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Summary23

This Thesis focuses on the mathematical modelling of some problems of biome-24

chanical interest with particular attention to the influence of spatial interactions25

due to the heterogeneous and complex environment in which these take place.26

The Thesis is divided in three parts. In Part I, we concentrate on the influence27

of two types of non-local phenomena in the growth and remodelling of biological28

tissues, with special focus on tumour tissues. In Part II, we investigate non-Fickean29

diffusion in a two-scale composite by means of the asymptotic homogenisation tech-30

nique. Finally, in Part III, we report on some studies on the electrophysiology of31

nerve fibers and propose a reformulation of a recent model based on the notion of32

fractal measure. In particular, the content of this Thesis is based on the following33

list of papers and book chapters:34
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030-31547-449

5. Grillo, A., Di Stefano, S., Ramı́rez–Torres, A., Loverre, M. (2019) A study50

of growth and remodeling in isotropic tissues, based on the Anand-Aslan-51

Chester theory of strain-gradient plasticity. GAMM-Mitteilungen, 42:e2019052

0015. https://doi.org/10.1002/gamm.20190001553
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6. Ramı́rez–Torres, A., Napoli, V., Grillo, A. (2022) Fractional versus fractal54

formulation of the Poisson–Nernst–Plack model for the propagation of the55

membrane potential in neurons. In Preparation.56

Among the main results of this Thesis, we mention the following:57

Part I:58

– The use of a strain-gradient framework to analyse the notion of re-59

modelling at two different length scales and provide an interpretation60

of benchmark problems in which the accumulated remodelling strain is61

sufficiently localised.62

– The impact that the non-local character of diffusion processes have in63

the evolution of an avascular tumour. We quantify this influence by64

hypothesising a non-local constitutive law for the diffusive mass flux65

vector identifiable with derivatives of fractional type.66

– The investigation of the effect of remodelling on diffusion processes by67

which the nutrients are transported throughout a biological tissue.68

Part II:69

– The quantification of the impact of a spatially non-local diffusion of70

chemical substances, resolved at the macro- and at the micro-scale of71

a composite medium, on the transport of such substances within the72

medium by employing the asymptotic homogenisation technique.73

– The realisation of a numerical scheme capable of putting together FE74

techniques with the integro-differential spatial operators from Fractional75

Calculus in a composite medium.76

Part III:77

– The reformulation of the Poisson–Nernst–Planck model in the context78

of a fractal geometry to describe the complex arrangement of nerve cells79

in the nervous system.80

Other works, produced during the period of the PhD project and in collabora-81

tion with international researchers, are reported below. However, these papers will82

not be considered in the present Thesis.83
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Introduction260

The main scope of this Thesis is to evaluate the impact of the consideration of261

non-local constitutive laws in the evolution of heterogeneous and complex biologi-262

cal media. In particular, we recourse to non-local tools, such as those provided by263

strain-gradient plasticity and fractional calculus, for the mathematical description264

of potential non-local spatial interactions occurring in the systems under investiga-265

tion. In doing this, we consider fully coupled, highly non-linear problems to model266

the relationships among growth, remodelling and diffusion.267

Part I: In Chapter 1, we start by discussing some general aspects of growth and268

remodelling and the role of diffusion (being active or passive) in the modelling of269

these phenomena. Furthermore, we bring attention to the consideration of non-270

local constitutive laws to account for the effect of the medium’s environment in the271

evolution of the phenomenon under investigation.272

Motivated by the increasing interest of the biomechanical community towards273

the employment of strain-gradient theories for solving biological problems, in Chap-274

ter 2, we study the growth and remodelling of a biological tissue on the basis of a275

strain-gradient formulation of remodelling. Our scope is to evaluate the impact of276

such an approach on the principal physical quantities that determine the growth277

of the tissue. For our purposes, we assume that remodelling is characterised by a278

coarse and a fine length scale and, taking inspiration from a work by L. Anand, O.279

Aslan, and S. A. Chester [14], we introduce a kinematic variable that resolves the280

fine scale inhomogeneities induced by remodelling. With respect to this variable, a281

strain-gradient framework of remodelling is developed. We adopt this formulation282

in order to investigate how a tumour tissue grows and how it remodels in response283

to growth. In particular, we focus on a type of remodelling that manifests itself284

in two different, but complementary, ways: on the one hand, it finds its expression285

in a stress-induced reorganisation of the adhesion bonds among the tumour cells,286

and, on the other hand, it leads to a change of shape of the cells and of the tissue,287

which is generally not recovered when external loads are removed. To address this288

situation, we resort to a generalised Bilby-Kröner-Lee decomposition of the defor-289

mation gradient tensor. We test our model on a benchmark problem taken from the290

literature, which we rephrase in two ways: micro-scale remodelling is disregarded291

1



Introduction

in the first case, and accounted for in the second one. Finally, we compare and292

discuss the obtained numerical results.293

Furthermore, in Chapter 3, we focus on the mathematical description of the294

availability and evolution of chemical agents in the growth of a tumour. Usually,295

Fick’s law of diffusion is adopted for describing the local character of the evolution296

of chemicals. However, in a highly complex, heterogeneous medium, as is a tumour,297

the progression of chemical species could be influenced by non-local interactions. In298

this respect, our goal is to investigate the influence of such types of diffusion on the299

growth of a tumour in the avascular stage. For our purposes, we consider a diffusion300

equation for the evolution of the chemical agents that accounts for the existence301

of non-local interactions in a non-Fickean manner, and that involves notions of302

fractional calculus. In particular, the introduction of derivatives or integrals of303

fractional type of order α ∈ R has proven to be an effective mathematical tool in304

the description of various non-local phenomena. To achieve our goals, we adopt305

part of the modelling assumptions outlined in previous works, in which the growth306

of a tumour is described in terms of mass transfer among the tumour’s constituents307

and structural changes that occur in the tumour itself in response to growth. The308

latter ones are characterised by means of the Bilby–Kröner–Lee decomposition of309

the deformation gradient tensor. We perform numerical simulations and the results310

indicate the relevance of embracing a fractional framework in modelling tumour311

growth. Specifically, the real parameter α ‘dominates’ the way in which the tumour312

grows, since it permits the modelling of a variety of growth patterns ranging from313

the standard growth to no growth at all.314

Finally, in Chapter 4, we review the set-up necessary for the formulation of a315

problem of diffusion in a tissue that undergoes remodelling and the steps leading316

to the definition of the diffusivity tensor in the case of transverse isotropy. Finally,317

we consider an existing model of non-local diffusion [195, 105, 252], and we adapt318

it to our framework with the purpose of suggesting further investigations, possibly319

of interest for biomechanical problems.320

Part II: In this Part, we are interested in the study of diffusion in highly het-321

erogeneous biological media (see Chapter 5). Specifically, we study a problem in322

which the mass flux of a chemical species in each constituent is related to the323

species’ concentration gradient by means of a spatially non-local constitutive law.324

We do this by admitting that, in principle, two types of non-locality coexist: one325

pertains to the micro-scale and is thus associated with each constituent of the com-326

posite medium, while the other one is introduced a priori to allow for a non-local327

behaviour at the macro-scale. Note that these two types of non-locality are, in328

general, independent of each other.329

Particularly, in Chapter 6, we prescribe the mass flux to obey a two-scale, non-330

local constitutive law featuring derivatives of fractional order, and we employ the331
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asymptotic homogenisation technique [250, 34, 72] to obtain an overall descrip-332

tion of the species’ evolution. As a result, the non-local effects at the micro-scale333

are ciphered in the effective diffusivity while, at the macro-scale, the homogenised334

problem features an integro-differential equation of fractional type. In particular,335

we prove that in the limit case in which the non-local interactions are neglected,336

classical results of asymptotic homogenisation theory are re-obtained.337

In Chapter 7, we address the two types of non-locality (that is, the one at338

the micro-scale and the one at the macro-scale), through dedicated benchmark339

problems. We remark that the results presented in Chapter 7 can be adapted in340

a straightforward manner to the study of thermal diffusion. Still, we shall only341

discuss diffusion of chemical species because the main problems that we have in342

mind come from the transport of chemical species in biological tissues (see Chapter343

5). In particular, we perform numerical simulations to show the impact of the344

fractional approach on the overall diffusion of species in a composite medium. Our345

main result is the quantification of the impact of the spatially non-local diffusion of346

fractional type of chemical substances, resolved at the macro- and at the micro-scale347

of a strongly heterogeneous composite medium, on the transport of such substances348

within the medium.349

Finally, in Chapter 8, we report some details of the numerical schemes based350

on Finite Element (FE) methods. Specifically, we concentrate on the matrices351

and vectors appearing in the algebraic equations resulting from the discretisation352

process presented in Chapter 7 and investigate some of their properties.353

Part III: We focus on the study of the propagation of the action potential in neu-354

ron cells. This Part constitutes a first step towards the conception of mathematical355

models to investigate neurological pathologies characterised by axon demyelination356

such as, for example, multiple sclerosis.357

First, in Chapter 9, we revisit the more salient aspects of the Poisson–Nernst–358

Planck (PNP) model considered in [96] for the propagation of action potential and359

perform numerical simulations based on the Finite Elements method. In doing360

this, our scope is to highlight the most relevant aspects in the formulation of the361

PNP model and to introduce some fundamental modelling assumptions, such as362

the consideration of the Hodgkin & Huxley [147] model for ionic currents through363

the axon’s membrane.364

Driven by recent studies investigations concerning the fractal branching be-365

haviour of neurons (see, e.g. [259]), in Chapter 10, we reformulate the PNP model366

in a fractal context. Wit this aim, we start by reformulating Maxwell’s equations367

in the case of a medium with fractal geometry using the the fractal measures in-368

troduced in [266]. In this case, we speak about Maxwell’s fractal equations. In369

particular, to determine the fractal equations for the currents, we study the mass370

balance equations and the dissipation of the system by adapting the approach pre-371

sented in [141, 39, 129] to the fractal framework under consideration. We mention372

3



Introduction

that the topics presented in this chapter are part of our current investigations which373

include, but are not limited to, numerical simulations for a specific problem. This,374

however, is a challenging task that requires the conception of dedicated computa-375

tional algorithms. For this reason, the design of such algorithms and the numerical376

simulations concerning the fractal PNP model are out of the scope of this Thesis.377
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Part I378

Non-locality in the growth and379

remodelling of biological tissues380
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Chapter 1381

Growth, remodelling and diffusion382

in biological tissues383

The work reported in this chapter has been previously published in [131, 220, 235].384

385

Among the phenomena that characterise the evolution of biological tissues,386

growth and remodelling certainly play fundamental roles. Growth manifests it-387

self through the variation of the mass of a tissue and, to occur, a complex family of388

intermingled interactions has to take place [265]. Remodelling, on the other hand,389

is usually understood as the evolution of the physical, mechanical, and transport390

properties of a tissue [265]. It may originate from interactions internal to the tissue,391

or from interactions of the tissue with its environment. In both cases, remodelling392

may lead to a rearrangement of the tissue’s internal structure or to changes ob-393

servable from outside [76]. Such types of evolution can contribute to modify the394

tissue’s capability of bearing loads and of conducting fluids as well as its sensitivity395

to external stimuli. A review of the most acknowledged interactions, and of the396

theoretical tools for taking these into account, can be found in [116, 242, 265, 50,397

76, 102, 86, 120, 176, 198, 23, 51, 12, 80, 228, 24, 129, 126, 127, 237, 91, 78], to398

mention just a few1.399

The growth of a biological tissue consists of the variation and redistribution of400

its mass, and is the consequence of processes that influence each other reciprocally401

in spite of their being characterised by different time and length scales [265, 116,402

76]. Besides genetic, bio-chemical, and bio-physical phenomena, which pertain403

to the molecular and intra-cellular scales, the growth of a tissue also depends on404

interactions that occur at the inter-cellular level, as well as on those that involve405

the tissue as a whole. The latter two types of interactions are often studied with406

1The literature on growth and remodelling—especially on the mechanical aspects of these
phenomena—has been proliferating in the last years, and even attempting to provide an adequate
list of Authors is not an easy task.
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the purpose of describing how a tissue evolves, for instance, by adapting its internal407

structure and material properties in response to the changes of its environment.408

In the literature, the noun “growth” may denote markedly different processes.409

These can be physiological, as in the case of embryonic development, increase of410

muscular mass, and healing of bone fractures [265, 76], or they may refer to patho-411

logical facts, like aortic aneurysm, hypertrophic cardiomyopathy, hyperplasia and,412

more specifically, formation of tumours (see e.g. [79] for a comprehensive review).413

Even though, in principle, all of these events are accompanied by structural adapta-414

tions, “remodelling” may also stand on its own and, in fact, it has been extensively415

investigated also alone, i.e., with or without growth (see e.g. [93, 41, 80, 274, 32,416

139, 213]).417

In fact, the structural adaptation of a tissue may manifest itself in several dif-418

ferent ways, and it may involve one or more classes of phenomena, which are often419

referred to with the common name of remodelling. For the types of problems420

addressed in this work, in which a tissue is viewed as an aggregate of cells, a re-421

organisation of its internal structure is assumed to occur through the dissolution422

and reformation of the adhesion bonds among the cells [10, 227, 124], or through a423

rearrangement of the position, shape, and orientation of the cells in the aggregate424

[115, 114]. In both cases, remodelling acquires the character of a configurational425

process at the inter-cellular scale, and may result in an inelastic change of shape426

of the tissue as a whole. More generally, however, when the extracellular matrix427

(ECM) is accounted for, or in the case of fibre-reinforced tissues, the structural428

changes take place through the distortion of the ECM’s collagenous network [228],429

or through the reorientation of the collagen fibres.430

The problem of fibre reorientation has been addressed in several works, some-431

times in connection with growth, and for different types of tissues, these ranging432

from blood vessels (see e.g. [93, 139, 197, 213]) to articular cartilage (see e.g. [274,433

233, 32, 132, 128, 78]). In other situations, as is the case for bone, the concept of434

structural adaptation is introduced to interpret the formation of cracks [119], the435

onset of damage, and the occurrence of inelastic distortions that are remnant of the436

phenomenon of plasticity in metals (see e.g. [179, 201]).437

To describe the processes mentioned so far, a tissue may be viewed as a contin-438

uum, or a mixture of continua, and its dynamics may be revealed, at least partially,439

by formulating mathematical models based on the laws of continuum mechanics.440

Such models should capture the “two-level” nature of the phenomena that they are441

meant to resolve, thereby trying to connect the visible transformations of a tissue442

with the chemical, electrical, and mechanical interactions occurring inside it. For443

instance, in the case of growth, a connection of this kind is established by mechan-444

otransduction [71, 191], i.e., the modulation that mechanical stress exerts on the445

tissue’s growth rate due to its interplay with the tissue’s mass sources. Mechan-446

otransduction has also been recently discussed by [94] in the context of “inverse447
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1.1 – Non-locality in the growth and remodelling of a biological tissue

poroelasticity” for “soft biomembranes” and, in particular, in the case of the inter-448

play between mechanical stress and chemical potential that results in the possibility449

of driving the variations of osmotic pressure through mechanical loading.450

When a tissue is modelled as a mixture of continua —typically a fluid phase451

and one or more solid phases— [49, 23, 12, 129, 124, 125], its growth is usually452

identified with an inter-phase exchange of mass. Such process is assumed to yield453

either an accretion of the solid mass at the expenses of the fluid or a loss of solid454

mass, induced by the disintegration of the tissue cells, which become necrotic and455

are then dissolved into the fluid. In such a framework, the solid phase is taken as456

a representation of the tissue cells (and, where appropriate, of the ECM), and a457

mathematical model of growth should be able to relate the mass variation of the458

solid phase with the availability of nutrients and with the structural transformations459

that possibly accompany growth. As already mentioned above, the latter ones are460

assumed to have inelastic nature and may refer to the redistribution of the solid461

mass, to the change of the cells’ arrangement inside the tissue, so as to mimic the462

result of the dissolution and reformation of the cellular adhesion bonds, or to a463

combination of both phenomena.464

Since the growth of a tissue is subordinated to the availability of nourishment,465

an adequate amount of nutrient substances, like for instance oxygen and sugars, has466

to be supplied to the tissue cells [205, 204, 58]. Hence, to understand the processes467

underlying the activation, progression and regulation of growth, it is of fundamental468

importance to describe the mechanisms by which the nutrient substances reach the469

cells. These mechanisms, in fact, become even more intriguing when remodelling470

is accounted for, as it contributes to vary the environment in which the nutrients471

are transported.472

The role of the interstitial fluid is to bring the nutrients to the cells, to take473

away the byproducts of their metabolic activity, and to remove dead cells from474

the tissue. From this description, it is clear that the interstitial fluid is far from475

being “pure water”. Rather, it is a mixture of water and other substances of various476

nature, which are commonly denominated fluid constituents. The evolution of these477

substances follows a dynamics that is governed both by their reciprocal interactions478

and by the interactions of the fluid with the medium. The latter, in turn, varies479

its shape and internal structure in response to growth and remodelling, thereby480

changing the flow domain of the fluid.481

1.1 Non-locality in the growth and remodelling482

of a biological tissue483

Because of the intrinsic heterogeneous and complex structure of biological tis-484

sues, the consideration of local constitutive laws may not be suitable for describing485

the several interactions among their constituents. In this respect, an alternative486
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Growth, remodelling and diffusion in biological tissues

is to recourse to the introduction of constitutive laws of non-local type to account487

for the influence of the medium’s environment in the description of the phenomena488

acting on the tissue.489

Non-locality is a broad notion [104, 117], which covers a wide spectrum of phe-490

nomena, from transport processes [106] to plasticity [4, 134] or visco-elasticity [18,491

88], and depends on the intrinsic structure of the system to which it is referred492

and/or on its response to long-range stimuli. Moreover, non-locality can be intro-493

duced in different ways, e.g., by having recourse to higher-order gradient theories,494

as is the case for plasticity [4, 134, 260], or by assigning constitutive laws that495

feature integro-differential operators [164, 104].496

In the following, we discuss two approaches that will be considered in this Thesis497

for the description of non-local phenomena that may be influencing the growth and498

remodelling of a biological tissue of interest.499

1.1.1 Strain-gradient non-locality500

Understanding how growth and remodelling are related to each other is a nec-501

essary step towards the comprehension of the evolution of biological tissues. In this502

respect, we remark that the coupling of growth and remodelling has been investi-503

gated in several papers (see e.g. [10, 125, 191] and the references therein, without504

considering strain-gradient constitutive laws, while second-order theories have been505

proposed e.g. by Ciarletta et al. [70, 68, 67] to investigate the transport of mass506

in the presence of morphogenesis (see also [102] for a discussion on this issue). We507

note that in the case of growth, a theory of strain-gradient type has been recently508

proposed in [91], although no remodelling was considered.509

The type of remodelling induced by mechanical stress can be viewed as a plastic-510

like behaviour and, if one assumes plastic response to be triggered by a yield stress511

(as is the case, for instance, in rate-independent [201, 136] or in Perzyna-like plas-512

ticity [201]), one may conclude that remodelling commences in the regions of the513

tissue in which the stress exceeds a certain threshold. Since in a growing tissue514

such regions are those in which the growth is predominant and the deformation is515

inhibited, it is very important to resolve accurately the plastic-like distortions. This516

exigency becomes stringent when the “plastic” strains accumulate in very narrow517

zones. In such cases, a useful tool of investigation could be to switch from a local518

to a “non-local” model of plasticity. A possible way of accomplishing this task is519

supplied by the theory proposed by Anand et al. in [14]. However, before exposing520

such theory and adapting it to our purposes, we should clarify that the framework521

within which Anand et al. [135, 15, 14] and Gurtin et al. [135] developed their522

work is deeply different from ours. Indeed, the “gradient regularisation” presented523

in their paper is introduced for numerical reasons, that is, with the purpose of524

correctly resolving the accumulated plastic strain in the shear bands that arise in525

strain-softening materials. Anand et al. [14] justify such regularisation by means526
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1.1 – Non-locality in the growth and remodelling of a biological tissue

of the concept of “micro-scale plasticity” and, by doing this, they actually admit527

the existence of a physics that cannot be captured by standard theories of plas-528

ticity. The Authors, in fact, end up with a yield condition expressed by a partial529

differential equation in the variable that resolves the fine scale remodelling (“micro-530

plasticity”, in the jargon of Anand et al. [14]). Such equation resolves the length531

scale over which the plastic strain is accumulated, and allows to recover a yield532

condition in the style of Aifantis [2, 3]. Starting from the approach suggested by533

Anand et al. [14], and in spite of the differences between their framework and ours,534

we investigate how the introduction of a fine scale remodelling affects our growth535

problem.536

As explained by [14], the micro-scale plasticity describes the inhomogeneities537

that arise, in the plastic regions of a material, at a length scale much smaller than538

the one at which the standard accumulated plastic strains are resolved. According539

to the theory of Anand et al. [15, 14], and similarly to what is done in [133] and540

by [135], the micro-scale plasticity is investigated by enriching the standard kine-541

matics that describes an elasto-plastic body. In this respect, a dedicated kinematic542

descriptor is introduced, whose task is to capture the fine scale plastic inhomo-543

geneities, and, along with it, a force balance equation is added to the list of balance544

laws of a classical elasto-plastic problem. Such additional force balance is deduced545

by the means of the Principle of Virtual Powers and, under suitable hypotheses, the546

forces featuring in it can be obtained constitutively by exploiting the dissipation547

inequality of the considered system.548

We mention that, as is known from the literature, the non-standard approach549

is necessary for materials exhibiting strain-softening elasto-plastic behaviour, and550

when the plastic distortions tend to be markedly localised. The occurrence of551

the strain-softening behaviour is related to the definition of the yield stress of the552

considered material, expressed as a monotonically decreasing function of the accu-553

mulated plastic strain, whereas the localisation of plastic strains may be strongly554

problem dependent. Before going further, we should thus clarify that, to the best555

of our knowledge, no strain-softening behaviour has been observed in the biolog-556

ical tissues under investigation: it might occur or not, and, if it occurs, it is not557

necessarily ascribable to the accumulated plastic strain. Moreover, in the problem558

analysed in the sequel, the localisation of the accumulated “plastic” strain is not559

so pronounced to call at all costs for the non-standard approach. It should also be560

mentioned that the type of remodelling addressed in our work cannot be employed,561

as it stands, for any kind of biological tissue. In fact, our model might be adequate562

for tumours [10], as it describes stress-driven irreversible deformations, which are563

related to a rearrangement of the cells’ shape and of the cellular adhesion network.564

However, it is very likely inappropriate for tissues capable of bearing loads, such as565

tendons and blood vessels. For such tissues, indeed, the occurrence of remodelling566

is put in relation to “tensional homeostasis” [79]. Furthermore, we can speak of567

“irreversibility” only for processes occurring over relatively short time windows.568
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Indeed, even though plastic-like distortions take place, the tissue may recover its569

initial shape because cells grow or because the cells move actively towards their570

original configuration.571

1.1.2 Non-locality based on Fractional Calculus572

It is worth noting that, although the inelastic distortions accompanying growth573

play an important role on its evolution [145, 11, 80, 125, 191], which may also be574

partially self-driven [98, 91], the growth of a tissue (e.g. a tumour) is conditioned575

by the presence of chemical agents of various nature, such as nutrients. Fick’s law576

of diffusion is largely adopted for this purpose, even though it has often turned577

out to be inconsistent with the results of some observed transport processes [118,578

52, 74], which are thus referred to as non-Fickean. In fact, non-Fickean diffusion579

processes have been recognised in several biological tissues, including cells [118, 74],580

neuromuscular junctions [166] and brain tissue [52], among others. In particular,581

the experiments conducted by Danyuo et al. [81] suggest that cancer drug release582

kinetics in breast cancer is non-Fickean.583

A common characteristic of the occurrence of non-Fickean patterns, as suggested584

in several works [161, 200, 118, 156, 113], is the multi-scale and heterogeneous585

nature of the environment in which diffusion takes place. Specifically, Lacks [166]586

shows that geometric factors, such as tortuosity, could cause the diffusion processes587

occurring in a neuromuscular junction to be non-Fickean. Within this view, in the588

case of a tumour, although to our knowledge there is no experimental evidence589

that correlates non-Fickean diffusion with its internal structure, its microvascular590

network is known to have a strong influence on transport phenomena. In fact, this591

issue has been discussed in several papers, like e.g. [160, 216] and references therein.592

Before going further, we notice that in the literature there exist other non-593

Fickean diffusion laws that, however, do not rely on the assumption of non-local594

effects. In particular, the Maxwell-Stefan model [162], which generalises Fick’s595

diffusion by the consideration of “thermodynamic non-idealities”2 and “influence596

of external force fields”, has been postulated in the study of porous media and597

tumour growth [157].598

In general, non-Fickean behaviours can be gathered in two categories:599

(i) non-locality in time, which associates the mass flux of a given chemical agent600

with the concentration gradient of that agent through an integro-differential601

2According to [273], the thermodynamic non-idealities are related to a phenomenon that per-
tains to a thermodynamic system, like, for instance, a gas, and that occurs through the “storage
of potential energy” among the molecules of the system itself as a result of the interactions
among such molecules. The main consequence of the non-idealities is that the concentrations of
the molecules turn out to be different from those expected in the absence of the energy storage
among them.
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relationship, such as, for example, those involving fractional time derivatives602

or fractional time integrals [21];603

(ii) non-locality in space, which means that the mass flux vector of a species can-604

not be expressed as a point-wise linear function of the concentration gradient,605

as Fick’s law would prescribe.606

In particular, the employment of integrals and derivatives of fractional order607

[224, 21, 22] has demonstrated to be an effective method in the description of608

various non-local phenomena [19, 45, 55], including non-Fickean diffusion [64, 195,609

82, 209]. As pointed out in [82], the introduction of Fractional Calculus allows610

for the description of non-Fickean transport processes in a natural way, because of611

their close connection with the concept of anomalous diffusion [200].612
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Chapter 2613

A strain-gradient approach to614

remodelling in growing media615

The work reported in this chapter has been previously published in [131].616

2.1 Introduction617

A number of papers has been produced in which growth and remodelling have618

been described by adopting the language and formalism of continuum theories (see619

e.g. [199] and the references therein). In some works devoted to the theoretical620

foundations of volumetric growth (see e.g. [102, 178, 86]), emphasis is put on the621

necessity of defining variables that, together with the descriptors of the tissue’s622

standard mechanical state, are capable of catching its structural transformations.623

In [102], this is done by having recourse to the theory of uniformity [99, 100], and624

introducing the concepts of “archetype” and “transplant operator” [102, 99, 100].625

On the other hand, in several other contexts, the Bilby-Kröner-Lee multiplicative626

decomposition of the deformation gradient tensor is adopted, along with its gener-627

alisations, in order to frame remodelling in terms of “plastic-like distortions” (see628

e.g. [130]). We use this terminology in order to underline that, in the presence of629

remodelling, the structural transformations of the tissues considered in this work630

recall the plastic distortions of non-living, elasto-plastic materials. Sometimes, we631

use the adjectives “plastic” and “remodelling” interchangeably: we take this liberty632

when a physical quantity, historically conceived for the theory of plasticity, has to633

be re-interpreted in compliance with the physical context of the present work. A634

relevant example is the accumulated plastic strain, a variable for which we use both635

its original name and the name accumulated remodelling strain. In other cases,636

however, we use quotation marks for “plastic” and “plasticity”, if we need to recall637

that we are borrowing terms from the theory of plasticity. For instance, we use this638

convention when we speak of micro-scale plasticity.639
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To further clarify the type of remodelling addressed in this work, and to con-640

textualise the wording “plastic-like distortions”, we provide an explicit example of641

the inelastic rearrangement of the cells of a tissue. For this purpose, we discuss642

the results of an experiment commented in [114]. In Figure 2.1 (which corresponds643

to Figure 7 of [114]), Forgacs et al. [114] show three different stages of a cellular644

aggregate subjected to a loading history referred to as “centrifugation” [114]. The645

first column of Figure 2.1 reports the configuration of the aggregate “before cen-646

trifugation”[114], when the cells are “isodiametric” and the aggregate is spherical.647

The second column, instead, shows the aggregate after a 5 minute centrifugation:648

at this stage, the aggregate is no longer spherical, the cells have changed their shape649

and are said to be in a “rapidly relaxing, more elastic phase” [114]. Finally, the650

third column depicts the configuration of the aggregate after 36 hour centrifuga-651

tion. In this configuration, the aggregate is believed to have reached a new state652

of equilibrium, and its cells seem to have attained a state free of stress. Most im-653

portantly, the cells seem to have changed their positions and to have redistributed654

their shape and orientation in a permanent manner, so that the aggregate does not655

spontaneously tend to recover its original configuration, regardless of the absence656

of external loads. Forgacs et al. [114] use the theory of viscoelasticity to model the657

experiment described so far. To us, however, the inelastic behaviour of the cellular658

aggregate may also suggest interpretations other than, and perhaps complementary659

to, viscoelasticity. Indeed, looking at the third column of Figure 2.1, one observes660

that the internal structure of the aggregate has changed, and this change seems661

to be due to the fact that the cells, relaxed or not, have modified their shape and662

arrangement inside the tissue. Therefore, at least in our opinion, viscoelasticity663

alone may be insufficient to accurately account for the irreversible deformations664

(distortions) of the tissue. Rather, the interpretation of the just discussed phe-665

nomenology may necessitate concepts borrowed from the theories of plasticity or666

viscoplasticity, since these are able to describe the tissue’s internal kinematics in a667

way that is similar to the motion of the defects in solids. This view seems to be668

corroborated also by other experiments conducted on tumour spheroids (see e.g.669

[262] and references therein). In such experiments, a spheroid is allowed to grow670

and, after growth has occurred, it is cut radially for a length of about the 80% of its671

diameter: what is observed is a relaxation of the stresses, resulting in the opening of672

the spheroid, with the edges of the cut drifting away from one another (see Figure673

2.1d). This behaviour, in fact, suggests the existence of an incompatible, stress-free674

state of the tumour, which is consistent with the description of the tumour as an675

elasto-plastic material. To us, this observation justifies the approach followed in676

our work, although it does not exclude visco-plastic effects. While bearing this677

in mind, for simplicity we restrict here our investigations to the case of plasticity678

alone, and we adopt this approach to model the internal rearrangement, i.e., the679

remodelling, of the tissues studied in our work.680

To move forward in the comprehension of how growth and remodelling interact,681
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(a) (b) (c)

Tumour opening

(d)

Figure 2.1: First row (redrawn and adapted from Forgacs et al. [114]): Schematic
representation of the cells rearrangement in an spherical aggregate (a) before cen-
trifugation, (b) after a 5 minute centrifugation, and (c) after 36 hour centrifugation.
Second row (redrawn and adapted from Stylianopoulos et al. [262]): Stress relax-
ation of a tumour spheroid after a radial cut is performed.

an important question to answer is how to relate mechanical stress with both phe-682

nomena (see e.g. [199, 13]). For example, the tearing of the inter-cellular bonds in683

a tumour, which can be interpreted as an expression of remodelling [10, 227], leads684

to the relaxation of stress, and stress, apart from mechanotransduction, may play685

a role on the growth of the tumour. Indeed, a recent result of some of us seems686

to show that remodelling enhances the growth of a tumour in the avascular stage687

by increasing the speed at which the tumour’s boundary advances in space [191].688

Although this result necessitates validations, it may help to estimate qualitatively a689

possible interplay between remodelling and growth. To this end, Mascheroni et al.690

[191], drew the conclusion that the observed behaviour was the consequence of the691

smoothing effect of the plastic-like distortions on mechanical stress, and that such692

effect was transferred to the term describing growth through the mechanotransduc-693

tion.694

2.1.1 Aim of our work695

The main goal of our work is to determine the consequences of a strain-gradient696

formulation of remodelling on the growth of a biological tissue. Many different paths697

could be followed to address this question. Indeed, one may adopt the framework698

developed in [102], in which a constitutive theory is developed that features the699

first- and second-order gradient of the deformation as well as the first- and second-700

order “transplant operators” [70, 68, 67]. Alternatively, one may turn to a gradient701
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theory of remodelling in continua with micro-structure by elaborating the Cosserat-702

type approach put forward in [100]. Another possibility is to have recourse to703

the higher-order gradient theories presented, for example, by [185] for the case of704

partially saturated porous media, and by [123] for problems of bone reconstruction705

(see also [83] for a review).706

In this work, we focussed on the approach based on the “micro-scale plasticity”707

of Anand et al. [14] because of its “simplicity”. This approach, indeed, is “simple”708

because it describes the phenomenon of micro-plasticity by means of a scalar vari-709

able, which makes its use and implementation rather straightforward in the study710

of growth and remodelling as coupled phenomena.711

For our purposes, we consider a benchmark problem taken from the literature712

[11, 91], and we adapt it to our framework. We elaborate two different formulations713

of this problem. In the first one, referred to as “standard model” (or approach), we714

give no room to micro-scale “plasticity”, and we adopt the accumulated “plastic”715

strain, denoted by εp, as the only measure of the plastic-like distortions representing716

the tissue’s remodelling. In the second formulation, referred to as “non-standard717

model”, we switch on the micro-scale “plasticity” and, as done by [14], we assume718

that the information about this type of fine scale remodelling is disclosed by a scalar719

variable, denoted by ep. Then, the difference between ep and εp indicates to what720

extent remodelling tends to be a two-scale phenomenon.721

We emphasise that our leading motivation is to weigh the influence of the strain-722

gradient approach outlined above on the main descriptors of growth in the consid-723

ered benchmark problem.724

2.1.2 Limitations and novelties725

In addition to these considerations, we clarify that, in this work, we study only726

the case in which growth is inhibited by the lack of nutrients or boosted by their727

consumption. This hypothesis is typical for tumours, in which cells thrive as long728

as nourishment is at their disposal. However, more generally, and especially in729

tissues other than tumours, nutrients are not the only agents responsible for cell730

proliferation. The latter, indeed, can be repressed or enhanced, depending, for731

instance, on the presence of physical barriers, lack of space, or the occurrence of732

contact inhibition mechanisms.733

In spite of the limitations outlined above, our approach offers some essential734

novelties that can improve the interpretation of benchmark problems in which the735

accumulated remodelling strain is sufficiently localised. This could be the case when736

the growth of a tissue is strongly promoted by a great availability of nutrients, while737

its deformation is prohibited by the presence of constraints, like undeformable walls738

or contact with much stiffer materials. In such situations, indeed, the mechanical739

stress increases and, when it overcomes a given threshold, a plastic-like remodelling740

is activated. In the cases in which a confinement of the accumulated “plastic” strain741
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takes place, e.g. close to an interface separating two materials or at the constrained742

boundaries of a tissue, the non-standard approach proposed in our work can help743

to achieve a better resolution of its growth and remodelling.744

More in detail, the novelties of the present study with respect to previous pub-745

lications of some of us [191, 91] are the following: (i) we analyse the coupling746

between growth and remodelling both theoretically and computationally, and we747

resolve the remodelling at two different length scales; (ii) with the aid of the theory748

developed by Anand et al.[14], we formulate remodelling within a strain-gradient749

framework, thereby generalising our past approaches, which were of “grade zero”750

in the remodelling variables1.751

Furthermore, the major novelties of our contribution with respect to the work752

of Anand et al. [14] are the following: (a) in our work, the material is a biphasic753

medium, featuring a solid and a fluid phase, with the solid phase comprising two754

populations of cells, and the fluid carrying chemical substances; (b) the interplay755

between growth and remodelling leads to several interactions that are accounted756

for in several parts of the mathematical model, and that address, for instance, the757

evolution of the fluid pressure, of the nutrients, and of the cell populations. More-758

over, with reference to point (b), we emphasise the generalisation of the equation759

for the micro-scale plasticity [14], in which the length associated with the spatial760

evolution of ep, rather than being a constant (cf. [14]), depends on growth and on761

the coarse scale plastic-like distortions.762

2.2 Theoretical background763

The problem under investigation involves the motion of the solid phase, the764

motion of the fluid phase, the distortions related to growth, and plastic-like distor-765

tions, which are associated with the reorganisation of the tissue’s internal structure.766

