-ethyl-, 6-methyl

30.190 5.770

2-Ethyl-3,5-dimethylpyrazine 18.680 4.850
Furfuryl thiol 0.950 1.000
2,3-diethylpyrazine 2.400 0.580
2,3-diethyl-5-methylpyrazine 4.220 0.810
Acethylfurane 27.830 21.940
Furfuryl Acetate 14.670 26.160
1-methylpyrrole-2-carboxyaldehyde 34.970 56.922
2-Acethyl-1-methylpyrrole 6.730 11.900
Furfuryl alcohol 188.170 213.330
Difurfuryl ether 11.530 19.250
4-Ethyl-guaiacole 22.110 3.350
Indole 8.070 2.420
3-methyl-indole 1.790 0.180

Odourant
Vietnam Burundi

3,4 dimethyl-2,5 furandione 8.7800 8.1200
1,2-Cyclopentanedione, 3-methyl- 1.5300 20.7800
3-methylphenol 2.4800 2.8000

Odourant
Resp Norm Distillate

NBV

AV
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3.3 Qualitative comparison between sensomic and sensometric target compounds. 

The main goal is to compare the results obtained by applying two different approaches (sensomic 
and sensometric) in the definition of the chemical fingerprint of Woody and Flowery sensory 
notes.  
The pool of compounds selected to describe the sensory notes have been qualitatively compared 
to understand if the information obtained about the samples with the two approaches is 
consistent. Eight compounds within the group identified until now after the cAEDA were found to 
be also part of the list used to develop the prediction models in the sensometric approach. 
 
Table 10 Shared target compounds between Sensomic and Sensometric approach. 

Woody Model 

- 2,3-pentanedione 
- 4-Ethyl-guaiacol 
- Difurfuryl ether* 
- 2-Ethyl-3,5-dimethylpyrazine 

   

Woody and Flowery Models 
- 1-Hydroxy-2-butanone 
- Acethylfuran 

   

Flowery Model 
- Pyrazine 2-ethyl-, 5-methyl + 2-ethyl,6-methylpyrazine 
- 2,5-dimethylpyrazine 

 
Table 10 reports compounds identified with the sensomic approach also present in the list of 
targets used to develop sensometric prediction models. The first box reports the compounds in 
common with the Woody Note Related Compounds (NRC) and the other two boxes the 
compounds in common with both Woody and Flowery NRC and with just Flowery NRC. 
 
Another qualitative comparison between the two approaches can be done by observing of how 
aroma compounds pointed out with the molecular sensory science, behave within the chemical 
fingerprints obtained with the sensometric approach. 
Table 11 considers three different compounds identified with molecular sensory science that 
apparently have not a key role in the Woody and Flowery models. The investigation of the 
correlation matrix obtained during sensometric data elaboration showed that several compounds 
used to develop the prediction models had high correlation coefficient with those identified at the 
DFA. This good relationship suggests that probably the huge differences between the two 
approaches both in the samples preparation and in the compounds selection criteria impact on 
the composition of the targets lists but not on the overall information that can be extracted from 
the sample.  
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Table 11 Note Related Compounds used in the Woody and Flowery prediction models highly correlated with Aroma 
compounds identified with the Sensomic approach. Pearson correlation coefficient was used 

Key aroma sensomic 
  

Sensometric Models compounds 

2-Furanmethanethiol highly correlate (r>0.75) 

- 2,3-dimethyl Pyrazine,  

- Guaiacol 

- 1-methylethenylpyrazine 

- 4-vinylguaiacol 

- 3-ethyl-2,5-dimethylpyrazine, 

- 3,5-diethyl-2-methylpyrazine 

- phenolic derivate 

Furfuryl alcohol highly correlate (r>0.75) 

- Maltol 

- Acetic acid 

- 2-Acetyl-5-methylfuran 

- Unk 17 

- Ethenylpropanoate 

- Unk 14 

- 5 Methyl Furfural 

- Acetylfuran 

- Furfural 

- 1-Hydroxy-2-butanone 

- difurfuryl ether 

- 2,3-Pentanedione 

1-methyl-1H-Pyrrole-2-carboxaldehyde higly correlate (r>0.70) 

- 1H-Pyrrole-2-carboxaldehyde 

- 2-hydroxy-3-methyl-2-Cyclopenten-1-one  

- 3-ethyl-2-hydroxy-2-Cyclopenten-1-one 

- 2,3-Hexanedione 

- 5 Methyl Furfural 

- Acetoxyacetone 

- Acetylfuran 

- Furaneol 

- Furfuryl formate 

- Maltol 

- trans-Furfurylideneacetone 

- Unk 13b 

 



 

  

3.4 Quantitative comparison between sensomic and sensometric target compounds. 
Table 12 Comparison of quantitative data obtained with different strategies: AEDA, GCxGC-TOF normalized responses, SIDA quantitation, HS-SPME-GC-MS normalized 
responses. Similarly to the other tables green and red arrows helps the reader to individuate in witch of the samples each compounds is present in higher and lower 
amount. 

 

 
 

Odourant
FD bur Vietnam Burundi Vietnam (mg/L) Burundi (mg/L) Woody no_Woody Flowery no_flowery

1-Hydroxy-2-butanone 4 1.360 8.830 0.004 0.014 0.014 0.007
2-Acethyl-1-methylpyrrole 32 6.730 11.900
2,3-diethylpyrazine 32 2.400 0.580
2,3-pentanedione 256 3.050 27.210 2.030 9.400 0.015 0.051 0.047 0.029

2,3-diethyl-5-methylpyrazine 1024 4.220 0.810 0.018 0.055

2,5-dimethylpyrazine 64 98.360 119.130 0.119 0.068
3-methyl-indole 16 1.790 0.180
4-Ethylguaiacole 256 22.110 3.350 8.540 2.050 0.254 0.040
4-Methylthiazole 4 4.080 2.630
Acethylfurane 32 27.830 21.940 0.121 0.321 0.314 0.186
Difurfuryl ether 8 11.530 19.250 0.014 0.066
Furfuryl Acetate* 16 14.670 26.160
Furfuryl alcohol 32 188.170 213.330
Furfuryl thiol 8 0.950 1.000 1.070 0.890
Indole 32 8.070 2.420
2-ethyl-5-methylpyrazine +  2-
ethyl-, 6-methylpyrazine

64 30.190 5.770 0.199 0.398

1-methylpyrrole-2-
carboxyaldehyde

128 34.970 56.922 0.015 0.030

Odourant
FD bur Vietnam Burundi Vietnam (µg/L) Burundi (µg/L) Woody no_Woody Flowery no_flowery

3,4 dimethyl-2,5 furandione 4 8.780 8.120
1,2-Cyclopentanedione, 3-
methyl-

64 1.530 20.780

3-methylphenol 128 2.480 2.800

AV AV

Norm Resp HS- SPME
NBV

AV

Resp Norm Distillate
NBVNBV

Quantification SIDA
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Further comparisons were performed to investigate how each technique characterize the samples 
under study. Table 12 reports data on target compounds identified in this part of the project and 
compares the AEDA results with the normalized responses obtained in GCxGC-TOF, the 
quantitation data obtained by the SIDA and the normalized responses obtained by the HS-SPME-
GC-MS of the coffee powder. The aim of this comparison is not to compare the numbers in their 
absolute values but to compare the trends that each compound has over the different techniques. 
Data on SPME were obtained by averaging the normalized responses among the group of samples 
selected as minimum and maximum expression of these sensory notes. 
A good consistency between normalized data obtained from the HS-SPME and the direct injection 
of the SIDA distillate can be observed. This consistency suggests that even if the two analytical 
techniques are extremely different one another, the extracted overall information on the coffee 
samples volatile fractions is comparable. An example of this consistency is given by 2,3-
pentandione: according to chemometric elaboration, it has been pointed out as a compound 
overexpressed in “Flowery” coffees; by comparing the SPME normalized responses, it is clear that 
it is higher in Flowery compared to Woody samples. This behaviour is confirmed by the 
comparison of normalized responses on the distillate and, above all, by the quantitation values 
obtained by SIDA. 
 When AEDA results are included in this comparison the scenario become more complex. 
Most compounds show a consistent behaviour between AEDA results and those obtained with the 
other strategies, but some others not. Moreover, some compounds have FD factors not in 
compliance with analytical data.  
The reasons behind this behaviour might be related to a wrong identification: the identification 
procedure in molecular sensory science is complex because need to merge the smelling 
experience with the MS spectra and AEDA mandatorily required high operator training and a high 
number of replicates by GC-O to provide stable and robust results. This might be the case in 
particular for compounds like #10, 30, 21 whose identifications have not yet been confirmed by 
the Pure Reference Compound. 
 
4. CONCLUSIONS 

This part of the study aimed to compare sensometric and sensomic outcomes to “validate" the 
chemical fingerprints defined with the sensometric approach (section 2.2) Sensomic is nowadays 
considered the gold standard for food flavour investigations. 
 

Promising data has been obtained by the comparison of the two techniques; a significant number 
of the compounds identified with the sensomic approach were also part of the selection used to 
develop the chemometric models (NRC) (Table 10) while those compounds identified in sensomic 
but not directly selected in the sensometric fingerprinting were highly correlated to them. This 
consistency confirmed the suitability of data elaboration workflow used in defining the chemical 
fingerprinting able to be used in the building of the prediction models of the sensory note. 
Another common point between the two strategies is the high correlation between some 
compounds identified with the sensomic approach and those used in the prediction models (Table 
11). 
In addition, most of these compounds show a good consistency between AEDA and the trend in 
the HS-SPME-GC-MS profiles (table 12). On the other hand, a lot of work has still to be done in 
order to increase the reliability of data obtained at the DFA and to investigate if and why there are 
some inconsistencies 
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Despite it is the reference approach for the determination of the foods key aroma compounds, the 
application of the sensomic approach for sensory notes profiling is extremely complex and time 
consuming since it would be necessary to run a comparative AEDA not only on two samples with 
high and low note scores but on a pool of these samples able to better represent the samples 
variability  
In addition, this approach does not meet the need of developing an instrumental approach to 
predict samples sensory scores starting from chemical data. 
From this preliminary comparison the results obtained by the sensometric approach seemed not 
far from those that may be obtained with the molecular sensory science, but in order to become 
representative of the panel evaluation, the study should be carried out for all sensory attributes 
defining the coffee aroma in order to obtain the chemical signatures of the coffee notes.  
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1. INTRODUCTION 

