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On the “Legendre scalarization” of nonlinear
gravity theories
Guido MAGNANO

Dipartimento di Matematica “G. Peano”, Università di Torino,
via Carlo Alberto 10, 10123 Torino, Italy

Abstract
We discuss the proposal of a new method to transform a f(R)

metric gravity theory into a general relativistic theory including an
auxiliary scalar field, recently introduced by S. Cotsakis et al. We
argue that (i) the fact that the fourth order equations of f(R) metric
gravity can be recast (via a Legendre transformation) into Einstein
equations without any conformal rescaling has been thoroughly clar-
ified in the previous literature, and (ii) the newly proposed method
produces a set of equations that are not equivalent to the original
theory. In the conclusion, a comment is added on another aspect of
the Legendre transformation which seems to be generally overlooked.

In the article [1] the authors present a “Legendre scalarization” method
which is expected, starting form a metric nonlinear Lagrangian f(R), to
produce “a theory with second order field equations that describes general
relativity with a self-interacting scalar field, without requiring the introduction
of conformal frames.”

It has been known for a long time [2] that the fourth order equations
produced by a Lagrangian of the form

L = f(R)
√
|g|+ Lmat (1)

(R = gµνRµν being the curvature scalar of the spacetime metric, g being the
determinant of the metric and Lmat being the matter Lagrangian), i.e.

f ′(R)Rµν −
1

2
f(R)gµν −∇µ∇νf

′(R) + gµν2f
′(R) = Tµν , (2)

are dynamically equivalent to Einstein’s equation for a new metric defined
by

g̃µν = f ′(R)gµν (3)
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in interaction with an additional scalar field which, on the solutions of the
dynamical equations, equals f ′(R). Such conformal rescaling of the metric is
ubiquitously referred to as “passing to the Einstein frame”. This originated
the belief that a conformal rescaling is necessary to recast the fourth order
equation (2) into a second order system including an Einstein equation.

A known issue related with the conformal rescaling is that it produces
a direct coupling of the matter Lagrangian Lmat with the auxiliary scalar
field [3]. In cosmology, assuming that the Einstein frame metric is the space-
time metric produces different physical outcomes w.r. to the original “Jordan
frame” [4, 5].

Thus, it is indeed reasonable to seek an alternative procedure to recast
(2) into the equations for a general-relativistic self-gravitating scalar field
without rescaling the metric.

The application of a generalised Legendre transformation to relativistic
gravity theories was instead envisaged by J. Kijowski in 1977 [6]. Roughly
speaking, one identifies the configuration of the gravitational field with the
connection (which defines the geodesis worldlines), and the Ricci tensor which
appears in the Lagrangian plays the role of the velocity. The derivative
of the Lagrangian w.r. to the (symmetrized) Ricci tensor, πµν =

∂L

∂R(µν)

,

becomes therefore the conjugate momentum to the connection (these concepts
apply also to gravity theories where the connection is non-metric and the
Ricci tensor may thus be nonsymmetric). From the tensor density πµν one
can easily produce the symmetric tensor g̃µν , defined by the relation πµν =

g̃µν
√

|g̃|. This idea was first exploited in purely affine theories, where the only
dynamical variable representing gravity is a connection, and the Lagrangian
is a function of its Ricci tensor (e.g. the square root of its determinant): since
there is no metric among the field variables, it is the conjugate field g̃µν that
provides the spacetime metric.

The method has been subsequently applied also to purely metric theo-
ries with a Lagrangian L = f(Rµν)

√
|g| [7, 8]. In this case, the Legendre

transformation produces an equivalent model in which the dynamical vari-
ables are the original metric gµν and the new metric g̃µν ; some independent
physical assumption is needed to identify the spacetime metric with either
the original or the new metric.