The definitions supplied in this section can be encountered in many works address-767

ing Mixture Theory, and have been recently used for establishing the theoretical768

framework of previous works of some of us [269, 128, 91, 78]. Such framework,769

in turn, has been adapted from the kinematic description of biphasic mixtures as770

developed by [231] and [232].771

1We remark that, in Grillo et al.[128] and Crevacore et al.[78], we do present a first grade
theory for the considered remodelling variable, but such variable does not represent plastic-like
distortions. Rather, it is the order parameter describing the mean fibre orientation in a fibre-
reinforced biological tissue.
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2.2.1 Mass balance laws772

Following [191] and [91], the solid phase of the tissue is assumed to comprise only773

two types of cells, i.e., the proliferating cells and the necrotic ones. Their presence774

in the tissue is measured by the mass densities φsρscp and φsρscn, respectively,775

where φs is the volumetric fraction of the solid phase, ρs is its true mass density,776

while cp and cn are the cells’ mass fractions, compelled to satisfy the constraint777

cp+ cn = 1, everywhere in Ct and I . Here, I ⊂ R is an interval of time, and Ct is778

the subset of the three-dimensional Euclidean space, S , occupied by the biphasic779

system at time t. Note that the indices “p” and “n” stand for “proliferating” and780

“necrotic”, respectively. Once the composition of the solid phase is specified, it is781

possible to characterise the mass balance of the solid phase by writing one balance782

law for each cell population, i.e.,783

∂t(φsρscp) + div (φsρscpvs) = rfp + rpn, (2.1a)

∂t(φsρscn) + div (φsρscnvs) = rnf − rpn. (2.1b)

As reported by [191] and [91], rfp describes the transfer of mass from the fluid phase784

to the solid phase, rnf measures the dissolution per unit time of the necrotic cells785

in the fluid, and rpn is the rate at which the proliferating cells become necrotic.786

Equations (2.1a) and (2.1b) have been obtained under the assumption that both787

the proliferating and the necrotic cells move with the velocity of the solid phase, vs.788

Moreover, because of the constraint on the mass fractions, they can be rephrased789

as790

∂t(φsρscp) + div (φsρscpvs) = rpn + rfp, (2.2a)

∂t(φsρs) + div (φsρsvs) = rfp + rnf ≡ rs. (2.2b)

Note that the last equality of Equation (2.2b) defines the overall source/sink of mass791

of the solid phase, i.e., the term rs, which describes the variation of the tissue’s mass792

due to growth.793

Finally, we relate the occurrence of growth with the presence of nutrients in794

the tissue. These are conveyed by the fluid phase to the proliferating cells and are795

believed to activate or inhibit growth depending on whether or not they exceed a796

certain threshold. To characterise the evolution of the nutrients, we introduce the797

nutrients’ mass fraction, cN, and the mass density φfρfcN, where φf and ρf indicate798

the volumetric fraction and the mass density of the fluid phase, respectively. In799

addition, we require that the tissue obeys the saturation condition, i.e., φf = 1−φs,800

and we consider the mass balance laws of the nutrients and of the fluid phase as a801

whole, i.e. [191, 91],802

∂t(φfρfcN) + div (φfρfcNvf + yN) = rNp, (2.3a)

∂t(φfρf) + div (φfρfvf) = −rs. (2.3b)
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In (2.3a) and (2.3b), vf is the velocity of the fluid phase, yN is the mass flux vector803

associated with the motion of the nutrients relative to vf , rNp is the rate at which804

the nutrients are consumed by the proliferating cells, and the right-hand-side of805

(2.3b) is taken equal to the negative of rs in order to ensure the local conservation806

of mass for the biphasic mixture under study.807

Next, we hypothesise that the mass densities of the solid and of the fluid phase808

can be regarded as constants in the range of interest for the problem at hand.809

Hence, we set ρs(x, t) = ρs0 and ρf(x, t) = ρf0 for all x ∈ Ct and t ∈ I , and we810

summarise (2.2a), (2.2b), (2.3a), and (2.3b) in the following system of equations811

φsρs0Dscp = rpn + rfp − rscp, (2.4a)

ρs0Dsφs + ρs0φs div vs = rs, (2.4b)

φfρf0DscN + φfρf0w∇cN + divyN = rNp + rscN, (2.4c)

div vs + div (φfw) =

(
1

ρs0
− 1

ρf0

)
rs, (2.4d)

where, for any given physical quantity f , the symbol Dsf ≡ ∂tf + (∇f)vs denotes812

the substantial derivative of f with respect to the solid phase velocity, and w ≡813

vf−vs is the velocity of the fluid relative to the solid. Note that the product φfw is814

often referred to as filtration velocity [149], although it actually represents a specific815

mass flux vector [35].816

For future use, we remark that the mass balance law (2.4d) can also be recast817

in the equivalent representation818

φsdiv vs + φfdiv vf + (∇φf)w =

(
1

ρs0
− 1

ρf0

)
rs. (2.5)

2.2.2 Kinematics819

The motion of the solid phase is described by the smooth mapping χ : B×I →820

S , where B is the tissue’s reference configuration. For each pair (X, t) ∈ B × I ,821

the spatial point occupied by the solid phase is given by x = χ(X, t) ∈ S . By822

differentiating χ with respect to its arguments, we obtain the deformation gradient823

tensor, i.e., the tangent map of χ, defined by F (X, t) = Tχ(X, t) : TXB → Tχ(X,t)S824

[189], and the solid phase velocity Vs(X, t) = χ̇(X, t). Here, TXB and Tχ(X,t)S are825

the tangent space of B at X and the tangent space of S at χ(X, t), respectively826

[189], and the superimposed dot means partial differentiation with respect to time.827

For completeness, we recall the relationship between Vs and the Eulerian velocity828

of the solid phase, i.e., vs(x, t) = vs(χ(X, t), t) = Vs(X, t), so that the composition829

vs( · , t) ◦ χ( · , t) = Vs( · , t) holds true for all t ∈ I .830

The fluid motion is described by the Eulerian velocity vf(x, t), evaluated at831

every point x ∈ S occupied by the fluid and at time t ∈ I . Note that, since the832
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system under investigation is a mixture, the fluid co-exists with the solid at every833

point x ∈ S at which the tissue is observed. Thus, the point x can also be viewed834

as the image of X through the solid motion, i.e., x = χ(X, t), and the fluid motion835

can be studied by means of the composition V f( · , t) ≡ vf( · , t) ◦ χ( · , t), such that836

V f(X, t) = vf(χ(X, t), t).837

To account for the growth and structural reorganisation of the tissue, we have838

recourse to the multiplicative decomposition of the deformation gradient tensor,839

which we propose in the form [10, 155, 125]840

F = FeFpFγ. (2.6)

In (2.6), Fγ, Fp, and Fe describe the distortions associated with the uptake or841

loss of mass, the distortions accompanying the plastic-like rearrangement of the842

tissue’s internal structure, and the distortions due to the elastic accommodation843

of the tissue, respectively. In the sequel, Fp and Fγ will also be referred to as844

remodelling tensor 2 and growth tensor, respectively. We notice that, whereas it is845

rather standard to consider Fe as the first factor of the right-hand-side of (2.6), the846

order of appearance of Fp and Fγ is not standard at all. Indeed, it is conceivable to847

formulate a decomposition of F in which the inelastic contributions to the overall848

deformation appear in reverse order. In addition, there exist also cases in which the849

accommodating part of the deformation is put at the end of the decomposition [66].850

We adopt the order shown above because, in the present work, we have in mind a851

tissue that grows and that remodels its internal structure in response to growth.852

This statement notwithstanding, we regard growth and structural reorganisation as853

independent, yet mutually interacting processes. Consequently, we consider Fp and854

Fγ as independent kinematic (tensor) variables and, following the same philosophy855

outlined in some previous publications [60, 86, 213, 129, 91, 78], we associate each856

of them with degrees of freedom having the same “dignity” as those related to857

the other kinematic descriptors, i.e., Vs and V f . Finally, we emphasise that the858

decomposition (2.6) is a generalised Bilby-Kröner-Lee decomposition (see e.g. [201]859

for similar decompositions in the case of damage or other inelastic processes). Since860

we have recently discussed the decomposition (2.6) in [91] for the case of growth,861

here we do not fuss over the physics behind it, and we suggest the reviews [201,862

246] for details. However, we recall that, for every X ∈ B and t ∈ I , the product863

Fp(X, t)Fγ(X, t) maps vectors of the tangent space TXB into vectors of the image864

vector space Nt(X), attached at X. By ideally performing such transformation for865

all X ∈ B, the solid phase is brought into a relaxed state at time t, the latter being866

2We use the subscript “p” to emphasise the fact that the distortions associated with remodelling
are plastic-like. In this respect, we could have also referred to Fp as “plasticity tensor”. However,
we prefer to speak here of “remodelling tensor”, because the concept of remodelling is more specific
for the addressed biological materials.
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characterised by the absence of any stresses, including the residual ones. Such state867

is also referred to as natural state [201, 126].868

Differentiation of F with respect to time and left-multiplication by F−1 =869

Fγ
−1Fp

−1Fe
−1 yield870

Ḟ F−1 = ḞeFe
−1 + FeLpFe

−1 + FeFpLγFp
−1Fe

−1, (2.7)

where we introduced the tensor of rate of remodelling-induced distortions, Lp ≡871

ḞpFp
−1, and the tensor of rate of growth-induced distortions, Lγ ≡ ḞγFγ

−1. In872

compliance with (2.6), the volume ratio J ≡ detF can be rewritten as J = JeJpJγ,873

where Je ≡ detFe, Jp ≡ detFp, and Jγ ≡ detFγ denote, respectively, the vol-874

umetric distortions associated with the elastic, remodelling, and growth part of875

the deformation gradient tensor. We use these definitions to perform the Piola876

transformations of (2.4a)–(2.4d), thereby obtaining877

ρs0Φsω̇p = Rpn +Rfp −Rsωp, (2.8a)

ρs0Φ̇s = Rs, (2.8b)

ρf0Φf ω̇N + ρf0QGradωN +DivYN = RNp +RsωN, (2.8c)

J̇ +DivQ =

(
1

ρs0
− 1

ρf0

)
Rs, (2.8d)

where, for every X ∈ B and t ∈ I , we denote by878

Φα(X, t) = J(X, t)φα(χ(X, t), t), α ∈ {f, s}, (2.9a)

Rβ(X, t) = J(X, t)rβ(χ(X, t), t), β ∈ {pn, fp, s,Np}, (2.9b)

ωυ(X, t) = cυ(χ(X, t), t), υ ∈ {p,N}, (2.9c)

the material volumetric fractions, the material sources/sinks of mass, and the mass879

fractions expressed as functions of X and time, respectively. Moreover, we intro-880

duced the material flux vectors associated with the filtration velocity φfw and with881

the nutrients’ mass flux vector yN, respectively, i.e.,882

Q(X, t) = Φf(X, t)w(χ(X, t), t)F−T(X, t), (2.10a)

YN(X, t) = J(X, t)[yN(χ(X, t), t)]F
−T(X, t). (2.10b)

In particular, Q will also be referred to as material filtration velocity in the sequel.883

The kinematic picture of the problem under study is completed with a scalar884

descriptor, denoted by ep : Ct × I → R. This quantity and its gradient, ∇ep,885

have been introduced by [14] with the purpose of constructing indicators of the886

inelastic transformations occurring in the body at the scale of its micro-structure.887

More precisely, [14] speak of ep in terms of a “measure of the inhomogeneity of the888

microscale plasticity”. In our framework, it is more appropriate to interpret ep as a889

variable defined to resolve explicitly the inhomogeneities induced by the remodelling890

of the tissue. To this end, we define the “Lagrangian field” ep, such that ep(X, t) =891

ep(χ(X, t), t), and the material gradient Gradep(X, t) = [∇ep(χ(X, t), t)]F (X, t).892
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2.2.3 Constraints on the kinematic variables893

By virtue of the presence of growth in our model, the study conducted in this894

work may be thought of as a slight generalisation of the framework depicted by895

Anand et al.[14], where the Authors develop a scalar theory of strain-gradient896

plasticity based on several ab initio restrictions on the kinematic variables of their897

problem. Such restrictions are expressed in terms of the generalised velocities of the898

proposed theory, and are thus cast in non-holonomic form. To highlight their role899

on the overall dynamics of the system under investigation, we specify the imposed900

constraints, and we discuss in detail their impact on the kinematic descriptors that901

they involve.902

For the sake of clarity, we start with rephrasing, in our formalism, the constraints903

on Fp and Ḟp introduced by Anand et al. [14]. On the top of those, we exploit the904

mass balance laws in order to extract pieces of information that can be interpreted905

as constraints on the growth tensor, Fγ, and on its rate Lγ.906

If Lp is assigned, Fp can be computed by integrating the ordinary differential907

equation Ḟp = LpFp, which can be rewritten as908

Ḟp =
(
η−1Dp + η−1Wp

)
Fp, (2.11)

where η is the metric tensor associated with the tissue’s natural state, while Dp909

and Wp are the symmetric part and the skew-symmetric part of Lp, respectively,910

i.e.,911

Dp = sym(ηLp) =
1
2

(
ηLp +LT

pη
)
, (2.12a)

Wp = skew(ηLp) =
1
2

(
ηLp −LT

pη
)
. (2.12b)

Following the theory of [14], the first constraint on Fp is supplied by requiring912

from the outset that the “plastic” spin tensor, Wp vanishes identically, i.e., Wp =913

0. Hence, we obtain the identity Lp = η−1Dp, and, consequently, Equation (2.11)914

becomes915

Ḟp = η−1DpFp. (2.13)

The second constraint on Fp stems from the hypothesis of isochoric remodelling916

distortions, i.e., Jp = detFp = 1. This relation, in turn, can be put in differential917

form, i.e., J̇p = Jptr[ḞpFp
−1] = 0, and implies tr[η−1Dp] = 0, as can be deduced by918

right-multiplying Equation (2.13) by Fp
−1 and taking the trace of the resulting ex-919

pression. Accordingly, only the deviatoric part of Dp, i.e., D̃p = Dp− 1
3
tr[η−1Dp]η,920

is involved in (2.13), which reduces to921

Ḟp = η−1D̃pFp. (2.14)

In analogy with [14], we base our model on the further hypothesis that D̃p is922

co-directional with a tensor Nν , associated with the tissue’s natural state, and923

24



2.2 – Theoretical background

obtained by normalising a symmetric tensorial measure of stress, which will be924

specified later. In formulae, by indicating with Σν such measure of stress, we925

define Nν as926

Nν ≡
η Σ̃νη

∥Σ̃ν∥η
, (2.15)

where Σ̃ν ≡ Σν − 1
3
tr[ηΣν ]η

−1 is the deviatoric part of Σν , and ηΣ̃νη is the927

covariant representation of Σ̃ν , and we enforce the co-directionality condition as928

the third constraint on Fp, i.e.,929

D̃p = ∥D̃p∥η−1Nν . (2.16)

Equation (2.16) follows from the hypothesis that the distortions associated with re-930

modelling obey an evolution law of the same type as the normality rule of isotropic,931

associative, finite-strain plasticity. For this reason, the physical quantity that rep-932

resents them, i.e., D̃p, has to be co-directional with Σ̃ν (see Sections 95.5 and 98 of933

Gurtin et al. [136]). In turn, this condition is automatically satisfied by introducing934

the direction tensor N ν and requiring D̃p to be proportional to N ν . Clearly, this935

identifies the corresponding proportionality factor with the norm of D̃p.936

In (2.15) and (2.16), the norms ∥Σ̃ν∥η and ∥D̃p∥η−1 are defined by937

∥Σ̃ν∥η =

√
tr
[(
ηΣ̃νη

)T
Σ̃ν

]
, (2.17a)

∥D̃p∥η−1 =

√
tr
[
η−1D̃pη−1D̃p

]
, (2.17b)

and their product coincides with the double contraction Σ̃ν :D̃p = ∥Σ̃ν∥η∥D̃p∥η−1 .938

Moreover, to simplify the notation, we invoke the definition of accumulated plastic939

strain[14, 201], εp, i.e.,940

εp(X, t) ≡
√

2
3

∫ t

0

∥D̃p(X, τ)∥η−1dτ ⇒ ε̇p(X, t) =
√

2
3
∥D̃p(X, t)∥η−1 , (2.18)

so that Equation (2.16) becomes941

D̃p =
√

3
2
ε̇pNν . (2.19)

Finally, by substituting (2.19) into (2.14), we obtain942

Ḟp =

(√
3
2
ε̇pη

−1Nν

)
Fp ⇒ Lp =

√
3
2
ε̇pη

−1Nν . (2.20)

Equation (2.20) implies that, once Nν is assigned, Lp has only one independent943

coefficient, given by ε̇p. The important consequence of this result is that the body’s944

structural degrees of freedom, originally represented by the tensorial quantity Fp,945

condense into the scalar variable εp.946
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Remark 1 (Descriptive adequacy of εp). According to Equation (2.18), εp(X, t)947

is well-defined for all the tensor fields D̃p such that the norm ∥D̃p(X, · )∥η−1 is an948

integrable function of time over [0, t], for every X ∈ B and t ∈ [0,+∞[. Coherently949

with this definition, εp(X, t) keeps track of all the magnitudes of the rates of inelastic950

distortions, D̃p(X, τ), which have occurred in a given material over [0, t]. For this951

reason, εp is a suitable descriptor of the mechanical response of materials that are952

capable of “perfectly memorising” inelastic distortions, as is the case for metals953

exhibiting rate-independent plasticity [144]. Biological tissues, on the contrary, are954

often modelled as viscoelastic materials [115, 114], and show fading memory effects.955

Nonetheless, as discussed in the Introduction, the experiments on cellular aggregates956

reported in [114, 262] seem to suggest the existence of inelastic distortions that do957

not fade away in time, unless some active process restores the original configuration958

of the aggregates. For these reasons, εp can be regarded as appropriate for describing959

the inelastic distortions accumulated in a tissue from the beginning of its loading960

history. Should the active processes be considered, they could be accounted for by961

introducing another factor, denoted e.g. by F a, and representing the active part of962

the tissue’s deformation [223].963

We switch now to the constraints placed on Fγ, and we analyse their impact964

on the way in which the mass balance law (2.8b) can be reformulated. Upon using965

the decomposition J = JeJpJγ, and recalling the condition Jp = 1, we rewrite Φs as966

Φs = JγΦsν , where Φsν is such that Φsν(X, t) = Je(X, t)φs(χ(X, t), t), and indicates,967

thus, the solid phase volumetric fraction with respect to the volume measure of the968

natural state. Hence, Equation (2.8b) becomes969

ρs0J̇γΦsν + ρs0JγΦ̇sν = Rs. (2.21)

A rather standard hypothesis in the mechanics of growth, see e.g. [102, 11, 178,970

176], is to choose Fγ in such a way that the time derivative of its determinant,971

J̇γ, compensates for the mass source Rs. In other words, by exploiting the identity972

J̇γ = Jγtr[ḞγFγ
−1] = Jγtr[Lγ], we require the fulfilment of the auxiliary condition973

ρs0JγΦsνtr[Lγ] = Rs ⇒ tr[Lγ] =
Rs

ρs0ΦsνJγ
, (2.22)

which constitutes the first constraint on Fγ. Such constraint has, in fact, non-974

holonomic nature, since it is defined through a non-homogeneous algebraic condi-975

tion on the generalised (tensorial) velocity Lγ. Plugging (2.22) into (2.21) yields976

ρs0JγΦ̇sν = 0, thereby implying that the volumetric fraction Φsν is necessarily in-977

dependent of time.978

The second constraint on Fγ is provided by the phenomenological evidence979

according to which, for the class of problems under study, growth occurs isotrop-980

ically[10]. The consequences of this fact on the admissible choices of the growth981
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tensor can be deduced by looking at the polar decompositions of Fγ. Indeed, by982

considering for instance the right decomposition, Fγ = RγUγ, where Rγ is the983

rotation tensor and Uγ is the stretch tensor associated with Fγ, the isotropy of984

growth translates to the kinematic restrictions Rγ = I and Uγ = γI, where I is985

the identity tensor. Therefore, it holds that Fγ = γI and (2.22) can be rephrased986

as987

γ̇

γ
=

Rs

3ρs0ΦsνJγ
⇒ γ̇ =

Rs

3ρs0Φsνγ2
. (2.23)

Finally, we notice that Equation (2.8d) can be regarded as a constraint on the988

material filtration velocity, Q, expressed through a restriction on its divergence.989

2.3 Principle of Virtual Powers990

After laying down the kinematic picture that describes the problem under in-991

vestigation, we select the generalised velocities upon which the system’s mechanical992

power is defined. Summarising the discussion reported above, such velocities may993

be enlisted in the following collection of fields994

V= (vs,∇vs,Dsεp,Dsep,∇(Dsep) |vf ,∇vf), (2.24)

which will be employed to define the internal and the external mechanical powers.995

We remark that, whereas the fluid phase requires only vf and ∇vf for the charac-996

terisation of the system’s internal power, the solid phase necessitates both standard997

and non-standard descriptors. The standard ones, i.e., vs and ∇vs, account only998

for the “visible” changes of shape of the system (here, the word “visible” is meant999

in the sense of DiCarlo and Quiligotti [86]), while the non-standard terms are the1000

generalised velocities Dsεp, Dsep, and ∇(Dsep), introduced to define the power ex-1001

pended to accomplish the structural changes of the system. As anticipated in the1002

Introduction, the main motivation for taking the approach of Anand et al. [14] and1003

specialising it to our problem is that it allows to develop a strain-gradient formu-1004

lation of remodelling based on the scalar variable ep. The latter is defined as the1005

micro-scale counterpart of the accumulated remodelling strain, εp, and, as such, it1006

is assumed to “condense” in itself all the information about the inelastic processes1007

that determine the micro-scale remodelling of the tissue under study. Moreover,1008

since it is an “effective” representative of these processes, it prevents from the in-1009

troduction of a micro-scale, second-order remodelling tensor, which would render1010

the theoretical and numerical analysis of the problem at hand much more com-1011

plicated. Accordingly, the generalised velocities associated with ep, i.e., Dsep and1012

∇(Dsep), are a scalar and a co-vector field, rather than being a second-order and1013

a third-order tensor field, respectively. It follows from these considerations that an1014

inelastic model built on εp and ep has the right to stand on its own, independently1015
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on any numerical issue, even though Anand et al. [14] have originally introduced1016

ep for numerical purposes. Clearly, such a model represents the limit case of more1017

elaborated theories that involve tensor fields, rather than scalar ones.1018

Coherently with (2.24), we introduce the collection of virtual velocities1019

Vv = (us,∇us, uε, up,∇up|uf ,∇uf) ∈ Vv, (2.25)

where Vv is referred to as the set of all virtual velocities. The elements us, ∇us,1020

uf , and ∇uf are the virtual counterparts of vs, ∇vs, vf , and ∇vf , respectively, and1021

the non-standard fields uε, up, and ∇up denote the virtual velocities corresponding1022

to the rates Dsεp, Dsep, and ∇(Dsep), respectively.1023

Once the virtual velocities of the model are identified, it is possible to write1024

the internal and the external virtual powers of the system. These two linear and1025

continuous functionals are defined over Vv, and are specified through the expressions1026

1027

W(i)
v (Vv) ≡

∫
Ct

{
σs :g∇us +ms.us + σf :g∇uf +mf .uf + h(i)ε uε

+h(i)p up + ξp∇up
}
, (2.26a)

W(e)
v (Vv) ≡

∫
ΓN
t

{τ s.us + τ f .uf + ζpup}+
∫

Ct

{
h(e)ε uε + h(e)p up

}
, (2.26b)

respectively. Here, Ct ⊂ S is the portion of the Euclidean space in which the solid1028

and the fluid phase co-exist, and ΓNt ⊂ ∂Ct is the portion of the boundary of Ct1029

on which Neumann conditions are imposed. In (2.26a), σs and σf are the Cauchy1030

stress tensors of the solid and of the fluid, ms and mf are internal forces that1031

describe the gain or loss of momentum of the solid and of the fluid in response to1032

exchange interactions between the two phases, h
(i)
ε and h

(i)
p are internal generalised1033

forces dual to uε and up, respectively, and ξp is the generalised stress-like field dual1034

to ∇up. We notice that, since the virtual velocities uε and up are scalar fields,1035

the forces dual to them must be representable by scalars. Following the same logic,1036

supplied by duality, since∇up is a co-vector by definition, its power-conjugate force,1037

ξp, must be a vector-like field. On the same footing, in addition to the standard1038

vector-like contact forces τ s and τ f , in (2.26b) we introduce the contact force ζp1039

and the “bulk” external forces h
(e)
ε and h

(e)
p , all being scalar-like for the reasons1040

explained above.1041

By requiring the internal virtual power, W
(i)
v (Vv), to be invariant under the1042

superposition of arbitrary rigid motions, we deduce the symmetry of the total stress1043

tensor, σ = σs+σf , and that the sum of the internal forces ms and mf must vanish1044

identically, i.e., we obtain the condition ms +mf = 0 [232]. Consistently with the1045

a priori exclusion of all inertial terms from our model, this last result constitutes1046

an approximation of the more general balance of internal forces that, for a biphasic1047

medium with mass exchange between the phases, is given byms+rsvs+mf−rsvf =1048
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0. In fact, the approximation consists of dropping the term rsvs − rsvf = −rsw,1049

and is based on the argument that the interphase mass transfer, rs, depends on the1050

micro-scale velocity with which the mass passes from the fluid to the solid, and vice1051

versa. Such velocity, multiplied by the relative macro-scale velocity w, is assumed1052

to produce a rate of momentum exchange that weighs much less than ms and mf ,1053

thereby leading to the desired approximation.1054

We emphasise that, in writing the expressions of W
(i)
v (Vv) and W

(e)
v (Vv), we1055

have omitted all inertial and long-range (e.g. gravity) forces, which we regard1056

as negligible from the outset. Moreover, the nature of the forces h
(i)
p and ξp is1057

necessarily coherent with the hypothesis that the kinematics of the solid phase1058

micro-structure is represented by ep and∇ep. In this sense, the model features some1059

important similarities with Gurtin’s approach to the derivation of the generalised1060

Allen-Cahn equation [133], in which the scalar field describing the micro-structural1061

kinematics of the considered medium is regarded as an order parameter.1062

Looking at (2.26a) and (2.26b), we also notice that, in principle, also the veloc-1063

ity and the velocity gradient of the nutrients should be considered, along with their1064

virtual counterparts, in (2.24) and (2.25). However, in view of a comprehensive for-1065

mulation of the Principle of Virtual Powers, this would call for the definition of the1066

generalised forces expending power on them, and, above all, for the introduction of1067

surface tractions, acting on ΓNt . Individuating a physically sound way for express-1068

ing such contact forces is not easy and taking them into account leads unavoidably1069

to both theoretical and computational complications (see, e.g., Grillo et al.[129] for1070

an attempt of including these forces, based on a work by Sciarra et al. [254]). For1071

these reasons, we present here a simplified framework in which we account for the1072

nutrients through the balance law (2.3a), while we omit to study their kinematics1073

and dynamics in detail. In other words, due to their tantamount importance for1074

activating growth, we do include them in our model, but we do not treat them1075

systematically. Hence, we do not consider any force balance associated with the1076

nutrients, nor do we investigate their contribution to the dissipation inequality (see1077

Section 2.4). Rather, with reference to (2.3a), we “guess” that the mass flux vector,1078

yN, obeys a diffusion dynamics of Fickean type, so that it is prescribed to have the1079

form yN = −ρf0d∇cN in the Eulerian description and YN = −ρf0DGradωN in1080

material formalism, with d being the diffusivity tensor and D its material counter-1081

part. Note that the latter is related to d through the backward Piola transformation1082

D(X, t) = J(X, t)F−1(χ(X, t), t)d(χ(X, t), t)F−T(X, t).1083

By invoking the Principle of Virtual Powers, we enforce the condition W
(i)
v (Vv) =1084

W
(e)
v (Vv), which is required to be fulfilled for any admissible set of generalised ve-1085

locities Vv, thereby leading to1086 ∫
Ct

{
[−divσs +ms].us + [−divσf +mf ].uf + [h(i)ε − h(e)ε ]uε
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+[h(i)p − divξp − h(e)p ]up
}
+

∫
ΓN
t

{[σs.n− τ s].us + [σf .n− τ f ].uf

+[ξp.n− ζp]up
}
= 0. (2.27)

By adopting the usual localisation procedure that extracts the local form of the1087

equations of motion from the Principle of Virtual Powers, Equation (2.27) yields1088

the following balances of generalised forces1089

ms − divσs = 0, (2.28a)

mf − divσf = 0, (2.28b)

h(i)ε − h(e)ε = 0, (2.28c)

h(i)p − divξp − h(e)p = 0, (2.28d)

which hold in Ct, and the balances of contact forces on ΓNt1090

σs.n− τ s = 0, (2.29a)

σf .n− τ f = 0, (2.29b)

ξp.n− ζp = 0. (2.29c)

It is worthwhile to mention that, in general, upon defining the field of total contact1091

forces τ = τ s + τ f , and the total Cauchy stress tensor σ = σs + σf , it is rather1092

natural to provide on ΓNt boundary conditions of the kind σ.n = τ (see [254]1093

for details). Nevertheless, even in that case, the boundary conditions (2.29a) and1094

(2.29b) can be recovered under the assumption that τ s and τ f are obtained by1095

partitioning τ as τ s = (ρs0φs/ρ)τ and τ f = (ρf0φf/ρ)τ , respectively.1096

2.4 Dissipation and Dynamic Equations1097

To extract constitutive information on the internal forces presented so far, we1098

study the dissipation inequality of the system. For this purpose, we enrich the pic-1099

ture proposed in Grillo et al.[129], which, in turn, was inspired by Hassanizadeh[141]1100

and Benethum et al.[39]. This is done by framing the formulation of Anand et al.1101

[14] in the context of biphasic media and, above all, by rephrasing it in order to1102

account for growth. The first step in this direction is to introduce the dissipation1103

density, D, measured per unit volume of the current configuration of the medium,1104

and defining the dissipation associated with an open subset Ωt ⊂ Ct as1105 ∫
Ωt

D=−
∫
Ωt

{rs(ψs − ψf) + ρs0φsDsψs + ρf0φfDsψf + (ρf0φf∇ψf)w}

+

∫
∂Ωt

{
(σs.n).vs + (σf .n).vf + (ξp.n)Dsep

}
+

∫
Ωt

{
h(e)ε Dsεp
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+h(e)p Dsep
}
+

∫
Ωt

Dγ ≥ 0. (2.30)

As shown in (2.30), the dissipation can be written as the sum of four different1106

contributions: with reference to the first integral of the sum defining
∫
Ωt

D, we1107

recognise that, by indicating with ψs and ψf the Helmholtz free energies per unit1108

mass of the solid and of the fluid, the term rs(ψs −ψf) expresses the rate of change1109

of the free energy densities, ρs0φsψs and ρf0φfψf , due to the mass exchange between1110

the phases. Moreover, ρs0φsDsψs and ρf0φfDsψf are the rates of change of the1111

Helmholtz free energy densities measured with respect to the solid phase motion,1112

and (∇ψf)w describes how ψf is transported due to the motion of the fluid relative1113

to the solid. The terms in the surface integral denote the contributions to the net1114

power expended on Ωt due to the contact forces with the surrounding medium,1115

while the terms in the third integral represent the part of net power ascribable to1116

the non-standard forces h
(e)
ε and h

(e)
p . Finally, Dγ is a dissipation density introduced1117

to account for the fact that the medium experiences growth (see e.g. [126] for a1118

discussion on this issue).1119

By applying Gauss Theorem to the surface integral of Equation (2.30), and using1120

the balance laws (2.28a)–(2.28d) and (2.29a)–(2.29c), the dissipation inequality1121

becomes1122 ∫
Ωt

D=−
∫
Ωt

{rs(ψs − ψf) + ρs0φsDsψs + ρf0φfDsψf + (ρf0φf∇ψf)w}

+

∫
Ωt

{
ms.vs + σs :g∇vs +mf .vf + σf :g∇vf + h(i)p Dsep

+ξp∇(Dsep) + h(i)ε Dsεp
}
+

∫
Ωt

Dγ ≥ 0. (2.31)

By localising Equation (2.31) and invoking the condition ms +mf = 0, we obtain1123

D= rs(ψf − ψs)− ρs0φsDsψs − ρf0φfDsψf + [mf − g−1(ρf0φf∇ψf)].w

+ σs :g∇vs + σf :g∇vf + h(i)p Dsep + ξp∇(Dsep) + h(i)ε Dsεp + Dγ ≥ 0. (2.32)

As a simplifying assumption, we approximate the Helmholtz free energy density1124

of the fluid, ψf , with a constant, so that ρf0φfDsψf and ∇ψf are negligible with1125

respect to all the other terms featuring in the dissipation inequality. Such situation1126

occurs, for instance, when the state variables characterising ψf are, at the most,1127

the temperature and the mass fraction of the nutrients dissolved in the fluid, and1128

the latter is so low that ψf can be safely set equal to the (constant) Helmholtz1129

free energy density of water at constant temperature. Under these hypotheses,1130

Equation (2.32) becomes1131

D= rs(ψf − ψs)− ρs0φsDsψs +mf .w + σs :g∇vs + σf :g∇vf + h(i)p Dsep
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+ ξp∇(Dsep) + h(i)ε Dsεp + Dγ ≥ 0. (2.33)