Coffee flavour is unique; its characteristics and its declinations as reported on the packaging of 
several coffee brands is of high appeal for consumers. Flavour perception is a complex feeling 
given by the interaction between the aroma, perceived through the sense of smell (orthosanally 
and retronasally) and the taste, perceived at the level of the tongue.1 different classes of chemical 
compounds are responsible for these two feelings; the aroma is the result of the interaction of 
smell and volatile compounds with Odour Receptors (OR) while heavier and non-volatile 
compounds are related to the taste perception. 
The evaluation of the coffee flavour is a key step of the whole coffee production chain from the 
selection of the row material to the creation of new valuable blends.  
Although the scientific community has long studied since long time to overcome the contribution 
of the sensory panel their work is still indispensable2. The Specialty Coffee Association of America 
(SCAA) developed a standardized protocol for the coffee sensory analysis3 to evaluate the quality 
of the incoming beans to be used in specialty mono origin coffees or in blends. SCCA protocols are 
also known as “Brazilian method” and are internationally used to evaluate the coffee beans quality 
and to define the price before further treatments. Evaluation is done on light roasted coffee 
samples to a specific colour (55–60° Nh), after eight hours of stabilization. The coffee sensory 
properties are evaluated by sniffing the powder and then the brew obtained by filter method. In 
the following, coffee samples are tasted by spraying the brew in the month. This multistep 
protocol allows the panelists to evaluate different coffee attributes; some of them more linked to 
the aroma (sensory notes like flowery, fruity, woody, nutty and spicy) and other more related to 
the tasting experience (acidity and bitterness). The quality and intensity of each attribute are 
evaluated simultaneously by using a scale varying from 1 to 10. 
Several analytical approaches have been developed over the years to try to understand the real 
impact of the chemical composition on the food flavour profiles.  
Pioneers of this branch of analytical chemistry were Czerny and Grosch with their studies 4,5 that 
led to the definition of molecular sensory science given by Schieberle et al in 20116,7. 
This approach is undoubtedly effective to study aromatic food properties and affords to develop 
synthetic recombinant with very close sensory properties to those of the food matrix object of the 
study, but has some limitations, in particular when heavy components (related to the taste) are 
included in the overall food evaluation. 
Flavoromics is an alternative approach, introduced from 2008 by Reineccius et al.8, in which the 
metabolomics and, more in general, the -omics concepts are applied to the flavour and fragrance 
field. Flavoromics try to answer to some issues that were neglected by more conventional 
approaches such as the multimodal nature of flavour and the interaction between aroma and 
taste perceptions. This approach is less biased by the compounds selection and gives an overall 
vision of the secondary metabolome that can rule the sensory expression. 
Flavoromics is an analytical untargeted methodology that studied the relationship between the 
chemical composition of foods and their sensory impact using chemometric tools. Compared to 
conventional approaches, its novelty lies on two main aspects: i) all potential sensory active 
compounds are kept in consideration without focusing just on known key flavour compounds, and 
ii) this approach is data-driven and each compound is considered not as a function of its chemical 
classification but just according to the distribution of its analytical output through the samples 
under study.8  
This approach affords measuring more stimuli in an attempt to link analytical data to perception 
and potentially gives a better prediction of Flavour since it includes inputs from more chemical 
compounds as well as identifying new Flavour contributors. 
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At this stage, two analytical platforms combined with the sensory descriptive analysis, were 
developed and compared with the aim to simulate the main phases of the SCAA cupping protocol 
(smell and taste). The results of HS-SPME-GC-MS of the powder selected in previous study as the 
most satisfactory sampling technique for routine screening in terms of informative level, 
speediness and possibility of automation have been combined with the HPLC-UV/DAD analysis of 
the brews.  
The coffee brew has been prepared according to the SCAA protocol and non-volatiles chemical 
fingerprints were used in data fusion with those obtained from the HS-SPME-GC-MS and HPLC-
UV/DAD analyses and with the sensory descriptive results to evaluate the ability to describe the 
sensory quality of coffees. Aroma and taste evaluation aimed to understand how the different 
data sources are connected one another and their comparison would be useful, within its 
limitations, to understand if the instrumental data are of help to define the multimodal 
perception. 
 
2. MATERIALS AND METHODS 

2.1 Reagents and matrices 
Coffees samples, consisting of roasted coffee ground to suit a coffee-filter machine, were kindly 
supplied over a period of 12 months by Lavazza Spa (Turin, Italy). 155 coffee samples with 
distinctive sensory notes originating from different countries belonging the Coffea Arabica L. 
(Arabica) and Coffea canephora Pierre (Robusta) were analyzed. The roasting degree of each 
sample was carefully measured by ground bean light reflectance, with a single-beam Neuhaus 
Neotec Color Test II instrument (Genderkesee, Germany) at a wavelength of 900 nm on 25-30g of 
ground coffee. Roasting degree was set at 55°Nh, in order to be close to the international 
standardization protocol for cupping. Samples were roasted within 24 hours prior to cupping and 
left for at least 8 hours to stabilize.  
The coffee brew for cupping and analysis was prepared from 18g of coffee powder and 300mL of 
water, using a commercially available “Xlong” coffee filter machine. Two milliliters of brew are 
then filtered on a 0.2 μm 13 mm nylon membrane syringe filters (Agilent, Little Falls, DE, USA) and 
20 μL directly injected. 
 
2.2 Descriptive sensory analysis of coffee samples 
The samples have been submitted to sensory evaluation through quantitative descriptive analysis 
by a panel of trained coffee experts following the SCAA protocol3.  
The protocol includes three tasting steps: i) evaluation of the aroma by sniffing the dry ground 
coffee, ii) evaluation of the aroma by sniffing the brew three minutes after its preparation and 
stirring, and iii) evaluation of the Flavour after 8-10 minutes. Attributes such as aftertaste, acidity, 
body, and balance are evaluated by tasting the brew, spraying it into the mouth to maximize retro-
nasal vapors. Cup quality was assessed for several flavour attributes such as: Acid, Bitter, Flowery, 
Fruity, Spicy, Nutty and Woody. The intensities of each attribute have been evaluated 
simultaneously, upon a scale from 0 to 10.  
 
2.3 Volatile fraction analysis 
The volatile fraction of the samples responsible for the aroma has been analyzed by sampling the 
headspace of the dry grounded coffee powder by Solid Phase Microextraction (SPME) followed by 
GC-MS analysis. Sampling conditions, instrumental set-up and chemicals identification are 
reported in section 2.2. 
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2.4 Non-volatile Fraction analysis 
Data on the non-volatile fraction have been acquired from a HPLC-UV/DAD Agilent 1200 system 
provided with a Spectra System UV Diode Array Detector 1100 series (Agilent, Little Falls, DE, 
USA). Data acquisition and data handling were performed with Chemstation LC 3D system 
software Rev 3.03 01-SR1 (Agilent, Little Falls, USA). HPLC column was a Platinum EPS C18 
(250×4.6 mm, 80A, 4 μm) (Alltech, Deerfield, USA).  
Operative conditions: injection volume, 20 μL; detection wavelength, 325 nm for cinnamic and 
chlorogenic acids (monomers and dimers derivatives) and 276 nm for caffeine and trigonelline; 
mobile phase, ACN/H2O–ACN 0.1% formic acid; flow rate, 1.0 mL/min; mobile phase program: 
from 85% H2O (7 min) to 45% H2O (20 min) to 100% ACN hold for 2 min. Before re-injection, the 
HPLC system was stabilized for at least 5 min.  

Compounds identification have been carried out by injecting the brew (5 μl) in a Shimadzu 
Nexera X2 system equipped with a photodiode detector SPD-M20A in series to a triple quadrupole 
Shimadzu LCMS-8040 system provided with electrospray ionization (ESI) source (Shimadzu, 
Dusseldorf Germany).  
Samples were analyzed on an Ascentis Express C18 column (15 cm x 2.1 mm, 2.7μm, Supelco, 
Bellefonte, USA) using water/formic acid (999:1, v/v) and acetonitrile/formic acid (999:1, v/v) as 
mobile phases A and B, respectively. The flow rate was 0.4 mL/min and the column temperature 
was maintained at 30°C. The gradient program was as follows: 15% B for 7 min, 15-55% B in 3 min, 
55-100% B in 1.5 min, 100% B for 1 min. Total pre-running and post-running time was 23 min. MS 
operative conditions were as follows: heat block temperature: 200°C; desolvation line (DL) 
temperature: 250°C; nebulizer gas flow rate: 3 L/min drying gas flow rate: 15 L/min. Mass spectra 
were acquired both in positive and in negative full-scan mode over the range 100-1000 m/z, event 
time 0.5 sec. Product Ion Scan mode (collision energy: - 35.0 V for ESI+ and 35.0 V for ESI-, event 
time: 0.2 sec) was applied to compounds for which a correspondence between the 
pseudomolecular ions [M+H]+ in ESI+ and [M-H]- in ESI- had been confirmed. Multiple Reaction 
Monitoring acquisition (collision energy: - 35.0 V for ESI+ and 35.0 V for ESI-, dwell time: 20) was 
carried out on specific product ions derived from precursor ions fragmentation.  
Chemicals: 

HPLC-grade acetonitrile (LC-MS grade), formic acid (>98% purity), de-ionized water (18.2 MΩ cm) 
was obtained from a Milli-Q purification system (Millipore, Bedford, MA, USA).  
Cryptochlorogenic acid, 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid were from Phytolab 
(Vestenbergsgreuth, Germany). Chlorogenic acid, Neochlorogenic Acid, 3,4-dicaffeoylquinic acid, 
Trigonellin and Caffein were from Sigma Aldrich (Bellefonte, USA). 
 
2.5 Data Processing 
Data (Sensory, GC-MS and HPLC) were explored by PCA followed by Multiple Factorial Analysis 
(MFA). The latter chemometric tool allows to compare and to investigate the relationship between 
different data matrices. 
 
Features selection for each analytical platform related to the sensory note was made by Partial 
Least Square-Discriminant Analysis (PLS-DA) between samples able to minimize and maximize the 
sensory note expression. This procedure has been used to define features used afterword, 
singularly (Aroma or Taste) or comprehensively (“data fused”, i.e. both data sources together), to 
develop PLS prediction models of the sensory scores. All data elaborations have been performed 
on XLSTAT (version 2015.5.01.23.164) copyright Addinsoft 1999-2015. 
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3. RESULTS AND DISCUSSION. 

First data exploration has been carried out by a Principal Component Analysis (PCA) on both 
Aroma and Taste data matrices in which each sample (observation) is described by the pool of 
detected features (variables).  
In this elaboration, Aroma and Taste data have been kept separate in order to see the samples 
behavior within the single approach and therefore the role of the chemical information encrypted 
in each analytical platform in describing the samples. 
 

 
 

Figure 1 Reports the scores plots obtained from the PCA of Taste (A) and Aroma (B) data respectively 

 
Figure 1 shows the samples distribution on the two PCs able to cover more than the 50% of the 
total variance of the data matrix (53% in the case of Taste (fig.1 A) and 65% for Aroma) (fig.1B)). In 
both diagrams, a good separation between Arabica (Blue) and Robusta (Green) samples can be 
observed. This consistency of the two different data sets suggests that volatile and non-volatile 
fractions give a similar contribution, from a chemical point of view, to the samples chemical 
characterization.  
 
Multiple Factor Analysis (MFA) has then been applied to compare the three different data 
matrices (GC-MS and HPLC-UV/DAD fingerprints, and descriptive sensory analysis).  
For sensory evaluation all the seven sensory notes (Acid, Bitter, Flowery, Fruity, Nutty, Woody and 
Spicy) have been considered. 
MFA proceeds in two steps: First it computes a PCA of each data table and ‘normalizes’ each data 
table by dividing all its elements by the first singular value obtained from its PCA. Second, all the 
normalized data tables are aggregated into a grand data table that is analyzed via a (non-
normalized) PCA that gives a set of factor scores for the observations and loadings for the 
variables9. Results, expressed as RV coefficients, indicate to what extent the tables/variables 
distribution are related two by two; The more the variable are related one another, the higher is 
the RV coefficient (variation range 0-1) (Table 1) 
 
Table 1 MFA RV coefficients 

 Sensory Taste Aroma AFM 
Sensory 1.0000 0.4708 0.5923 0.8229 
Taste 0.4708 1.0000 0.5066 0.7987 
Aroma 0.5923 0.5066 1.0000 0.8557 

Specie-A

Specie-R

-10 

-5 

0

5

10

-15 -10 -5 0 5 10 15 20

F2
	(1
6,
24
	%
)

F1	(37,54	%)

Observations	(axis	F1	and	F2:	53,78	%)

Specie-A

Specie-R

-10 

-5 

0

5

10

15

20

-25 -20 -15 -10 -5 0 5 10 15 20 25

F2
	(2
6,
88
	%
)

F1	(41,15	%)

Observations	(axis	F1	and	F2:	68,03	%)A B 



Multiple analytical platforms for coffee flavour investigations 
 

158 
 

AFM 0.8229 0.7987 0.8557 1.0000 
In this case the mutual correlation between Aroma and Taste was 0.5066, between Sensory data 
and Taste was 0.4708 and, Sensory data and Aroma was 0.5923 (Table 1).  
These data suggest a certain relationship between the different data matrices even if the 
correlation is not that strong. This elaboration confirms what already reported in the literature, 
i.e. i) the Aroma has an important role in the definition of the sensory profile and ii) the highest 
correlation coefficient is between aroma and sensory data. 
The reported correlation values (AFM values) suggest that the multicollinearity between the 
information provided by the two approaches is weak; this is important because means that they 
both contribute to the definition of the overall coffee flavour and that any aspect can totally be 
neglected. 
 