In the particular case where L = f(R)
√
−g, one finds (in dimension four)

g̃µν
√

|g̃| = ∂L

∂R(µν)

= f ′(R)gµν
√
−g ⇒ g̃µν = f ′(R)gµν , (4)

thus one may believe that in this case the Legendre transformation coincides
with the conformal rescaling of the metric. However, this is not the case.
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Let us recall the exact steps of the Legendre transformation. For ease of
reference, we will first review the familiar procedure of classical mechanics.
The first step is to define the map linking the conjugate momenta to the
dynamical state of the system, represented by the lagrangian coordinates
and velocities (qλ, q̇λ):

pλ =
∂L

∂q̇λ
. (5)

Then, provided det

∣∣∣∣ ∂2L∂q̇λq̇µ

∣∣∣∣ ̸= 0, one should invert the map above to express
the velocities as functions of coordinates and momenta:

q̇λ = uλ(qµ, pµ); (6)

third, one introduces the Legendre transform of the Lagrangian,

H(qµ, pµ) = pµu
µ − L(qµ, uµ) (7)

(for smooth functions, the alternative definition

H(qµ, pµ) = sup
uµ∈Rn

(pµu
µ − L(qµ, uµ))

is completely equivalent to the steps above). The 1-form Ldt which appears
in the original action integral is replaced, in the phase space, by the Poincar�-
Cartan form θH = pµdq

µ−H(qµ, pµ)dt. The pullback of θH on a generic curve
in the phase space defines the new action integral:∫ [

pµq̇
µ −H(qµ, pµ)

]
dt =

∫ [
pµ(q̇

µ − uµ) + L(qµ, uµ)
]
dt. (8)

Therefore, at the level of action integrals the result of the Legendre trans-
formation can be described as the replacement of the original Lagrangian L
with the Helmholtz Lagrangian [16]

LH = pµ(q̇
µ − uµ) + L(qµ, uµ), (9)

whereby uµ is the function of (qµ, pµ) defined by (6). The variation of the
Helmholtz Lagrangian yields a first order system of equations (the Hamilton
equations); by eliminating of the momentum variables pµ from the system
– which is always possible, since the variation of LH w.r. to pµ reproduces
eq. (6) – one recovers the original (second order) Lagrange equations.

Now, let us revert to purely metric gravity theories [9, 10, 11]. In the
general case L = f(Rµν)

√
|g|, once introduced the “conjugate metric” g̃µν

one should find the inverse map, in order to express the Ricci tensor Rµν as
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a function of gµν and g̃µν , Rµν = rµν(gαβ, g̃αβ): this step corresponds to (6).
The Legendre transform of L is

H(qµ, pµ) = g̃µνrµν
√
|g̃| − f(rµν)

√
|g| (10)

(not to be confused with the Hamiltonian in the ADM sense), and the
Helmholtz Lagrangian is

LH = g̃µν(Rµν − rµν)
√
|g̃|+ f(rµν)

√
|g|. (11)

It turns out that the term g̃µνRµν can be rewritten as the scalar curvature
R̃ = g̃µνR̃µν plus a quadratic combination of the covariant derivatives of
gµν (w.r. to the Levi-Civita connection of g̃µν), plus a full divergence that
has no effect on the field equations. Thus, LH can be rewritten as the usual
Einstein-Hilbert Lagrangian of GR for the new metric g̃µν , in interaction with
the other tensor field gµν , a manifestation of the property that J. Kijowski
called universality of Einstein equations [12].

Although the Einstein-Hilbert term in the Lagrangian can be written
for the metric g̃µν , and not for the original metric gµν , in the full (second
order) system of equations obtained by the variation of LH w.t. to the two
independent field variables g̃µν and gµν a few manipulations allow to obtain an
Einstein equation for the original metric gµν as well. In other terms, once the
Legendre transformation has allowed one to recast the original fourth order
equations into a second order system (by doubling the independent variables),
either of the two metrics can be seen as fulfilling Einstein equations, with
the other metric acting as a source [13].

This procedure, however, is viable only if the definition of the new metric
as a function ofRµν can be inverted in order to obtain a function rµν(gαβ, g̃αβ).
This is evidently not the case for Lagrangians of the form f(R). In this
case g̃µν and gµν are conformally related, as we have already seen: thus the
components of g̃µν cannot play the role of independent “conjugate momenta”.
Therefore, it is necessary to perform a different Legendre transformation
(a formal geometric description of the generalised Legendre transformation,
covering all these cases, can be found in [10]).