It is convenient to rewrite the dissipation inequality per unit volume of B. To do1132

this, we perform a Piola transformation of (2.33), which yields1133

DR = Rs(Ψf −Ψs)− ρs0JγΦsνΨ̇s + Φ−1
f QMf + Ps :gḞ + Pf :gGradV f

+H(i)
p ėp +ΞpGradėp +H(i)

ε ε̇p + JDγ ≥ 0, (2.34)

where, as anticipated above, Rs(X, t) = J(X, t)rs(χ(X, t), t) is the material form1134

of the source/sink of mass for the solid phase as a whole, and we introduced the1135

notation1136

Ψα(X, t) = ψα(χ(X, t), t), α ∈ {f, s}, (2.35a)

Pα(X, t) = J(X, t)σα(χ(X, t), t)F
−T(X, t), α ∈ {f, s}, (2.35b)

H
(i)
β (X, t) = J(X, t)h

(i)
β (χ(X, t), t), β ∈ {p, ε}, (2.35c)

Ξp(X, t) = J(X, t)ξp(χ(X, t), t)F
−T(X, t), (2.35d)

Mf(X, t) = J(X, t)[g(χ(X, t))mf(χ(X, t), t)]F (X, t). (2.35e)

Here, Pf and Ps indicate the first Piola-Kirchhoff stress tensors of the fluid and the1137

solid phase, H
(i)
p and H

(i)
ε express, in material form, the internal generalised forces1138

dual to ėp and ε̇p, respectively, Ξp is the material representation of the stress-like1139

generalised force, ξp, and is thus dual to Gradėp, and Mf , re-defined as a covector,1140

is the material counterpart of the momentum exchange rate mf .1141

Finally, by generalising the Helmholtz free energy density proposed by [14], we1142

prescribe Ψs to be given by the sum of three terms, i.e.,1143

Ψ̂s(F ,F p,F γ, εp, ep,Gradep) =Ψ̂(st)
s (FFγ

−1Fp
−1) + 1

2
a0[εp − ep]

2

+ 1
2
b0Fγ

−1BpFγ
−T : Gradep ⊗Gradep, (2.36)

with Bp = F−1
p .F−T

p , so that the time derivative of Ψs reads1144

Ψ̇s =

(
∂Ψ̂

(st)
s

∂Fe

Fp
−TFγ

−T

)
:Ḟ − 1

3

tr(ηΣν)

ρs0Φsν

Rs

ρs0ΦsνJγ

− 1

ρs0Φsν

{√
3
2
∥Σ̃ν∥η − Aν [εp − ep]

}
ε̇p

− Aν
ρs0Φsν

[εp − ep]ėp +
Bν

ρs0Φsν

[(
Fγ

−1BpFγ
−T
)
Gradep

] ˙Gradep , (2.37)

where Ψ̂
(st)
s is differentiated with respect to Fe = FFγ

−1Fp
−1. In (2.37), we intro-1145

duced the notation1146

Σν =η−1Fe
T

(
ρs0Φsν

∂Ψ̂
(st)
s

∂Fe

)
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+Bν

[
η−1Fp

−TFγ
−T (Gradep ⊗ Gradep)Fγ

−1Fp
−1η−1

]
, (2.38a)

Σ̃ν = Σν − 1
3
tr[ηΣν ]η

−1, (2.38b)

Aν = ρs0Φsνa0, (2.38c)

Bν = ρs0Φsνb0, (2.38d)

where Aν and Bν are the counterparts of the strictly positive constants a0 and b0,1147

expressed per unit volume of the tissue’s natural state, and Σν is a generalised1148

Mandel stress tensor that comprises both the standard definition of the Mandel1149

stress tensor, i.e.,1150

Σ(st)
ν = η−1Fe

T

(
ρs0Φsν

∂Ψ̂
(st)
s

∂Fe

)
, (2.39)

and the non-standard stress-like contribution1151

Σ(n-st)
ν = Bν

[
η−1Fp

−TFγ
−T (Gradep ⊗ Gradep)Fγ

−1Fp
−1η−1

]
. (2.40)

We remark that Σ(n-st)
ν is purely configurational, and it descends from the intro-1152

duction of the micro-scale plasticity variable ep. Moreover, Σ(n-st)
ν is independent1153

of deformation, whereas it does depend on the growth and remodelling distortions,1154

Fγ and Fp.1155

Remark 2 (Tensor Σν and co-directionality). In our work, the deviatoric part of1156

the generalised Mandel stress tensor, Σ̃ν, is the stress tensor used to define Nν in1157

(2.15). Therefore, it is the tensor with which the rate of plastic distortions, D̃p, is1158

co-directional. By virtue of the definition of Nν, the direction of D̃p in the space of1159

the symmetric second-order tensors is determined, partially, by the deviatoric part1160

of the standard Mandel stress tensor, Σ̃
(st)

ν , and partially by Σ̃
(n-st)

ν , which includes1161

the contributions of the micro-scale “plasticity”, through Gradep, and of the growth1162

and remodelling distortions through Fγ and Fp, respectively. In the work of Anand1163

et al. [14], instead, Nν is determined by Σ(st)
ν only.1164

By substituting (2.37) into (2.34), DR becomes1165

DR =

{
−Jγ

(
ρs0Φsν

∂Ψ̂
(st)
s

∂Fe

Fp
−TFγ

−T

)
+ gPs

}
: Ḟ +

{
Ψf −Ψs +

1

3

tr (ηΣν)

ρs0Φsν

}
Rs

+

{
H(i)
ε + Jγ

√
3
2
∥Σ̃ν∥η − JγAν [εp − ep]

}
ε̇p +

{
H(i)

p + JγAν [εp − ep]
}
ėp

+
{
Ξp − JγBν

[(
Fγ

−1BpFγ
−T
)
Gradep

]} ˙Gradep

+ Φ−1
f QMf + Pf :gGradV f + JDγ ≥ 0 . (2.41)
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We study the dissipation inequality (2.41) by regarding the mass balance law (2.5)1166

as a constraint [175, 39], and appending it to DR. To this end, we perform the1167

Piola transformation of (2.5), thereby obtaining (see e.g. [39, 129])1168

CR ≡ΦsF
−T :Ḟ + ΦfF

−T :GradV f + JΦ−1
f QGrad(J−1Φf)

−
(

1

ρs0
− 1

ρf0

)
Rs = 0, (2.42)

where CR stands for “constraint”. Then, we multiply (2.42) by a Lagrange multi-1169

plier, p, which plays the role of hydrostatic pressure, and we attach the resulting1170

expression to (2.41). This leads to a “new” dissipation function, Dnew
R ≡ DR+pCR,1171

that is equal to DR, but is put in the form1172

Dnew
R =

{
−Jγ

(
ρs0Φsν

∂Ψ̂
(st)
s

∂Fe

Fp
−TFγ

−T

)
+ pΦsF

−T + gPs

}
: Ḟ

+
{
pΦfF

−T + gPf

}
:GradV f + Φ−1

f Q
{
Mf + JpGrad(J−1Φf)

}
+

{(
Ψf +

p

ρf0

)
−
(
Ψs +

p

ρs0

)
+

1

3

tr (ηΣν)

ρs0Φsν

}
Rs + JDγ

+

{
H(i)
ε + Jγ

√
3
2
∥Σ̃ν∥η − JγAν [εp − ep]

}
ε̇p +

{
H(i)

p + JγAν [εp − ep]
}
ėp

+
{
Ξp − JγBν

[(
Fγ

−1BpFγ
−T
)
Gradep

]} ˙Gradep ≥ 0. (2.43)

2.4.1 Constitutive Laws1173

We require that the inequality (2.43) be valid for arbitrary values of Ḟ , GradV f ,1174

ėp, and
˙Gradep. Hence, the Coleman-Noll method implies the following identifica-1175

tions1176

Ps = −Φsp g
−1F−T + Jγ

(
ρs0Φsνg

−1∂Ψ̂
(st)
s

∂Fe

Fp
−TFγ

−T

)
, (2.44a)

Pf = −Φfp g
−1F−T, (2.44b)

H(i)
p = −JγAν [εp − ep], (2.44c)

Ξp = JγBν

[
Fγ

−1BpFγ
−T
]
Gradep. (2.44d)

In (2.44a), and in the sequel, the standard part of the solid phase Helmholtz free1177

energy density, Ψ̂
(st)
s , is assumed to be of the Holmes-Mow type [149], i.e.,1178

Ψ̂(st)
s (Fe) =

α0

ρs0Φsν

{
exp

(
f̂(Ce)

)
− 1
}
, (2.45)

34



2.4 – Dissipation and Dynamic Equations

where Ce = Fe
T.Fe is the elastic Cauchy-Green deformation tensor, α0 is a material1179

coefficient having physical units of energy per unit volume, and the function f̂ is1180

given by1181

f̂(Ce) = f̌(Î1(Ce), Î2(Ce), Î3(Ce))

= α1[Î1(Ce)− 3] + α2[Î2(Ce)− 3]− α3 ln
(
Î3(Ce)

)
, (2.46)

with Î1(Ce), Î2(Ce), and Î3(Ce) denoting the first three principal invariants of Ce.1182

The material parameters α1, α2, and α3 are all assumed to be constant in this work.1183

Moreover, it holds that α1+2α2 = α3 [149], and the following relations connect α0,1184

α1, α2, and α3 with Lamé’s elastic parameters of the material (see e.g. [269]):1185

α0 =
2µ+ λ

4α3

, α1 = α3
2µ− λ

2µ+ λ
, α2 = α3

λ

2µ+ λ
. (2.47)

In the forthcoming calculations, we set α3 = 1, and we give µ and λ the values1186

reported in Table 2.1.1187

We recognise the dissipative parts of Mf and H
(i)
ε , which we identify with the1188

following quantities1189

M
(d)
f = Mf + JpGrad(J−1Φf), (2.48a)

H(i,d)
ε = H(i)

ε + Jγ

√
3
2
∥Σ̃ν∥η − JγAν [εp − ep], (2.48b)

and the dissipation inequality becomes1190

DR =Φ−1
f QM

(d)
f +H(i,d)

ε ε̇p

+

{(
Ψf +

p

ρf0

)
−
(
Ψs +

p

ρs0

)
+

1

3

tr (ηΣν)

ρs0Φsν

}
Rs + JDγ ≥ 0. (2.49)

We notice that, in (2.48b), growth influences the expression of H
(i,d)
ε through the1191

determinant Jγ in the term JγAν [εp − ep].1192

According to (2.49), our model predicts that the system under study features1193

three independent dissipative processes. The first one is due to the power loss asso-1194

ciated with the resistance to the fluid flow and, under the hypothesis of negligible1195

inertial forces, it leads to Darcy’s law, i.e.,1196

M
(d)
f = ΦfK

−1Q. (2.50)

Equation (2.50) represents the material form of Darcy’s law and, accordingly, the1197

tensor K is the material permeability tensor of the medium, defined by1198

K(X, t) = J(X, t)F (X, t)k(χ(X, t), t)F−T(X, t), (2.51)
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with k being the spatial permeability tensor. Finally, we remark that, in deriving1199

(2.50), we have tacitly assumed that K is invertible, whereas sometimes this may1200

not be necessarily the case. By substituting (2.50) into the first term on the right-1201

hand-side of (2.49), we obtain that the dissipation due to fluid flow is always non-1202

negative, i.e., for all Q, it holds that Φ−1
f QM

(d)
f = K−1 : (Q ⊗ Q) ≥ 0, as long1203

as K is positive-definite. Note that, by putting together the results (2.48a) and1204

(2.50), M f is determined constitutively as1205

Mf = ΦfK
−1Q− JpGrad(J−1Φf). (2.52)

The second process contributing to the dissipation, DR, is given by H
(i,d)
ε ε̇p,1206

which represents the power that the solid phase expends in order to remodel its1207

internal structure by accumulating plastic strain εp. We assume that H
(i,d)
ε ε̇p is1208

non-negative for all ε̇p and, since ε̇p is always non-negative by virtue of its own1209

definition (see (2.18)), we conclude that H
(i,d)
ε has to be non-negative too. In our1210

work, we hypothesise that the tissue remodels in a rate-dependent way and, in1211

particular, we assign H
(i,d)
ε as1212

H(i,d)
ε = Jτpε̇p, (2.53)

where τp is here taken as a strictly positive coefficient with the physical units of a1213

generalised viscosity. By plugging (2.53) into (2.48b), we determine H
(i)
ε through1214

the constitutive law1215

H(i)
ε = Jτpε̇p − Jγ

√
3
2
∥Σ̃ν∥η + JγAν [εp − ep]. (2.54)

The third dissipative phenomenon is given by growth, and is represented by the1216

last two summands on the right-hand-side of (2.49), which we denote by Dg and1217

refer to as the “growth part of DR”. In contrast to what we have done for the1218

other dissipative processes, and even though the terms between braces in (2.49)1219

may be understood as the generalised force power-conjugate to γ̇/γ through Rs,1220

we do not try to look for information on Rs from the requirement that Dg has1221

to be non-negative. Rather, following [11, 10, 49, 124, 125, 191, 91], we enforce1222

a phenomenological law for Rs, which is translated into the kinematic constraint1223

(2.23) on γ̇/γ, and we use Dγ to adjust Dg and guarantee that it remains non-1224

negative. We emphasise that, although this path may seem artificial, it can be1225

justified by noticing that Dγ represents processes, related to growth, that are not1226

resolved explicitly by our model but that are necessary for growth to occur. In1227

fact, a motivation for introducing a term like Dγ in the dissipation inequality of a1228

growth problem can be found in [126].1229

36



2.4 – Dissipation and Dynamic Equations

2.4.2 Dynamic Equations1230

By adopting the material form of the momentum balance laws (2.28a) and1231

(2.28b), and by invoking the force balance ms +mf = 0, we obtain1232

− g−1F−TMf −DivPs = 0, (2.55a)

g−1F−TMf −DivPf = 0, (2.55b)

where the constitutive expressions of Ps, Pf , and Mf are given in (2.44a), (2.44b),1233

and (2.52), respectively. Furthermore, by adding together (2.55a) with (2.55b), and1234

using the explicit expression for Mf in (2.55b), we find1235

Div(Ps + Pf) = 0, (2.56a)

K−1Q+Grad p = 0. (2.56b)

We exploit now the generalised force balance (2.28c), which becomes H
(i)
ε =1236

H
(e)
ε in material form and, by replacing H

(i)
ε with the right-hand-side of (2.54), we1237

determine an evolution law for εp, i.e.,1238

Jτpε̇p − Jγ

√
3
2
∥Σ̃ν∥η + JγAν [εp − ep] = H(e)

ε . (2.57)

To close this equation, we prescribe H
(e)
ε as1239

H(e)
ε = − [Jσth + JγZν [εp − ep]] , (2.58)

where σth is a threshold stress, and Zν is a material parameter [14]. Hence, setting1240

λp = 1/τp, Equation (2.57) takes on the form1241

ε̇p =
λp
J

{(
Jγ

√
3
2
∥Σ̃ν∥η − Jσth

)
− Jγ(Aν + Zν)[εp − ep]

}
. (2.59)

The last dynamic equation is supplied by (2.28d). Recalling that, in the present1242

framework, the external force h
(e)
p is zero, the material form of (2.28d) reads1243

H(i)
p −DivΞp = 0. (2.60)

Hence, by substituting (2.44c) and (2.44d) into (2.60), we obtain1244

−JγAν [εp − ep]−Div
(
JγBν

[
Fγ

−1BpFγ
−T
]
Gradep

)
= 0. (2.61)

In particular, since we take Fγ as Fγ = γI, (2.61) acquires the equivalent form1245

−γ3Aν [εp − ep]−Div (γBνBpGradep) = 0. (2.62)
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Remark 3 (The equation for ep). The result (2.62) is our generalisation to Equa-1246

tion (4.40) of Anand et al. [14], which, in our notation, and assuming constant1247

values for Aν and Bν, would read1248

−Aν [εp − ep]−Bν∆ep = 0 ⇒ ep − l2ν∆ep = εp, lν =
√
Bν/Aν , (A)

with ∆ being the Laplace operator, and lν the characteristic length scale associated1249

with the micro-scale plasticity variable, ep. For a given distribution of εp, Equation1250

(A) returns a “regularised” version of εp. In particular, since ep is required to1251

satisfy Neumann-zero boundary conditions, if εp is constant in B, then the unique1252

solution to (A) is the constant solution ep = εp. However, when εp is strongly1253

localised, the output of (A), i.e., ep, tends to be a lot more homogeneous, the more1254

lν increases.1255

Our generalisation to (A) is twofold: first, the plastic-like distortions deter-1256

mine the evolution of ep both through εp and through the second-order tensor Bp =1257

Fp
−1.Fp

−T. While εp is an input for (A), Bp modulates, together with the growth1258

parameter γ, the non-locality of ep, which is thus measured by the tensorial coef-1259

ficient γBνBp. We notice that the occurrence of this coefficient is due to the last1260

term in the definition of Ψ̂s given in (2.36). Switching to the Eulerian formalism,1261

and using the identity Gradep(X, t) = (∇ep(χ(X, t), t)F (X, t), this term reads1262

1
2
b0be : ∇ep ⊗∇ep,

thereby meaning that, in the spatial description, the non-locality of the micro-1263

“plastic” variable, ep, is modulated by the elastic left Cauchy-Green deformation1264

tensor, be = Fe.Fe
T. To eliminate Bp from (2.62), and obtain a model closer to1265

that of Anand et al. [14], we should substitute be with the left Cauchy-Green de-1266

formation tensor b = F .F T. Such a choice would lead to replace the last term of1267

(2.36) with1268

1
2
b0G

−1 : Gradep ⊗Gradep,

and would have the consequence of defining the unit tensor Nν just in terms of the1269

standard Mandel stress tensor, Σ(st)
ν (see Remark 2). We recall that G denotes here1270

the natural material metric tensor associated with B.1271

The second aspect of our generalisation is related to the fact that, in our model,1272

the evolution of ep is influenced by the growth parameter, γ, which couples with the1273

coefficients Aν and Bν, thereby rescaling the characteristic length scale associated1274

with ep in a generally inhomogeneous way, i.e., as lν → l = lν∥Bp∥1/2G /γ, so that,1275

for a given lν, the condition γ > 1 tends to reduce the length scale associated with1276

ep. Note that ∥Bp∥G = [tr(GBpGBp)]
1/2.1277

Remark 4 (Choice of H
(e)
ε ). In the literature on remodelling (see e.g. [213, 139,1278

78]), when an external force, like H
(e)
ε , is taken into account, it is often chosen in1279
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such a way that a homeostatic state exists for the system under study. If we had1280

followed such philosophy, we should have admitted homeostatic terms for εp and ep,1281

denoted by ε
(h)
p and e

(h)
p , and we should have expressed H

(e)
ε as1282

H(e)
ε = −Jγ

√
3
2
∥Σ̃(h)

ν ∥η + JγAν [ε
(h)
p − e(h)p ], (2.63)

where Σ̃
(h)

ν is the Mandel-like stress tensor in homeostatic conditions (that is, when1283

its arguments attain the homeostatic state). This consideration notwithstanding, in1284

our work we opted for the expression (2.58) because, in order to formulate a proof of1285

concept for our problem, we needed to remain as close as possible to the framework1286

supplied by [14].1287

Remark 5 (Evolution law for εp). Equation (2.58) represents an essential differ-1288

ence with respect to the evolution law for εp given by [14]. Indeed, Anand et al.1289

[14] set H
(i)
ε = H

(e)
ε = 0, and assign H

(i,d)
ε constitutively as a law that plays the1290

role of an effective yield stress, i.e., H
(i,d)
ε = Jσth + JγZν [εp − ep], where σth > 01291

plays the role of the “conventional yield stress” [14]3, while Zν > 0 is a model1292

parameter defining the purely dissipative part of H
(i,d)
ε . By doing this, the Authors1293

rewrite the balance equation H
(i)
ε = H

(e)
ε in terms of a yield function of the type1294

f = Jγ

√
3
2
∥Σ̃ν∥η − (Jσth + Jγ(Aν + Zν)[εp − ep]). In particular, according to the1295

theory of Anand et al. [14], it occurs that ε̇p = 0, if f < 0, and ε̇p > 0, if f = 0.1296

This approach is equivalent to the elasto-plastic problem in the Karush-Kuhn-Tucker1297

form, i.e.,1298

f ≤ 0, ε̇p ≥ 0, f ε̇p = 0, (2.64)

where ε̇p is determined by means of the consistency condition ε̇pḟ = 0, when f = 0.1299

If, in our work, we had followed the approach outlined by Anand et al. [14], we1300

would have found a very complicated evolution law for εp, especially from the com-1301

putational point of view. To circumvent this technical difficulty, we have proposed1302

a modification to the model, i.e., we have assumed H
(i)
ε = H

(e)
ε /= 0 and, in order1303

to obtain an evolution law for εp of the type Jτpε̇p = f (cf. Equation (2.57)), with1304

f defined as done by Anand et al. [14], we have exploited the “freedom” we have to1305

express H
(e)
ε as in (2.58). A last comment pertains to the terms λp/J and Jσth fea-1306

turing in Equation (2.59): if λp and σth are such that λp/Je ≡ Λp and Jeσth ≡ Σth1307

are constants, then it holds that λp/J = Λp/Jγ and Jσth = JγΣth. In this case, Jγ1308

does not feature explicitly in Equation (2.59), which becomes ε̇p = Λpf̃, where we1309

3Note that, differently from what is assumed here, Anand et al. [14] hypothesise that the
conventional yield stress is a monotonically decreasing function of εp, because they are interested
in studying the phenomenon of strain-softening.
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have set f̃ ≡ f/Jγ. In this case, Σth acquires the meaning of the yield stress that1310

is used in the yield criteria formulated in terms of the norm of the Mandel stress1311

tensor (see e.g. [136]). We remark, however, that solving ε̇p = Λpf̃ in lieu of (2.59)1312

leads, in our work, to no appreciable differences in the simulation results.1313

2.5 Model Equations and benchmark test1314

In this section, we summarise all the model equations and their correspond-1315

ing unknowns, we highlight the fundamental hypotheses adopted to simplify our1316

simulations, and we describe the benchmark problem used for testing our model.1317

2.5.1 Summary of the model equations1318

The first equation of the problem is given by (2.56a), i.e., the momentum balance1319

law for the mixture as a whole, and its associated unknown is given by the solid1320

phase motion, χ. The second equation determines the pressure, p, and is supplied1321

by the mass balance law (2.8d), in which, coherently with (2.56b), Q is expressed1322

as Q = −KGradp. The right-hand-side of (2.8d) is set equal to zero on the basis of1323

the assumption that, in tumours, the mass densities ρs0 and ρf0 are approximately1324

the same. The third equation is the mass balance of the proliferating cells (2.8a),1325

and its corresponding unknown is the mass fraction ωp. The fourth equation is in1326

the mass fraction of the nutrients, ωN, and is obtained from (2.8c) by using the1327

identities Φf = J − JγΦsν and YN = −ρf0DGradωN. The fifth equation descends1328

for the mass balance law of the solid phase and, by assigning the mass source Rs1329

phenomenologically, it puts a constraint on the growth parameter, γ, which is thus1330

bound to comply with (2.23). Except for the sources and sinks of mass, which are1331

defined in a slightly different way in our work, the five equations mentioned so far1332

are the same as those studied by Mascheroni et al.[191] and Di Stefano et al. [91].1333

The evolution of the plastic distortions is described by the dynamic equation1334

(2.59), which determines εp, and by the constraint on Fp placed by (2.20). These1335

add two more equations to the previous five. Finally, the equation for the micro-1336

scale “plasticity” variable, ep, is supplied by (2.62).1337

In conclusion, by putting together all the laws enumerated up to now, we obtain1338

1339

Div(Pf + Ps) = 0, (2.65a)

Div (KGradp) = J̇ , (2.65b)

ρs0JγΦsνω̇p = Rpn +Rfp −Rsωp, (2.65c)

ρf0[J − JγΦsν ]ω̇N + ρf0QGradωN = Div (ρf0DGradωN) +RNp +RsωN, (2.65d)

γ̇ =
Rs

3ρs0Φsνγ2
, (2.65e)
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ε̇p =
λp
J

{(
Jγ

√
3
2
∥Σ̃ν∥η − Jσth

)
− Jγ(Aν + Zν)[εp − ep]

}
, (2.65f)

Ḟp =

(√
3
2
ε̇pη

−1Nν

)
Fp, (2.65g)

Div (γBνBpGradep)− γ3Aνep = −γ3Aνεp, (2.65h)

which constitutes a system of 18 scalar equations in the 18 unknowns1340

U = {χ, p, ωp, ωN, γ, εp,Fp, ep}. (2.66)

For ensuring the non-negativity of ε̇p at all times and at all points, we solve (2.65f)1341

numerically by taking the positive part of its right-hand-side. Moreover, to close1342

the problem, we prescribe the permeability tensor and the diffusion tensor [149, 25,1343

91, 109],1344

K = Jk0C
−1, k0 = k0R

[
J − JγΦsν

Jγφf0

]m0

exp

(
m1

2

[
J2 − J2

γ

J2
γ

])
, (2.67a)

D = Jd0C
−1, d0 =

J − JγΦsν

J
d0R, (2.67b)

as well as the sources and sinks of mass [191, 91], i.e.,1345

Rpn = −Jζpn
〈
1− ωN

ωNcr

〉
+

JγΦsν

J
ωp, (2.68a)

Rfp = Jζfp

〈
ωN − ωNcr

ωNenv − ωNcr

〉
+

[
1− δ1⟨℘⟩+

δ2 + ⟨℘⟩+

]
J − JγΦsν

Jφf0

JγΦsν

J
ωp, (2.68b)

Rs = Rfp +Rnf , (2.68c)

Rnf = −Jζnf [1− ωp]
JγΦsν

J
, (2.68d)

RNp = −JζNp
ωN

ωN + ωN0

JγΦsν

J
ωp. (2.68e)

Since the expressions of Rpn, Rfp, Rnf , and RNp have been already commented in1346

previous works [191, 91], we do not spend any more words here on their derivation.1347

We recall, however, that the operator ⟨ · ⟩+ returns the positive part of its argument,1348

and that ωNcr denotes a critical value of the mass fraction of the nutrients, below1349

which the proliferating cells tend to be necrotic (that is, Rpn < 0), whereas ωNenv1350

represents the mass fraction of the nutrients in the “environment”. Both ωNenv and1351

ωNcr are regarded as constant parameters in our work, and it is assumed that the1352

condition ωNenv > ωNcr is always respected, so that also Rfp is deactivated, i.e.,1353

Rfp = 0, for ωN < ωNcr. Moreover, looking at the definition of Rfp, and bearing in1354

mind that, for ωN > ωNcr, Rfp describes the positive variation of mass of the tissue’s1355
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solid phase, we notice that the factor1356 [
1− δ1⟨℘⟩+

δ2 + ⟨℘⟩+

]
accounts for mechanotransduction through the action of the stress ⟨℘⟩+. Compar-1357

ing this result with the works of Mascheroni et al. [191] and Di Stefano et al. [91],1358

we notice that our model suggests a slightly different interpretation of mechan-1359

otransduction. Indeed, while Mascheroni et al. [191] and Di Stefano et al. [91]1360

prescribe ℘ as ℘ = −(1/3)tr(gσsc), where σsc = J−1PscF
T is the constitutive part1361

of the solid phase Cauchy stress, and, accordingly, Psc is defined by1362

Psc = Jγ

(
ρs0Φsνg

−1∂Ψ̂
(st)
s

∂Fe

(FFγ
−1Fp

−1)Fp
−TFγ

−T

)
≡ Psc(F ,Fγ,Fp), (2.69)

in our approach ℘ is taken as ℘ = −(1/3)tr(gσeff) (see also [78]), with1363

σeff = σsc +
1

Je
g−1Fe

−TηΣ(n-st)
ν Fe

T

=
1

Je
g−1Fe

−TηΣ(st)
ν Fe

T +
1

Je
g−1Fe

−TηΣ(n-st)
ν Fe

T

=
1

Je
g−1Fe

−TηΣνFe
T. (2.70)

In other words, while the works done by Mascheroni et al.[191] and Di Stefano1364

et al.[91] the stress used to express the mechanotransduction is the classical σsc,1365

we propose here to adopt the effective Cauchy stress, σeff, which captures both1366

σsc and the non-standard, purely configurational contribution Σ(n-st)
ν . Our point is1367

that, since in our approachΣν is (power-)conjugate to the growth rate γ̇/γ (through1368

Rs) and to ε̇p (see (2.37)), it might be a more natural representative of the stress1369

responsible for modulating growth. This consideration notwithstanding, for the1370

parameters chosen in our simulations, the contribution of Σ(n-st)
ν is very marginal1371

with respect to the standard measures of stress, and its contribution is thus not1372

much appreciable.1373

2.5.2 Benchmark problem1374

The benchmark problem is essentially the same as the one computed in Di1375

Stefano et al.[91], with the major difference that we are now considering also plastic1376

distortions and the role of micro-plasticity. Hence, by adapting a study originally1377

designed by Ambrosi and Mollica[11], we consider the case of volumetric growth1378

in a cylindrical sample of isotropic material. For this purpose, we introduce the1379

systems of cylindrical coordinates (R,Θ, Z) and (r, θ, z), which cover the reference1380
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and current configuration, respectively. For both systems, the first coordinate is1381

radial, the second one is circumferential, and the third one is axial.1382

We assume that the radius of the specimen is preserved, and that only its1383

length varies along the axial direction. Hence, we eliminate any rigid rotation1384

about the principal axis. These restrictions imply that the momentum balance law1385

(2.65a) reduces to a scalar equation in Z, and that the deformation gradient tensor1386

becomes F = er ⊗ER + eθ ⊗EΘ + (1 + ∂u
∂Z

)ez ⊗EZ , where u is the field of axial1387

displacements. We note that {ER,EΘ,EZ} and {er, eθ, ez} are the co-vector and1388

vector bases associated with the system of cylindrical coordinates (R,Θ, Z) and1389

(r, θ, z), respectively.1390

We impose the following boundary conditions on Equations (2.65a)–(2.65h)1391

(−Jpg−1F−T + Psc).NA = 0, on (∂B)Left and (∂B)Right, (2.71a)

p = 0, on (∂B)Left and (∂B)Right, (2.71b)

(−KGrad p).NC = 0, on (∂B)C, (2.71c)

(−ρfDGradωN).NC = 0, on (∂B)C, (2.71d)

ωN = ωNenv, on (∂B)Left and (∂B)Right, (2.71e)

(γBνBpGradep).N = 0, on ∂B, (2.71f)

where ∂B = (∂B)Left ∪ (∂B)C ∪ (∂B)Right, (∂B)C is the lateral boundary of the1392

cylinder, (∂B)Left and (∂B)Right are the left and right surface cross-sections at1393

Z = −L/2 and Z = L/2, respectively, and L is the initial length of the cylin-1394

der. Moreover, NA, NC, and N are fields of unit vectors normal to (∂B)Left and1395

(∂B)Right, (∂B)C, and ∂B, respectively.1396

Equations (2.71a) and (2.71b) mean that the left and right ends of the cylinder1397

are free boundaries. The relations (2.71c) and (2.71d) are enforced to express1398

that (∂B)C is undeformable and impermeable to the fluid and to the nutrients,1399

respectively. Equation (2.71e) is a Dirichlet condition specifying that there always1400

exists a constant availability of nutrients on the boundaries (∂B)Left and (∂B)Right.1401

Finally, the boundary condition (2.71f) is introduced following Anand et al.[14].1402

To complete the mathematical formulation of the problem, we prescribe the1403

initial conditions,1404

χr(R,Θ, Z,0) = R, (2.72a)

χϑ(R,Θ, Z,0) = Θ, (2.72b)

χz(R,Θ, Z,0) = Z, (2.72c)

p(R,Θ, Z,0) = 0, (2.72d)

ωN(R,Θ, Z,0) = ωNenv, (2.72e)

γ(R,Θ, Z,0) = 1, (2.72f)

ωp(R,Θ, Z,0) = 1, (2.72g)
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εp(R,Θ, Z,0) = 0, (2.72h)

ep(R,Θ, Z,0) = 0, (2.72i)

with R ∈ [0, Rb], Θ ∈ [0,2π[ and Z ∈ [−L/2, L/2]. The conditions (2.72a)–(2.72i)1405

have to be valid in the whole domain B.1406

The material parameters k0R, m0, m1, and d0R, the coefficients ζpn, ζfp, ζnf , and1407

ζNp as well as the constants ωNenv, ωNcr, ωN0, δ1, δ2, σth, and λp are given in Table1408

2.1.1409

In Table 2.1, the length of the cylindric specimen, L, and the radius of its1410

cross section, Rb, are chosen within a plausible physical range. However, it is1411

necessary to motivate the choice of the parameters ωNenv, ωNcr, and ωN0, which are1412

all taken from Di Stefano et al.[91]. These quantities are adapted from [191], where1413

they were set equal to ωNenv = 7.0 · 10−6, ωNcr = 2.0 · 10−6, and ωN0 = 4.2 · 10−6,1414

respectively. With the exception of ωNcr
4, in the work of Mascheroni et al.[191] these1415

values come from experiments performed on tumour spheroids and associated with1416

geometry, size, diffusion length scales and nutrients’ characteristic mass fractions1417

that are very different from those considered in our work. Indeed, an essential1418

feature of the benchmark problem investigated by Mascheroni et al. [191] is that,1419

because of the spherical geometry of the tumour, and because of the nutrients being1420

distributed homogeneously on the tumour’s surface, the diffusion of the nutrients1421

occurs isotropically, from the boundary to the center of the spheroid, in radial1422

direction. In our problem, instead, the nutrients can diffuse only along the axial1423

direction of the tumour, and they have to travel the length L, which is much larger1424

than the radius, of about 20 µm, of the spheroids considered Mascheroni et al.1425

[191]. Due to these geometric and size aspects, if we used the values of ωNenv,1426

ωNcr and ωN0 suggested Mascheroni et al., we would generate a situation in which1427

the replenishment of the nutrients “eaten” by the cells would be too slow for the1428

tumour to grow. Indeed, especially in the middle of the tumour, the nutrients’1429

mass fraction would go below the threshold value, ωNcr, after few hours. Therefore,1430

to avoid a fast inhibition of growth, we have increased the value of ωNenv of three1431

orders of magnitude in our experiment in silico. Note that there is a certain freedom1432

in the choice of ωNenv, since prescribing its value amounts to preparing the bath1433

of nutrients in which the tumour is immersed. This freedom notwithstanding, the1434

value assigned to ωNenv should take into account the characteristic length of the1435

tumour —in our case, L— in order to ensure that the effects of growth remain1436

active over a sufficiently long time scale. In principle, ωNcr and ωN0 should be1437

determined experimentally. Still, since we are not aware of any experimental value1438

of ωNcr, we have calibrated it so that ωNcr be smaller than ωNenv, but big enough to1439