Next elaborations have been performed to investigate how Aroma and Taste data fusion behaves 
in the modelling of the six different sensory notes under study compared to the Aroma and Taste 
data considered singularly. 
The aims of these elaborations were: 

- to evaluate the impact of HPLC data of the model performance when merged with HS-
SPME-GC-MS data 

- to evaluate the predictive power of the non-volatile fraction and its suitability in the 
development of sensory score prediction models compared to the volatile fraction 

 
Typically, bitter and acid notes are perceived as taste attributes, the bitter note was therefore 
studied to see if with the non-volatile fraction was correctly described in terms of score prediction 
compared to volatiles fraction, and if the data fusion afforded more powerful or better 
information in its description.  
 
3.1 Bitter flavour evaluation 
Data sets (GC and HPLC) have been initially processed separately and then fused into a single one. 
For both analytical platforms the features highly related with the expression of the Bitter note 
have been selected by Partial Least Square-Discriminant Analysis (PLS-DA). 
The Variable Impact on Projections (VIP) values have been used as selection parameter; the cut-off 
has been chosen by plotting all VIPs on a histogram and looking at the point at which the VIP 
values dropped sharply.  
Variable importance in projection (VIP) coefficients reflect the relative importance of each X 
variable in prediction or classification models. 
The prediction model has been developed by applying a Partial Least Square regression algorithm 
on the selection of Bitter-related features 
 
155 samples were considered to build the regression model: among them 20 have been randomly 
chosen and used as a validation set, while 30 where excluded from the training set and used as an 
external test set. 
The models (HS-SPME-GC-MS, HPLC-UV/DAD and data fusion) have been evaluated and compared 
on the basis of their model quality index (Q2), their Coefficient of Determination (R2) and the Root 
Mean Squared Error Cross-Validation (RMSECV) and Prediction (RMSEP).  
These parameters have been described in section 1.3. 
Q2 and R2 values ranges between 0 and 1 and the closer they are to 1 the better it is, while RMSEs 
(CV and P) operates on the opposite, since they are expressions of an error the lower they are, the 
better it is. 
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Table 2 Bitter PLS model’s parameters 

Bitter Aroma Taste Aroma +Taste 

n° variables 22 14 39 
Q2 0.742 0.666 0.692 
R2 0.892 0.810 0.888 

RMSECV 0.579 0.659 0.575 
RMSEP 1.073 0.929 1.120 

 
The observation of the values reported in table 2 unexpectedly suggests a similar behavior of the 
data from Aroma and from the fused matrix (Aroma +Taste) in the description of the bitter note. 
The volatile fraction (evaluated by HS-SPME-GC-MS (Aroma)) shows better performance in the 
chemical description of the expression of the bitter note, the with highest values of both Q2 and 
coefficient of determination (R2).  
On the other hand, the non-volatile fraction, shows a lower ability in the description of the bitter 
note. Although this analysis applies target wavelengths characteristic of bitter-related chemicals, 
(i.e. Caffeine, Trigonelline and Chlorogenic Acid derivatives), the regression parameters are not so 
good.  
This can probably be due to other inferences on the description of this note that are not 
detectable within these wavelengths. The volatile fraction provides useful information to 
characterize the evolution of this note within the pool of samples. 
 

The investigation of Bitter-related aroma compounds afford the identification of several pyrazines: 
(2-isopropenylpyrazine, 2-n-propyl pyrazine, 1-methylethenylpyrazine, 2,3-dimethylpyrazine, 2-
methyl-6-(1-propenyl)pyrazine, 2,3-diethyl-5-methylpyrazine§, 2-ethyl-3,5-dimethylpyrazine§), 
guaiacoles (4-ethylguaiacol§, guaiacol§, 4-vinylguaiacol§), phenethyl alcohol, acetic acid, furfural, 1-
hydroxy-2-butanone, 1H-pyrrole-2-carboxaldehyde, 2-furanmethanethiol§, furfurylmethylsulfide, 
2,3-pentandione§ and 2,3-butandione§. 
Within this selection many compounds (§) are in the list of the coffee key-odorants defined by 
Blank et al. through a Molecular Sensory Science approach10. It’s interesting that these 
compounds are described by earthy, roasty, burn and phenolic notes and none of them is directly 
related to Bitterness. The close relationship highlighted by the PLS algorithm between these 
compounds and the evolution of the sensory note open new interesting perspectives in the study 
of food flavour that looks beyond the conventional approaches. 
 

The same elaboration has been made with the non-volatile fraction; the model performance 
reported in table 2, as expected, confirms the close relationship between the evolution of the 
bitter note and the pool of compounds analyzed in HPLC. Bitter related features on the 
chromatographic fingerprints were identified (or tentatively identified) through a retrospective 
analysis by HPLC-DAD-MS (figure 2). 
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Figure 2 HPLC coffee extract fingerprint; grey bars show features related to the bitter note and subjected to a deep 
investigation by HPLC-DAD-MS. 

 
Some of the main components were identified by comparing their retention times, UV and MS 
spectra to those of authentic standards while other components were tentatively identified on the 
basis of their UV and mass spectral information, compared to those reported in the literature11,12. 
(table 3) MS analysis were run by monitoring the multiple reaction (MRM) transitions of precursor 
ions (m/z)). 
Three different feruloylquinic acid (FQA) isomers, 3-caffeoylquinic acid (CQA) and 5-CQA§, n=2 
caffeoylquinic lactone (CQL) isomers§, 3,4 and 3,5 diCQA, caffeine§ and trigonelline§ have been 
identified among the bitter related features. 
Similarly to those in the volatile fraction, also some of these non-volatile compounds (§) have 
been previously associated to the bitter note by studied of molecular sensory science performed 
by Hofmann and his group 13–15. 
 

The potential gained in explanatory and predictive power by combining chemical information (i.e., 
relative to volatiles and non-volatiles) collected from different instruments on the same set of 
samples has also been investigated. Since the flavour perception derives from the interaction 
between aroma and taste, the combination of the information provided by different fractions was 
expected to improve the predictive model performance.  
The data fusion model’s performance (table 2) partially disregarded this expectations since the 
combined model show performance in line with those registered with the single Aroma and Taste 
models. Data fusion did not improve either the error committed on the cross-validation set 
(RMSECV), or the prediction of the external test set (RMSEP). 



 

 

 
Table 3 List of identified and putatively-identified compounds in the coffee brews. Underlined compounds have been identified with the pure standard while the hypothesized 
identification have been done comparing compound features with those present in the literature 11,12. Each compound is quoted through its relative retention time, UV spectrum, 
pseudomolecular ions and molecular weight fragments obtained by Product Ion Scan mode (PIS).  

 
Compound Name RT (min) λmax (nm) Mol. weight (g/mol) [M–H]+ m/z [M–H]− m/z MS2 + m/z MS2 - m/z 

Trigonellin 0.769 263 137 138    
5-O-Caffeoylquinic acid 1.122 323/233 354 355 353   
3-O-Caffeoylquinic acid 1.403 322/239 354 355 353   
4-O-Caffeoylquinic acid 1.474 324/235 354 355 353   

Caffein 1.588 270 194 195    
3.4 dicaffeoylquinic acid 8.136 324 516 517 515   
3.5 dicaffeoylquinic acid 8.973 322/299 516 517 515   
4.5 dicaffeoylquinic acid 9.637 325 516 517 515   

        
Caffeoylquinic acid lactone 1.971 325/296 336 337 335 163 161/133 
Caffeoylquinic acid lactone 2.894 326 336 337 335 163/117 161/133 
Caffeoylquinic acid lactone 3.188 326 336 337 335 163/117 161/133 
Caffeoylquinic acid lactone 3.475 326 336 337 335 163/117 161/133 

        
feruloylquinic acid 1.588 323 368 369 367 177/149/145/117 134/149/191 
feruloylquinic acid 2.14 310 368 369 367 177/149/145/117 134/149/191 

coumaroylquinic acid 2.14 310 338 339 337 147/119 173/119 
feruloylquinic acid 2.549 323 368 369 367 177/149/145/117 134/149/191 
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3.2 Flavoromic investigation of all considered sensory notes 
The same data elaboration workflow has been applied to investigate the ability of the different 
data sources to describe the other flavour attributes with the aim to investigate if the non-volatile 
fraction could have a role in their description.  
Each sensory note described by the panel has been modelled using volatile, non-volatile and data 
fusion fingerprints; Table 4 reports a summary of the model performance. 
 
Table 4 Summary of the PLS models' performance for the six investigated notes.  

PLS model performance    
Acid Aroma Taste Aroma + Taste 

n° variables 22 10 26 
Q2 0.723 0.450 0.703 
R2 0.829 0.636 0.825 

RMSECV 0.594 0.854 0.605 
RMSEP 0.898 1.069 0.875 

    Flowery Aroma Taste Aroma + Taste 
n° variables 20 14 27 

Q2 0.223 0.199 0.099 
R2 0.585 0.498 0.597 

RMSECV 0.806 1.042 0.847 
RMSEP 0.972 1.067 1.020 

    Fruity Aroma Taste Aroma + Taste 
n° variables 19 16 39 

Q2 0.158 0.184 0.033 
R2 0.607 0.508 0.786 

RMSECV 0.814 0.922 0.619 
RMSEP 0.615 0.610 0.876 

    Spicy Aroma Taste Aroma + Taste 
n° variables 22 16 32 

Q2 0.320 0.331 0.458 
R2 0.709 0.720 0.823 

RMSECV 1.063 1.051 0.821 
RMSEP 1.066 0.971 1.217 

    Woody Aroma Taste Aroma + Taste 
n° variables 23 9 37 

Q2 0.708 0.472 0.706 
R2 0.879 0.714 0.885 

RMSECV 0.798 1.228 0.782 
RMSEP 0.920 0.948 1.129 

 
For a clearer comparison, performance values of Taste models have been reported in the 
histogram below (figure 3). 
From the Q2 values (green bars); it is clear that the non-volatile fraction does not impact equally 
on the five sensory notes: Acid, Spicy and Woody notes show better performance compared to 
Flowery and Fruity notes. This trend is almost confirmed by the R2 that are higher in Acid, Spicy 
and Woody notes. 
The RMSECV values behave in a slightly different way: these values are in compliance with the 
previous observations on Bitter in the case of Acid note while the trend is not that clear for the 
other notes. A lower impact of the non-volatile fraction on Fruity and Flowery notes was expected 
since these notes are considered typical aroma attributes. 
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Figure 3 summary of PLS model performances on HPLC data  

 
A better comparison between the performance of the models built up with Aroma and Taste data 
singularly or by combining them together (data fusion) is shown in the spider diagrams reported in 
Figure 4. 
 