Since the Lagrangian depends on the second derivatives of the metric
only through the curvature scalar R, the conjugate variable is now the scalar
density defined by

π =
∂L

∂R
= f ′(R)

√
|g|, (12)

to which one associates the scalar field p such that π = p
√

|g|, i.e.

p = f ′(R). (13)
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If f ′′(R) ̸= 0, the map (13) can be inverted, i.e. a function r(p) can be defined
such that f ′(r(p)) ≡ p. The Legendre transform of L is

H =
(
p · r(p)− f(r)

)√
|g| (14)

(here and in the sequel, f(r(p)) is abbreviated to f(r) for better readability)
and the Helmholtz Lagrangian is

LH = p(R− r(p))
√

|g|+ f(r)
√

|g| =
(
pR + V (p)

)√
|g|, (15)

which is a degenerate scalar-tensor Lagrangian: degenerate in the sense that
the scalar field p lacks a dynamical term, the term V (p) = f(r)−p·r(p) being
a mere function of p. Nevertheless, the scalar field does have a spacetime
dynamics, due to the nonminimal coupling with the scalar curvature R. The
variation of LH w.r. to p, upon using the identity f ′(r(p)) ≡ p, gives the
equation

R = r(p), (16)
as expected, while the variation w.r. to gµν gives

p

(
Rµν −

1

2
Rgµν

)
= ∇µ∇νp− gµν2p+

1

2
(f(r)− p · r(p))gµν . (17)

By definition of the function r(p), (16) is equivalent to p = f ′(R): plugging
this equation into (17), one easily retrieves the fourth order equation (2).

It is worth noting that for p ̸= 0 a few manipulations (see [14]) allow one
to recast the full system of second order equations (16,17) into the equivalent
form Rµν − 1

2
Rgµν = p−1∇µ∇νp− 1

6
(p−1f(r) + r)gµν

2p = 2
3
f(r)− 1

3
p · r

(18)

Therefore, the Legendre transformation indeed allows to replace the fourth
order equation (2) of a f(R) model with an equivalent second order general-
relativistic model (including Einstein equation) with a self-interacting scalar
field, where the metric is the original metric gµν , without any conformal
rescaling.

The reason to pass to the “Einstein frame metric” g̃µν (3) is that in (18)
the effective energy momentum tensor for the scalar field p, on the r.h.s. of
the Einstein equation, is not the usual one and is seemingly unphysical: it
is, in fact, linear in the second derivatives of p, so the energy density has
indefinite sign. The Einstein frame provides instead a manifestly physical
second order picture [14].
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Conformal rescaling is not part of the Legendre transformation: it is an
additional step needed to obtain an equivalent Einstein-Hilbert Lagrangian
instead of the scalar-tensor Lagrangian (15), analogous to the Dicke trans-
formation introduced in 1962 [15] (the condition p ̸= 0 has to be imposed to
perform the conformal rescaling as well).

If matter is coupled to the original Lagrangian, however, after the con-
formal rescaling the matter Lagrangian is multiplied by a power of p, as a
consequence of the change of the volume density from

√
|g| to

√
|g̃|; thus

the scalar field p acts as a variable coupling factor between ordinary matter
and the metric. But even in the equivalent system (18) for the dynamical
variables (gµν , p), if gravitating matter is added to the f(R) Lagrangian, then
the original matter energy-momentum tensor Tµν is multiplied by p−1 in the
Einstein equation, so the problem persists. This phenomenon, in fact, occurs
whenever any Jordan-Brans-Dicke scalar-tensor theory is recast into an Ein-
stein equation (either by simple manipulations or by conformal rescaling).
To overcome this problem, one should manage to have matter minimally
coupled to the Einstein frame metric: in some cases, this can be achieved by
a suitable coupling to the original metric [14].

All the above facts have already been elucidated (in greater detail) in
[14, 11]. The question, therefore, is whether the procedure envisaged in [1]
provides a different way to obtain an equivalent formulation of a f(R) model
in terms of an Einsten equation with an auxiliary scalar field, not affecting
the matter energy-momentum tensor.

The notation used in [1], unfortunately, is rather confusing, since the
authors use the same symbol R for the scalar curvature of the metric and for
the function that we have denoted above by r(p). Instead, they denote the
Legendre transform of L in two ways, W (ψ) or F (ψ,R) (they use ψ instead
of p to denote the scalar field), which are declared to have the same meaning:
this makes it clear that, in accordance with the usual definition of Legendre
transform, R, when it appears as an argument of F , is indeed the function
R(ψ) (the inverse of ψ = f ′(R)), and not the scalar curvature of the metric.