4Note that the values attributed to ωNcr Mascheroni et al.[191] for all the considered studies
are never referenced, the only exception being the growth of a tumour spheroid. In this case,
however, the reference is a typographical error.
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allow for a transition from the stage of tumour growth, for ωNcr < ωN ≤ ωNenv, to1440

the stage of no growth, for ωN ≤ ωNcr < ωNenv. This reasoning has led us to choose1441

ωNcr three orders of magnitude greater than the value assigned Mascheroni et al.1442

[191]. Finally, the value given to ωN0 in our work (see Table 2.1) is two orders of1443

magnitude greater than the one prescribed by Mascheroni et al. [191]. This choice1444

allows us to be consistent with the scale of the nutrients’ mass fraction imposed in1445

our work.1446

2.6 Some computational aspects1447

The system (2.65a)–(2.65h) features both ordinary differential equations (ODEs)1448

in time, and partial differential equations (PDEs). All the ODEs of our model, in-1449

cluding those obtained after that the finite element discretisation of the PDEs is1450

performed, have been discretised adaptively in time, and have been solved by means1451

of a four-step Backward Differentiation Formula (BDF4). This is an implicit linear1452

multistep method, which generalises the implicit Euler method. Since the BDF41453

is implicit, it requires in general the solution of nonlinear equations at each time1454

integration step. The BDF4 is available in COMSOL Multiphysics®, which has1455

been used to run our simulations.1456

The PDEs have been put in weak form and solved by means of Finite Element1457

techniques. In particular, classical methods have been used for (2.65b), (2.65d), and1458

(2.65h), while a “special treatment” has been reserved to the momentum balance1459

law (2.65a), for which the Hu-Washizu method [42] has been employed.1460

Looking more closely at the PDEs (2.65b), (2.65d), and (2.65h), we notice that1461

(2.65b) is a generalised Poisson equation in the pressure, p, with a time-dependent1462

right-hand-side, J̇ , which represents the volume change of the solid phase due to1463

the changes in porosity accompanying the flow of the fluid. Equation (2.65d),1464

instead, is a nonlinear diffusion-advection-reaction equation in the mass fraction of1465

the nutrients, ωN, with the nonlinearity being nested in the reaction terms, RNp and1466

Rs. Both for (2.65b) and for (2.65d), the Finite Element Method leads to a set of1467

ODEs in which the unknowns are the nodal pressures and the nodal mass fractions1468

of the nutrients, respectively. Finally, Equation (2.65h) is an equation of Helmholtz1469

type and, in this case, the Finite Element method yields a set of algebraic equations1470

in the nodal values of ep, which are anyway time-dependent. In the following, we1471

do not fuss over the procedure for obtaining the set of nodal equations associated1472

with (2.65b), (2.65d), and (2.65h), since such procedure is rather standard.1473

To sketch the formulation of the Hu-Washizu method, we add together the1474

expressions of the stress tensors Pf and Ps, and we notice that the weak form of1475

the momentum balance law (2.65a) admits the compact form1476 ∫
B

(Pf + Ps) : gGradUs =

∫
B

(
−Jp g−1F−T + Psc

)
: gGradUs = 0, (2.73)
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where Us is the virtual velocity of the solid, expressed as a function of the points1477

X of B.1478

One of the main drawbacks of this formulation is that, once a Finite Element1479

scheme is used for solving (2.73), the “limitations” of the interpolations adopted1480

for χ [42], F , and Fp are transferred to Psc through its constitutive representation,1481

Psc(F ,Fγ,Fp). This ill behaviour persists even increasing the order of the basis1482

functions used for the discretisation of χ, and may lead to a remarkable deterioration1483

of the resolution of Psc, with consequent loss of accuracy of the employed numerical1484

method. A possible way to contain the occurrence of the just depicted numerical1485

phenomenon is supplied by the Hu-Washizu method [42], which we implement for1486

our purposes in its three-field-formulation. Although the Hu-Washizu method is1487

well known in the computational community, we briefly explain here how we adapt1488

it to the case under investigation in this work.1489

Together with the motion, χ, which is an unknown of the model, we introduce1490

two tensor-valued auxiliary variables, which we regard as additional independent1491

fields of our model: these are an auxiliary “deformation gradient tensor”, F HW,1492

and an auxiliary first Piola-Kirchhoff stress tensor, P HW
sc (note that the superscript1493

“HW” stands for “Hu-Washizu”). Although being independent, F HW and P HW
sc1494

must be consistent with the true deformation gradient tensor and with the true1495

first Piola-Kirchhoff stress tensor, respectively, and are thus bound to satisfy the1496

constraints1497

F HW = F , (2.74a)

P HW
sc = Psc(F

HW,Fγ,Fp). (2.74b)

To proceed with the Hu-Washizu method, we rephrase Equations (2.74a) and1498

(2.74b) in weak form. Hence, we write1499 ∫
B

{[
F − F HW

]
:Π+

[
Psc(F

HW,Fγ,Fp)− P HW
sc

]
:Λ
}
= 0, (2.75)

where Π and Λ denote the virtual variations of P HW
sc and F HW, respectively, and1500

represent a virtual stress rate and a virtual velocity gradient. Equation (2.75) is1501

now appended to (2.73), which has to be reformulated in terms of the Hu-Washizu1502

auxiliary fields, thereby obtaining1503 ∫
B

{[
P HW

sc − (detF HW)pg−1(F HW)−T
]
:gGradUs +

[
F − F HW

]
:Π

+
[
Psc(F

HW,Fγ,Fp)− P HW
sc

]
:Λ
}
= 0. (2.76)

After performing the interpolation of all the fields introduced so far, the algebraic1504

form of (2.76) consists of a block system, in which one block corresponds to the1505

balance of momentum, one block is associated with (2.74a), and one with (2.74b).1506
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2.7 Results1507

To weigh the effects of the non-local theory of remodelling on the benchmark1508

problem presented in Section 2.5.2, we perform two different simulations: one is1509

done by excluding micro-plasticity, and is thus said to be “standard”; the other1510

one, instead, accounts for micro-plasticity, and refers to the “non-standard” model.1511

The standard model (ST) is obtained by setting Aν , Bν , and Zν equal to zero,1512

so that Equation (2.65h) is always satisfied and the evolution law for εp only takes1513

into account the first term of the right-hand-side of (2.65f), with Σν ≡ Σ(st)
ν . In the1514

non-standard model (NST), the parameters Aν , Bν , and Zν are different from zero1515

(see Table 2.2), and the full system of equations (2.65a)–(2.65h) has to be solved.1516

Since, to the best of our knowledge, no measurements for Aν , Bν , and Zν are1517

available in the scientific literature on soft tissues, we have chosen such parameters1518

after several trials. For this reason, the values used to obtain Figures 2.2–2.5 may1519

be unrealistic for describing a true biological situation. Moreover, we remark that1520

the convergence of the system (2.65a)–(2.65h) was achieved only for Zν ≤ 1 and1521

Aν > Bν , whereas our computations never converged for Zν > 1, regardless of the1522

tested values of Aν and Bν . We also emphasise that, for the cases in which the1523

model converged, the results of the simulations featured no remarkable difference.1524

To report the results of our model, we display the numerical solutions of the1525

displacement, the growth parameter, γ, the mass fraction of the proliferating cells,1526

ωp, the pressure, p, and the axial component of the effective Cauchy stress tensor,1527

σzzeff. We plot all these quantities versus the axial coordinate of the specimen, and1528

at the times t = 10 d and t = 20 d.1529

Figure 2.2 shows the displacement of the tumour (left panel) and the growth pa-1530

rameter, γ (right panel). Both quantities are computed only for the case of growth1531

without “plasticity” (remodelling) (NP), i.e., for Fp = I, εp = 0, ep = 0, and for1532

the case in which “plasticity” (remodelling) is active. Moreover, “plasticity” is ac-1533

counted for as prescribed by the non-standard model (NST). In fact, we could have1534

also used the standard one (ST), but it would have led to imperceptible differences1535

with respect to the non-standard model. As expected, both the displacement and1536

the growth parameter increase as time goes by, but we observe a drastic reduction1537

of their spatiotemporal evolution when remodelling is active. The results presented1538

in Figure 2.2 confirm the ones obtained by Mascheroni et al.[191] and Di Stefano et1539

al. [91], and have been re-computed with the purpose of highlighting the important1540

role that remodelling may play on growth.1541

To further investigate the possible role of remodelling on growth and, in par-1542

ticular, the switch from the standard to the non-standard approach, we study the1543

evolution of ωp (Figure 2.3), p (Figure 2.4), and σzzeff (Figure 2.5).1544

Figure 2.3 displays, in the left panel, the progression of the mass fraction of1545

the proliferating cells, ωp, and, in the right panel, the absolute value of the differ-1546

ence between ωST
p and ωNST

p , which denote the mass fractions of the proliferating1547
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cells computed with the standard model (ST) and the non-standard model (NST),1548

respectively. In the left panel, we notice that, at time t = 10 d, the differences be-1549

tween ωST
p and ωNST

p are irrelevant. However, at t = 20 d, a slight, yet appreciable,1550

difference starts to appear. We visualise this difference in the right panel of Figure1551

2.3. Here, we notice that, due to the Dirichlet boundary condition imposed on ωp1552

at Z = L/2, such difference cannot be pronounced for values of the axial coordinate1553

tending to L/2. On the other hand, |ωST
p − ωNST

p | becomes relatively more visible1554

in the portion of the specimen in which growth is inhibited (see Figure 2.2(right)).1555

This is due to a limited availability of nutrients (data not shown).1556

In the left panel of Figure 2.4, we show the pressure, p, both for the ST model1557

and for the NST one. For both models, the same behaviour is attained, i.e., the1558

pressure drops from the tumour boundary towards its centre, where it takes neg-1559

ative values. In the right panel of Figure 2.4, we report the absolute value of the1560

difference, at time t = 20 d, between pST and pNST, i.e., the pressures computed1561

with the ST model and the NST model, respectively. The differences between pST1562

and pNST are relatively small, but visible, in almost all of the half domain and1563

at both times. They are clearly zero at the Dirichlet boundary Z = L/2 and, at1564

t = 20 d, the maximum of |pST − pNST| is reached at a point between 0.4 cm and1565

0.5 cm.1566

Moreover, in Figure 2.5, the axial component of the constitutive part of the1567

Cauchy stress tensor, σzzsc , is shown. Indeed, due to the imposed boundary con-1568

ditions and the symmetry restrictions of the considered problem, the balance of1569

momentum (2.65a) amounts to requiring −p+σzzsc = 0 everywhere in the specimen.1570

Hence, it holds that σzzsc = p. In addition, the axial component of the stress used1571

to model the mechanotransduction, σzzeff, is different from σzzsc , as it features ∂ep/∂Z1572

(see Equation (2.70)). However, since this derivative is very small, it occurs that1573

σzzeff can be safely approximated with σzzsc and, thus, with p.1574

A last comment concerns the evolution of ep and εp. As reported in Figure 2.6,1575

both εp and ep are increasing functions of time and space. If we focus on εp, we1576

note that, as time goes by, the remodelling strains augment and accumulate in a1577

neighbourhood of the boundaries of the specimen. This is highlighted by the fact1578

that the slope of the curves corresponding to εp tends to raise when it approaches1579

the edge. However, as predicted by the theory, ep plays a smoothing role on the1580

remodelling distortions and, in fact, it distributes itself more uniformly along the1581

specimen. A relevant aspect of this result is that, while the curves corresponding1582

to εp at t = 10 d and t = 20 d are almost coincident at the centre of the specimen,1583

the curves determining ep are distinguishable from one another.1584

1585

1586
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Table 2.1: Numerical values of the parameters used both for the standard and for
the non-standard model.

Parameter Unit Value Equation Reference

L [cm] 1.000 — [91]
Rb [cm] 1.000 · 10−2 — [91]
k0R [mm4/(N s)] 0.4875 (2.67a) [149]
m0 [−] 0.0848 (2.67a) [149]
m1 [−] 4.6380 (2.67a) [149]
d0R [m2/s] 3.200 · 10−9 (2.67b) [149]
σth [Pa] 1.000 · 10−7 (2.58) [130]
λp [m s/kg] 7.000 · 10−7 (2.59) [130]
λ [Pa] 1.333 · 104 (2.47) [263]
µ [Pa] 1.999 · 104 (2.47) [263]
ωNcr [−] 1.000 · 10−3 (2.68a) [91]
ωNenv [−] 7.000 · 10−3 (2.68b) [91]
ωN0 [−] 1.480 · 10−4 (2.68e) [91]
δ1 [−] 7.138 · 10−1 (2.68b) [192]
δ2 [Pa] 1.541 · 103 (2.68b) [192]
ζpn [kg/(m3 s)] 1.500 · 10−3 (2.68a) [62]
ζfp [kg/(m3 s)] 1.343 · 10−3 (2.68b) [62]
ζnf [kg/(m3 s)] 1.150 · 10−5 (2.68d) [62]
ζNp [kg/(m3 s)] 3.000 · 10−4 (2.68e) [57]

Table 2.2: Numerical values of the parameters Aν , Bν and Zν for the non-standard
model.

Parameter Unit Value Equation

Aν [Pa] 1.0 · 10−9 (2.38c)
Bν [Pam2] 1.0 · 10−14 (2.38d)
Zν [Pa] 1.0 · 10−2 (2.65f)
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Figure 2.2: Left panel : spatial profile of the displacement. Right panel : spatial
profile of the growth parameter, γ. Since the problem is symmetric, in both panels
only the half [0, L/2] of the domain is shown.

Figure 2.3: Left panel : spatial profile of the mass fraction of the proliferating
cells, ωp. Since the problem is symmetric, only the half [0, L/2] of the domain is
shown. Right panel : spatial profile of the absolute value of the difference between
ωST
p and ωNST

p , i.e., the mass fractions of the proliferating cells computed with
the standard model (ST) and the non-standard model (NST), respectively. The
picture refers to the portion of the half domain in which |ωST

p − ωNST
p | is greater

than, approximatively, 2.25 · 10−3, and is computed at time t = 20 day.
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Figure 2.4: Left panel : spatial profile of the pressure, p. Right panel : spatial profile
of the absolute value of the difference between pST and pNST, which denote the
pressure computed with the standard model (ST) and the pressure computed with
the non-standard model (NST). The picture is computed at time t = 20 day. Since
the problem is symmetric, in both panels only the half [0, L/2] of the domain is
shown.

Figure 2.5: Left panel : spatial profile of the axial component of the effective Cauchy
stress tensor, σzzeff. Right panel : spatial profile of the absolute value of the difference

between σ
zz(ST)
eff and σ

zz(NST)
eff , which denote the stress computed with the standard

model (ST) and the non-standard model (NST), respectively. The picture is com-
puted at time t = 20 day. Since the problem is symmetric, in both panels only the
half [0, L/2] of the domain is shown.
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Figure 2.6: Spatial profiles of the accumulated remodelling strain εp and of the
microscale plasticity ep. Since the problem is symmetric, only the half [0, L/2] of
the domain is shown.
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Chapter 31587

Influence of non-local diffusion in1588

avascular tumour growth1589

The work reported in this chapter has been previously published in [235].1590

3.1 Introduction1591

For several years now, the scientific literature has experienced an important1592

increase in the mathematical modelling of tumour growth (see e.g. [50, 37, 16, 153,1593

245, 184, 12, 255, 155, 238, 154] and the references therein). However, there is still1594

the necessity for understanding the connections among the different processes of1595

chemical, biological and/or mechanical nature that take place at different time and1596

length scales and influence the evolution of a tumour.1597

From the mechanical perspective, the growth of a tumour is closely related to1598

the appearance of transformations of its internal structure that arise in response to1599

mass changes, which may be driven by its chemo-mechanical environment and coex-1600

ist with the visible deformation of the tumour itself [86, 77, 228]. A relevant aspect1601

of this phenomenology is that the structural transformations are often accompa-1602

nied by the production of residual stresses [242, 165, 126, 69, 91]. In this respect,1603

we mention the series of experiments conducted by Stylianopoulos et al. [262] on1604

tumour spheroids, which indicate the existence of an incompatible, stress-free state1605

for such systems and, thus, suggest to interpret growth in terms of inelastic dis-1606

tortions in addition to mere changes of shape. This conclusion permits to invoke1607

the Bilby–Kröner–Lee (BKL) multiplicative decomposition of the deformation gra-1608

dient tensor [201, 126, 246]. As long as volumetric growth is concerned and, as1609

in the case of the present work, no other types of structural transformations are1610

accounted for, the BKL decomposition reduces to decomposing the deformation1611

gradient tensor into two contributions. One is related to the changes of the tissue’s1612

internal structure due to the gain or loss of mass, and the other one to distortions1613
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of purely elastic nature (note that, here and in the sequel, we shall use the terms1614

“tumour” and “tissue” interchangeably). We refer to the works [246, 126, 226, 66,1615

91, 131], and to the references therein, for a more complete discussion on the BKL1616

multiplicative decomposition.1617

3.1.1 Aim and novelties of our work1618

In the present work, on the basis of the indications given above, our aim is to1619

highlight and study the influence of the non-local character of diffusion processes1620

that could be acting in an avascular tumour. To accomplish this task, we propose a1621

potentially new constitutive relationship of fractional type for the mass flux vector.1622

Consequently, we refer only to fractional operators in space, so that the model is1623

non-local in space but local in time. In our formulation, the mass flux vector of1624

the chemical species, evaluated at a given spatial point, is put in relation, through1625

an integral operator, to the concentration gradient of that species, evaluated at all1626

other points of the region of space occupied by the tumour. This leads to a general-1627

isation of Fick’s law that can be related to Fractional Calculus in a straightforward1628

manner. In particular, this connection will become evident in the specification of1629

the mass flux vector for the study of a benchmark problem (see Section “Definition1630

of the non-locality function”).1631

For our purposes, we adopt part of the modelling assumptions outlined in [191,1632

91, 131, 221]. Specifically, we study the tumour as a mixture comprising a fluid1633

phase and a solid phase, and we identify its growth with the gain or loss of mass1634

of the solid phase at the expenses or advantage of the fluid one. In particular, the1635

model we employ predicts the gain of mass for a sufficiently high concentration of1636

chemical agents (in fact, nutrients) and the loss of mass when the concentration of1637

these falls below a certain threshold [192, 191]. Moreover, in the case of mass uptake1638

of the solid phase, the model accounts for mechanotransduction [192, 191, 124, 131],1639

thereby allowing a modulation of growth by means of stress [192, 191], whereas both1640

for positive and for negative growth, the onset of structural transformations and1641

their related inelastic distortions are considered. In the remainder of this work, we1642

address only the most pertinent considerations and equations, while we refer the1643

Reader to [191, 91, 221] for further details.1644

Before going further, we find it convenient to highlight the main novelties of our1645

work, which can be summarised as follows:1646

1. Impact of non-local diffusion on tumour growth. With respect to [191, 91,1647

131, 221], we study the diffusion of the chemical agents in a growing tumour1648

by hypothesising a non-local constitutive law for the diffusive mass flux vec-1649

tor. This is done with the purpose of weighing how and to which extent the1650

deviation of non-local diffusion from the Fickean one impacts on the main1651

descriptors of the tumour’s evolution.1652
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2. Evolving non-locality driven by the tumour’s dynamics. The model that we1653

are proposing requires to solve a type of non-locality that changes with the1654

dynamics of the tumour through its motion and growth. To the best of our1655

knowledge, this is a generalisation of a setting adopted in several papers (see1656

e.g. [82, 151, 252, 174]), where the non-locality is accounted for in advection-1657

diffusion equations without considering the deformation or structural change1658

of the media in which such equations are defined.1659

3. Non-locality and non-linearity. The core of our work is the equation govern-1660

ing the evolution of chemical agents. This is given by an advection-diffusion-1661

reaction equation featuring a fractional diffusive mass flux vector and a non-1662

linear reaction term. We solve this equation together with all the other bal-1663

ance laws, expressed by non-linear partial differential equations, that model1664

the tumour and its growth. Therefore, we solve a system of equations in which1665

non-linearity combines with non-locality. To us, this is a novelty because, to1666

the best of our knowledge, papers on Fractional Calculus usually solve one1667

equation in conjunction with a fractional constitutive law. Furthermore, the1668

nature of the problem we are tackling makes it impossible to have recourse1669

to solution techniques based on Fourier and Laplace transforms, which are1670

standard for problems of Fractional Calculus that are linear and/or formu-1671

lated in unbounded domains. In our case, however, this assumption would1672

be physically unrealistic and we have, thus, to turn to numerical techniques,1673

such as Finite Element (FE) methods.1674

We point out that the study of fractional diffusion in bounded domains is del-1675

icate because of the complexity of the numerics involving operators of fractional1676

type. Nevertheless, in the literature there exist some works dealing with fractional1677

diffusion equations on bounded domains. The majority of these works employ1678

finite-difference Grünwald-Letnikov discretisation schemes (see e.g. [212, 182, 84,1679

196]), and there also exist studies in which FE methods have been used for solving1680

equations of fractional type [244, 151, 122, 106]. However, to the best of our knowl-1681

edge, there is still a lack of studies addressing in detail the numerical issues arising1682

in the context of fractional differential equations within a non-linear mechanical1683

framework.1684

We also mention that, in this work, we suggest a possible way of formulat-1685

ing non-local diffusion on manifolds by adapting the definition of convolution on1686

manifolds given in [253]. Originally, we encountered the necessity of expressing1687

convolution in the non-Euclidean context because we aimed at writing our model1688

in fully covariant formalism as a first step towards non-Euclidean settings. How-1689

ever, we faced some technical difficulties, which made us opt, for the time being, to1690

give just a sketch of the generalisation of non-local diffusion on manifolds. For this1691

reason, we summarised the main steps of our generalisation in Appendix A. Note1692
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that Meerschaert et al. [195] did consider diffusion-like problems on manifolds but1693

within a different framework.1694

Finally, we would like to point out that, throughout this work, the terminologies1695

“mass fraction” and “concentration” will be often used interchangeably, and the1696

spatial and temporal dependence of the variables are dropped out, unless there1697

is a necessity to account for the non-local character of the problem, where this1698

dependence is explicitly specified.1699

3.2 Kinematics1700

Let S be the three-dimensional Euclidean space, T an interval of time, and1701

B ⊂ S the reference placement of the mechanical system representing an avascular1702

tumour, in which the tumour may, or may not, be free of stress. In particular, we1703

consider that the tumour is a saturated mixture comprising a solid and a fluid1704

phase. Moreover, the region of S occupied by the system at time t ∈ T is referred1705

to as current configuration and is denoted by Bt ≡ χ(B, t), where χ(·, t) : B → S1706

describes the motion of the solid phase (for the mixture kinematics, we follow here1707

the same approach as the one adopted in [78]). Then, a point x ∈ Bt is given1708

by x = χ(X, t), with X ∈ B and t ∈ T . By differentiating the motion χ with1709

respect to X, we obtain the deformation gradient tensor, F , defined as the tangent1710

map of χ, i.e., F ( · , t) ≡ Tχ( · , t) : TB → TS , with TB = ⊔X∈BTXB and1711

TS = ⊔x∈STxS . Thus, tensor F (X, t) characterises the visible deformations of1712

the system by mapping vectors of the tangent space TXB into the tangent space1713

TxS .1714

We also introduce the spatial volumetric fractions of the solid and the fluid1715

phases, given by φs(x, t) and φf(x, t), respectively. Then, we define the apparent1716

mass densities, φs(x, t)ϱs(x, t) and φf(x, t)ϱf(x, t), of the solid and of the fluid,1717

where ϱs(x, t) and ϱf(x, t) represent the true mass densities of the solid and the1718

fluid phase, respectively. We notice that the apparent mass densities express, in1719

each case, the phase mass per unit volume of the mixture as a whole, whereas each1720

true mass density is the inherent density of the corresponding phase. Furthermore,1721

the saturation of the mixture implies that φs(x, t)+φf(x, t) = 1, for all x ∈ Bt and1722

t ∈ T .1723

The velocity of the mixture is v(x, t) :=
∑

k∈{s,f} φk(x, t)ϱk(x, t)vk(x, t)/ϱ(x, t),1724

where vs(x, t) and vf(x, t) denote the velocities of the solid and the fluid phases,1725

respectively, and ϱ(x, t) :=
∑

k∈{s,f} φk(x, t)ϱk(x, t) is the mass density of the mix-1726

ture as a whole. We notice that, by introducing the solid phase velocity V s(X, t) :=1727

χ̇(X, t), where the “dot” symbol denotes differentiation with respect to time, the1728

relationship vs(x, t) = vs (χ(X, t), t) = V s(X, t) holds true for all X ∈ B and1729

t ∈ T . Furthermore, since the tumour under study is assumed to be a mixture also1730

in B, the solid and the fluid coexist at every point X ∈ B. This situation implies1731
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that any point x in the fluid phase can be also viewed as the image of X through1732

the motion χ and, consequently, vf(x, t) = vf(χ(X, t), t) = V f(X, t).1733

3.2.1 Kinematics of growth1734

As suggested in several works, see e.g. [114, 262] and references therein, a rele-1735

vant aspect in the growth of a tumour is the manifestation of irreversible changes1736

of its internal structure. To take this aspect into account, we employ some con-1737

cepts taken from the theory of inelastic processes. Specifically, for characterising1738

the growth of the tissue under study, we invoke the Bilby-Kröner-Lee (BKL) de-1739

composition of the deformation gradient tensor [201, 66, 246, 242, 126], i.e.,1740

F = FeFγ, (3.1)

where the generally non-integrable tensor fields Fe and Fγ describe the elastic1741

accommodation of the tumour and the inelastic distortions induced by growth,1742

respectively. We denote by Nt(X) the natural state of the body element of the1743

tumour’s solid phase associated with X, and we let it represent a stress-free state.1744

We refer to the tensor Fγ(X, t) : TXB → Nt(X) as growth tensor and we assume1745

that it comprehends the structural transformations undergone by the tumour in1746

the course of its evolution. Then, the accommodating elastic tensor Fe(X, t) maps1747

vectors of Nt(X) into vectors of TxS . We refer to the works [246, 126, 226, 66,1748

91, 131], and references therein, for a more complete discussion on the nature and1749

generalisation of the multiplicative decomposition in Equation (3.1).1750

In particular, following [191, 91, 131], in the present work we contemplate the1751

case in which the growth tensor is a pure dilatation, that is, we impose Fγ = γI,1752

where γ > 0 is referred to as growth parameter and I is the second-order identity1753

tensor.1754

3.3 Balance laws1755

By adopting the modelling assumptions made in [191, 91, 131], we consider that1756

the fluid phase is constituted by chemical agents and “water”, with mass fractions1757

ca and cw, respectively, and such that ca + cw = 1. Furthermore, we hypothesise1758

the solid phase to consist of two type of cells, i.e., the proliferating cells, with mass1759

fraction cp, and the necrotic cells, with mass fraction cn, where cp + cn = 1.1760

3.3.1 Mass balance laws1761

The mass balance laws for the gain and loss of mass of the proliferating and the1762

necrotic cells, and for the mass fraction of the chemical species and the fluid phase1763
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as a whole are1764

∂t(φsϱscp) + div(φsϱscpvs) = rpn + rfp, (3.2a)

∂t(φsϱscn) + div(φsϱscnvs) = rnf − rpn, (3.2b)

∂t(φfϱfca) + div(φfϱfcavf + yα) = rap, (3.2c)

∂t(φfϱf) + div(φfϱfvf) = −rs, (3.2d)

where rpn, rfp, rnf and rap denote rates of mass intake and/or reduction [191, 91,1765

131]. Specifically, they represent the rate at which the proliferating cells turn into1766

necrotic (rpn), the mass from the fluid phase that promotes the proliferation of1767

cells (rfp), the necrotic cells that dissolve into the fluid (rnf), and the chemical1768

agents that are depleted by the proliferating cells (rap). Moreover, rs := rfp + rnf1769

is the global source/sink of mass of the solid phase as a whole. Particularly, in1770

writing Equations (3.2a) and (3.2b), we have enforced the consideration that the1771

two cell populations move at the same velocity vs. In Equation (3.2c), the term yα1772

corresponds to the mass flux vector of the chemical agents, and since the focus of1773

this work is subordinate to its definition, we prefer to make a deeper analysis of its1774

characterisation and physical meaning in a separate section.1775

By enforcing that the tissue’s cells are mainly composed by water [49, 191,1776

125], the true mass density of the solid phase, ϱs, can be regarded as constant and1777

equal to the true mass density of the fluid phase, ϱf , which is set to be equal to1778

the density of water. Thus, by taking into account the saturation constraint and1779

the BKL decomposition in Equation (3.1), Equations (3.2a)–(3.2d), written with1780

respect to the reference configuration, become1781

ċp = [Rpn +Rfp −Rscp][JγΦsνϱs]
−1, (3.3a)

γ̇

γ
= [Rfp +Rnf ][3ϱsΦsνJγ]

−1, (3.3b)

ϱf [J − JγΦsν ]ċa + ϱfQGradca +DivY α = caRs +Rap, (3.3c)

DivQ+ J̇ = 0, (3.3d)

where the material filtration velocity Q, the material mass flux vector of the chem-1782

ical agents Yα, the mass fractions ca and cp, and the material sources/sinks of mass1783

featuring in Equations (3.3a)-(3.3d) are given by1784

Q(X, t) := J(X, t)q(χ(X, t), t)F−T(X, t), (3.4a)

Yα(X, t) := J(X, t)yα(χ(X, t), t)F
−T(X, t), (3.4b)

ck(X, t) := ck(χ(X, t), t), k ∈ {a, p} (3.4c)

Rβ(X, t) := J(X, t)rβ(χ(X, t), t), β ∈ {pn, fp, nf, ap, s}, (3.4d)

with q = φf [vf − vs]. We note that, in writing Equations (3.3a)-(3.3d), the1785

material volumetric fractions Φs(X, t) := J(X, t)φs(χ(X, t), t) and Φf(X, t) :=1786
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J(X, t)φf(χ(X, t), t) have been written as Φs = JγΦsν and Φf = J − JγΦsν , where1787

Φsν(X, t) := Je(X, t)φs(χ(X, t), t) is the “pull-back” of the solid phase volumetric1788

fraction, φs, to the natural state [91, 131]. In particular, by imposing that the1789

temporal derivative of Jγ compensates for the mass source rs [102, 9], it can be de-1790

duced that the volumetric fraction Φsν is independent of time. However, Φsν may1791

depend on material points [131]. Furthermore, since it holds true that Je = J/Jγ,1792

the volumetric fractions of the solid and the fluid phase can be expressed entirely1793

in terms of the volume ratios J and Jγ, i.e.,1794

φs(x, t) = φs(χ(X, t), t) =
Jγ(X, t)Φsν(X)

J(X, t)
, (3.5a)

φf(x, t) = 1− φs(x, t) =
J(X, t)− Jγ(X, t)Φsν(X)

J(X, t)
. (3.5b)

3.3.2 Momentum balance laws1795

In this work, we neglect inertial and body forces, so that the momentum balance1796

laws for the biphasic medium as a whole and for the fluid phase write [141, 129,1797

221]1798

div(σs + σf) = 0, (3.6a)

q = −k gradp, (3.6b)

where σs and σf are the Cauchy stress tensors of the solid and the fluid phase,1799

p is the hydrostatic pressure, Equation (3.6b) expresses Darcy’s law [141], and k1800

denotes the permeability tensor, which is here taken to be symmetric and positive1801

definite.1802

Following [141, 39, 128, 91], we assume the fluid phase to be macroscopically1803

inviscid, so that σf is purely hydrostatic, and we write1804

σf = −φfpg
−1, (3.7a)

σs = −φspg
−1 + σsc, (3.7b)

where σsc is said to be the constitutive part of σs and g−1 is the inverse of the1805

metric tensor, g, associated with S . Then, by substituting Equations (3.7a) and1806

(3.7b) into Equation (3.6a), and performing the backward Piola transformation of1807

Equations (3.6a) and (3.6b), we obtain1808

Div(−Jpg−1F−T + P sc) = 0, (3.8a)

Q = −KGradp, (3.8b)

where we have introduced the notation1809

p(X, t) := p(χ(X, t), t), (3.9a)
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K(X, t) := J(X, t)F−1(χ(X, t), t)k(χ(X, t), t)F−T(X, t), (3.9b)

P sc(X, t) := J(X, t)σsc(χ(X, t), t)F
−T(X, t), (3.9c)

g(X, t) := g(χ(X, t)), (3.9d)

to denote, respectively, the pressure expressed as a function of time and of the1810

points of B, the material permeability tensor, the constitutive part of the overall1811

first Piola-Kirchhoff stress tensor, and the metric tensor expressed as a function of1812

time and of the points of B. Moreover, Equation (3.8b) represents Darcy’s law of1813

filtration, pulled-back to the reference configuration.1814

3.4 Constitutive laws I: Strain energy density and1815

permeability1816

Following [191, 91, 131], we hypothesise that the solid phase of the tumour is1817

isotropic and hyperelastic, and introduce the strain energy densities W and Wν ,1818

which are written per unit volume of the reference configuration and of the natu-1819

ral state, respectively. To account for the structural changes induced by growth,1820

the strain energy density W is expressed as a constitutive function, namely W̌,1821

depending on F , Fγ and on material points. Furthermore, we denote by W̌ν the1822

constitutive representation of Wν , which is supposed here to depend solely on the1823

tensor Fe. Therefore, the following relationship holds [102, 73, 91]1824

W̌(F (X, t),Fγ(X, t), X) = Jγ(X, t)W̌ν(Fe(X, t)). (3.10)

Within a more general framework, the strain energy density W̌ν maintains the ex-1825

plicit dependence on X, and Equation (3.10) does not hold in its present form. This1826

becomes evident when W̌ν is parameterised by point-dependent material coefficients1827

or, by expressing W̌ν as W̌ν = ΦsνϱsΨ̌s, where Ψ̌s is the solid phase strain energy1828

density per unit mass, when Φsν depends on X. However, these circumstances are1829

excluded from the setting of this work, as can be deduced by looking at Table 3.1,1830

in which all the material parameters and Φsν are taken as constants.1831

Hereafter, we adopt a constitutive law of the type proposed in [149] for W̌ν , i.e.,1832

1833

W̌ν(Fe) = Ŵν(Ce) = a0
{
exp(Ψ̂(Ce))− 1

}
, (3.11a)

Ψ̂(Ce) = a1[Î1(Ce)− 3] + a2[Î2(Ce)− 3]− a3 log
(
Î3(Ce)