The first comparison is between Taste and Aroma models: most of the notes (with the exception 
of the Spicy note) show Aroma model performance (green lines) better than Taste ones. This 
observation suggests a better agreement with the HS-SPME-GC-MS data on the variation of the 
sensory scores in the samples set. The Spicy note partially agrees with the other notes. Aroma and 
Taste model performance are approximately superimposable. 
 

From the performance from merging Aroma and Taste data, three different scenarios can be 
observed: 

- Acid and Woody notes data fusion models (yellow lines) show an acceptable performance 
(Q2 around 0.7, R2>0.8 and a RMSECV lower than 1). Their overlapping with those obtained 
with PLS models only with Aroma data suggests that the inclusion of the Taste data 
provides a negligible improvement in the Aroma predictive models 

- the second scenario involves Flowery and Fruity notes; the performance on the combined 
models (yellow lines) are lower than those obtained only with Aroma data. 
As expected, this worsening suggests that the volatile fraction is the best data source to 
investigate the expression of these sensory notes; the inclusion of Taste data not only does 
not provide any improvement (since its performance are lower (Figure 3)), but also it 
increases the noise around the information. 

- The third scenario concerns the Spicy note: the performance achieved by the combined 
model are slightly better than those obtained with the models built only with Aroma and 
Taste data alone. The most significant improvements can be observed in the values of Q2 
and RMSECV (Table 3). 

The performance improvement obtained combining Taste and Aroma compounds is supported by 
the fact that some key spicy volatile compounds (mainly phenolic compounds like Guaiacoles) 
originated from the thermal degradation of chlorogenic acids (exactly those observed in HPLC 
analyses)16. 
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Figure 4 Spider diagrams reporting the models' performance registered in the regression models of each sensory note.  
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4. CONCLUSIONS 

Coffee samples were analyzed according two different strategies to investigate two different 
flavour characteristics of this complex matrix. The volatile fraction was analyzed through HS-
SPME-GC-MS of the roasted powder while the non-volatile fraction with HPLC-UV/DAD of the 
coffee brew prepared following the SCAA cupping protocol. The chemical information obtained 
from the analyses were related to those obtained by the descriptive sensory analysis performed 
by a trained panel.  
 

One major barrier to accurate predictions of flavour is given by the multi-dimensionality of the 
chemical stimuli involved in Flavour perception. The Flavoromic approach, considering many 
compounds in the sensory notes modelling, takes care of possible correlations within and across 
the stimuli, generally not accounted by traditional research methods. 
 

Data, compared by chemometric tools, support this hypothesis; the samples distribution after a 
PCA elaboration (Fig 1) confirmed that the sample characteristics were kept even though the 
analytical approach was very different. The samples distribution was comparable between aroma 
and taste analyses.  
 

The MFA analysis confirmed a certain agreement between the three data matrices but the 
relatively low correlation values suggest that the information provided by the two analytical 
techniques are not redundant, and therefore they both contribute to the flavour definition, 
represented by the sensory matrix. 
 

The contribution of both volatile and non-volatile fractions (as such and in combination) to the 
sensory scores prediction models were also evaluated. 
The model performance suggests a different impact of the non-volatile fraction on the chemical 
fingerprints of the six sensory notes. As expected Fruity and Flowery notes are the less affected by 
the composition of the non-volatile fraction. Conversely, for Bitter, Acid and Woody notes, the 
non-volatile fraction gives a contribution to the samples characterization, although the 
improvement it produces on the performance of the regression model in the sensory scores 
prediction it is rather negligible. 
 

Though MFA suggests a certain orthogonality between Aroma and Taste data (Table1), the PLS 
model performance highlights the key role of the volatile fraction, and therefore of the Aroma, in 
the sample sensory characterization. The performance of the PLS models built up from HS-SPME-
GC-MS data (Table 2 and 4) are comparable to those obtained from the data fusion. Some authors 
report1 that the flavour perception in all its aspects is mostly linked to the aroma composition and 
impact17,1,18. They assert, that, since the taste experience is mediated by a limited number of 
receptors and can only discriminate five different perceptions (acid, bitter, sweet, salty and 
umami), it has to be considered as a minor sense, whereas the sense of smell, being mediated by a 
higher number of different receptors, is a major sense. These limitations of the sense of taste are 
confirmed by the poor (or negligible) performance improvement registered in the data fusion 
models. 
 

These observations together with the good performance obtained when the aroma data were 
used to define Acid and Bitter notes (considered as “typical taste notes”) chemical fingerprints, 
make it possible to hypothesize that the aroma analysis by HS-SPME-GC-MS provides an accurate 
and reliable representation of the food (coffee in our case) flavour, as it is perceived by a trained 
panel during a validated and standardized descriptive sensory analysis. 
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Last but not least, the possibility of automation of the different analytical strategies make the 
foodomic approach applied and discussed in this thesis suitable as a valid strategy transferable to 
routine as a complement to the conventional sensory analysis.   
The HPLC-UV/DAD analysis implies the preparation of the extracts and their filtration before the 
injection in the analytical platform while HS-SPME-GC-MS only require the weighting of the 
samples and then all other steps of the analytical procedure is fully automatic. The possibility of 
automation makes this second analytical system more suitable to be transferred to routine and 
quality control. 
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1. INTRODUCTION 

Deal with coffee is not as simple as with other agricultural commodities; even when considering 
the same species and post-harvesting treatment, coffees from different origins present peculiar 
sensory profiles that need to be qualified to exploit properly their flavour potentialities. 
This product unicity lies on the sensory profiles typical of each coffee that are the final results of 
many factors like species, treatment, origin, seasonality and so on. 
Roasters thereby constantly cup and grade the coffees they buy to determine the best way to use 
them in their blends, or to discover which coffees are of sufficiently high quality to be sold as 
“single origin” coffees.1 
Due to its complexity coffee cupping and grading is performed by highly trained panellists able to 
perceive and discriminate even minor differences among the samples.  
Despite its importance, the conventional coffee cupping presents two main drawbacks: it is 
relatively subjective, and it is time consuming. 
The first drawback is related to the high complexity of coffee flavour perception that is related to 
many factors as previous experiences, memory and unconscious cognitive perceptions and not 
only to the “raw” sensory stimulation (a better discussion of flavour perception can be found in 
session 1.1). These limitations can be overcome with a large number of professional panellists that 
replicate sensory analysis several times to make robust the results. All these requirements support 
the second drawback of the panel sensory analysis: it is time consuming and not always in 
compliance with the industrial needs in term of number of samples screened. 
 

The scientific community made a lot of efforts to develop analytical tools to complement and 
partially replace the human sensory profiling using both separative2,3 and non-separative4 
techniques coupled to a statistical and multivariate data elaboration. Chemometric data 
treatment opened new perspectives for coffee quality control affording to consider the overall 
chemical profile instead of focusing only on well-established targets. This approach found 
application for coffee quality control not only in the sensory profiling but also in the investigation 
of coffee adulterations and off-notes5,6. 
Recent studies show a good potential in predicting the sensory scores of coffee samples although 
their main limit  rely on the low number of samples considered and in their variability2,4,7. The 
sensory profiles of coffee is extremely variable; in this perspective, the ambitious aim of this PhD is 
to characterize chemically, detect and model the variation (in terms of score) of seven different 
sensory notes within a sample set able representative of this huge variability. 
 

In a previous part of the project (section 2.2) the relationship between chemical composition and 
sensory impact of different coffee samples has been defined and modelled by a sensometric 
approach with promising results. The aim of this second step is to strengthen the prediction 
models and evaluate their flexibility by adding samples covering also different seasonality and new 
crops and origins and then testing the models previously developed with a pool of new test 
samples. Since data elaboration is crucial in this respect8,9 each prediction model previously 
developed has been optimized and in some cases redefined also using different algorithms that 
better fit with the data distribution10. 
Last but not least, a multi-note prediction model has been developed where all sensory notes are 
modelled at the same time, as a panel does at industrial level. Despite the compromises, the big 
advantage of this single model lies on the possibility to obtain a comprehensive evaluation of the 
coffee quality in cup with just a single elaboration. This elaboration and its optimization, is 
important to evaluate if the sensometric approach can be considered complementary to the panel 
and if these data can be useful to support the conventional sensory analysis. 
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Although the defined fingerprints and the related prediction models make statistical inference on 
the test set with an acceptable degree of confidence, these preliminary results need to be 
strengthened increasing the number of samples or refining the sensory definition of some 
particular notes. 
To develop an instrumental tool able to predict the coffee sensory profiles comparable to those 
assigned by the panel is complex and challenging; many factors contribute to the complexity as 
the changes of the coffee over time, the panel alignment and stability, the number of samples that 
can be analysed with both the techniques. The replacement of the panel contribution with an 
instrumental data is out of the purposes of this project since the human contribution to the 
description of a comfort food such as coffee is yet fundamental. However, the results achieved 
suggest that with a fine tuning from both the sensory and analytical sides, the sensometric 
approach may be a valid tool for routine screenings. 
 
2. MATERIALS AND METHODS 

2.1 Samples Description 
A total of 157 coffee samples were collected, roasted, and submitted to chemical and descriptive 
sensory analyses. More details on samples chemical and sensory analyses are reported in session 
2.2 (table 1APX). 
 

The investigated pool of samples includes different species, origins and treatments and was 
intended to represent a significant although partial variability within the coffees a company 
manages. 
The regression models were built up for six sensory notes (Acid, Bitter, Woody, Flowery, Fruity and 
Spicy). The mean values of the scores indicated by the cuppers were used as the dependent 
variables (y) and the analytical responses of the pool of compounds detected and identified over a 
set of 364 chromatograms were used as independent variables (x matrix). 
The calibration sets consisted of 157 selected samples (314 chromatograms) while the remaining 
50samples (100 chromatograms) have been used as an external test set. 
The external test set includes not only samples of the same origins of those used in the calibration 
set but also samples of completely different origins. All samples have been harvested in the year 
after the training set. This set has been designed to test the models in a “real” practical condition 
where they are supposed to work independently from origin and harvesting year.  
Within the training set 20 randomly-selected samples have been used as a cross-validation set.  
The variable selection for the construction of the models was carried out by PLS-DA as previously 
described in session 2.2. 
 
2.2 Models’ evaluation parameters 
The predictive models developed on the training set have been evaluated on the test set 
considering the following parameters11: 

- Q2: a predictive quality index (cross-validated R2),  
- R2: Determination Coefficient of the Model;  
- RMSECV; Root Mean Squared Error in Cross validation 
- RMSEP: Root Mean Squared Error in Prediction  

All these parameters have been discussed at the end of section 1.3. 
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3. RESULTS AND DISCUSSION 

3.1 Sensory notes modelled through Partial Least Square regression (PLS). 
All sensory notes have been modelled through a PLS algorithm; the evolution of each sensory note 
over the sample sets has been related a different number of variables (Table 1) selected after a 
PLS-DA elaboration reported in the session 2.2. 
 