Then they write: “the equations obtained by varying the action associated
with the Lagrangian F (ψ,R) = ψR − f(R) with respect to the spacetime
metric g are equivalent to the Lagrangian equations obtained by varying the
action associated with the Lagrangian f(R)”. Now, this is simply wrong:
it is the same as claiming that if one sets the variation of the integral of
the Hamiltonian to zero one gets the Hamilton equations, whereas one only
gets ∂H

∂qµ
= 0 and ∂H

∂pµ
= 0. The action which is equivalent to the f(R)

action would instead be defined by the Helmholtz Lagrangian (15), i.e. by
the function ψR(g) −W (ψ). The function F (ψ,R) ≡ W (ψ), the Legendre
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transform of L, does not depend on the metric gµν , because f(R) is supposed
to depend on R alone; the variation of W (ψ) is nothing but

δW (ψ) =

(
R + ψ

dR

dψ
− f ′(R)

dR

dψ

)
δψ = R(ψ)δψ

(on account of the identity f ′(R(ψ)) ≡ ψ). Imposing δW = 0 would then
imply R(ψ) = 0, an evident nonsense.

Incidentally, even the metric variation of [ψR(g) − f(R(ψ))]
√

|g| would
not be the same as the variation of f(R(g))

√
|g|.

Accordingly, in their subsequent example, f(R) = R + ϵR2, from the ψ-
variation of W (ψ) they get ψ = 1 (i.e. R = 0). Actually, this holds provided
ϵ ̸= 0, otherwise the condition f ′′(R) ̸= 0 would be violated, and R(ψ) and
W (ψ) would simply not exist; on the contrary, they infer that ψ = 1 implies
ϵ = 0 in the original Lagrangian, and conclude that “this suggests that the
general metric variation of the �W-action� [...] is somehow related to the
Einstein-Hilbert Lagrangian.”

As a matter of fact, the density W (ψ)
√

|g| does not contain derivatives of
the dynamical variables – neither of ψ nor of the metric – and the variation
of its integral cannot generate any differential equations at all.

The authors of [1] then observe that the metric variation of the W -action
equals the variation of the Brans-Dicke action (without potential) defined by
ψR(g) minus the variation of the original f(R) action: this is true, but only if
one assumes ψ = f ′(R) to be an identity holding independently. Hence they
derive that the metric variation of the W -action is proportional to W itself.
Actually, the metric variation of W (ψ)

√
|g| equals −1

2
W (ψ)gµν

√
|g|δgµν sim-

ply because W (ψ) does not depend at all on the metric, so only the volume
element is affected.

Anyway, one should conclude that the extremals of the W -action are
nothing else than the (constant) solutions ψ of W (ψ) = 0 and R(ψ) = 0.
Instead, in [1] the idea of equating the W -action to the difference of the BD-
action and the f(R) original action leads (without further explanation) to
the following “Einstein�Legendre Lagrangian”:

LEL =

[
R(g) + F (ψ,R(ψ)) +

1

2
gµν∇µψ∇νψ

]√
|g|+ Lmat. (19)

Here, the authors’ ambiguity in the use of R is resolved by their subsequent
equation (7), which is only compatible with the above interpretation of the
notation (they insert the volume element

√
|g| in the action integral instead

of including it in the definition of LEL and Lmat, but this is a mere notational
choice).
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Now, the variation of LEL w.r. to the metric gives (in the sequel we revert
to denoting R(ψ) by r, to avoid misunderstandings)

Rµν−
1

2
Rgµν =

1

2

(
ψr−f(r)

)
gµν−

1

2
∇µψ∇νψ+

1

4
∇λψ∇λψgµν+T

(mat)
µν (20)

while the variation w.r. to ψ gives

2ψ = r. (21)

Are these equations equivalent to (2)? It one takes for granted that
p = f ′(R(g)), then (gµν , ψ) are exactly the same variables (gµν , p) occurring
in (18). Thus, since it has been proven that (2) is equivalent to the system
(18), the equations above should be equivalent to (18) as well.

The trouble is that the variation of the Lagrangian LEL w.r. to ψ does
not yield the equation R(g) = r(ψ), so the relation ψ = f ′(R(g)) cannot be
derived from the field equations (in contrast to (18), where this relation can
be recovered by combining the second equation with the trace of the first
equation). We only know, by the definition of r(ψ), that f ′(r(ψ)) ≡ ψ.