)
, (3.11b)

where Ŵν is the constitutive representation of W expressed as a function of the1834

elastic, right Cauchy-Green deformation tensor Ce = F T
e .Fe = F−T

γ CF−1
γ , C =1835

F T.F is the “classical”, right Cauchy-Green deformation tensor, Î1(Ce) = tr (Ce),1836

Î2(Ce) =
1
2

{
[Î1(Ce)]

2−tr[(Ce)
2]
}
, and Î3(Ce) = det (Ce) are the principal invariants1837
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of Ce, and, as in [149, 269, 91], the parameters a0, a1, a2 and a3 are expressed in1838

terms of Lamé’s parameters λ and µ, i.e.,1839

a0 =
2µ+ λ

4a3
, a1 = a3

2µ− λ

2µ+ λ
, a2 = a3

λ

2µ+ λ
, a3 = a1 + 2a2 = 1. (3.12)

Then, by using Equations (3.11a) and (3.11b), the constitutive part of the first1840

Piola-Kirchhoff stress tensor reads [91]1841

Psc = JγFF−1
γ

(
2
∂ Ŵν

∂Ce

(Ce)

)
F−T
γ . (3.13)

Furthermore, we require the permeability tensor to be “unconditionally isotropic”1842

[25], i.e., k = k0g
−1, so that the material permeability tensor reads1843

K = Jk0C
−1. (3.14)

In Equation (3.14), k0 denotes the scalar permeability and is taken here as in [25,1844

149], i.e.,1845

k0 = kR

[
J − JγΦsν

JγφfR

]m0

exp

(
m1

2

[
J2 − J2

γ

J2
γ

])
, (3.15)

where m0 and m1 are constant material coefficients, φfR := 1 − Φsν is a reference1846

value of the fluid phase volumetric fraction, and kR is the reference permeability1847

of the medium. In the sequel, both kR and φfR, and thus Φsν , are assumed to be1848

constant.1849

3.5 Constitutive Laws II: Non-Fickean diffusion1850

As pointed out in the Introduction, our aim is to generalise previous models of1851

tumour growth [191, 91] by using some of the notions and tools offered by the theory1852

of Fractional Calculus [224, 21, 22]. To this end, we introduce a non-Fickean type1853

of diffusion of the chemical agents. Specifically, our purpose is to take into account1854

the non-local behaviour of the gradient of the chemical agents’ mass fraction, and1855

study its influence on the growth of an avascular tumour.1856

3.5.1 Non-Fickean mass flux vector1857

We propose to express the chemical species’ mass flux vector, yα (see Equation1858

(3.2c)), in terms of a non-local constitutive law of convolution type, in which, in the1859

Euclidean case, the kernel of the convolution integral features a power law in the1860

distance between the points x and x̃ of each pair (x, x̃) of spatial points occupied1861
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by body points. This way, we aim to show how yα, evaluated at x, depends on the1862

gradients of concentration evaluated at all other points x̃, and on the power law1863

chosen for the convolution kernel. To do this, we face two difficulties: the first one1864

is connected to the fact that, since, for the sake of generality, we view the body as a1865

manifold, the concept of convolution has to be suitably generalised; the second one1866

is due to the impossibility of integrating vector fields on manifolds. Whereas the1867

first issue has been investigated in the literature [44, 253, 225], and we refer to the1868

convolution on manifolds put forward in [253], the second issue can be circumvented1869

by re-defining the mass flux vector of the chemical agents in weak form, i.e., for1870

each t ∈ T , we define yα through the duality product [43]1871

⟨yα, grad č⟩ := −ϱf
∫

Bt

{∫
Bt

[grad č(x)]dα(x, x̃, t)[grad ca(x̃, t)]dv(x̃)

}
dv(x),

(3.16a)

dα(x, x̃, t) := fα(x, x̃)dα(x, x̃, t), (3.16b)

for all č ∈ Č = {č ∈ H1(Bt) : č = 0 on (∂Bt)D}, with Č being the space of1872

all virtual variations of the mass fractions, (∂Bt)D the portion of the boundary of1873

Bt on which Dirichlet conditions are applied for the mass fraction of the chemical1874

agents, and H1(Bt) is the standard Sobolev space of square-integrable functions1875

over Bt whose weak derivatives up to the order one are square-integrable over Bt1876

too.1877

We refer to the second-order tensor dα(x, x̃, t) as non-local diffusivity tensor,1878

and we express it as the product of the scalar quantity fα(x, x̃) and of the tensor1879

dα(x, x̃, t). In particular, for a given x ∈ Bt and varying x̃ ∈ Bt, fα(x, x̃), referred1880

to as the non-locality function, measures how the intensity of the chemical signal1881

expressed by grad ca(x̃, t) is felt at x. The tensor dα(x, x̃, t), instead, is denominated1882

fractional diffusivity tensor. We emphasise that fα is defined for x /= x̃ and that,1883

since we are dealing with fractional diffusion, both dα(x, x̃, t) and dα(x, x̃, t) have, in1884

general, physical dimensions different from those of the standard diffusivity tensor,1885

depending on the prescription of fα and α ∈ R+.1886

The way in which fα(x, x̃) is to be understood in the case in which Bt is viewed1887

as a manifold is reported in Appendix A1. However, from here on, to avoid the1888

technical difficulties of addressing such a general framework, which is out of the1889

scope of this work, we prefer to adopt orthogonal Cartesian coordinates. Then, by1890

regarding Bt as a flat subset of S having the same dimensionality as S , fα(x, x̃)1891

can be recast in the form fα(x, x̃) = f̂α(x − x̃), where f̂α is introduced to re-define1892

fα as a function of the vector x − x̃, i.e., as f̂α : Tx̃S → R (see Appendix A1).1893

Furthermore, we require dα(x, x̃, t) to be a two-point tensor of the type dα(x, x̃, t) =1894 ∑3
a,b=1[dα(x, x̃, t)]

abea(x) ⊗ eb(x̃), where {el(x)}3l=1 and {el(x̃)}3l=1 are the vector1895

bases attached to x and x̃. It is worth noticing that, within a Cartesian setting,1896

and for x = x̃, the tensor ea(x) ⊗ eb(x̃) ≡ ea(x) ⊗ eb(x) is referred to as “Jacoby1897
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directional tensor” in [8], where, in a slightly different context, the central Marchaud1898

fractional derivative is extended to the case of two- or three-dimensional problems.1899

In general, there is no correlation at all between the vector bases {el(x)}3l=1 and1900

{el(x̃)}3l=1 and, in fact, each basis can be chosen arbitrarily and independently of the1901

other one. Nevertheless, {el(x̃)}3l=1 can be enforced to be the result of the parallel1902

transport of {el(x)}3l=1 along the geodesic connecting x and x̃. In particular, in the1903

Euclidean case, the arch of the geodesic connecting x and x̃ is the segment of the1904

straight line directed from x to x̃ and the parallel transport of {el(x)}3l=1 along such1905

a line renders {el(x̃)}3l=1 collinear with {el(x)}3l=1. Hence, for each l = 1,2,3, el(x)1906

and el(x̃) can be associated with the same direction, hereafter denoted by il, even1907

though they remain, implicitly, distinct vectors, attached to different spatial points.1908

Within this approach, we hypothesise that dα(x, x̃, t) admits the representation1909

dα(x, x̃, t) =
∑3

b=1 d
b
α(x, x̃, t)eb(x) ⊗ eb(x̃) and, since el(x) is collinear with el(x̃),1910

this representation of dα(x, x̃, t) mimics the description of an orthotropic tensor1911

function with respect to the set of directions {i1, i2, i3}. Hence, it is “as if” we1912

had dα(x, x̃, t) =
∑3

b=1 d
b
α(x, x̃, t)ib⊗ ib. Then, by using the definitions in Equation1913

(3.16), we identify the components of the fractional mass flux to be given by the1914

following expression1915

[yα(x, t)]
b := −ϱf

∫
Bt

f̂α(x− x̃)dbα(x, x̃, t)∂bca(x̃, t) dv(x̃), (3.17)

with no sum over b = 1,2,3. We call the coefficients {dbα(x, x̃, t)}3b=1 fractional1916

diffusivities.1917

3.5.2 Comparison with other works1918

Other definitions of fractional mass flux vector can be found that characterise1919

non-Fickean diffusion processes (see e.g. [195, 252] and references therein). For1920

instance, Sapora et al. [252] study a fractional version of Darcy’s law in one dimen-1921

sion in which the filtration velocity (also known as “specific mass flux”) is taken to1922

be proportional to an integral operator that the Authors refer to as “Riesz integral”1923

[252] of pressure (note that the definition of Riesz integral given in [252] differs by a1924

factor cos(βπ/2), with β ∈ ]0,1[, from that in [249, 21]). However, when passing to1925

higher dimensionalities, it is necessary to extend the concept of fractional differen-1926

tiation to other differential operators like the gradient of a scalar function. In this1927

regard, in [97, 1, 267] the fractional gradient of order α ∈ R+ of a scalar function is1928

defined as a co-vector, whose components are identified with the fractional partial1929

derivatives, each of which of order α, of the given function. In particular, these1930

fractional partial derivatives are taken in the sense of Riemann-Liouville in [97] and1931

in the sense of Caputo in [267], whereas the Nishimoto fractional derivative [211]1932

is used in [1], for α∈ ]0,1].1933
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For the purposes of our work, we adopt the definition given in Equation (3.17).1934

This definition presents some fundamental differences with respect to the definition1935

supplied, for instance, in [252]. These differences, however, are not only related to1936

the fact that the physical phenomenon addressed in [252] is distinct from the one1937

we are studying here. Rather, they are intrinsic in the definition of the operator1938

expressing yα, and can be summarised as follows:1939

• Equation (3.17) is conceived in a three-dimensional setting and, consequently,1940

requires an integration over the whole configuration of the body, Bt, whereas1941

the definition of the mass flux given in [252] features an integration over a1942

bounded interval.1943

• In our definition, each fractional diffusivity dbα(x, x̃, t), b = 1,2,3, is part of1944

the integrand of Equation (3.17), and cannot be factorised out of the corre-1945

sponding integral.1946

• If, for a given b0 ∈ {1,2,3}, the fractional diffusivity db0α (x, x̃, t) could be1947

factorised out of the integral in Equation (3.17) (e.g. by setting db0α (x, x̃, t) ≡1948

d0α, with d0α constant), and if the only nonzero component of grad c(x̃, t)1949

were ∂b0ca(x̃, t) for all x̃ and t, one would have1950

[yα(x, t)]
b0 = −ϱfd0α

∫
Bt

f̂α(x− x̃)∂b0ca(x̃, t)dv(x̃), (3.18)

where f̂α(x− x̃) is still a function of all the components of the vector x− x̃,1951

rather than of its b0-th component only. This property marks a major differ-1952

ence between our approach and the model developed in [252], and expresses1953

the fact that, even in the presence of a preferred direction (i.e., the one asso-1954

ciated with ∂b0ca), one should account for the non-locality in all directions.1955

Before going further, we notice that, if the fractional diffusivities {dbα(x, x̃, t)}3b=11956

are all equal to some reference constant value dRα (note that, for simplicity, we call1957

‘fractional diffusivities’ the set of the three principal fractional diffusivities), the1958

mass flux vector yα(x, t) can be expressed (in a Cartesian setting) as1959

yα(x, t) = −ϱfdRα
∫

Bt

f̂α(x− x̃) grad ca(x̃, t)dv(x̃). (3.19)

Moreover, for some suitable f̂α(x− x̃), usually written as a power-law that decays1960

in space, the integral on the right-hand-side of Equation (3.19) can be taken as1961

the definition of a fractional gradient of ca of order α, i.e., one can write (in the1962

Cartesian setting)1963

gradαca(x, t) :=

∫
Bt

f̂α(x− x̃) grad ca(x̃, t)dv(x̃), (3.20a)
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[gradαca(x, t)]b :=

∫
Bt

f̂α(x− x̃) ∂bca(x̃, t)dv(x̃), b = 1,2,3. (3.20b)

Equations (3.20a) and (3.20b) are reminiscent of the definition of fractional gradi-1964

ent of order α supplied in [267]. However, an important difference between that1965

definition and ours is that, in [267], the components of the fractional gradient of1966

ca (i.e., {[gradαca(x, t)]b}3b=1 in our notation) are identified with the Caputo deriva-1967

tives of ca along the principal directions of the vector basis. This, in turn, requires1968

the function f̂α of Tarasov [267] to depend, for each Caputo derivative, solely on1969

the b-th component of x− x̃.1970

3.5.3 Backward Piola transform of the mass flux vector1971

The backward Piola transformation of Equation (3.16a) is given by1972

⟨yα, gradč⟩ = ⟨Yα,Grad č⟩

= −ϱf
∫

B

{∫
B

[Grad č(X, t)]Dα(X, X̃, t)[Grad ca(X̃, t)]dV (X̃)

}
dV(X),

(3.21)

with č and ca such that č(X, t) = č(χ(X, t)) and ca(X, t) = ca(χ(X, t), t), and we1973

introduced the material non-local diffusivity tensor, Dα, the material non-locality1974

function, Fα, and the material fractional diffusivity tensor, Dα, as follows1975

Dα(X, X̃, t) := J(X, t)Fα(X, X̃, t)Dα(X, X̃, t), (3.22a)

Fα(X, X̃, t) := f̂α
(
χ(X, t)− χ(X̃, t)

)
, (3.22b)

Dα(X, X̃, t) := J(X̃, t)F−1(χ(X, t), t)dα(χ(X, t), χ(X̃, t), t)F
−T(X̃, t). (3.22c)

More specifically, the components of Dα(X, X̃, t) and Yα(X, t) are given by1976

[Dα(X, X̃, t)]
AB = J(X̃, t)

3∑
b=1

[F−1(χ(X, t), t)]Ab d
b
α(χ(X, t), χ(X̃, t), t) [F

−T(X̃, t)]b
B,

(3.23a)

[Yα(X, t)]
A = −ϱf

∫
B

J(X, t)Fα(X, X̃, t)
3∑

B=1

[Dα(X, X̃, t)]
AB ∂Bca(X̃, t) dV(X̃).

(3.23b)

Expression (3.23b) defines the components of the mass flux vector in the material1977

description, whereas Dα is the material counterpart of the fractional diffusivity1978

tensor dα.1979

In the sequel, we assume the spatial fractional diffusivities to be all equal to1980

each other, i.e., dbα(x, x̃, t) = dα(x, x̃, t), for all b = 1,2,3, and that dα(x, x̃, t) is1981
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independent of x (more rigorously, we should say that dα can be redefined as a1982

function of time and of the spatial variable with respect to which the integration1983

is made, i.e., x̃). Consequently, with a slight abuse of notation, we simply write1984

dα(x̃, t). Moreover, following [91], we impose that dα(x̃, t) depends on position and1985

time through the volumetric fraction of the fluid phase, thereby setting dα(x̃, t) =1986

φf(x̃, t)dRα, where dRα is a reference fractional diffusivity, which is parameterised1987

by α. Since φf(x̃, t) can be related to the volumetric deformation of the solid phase1988

and to growth through the expression (3.5b), we obtain1989

dα(χ(X̃, t), t) =
J(X̃, t)− Jγ(X̃, t)Φsν

J(X̃, t)
dRα. (3.24)

These considerations imply that the components of Dα can be written as follows1990

[Dα(X, X̃, t)]
AB = (J(X̃, t)− Jγ(X̃, t)Φsν)dRα[F

−1(χ(X, t), t)]Ab [F
−T(X̃, t)]b

B.
(3.25)

We notice that the non-local nature of the problem is also reflected in Equation1991

(3.25). Indeed, in a model accounting only for local interactions, the last two terms1992

of Equation (3.25) would give the inverse of the right Cauchy-Green deformation1993

tensor C, i.e., C−1 = F−1.F−T, since X and X̃ would coincide. Still, this is not1994

true in our case, since the non-locality changes with the dynamics of the tissue.1995

Moreover, even in the case in which all the fractional diffusivities {dbα(x, x̃, t)}3b=11996

were independent of x and x̃, their material counterparts {[Dα(X, X̃, t)]
AB}3A,B=11997

would still be functions of the points X and X̃ because of the motion, χ.1998

Remark 6. Due to the non-local nature of the mass flux vector, its Piola transfor-1999

mation needs to be performed in two steps, i.e., as many as the integrals appearing2000

in Equation (3.16a), or Equation (3.21). In particular, the volume ratio J(X, t) is2001

due to the change of measure of the outermost integral of Equation (3.21), which2002

re-defines the duality product between yα and gradč into the duality product between2003

Yα and Gradč. In our formalism, this volume ratio is used to define the pull-back2004

of the non-local diffusivity tensor, dα, as prescribed by Equations (3.22a)–(3.22c).2005

Furthermore, the tensor F−1(χ(X, t), t) featuring in Equation (3.22c) stems from2006

the transformation of the gradient of the virtual concentration, č, evaluated at x,2007

i.e., gradč(χ(X, t), t) = Gradč(X, t)F−1(χ(X, t), t), and it contributes, “from the2008

left”, to the calculation of the pull-back of the fractional diffusivity tensor. Whereas2009

this first part of the backward Piola transformation of the mass flux vector is stan-2010

dard, the second part of it reveals the non-locality of the constitutive law in Equation2011

(3.21). Indeed, the tensor F−T(X̃, t) featuring in Equation (3.22c) must be eval-2012

uated in X̃ because it originates from the transformation of the gradient of the2013

concentration (not the virtual one), which is part of the integrand of the inner-2014

most integral, i.e., the one expressing the non-local constitutive law. This tensor2015
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contributes, “from the right”, to determine the pull-back of the fractional diffusiv-2016

ity tensor. Finally, the volume ratio J(X̃, t) is necessary because of the change of2017

measure in the innermost integral of Equation (3.16a) and is employed to define2018

the pull-back of the fractional diffusivity tensor, dα. In conclusion, to determine2019

the pull-back of the mass flux vector, a “double” Piola transformation has to be2020

performed.2021

Remark 7. Looking at the Piola transformation of the mass flux vector, it is worth2022

mentioning that the non-locality of the problem, expressed through f̂α as a function2023

of (x−x̃) in the current configuration, cannot be described in general as a function of2024

(X − X̃) in the reference configuration. Rather, the material non-locality function,2025

Fα, must be conceived as a function of the three variables X, X̃ and t since, as2026

prescribed by Equation (3.22b), it inherits this dependence from the motion, χ, in2027

a way that, in general, cannot be reduced to a function of time and of the difference2028

(X − X̃). Furthermore, we notice that the non-locality of the problem evolves from2029

the reference to the current configuration. Indeed, two points that are “close” in B2030

can either be “far away” from each other or become “even closer” in Bt, and vice2031

versa.2032

3.6 Model summary and some numerical aspects2033

In this section, we summarise the equations characterising our mathematical2034

model, specify the expressions for the sinks and sources of mass, and highlight2035

some computational aspects to be taken into account. In the following, we focus2036

on the case in which the considered chemical agents are nutrient substances that2037

are necessary to trigger and maintain the growth of the tumour. Hence, we shall2038

be referring to “nutrients” in lieu of “chemical agents” from here on.2039

3.6.1 Model equations2040

Our model is based on the following set of non-linear and coupled equations2041

ċp = [Rpn +Rfp −Rscp][JγΦsνϱs]
−1, (3.26a)

γ̇

γ
= [Rfp +Rnf ][3ϱsΦsνJγ]

−1, (3.26b)

ϱf [J − JγΦsν ]ċa − ϱf [K Gradp]Gradca +DivY α = caRs +Rap, (3.26c)

J̇ −Div(K Gradp) = 0, (3.26d)

Div(−Jpg−1F−T + P sc) = 0, (3.26e)
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in the (4 + 3) unknowns U := {cp, γ, ca, p, {χa}3a=1}, and with the source and sink2042

terms [191, 91, 192]2043

Rfp = Jζfp

〈
ca − ccr
cenv − ccr

〉
+

[
1− δ1⟨σ̄⟩+

δ2 + ⟨σ̄⟩+

]
J − JγΦsν

JφfR︸ ︷︷ ︸
=φf/φfR

JγΦsν

J︸ ︷︷ ︸
=φs

cp, (3.27a)

Rnf = −Jζnf
JγΦsν

J
(1− cp), (3.27b)

Rap = −Jζap
ca

ca + c0

JγΦsν

J
cp, (3.27c)

Rpn = −Jζpn
〈
1− ca

ccr

〉
+

JγΦsν

J
cp. (3.27d)

In Equations (3.27a)–(3.27c), ζfp, ζnf , ζap and ζpn are constants indicating the char-2044

acteristic time scales with which the interstitial fluid is absorbed by the proliferating2045

cells, the necrotic cells go into the fluid, nutrients are consumed, and proliferating2046

cells die, respectively. The operator ⟨f⟩+ := max{0, f} represents Macaulay’s2047

brackets, which return the positive part of a function f . Moreover, ccr is a crit-2048

ical value for the nutrients’ mass fraction and cenv refers to the concentration of2049

nutrients present in the surrounding of the tumour. In order for growth to oc-2050

cur, it is necessary that Rfp = Jrfp > 0, i.e., it must hold that ca > ccr, provided2051

cenv > ccr. We also mention that the mass source Rfp features the term in square2052

brackets depending on σ̄ := −1
3
trσ, which is introduced in order to describe the fact2053

that growth can be modulated by mechanical stress, thereby giving rise to a phe-2054

nomenon known as mechanotransduction [192, 191, 124, 131]. Finally, the product2055

of the last three factors in Equation (3.27a) describes the fact that, to allow for the2056

transfer of mass from the fluid to the proliferating cells, there must be a nonzero2057

volumetric fraction of the fluid phase and of the solid phase as well as a nonzero2058

mass fraction of the proliferating cells. Macaulay’s brackets in Equation (3.27d)2059

ensure that the proliferating cells become necrotic, i.e., Rpn < 0 when ca < ccr, and2060

Rpn = 0 otherwise. Equation (3.27b) assumes that Rnf is linear in the volumetric2061

fraction of the solid phase and in the mass fraction of the necrotic cells, i.e., 1− cp,2062

while Rap establishes that the magnitude with which the nutrients are “eaten” by2063

the proliferating cells depends on the ratio ca/c0, with c0 ∈ ]0,1] being a reference2064

value of the nutrients’ concentration that modulates their consumption. We refer2065

the Reader to [192, 191, 91, 131] for further details on these terms, and for their2066

generalisation to include growth-induced structural transformations.2067

Finally, we recall that the main goal of our model is to quantify the impact of the2068

non-local diffusion of the nutrients, accounted for by Yα, on the overall evolution2069

of the tumour, i.e., on all the unknowns of the model. We note that, apart from2070

the presence of the fractional mass flux vector Yα, our model is the same as the2071

one presented in [191] and extended in [91, 131].2072
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3.6.2 Numerical aspects2073

The model summarised in Equation (3.26) features ordinary differential equa-2074

tions, partial differential equations and an integro-differential equation of fractional2075

type. Since the model is formulated for a bounded domain and many couplings and2076

nonlinearities are accounted for, the usual techniques adopted in Fractional Cal-2077

culus for linear problems, such as the Fourier and Laplace transforms, cannot be2078

used. Consequently, we need to resort to numerical techniques. In particular, we2079

solve Equations (3.26a)–(3.26e) by means of a FE scheme that we need to adapt to2080

our purposes in order to take fractional derivatives into account. Here, we do not2081

intend to go into the details of the numerical scheme, which is out of the scope of2082

this work. Nevertheless, we intend to give some insights about the most important2083

computational aspects of our work, while the numerical solutions are obtained by2084

using COMSOL Multiphysics®.2085

Classical FE techniques [130, 248] have been used for solving numerically Equa-2086

tions (3.26a), (3.26b), (3.26d) and (3.26e), while Equation (3.26c) has required a2087

special care. To this end, we report explicitly only the weak formulation corre-2088

sponding to it. Before doing this, we denote with (∂B)D and (∂B)N the Dirichlet2089

and Neumann boundaries of B, respectively, and assume ∂B = (∂B)D ⊔ (∂B)N.2090

Furthermore, by using the standard formalism for Sobolev spaces [43], and using2091

the space of virtual concentrations, ČR := {č ∈ H1(B) s.t. č|(∂B)D = 0}, we have2092

that, for all č ∈ ČR, the following weak form applies2093 ∫
B

{ϱf [J − JγΦsν ]ċa − ϱf [KGradp]Gradca − caRs −Rap} čdV

−
∫

B

YαGrad čdV +

∫
(∂B)N

Yα.N čdS = 0, (3.28)

where N is the field of unit vectors normal to (∂B)N while Yα is given in Equation2094

(3.21), so that the second volume integral of Equation (3.28) (without the sign)2095

becomes2096 ∫
B

Yα(X, t)Grad č(X, t)dV(X)

= −ϱf
∫

B

{∫
B

[Grad č(X, t)]Dα(X, X̃, t)[Gradca(X̃, t)]dV(X̃)

}
dV(X). (3.29)

After applying a backward Euler scheme for the time derivative, a linearisation2097

procedure, and Galerkin method, Equation (3.28) leads to a system of algebraic2098

equations that, except for a non-local stiffness matrix, arising from the double inte-2099

gral in Equation (3.29), is similar to the one obtained in standard FE approaches.2100

From a numerical point of view, the non-local stiffness matrix reflects a long range2101

coupling among the elements in the spatial discretisation. Indeed, it is worth not-2102

ing that, in the construction of the non-local stiffness matrix, the cross integrations2103
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between the piecewise polynomial ansatz functions do not vanish as they would2104

in the case of the stiffness matrix of a standard diffusion problem. That is, even2105

though two discretisation nodes are far away from each other, the entry of the ma-2106

trix corresponding to these nodes will be non-zero, because of the presence of the2107

non-locality function f̂α. This results into stiffness matrices that are denser, the2108

stronger the non-locality is. In fact, this is a typical feature of the numerical study2109

of non-local differential equations based on the use of FE methods (see for instance2110

[117]). Still, as pointed out in [117], standard techniques for the solution of such2111

equations, like Gauss elimination, can be used.2112

Before closing this section, we would like to remark that, in the simulations2113

carried out in our work, the stiffness matrix associated with Equation (3.29) is2114

symmetric and positive definite.2115

3.7 Benchmark problem and considerations on2116

the non-locality function2117

In this section, we specify a benchmark problem in order to simplify and solve2118

the mathematical model given by Equations (3.26a)-(3.26e). To this end, we make2119

use of the problem proposed in [9], and recently investigated in [91, 131] to account2120

for growth-induced inelastic distortions. By doing this, we intend to model the2121

volumetric growth of an avascular tumour in a “jacketed” cylindrical sample (its2122

deformation is restricted to be along the longitudinal axis only), and to investi-2123

gate, how and to what extent, the non-local diffusivity properties of the nutrients2124

influence the dynamics of the tissue. In the following, we assume that the problem2125

complies with axial symmetry and that it is radially homogeneous regardless of how2126

slender the cylindrical sample is. This will require suitable a priori restrictions on2127

all the unknowns of the problem.2128

3.7.1 Description of the benchmark problem2129

As in [91, 131], we adopt the cylindrical coordinates (R,Θ, Z) and (r, ϑ, z), asso-2130

ciated with the reference and the current configurations of the tumour, respectively.2131

Moreover, we require the motion to satisfy with the conditions2132

χr(R,Θ, Z, t) = r = R, (3.30a)

χϑ(R,Θ, Z, t) = ϑ = Θ, (3.30b)

χz(R,Θ, Z, t) = z = Z + u(Z, t), (3.30c)

where u is the unknown axial component of displacement. In this situation, the2133

tumour is allowed to expand itself solely along the axial direction and χz is the2134

only unknown component of the motion, χ. Additionally, to comply with the2135
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axial symmetry and with the radial homogeneity of the problem, the pressure p2136

is considered to be a function of the axial coordinate and time only. Another2137

restriction pertains to the growth parameter γ, which is also assumed to depend only2138

on Z and t (note that since the growth tensor Fγ = γI is spherical, it maintains the2139

symmetries of the problem). Similar requirements also apply for the mass fraction2140

of the proliferating cells, cp, as well as for the mass fraction of the nutrients, ca.2141

The motion we have assumed implies that the matrix representations of the2142

deformation gradient tensor F and of the right Cauchy-Green deformation tensor2143

C read2144

[F ] = diag{1,1,1 + u′}, (3.31a)

[C] = diag{1,1, [1 + u′]2}, (3.31b)

where u′ denotes the derivative of u in the axial direction. Since it holds that2145

J = det(F ) = 1 + u′ > 0, u′ must obey the inequality u′ > −1.2146

Additionally, the growth tensor admits the diagonal form2147

[Fγ] = diag{γ, γ, γ}, γ > 0, (3.32)

and, consequently, the elastic right Cauchy-Green deformation tensor Ce has the2148

representation2149

[Ce] = diag

{
1

γ2
,
1

γ2
,
[1 + u′]2

γ2

}
. (3.33)

Because of Equations (3.31a), (3.31b), (3.32) and (3.33), of the symmetry proper-2150

ties of the pressure term −Jpg−1F−T, and of the constitutive expression (3.13),2151

the first Piola-Kirchhoff stress tensor P = −Jpg−1F−T + P sc has the diagonal2152

representation2153

[P ] = diag
{
−Jp+ [P sc]

rR,−Jp+ [P sc]
ϑΘ,−p+ [P sc]

zZ
}
, (3.34)

where each quantity featuring in each component of P is a function solely of Z and2154

time. Moreover, it applies that [P sc]
rR = [P sc]

ϑΘ and, thus, the balance of linear2155

momentum (3.26e) in cylindrical coordinates reduces to2156

∂

∂Z

(
−p+ [P sc]

zZ
)
= 0. (3.35)

This result can be found also in other benchmark problems, such as the confined2157

compression tests of articular cartilage, under symmetry assumptions similar to2158

those made here. Therefore, Equation (3.35) constitutes a simplification obtained2159

by virtue of symmetry and not by invoking the slenderness of the cylinder used in2160

our benchmark (see Table 3.1).2161
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Note also that, according to Equations (3.14) and (3.15), the conditions imposed2162

on the deformation and on the growth tensor are such that k0 depends, through J2163

and Jγ, only on the axial coordinate and on time. Moreover, the same conclusion2164

can be drawn for the diffusivity dα, which, with slight abuse of notation, we express2165

as dα(Z, t) from here on.2166

By following the same reasoning that has led to Equation (3.35), and noticing2167

that the only non-zero component of the mass flux Q is the axial one, i.e., QZ =2168

−KZZ ∂p
∂Z

with KZZ = Jk0[C
−1]ZZ = k0/(1 + u′), the continuity equation (3.26d)2169

becomes2170

∂2u

∂Z ∂t
− ∂

∂Z

(
k0

1 + u′
∂p

∂Z

)
= 0. (3.36)

The equations for cp and γ, that is Equations (3.26a) and (3.26b), are scalar2171

ODEs, and the fact that cp and γ depend only of Z and t is consistent with the2172

symmetry properties of all the terms featuring in these equations. That said, a2173

remark is in order for Equation (3.26b) to emphasise that the considered bench-2174

mark problem remains three-dimensional in spite of the axial symmetry and radial2175

homogeneity that it enjoys. Indeed, looking at the source Rfp in Equation (3.27a),2176

we notice that the mechanotransduction term (i.e., the term between brackets in2177

Equation (3.27a)) features the trace of Cauchy stress tensor, which requires the2178

evaluation of all the stress components, i.e., also of those in the radial and circum-2179

ferential directions, these being non null because the cylinder is laterally jacketed.2180

Therefore, we conclude that, even though the cylinder used for our benchmark2181

problem is slender, with slenderness ratio 2 · 10−2 (see the geometric data in Table2182

3.1), the problem itself necessitates to account for all the geometrical dimensions.2183

The last equation to consider is the balance law for ca (see Equation (3.26c))2184

in which the non-standard mass flux Yα features, at least in principle, all the2185

coordinates (i.e., also the radial and the circumferential coordinates) through the2186

non-locality function Fα(X, X̃, t) = f̂α(χ(X, t) − χ(X̃, t)). To maintain the axial2187

symmetry of the problem and to eliminate the dependence of the nutrients’ mass2188

flux on the radial and circumferential coordinates, two paths may be followed. One2189

is discussed in Section “Definition of the non-locality function” and, for consistency2190

with the symmetry requirements introduced so far, it imposes to rephrase the non-2191

locality function as a function of the axial coordinate only. However, another path2192

—valid for the problem at hand— could be to eliminate the dependence of the non-2193

locality function on the radial and circumferential coordinate by taking advantage2194

of the slenderness of the cylinder. To this end, we write the non-locality function2195

as2196

f̂α(x− x̃) = f0α
1

∥x− x̃∥α
= f0α

1

∥(z − z̃)ez + rt∥α
, (3.37)

where ez is the unit vector along which the cylinder’s axis is directed, f0α, with2197

α∈ ]0,1[, is an α-dependent coefficient to be individuated, and rt is a vector lying2198
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on the cross-section of the cylinder. Next, we rescale the axial vector (z − z̃)ez2199

by the undeformed length of the cylinder, i.e., 2Lin, and the transverse vector rt2200

by the cylinder diameter prior to deformation, i.e., 2Rin, so that Equation (3.37)2201

becomes2202

f̂α(x− x̃) = f0α
1

∥2Linρa + 2Rinρt∥α
=

f0α
(2Lin)α

1

∥ρa + (Rin/Lin)ρt∥α
, (3.38)

with ρa = (z − z̃)ez/(2Lin) and ρt := rt/(2Rin). Now, since the slenderness ratio2203

Rin/Lin is 2 · 10−2, we assume, within the first approximation, that the non-locality2204

function can be truncated at the zero-th order in the slenderness ratio, thereby2205

taking the expression2206

f̂α(x− x̃) ≈ f0α
(2Lin)α

1

∥ρa∥α
= f0α

1

∥(z − z̃)ez∥α
= f0α

1

|z − z̃|α
. (3.39)

As discussed below, the coefficient f0α acquires the meaning of a normalisation2207

factor.2208

3.7.2 Initial and boundary conditions2209

To solve Equations (3.26a)–(3.26e), we impose the same boundary and initial2210

conditions used in [91, 131]. Specifically, at the initial instant of time we consider2211

a reference configuration being characterised by the following relations2212

χr(R,Θ, Z,0) = R, χϑ(R,Θ, Z,0) = Θ, χz(R,Θ, Z,0) = Z, (3.40)

where R ∈ [0, Rin[, Θ ∈ [0,2π[ and Z ∈ [−Lin,+Lin], while Rin and 2Lin denote2213

the radius and the length of the undeformed specimen. Besides, we enforce that,2214

at t = 0, necrotic cells are absent, i.e., cp(R,Θ, Z,0) = 1, the fluid pressure is2215

zero, i.e., p(R,Θ, Z,0) = 0, the nutrients’ mass fraction equals the environmental2216

one, i.e., ca(R,Θ, Z,0) = cenv > 0, and the distribution of the growth parameter2217

is homogeneous and unitary, i.e., γ(R,Θ, Z,0) = 1. In addition, we consider the2218

following boundary conditions2219

(−Jpg−1F−T + P sc).NA = 0, on (∂B)Left and (∂B)Right, (3.41a)