Table 1 PLS models’ parameters 

Sensory note n° variables Q2 R2 RMSECV RMSEP 

Acid 31 0.680 0.802 0.668 0.720 
Bitter 35 0.649 0.656 1.013 0.976 

Woody 37 0.750 0.849 0.893 1.260 

Flowery 37 0.429 0.444 0.920 0.760 
Fruity 23 0.170 0.635 0.900 2.280 

Spicy 20 0.178 0.322 1.721 1.314 

 
According to Table 1, Acid, Bitter, Woody, and to a less extend Flowery reported PLS prediction 
models show a good performance. The R2 values indicate that nearly the 70% of the variance in 
the measured scores is explained by the models (i.e. the chemical fingerprint used to describe the 
model) a quite good result in consideration of the high variability of the training set. Moreover, 
with the exception of the Flowery note model, all these sensory notes show high Q2 values, 
meaning a good model stability and a good predictive capability. The goodness of the predictive 
capability is confirmed by the acceptable values of the root mean squared errors (RMSECV and 
RMSEP) reported for these notes. The limit of acceptability for predicted values has been fixed by 
the sensory panel, in ±1 score points. All RMSECV and RMSEP values are within or close to this 
interval. 
Fruity and Spicy notes models do not show satisfying performance although some parameters are 
within the limits of acceptability (i.e. some R2 values). The main issues are present in the Q2 values 
responsible of the predictive quality of the model. This low predictive quality is confirmed by the 
high values registered for RMSECV and RMSEP. 
The low model stability registered for Flowery, Fruity and Spicy notes might be linked to the 
unbalanced distribution of the samples within the training set; the number of samples with a low 
score for these notes is much higher than that with high score. This unbalanced sample 
distribution makes the use of PLS algorithm challenging in the modelling of these sensory notes 
requiring more relaxed algorithms able to better follow the evolution of the data matrix. 
 
3.2 Improvement of the critical note fingerprints. 
By definition the PLS models finds a linear regression between the predicted and the observed 
variables by the creation of new variables (similar to PCA) able to explain the variability of the 
original data matrix. The main PLS limit observed is that it lies on a linear regression not always 
followed by experimental data. 
Non-parametric regression tools afford to summarize a relationship between dependent (sensory 
scores) and independent variables (Note Related Compounds) with few assumptions about the 
characteristics of the relationship (e.g. a linear or exponential relationship). In other words, non-
parametric regression defines the relationship on the basis of the data distribution in the space 
and not from a specific trend. 
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The non-parametric regression algorithm more frequently used is “LOWESS” (LOcally WEighted 
regression and Smoothing Scatter plots) curve12. The acronym gives the idea of a locally weighted 
regression curve whose values, at a specific location along the x-axis, is determined by the 
neighbour points. The method thereby does not require assumptions about the form of the 
relationship and affords to discover the trend with the data itself. 
Note fingerprints were elaborated with the LOWESS regression; the modelling of Flowery, Fruity 
and Spicy significantly improved. Table 2 reports the performances obtained with the LOWESS 
modelling. 
 
Table 2 Models' performance improved with the Non-parametric algorithm 

Sensory note n° variables Q2 R2 RMSECV RMSEP 
Flowery 37 0.726 0.656 0.881 1.552 
Fruity 23 0.678 0.622 0.771 1.541 
Spicy 20 0.891 0.746 1.040 1.371 

 
The increasing of R2 values indicates that the models provide a better explanation of the data 
matrix variance. These better fitting values are also reflected in the reduction of the Root Mean 
Squared Error (RMSECV) in the model calibration and, more important, in a reduction of the mean 
error in the prediction on the test set (RMSEP). 
Since the Non-Parametric regression algorithm does not need to fit a pre-existing curve, the 
homogenous sample distribution between high and low scores is less important in the modelling 
procedure. This flexibility allowed to improve significantly the model representativity in particular 
for the Fruity and the Spicy notes. 
The Flowery note presents a little different behaviour: the non-Parametric model show better 
performance in calibration (Q2, R2 and RMSECV) but not in prediction; the RMSEP is higher than 
that calculated with PLS algorithm. This unexpected behaviour may be due to the test set, that, for 
this particular note, is not perfectly representative of the pool of the training set. 
 
3.3 The Nutty Situation 
Data collected, and the approach adopted for all other notes was unsuccessful in defining the 
chemical fingerprint of the Nutty note. Several algorithms have been tested to fit the evolution of 
the scores on the chemical data but none of them gave acceptable results in terms of performance 
and predictive capability, proving that the Nutty note issues are upstream the modelling phase. 
The list of compounds selected through the PLS-DA were not representative of a high/low 
expression of Nutty note. Since this compound selection strategy was successful for all other 
notes, the issue may lie on the sensory descriptive analysis of Nutty; it is well known that flavour is 
a cognitive construct13,14 not only linked to the pure sensation but also on the previous experience 
of the panellist(s). For Nutty this cognitive portion of the perception may have a more important 
role in the scores assignment compared to the other notes. This aspect would require an 
important work on the panel training to focus their judgment mainly on the specific Nutty 
description and not on the overall Nutty perception  
Similar but less accentuated up-stream issues may be at the basis of the high prediction errors and 
the general worse performance of the Fruity, Flowery and Spicy notes prediction models. 
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3.4 Observations on the prediction of the external test set 
This section reports a critical evaluation of the test-sample sensory scores predicted by the 
models. Each sensory note has been predicted using the optimized model. 
 
Table 3 Test set prediction summary 

 Acid Bitter Flowery Fruity Woody Spicy 

Algorithm PLS NP-LOWESS PLS NP-LOWESS PLS NP-LOWESS 
% correctly predicted 
samples 

84% 70% 74% 72% 76% 72% 

 
The good performance showed in the previous section have been confirmed also on the fully 
external test-set. All notes show a mean error in prediction within the acceptability limit and 
about 70% of the test samples have been successfully predicted. The best model performance has 
been with the Acid note, and the worse predictive capability with the Fruity note (Table 3). 
Though the overall results are positive, the score points predicted outside the limits of 
acceptability (±1) and the reasons of these failures have to be understood and, where possible, 
the results improved.  
Two general considerations can be done for these out of range predicted samples: 

- the predicted scores out of the acceptability range were not far from it; all the test set has 
been predicted within the ±2 score points interval, meaning that the model needs a better 
accuracy that can be obtained by a more balance and increased number of samples. 

- in most inaccurate predictions, the scores of the panel for the test samples were not 
aligned to those measured for those of the training set. This observation has been done by 
comparing the scores of the training samples considered as replicates (i.e. belonging to the 
same origin and/or sub-origin) to those of the test sets. Since, these samples can 
chemically be considered as replicates (the variability in terms of RSD% is within the 
instrumental limits) the reason(s) of these discrepancies may be due to: i) the samples are 
different and the year of harvesting impact massively on the expression of specific sensory 
notes, ii) the panel need to be re-aligned to reduce their variability with samples that are 
replicates. 

- in some cases, samples used to train the models show a great variability (RSD%= 37 and 
47%) of the scores of the panel. This variability compared to an instrumental variability of 
about 20%, made the note modelling more complex. 

A good example to support these observation is provided by Table 4 reporting the samples in 
which the Woody note was not predicted correctly. The same observations can be extended to the 
other sensory notes (data not shown). 
 
  



Development of a practical tool to define coffee sensory quality in routine controls 
 

177 
 

Table 4 Woody critical test samples predictions. Column description: Code = Sample Identification number; 
Identification: Origin and sub-origin identification code; Meas: Sensory score measured by the panel; Mean Meas: 
mean of the scores the panel assigned to each origin; Pred: Sensory scores predicted by the models; Err: Error in 
prediction referred to the single sample measurement (in red when >1). Samples in Blue have been used in the 
training set while samples in yellow are in the test samples. 

Code Identification Meas Mean Meas Pred Err 
80 JAVA LB 2.80 2.80     
D3_9 JAVA LB 0.00   2.78 2.78 
      1_VIEGR2_RN VIETNAM GR 2 5.10 

4.62 

  
19 VIETNAM GR 2 4.38   
2_VIEGR2_RN VIETNAM GR 2 4.28   
3_VIEGR2_RN VIETNAM GR 2 3.65   
56 VIETNAM GR 2 6.63   
81 VIETNAM GR 2 3.70     
D3_10 VIETNAM GR 2 1.13  3.94 2.81 
D3_50 VIETNAM GR 2 5.20   4.21 0.99 
      71 UGANDA DRUGAR UTZ ORGANIC 0.00 0.00     
D3_13 UGANDA DRUGAR UTZ ORGANIC 0.00  1.87 1.87 
D3_24 UGANDA DRUGAR UTZ ORGANIC 1.87   2.18 0.32 
      1_BUK_RN BUKOBA 3.03 

4.10 

  
103 BUKOBA 5.23   
116 BUKOBA 3.27   
2_BUK_RN BUKOBA 6.25   
20 BUKOBA 4.68   
21 BUKOBA 3.40   
3_BUK_RN BUKOBA 4.50   
32 BUKOBA 5.28   
48 BUKOBA 2.48   
89 BUKOBA 1.40   
94 BUKOBA 5.64     
D3_25 BUKOBA 2.67  3.85 1.19 
D3_46 BUKOBA 1.85  3.55 1.7 
D3_14 BUKOBA 2.73  4.58 1.86 
D3_41 BUKOBA 3.27   2.88 0.39 
      17 VIETNAM 18WP 1.63 

1.28   
46 VIETNAM 18WP 0.93     
D3_19 VIETNAM 18WP 1.62  3.79 2.17 
D3_44 VIETNAM 18WP 3.75   4.98 1.23 
      1_UGA_RN UGANDA 18 UP 7.18 

4.16 

  
2_UGA_RN UGANDA 18 UP 6.05   
22 UGANDA 18 UP 3.00   
3_UGA_RN UGANDA 18 UP 4.20   
49 UGANDA 18 UP 1.90   
87 UGANDA 18 UP 2.25   
99 UGANDA 18 UP 4.58     
D3_20 UGANDA 18 UP 1.12   4.50 3.38 
      73 MESSICO ROBUSTA 1.95 1.95     
D3_30 MESSICO ROBUSTA 3.70  3.51 0.19 
D3_40 MESSICO ROBUSTA 1.50   4.45 2.95 

3.5 Development of single multi-note prediction model 
In the development of a useful tool for coffee sensory evaluation the practical aspects of data 
elaboration are not negligible. Despite the promising results obtained on the test set for modelling 
the single sensory attribute, the prediction of a coffee complete sensory profile still requires six 
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different data elaborations. This important data processing is not well in compliance with the 
routine application of the sensometric approach. 
In order to overcome this limitation a single multi-note sensory scores prediction model, able to 
make statistical inference on all the sensory notes at the same time, was developed. This model 
would make possible a drastic reduction of the data handling time because it works with a single 
data matrix in which all sensory scores are included. The variable selection for this multi-note 
model has been performed by combining the matrices (chemical fingerprints) used for the single-
note prediction models. After a first step, when all chemicals (without any repetitions when 
present on multiple note chemical fingerprint) have been kept, the x matrix has then been 
simplified and the number of variables reduced according Variable Impact of Projection (VIP) 
values. This variable reduction has been carried out to reduce the statistical noise and maximise 
the information provided by each single note chemical fingerprints.  
Based to the VIP values (VIP>0.93), 35 compounds on 56 were retained in the building up of the 
model affording to simplify the multidimensional structure of the prediction model with a 
negligible loss in performance. 
In the development of the multi-note prediction model both the algorithms (PLS and Non-
parametric regression) have been tested but PLS provided the best results, although with some 
compromises in function of the sensory attribute to be described. In particular, these 
compromises were required from the notes that, singularly, required a Non-Parametric regression. 
 