If it were true that R(g) = r(ψ) (and equivalently ψ = f ′(R(g))) on all so-
lutions of the field equations, then one should have 2f ′(R) = R, while taking
the trace of (2) one finds instead 2f ′(R) = 2

3
f(R)− 1

3
f ′(R)R + 1

3
T

(mat)
µν gµν .

For instance, let us check what happens in the case f(R) = R+ϵR2 which
is considered by the authors in the subsequent section (here we restrict to
the vacuum case, for simplicity). In this case one has r(ψ) = ψ−1

2ϵ
, and the

Einstein-Legendre Lagrangian becomes

LEL =

[
R(g) +

(ψ − 1)2

4ϵ
+

1

2
gµν∇µψ∇νψ

]√
|g|; (22)

hence one finds the equations

Rµν −
1

2
Rgµν =

(ψ − 1)2

8ϵ
gµν −

1

2
∇µψ∇νψ +

1

4
∇λψ∇λψgµν (23)

and
2ψ =

ψ − 1

2ϵ
. (24)

Taking the trace of (23) one finds

R =
1

4
∇λψ∇λψ +

(ψ − 1)2

2ϵ
(25)

which is compatible with R = ψ−1
2ϵ

only if ψ fulfills the first order equation
∇λψ∇λψ = 2

ϵ
(ψ − 1)(ψ − 2), which does not hold in general for solutions of
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the field equation (24). If, for these particular solutions, one evaluates the
trace of (2) one gets an algebraic equations for ψ: since the only constant
solution of (24) is ψ = 1, it turns out that the latter, which is equivalent to
R ≡ 0, is the only solution of (23, 24) for which ψ = f ′(R) holds and which
is also a solution of (2).

In conclusion, the statement that “in the ‘EL representation’ the original
f(R) theory acquires a particularly simple form given by second order Einstein
equations with the scalar field ψ = f ′(R) coupled minimally” appears to be
untenable. The “Einstein-Legendre Lagrangian” advocated by the authors
of [1] is not equivalent to the original f(R) Lagrangian and, in general, the
equations derived from LEL are incompatible with ψ = f ′(R).

The Lagrangian LEL is related to the original f(R) model only in that the
potential of the scalar field ψ is set to coincide with the Legendre transform of
the original Lagrangian, but the dynamics produced by the two Lagrangians
cannot even be compared with each other, since there is no way to obtain
from the variation of LEL a functional relation between ψ and R – holding for
all solutions – which would be needed to reconstruct a fourth order equation
for the metric alone.

Alas, it seems unlikely that anything new can emerge in the realm of
metric f(R) theories that has not already been scrutinized in the last decades.
Recent results, indeed, show that a properly defined Legendre transformation
can instead highlight the relationship between different models of extended
gravity [17].

There is, however, one fact to which little attention is paid in older ac-
counts of the Legendre transformation, and which does not seem to have
been exploited in current cosmological applications (with some notable ex-
ceptions such as [18], which however deal with Palatini f(R) theories). The
condition f ′′(R) ̸= 0 ensures the local existence of a function r(p) entering
the potential of the auxiliary scalar field p in the second order picture of
the model: but this function is not unique if f ′(R) is not globally invertible
(i.e. monotonic). For instance, if instead of a quadratic Lagrangian one takes
f(R) = 1

4
R4 − 3

2
a2R2, then one gets three distinct potentials for the field p:

one for the solutions where R < −a, another for the solutions where |R| < a
and a third one covering R > a.

In this sense, the second order picture arising form a single f(R) La-
grangian contains (in both the Jordan and the Einstein frame) a gravitating
scalar field which may have different self-interaction potentials for different
values of the spacetime curvature (the “Legendre sectors” of the model): this
is a situation that does not arise for a scalar field minimally coupled to the
Einstein-Hilbert Lagrangian. The transition from one potential to another
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occurs at a singularity of the Legendre transformation (in the previous exam-
ple, at R = ±a), where the function f ′(R) is nevertheless smooth: therefore
a solution of the original fourth order model corresponds to patching together
solutions with different potentials for the scalar field in different regions of
spacetime. It seems that a systematic investigation of the possible applica-
tions of this fact in cosmology is still lacking.
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