(−KGradp).NC = 0, on (∂B)C, (3.41b)

p = 0, on (∂B)Left and (∂B)Right, (3.41c)

ca = cenv, on (∂B)Left and (∂B)Right, (3.41d)

Yα.NC = 0, on (∂B)C, (3.41e)

where NA and NC are fields of unit vectors normal to (∂B)Left ∪ (∂B)Right and to2220

(∂B)C, respectively, and ∂B = (∂B)Left∪(∂B)Right∪(∂B)C. Specifically, (∂B)Left2221

and (∂B)Right are the left and the right surfaces at the extremities of B, and (∂B)C2222

is the lateral boundary.2223
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3.7.3 Definition of the non-locality function2224

A classical approach for defining f̂α is to adopt a power-law that decays in space.2225

To our knowledge, this is customary for problems that are a priori formulated as2226

one-dimensional and in which f̂α(x − x̃) is assumed to be proportional to the re-2227

ciprocal of |x − x̃|α, with x and x̃ being points of the real line or of an interval of2228

finite length [268, 19, 257, 55, 252]. This choice permits to “import”, with slight2229

modifications, the definitions of the fractional derivatives in time (see e.g. [21]) to2230

the fractional differentiation in space. However, in some situations it is necessary2231

to assess an a priori relationship between the dimensionality of the problem under2232

study and the non-locality that must —or may— be resolved, once the dimen-2233

sionality has been settled. Indeed, in a three-dimensional problem endowed with2234

the symmetry and homogeneity properties we are dealing with, the only non-zero2235

partial derivative of the concentration is the one along the axial direction. In such2236

a situation, the axial mass flux reads2237

[yα(x, t)]
z = −ϱf

∫
Bt

f̂α(x− x̃)dα(z̃, t)∂z̃ca(z̃, t) dv(x̃), (3.42)

whereas the radial and the circumferential components of the flux are zero. Note2238

that we are using here the customary formalism for cylindrical coordinates, so2239

that x̃ = (r̃, ϑ̃, z̃). As anticipated before, the expression for [yα(x, t)]
z reminds the2240

definition of fractional gradient given in [267], with the difference that a volume2241

integral is used in (3.42) and that all the components of x− x̃ are considered.2242

In spite of the fact that the problem is one-dimensional from the point of view2243

of its symmetries, the axial flux is still determined by an integration over the three-2244

dimensional region Bt, and f̂α(x− x̃) describes, as it stands, a non-locality in three2245

dimensions (trivially, because x− x̃ is a vector of a three-dimensional vector space).2246

Therefore, the component of (x−x̃) along the radial or the circumferential direction2247

will influence the axial mass flux, even though the problem was claimed to enjoy ax-2248

ial symmetry and to be independent of the radial coordinate. This result, however,2249

may be physically unsound. Indeed, one would expect non-locality to be coherent2250

with the symmetries of the problem, even though the integral of Equation (3.42) is2251

over the whole configuration Bt, thereby maintaining the physical dimensionality2252

of the problem itself.2253

To address this issue, we need to take into account how the symmetries of the2254

problem under investigation influence the non-locality in the relationship between2255

yα and ca. Consequently, the non-locality function f̂α in Equation (3.42) is re-2256

defined as2257

f̂α(x− x̃) := ĥα(z − z̃) =
1

N(α)

1

|z − z̃|α
, α ∈ ]0,1[ , (3.43)

where N(α) is a normalisation factor to be determined. From Equations (3.42) and2258

(3.43), we notice that the physical dimensions of the fractional diffusivity, dα, are2259
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L1+αT−1, where L and T stand for the characteristic “length” and the characteristic2260

“time” of the non-local diffusion process, respectively. Thus, when α tends to 12261

(from below), we recover the physical dimensions of the standard diffusivity.2262

By substituting Equation (3.43) into Equation (3.42), and recalling that Bt =2263

CR× ] − ℓ(t),+ℓ(t)[ (where CR is the cross-section of the cylinder and 2ℓ(t) is its2264

variable axial length), we obtain the much simpler expression2265

[yα(x, t)]
z ≡ yzα(z, t) = −ϱfπR

2
in

N(α)

∫ +ℓ(t)

−ℓ(t)

1

|z − z̃|α
dα(z̃, t)∂z̃ca(z̃, t) dz̃. (3.44)

For the Equation (3.44) to be physically sound, it has to return the axial component2266

of the standard mass flux vector in the limit α → 1−. Unfortunately, proving this2267

result for problems defined over bounded domains is not possible without knowing2268

ca. On the contrary, this difficulty does not arise in problems defined over un-2269

bounded domains, because, with the aid of the Fourier transform, it is possible to2270

do the following reasoning:2271

• Introduce the auxiliary notation ψzα(z̃, t) := −ϱfdα(z̃, t) ∂zca(z̃, t), and assume2272

to prolong yzα(z, t) to the whole real line, so that Equation (3.44) becomes2273

yzα(z, t) = −ϱfπR
2
in

N(α)

∫ +∞

−∞

1

|z − z̃|α
dα(z̃, t)∂z̃ca(z̃, t) dz̃

= πR2
in

∫ +∞

−∞
ĥα(z − z̃)ψzα(z̃, t)dz̃

= πR2
in [ĥα ∗ ψzα( · , t)](z), (3.45)

thereby expressing yzα(z, t) as the convolution product between ĥα and ψ
z
α( · , t).2274

• Compute the Fourier transform of yzα(z, t) as written in Equation (3.45), i.e.,2275

F [yzα( · , t)](ξ) :=
∫ +∞

−∞
yzα(z, t)exp(−iξz)dz

= πR2
inF [ĥα](ξ)F [ψzα( · , t)](ξ)

= πR2
in

2Γ(1− α)

N(α)
sin
(απ

2

)
|ξ|α−1F [ψzα( · , t)](ξ), (3.46)

where ξ ∈ R\{0} is the wave number, Γ( · ) is the Euler Gamma function and2276

we used the Fourier transform of ĥα, i.e.,2277

F [ĥα](ξ) =
2Γ(1− α)

N(α)
sin
(απ

2

)
|ξ|α−1. (3.47)
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Since F [yzα( · , t)](ξ) is proportional to the product of F [ĥα](ξ) and F [ψzα( · , t)](ξ),2278

one can identify the non-local contribution of the mass flux with F [ĥα](ξ),2279

given in Equation (3.47).2280

Note that, if dα(z, t) and ca(z, t) are both assumed to be even with respect to2281

z = 0 —an assumption that is consistent with the hypothesis, done later, that2282

the considered problem is symmetric with respect to z = 0—, F [yzα(·, t)](ξ)2283

can be prolonged to ξ = 0 and is null for this value. To see this, we first2284

rewrite F [ψzα(·, t)](ξ) as2285

F [ψzα(·, t)](ξ) = −ϱf
∫ +∞

−∞
dα(z, t)∂zca(z, t) exp(−iξz)dz . (3.48)

Then, we notice that F [ψzα( · , t)](0) is zero, because dα(z, t) is even and2286

∂zca(z, t) is odd with respect to z = 0 for all times. Moreover, because of this2287

result, it also holds that limξ→0 |ξ|α−1F [ψzα(·, t)](ξ) = 0, and, consequently,2288

limξ→0 F [yzα(·, t)](ξ) = 0 too.2289

• Compute the limit of F [yzα( · , t)](ξ) for α → 1−, and find N(α) such that2290

lim
α→1−

F [yzα( · , t)](ξ) = lim
α→1−

F [ψzα( · , t)](ξ)

= F [−ϱfd1( · , t) ∂zca( · , t)](ξ), (3.49)

with d1(z̃, t) := limα→1− dα(z̃, t). We emphasise that this limit is taken uni-2291

formly with respect to the pairs (z̃, t) and, in particular, looking at Equation2292

(3.24), it turns out to be uniform with respect to the motion, so that it is2293

intended as2294

lim
α→1−

dα(z̃, t) = lim
α→1−

dα(χ
z(X̃, t), t) =

J(X̃, t)− Jγ(X̃, t)Φsν

J(X̃, t)
lim
α→1−

dRα

=
J(X̃, t)− Jγ(X̃, t)Φsν

J(X̃, t)
dR1, (3.50)

where, in our model, dR1 is a constant having the physical dimensions of a2295

standard diffusivity coefficient. In particular, to meet this requirement, we2296

choose dRα as2297

dRα := dRL
α−1, (3.51)

with dR being a constant reference value for the standard diffusivity coefficient2298

[25], so that dR1 = dR.2299

One possible way to comply with Equation (3.49) is that N(α) satisfies the relation2300

lim
α→1−

2Γ(1− α)πR2
in

N(α)
= 1. (3.52)
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Then, for Equation (3.44) to be (up to the diffusivity dα) Caputo’s symmetrised2301

fractional derivative of the mass fraction, ca, which is defined over the interval2302

]− ℓ(t),+ℓ(t)[, we choose the stronger condition2303

N(α) = 2Γ(1− α)πR2
in, α ∈ ]0,1[. (3.53)

Clearly, Equation (3.53) represents a “guess”, because we are unable to compute2304

directly the normalisation factor for a bounded interval. Nevertheless, plugging2305

Equation (3.53) into Equation (3.44) yields2306

yzα(z, t) = − ϱf
2Γ(1− α)

∫ +ℓ(t)

−ℓ(t)

1

|z − z̃|α
dα(z̃, t)∂z̃ca(z̃, t) dz̃, (3.54)

which, apart from the spatial dependence of the fractional diffusivity dα(z̃, t), co-2307

incides with the definition of fractional mass flux in one dimension used by other2308

Authors, see for instance [215, 82] and the references therein. Furthermore, in the2309

case in which the fractional diffusivity can be factorised outside the integral opera-2310

tor, e.g. by setting dα(z̃, t) = d0α, the axial mass flux becomes proportional to the2311

symmetrised Caputo fractional derivative of order α of ca [21].2312

Remark 8 ((On the normalisation factor)). We notice that, apart from the pres-2313

ence of the area of the cylinder’s cross-section |CR| = πR2
in, the expression of the2314

normalisation factor N(α) given in Equation (3.53) coincides with the one used in2315

other works (see e.g. [268, 19, 55]). Nevertheless, by looking at Equation (3.46),2316

one can see that other definitions of the normalisation factor can be employed which2317

satisfy the condition of Equation (3.49). Indeed, if the limit in Equation (3.52) is2318

rephrased as2319

lim
α→1−

2Γ(1− α) sin(απ/2)πR2
in

N̂(α)
= 1, (3.55)

where N̂(α) is the new normalisation factor sought for, then, upon following the2320

reasoning leading to Equation (3.53), one can take N̂(α) as2321

N̂(α) := 2Γ(1− α) sin(απ/2)πR2
in, (3.56)

thereby automatically satisfying Equation (3.55). Then, by using N̂(α) in Equation2322

(3.44) in lieu of N(α), the axial mass flux can be written as2323

ŷzα(z, t) = − ϱf
2Γ(1− α) sin(απ/2)

∫ +ℓ(t)

−ℓ(t)

1

|z − z̃|α
dα(z̃, t)∂z̃ca(z̃, t) dz̃

= I 1−α
−ℓ(t),+ℓ(t)[−ϱfdα∂z̃ca](z, t), (3.57)
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where I 1−α
−ℓ(t),+ℓ(t)[−ϱfdα∂z̃ca] is the one-dimensional Riesz potential of −ϱfdα∂z̃ca,2324

but with integration limits ±ℓ(t) instead of ±∞ (see [249] page 223). For this2325

reason, one may refer to Equation (3.57) as a “truncated” Riesz potential [87].2326

At this point, two comments are in order. First, we note that, for α → 1−,2327

both choices of the normalisation factor lead to the same result and, consequently,2328

the mass flux obtained for α → 1− is the same in both formulations. However,2329

something different occurs for α → 0+. Indeed, by looking at Equation (3.46), if2330

the normalisation factor N(α) is used, we obtain, for ξ /= 0, that2331

lim
α→0+

F [yzα( · , t)](ξ) = 0, (3.58)

which suggests that the flux of the species is null for α → 0+. On the contrary, if2332

in Equation (3.46) N(α) is replaced with N̂(α), one obtains, for ξ /= 0,2333

lim
α→0+

F [ŷzα( · , t)](ξ) = |ξ|−1F [−ϱfd0( · , t) ∂zca( · , t)](ξ), (3.59)

with d0 = limα→0+ dα, thereby implying, in general, a non-zero flux. In view of2334

the above results and of the normalisation factor used by other Authors[215, 82,2335

19, 252], we prefer to employ N(α) as normalisation factor in the remainder of2336

this work. Besides, in this way, the model is able to account for a wider range2337

of diffusion situations, from no diffusion to standard diffusion. Nevertheless, for2338

completeness in our study, in Section “Results and discussion”, we provide a com-2339

parison between the approach involving N(α) and that involving N̂(α).2340

Now, the restrictions imposed on the motion imply that the only component of2341

interest of the deformation gradient tensor is given by [F (X, t)]zZ = 1 + u′(Z, t).2342

Thus, by taking into account Equation (3.25), the material fractional diffusivity2343

tensor can be rephrased as follows2344

[Dα(X, X̃, t)]
ZZ = dRα

1 + u′(Z̃, t)− Jγ(Z̃, t)Φsν

[1 + u′(Z, t)][1 + u′(Z̃, t)]
, (3.60)

whereas the definition (3.43) implies that Fα, given in Equation (3.22b), can be2345

rephrased as a function of Z, Z̃ and t, i.e.,2346

Fα(X, X̃, t) = Hα(Z, Z̃, t) =
1

2Γ(1− α)πR2
in

1

|Z + u(Z, t)− Z̃ − u(Z̃, t)|α
, α ∈ ]0,1[ .

(3.61)

Finally, by substituting Equation (3.60) into Equation (3.23b), and taking into ac-2347

count relation (3.22b), the only non-zero component of the material fractional mass2348

flux vector, Yα, is the one along the axial direction, and represents the backward2349

Piola transform of Equation (3.44), i.e.,2350

Y Z
α (Z, t) = − ϱf

2Γ(1− α)

∫ +Lin

−Lin

dRα
[1 + u′(Z̃, t)− Jγ(Z̃, t)Φsν ]

|Z + u(Z, t)− Z̃ − u(Z̃, t)|α
c′a(Z̃, t)

[1 + u′(Z̃, t)]
dZ̃.

(3.62)
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Looking at Equations (3.61) and (3.62), we remark that, in contrast to what is2351

usually assumed in the “standard” setting of Fractional Calculus, both Hα and Y Z
α2352

depend on the displacement field, rather than depending on the difference between2353

Z and Z̃, only. As anticipated in the Introduction, this result is one of the most2354

relevant novelties of our work, as it prescribes that the non-locality evolves with2355

the change of configuration of the system. Moreover, since in our framework the2356

displacement is driven by growth (even though u and γ are formally independent2357

variables), we conclude that the non-locality of the problem is related also to the2358

variation of the tissue’s internal structure, as modelled by γ.2359

3.8 Results and discussion2360

In this section, we study the impact of the non-local diffusion of nutrients on2361

the benchmark problem specified above. For this scope, we distinguish between2362

two mathematical models, both characterised by Equations (3.26a)–(3.26e). The2363

first model, referred to as fractional model, describes the growth of the considered2364

avascular tumour in the case in which the diffusion of the nutrients is governed2365

by the non-local constitutive law (3.62). The second model, denominated standard2366

model, describes the growth of the tumour by employing the same governing equa-2367

tions (3.26a)–(3.26e), with the only difference being that the nutrients’ diffusive2368

mass flux vector is expressed by standard Fick’s law, i.e.,2369

Y std(X, t) = −ϱfD(X, t)Gradca(X, t), (3.63)

where “std” stands for “standard”, and D is the material diffusivity tensor, given2370

by [91, 131]2371

D(X, t) = (J(X, t)− Jγ(X, t)Φsν)dRC
−1(X, t). (3.64)

We notice that both models, i.e., the fractional and the standard one, share the2372

same set of parameters except for the reference diffusivities dRα and dR. Note also2373

that Equation (3.64) can be obtained from (3.25) by setting X̃ = X and then2374

taking the limit for α → 1−, i.e., limα→1− Dα(X,X, t) = D(X, t).2375

For the purposes of our work, one should not fix dRα independently of dR.2376

Indeed, in order to compare the results of the non-local model with those of the local2377

one, dRα must depend on dR in such a way that it tends to dR in the limit α → 1−.2378

For this reason, and taking into account that there exist several experimental works2379

in which the standard diffusivity of species in biological tissues has been measured2380

(see e.g. [149, 140]), we use for dRα the definition given in Equation (3.51), and we2381

set L = 2Lin. In Table 3.1, we provide the list of all the parameters used in our2382

simulations. We remark that, due to the symmetries of the benchmark problem2383

studied in this work, in the following we report the profile of the main quantities2384

of interest restricted to half of the domain, i.e., [0, Lin].2385
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Table 3.1: List of parameters used in the numerical simulations.

Parameter Unit Value Equation Reference

Lin cm 0.500 (3.44) [91]
Rin cm 1.000 · 10−2 (3.62) [91]
λ Pa 1.333 · 104 (3.12) [263]
µ Pa 1.999 · 104 (3.12) [263]
kR m2/(Pa s) 4.875 · 10−13 (3.15) [149]
m0 − 0.0848 (3.15) [149]
m1 − 4.638 (3.15) [149]
dR m2/s 3.200 · 10−9 (3.51) [255]
ζfp kg/(m3 s) 1.343 · 10−3 (3.27a) [62]
ζnf kg/(m3 s) 1.150 · 10−5 (3.27b) [62]
ζcp kg/(m3 s) 3.000 · 10−4 (3.27c) [57, 58]
ζpn kg/(m3 s) 1.500 · 10−3 (3.27d) [62]
ccr − 1.000 · 10−3 (3.27a) [91]
cenv − 7.000 · 10−3 (3.27a) [91]
c0 − 1.000 · 10−2 (3.27c) This work
δ1 − 7.138 · 10−1 (3.27a) [191]
δ2 Pa 1.541 · 103 (3.27a) [191]
Φsν − 0.8 (3.5a) [91]
ϱs kg/m3 1000 (3.2) [91]
ϱf kg/m3 1000 (3.2) [91]

To start with, in Fig. 3.1, we report the spatial profile of the nutrients’ mass2386

fraction ca(Z, t). Specifically, in the left panel of Fig. 3.1, we present the results of2387

our simulations for α = 0.1 (dashed line) and α = 0.9 (solid line), and for different2388

times. As shown in this plot, the parameter α permits to control how the nutrients2389

diffuse into the tumour from the axial boundaries (i.e., the terminal cross sections2390

Z = ±Lin). In particular, for α = 0.1 the diffusion of the nutrients is constrained2391

to the tumour’s axial boundary, i.e., close to Z = ±Lin, so that their mass fraction2392

is dramatically reduced in the internal points of the specimen. In such a situation,2393

the proliferating cells consume the nutrients that are already present in the tissue,2394

without the replenishment needed to continue their proliferation. On the contrary,2395

for α = 0.9, the nutrients are able to diffuse towards the centre of the tumour,2396

so that their consumption is less localised. For clarity, in the plot we prefer to2397

show only the curves corresponding to α = 0.1 and α = 0.9. For any other value2398

of α ∈ ]0.1,0.9[, the model is able to describe different diffusion profiles ranging2399

between the ones obtained for α = 0.1 and for α = 0.9. To us, an interesting2400

feature of the curves corresponding to α = 0.1 is that, depending on the point Z2401

at which the nutrients’ mass fraction is observed, the trend of these curves exhibits2402

a different monotonicity in time. Indeed, the nutrients’ mass fraction decreases in2403
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time close to the boundary Z = Lin, whereas it increases towards the tumour’s2404

centre. Furthermore, in the panel on the right of Fig. 3.1, we compare, for different2405

values of α, the results obtained with the fractional model with those obtained2406

with the standard model at time t = 20 d. Specifically, for α close to 0, there is2407

almost no diffusion, while, when α is close to 1, the fractional model conducts to2408

the standard one, as evidenced by our previous calculations (see Equation (3.46)).2409
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Figure 3.1: Spatial profile of the nutrients’ mass fraction ca(Z, t) for different values
of α and at different times (panel on the left), and comparison of the results obtained
with the fractional and the standard model at time t = 20 d (panel on the right).

As shown in Fig. 3.2, the non-local way in which the nutrients diffuse into the2410

tissue affects the manner in which the tumour grows. By increasing α and, thus, en-2411

hancing diffusion, one also increases the availability of the nutrients in the tumour,2412

thereby boosting its growth. On the other hand, for α = 0.1, the displacement is2413

hindered and its highest values are attained in a neighbourhood of Z = Lin. Indeed,2414

this is where the nutrients enter the tumour and their mass fraction still remains2415

high enough to trigger growth, so that the magnitude of the displacement in this2416

region of the tumour is higher than elsewhere. However, moving towards the inte-2417

rior of the tumour, the fact that the nutrients’ concentration is below the critical2418

threshold brings growth to a stop, thereby considerably reducing the magnitude of2419

the displacement. This behaviour shows that also the monotonicity in time of the2420

displacement curves depends on the point Z at which they are reckoned. More in2421

detail, the reduction of the displacement in the interior of the tumour may be due to2422

the loss of mass caused by the lack of nutrients, which implies that the proliferating2423

cells start to die, and a region of necrotic cells comes into sight. This behaviour2424

becomes even more evident by looking at the left panel of Fig. 3.3. Moreover,2425

comparing the right panels of Fig. 3.1 and Fig. 3.3, we notice that the part of2426

the domain in which the necrotic cells appear coincides with the one in which the2427

nutrients fall below the critical value ccr, represented with the solid horizontal line2428

in the right panel of Fig. 3.1. By referring to Equation (3.27d), when ca < ccr, the2429

rate of mass Rpn becomes active and, therefore, the proliferating cells change into2430
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necrotic cells.2431
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Figure 3.2: Spatial profile of the axial displacement u(Z, t) for different values of α
and at different times (panel on the left), and comparison of the results obtained
with the fractional and the standard model at time t = 20 d (panel on the right).
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Figure 3.3: Spatial profile of the proliferating cells’ mass fraction cp(Z, t) for dif-
ferent values of α and at different times (panel on the left), and comparison of the
results obtained with the fractional and the standard model at time t = 20 d (panel
on the right).

To continue our analysis, we refer to Fig. 3.4, where we plot the growth param-2432

eter γ. By focusing on the panel on the left, we notice, for α = 0.1, a localisation2433

of the variation of the growth parameter near the boundary Z = Lin for increasing2434

time, whereas, for α = 0.9, the variation of γ is more uniformly distributed in2435

the whole domain. Besides, for α = 0.1, γ is greater than one for all Z ∈ [0, Lin]2436

and for all t, even though this is difficult to be observed with the unaided eye.2437

This is because, although for t ≥ 1 d the mass fraction of the nutrients is above2438

the threshold value ccr mostly near the boundary (see the left panel of Fig. 3.1),2439

the inner region has undergone a growth process at earlier times. Indeed, since2440

the condition ca(Z,0) ≡ cenv > ccr is respected, the mass rate Rfp is greater than2441

zero, and we can conclude that, from the very beginning, the cell proliferation is2442
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promoted until the nutrients’ concentration falls below its critical value. Note also2443

that this is accelerated when α is near zero because of the slow pace with which2444

the nutrients are refilled. At this point, the proliferating cells abruptly die, thereby2445

turning into necrotic cells, and go into the fluid (see the definition of Rnf), which2446

results in a loss of mass. For α = 0.9, instead, it is visible also with the naked eye2447

that γ is greater than unity everywhere in [0, Lin] and for all the considered times.2448

Finally, as noticed for the nutrients’ mass fraction and for the displacement, also2449

the monotonicity in time of the trend of the growth parameter depends, for α = 0.1,2450

on the point Z at which γ is observed. Indeed, γ is monotonically increasing in2451

time for Z close to Z = Lin, and monotonically decreasing for Z “moving” towards2452

the centre of the tumour.2453
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Figure 3.4: Spatial profile of the growth parameter γ(Z, t) for different values of α
and at different times (panel on the left), and comparison of the results obtained
with the fractional and the standard model at time t = 20 d (panel on the right).
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Figure 3.5: Spatial profile of the pressure p(Z, t) for different values of α and at
different times (panel on the left), and comparison of the results obtained by the
fractional and the standard model at time t = 20 d (panel on the right).

Now, we report the evolution of the pressure, p, in Fig. 3.5. For both the stan-2454

dard and the fractional model, when α is close to 1, the pressure of the interstitial2455
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Influence of non-local diffusion in avascular tumour growth

fluid decreases, taking negative values, from the free boundary towards the tumour’s2456

centre. However, for α tending towards 0 from above, the pressure in the interior of2457

the tumour tends to become positive. To explain this event, we notice that the pro-2458

liferating cells absorb fluid from the surrounding environment to fuel their growth,2459

which is possible because the fluid flows towards the tumour’s interior. However,2460

due to an over-consumption of nutrients, the level of those drastically decreases in2461

the innermost zone of the tumour. This situation, as evidenced in our simulations2462

(see Fig. 3.4), creates a layer of proliferating cells near the outer surface (i.e., the2463

cross section Z = Lin), and a region of necrotic cells at the centre of the tumour.2464

By looking at Equation (3.27b), in this circumstance, the necrotic cells dissolve into2465

the fluid with rate ζnf , thereby increasing its pressure, which, in turn, generates an2466

outward flux (i.e., a flux in the direction opposite to the fluid flow). This sequence2467

of events, which are consistent with the biological foundations of nutrient diffusion2468

and necrosis in a tumour as explained in [183], arises in the model thanks to the2469

non-local approach presented in this work. That is, the non-locality parameter α2470

is responsible for this picture and, thus, through its inclusion, the fractional model2471

is able to reproduce a scenario that was not initially considered in the model. On2472

the contrary, as the results show, this behaviour would not be observed within a2473

formulation based on standard Fick’s law, at least with our model as is.2474

Finally, as we mentioned before (see Remark 8), for completeness in our discus-2475

sion, we compare the results corresponding to the adoption of N(α) versus those2476

obtained with N̂(α). As shown in Fig. 3.6, top left panel, when the normalisation2477

factor is N̂(α), we observe, for α → 0+, a less pronounced decrease of the nutrients’2478

mass fraction. This is compatible with the fact that, even for very small values2479

of α, there is an incoming mass flux of nutrients through the domain’s boundaries2480

that reestablishes the nutrients eaten by the cells. This effect, in turn, tends to2481

disappear when the normalisation factor N(α) is employed since, in that case, the2482

mass flux tends to zero in the limit α → 0+. Coherently with this observation, we2483

also notice a markedly different behaviour of the growth parameter (see Fig. 3.6,2484

top right panel). Indeed, since the flux of nutrients obtained for N̂(α) does not2485

vanish for α → 0+, and a greater amount of nutrients remains available even at2486

time t = 20 d, growth can still occur, as is testified by the dotted line marked with2487

“+”. Similar comments pertain also to the description of the displacement (see Fig.2488

3.6, bottom left panel). Indeed, since growth remains active also for small values of2489

α, the displacement also tends to persist even at t = 20 d, and remains relatively2490

large in the neighbourhood of the domain’s boundaries, where the availability of2491

nutrients is the highest (because of the Dirichlet condition assigned to the nutrients’2492

mass fraction) and growth is present. These differences notwithstanding, it should2493

be emphasised that the qualitative behaviour of the curves describing the nutrients’2494

mass fraction and the growth parameter is the same for both choices of the normal-2495

isation factor. On the contrary, the behaviour of the pressure (see Fig. 3.6, bottom2496

right panel) is both qualitatively and quantitatively different for α = 0.1. In fact,2497
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the use of N̂(α) nullifies the effect visible at t = 20 d, for α = 0.1 and normalisation2498

factor N(α), which consisted in the sign change of the pressure. Hence, employing2499

N̂(α) leaves the pressure negative, thereby triggering no inversion in the flow of the2500

interstitial fluid, which continues to flow from the exterior of the tumour into it.2501
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Figure 3.6: Comparison of the spatial profiles of ca(Z, t) (top left), γ(Z, t) (top
right), u(Z, t) (bottom left) and p(Z, t) (bottom right) for the approaches involving
N(α) (solid line) and N̂(α) (dotted line). In the plots different values of α are used
and time is fixed to t = 20 d.
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Chapter 42502

Outlook on further research:2503

non-local diffusion in remodelling2504

anisotropic media2505

The work reported in this chapter has been previously published in [220]2506

4.1 Introduction2507

As already seen in the previous chapters, the growth and remodelling of a bi-2508

ological tissue are often studied from a mechanical point of view and, in such a2509

context, a tissue is modelled as a deformable porous medium hosting, in its pore2510

space, an interstitial fluid. Within this approach, the porous medium is usually2511

taken as the representation of a system comprising one or more cell populations,2512

and a fibre network constituting the tissue’s extra-cellular matrix (ECM). Although2513

this description could be sometimes too simple, in several cases of biomechanical2514

interest it suffices to give an idea of the environment in which the interstitial fluid2515

flows. Recently, the picture described above has been used in [191, 91].2516

We remark that, although the evolution of the nutrients is important to under-2517

stand how growth is set off, we consider here remodelling alone. We do this for2518

the following two reasons. First, the mathematical formulation of remodelling is2519

simpler than the one needed for growth. Indeed, it does not require to introduce2520

sources/sinks of mass, nor does it call for the mass balance laws that describe the2521

dynamics of the tissue’s constituents. Second, we are interested here in drawing2522

attention on a possible way in which the structural transformation of a tissue in-2523

fluences the evolution of the nutrients in the interstitial fluid. For our purposes, we2524

consider a transversely isotropic tissue that undergoes remodelling and, by high-2525

lighting how the latter contributes to change the tissue’s anisotropy, we discuss2526

the influence of remodelling on the nutrients’ diffusivity tensor. In addition, we2527
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propose some future developments of the research in this field and, in particular,2528

we point out the extension of the current models to include fractional diffusion in2529

anisotropic media.2530

Following [232], we report on some aspects of the dynamics of the biphasic2531

system “porous medium–interstitial fluid”. To accomplish this task, we invoke the2532

Theory of Mixtures [141, 39], which provides a well-established modelling approach2533

for framing our study. Coherently, the porous medium is described with the classical2534

tools of Continuum Mechanics, appropriately adapted and re-formulated under the2535

light shed by the theory of multiphasic materials. In addition, the interstitial fluid2536

and its interactions with the solid phase are taken care of by having recourse to the2537

standard laws of Fluid Mechanics in porous media.2538

We emphasise that, the above simplifications notwithstanding, our model can2539

be generalised to include growth and, in fact, this is one of the topics of our cur-2540

rent research. However, our scope is to highlight the passive role of the chemical2541

gradient by considering the effect of remodelling on transport properties. In doing2542

this, we regard the fluid constituents as continua, and we focus our study on the2543

relation between remodelling and the diffusion process by which the nutrients are2544

transported throughout the tissue.2545

4.2 Mass Balance Laws and Dynamics2546

In our framework, a tissue is viewed as a biphasic medium comprising a solid and2547

a fluid phase. The solid phase consists of cells and collagen fibres, with the latter2548

ones being arranged in a way that renders the tissue transversely isotropic with2549

respect to a given spatial direction. The interstitial fluid is a mixture of chemical2550

substances of various types, among which the most relevant ones for our study are2551

represented by nutrient agents. To focus on the anisotropy of the considered tissue,2552

while keeping our mathematical formulation as simple as possible, in this work we2553

regard the solid phase as a homogenised medium, in which no distinction is made2554

between the dynamics of the cells and that of the fibres. These, in fact, are included2555

with the sole scope of describing the tissue’s anisotropy and its evolution in response2556

to deformation and remodelling. Clearly, more general models are possible, as is2557

the case in [125, 191, 91], in which, however, the growth is considered and the tissue2558

is regarded as isotropic.2559

We group the mass balance laws characterising the system under investigation2560

in two sets. The first one refers to the solid phase and can be written as2561

∂t(ϕsρs) + div(ϕsρsvs) = 0, (4.1)

where ϕs and ρs are the volumetric fraction and the mass density of the solid phase,2562

and vs is its velocity. The second group of mass balance laws pertains to the fluid2563
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phase and to the nutrients dissolved in it (see e.g. [191]), i.e.,2564

∂t(ϕfρf) + div(ϕfρfvf) = 0, (4.2a)

∂t(ϕfρfcnf) + div(ϕfρfcnfvf) + div ynf = 0. (4.2b)

In (4.2a) and (4.2b), ϕf and ρf are the volumetric fraction and the mass density of2565

the fluid phase, respectively, vf is the fluid velocity, cnf is the mass fraction of the2566

nutrients in the fluid phase, and ynf is the mass flux vector of the nutrients, i.e.,2567

ynf = ϕfρfcnfunf , with unf being the velocity of the nutrients relative to the centre2568

of mass of the fluid phase. Note that, by enforcing the saturation condition, ϕf2569

must comply with the equality ϕf = 1− ϕs. Furthermore, we assume in the sequel2570

that the mass densities ρs and ρf are constant, thereby implying that both the solid2571

and the fluid phase are incompressible.2572

By adhering to the picture put forward in [86, 213], the dynamics of the system2573

discussed so far should be studied at two different, virtually independent levels.2574

One level is associated with the “visible” degrees of freedom of the system [86],2575

which correspond to the deformation of the solid phase and to the flow of the inter-2576

stitial fluid. The other level, instead, is related to the structural transformations2577

undergone by the tissue, and is accounted for by allotting structural degrees of free-2578

dom with which suitable kinematic descriptors are associated. A similar framework2579

has been adopted in the majority of previous works of some of us (see e.g. [127,2580

78] and references therein).2581

In the limit in which the inertial forces and all the long-range forces (e.g. grav-2582

ity) are negligible, the “visible” dynamics are represented by the following set of2583

momentum balance laws [141, 129],2584

div(σσσs + σσσf) = 0, (4.3a)

divσσσf + pg−1gradϕf + πππf = 0, (4.3b)

π̃ππnf − ϕfρfcnf g
−1grad µ̃nf = 0. (4.3c)