Table 5 Multi-note model performance summary 

  Q² R2 RMSECV RMSEP 

Acid 0.738 0.743 0.765 0.829 
Bitter 0.651 0.661 1.008 0.997 

Flowery 0.396 0.401 1.180 1.421 

Fruity 0.259 0.277 0.991 1.944 
Woody 0.651 0.665 1.334 1.128 

Spicy 0.308 0.330 1.691 1.359 

 
As expected, the model has good performance for the notes that were singularly well modelled by 
a PLS algorithm (Acid, Bitter, Flowery and Woody) and less good results for those notes requiring a 
non-parametric approach (Fruity and Spicy) (Table 5). 
The inclusion of all sensory notes in the same data matrix (and the chemical information related to 
the pool of compounds needed for their modelling) entailed an increase of the noise and thereby 
a poorer performance if compared to the single-note models. 
The performance in calibration and in prediction (RMSECV and RMSEP) of the multi-note model 
are not far from those observed in the single prediction models. 
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4. CONCLUSIONS 

The main objective of this part of the project was to test the reliability of the sensory notes 
chemical fingerprints defined by a sensometric approach in a real application. 
The sensory scores of a totally new pool of samples have been predicted using the chemical 
fingerprint defined in the previous parts of the project (session 2.2.1), also by applying non-
parametric algorithm other than PLS in the data modelling. 
Each single-note optimized model has been tested on the new samples with encouraging results:  

- the models show acceptable performances both in calibration and in prediction: most of 
the models explain a good portion of the variability around the dependent variable (y) and 
the Q2 values demonstrate a good stability of the models. Root Mean Squared Errors in 
calibration (RMSECV) and in prediction (RMSEP) are below or not far from the limit of 
acceptability (fixed with the panel in ±1 score points). 

- The main issues in prediction, highlighted with the test set, derived from a rather low 
stability of the sensory evaluations of the new samples compared to those used to build 
the models.  
This discrepancy might be due to the impact of the seasonality on the coffee sensory 
profile. This variability can be better represented in the model development by including in 
the training phase more coffee samples belonging to the same origin and sub-origin 
harvested in different years. This step would be time consuming but will give an idea on 
how and how much the coffee sensory profile changes over the years and according to the 
climatic changes. 

The last part of the project has been focused in the development of a single regression model able 
to predict the sensory scores of all the notes together one single data elaboration (multi-note 
model). This model merges and summarizes the whole information extracted by the training 
samples and points out the compounds globally responsible for the sensory profile descripted by 
Acid, Bitter, Flowery, Fruity, Woody and Spicy sensory notes. The use of one single model to 
predict the scores of all these six sensory notes enables to predict the global coffee sensory profile 
but, it requires some compromises in terms of model robustness and errors in prediction in the 
case of Flowery, Fruity and Spicy notes while Acid, Bitter and Woody notes are in-line with the 
performances of the single note models. The evolution of these sensory scores in the training set 
do not follow a linear behaviour and the best performance were therefore with non-parametric 
algorithms. Nevertheless, the performance registered in the multi-note prediction model remains 
acceptable also for Flowery, Fruity and Spicy notes because the sample distribution for these notes 
in unbalanced towards the low scores. On the other hand, the linear PLS model overcomes these 
limits and well represents them. 
In addition to these promising results, in view of a routine implementation of this sensometric 
strategy as a tool complementary to the panel, some limitations have to be overcome with further 
work: 

- coffee, such as many others natural products, presents an extremely high variability; 
therefore, the number of samples considered in this project is not yet sufficient to obtain 
reliable and robust models. The training set needs to be extended including more 
replicates of origins and sub-origins normally treated by a coffee industry and samples 
harvested during several years (i.e. 5). 

- The highest errors in prediction occurred for samples with high sensory scores; a first 
possible explanation of this behaviour concerns the mathematical model development: the 
number of high scores samples is lower than that of low scores samples, therefore, this 
part of the score range is less represented in the sample sets. The second explanation is 
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related to the stability of the sensory scores measured by the panel: high scores are more 
difficult to be defined then the low ones and are affected by a stronger variability. The 
extension of the samples set will provide a good coverage of the whole score range thus 
overcoming these issues. 

- The sensory definition of some notes (i.e. Nutty) is challenging. To have stable and reliable 
scores suitable to be compared to the chemical data, a specific note panel alignment is 
needed.  

 Although all these considerations and limits, we can conclude that the Sensometric approach 
demonstrated to be very promising to characterize coffee sensory notes and can successfully be 
used to develop tools complementary to the conventional panel analyses, and, after further 
development, adopted for quality control purposes. 
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Foodomics is an innovative approach capable to characterize food in holistic way and relate the 
food chemical composition to its biological impact through advanced analytical platforms and 
multivariate data handling tools. The demand of knowledge and control of the biological impact of 
what we eat and drink is growing at the same time of consumer awareness of the importance of 
food composition.  
The sensory impact is increasingly important in the product choice, in particular, it is crucial for 
those foods without a nutritional value but mostly consumed because of the pleasure they elicit 
known as “comfort foods”. The market of several comfort foods and in particular of coffee is 
strongly conditioned by the sensory aspects of the products often driven by marketing. The 
sensory properties of a finish-end coffee products mostly depend on the overall supply chain and, 
for coffee brands, on the sensory quality of the incoming raw beans, and on their selection in 
order to characterize and keep a “specialty coffees” (i.e. coffee without defects) to be used as 
mono-origin or to be mixed to obtain a desired blend with a peculiar flavour.  
This research project aimed to define a relationship between sensory and chemical profiles into a 
coffee sensory evaluation scenario with the final goal to exploit this relationship as a practical tool 
for coffee sensory quality characterization and to use it as a complement or, when possible, as an 
alternative to the panel in routine controls. In this context, the international protocol to taste 
coffee in the selection of the raw beans (SCAA cupping), also known as Brazilian cupping, has to be 
taken into account as the standardized method in coffee evaluation. The analytical procedure had 
to be in compliance with this kind of investigation:  
 

- The official SCAA cupping protocol has been simulated by three different analytical 
approaches (HS-SPME-GC-MS of the roasted powder, HS-SPME-GC-MS of the brew and 
SBSE of the brew). Chemical data have been compared through chemometric tools and HS-
SPME-GC-MS of the powder has been chosen as platform of election for the samples 
aroma characterization.  
This platform indeed satisfied the requirements in terms of characterization power, 
easiness and possibility of automation needed for the purposes of the project. 
 

- A Sensometric approach has been used to link the peculiar sensory profile (measured by a 
trained panel) of different coffee samples to the peculiar chemical composition accurately 
defined by HS-SPME-GC-MS.  
The sensometric approach proved to be discriminative, informative, and predictive in 
revealing the chemical signature of the different coffee aroma notes. 
The developed regression models show promising results when applied to predict the 
samples sensory scores from chemical data validating the chemical signature defined for 
most notes.  
 

- The reliability of the sensometric approach has been validated by comparing the note 
characterization obtained with this approach to those obtained by molecular sensory 
science taken as reference. Despite the differences between the two strategies a good 
consistency in samples characterization has been found. 
 

- The possibility of improving the knowledge, and thereby the predictive capability of the 
models when applied to sensory notes known as “taste attributes” has been tested by 
integrating the HS-SPME-GC-MS chemical data (characterizing the Aroma) with those from 
a HPLC-UV/DAD fingerprinting analysis targeted on those compounds responsible of these 
taste-related attributes (e.g Bitter).  
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This integration did not bring to significant improvement of the predictive models 
developed considering only the volatile fraction, thus confirming the key role of aroma 
compounds in flavour modulations. On the other hand, the considered taste data make the 
whole protocol more complex and not suitable for routine implementation. 
 

- The predictive models have been optimized and used to predict the sensory profiles of a 
completely new set of samples with promising results. All these information have been 
combined into a single multi-note prediction model that, although with some limits, has 
shown to be a valid supporting tool for the panel if optimized by integration with a suitable 
number and kind of samples associated to a fine tuning of the panel. 

 
Considering all these results and the experience acquired over these three years of PhD some 
general considerations can be done. 

Coffee is an extremely fascinating and complex matrix; the chemical characterization of its 
sensory profiles is still challenging because of the wide variability of this product. 
The difficulty of this project is mainly related to the magnitude of the variance that have to be 
managed by whoever have to deal with this food matrix though we attempted to standardize 
many of critical parameters (only mono origins were considered; the roasting degree was fixed; 
the brewing method etc…) 
On the other hand, a too rigid management of this variability brings the study out of the real 
coffee world and risks to make it a pure analytical exercise. 
Over the whole project, the samples selection has been carried out with the aim to balance the 
requests of a quality control laboratory and the need to be representative of such a complex 
product. 
Although our efforts, the number of samples considered is not sufficient to provide a robust and 
reliable tool for coffee evaluation. The shortage of the number of samples is in particular evident 
for high scores samples that probably are a minor portion but are equally (if not more) important 
to model statistically a sensory note.  
In addition, the impact of the harvesting period and of the climate differences on the coffee 
sensory profiles has been considered only in the final part of the project. In the perspective of 
developing a tool suitable for routine coffee sensory screening, these parameters have to be 
included in the training set to build the models. 
A further consideration arises from the need of close cooperation with the panel: not all sensory 
notes can be defined with the same degree of confidence.  
The unambiguous definition of Nutty and Flowery note is particularly challenging because of the 
different facets of these perceptions. The development of the predictive models for these notes is 
thereby particularly challenging, and modeling of attributes such as body, astringency, aroma 
intensity etc…. must be considered. The improving of analytical results needs also to be supported 
by refining sensory analysis in terms of lexicon and stability. 

 
The broad and comprehensive sample characterization achieved by the foodomic approach may 
open new perspectives in the investigation of the biological impact (even not linked to the senses) 
of food flavour compounds. 
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4. Appendix 
 
 



 

 
 

Supplementary material relative to chapter 2.2. 
 
Table 1APX Coffee samples and sensory characteristics. Spec: Species (A: Arabica, R: Robusta), Treat: Treatments (N: Natural, W: Washed).  

 

# Sample 
acronym Type Spec Trea Acid Bitter Aroma 

intensity Flowery Fruity Woody Nutty Spicy Body Astringe
ncy 

 SAMPLES WITH PECULIAR SENSORY ATTRIBUTES 

1 BRA BRAZIL LA2 A N 2 2 7 1 0 1 3 0 7 1 
2 COL COLOMBIA CL1 A W 4 1 8 3 3 0 0 0 7 1 
3 JAV JAVA WB1 MB R W 0 3 8 0 0 3 3 1 8 1 
4 UGA UGANDA STD R N 0 3 8 0 0 4 3 3 8 1 
5 PNG PAPUA NG Y A W 3 2 7 3 3 0 0 0 8 0 
6 INDIA INDIA ARAB CHERRY A N 2 4 8 0 0 2 2 3 8 1 
7 INDO INDONESIA EK1 R N 0 4 8 0 0 5 3 3 8 2 
8 KAFA ETIOPIA KAFA GR. 3 A N 4 1 8 3 6 0 0 0 7 0 

 SELECTED SENSORY STRESSED SAMPLES 

9 BRALA2 BRAZIL LA2 A N 4 1 6 0 0 0 5 0 - - 
10 BRAGOU BRAZIL GOURMET A N 2 0 5 1 0 0 5 0 - - 
11 JAV JAVA MB R W 1 2 7 0 0 1 7 0 - - 
12 D2_65 INDO_CN R N 0 5 7 0 0 6 0 2 - - 
13 D2_37 BRASILE RFA           A N 3 0 8 0 0 0 8 0 - - 
14 D2_56 Vietnam GR 2       R N 0 4 8 0 0 7 1 1 - - 
15 INDOEK1 INDONESIA EK1 R N 0 4 8 0 0 7 1 3 - - 
16 INDIACHAB INDIA CHY AB R N 0 3 7 0 0 7 3 6 - - 
17 BUK BUKOBA R N 0 5 8 0 0 5 2 8 - - 
18 CON CONILON R N 0 4 8 0 0 4 2 4 - - 
19 VIEGR2 VIETNAM GR2 R N 0 3 6 0 0 4 3 2 - - 
20 UGA UGANDA 18 UP R N 0 4 8 0 0 6 1 7 - - 
21 D2_1 BURUNDI A W 6 0 7 6 1 0 0 0 - - 