Equation (4.3a) is the momentum balance law of the biphasic medium as a whole,2585

and involves the sum of the Cauchy stress tensors σσσs and σσσf associated with the2586

solid and with the fluid phase, respectively. Equation (4.3b) is the momentum2587

balance law of the fluid: it features the sum of the terms pg−1gradϕf and πππf ,2588

which represent, respectively, the non-dissipative and the dissipative parts of the2589

linear momentum density exchange rate between the solid and the fluid phase.2590

Here and in the following, g is the metric tensor field associated with the three-2591

dimensional Euclidean space. We notice that the non-dissipative force density,2592

pg−1gradϕf , features the pressure, p. Equation (4.3c) is the momentum balance2593

law of the nutrient substances dissolved in the fluid (details about the procedure2594

for obtaining (4.3c) can be found in [141, 129]): it reduces to the balance between2595

the dissipative force density π̃ππnf and the generalised force ϕfρfcnf g
−1grad µ̃nf . Here,2596
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π̃ππnf describes the dissipative interactions among the nutrients and the fluid itself,2597

while µ̃nf is the chemical potential of the nutrients, µnf , relative to the chemical2598

potential of water, µwf , i.e., µ̃nf := µnf − µwf .2599

One can prove that σσσs splits additively as σσσs = −ϕspg
−1 + σσσsc and, under2600

the hypothesis of hyperelastic solid phase, σσσsc can be obtained constitutively from2601

a free energy density. Moreover, we assume that σσσf reduces to the hydrostatic2602

Cauchy stress tensor σσσf = −ϕfpg
−1. Before going further, we remark that a similar2603

setting, and identical expressions for σσσs and σσσf have been used in many previous2604

works of some of us [129, 269, 128, 91, 78], and can be found in many renowned2605

publications of porous media (see e.g. [141, 39]), with or without the hypothesis of2606

incompressibility of the solid and the fluid phase.2607

By following a standard praxis in porous media mechanics (see e.g. [141, 39]),2608

we express πππf and π̃ππnf constitutively as linear functions of the fluid filtration velocity,2609

q = ϕf [vf − vs], and of the mass flux vector of the nutrients, ynf , respectively, i.e.,2610

πππf = −ϕfg
−1k−1q, (4.4a)

π̃ππnf = −ϕfcnf g
−1λλλ−1

nf ynf , (4.4b)

where k and λλλnf represent, respectively, the permeability tensor of the system and2611

the mobility tensor of the nutrients. We remark that, in the present setting, both2612

tensors are assumed to be invertible, symmetric and positive-definite from the out-2613

set. By plugging the relationships σσσs = −ϕspg
−1 + σσσsc and σσσf = −ϕfpg

−1 into2614

(4.3a) and (4.3b), and using the results (4.4a) and (4.4b) in (4.3b) and (4.3c), one2615

obtains2616

div(−pg−1 + σσσsc) = 0, (4.5a)

q = −k gradp, (4.5b)

ynf = −ρfλλλnf gradµ̃nf . (4.5c)

We recognise Darcy’s law of filtration and Fick’s law of diffusion in (4.5b) and2617

(4.5c), respectively.2618

Following [86], we choose a second order tensor field, denoted by Fp and re-2619

ferred to as remodelling tensor, as kinematic descriptor of the structural changes of2620

the tissue. The remodelling tensor is introduced by having recourse to the Bilby-2621

Kröner-Lee (BKL) decomposition of the deformation gradient tensor of the solid2622

phase, F (see e.g. [201, 246] for a review). Accordingly, F is written as F = FeFp,2623

where Fe is said to be the tensor of elastic distortions. We speak of “distortions”2624

in the sense of Kröner [163], since in general neither Fe nor Fp are integrable (this2625

means that there exists no deformation whose gradient is Fe or Fp). Moreover,2626

we notice that the subscript “g”, which usually stands for “growth”, is kept here2627

to identify the remodelling tensor. We make this choice to emphasise that, even2628

though no mass sources/sinks are considered here, the remodelling of the considered2629

tissue might be induced by growth.2630
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Given Fp, we introduce the virtual velocity VVV g associated with it, i.e., a second-2631

order tensor field representing the virtual rate of change of the remodelling distor-2632

tions. Then, within a “theory of grade zero” [86]1, we introduce generalised forces2633

expending virtual power on VVV g. Such forces may be distinguished in an internal2634

one, Zint, and in an external one, Zext, and the Principle of Virtual Powers leads to2635

the local force balance [60, 86]2636

Zint = Zext, (4.6)

holding in the internal points of the reference configuration of the considered tis-2637

sue, B. We look for constitutive expressions for Zint by exploiting the dissipation2638

inequality for the system under study. Expressed per unit volume of the current2639

configuration of the tissue, the dissipation of the system reads (see e.g. [129])2640

D = −πππf .q− π̃ππnf .unf + J−1(ΣΣΣsc + Zint) : L̄g

= −πππf .q− π̃ππnf .unf + J−1∆∆∆ : L̄g

= −πππf .q− π̃ππnf .unf + J−1(dev∆∆∆) : L̄g ≥ 0, (4.7a)

where L̄g ≡ F−1
p Ḟg is the rate of distortions due to remodelling, pulled back to the2641

reference configuration, ΣΣΣsc = J FTσσσscF
−T is said to be the constitutive part of the2642

solid phase Mandel stress tensor, and ∆∆∆ ≡ ΣΣΣsc+Zint is the dissipative contribution2643

of Zint. Note that L̄g is deviatoric.2644

The Mandel stress tensor can also be written as ΣΣΣsc = CSsc, where Ssc is the2645

constitutive part of the second Piola-Kirchhoff stress tensor of the solid phase and2646

C = FT.F = FTgF is the right Cauchy-Green deformation tensor. By its own2647

definition, ΣΣΣsc is equipped with the symmetry property ΣΣΣscC = (ΣΣΣscC)T = CSscC2648

[101, 194].2649

Since the definitions given in (4.4a) and (4.4b) satisfy the dissipation inequality2650

(4.7a), we focus on the remodelling part of D, i.e., Dg ≡ J−1(dev∆∆∆) : L̄g ≥ 0, in2651

order to extract information on ∆∆∆. For this purpose, we make here the simplifying2652

assumption of setting Zext equal to the null tensor (see [60] for a discussion on2653

this issue). Accordingly, the force balance (4.6) implies that Zint is null too, and2654

the dissipative force ∆∆∆ coincides with ΣΣΣsc, thereby inheriting the same symmetry2655

properties as the Mandel stress tensor, i.e., ∆∆∆C = (∆∆∆C)T [101, 194]. Therefore,2656

Dg becomes2657

Dg = J−1(dev∆∆∆) : L̄g = J−1[(dev∆∆∆)C] : sym(L̄gC
−1) ≥ 0, (4.8)

and (4.6) can be reformulated as2658

(dev∆∆∆)C = (devΣΣΣsc)C. (4.9)

1This means that GradFp is not rated among the variables determining the kinematic picture
of the theory. Of course, it can be computed a posteriori.
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If we admit a remodelling of rate-dependent type, we may suggest to express2659

(dev∆∆∆)C as a linear constitutive function of sym(L̄gC
−1), i.e.,2660

(dev∆∆∆)C = K : sym(L̄gC
−1), (4.10)

where K is a positive-definite fourth-order tensor endowed with both the major2661

and the minor symmetry. Hence, by plugging (4.10) into (4.8), we end up with the2662

following evolution law for Fp:2663

K : sym(F−1
p ḞgC

−1) = (devΣΣΣsc)C. (4.11)

Similar laws can also be found e.g. in [129, 89], with the rate of anelastic distortions2664

expressed as a function of the corresponding measure of stress. A review on the2665

evolution laws for Fp is given e.g. in [80], whereas some Differential Geometry2666

aspects connected with such laws has been recently provided in [203].2667

Equations (4.1)–(4.2b), (4.5a)–(4.5c) and (4.11) characterise our mathematical2668

model, which has to be completed by assigning constitutive laws for k, λλλnf , K, and2669

σσσsc. We do not focus here on the constitutive representation of K and σσσsc, as this2670

is out of the scopes of this chapter. However, we do discuss constitutive laws for k2671

and λλλnf . This is, indeed, the subject of the next sections.2672

4.3 Fick’s law and diffusion in anisotropic grow-2673

ing media2674

When the mass fraction of the nutrient substances dissolved in the interstitial2675

fluid is sufficiently low, the mass flux vector ynf can be expressed in terms of Fick’s2676

law:2677

ynf = −ρfλλλnf grad µ̃nf . (4.12)

Equation (4.12) assumes that ynf is due to diffusion only, since any dispersive effect2678

of the flow (see e.g. [36, 112] for a review on this issue) is typically neglected for2679

the types of tissues under study.2680

In general, µ̃nf is expressed as a constitutive function of a list of variables that,2681

beyond cnf , may also contain the deformation. In this work, however, we restrict2682

our study to the case in which µ̃nf is a constitutive function of the sole mass fraction,2683

cnf . Thus, with a slight abuse of notation, we set µ̃nf = µ̃nf(cnf), and we rewrite2684

(4.12) as2685

ynf = −ρfλλλnf grad µ̃nf = −ρfλλλnf
∂µ̃nf

∂cnf
grad cnf . (4.13)
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Finally, upon introducing the diffusivity tensor [141, 143],2686

dnf := λλλnf
∂µ̃nf

∂cnf
, (4.14)

we end up with the well-known expression2687

ynf = −ρfdnf grad cnf . (4.15)

If, for example, we prescribe µ̃nf (cf. [168], Chapter 6, page 234) as2688

µ̃nf(cnf) =
RT

Mn

log

(
Mwcnf

Mn[1− cnf ] +Mwcnf

)
− RT

Mw

log

(
Mn[1− cnf ]

Mn[1− cnf ] +Mwcnf

)
, (4.16)

where Mn and Mw are the molar masses of the nutrients and water, respectively,2689

R is the gas constant, and T is the absolute temperature (regarded as a constant2690

in the present framework), we obtain2691

dnf = λλλnf
∂µ̃nf

∂cnf
= λλλnf

RT/[cnf(1− cnf)]

Mn[1− cnf ] +Mwcnf
. (4.17)

Since the mobility tensor has to vanish for cnf = 0 and cnf = 1, i.e., in the absence2692

of nutrients and when the nutrients are the only fluid constituent, respectively, one2693

can choose λλλnf = cnf(1− cnf)λλλ
0
nf , which allows to recast (4.17) in the form2694

dnf = λλλ0nf
RT

Mn[1− cnf ] +Mwcnf
. (4.18)

If the mass fraction cnf is so low that the diffusivity tensor, dnf , can be taken to be2695

independent of cnf , one can replace (4.18) with2696

dnf = λλλ0nf
RT

Mn

. (4.19)

This amounts to approximate (4.18) with its zeroth order approximation, obtained2697

for cnf = 0. Since, in the present framework, the term RT/Mn features only con-2698

stants, it can be absorbed in the coefficients defining λλλ0nf . Hence, the mass flux2699

vector ynf is entirely determined by the diffusivity tensor, dnf , which should be2700

supplied experimentally, and consistently with the theorem of representation for2701

tensor-valued functions (see [25] and references therein).2702

By adhering to the classification done in [25], which addresses the permeability2703

tensor in fibre-reinforced media undergoing finite deformations, and adapting it to2704

93



Outlook on further research: non-local diffusion in remodelling anisotropic media

our study for the case of a transversely isotropic material, we represent dnf as (cf.2705

Equation (30) of [25])2706

dnf = d0 g
−1 + d1tbe + 2d2tbe.be

+ (d1a − d1t)m⊗m+ (d2a − d2t) [(m⊗m).be + be.(m⊗m)] . (4.20)

Equation (4.20) is the most general representation of a function valued in the space2707

of second-order tensors with transverse isotropy with respect to the direction iden-2708

tified by the spatial vector m. In (4.20), be := Fe.F
T
e is the left Cauchy-Green2709

stretch tensor generated by the elastic distortions, and the dot “.” is an abbre-2710

viation for the metric tensor, g, or for its inverse, g−1, i.e., be.be ≡ beg be, and2711

(m⊗m).be ≡ (m⊗m)gbe. Moreover, the coefficients d0, d1t, d1a, d2a, and d2t are2712

scalar functions of the invariants I1e, I2e, I3e, I4e, and I5e, defined as follows2713

I1e = tr(be), (4.21a)

I2e =
1
2

{
I21e − tr(be.be)

}
, (4.21b)

I3e = det(be), (4.21c)

I4e = [b−1
e : (m⊗m)]−1 = Ce : (ννν ⊗ ννν), (4.21d)

I5e =
be : (g⊗g) : m⊗m

b−1
e : (m⊗m)

= C2
e : (ννν ⊗ ννν). (4.21e)

In (4.21d) and (4.21e), ννν is the unit vector specifying the direction of the fibre2714

in the natural state, and is related to m through the normalised pull-back and2715

push-forward operations2716

ννν =
F−1

e m

∥F−1
e m∥

, m =
Feννν

∥Feννν∥
. (4.22)

Moreover, in (4.21e), the fourth-order tensor g⊗g is defined as2717

g⊗g := 1
2
[g⊗g + g⊗g], (4.23)

and maps symmetric second-order tensors with contravariant components into sym-2718

metric second-order tensors with covariant components (see [107]).2719

Going back to the scalar coefficients of dnf , we notice that, while d0 accounts2720

for the purely spherical part of the diffusivity tensor (in the jargon of [25], the term2721

d0g
−1 is said to be “unconditionally isotropic”), the sets of coefficients {d1a, d2a} and2722

{d1t, d2t} determine the axial and the transversal diffusivities of dnf , respectively.2723

A final remark about (4.20) concerns the fact that the elastic Cauchy-Green2724

stretch tensor be, rather than b, is employed to construct dnf : one reason for doing2725

so is that the use of be clearly identifies how the structural reorganisation of the2726

tissue, described by the remodelling tensor Fp, influences the evolution of dnf . This2727
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becomes evident by performing the backward Piola transformation of dnf . Indeed,2728

by virtue of the identity be = FBgF
T, with Bg := F−1

p .F−T
p , we obtain2729

Dnf = J F−1dnfF
−T

= Jd0C
−1 + J d1tBg + 2Jd2tBgCBg

+ J
d1a − d1t

I4
M⊗M+ 2J

d2a − d2t
I4

sym[BgC(M⊗M)], (4.24)

where I4 := C : (M⊗M) is the fourth invariant of the Cauchy-Green deformation2730

tensor, C, and M = F−1
p ννν/∥F−1

p ννν∥ is the normalised pull-back of ννν to the tangent2731

space associated with the medium’s reference configuration. From (4.24) it descends2732

that remodelling has a direct impact on the evolution of both the isotropic and2733

the anisotropic part of the diffusion tensor. To complete the picture, we need2734

to prescribe constitutive laws for the diffusivities {d0, d1a, d1t, d2a, d2t}. For this2735

purpose, we follow the suggestions given in [25] for the permeability coefficients,2736

and we adapt them to our framework in order to include remodelling. Hence, we2737

set2738

d0 = d0ν

[
Je − Φsν

1− Φsν

]κ0
exp

(
1
2
m0[J

2
e − 1]

)
, (4.25a)

d1a =
d1aν
J2
e

[
Je − Φsν

1− Φsν

]κ1a
exp

(
1
2
m1a[J

2
e − 1]

)
, (4.25b)

d1t =
d1tν
J2
e

[
Je − Φsν

1− Φsν

]κ1t
exp

(
1
2
m1t[J

2
e − 1]

)
, (4.25c)

d2a =
d2aν
2J4

e

[
Je − Φsν

1− Φsν

]κ2a
exp

(
1
2
m2a[J

2
e − 1]

)
, (4.25d)

d2t =
d2tν
2J4

e

[
Je − Φsν

1− Φsν

]κ2t
exp

(
1
2
m2t[J

2
e − 1]

)
, (4.25e)

where, as stated above, Φsν is the volumetric fraction of the solid phase in the nat-2739

ural state, and the contribution of remodelling is accounted for by the determinant2740

Je = J/Jg, even though we have set Jg = 1 in the present study.2741

According to the definitions (4.25a)–(4.25e), fifteen parameters have to be as-2742

signed. These are given by the reference values d0ν , d1aν , d1tν , d2aν , and d2tν ; the2743

exponents κ0, κ1a, κ1t, κ2a, and κ2t; and the factors m0, m1a, m1t, m2a, and m2t.2744

For ease of notation, in the sequel these three sets of parameters shall be referred2745

to as d-coefficients, κ-exponents, and m-factors, respectively.2746

We notice that the d-coefficients must be all non-negative, as they represent2747

the values of the diffusivities in the natural state, i.e., when the condition Je = 12748

applies identically. This condition, in fact, does not amount, here, to invoke the2749

constraint of isochoric elastic distortions, although such constraint would actually2750
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compel the scalar diffusivities (4.25a)–(4.25e) to be equal to their corresponding2751

reference values, for all admissible Fe.2752

Since the κ-exponents are generally taken as positive real-valued functions (see2753

e.g. the experimental values presented in [149] for permeability), the fraction2754

Je − Φsν

1− Φsν

(4.26)

has to be non-negative in order for the scalar diffusivities to be well-defined. If Φsν2755

is assumed to be always strictly positive (indeed, the case Φsν = 0 means that the2756

solid phase is locally absent in the tissue), this condition is met for Φsν < 1 and,2757

simultaneously, for Φsν ≤ Je. The first restriction is a natural consequence of the2758

saturation constraint, whereas the second restriction places a lower bound on the2759

elastic distortions: at compression, Je cannot be made arbitrarily small [109].2760

The permeability tensor, k, is defined analogously to dnf , and can thus be2761

obtained from (4.20) by replacing the scalar diffusivities d0, d1a, d1t, d2a, and d2t2762

with the corresponding scalar permeabilities k0, k1a, k1t, k2a, and k2t (see [25]).2763

These, in turn, have the same functional form as the diffusivities given in (4.25a)–2764

(4.25e), and only require the assignment of suitable model parameters of the same2765

type as the d-coefficients, κ-exponents, and m-factors introduced above [25]. The2766

material form of the permeability tensor is determined via the backward Piola2767

transformation of k, i.e., K = JF−1kF−T, which yields an expression similar to2768

(4.24) for Dnf .2769

By adapting the results reported in [110, 111] to the diffusivity tensor in (4.24),2770

one may infer that the transversal diffusivities are smaller than the axial ones.2771

This assumption leads to significant simplifications to the expression of Dnf , and,2772

therefore, can be very helpful to reduce the complexity of a mathematical model.2773

However, it leads unavoidably to a weakening of the coupling between diffusion2774

and remodelling, and reduces the role played by remodelling on the evolution of2775

the tissue’s anisotropy.2776

4.4 An Outlook on Some Possible Research Prob-2777

lems2778

Pulled back to the reference configuration of the tissue, Equation (4.2a) becomes2779

(J − Φsν)ρf ċnf + ρf(Grad cnf)Q+DivYnf = 0, (4.27)

where ċnf is the material derivative of cnf , evaluated with respect to the solid phase2780

velocity, Grad and Div are the “material” gradient and divergence operators, while2781

Q = JF−1q and Ynf = JF−1ynf are the Piola transformed filtration velocity and2782
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nutrient mass flux vector, respectively. In terms of the standard Darcy and Fick’s2783

laws, these two quantities read2784

Q = −KGrad p, Ynf = −ρfDnf Gradcnf , (4.28)

where K and Dnf are defined in Section 4.3 (see, in particular, (4.24) for Dnf).2785

In this section, we would like to report some generalisations of (4.28)2 to the2786

case of non-Fickean diffusion. Our purpose is to draw attention on diffusion pro-2787

cesses that involve the non-local response of Ynf to the gradient of the mass fraction2788

Grad cnf , as well as the non-locality of Grad cnf in terms of orientations. To accom-2789

plish this task, we use non-local approaches of fractional type. Before going into2790

the proposed generalisations, we ought to say that, although the literature on Frac-2791

tional Calculus is very vast and keeps growing (see e.g. [224, 88, 19, 61, 281, 21,2792

22], and the references therein, to mention just a few), we are not aware, to date,2793

of stringent evidences that call for the necessary fractionalisation of the diffusion2794

processes at the basis of the transport of nutrients in remodelling tissues. Yet,2795

we feel that it could be important to start paving the way towards the inclusion2796

of fractional models into the standard framework of growth and remodelling. In-2797

deed, beyond mere scientific curiosity, there is the interest for understanding how2798

non-local effects influence the overall response of tissues that grow in pathological2799

conditions or for improving our comprehension of the interplay between diffusion2800

and the reorientation of the fibres.2801

An alternative fractionalisation of diffusion can be obtained by assuming that2802

the mass flux vector of the nutrients is related to the fractional gradient of the mass2803

fraction, cnf . Note that, to lighten the notation, in the sequel we drop the subscripts2804

“nf”, as it is clear that we are referring to the nutrients in the fluid phase. Hence,2805

by defining the fractional gradient of order γ ∈ R, 0 < γ < 1, of the field c as [195]2806

gradγµ c(x, t) ≡
∫
S2xS

m[Dγ
mc(x, t)]dµ(m), (4.29)

we require that the mass flux vector of the nutrients in the fluid phase is given by2807

yγµ = −ρf d̄gradγµ c. (4.30)

Analogously to what has been said above, d̄ is formally equal to the diffusivity2808

tensor introduced in (4.20), but its physical units have to be adjusted in order to2809

account for the fractional gradient of c.2810

In (4.29), m is a unit vector attached to the spatial point x ∈ S , with S2811

being the three-dimensional Euclidean space, S2
xS is the set of all the unit vectors2812

emanating from x (it is a vector manifold contained in the tangent space TxS ),2813

µ( · ) is a “positive finite measure” on S2
xS [195], and Dγ

mc(x, t) is the fractional2814

directional derivative of order γ of the field c along the direction m, evaluated at2815

x ∈ S and time t. The definition of Dγ
mc(x, t) is obtained in two steps. First,2816
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we introduce the Fourier transform of c, suitably prolonged over all the three-2817

dimensional Euclidean space, S , i.e.,2818

ĉ(ξξξ, t) =

∫
S

e−iξξξ[x−x0]c(x, t)dv(x), (4.31)

where x0 is a point of S chosen as origin. Then, for a given m ∈ S2
xS , we con-2819

sider the quantity [iξξξm]γ ĉ(ξξξ, t), and we identify Dγ
mc(x, t) with the inverse Fourier2820

transform of [iξξξm]γ ĉ(ξξξ, t), i.e.,2821

Dγ
mc(x, t) =

1

(2π)3

∫
K

eiξξξ[x−x0][iξξξm]γ ĉ(ξξξ, t)dv(ξξξ), (4.32)

where K is the Fourier space (in fact, isomorphic to R3).2822

For our purposes, it suffices to take the measure µ(m) in such a way that2823

the integral on the right-hand-side of (4.29) can be rewritten as a surface integral,2824

evaluated on the spherical surface enveloping S2
xS . Hence, Equation (4.29) becomes2825

gradγµ c(x, t) ≡
∫ 2π

0

∫ π

0

m̂(ϑ, φ)[Dγ
m̂(ϑ,φ)c(x, t)]| sin(ϑ)|dϑdφ, (4.33)

where (ϑ, φ) ∈ [0, π] × [0,2π[ is a system of spherical coordinates, and m̂(ϑ, φ) is2826

the parametric representation of m.2827
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Conclusions to Part I2828

The content reported in this chapter has been previously published in [131, 220, 235].2829

2830

The scope of this part was to investigate the influence of non-local phenomena on2831

the growth and remodelling of biological tissues, with special focus on the evolution2832

of an avascular tumour tissue.2833

In particular, in Chapter 2, we study an idealised biological tissue that grows2834

and remodels. As tissue we consider a tumour in avascular stage, and we assume2835

that its remodelling —or structural reorganisation— occurs through a two-scale2836

plasticity-like phenomenon. Following [14], we distinguish a coarse and a fine scale,2837

and we resolve this phenomenon, at the coarse scale, by means of the accumulated2838

remodelling strain, εp, and, at the fine scale, by means of ep. The latter is the2839

representative of the so-called micro-“plasticity” and, being related to εp through2840

a Helmholtz-like equation, it makes εp non-local [14]. Within this framework, we2841

have set ourselves the scope of evaluating if, how, and to what extent the micro-2842

“plasticity” influences the growth of the tumour. In our approach, such influence2843

can occur both directly and indirectly. The direct way is due to the fact that2844

the effective Cauchy stress, σeff, modulates the source of mass Rfp, and thus also2845

Rs, by giving rise to mechanotransduction. The indirect way, instead, manifests2846

itself through the slight, and to a certain extent visible, changes that the non-local2847

plastic-like distortions induce in some of the physical quantities that characterise2848

the growth of the tumour, as reported in Section 2.7.2849

It is important to emphasise that the results shown in this work (see Figures 2.2–2850

2.5) are obtained for numerical values of the “non-standard” parameters Aν , Bν ,2851

and Zν (see Table 2.2), which could be far beyond the physical range. Therefore,2852

for the time being, our results aim at being a qualitative contribution to a unified2853

strain-gradient theory of growth and remodelling. However, they are quantitative2854

in evaluating the impact of the considered theory on growth.2855

We remark that, following an idea put forward by Epstein [98], Di Stefano2856

et al. [91] proposed a model of strain-gradient growth, in which the evolution2857

of γ is governed by a generalised diffusion-reaction equation. Such equation was2858
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obtained by accounting for the growth-induced scalar curvature, κγ
2, which features2859

the spatial derivatives of γ up to the second order. However, in that model we2860

considered no remodelling. In the present work, instead, we have neglected the role2861

of κγ, but we have focussed our attention on strain-gradient remodelling in order2862

to quantify its effect on growth. The role of κγ in the current framework can be2863

recovered by simply re-activating rpγ and rnγ in (2.2a) and (2.2b) (see Di Stefano2864

et al.[91] for the definition of these terms as functions of κγ).2865

Apart from the obvious fact that the topics under study necessitate further2866

investigations from our side, two comments are in order: firstly, we have not hy-2867

pothesised a strain-softening behaviour of the considered material, and no formation2868

of shear bands can be observed that justifies from the outset the use of a strain-2869

gradient regularisation; secondly, the benchmark problem adopted in this work2870

might be inappropriate, since it does not produce the desired/expected localisation2871

of the accumulated plastic strain, εp, which calls for the employment of a strain-2872

gradient theory. Nevertheless, our model is able to capture the regularising effect2873

that the microscale descriptor ep has on the accumulated remodelling distortions2874

(cf. Figure 2.6).2875

It is known that the internal structural changes occurring in heterogeneous ma-2876

terials influence their overall macroscopic behaviour. For example, in bones, the2877

change of orientation of the lamellae’s collagen fibres modifies the bone’s longitudi-2878

nal effective Young’s modulus [270, 240]. In the present work, we attempt to know2879

how, and to what extent, the microscopic plastic-like (remodelling) effects are sig-2880

nificant for the macroscopic evolution of the tissue. To the best of our knowledge,2881

there are no experimental studies showing the influence of the microscopic plastic2882

effects on the tissue behaviour. However, one can think of an experiment where, at2883

some level, there can be a relatively strong localisation of the accumulated “plastic”2884

strain, ep, because of the presence of constraints (e.g. contact of the tissue with2885

much stiffer materials). In this respect, we hope that our work contributes to un-2886

derstand the interactions between growth and remodelling by merging the theories2887

of multiphasic materials and of strain-gradient plasticity.2888

To the best of our understanding, another important difference between our2889

work and previous publications (see e.g. [70, 68, 67]) resides in the definition of the2890

internal and external mechanical powers. Indeed, looking for instance at [68], these2891

powers feature only the generalised velocities associated with the “classical” degrees2892

of freedom of a body3, while the time derivatives of the tensors associated with the2893

2The growth distortions, Fγ = γI, induce the Riemannian metric tensor Cγ = γ2G, which
yields Christoffel symbols that allow to determine a Levi-Civita connection with nontrivial fourth-
order curvature tensor [190, 126] and, thus, with nontrivial associated Ricci curvature tensor, Rγ .
Hence, it is possible to define the scalar curvature as κγ := Rγ :C

−1
γ (see [91] for details).

3These are the body velocity, V , the time derivative of the deformation gradient tensor, Ḟ ,

and the time derivative of the second gradient of the deformation, i.e., ˙GradF [68].
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body’s structural changes appear in the study of the dissipation inequality through2894

the derivative of the body’s Helmholtz free energy density. In our case, instead,2895

following a philosophy outlined in other papers [133, 60, 86, 135, 14], we introduce2896

the structural kinematic descriptors both constitutively, i.e., as arguments of the2897

solid phase Helmholtz free energy density, and in the formulation of the overall2898

virtual powers of the problem, that is, jointly with the “classical” ones.2899

In our work, the tensor Σ̃ν is entirely determined by mechanical quantities2900

(cf. Equation (2.38a)) and this property is inherited by its associated direction2901

tensor, N ν = Σ̃ν/∥Σ̃ν∥η. Consequently, the hypothesis of co-directionality of D̃p2902

and Σ̃ν implies that the direction of the plastic flow is exclusively dictated by2903

mechanical stress, the latter being augmented by the non-standard contribution2904

Σ̃
(n-st)

ν . However, in more general situations, it is possible to define generalised2905

Mandel stress tensors featuring bio-chemical contributions, i.e., depending explicitly2906

on the mass fraction of the nutrients (and on its gradient). In such cases, tensor N ν2907

defines the direction of the plastic flow on the basis of chemo-mechanical guidance.2908

A last comment is on the design of an adequate benchmark problem. Indeed,2909

when Anand et al. [14] developed their theory, they wrote that ep “is introduced2910

for the purpose of regularisation of numerical simulations of shear band formation2911

under strain softening conditions”. To achieve this objective, they called for the2912

concept of micro-scale plasticity, and admitted a physics described by εp, ep, and2913

Gradep. Then, in order to determine these quantities, they established a thermody-2914

namically consistent framework, rather than simply improving the equations that2915

were problematic from the numerical point of view. In our work, we have extended2916

such thermodynamic set-up to a growth problem, by admitting that its physical2917

meaning goes beyond the necessity of solving numerical issues. Nevertheless, we2918

have seen only a very marginal impact of this modelling choice on our results and2919

we argue that it is of fundamental importance to design benchmark problems ca-2920

pable of capturing the physics behind it. This is part of our ongoing research.2921

2922

Furthermore, in Chapter 3, we study the influence of a given type of non-local2923

diffusion of nutrients on the growth of an avascular tumour. For this purpose, we2924

generalise Fick’s law of diffusion by introducing a non-local constitutive relationship2925

for the mass flux vector that, after some considerations, can be identified with2926

a fractional derivative of the nutrients’ mass fraction. We call attention to the2927

fact that, since we are dealing with growth, we need to describe how the non-2928

locality of the prescribed constitutive law evolves with the deformation and the2929

growth-induced inelastic distortions that accompany the evolution of the system2930

under study. This consideration implies that the non-locality of the presumed2931

constitutive response should be subordinate to the motion χ (see Equation (3.22b))2932

and, thus, that it cannot depend explicitly on the difference X − X̃ between the2933

reference placements of the material points embedded in X and X̃. Furthermore,2934
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we note that, as prescribed by Equation (3.25), the non-local character of the2935

mass flux vector also depends on the structural changes of the tumour through the2936

determinant of Fγ. To the best of our understanding, the above considerations2937

imply substantial differences between our work and other papers on the subject2938

found in the scientific literature. Moreover, we suggest a formulation of non-local2939

diffusion on manifolds (see Appendix A1).2940

To investigate the influence of the non-local diffusion of the nutrients on the2941

tumour evolution, we focused on a benchmark problem that allows, due to the2942

enforced symmetries, the reduction of the original three-dimensional framework2943

to a one-dimensional problem. This has an important impact on the selection of2944

the non-locality function, f̂α, which has to be able to capture how the geometrical2945

symmetries of the problem affect the description of the non-locality. Particularly,2946

in our analysis, we re-obtained the definition of one-dimensional fractional mass2947

flux proposed in other works [215, 82].2948

In our work, the numerical solution of the set of equations defining the mathe-2949

matical model is found by employing the FE method, which has been adapted for2950

the solution of the fractional diffusion equation (3.26c). In particular, the obtained2951

numerical results show that the non-local character of the nutrients’ evolution has2952

a considerable repercussion on the growth of the hypothetical tumour under study.2953

Specifically, by varying the parameter α∈ ]0,1[, the model is capable, in the limit2954

cases, of generating situations of no diffusion or of restoring Fick’s law. This con-2955

clusion evidences the relevance of embracing a fractional framework in our model,2956

since it permits to “control”, through the parameter α, the way in which the tumour2957

grows. Finally, we discussed a possible way for defining another normalisation fac-2958

tor, termed N̂(α), involved in the definition of the mass flux vector, and we provided2959

a comparison between the two approaches.2960

Certainly, our model can be further generalised and, in the following, we discuss2961

some important issues that should be accounted for in forthcoming works. A first2962

issue arises from the fact that, once the dimensionality and the symmetries of the2963

problem at hand are specified, Equation (3.16) must be adapted accordingly. This2964

implies that the non-locality function and the normalisation factors should be con-2965

ceived in a symmetry- and dimensional-dependent fashion4. To find such relations2966

is part of our ongoing research. Additionally, in our model, the information on the2967

microscopic structure of the tumour is not explicitly taken into account and, thus,2968

its contribution is neglected. As pointed out in the Introduction, the multi-scale2969

and heterogeneous character of the environment in which diffusion takes place is one2970

of the main factors influencing the occurrence of non-Fickean diffusion. Therefore,2971

4Similar problems are subject of investigations conducted by our group in conjunction with our
colleague Prof. Dušan Zorica (Mathematical Institute, Serbian Academy of Arts and Sciences,
Serbia) and started, from our side, during his visit at the Politecnico di Torino (Italy) in January
2020.
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the adoption of mathematical techniques, such as the Asymptotic Homogenisation2972

Method [72], could be capable of incorporating these features into a framework of2973

tissue growth [237] and non-local diffusion.2974

We further remark that an aspect that is not contemplated in the current for-2975

mulation of the model is that the chemical agents should be both in the fluid phase2976

and in the solid phase, and not only in the fluid phase. One of the main drawbacks2977

of this phenomenological consideration is that it is not possible to link the mass2978

sources to the chemical potentials of the nutrients, nor is it possible to establish2979

a sound and comprehensive thermodynamic framework accounting for interphase2980

mass transfers as non-equilibrium processes. This implies that no information, or2981

only a limited amount of information, can be extracted from the study of the dissi-2982

pation inequality of the system (and this is not directly due to the fact that growth2983

necessitates the consideration of processes, of cellular or molecular type, that could2984

not be accounted for in the model). Therefore, under the circumstances of the2985

present model, it is not possible to obtain Equation (3.16) from the study of the2986

dissipation inequality, as it would be the case in the classical procedure that leads2987

to Fick’s law. In this respect, one of the technical difficulties that arise in our2988

work is that we cannot invert the balance of linear momentum associated with the2989

chemical agents, since the inversion of fractional operators is not always permitted.2990