 

 
 

# Sample 
acronym Type Spec Trea Acid Bitter Aroma 

intensity Flowery Fruity Woody Nutty Spicy Body Astringe
ncy 

22 D2_2 COLOMBIA CL1 A W 4 0 6 3 0 0 0 0 - - 
23 D2_3 COLOMBIA CL4 A W 4 0 7 3 2 0 0 0 - - 
24 D2_4 TANZANIA KILIMANJARO A W 5 0 7 3 1 0 0 0 - - 

25 D2_5 PAPUA NUOVA GUINEA Y 
GR.1 A W 4 0 7 2 3 0 0 0 - - 

26 D2_6 RWANDA A W 5 0 8 3 2 0 1 0 - - 
27 D2_7 ETHIOPIA SIDAMO GR.2 A W 5 0 8 5 4 0 0 0 - - 
28 D2_8 TANZANIA AB A W 5 0 7 3 3 0 0 0 - - 
29 D2_9 BRASILE LS2 A N 2 0 7 0 0 0 5 0 - - 
30 D2_10 BRASILE LAMBARI A N 1 1 5 0 0 0 2 0 - - 
31 D2_11 BRASILE LB1 A N 2 0 7 0 0 0 4 0 - - 
32 D2_12 BRASILE APPASSITA A N 3 0 8 0 0 0 3 0 - - 
33 D2_13 BRASILE LA1 A N 2 0 8 0 0 0 5 0 - - 
34 D2_14 BRASILE LA3 A N 0 2 6 0 0 1 2 1 - - 
35 D2_15 INDIA ARABICA A N 1 2 4 0 1 1 0 2 - - 
36 D2_16 GUATEMALA ROBUSTA R W 1 2 7 0 0 1 3 0 - - 
37 D2_17 VIETNAM POLISHED R W 0 2 8 0 0 2 5 0 - - 
38 D2_18 KAAPIROIALE R W 1 2 8 0 0 1 5 0 - - 
39 D2_19 VIETNAM GR 2       R N 0 4 6 0 0 4 0 1 - - 
40 D2_20 TANZANIA R N 0 3 6 0 0 5 0 2 - - 
41 D2_21 BUKOBA           R N 0 3 6 0 0 3 0 3 - - 
42 D2_22 UGANDA STD R N 0 3 7 0 0 3 2 2 - - 
43 D2_23 CONILON R N 0 2 7 0 0 2 1 1 - - 
44 D2_24 INDONESIA EK1 R N 0 4 7 0 0 4 0 3 - - 
45 D2_25 ETHIOPIA SIDAMO GR.2 A W 2 0 5 2 0 0 0 0 - - 

46 D2_26 PAPUA NUOVA GUINEA Y 
GR.1 A W 3 0 6 2 2 0 0 0 - - 

47 D2_27 COLOMBIA CL1 A W 1 0 4 1 0 0 0 0 - - 
48 D2_28 BRASILE LS2 A N 1 0 7 0 0 0 7 0 - - 
49 D2_29 BRASILE APPASSITA A N 2 0 5 1 0 0 2 0 - - 
50 D2_30 GUATEMALA ROBUSTA R W 0 1 8 0 0 2 5 0 - - 
51 D2_31 KAAPIROIALE R W 1 1 8 0 0 1 7 1 - - 
52 D2_32 TANZANIA R N 0 4 6 0 0 5 0 2 - - 
53 D2_33 CONILON R N 0 3 7 0 0 4 1 1 - - 
54 D2_34 COLOMBIA CL2    A W 4 0 7 3 2 0 0 0 - - 



 

 
 

# Sample 
acronym Type Spec Trea Acid Bitter Aroma 

intensity Flowery Fruity Woody Nutty Spicy Body Astringe
ncy 

55 D2_35 COLOMBIA CL3    A W 5 0 9 4 4 0 0 0 - - 
56 D2_36 GUATEMALA HB   A W 2 3 4 0 0 1 1 0 - - 
57 VIEGR1 VIETNAM GR1 16 WP R T 1 3 7 0 0 4 4 1 - - 
58 D2_38 BRASILE LA5             A N 1 1 7 0 0 0 4 0 - - 

59 D2_39 INDIA ROBUSTA CHERRY 
AA    R N 0 3 7 0 0 3 0 2 - - 

60 D2_40 VIETNAM GR1 CLEAN     R C 0 3 7 0 0 3 1 1 - - 
61 D2_41 VIETNAM GR1 2%       R N 0 3 7 0 0 3 1 0 - - 
62 D2_42 BRASILE LB1 A N 2 0 7 0 0 0 3 0 - - 
63 D2_43 BRASILE LA1 A N 3 0 6 0 0 0 2 0 - - 
64 D2_44 BRASILE LAMBARI A N 1 1 5 0 0 0 1 0 - - 
65 D2_45 BRASILE LA3 A N 1 1 6 0 0 0 2 0 - - 
66 D2_46 VIETNAM POLISHED R W 0 2 8 0 0 1 6 0 - - 
67 D2_47 INDONESIA EK1 R N 0 4 6 0 0 4 1 1 - - 
68 D2_48 BUKOBA           R N 0 2 7 0 0 2 1 4 - - 
69 D2_49 UGANDA STD R N 0 2 8 0 0 2 1 7 - - 
70 D2_50 COLOMBIA CL2    A W 3 0 6 3 0 0 0 0 - - 
71 D2_51 COLOMBIA CL3    A W 4 0 6 3 2 0 0 0 - - 
72 D2_52 BRASILE RFA           A N 2 0 7 0 0 0 6 0 - - 
73 D2_53 BRASILE LA5             A N 1 1 6 0 0 1 2 0 - - 
74 D2_54 VIETNAM GR1 CLEAN     R C 0 2 8 0 0 4 1 0 - - 
75 D2_55 VIETNAM GR1 2%       R N 0 3 8 0 0 5 1 0 - - 
14 INDOAP INDONESIA AP R T 0 3 7 0 0 5 3 1 - - 

77 D2_57 INDIA ROBUSTA CHERRY 
AA    R N 0 6 3 0 0 5 0 1 - - 

78 D2_58 KENYA_CN A L 3 1 6 1 1 0 1 0 - - 
79 D2_59 ETHIOP_FR A N 1 2 5 0 0 0 5 0 - - 
80 D2_60 COL_EXC A L 4 0 6 2 0 0 0 0 - - 
81 D2_61 PERU_HB A L 2 1 4 0 0 0 1 0 - - 
82 D2_62 BURUND_CN A L 2 1 4 0 0 0 0 0 - - 
83 D2_63 BRASIL_GR A N 1 0 1 0 0 0 0 0 - - 
84 D2_64 CHERRY R N 0 3 7 0 0 3 1 5 - - 
85 KAAP KAAPIROYALE R W 1 3 8 0 0 3 6 4 - - 
86 D2_66 LAOS A N 3 1 7 3 1 0 0 0 - - 
87 D2_67 LAMBARI A N 3 0 8 0 0 0 6 0 - - 



 

 
 

# Sample 
acronym Type Spec Trea Acid Bitter Aroma 

intensity Flowery Fruity Woody Nutty Spicy Body Astringe
ncy 

88 D2_68 LB3 A N 2 1 7 0 0 0 4 0 - - 
89 D2_69 LA2 A N 3 1 5 0 0 0 3 0 - - 
90 D2_70 LA5 A N 1 3 2 0 0 0 0 0 - - 
91 D2_71 UG_DRUGAR R N 2 1 8 3 1 0 0 0 - - 
92 D2_72 VIETGR12% R N 0 3 7 0 0 4 2 1 - - 
93 D2_73 MESSIC_RB R N 0 1 8 0 0 2 5 1 - - 
94 D2_74 KENYAABC A L 2 1 6 1 1 0 2 0 - - 
95 D2_75 CL2 A L 3 0 6 2 1 0 0 0 - - 
96 D2_76 CL4 A L 2 0 7 3 0 0 1 0 - - 
97 D2_77 LA1 A N 2 0 8 0 0 0 7 0 - - 
98 D2_78 LA3 A N 1 1 8 0 0 0 5 0 - - 
99 D2_79 CHERRY_AB R N 0 3 7 0 0 4 1 2 - - 

100 D2_80 JAVA R L 1 3 5 0 0 3 2 0 - - 
101 D2_81 VIETNAM_GR2 R N 0 2 8 0 0 4 2 2 - - 
102 D2_82 HONDURHB A L 2 1 6 1 0 0 0 0 - - 
103 D2_83 NICARAG A L 1 1 5 0 0 1 0 0 - - 
104 D2_84 KAFA A N 3 0 7 3 6 0 0 0 - - 
105 D2_85 LS2 A N 2 1 8 0 0 0 6 0 - - 
106 D2_86 LA3RFA A N 1 2 7 0 0 0 5 0 - - 
107 D2_87 UGANDA18 R N 1 3 8 0 0 2 1 2 - - 
108 D2_88 VIETN_3% R N 0 3 7 0 0 4 1 1 - - 
110 D2_90 CL3 R N 3 0 6 1 1 0 1 0 - - 
111 D2_91 PNG A L 2 0 6 3 0 0 0 0 - - 
112 D2_92 HONDSHG A L 3 1 7 0 1 0 1 0 - - 
113 D2_93 KAFA A L 3 0 8 2 0 0 0 0 - - 
114 D2_94 BUKOBA A N 0 3 7 5 1 6 0 0 - - 
115 D2_95 INDOEK80 R N 0 6 5 0 0 7 0 5 - - 
116 D2_96 LIMU A L 2 0 7 0 0 0 0 2 - - 
117 D2_97 KAFA A N 3 0 6 5 1 0 0 0 - - 
118 D2_98 CHERRYAR A N 1 4 5 2 5 5 0 0 - - 
119 D2_99 UGANDA18 R N 0 4 7 0 0 5 0 0 - - 
120 D2_100 KILIMANJ A L 1 0 5 0 0 0 0 4 - - 
121 D2_101 KENYA ABC A L 1 1 6 0 1 0 3 0 - - 
122 D2_102 INDIA CHERRY ROB AB R N 0 4 8 0 0 3 1 6 - - 



 

 
 

# Sample 
acronym Type Spec Trea Acid Bitter Aroma 

intensity Flowery Fruity Woody Nutty Spicy Body Astringe
ncy 

123 D2_103 BUKOBA R N 0 4 8 0 0 5 0 5 - - 
124 D2_104 PERU' ORGANICO A L 2 0 8 4 0 0 0 0 - - 
125 D2_105 PERU' T1 UTZ/ORG A L 3 1 7 0 2 0 2 0 - - 
126 D2_106 INDONESIA EK 1 R N 0 7 9 0 0 5 0 5 - - 
127 D2_107 INDIA CN R N 0 9 9 0 0 8 0 2 - - 
128 D2_108 PERU' TIPO I A L 4 0 7 4 1 0 0 0 - - 
129 D2_109 PERU' TIPO II A L 3 1 5 3 0 0 0 0 - - 
130 D2_110 MESSICO ARABICA A L 2 1 4 0 0 2 0 0 - - 
131 D2_111 INDIA CHERRY ROB AB R N 0 4 8 0 0 4 0 4 - - 
132 D2_112 PERU' GOURMET A L 2 0 7 3 0 0 0 0 - - 
133 D2_113 GUATEMALA SHB A L 3 3 3 5 2 0 0 0 - - 
134 D2_114 TANZANIA AB RFA A L 3 0 8 4 6 0 0 0 - - 

135 D2_115 ETHIOPIA YRGACHEFFEE 
G1 A L 4 0 9 9 4 0 0 0 - - 

136 D2_116 BUKOBA R N 3 4 6 0 0 3 0 3 - - 

137 D2_117 ETHIOPIA YRGACHEFFEE 
G1 A L 4 0 7 4 0 0 0 0 - - 

138 D2_118 TANZANIA AB PLUS A L 4 0 7 3 3 0 0 0 - - 

139 D2_119 TANZANIA AB PLUS A L 2 1 6 1 2 0 3 0 - - 

140 D2_120 COSTA RICA A L 4 0 9 1 7 0 0 0 - - 

141 D2_121 COSTA RICA A L 4 0 8 3 4 0 0 0 - - 
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B

) 

C
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A

) Training Set 
Data Matrix n° Observations 218 
 n° of Explicative Variables 21 
 n° of Quantitative Dependent Variables 1 
   
Cross Validation n° Random Chosen Observations 18 
 
Test Set n° Random Chosen Observations 30 

 

Observation Predicted Measured Res. (Abs Value) 
12_1 0,1847 0,00 0,18 
25_2 0,8311 0,00 0,83 
35_2 0,1502 0,00 0,15 
1_1 0,1890 0,02 0,17 
34_1 0,7310 0,10 0,63 
7_1 0,7758 0,14 0,64 
13_1 0,4285 0,15 0,28 
50_2 0,3595 0,20 0,16 
5_1 0,3982 0,22 0,18 
6_1 0,8001 0,38 0,42 
61_1 0,4797 0,53 0,05 
85_2 0,3247 0,55 0,23 
82_2 0,5555 0,70 0,14 
74_1 -0,0595 0,80 0,86 
53_1 1,1159 0,83 0,28 
45_1 1,1408 1,03 0,12 
1_BRALA2_AN_2 1,4304 1,10 0,33 
1_JAV_RL_1 1,5304 1,18 0,35 
54_2 2,8559 2,47 0,39 
20_1 3,9485 3,13 0,82 
79_2 3,2248 3,30 0,08 
3_KAAP_RL_2 2,8969 3,35 0,45 
39_1 2,8489 3,37 0,52 
89_2 3,6566 3,55 0,11 
1_INDOEK1_RT_1 3,2971 3,98 0,68 
3_BUK_RN_1 3,6133 4,10 0,49 
1_CON_RN_2 3,1609 4,35 1,19 
1_UGA_RN_2 3,5722 4,93 1,36 
65_1 4,3869 5,00 0,61 
57_2 2,8563 5,87 3,01 

 

R 2 0.721 
Q 2 0.689 
Median of Error  
in Prediction 0.443 

Model Performance Parameters 
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Training Set 
Data Matrix n° Observations 248 
 n° of Explicative Variables 21 
 n° of Quantitative Dependent Variables 1 
   
Cross Validation n° Random Chosen Observations 18 
 
Test Set n° Random Chosen Observations 30 

 

A) 

C) 

B) 

Observation Predicted Measured Res. (Abs Value) 
1_1 -0,6177 0,0 0,618 
1_BRALA2_AN_2 0,9622 0,00 0,962 
12_1 0,3089 0,00 0,309 
13_1 -0,0866 0,00 0,087 
25_2 0,4410 0,00 0,441 
35_2 -0,1540 0,00 0,154 
45_1 -0,2067 0,00 0,207 
53_1 -0,0403 0,00 0,040 
54_2 0,9207 0,00 0,921 
7_1 0,6902 0,00 0,690 
74_1 0,1778 0,00 0,178 
82_2 0,1692 0,00 0,169 
85_2 0,0031 0,00 0,003 
5_1 0,3162 0,02 0,296 
61_1 -0,0049 0,03 0,030 
50_2 -0,3064 0,03 0,340 
6_1 -0,2080 0,06 0,268 
1_JAV_RL_1 1,3655 0,48 0,885 
57_2 1,4573 0,60 0,857 
65_1 2,8450 0,63 2,212 
39_1 1,5874 1,20 0,387 
20_1 3,0802 1,40 1,680 
79_2 2,4825 1,80 0,682 
3_KAAP_RL_2 2,4224 3,90 1,478 
1_INDOEK1_RT_1 2,5823 5,35 2,768 
1_CON_RN_2 3,2564 5,45 2,194 
89_2 4,5032 6,20 1,697 
1_UGA_RN_2 5,6839 6,40 0,716 
49_1 2,2674 6,83 4,566 
3_BUK_RN_1 6,1234 7,57 1,447 

 

R 2 0.684 
Q 2 0.231 
Median of Error  
in Prediction 1.072 

Model Performance Parameters 
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A) B) 

C) 

Training Set 
Data Matrix n° Observations 218 
 n° of Explicative Variables 24 
 n° of Quantitative Dependent Variables 1 
   
Cross Validation n° Random Chosen Observations 18 
 
Test Set n° Random Chosen Observations 30 

 

Observation Predicted Measured Res. (Abs Value) 
1_CON_RN_2 0,2235 0,00 0,223 
1_UGA_RN_2 0,1630 0,00 0,163 
20_1 -0,3434 0,00 0,343 
57_2 0,1660 0,00 0,166 
65_1 0,1506 0,00 0,151 
89_2 -0,8055 0,05 0,856 
79_2 -0,2024 0,13 0,327 
3_BUK_RN_1 0,1906 0,13 0,061 
54_2 0,1583 0,13 0,025 
39_1 0,5377 0,23 0,304 
1_INDOEK1_RT_1 0,4793 0,55 0,071 
1_JAV_RL_1 0,9676 1,15 0,182 
3_KAAP_RL_2 0,0733 1,18 1,107 
53_1 1,6743 1,23 0,441 
45_1 1,3182 1,60 0,282 
61_1 2,2894 1,63 0,656 
25_2 2,9700 1,70 1,270 
85_2 1,9167 1,75 0,167 
82_2 1,7120 2,20 0,488 
13_1 2,5278 2,38 0,153 
74_1 3,4876 2,48 1,013 
12_1 2,9090 2,53 0,384 
50_2 4,0472 2,87 1,181 
1_BRALA2_AN_2 1,9502 3,23 1,280 
5_1 4,3609 4,16 0,201 
35_2 3,8422 4,87 1,024 
6_1 4,8677 5,04 0,172 
7_1 3,4134 5,30 1,887 
1_1 5,3410 6,10 0,759 
34_1 3,4881 3,50 0,012 

 

R 2 0.831 
Q 2 0.497 
Median of Error  
in Prediction 0.543 

Model Performance Parameters 
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B) 

C) 

A) 

Observation Predicted Measured Res. (Abs Value) 
1_BRALA2_AN_2 -0,1063 0,00 0,11 
1_CON_RN_2 -0,3913 0,00 0,39 
1_JAV_RL_1 0,1253 0,00 0,13 
1_UGA_RN_2 0,2170 0,00 0,22 
12_1 1,1367 0,00 1,14 
20_1 0,5180 0,00 0,52 
3_BUK_RN_1 -0,0058 0,00 0,01 
39_1 -0,0294 0,00 0,03 
45_1 -0,2517 0,00 0,25 
50_2 1,1395 0,00 1,14 
54_2 -0,1498 0,00 0,15 
57_2 0,1799 0,00 0,18 
61_1 -0,0775 0,00 0,08 
65_1 0,0691 0,00 0,07 
79_2 -0,1510 0,00 0,15 
82_2 -0,3667 0,00 0,37 
85_2 1,7778 0,00 1,78 
89_2 -0,5645 0,00 0,56 
1_INDOEK1_RT_1 0,2132 0,03 0,18 
53_1 0,1068 0,03 0,07 
3_KAAP_RL_2 0,3016 0,08 0,22 
13_1 0,3817 0,15 0,23 
25_2 0,5335 0,38 0,16 
74_1 0,8659 0,75 0,12 
1_1 2,5866 1,20 1,39 
6_1 0,9475 1,78 0,83 
5_1 4,1040 2,73 1,38 
34_1 2,3036 3,00 0,70 
35_2 2,2529 4,17 1,91 
7_1 1,5458 4,63 3,08 

 

Training Set 
Data Matrix n° Observations 212 
 n° of Explicative Variables 20 
 n° of Quantitative Dependent Variables 1 
   
Cross Validation n° Random Chosen Observations 18 
 
Test Set n° Random Chosen Observations 30 

 

R 2 0.661 
Q 2 0.193 
Median of Error  
in Prediction 0.206 

Model Performance Parameters 
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A) 

Training Set 
Data Matrix n° Observations 214 
 n° of Explicative Variables 22 
 n° of Quantitative Dependent Variables 1 
   
Cross Validation n° Random Chosen Observations 18 
 
Test Set n° Random Chosen Observations 30 

 

Observation Predicted Measured Res. (Abs Value) 
1_BRALA2_AN_2 -0,1301 0,00 0,13 
1_CON_RN_2 -0,6175 0,00 0,62 
1_INDOEK1_RT_1 0,2743 0,00 0,27 
1_JAV_RL_1 -0,1622 0,00 0,16 
1_UGA_RN_2 -0,0091 0,00 0,01 
20_1 -0,2901 0,00 0,29 
3_BUK_RN_1 0,1107 0,00 0,11 
3_KAAP_RL_2 0,3366 0,00 0,34 
39_1 0,0683 0,00 0,07 
45_1 0,1843 0,00 0,18 
53_1 0,3023 0,00 0,30 
54_2 0,0356 0,00 0,04 
57_2 -0,3807 0,00 0,38 
65_1 -0,1526 0,00 0,15 
79_2 -0,3728 0,00 0,37 
85_2 0,2435 0,00 0,24 
89_2 -0,8467 0,00 0,85 
12_1 0,5381 0,05 0,49 
61_1 1,1522 0,20 0,95 
13_1 0,3366 0,38 0,04 
74_1 1,8890 0,50 1,39 
82_2 1,2664 1,20 0,07 
5_1 2,8651 1,30 1,57 
26_2 2,2433 1,83 0,42 
6_1 2,6053 2,60 0,01 
50_2 2,1716 2,80 0,63 
8_2 3,1169 3,10 0,02 
35_2 2,3828 3,87 1,48 
34_1 2,6362 4,50 1,86 
1_1 3,8649 5,62 1,76 

 

R 2 0.793 
Q 2 0.342 
Median of Error  
in Prediction 0.351 

Model Performance Parameters 



 

 
 

Nutty 
 

 
Figure 2APX Prediction model for the aroma attributes studied, as example of the goodness of the aroma variable 
selected, to define the blueprint of the different aroma notes. A) parameters used to build the model, B) regression 
curve and validation set fit, C) results of sensory score prediction on the test samples for attributes: a) Bitter, b) Spicy, 
c) Acid, d) Fruity, e) Flowery, f) Nutty 
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Training Set
Data	Matrix n Observations 156

n of Explicative Variables 22
n of Quantitative Dependent Variables 1

Cross Validation n Random Chosen Observations 18

Test Set n Random ChosenObservations 30

B) A) 

R 2 0.467 

Q 
2 

0.302 
Median of Error  
in Prediction 

1.185 

Model Performance Parameters 
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