One possible solution, that seems to be thermodynamically acceptable, is to adopt2991

a procedure similar to the one depicted in [137], that is, to consider the part of2992

the dissipation inequality that is of interest for us, to put it in weak form and to2993

express the flux in terms of a non-local constitutive law depending on the gradient2994

of the chemical potential.2995

We would like to mention that in recent years Fractional Calculus has demon-2996

strated to be an effective mathematical tool in the description of several phenom-2997

ena. However, there is still an urgency in incorporating this notion in mathematical2998

models that go beyond the classical ones.2999

3000

Finally, in Chapter 4, we study how remodelling affects diffusion on a trans-3001

versely isotropic tissue and propose some future developments of the research in3002

this field.3003

We notice that the evaluation of the integral on the right-hand-side of (4.33) can3004

be demanding in general, and that suitable numerical algorithms might be needed.3005

A possible approach is the Spherical Design Algorithm [138], which is largely used3006

in determining the overall elastic or flow properties of fibre-reinforced media with3007

statistical distribution of fibres [108, 53].3008

The parameter γ, featuring in the fractional formula (4.30), can be naturally3009

associated with characteristic length scales that cannot be resolved when stan-3010

dard diffusion is considered. In this respect, it represents an additional source of3011

information on the tissue’s material behaviour. A question that, at this stage,3012
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could arise is whether this parameter can be related to the growth and remod-3013

elling of the tissue to which it is referred. Assume, indeed, that γ is influenced for3014

instance by the accumulated inelastic strain εg(X, t) =
√
(2/3)

∫ t
0
∥D̄g(X, τ)∥dτ ,3015

where D̄g = sym(GL̄g) is the symmetric part of GL̄g, and G is the material met-3016

ric tensor field. Then, a feedback mechanism could be established that connects3017

growth and remodelling with fractional diffusion. We believe that this topic could3018

be of interest for a deeper understanding of these biological phenomena.3019
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Non-local diffusion in two-scale3021

materials of biological interest3022
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Chapter 53023

Non-local diffusion in biological3024

tissues: Motivations for a3025

two-scale study3026

The work reported in this chapter has been previously published in [140, 241].3027

3028

Molecular diffusion is the process by which chemical species, e.g., solutes or3029

macromolecules, move from regions of higher concentration to regions of lower con-3030

centration. Diffusion plays a vital role in cellular functions, such as protein-protein3031

interactions and metabolism [271]. In porous connective tissues such as ligaments3032

and cartilage, diffusion is one of the primary mechanisms for nutrient transport.3033

For this reason it has been extensively studied in healthy and degraded tissues [188,3034

47, 275, 276, 171, 172]. Several techniques can be used for measuring self or molec-3035

ular diffusivity (or diffusion coefficient in the isotropic case) of solutes in biological3036

tissues: fluorescence correlation spectroscopy (c.f., [173]), single-particle tracking3037

(c.f., [230]), and diffusion tensor MRI (c.f., [170, 177]). However, the most com-3038

mon method is Fluorescence Recovery After Photobleaching (FRAP), as it requires3039

less instrumentation than the other approaches (e.g., confocal microscopes), and3040

diffusivity can be directly quantified. In general, in a FRAP experiment, a tissue3041

is stained with fluorescently labelled molecules, and a region of interest (ROI) is3042

photobleached using a high intensity laser beam causing irreversible photochemical3043

bleaching of the ROI. As a result, the fluorescence intensity detected by the mi-3044

croscope drops in the ROI. Due to the Brownian motion, the surrounding labelled3045

molecules will eventually be transported into the ROI, restoring the intensity. By3046

analysing the fluorescence recovery pattern over time, a direct measurement of3047

diffusivity is obtained [30].3048

One important feature to take into consideration when investigating the motility3049

of chemical species is the complex and heterogeneous environment in which it takes3050

place. In this respect, the spatially heterogeneous and multiscale information that3051
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is often present in biological tissues contributes to additional challenges in the3052

conception of mathematical models. In particular, this multiscale information is3053

often mathematically encoded in terms of non-local operators. For instance, in [63],3054

it is shown that the dynamics of a hierarchical biological system can be represented3055

by a non-local field at each level of organisation. In this study, the Author focused3056

on the nervous system and expressed non-locality in terms of functional interactions.3057

Besides, it shows that local phenomena occurring at a given structural level may3058

not be local at the lower levels.3059

Usually, local constitutive laws are adopted in the modelling of heterogeneous3060

media (or composite materials), thereby leading, in the majority of cases, to a ho-3061

mogenised local responses. However, in certain circumstances, this has conducted3062

to discrepancies with experimental studies, where non-local constitutive equations3063

may better depict the macroscopic behaviour of composite materials. For instance,3064

according to the experiments performed in [166, 156, 113], the spatial complexity3065

of a medium can impose geometrical constraints on transport processes on several3066

length scales, which can alter the laws of standard diffusion in a non-local fash-3067

ion, thereby yielding non-Fickean diffusion [166, 52, 81]. Furthermore, it is worth3068

noticing that, although the response of the constituents of a composite is often3069

taken to be of local type at the lowest scale, in some cases, non-locality in time or3070

space may arise as a result of homogenisation processes [26, 121, 65], or even by3071

the adoption of standard concepts of solid mechanics [258], without having recourse3072

to homogenisation techniques. On the other hand, as shown in [46], viscoelasticity3073

can be obtained from suitable upscaling of a fluid-structure interaction problem3074

between an elastic medium and a Newtonian fluid.3075

To the best of our knowledge, there exist few works in which the constitutive3076

laws of the constituents of composite media are assumed to be non-local already3077

at the lower scales [264, 48]. For instance, in [48], the homogenised properties of3078

thermoelastic composites are studied by considering non-local integral operators for3079

the characterisation of the stress-strain constitutive relations. In [48], the Author3080

motivates the need for this constitutive choice by relating it to the complicated3081

internal structure of real materials with length scales ranging over many orders of3082

magnitude, as is the case of hierarchical composite media [158].3083

Several types of non-locality can be accounted for. For instance, as mentioned in3084

[220], one can introduce higher-order gradients or integro-differential relations in the3085

constitutive laws [164, 104, 136, 18, 88, 17, 33]. Here, continuing the research lines3086

initiated in [220], we exploit Fractional Calculus [56, 224, 21] and the asymptotic3087

homogenisation technique [40, 250, 34, 72] to describe diffusion processes that may3088

deviate from Fick’s law because of possible non-local behaviours in space in a two-3089

scale, composite medium. This modelling choice is motivated by the “success” of3090

Fractional Calculus in addressing such phenomena [64, 195, 82, 200] and, in doing3091

this, we have taken inspiration from the works [55, 251, 220].3092

We mention that the prediction of the overall behaviour of composite materials3093
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in terms of their intrinsic micro-structure and properties of their constituents is3094

the central focus of Homogenisation Theory. Among the different homogenisation3095

techniques used in the modeling of multiscale composites, the scientific literature3096

develops, in general, in two main approaches: the asymptotic homogenisation and3097

the average field theory (see, e.g., the review paper of [150] and the references3098

therein). On one hand, average field techniques [146, 207] aim to find the effec-3099

tive elastic properties that relate the fine-scale strain and stress averages over a3100

representative volume, characterizing, in an ideal form, the heterogeneity of the3101

material. On the other hand, the asymptotic homogenisation technique [34, 40, 72,3102

250, 27] exploits the scale separation among the characteristic lengths of the local3103

structures and that of the whole material by employing multiple scale expansions3104

of the unknown fields to obtain an effective description of the medium at its coarser3105

scales3106
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Chapter 63107

Two-scale, non-local diffusion in3108

homogenised heterogeneous media3109

The work reported in this chapter has been previously published in [241].3110

3111

6.1 Introduction3112

In an effort to understand how and to what extent non-local diffusion may af-3113

fect the overall evolution of a given chemical substance in a composite medium, we3114

investigate the two-scale, non-local diffusion of a chemical species in a composite3115

medium. For this purpose, we prescribe a two-scale, non-local constitutive law for3116

the mass flux of the considered substance and consider the asymptotic homogenisa-3117

tion technique to determine the effective diffusivity and the macroscopic evolution3118

of the species. In the modelling of multi-scale composites, homogenisation methods3119

permit to decouple the structural characteristic length scales [146, 207, 6, 150, 202,3120

27], and in particular, the asymptotic homogenisation technique [40, 250, 34, 72]3121

makes use of multiple scale expansions of the unknown fields to obtain an effective3122

description of the medium at its coarser scales.3123

In particular, we end up with an effective characterisation of the composite that3124

is subjected to the existence of non-local interactions at both the micro- and the3125

macro-scale. Furthermore, we prove that if non-locality is neglected, we recover the3126

classical results of homogenisation theory. As a result, the non-local effects at the3127

micro-scale are ciphered in the effective diffusivity while, at the macro-scale, the3128

homogenised problem features an integro-differential equation of fractional type.3129

In particular, in the limit case in which the non-local interactions are neglected,3130

classical results of asymptotic homogenisation theory are re-obtained.3131

This chapter is organised as follows: in Section 6.2, some aspects of the topology3132

of the composite are discussed, and we introduce the multi-scale governing equations3133
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describing the non-local diffusion of the chemical species. In Section 6.3, we consider3134

the separation of scales between the macro- and the micro-scale, we illustrate the3135

topology of the micro-structure, and discuss some aspects regarding periodicity in3136

a two-scale context. Additionally, we reformulate the original governing equations3137

to account for the two-scale nature of the non-local phenomena. Finally, in Section3138

6.4, the main mathematical tools of the asymptotic homogenisation technique are3139

introduced, and we derive the effective properties and the homogenised equations3140

for the composite under study.3141

6.2 Formulation of the problem3142

6.2.1 Topology of the composite3143

Let B =]0, L[, with L > 0, be an open and bounded set of the one-dimensional3144

Euclidean space, taken as the representation of a heterogeneous cylinder with pe-3145

riodic structure at the micro-scale, in which the heterogeneity is only along the3146

axis of the cylinder. In particular, the open subsets B1 = ∪Ni=0]X2i, X2i+1[⊂ B3147

and B2 = ∪Ni=0]X2i+1, X2i+2[⊂ B form the periodic structure of B and, for ev-3148

ery i, each pair of intervals ]X2i, X2i+1[ and ]X2i+1, X2i+2[ represents two different3149

constituents of the composite B. Moreover, it holds that B = B1 ∪ B2 and3150

B1 ∩B2 = B1 ∩B2 = ∅, where the bar symbol indicates the closure of the set. In3151

addition, we use the notation I to specify the interface separating the constituents3152

B1 and B2, namely I = B1 ∩ B2 = ∪Ni=0{X2i+1} (see Figure 6.1).3153

6.2.2 Diffusion of chemical species3154

The diffusion of a chemical species in the composite B is described by3155

∂tC(X, t) + ∂XQ(X, t) = 0, in (B \ I )×]0, tf [, (6.1a)

JC(Xj, t)K = 0, t∈ ]0, tf [, (6.1b)

JQ(Xj, t)K = 0, t∈ ]0, tf [, (6.1c)

with {Xj = X2i+1}Ni=0 ⊂ I , together with suitable initial and boundary conditions.3156

Note that for ease of exposition these conditions will be specified later, when the3157

benchmark problems are presented.3158

Equations (6.1b) and (6.1c) describe the contact on I , which in this case is3159

assumed to be ideal, and the operator JΦ(Xj, t)K denotes the jump of Φ across the3160

interface I , i.e.,3161

JΦ(Xj, t)K := lim
X→X−

j

Φ(X, t)− lim
X→X+

j

Φ(X, t), Xj ∈ I . (6.2)
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Moreover, Q denotes the mass flux of the chemical species and, as done in [220],3162

we propose to express it in terms of the following non-local constitutive law,3163

Q(X, t) := −
∫

B

D(X, X̃)∂X̃C(X̃, t)dX̃, (6.3a)

D(X, X̃) := F(X − X̃)D(X, X̃), (6.3b)

whereD(X, X̃) is referred to as non-local diffusivity, and is written as the product of3164

the scalar quantity F(X− X̃) and the fractional diffusivity D(X, X̃), both taken to3165

be strictly positive. We emphasise that F is defined forX /= X̃, and that bothD and3166

D have, in general, physical dimensions different from those of standard diffusivity,3167

depending on the prescription of F. Additionally, C and Q are continuous in B3168

which means that they are prolonged at the interfaces.3169

It is worth noticing that, further generalisations to the study of transport pro-3170

cesses, involving for instance Darcy’s law, can be found e.g. in [5]. This work,3171

however, pursues goals different from ours, since it considers constitutive laws that3172

relate the time fractional derivative of the mass flux with the time fractional deriva-3173

tive of the classical pressure gradient. On the other hand, a one-dimensional dif-3174

fusion problem in a bounded homogeneous medium is studied in [252] wherein3175

Darcy’s equation is generalised with a fractional integral in space. Furthermore,3176

in the context of hierarchical materials, such as bones and ligaments, a generalised3177

viscoelastic approach has been proposed to describe their rheological properties3178

by using fractional derivatives and integrals [85, 8], while numerical methods has3179

been developed for the case of hereditary-ageing materials in [38]. Additionally, we3180

notice that in [280] the analytical and numerical solution of a generalised heat con-3181

duction equation was studied by considering a fractional time derivative instead of3182

the first order partial time derivative of the temperature. Moreover, in [20], the Au-3183

thors considered a model in which, in addition to the fractional derivative in time,3184

the heat conduction equation in a homogeneous material is extended by replacing3185

the classical gradient of the temperature with its symmetrised Caputo fractional3186

derivative. Finally, we point out that, in the context of viscoleastic composites,3187

the Rabotnov exponential kernel [234], which is employed to construct a type of3188

fractional derivative, have been considered in [243].3189

6.3 Multi-scale formulation of the problem3190

6.3.1 Separation of scales3191

In the characterisation of the two-scale nature of the composite, we assume3192

the existence of two characteristic length scales, associated with the composite3193

as a whole and its internal structure. Specifically, for our purposes, we denote3194

by Lc and ℓ the characteristic length scales of the composite medium, and of its3195
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internal structure, respectively. Moreover, we require that the considered length3196

scales are well separated by enforcing that ℓ/Lc ≪ 1. Therefore, we introduce the3197

dimensionless, smallness parameter ε, referred to as the scaling parameter, which3198

is defined as the ratio3199

ε :=
ℓ

Lc

≪ 1. (6.4)

We notice that ε characterises the heterogeneity of the composite, and permits3200

to explicitly specify the two-scale nature of a given physical quantity Φ : B×[0, tf [→3201

R. In fact, following the discussion given in [219, 90], one can take into account3202

the multi-scale character of Φ(X, t) by rewriting it as Φ(X, t) = Φ̌(X, t; ℓ, Lc). As a3203

particular case of this writing, we can impose that Φ̌(X, t; ℓ, Lc) = Φ̂(X/Lc, X/ℓ, t),3204

so that the dependence on the characteristic length scales is explicit. In this way,3205

we have that3206

Φ(X, t) = Φ̌(X, t; ℓ, Lc) = Φ̂(X/Lc, X/ℓ, t)

= Φ̂(x, x/ε, t) = ϕ(x, y, t), (6.5)

where the dimensionless variables x := X/Lc and y := x/ε are referred to as the3207

macroscopic, or slow, variable, and the microscopic, or fast, variable, respectively.3208

Note that, within this non-dimensional setting, B becomes X := ]0, L/Lc[ and3209

accordingly, the non-dimensional variables x and y vary in X and in X /ε =3210

]0, L/ℓ[=]0, 1
ε
L/Lc[, respectively.3211

As stated in Equation (6.5), one is able to express Φ as a function of two3212

formally independent variables, thereby distinguishing the two scales characterising3213

its nature. This means that for every time t, the newly introduced function ϕ is3214

defined, in general, as ϕ(·, ·, t) : Dx × Dy → R, where Dx ⊆ X and Dy ⊆ X /ε.3215

Finally, we note that, by using the representation (6.5) and employing the chain3216

rule, we can write3217

∂XΦ(X, t) =
1
Lc

[
∂xϕ(x, y, t) +

1
ε
∂yϕ(x, y, t)

]
. (6.6)

6.3.2 Topology of the micro-structure3218

At the micro-scale, the reference, or elementary cell, is the open interval ]0, ℓ[,3219

which in a non-dimensional formalism becomes Y = ]0,1[⊂ X /ε. Specifically, we3220

assume Y to consist of two non-empty, open subsets Y1 = ]0, yI[ and Y2 = ]yI,1[,3221

where yI ∈ ]0,1[ denotes the interface between the intervals Y1 and Y2 (see Figure3222

6.1). Furthermore, we consider that3223

Y = Y 1 ∪ Y 2 and Y 1 ∩ Y2 = Y1 ∩ Y 2 = ∅. (6.7)
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X2i
X2i+1 X2i+2

0 L

1 2

1 2yI0 1

Figure 6.1: Schematic representation of the topology of the composite B and of its
micro-structure.

Here, for the sake of simplicity, we adopt the assumption of macroscopic unifor-3224

mity [148, 217, 218]. This choice allows to choose the elementary cell, Y , indepen-3225

dently of the macroscopic variable x, so that Y is representative of the composite’s3226

micro-structure (see Figure 6.1). Moreover, for the type of functions ϕ(·, ·, t) :3227

Dx ×Dy → R used in the forthcoming calculations, we assume Y \ {yI} ⊂ Dy and3228

the existence of the lateral limits limy→1± ϕ(x, y, t) and limy→0+ ϕ(x, y, t). In the3229

sequel, this property will be used to formalise the periodicity of ϕ with respect to3230

its microscopic variable (this will be referred to as Y -periodicity), especially in the3231

case in which Dy has the form3232

Dy = ∪N−1
p=0 (]p, p+ yI[∪ ]p+ yI, p+ 1[) , (6.8)

where N is a sufficiently large natural number. These considerations imply that3233

it is sufficient to reformulate the problem at hand in the reference cell Y = ]0,1[,3234

along with the lateral limits outlined above, although for some physical quantities3235

yI does not belong to the set in which they can be evaluated.3236

In addition, since Y is chosen independently of the macroscopic variable x, also3237

the following relation holds3238

∂x

{∫
Y

ϕ(x, y, t)dy

}
=

∫
Y

∂xϕ(x, y, t)dy. (6.9)

In general, however, if the hypothesis of macroscopic uniformity is not valid, the3239

topology and geometry of the reference cell, Y , could vary with respect to the3240

macroscopic spatial variable x and, thus, the reference cell should be regarded as a3241

function of x, Y (x). In this case, Reynolds’ transport theorem prescribes to rewrite3242

the derivative of the left-hand-side of Equation (6.9) as3243

∂x

{∫
Y (x)

ϕ(x, y, t)dy

}
=

∫
Y (x)

∂xϕ(x, y, t)dy +

∫
∂Y (x)

ϕ(x, y, t)wn(x, y)dy, (6.10)

where wn(x, y) is the normal “velocity” with which the boundary of the cell varies3244

(see, e.g., [92, 219] and the references therein for more details).3245
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6.3.3 Periodicity3246

From the point of view of the small characteristic length scale ℓ, the body B3247

can be approximated as unbounded, so that one can assume B = R. Within this3248

approximation, a function Φ is said to be ℓ-periodic in the sense that Φ(X, t) =3249

Φ(X + pℓ, t), for all p ∈ Z, provided X and X + pℓ are points in which the function3250

can be evaluated [72].3251

Within the context of asymptotic homogenisation, one rephrases the periodicity3252

of Φ in terms of the periodicity of the corresponding function ϕ with respect to the3253

microscopic variable y. To this end, and to account for the fact that ϕ may be3254

undefined for some values of y, it is necessary to express the periodicity of ϕ in the3255

weaker sense supplied by3256

ϕ(x, y±∗ , t) = ϕ(x, (y∗ + 1)±, t), (6.11)

with ϕ(x, y±∗ , t) = limy→y±∗
ϕ(x, y, t), for all y∗ for which both lateral limits exist.3257

This picture is consistent with the case in which ϕ(x, ·, t) is defined in a set Dy of the3258

type specified in (6.8) and y∗ is either p or p+yI, with p = 1, . . . , N−2. In particular,3259

the case y∗ = p+ yI is important for performing the continuous prolongation at the3260

interface of those physical quantities that have to be continuous at this point (for3261

instance, the fluxes).3262

As anticipated above, the macroscopic uniformity, along with the Y -periodicity3263

of the functions of interest for the problem at hand, enable us to restrict a given3264

physical quantity to a single cell. For this purpose, one may choose the reference3265

cell Y = ]0,1[ , and take the restriction ϕ(x, · , t)|Y . Furthermore, to account for the3266

presence of the interface, which splits the cell in the disjoint union of two materials3267

with different properties, we define ϕ(x, · , t)|Y as the piecewise function3268

ϕ(x, y, t)|Y =

{
ϕ1(x, y, t) y∈ ]0, yI[ ,

ϕ2(x, y, t) y∈ ]yI,1[ .
(6.12)

In particular, to describe the periodicity at y∗ = 0, we invoke Equation (6.11), so3269

that,3270

ϕ(x,0+, t) = ϕ(x,1+, t). (6.13)

Granted this result, we notice that, if ϕ is a function for which the continuity3271

condition at the boundary of the periodic cell must be respected (for example, a3272

concentration or mass flux), we also find3273

ϕ2(x,1
−, t) = ϕ1(x,1

+, t), (6.14)

and, thus, because of periodicity,3274

ϕ2(x,1
−, t) = ϕ1(x,0

+, t). (6.15)
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6.3.4 Multi-scale non-local diffusion3275

Upon adopting the above considerations, and recalling the identities (6.5) and3276

(6.6), we rephrase the original problem (6.1a)-(6.1c) as follows (see Remark 9 for3277

further details),3278

∂tck(x, y, t) +
(
∂x +

1
ε
∂y
)
qα,βk(x, y, t) = 0, (6.16a)

c1(x, yI, t) = c2(x, yI, t), (6.16b)

qα,β1(x, yI, t) = qα,β2(x, yI, t), (6.16c)

with (x, y, t) ∈ X × Yk×]0, tf [, and where the index k ∈ {1,2} indicates in which3279

sub-cell Equation (6.16a) and the quantities ck and qα,βk are defined. Particularly,3280

the two-scale, non-local flux qα,βk is given by3281

qα,βk(x, y, t) := −
∫

X ×Yk

dα,βk(x, x̃, y, ỹ)
(
∂x̃ +

1
ε
∂ỹ
)
ck(x̃, ỹ, t)dx̃dỹ, (6.17a)

dα,βk(x, x̃, y, ỹ) := fα,βk(x− x̃, y − ỹ)dα,βk(x, x̃, y, ỹ), (6.17b)

where dα,βk(x, x̃, y, ỹ) represents a two-scale “version” of the non-local diffusivity co-3282

efficientD(X, X̃). More precisely, by using Equation (6.5), we have thatD(X, X̃) is3283

replaced by dα,βk(x, x̃, y, ỹ), which means that the parameters α and βk (see below)3284

are already present in D(X, X̃). Analogously, fα,βk(x− x̃, y− ỹ) and dα,βk(x, x̃, y, ỹ)3285

replace F(X − X̃) and D(X, X̃) in the decomposition (6.3b), but describe the non-3286

locality and the fractional diffusivity resolved on the two different scales accounted3287

for in this work. Particularly, α ∈ R+ is referred to as the macro-scale non-locality3288

parameter and characterises the non-local interactions in the region X . On the3289

other hand, βk ∈ R+, with k = 1,2, is the micro-scale non-locality parameter de-3290

scribing the non-locality within the sub-cell Yk. Note that qα,βk absorbs the factor3291

1/Lc that stems from the chain rule (6.6) when one switches to the two-scale rep-3292

resentation of the flux.3293

Remark 9. The representation of the two-scale, non-local mass flux in Equations3294

(6.17a) and (6.17b) does not follow directly from (6.3a). This is because the double3295

integral over X × Yk defining qα,βk cannot be obtained by only applying the two-3296

scale representation prescribed by (6.5) and (6.6) to the integrand of (6.3a). Rather,3297

to account for the two-scale resolution of the flux, a further step is needed, which3298

requires to pass from a single integration in the variable X̃ to a double integration3299

in the two auxiliary variables x̃ and ỹ. In this respect, it must be clearly stated that3300

the flux qα,βk is not equal to Q, and it is introduced ad hoc as a mathematical tool3301

with the purpose of resolving the two-scale dependence of the original flux. Hence,3302

the definition of qα,βk must be regarded as a conjecture, which in the limit ε → 0,3303

and within the asymptotic homogenisation approach, converges to an effective flux3304

that represents the limit of Q (refer to Equation (6.45b)). Proving this rigorously3305

117



Two-scale, non-local diffusion in homogenised heterogeneous media

is part of our current investigations, which involve, among others, the concept of3306

two-scale convergence [210, 72, 272].3307

We remark that the introduction of the non-local parameters α and βk follows3308

from the fact that we interpret non-local effects by using the notions of Fractional3309

Calculus [21], in which derivatives and integrals of fractional order are considered.3310

The parameter α accounts for the intensity of non-locality at the macro-scale,3311

whereas we have intentionally introduced two different non-locality parameters, β13312

and β2, at the microscopic level to describe the existence of “long-range” inter-3313

actions even at the scale of each sub-cell Yk. This is indeed the essence of the3314

micro-scale non-locality.3315

We further notice that, if the concentration ck is dimensionless, the flux qα,βk3316

must have the physical dimensions of the reciprocal of time, and it follows from3317

Equation (6.17b) that the same must be true for the dimensions of dα,βk . To3318

guarantee the latter condition, and keeping in mind that dα,βk is a (fractional)3319

diffusivity, we take the dimensions of dα,βk to be [dα,βk ] = lengthξ(α,βk)/time, where3320

ξ(α, βk) is a real number expressed as a function of α and βk, and, consequently,3321

we take [fα,βk ] = length−ξ(α,βk). In the local case, the non-locality function may be3322

taken dimensionless, which means that ξ(α, βk) must tend towards zero, and the3323

fractional diffusivity becomes a pure rate, that is [dα,βk ] = time−1.3324

In the sequel, we assume that every field is periodic with respect to the micro-3325

scale variable y. Moreover, the spatial fractional diffusivity dα,βk is considered to3326

be independent of x, x̃ and y, and with a slight abuse of notation, we simply write3327

dα,βk(ỹ). This simplification, however, has not major repercussions in the results of3328

the following sections.3329

6.4 Asymptotic homogenisation approach3330

In this work, we adopt the asymptotic homogenisation technique and prescribe3331

a formal two-scale expansion for ck in power series of the smallness parameter ε > 0,3332

namely3333

ck(x, y, t) =
+∞∑
n=0

c
(n)
k (x, y, t)εn, k = 1,2, (6.18)

where each c
(n)
k (x, ·, t), n = 0,1,2, . . ., is assumed to be periodic with respect to y.3334

Before substituting the formal expansion (6.18) into (6.16a)-(6.16c), we find it3335

convenient to rewrite Equations (6.16a)-(6.16c) as follows3336

ε2∂tck(x, y, t) + ε2∂xQα,βk(x, y, t) + ε∂xqα,βk(x, y, t)

+ ε∂yQα,βk(x, y, t) + ∂yqα,βk(x, y, t) = 0, (6.19a)
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c1(x, yI, t) = c2(x, yI, t), (6.19b)

εQα,β1(x, yI, t) + qα,β1(x, yI, t) = εQα,β2(x, yI, t) + qα,β2(x, yI, t), (6.19c)

where the following notation has been adopted3337

Qα,βk(x, y, t) := −
∫

X ×Yk

fα,βk(x− x̃, y − ỹ)dα,βk(ỹ)∂x̃ck(x̃, ỹ, t)dx̃dỹ, (6.20a)

qα,βk(x, y, t) := −
∫

X ×Yk

fα,βk(x− x̃, y − ỹ)dα,βk(ỹ)∂ỹck(x̃, ỹ, t)dx̃dỹ. (6.20b)

Specifically, in (6.20a) and (6.20b), the uppercase and lowercase symbols Qα,βk and3338

qα,βk indicate the partial differentiation of ck inside the integral with respect to x̃3339

and ỹ, respectively. Moreover, it holds that qα,βk = Qα,βk + ε−1qα,βk .3340

After substituting (6.18), truncated to the order ε2, into (6.19a)-(6.19c), (6.20a)3341

and (6.20b), the problem reduces to finding the leading order coefficients c
(n)
k of the3342

power series (6.18), which solve the boundary problems resulting from equating all3343

the terms in the same powers of the ε. To this end, it is useful to write explicitly3344

the generic coefficients of the expansion of the fluxes qα,βk and Qα,βk , i.e.,3345

q
(n)
α,βk

(x, y, t) := −
∫

X ×Yk

fα,βk(x− x̃, y − ỹ)dα,βk(ỹ)∂ỹc
(n)
k (x̃, ỹ, t)dx̃dỹ, (6.21a)

Q
(n)
α,βk

(x, y, t) := −
∫

X ×Yk

fα,βk(x− x̃, y − ỹ)dα,βk(ỹ)∂x̃c
(n)
k (x̃, ỹ, t)dx̃dỹ, (6.21b)

for n = 0,1,2, . . ., so that, in the limit ε→ 0, qα,βk and Qα,βk can be approximated3346

by3347

qα,βk = q
(0)
α,βk

+ εq
(1)
α,βk

+ ε2q
(2)
α,βk

+ o(ε2), (6.22a)

Qα,βk = Q
(0)
α,βk

+ εQ
(1)
α,βk

+ ε2Q
(2)
α,βk

+ o(ε2). (6.22b)

Next, the problem (6.16a)-(6.16c), truncated to the order ε2, splits into three sub-3348

problems, one for each of the considered orders of ε.3349

In the sequel, to avoid the proliferation of indices, we simplify the notation as3350

follows3351

q
(n)
α,βk

≡ q
(n)
k , (6.23a)

Q
(n)
α,βk

(x, y, t) ≡ Q
(n)
k . (6.23b)

Analogously, we set fα,βk ≡ fk and dα,βk ≡ dk.3352

119



Two-scale, non-local diffusion in homogenised heterogeneous media

(i) To the order ε0,

∂yq
(0)
k (x, y, t) = 0, in X × Yk×]0, tf [, (6.24a)

c
(0)
1 (x, yI, t) = c

(0)
2 (x, yI, t), t∈ ]0, tf [, (6.24b)

q
(0)
1 (x, yI, t) = q

(0)
2 (x, yI, t), t∈ ]0, tf [. (6.24c)

Equation (6.24a) implies that q
(0)
k is independent of the microscopic variable, since3353

its partial derivative with respect to y is zero. One possible way of ensuring this con-3354

dition could be to drop the dependence of fk on the micro-scale variables. However,3355

this assumption would eliminate the possibility of keeping track of the non-locality3356

at the micro-scale, which is clearly in contrast with our purposes. Instead, to3357

guarantee the fulfilment of Equation (6.24a) and to make sure we remain within a3358

non-local setting, we require c
(0)
k to be independent of y. Hence, with a slight abuse3359

of notation, we set3360

c
(0)
k (x, y, t) = c

(0)
k (x, t), (6.25)

thereby satisfying Equations (6.24a)-(6.24c), since q
(0)
k = 0, without having to re-3361

but the dependence of fk on the micro-scale. The above consideration is a standard3362

result of linear asymptotic homogenisation, whereas it is often assumed for non-3363

linear problems (see e.g. [229, 75, 237]). A direct consequence of (6.25) is that c
(0)
13364

and c
(0)
2 coincide with each other, so that we can write3365

c(0)(x, t) := c
(0)
1 (x, t) = c

(0)
2 (x, t). (6.26)

(ii) To the order ε13366

By taking into consideration Equation (6.25), we have that3367

∂y

{
q

(1)
k (x, y, t) + Q

(0)
k (x, y, t)

}
= 0, (6.27a)

c
(1)
1 (x, yI, t) = c

(1)
2 (x, yI, t), (6.27b)

q
(1)
1 (x, yI, t) + Q

(0)
1 (x, yI, t) = q

(1)
2 (x, yI, t) + Q

(0)
2 (x, yI, t), (6.27c)

with (x, y, t) ∈ X × Yk×]0, tf [. The structure of (6.27a) implies that, in general,3368

this equation must be solved in the spatial domain X × Yk, which in the context3369

of asymptotic homogenisation means that one needs to consider a problem defined3370

in Yk for each x ∈ X .3371

Remark 10. [A comment on the solution to (6.27a)-(6.27c)]3372

The local counterpart of the problem (6.27a)-(6.27c) (see [34, 72]) can be obtained3373

by choosing the non-locality function3374

fk(x− x̃, y − ỹ) = δ(x− x̃)δ(y − ỹ), (6.28)
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where δ is Dirac’s delta. Specifically,3375

− ∂y

{
dk(y)

[
∂yc

(1)
k (x, y, t) + ∂xc

(0)(x, t)
]}

= 0, (6.29a)

c
(1)
1 (x, yI, t) = c

(1)
2 (x, yI, t), (6.29b)

d1(yI)
[
∂yc

(1)
1 (x, yI, t) + ∂xc

(0)(x, t)
]
= d2(yI)

[
∂yc

(1)
2 (x, yI, t) + ∂xc

(0)(x, t)
]
,

(6.29c)

with (x, y, t) ∈ X ×Yk×]0, tf [. In Equations (6.29b) and (6.29c) the evaluation in3376

yI of dk and ∂yc
(1)
k are to be understood in the sense of lateral limits y → y±I . In3377

this particular case, the problem (6.29a)-(6.29c) admits a unique solution, which is3378

defined up to a function depending solely on time, t, and on the slow variable, x3379

[34, 72]. This unique solution is usually expressed through the ansatz3380

c
(1)
k (x, y, t) = ϑk(x, y, t)∂xc

(0)(x, t) + φ(x, t), (6.30)

where ϑk is the new unknown of the problem (6.29a)-(6.29c) and φ is a function3381

of x and t that spans the family of all the solutions [28, 219]. To the best of our3382

knowledge, in the non-local case there is no theorem that guarantees the existence3383

and uniqueness (even in the sense explained above) of the solution. Still, in the3384

absence of a supporting theory, we guess that, similarly to the local case, the solution3385

should have the form (6.30), with ϑk suitably parametrised by α and βk. ■3386

By substituting (6.30) into (6.27a)-(6.27b), we require the auxiliary functions3387

ϑk to satisfy the non-local cell problem,3388

∂y

{
q

(1)
k (x, y, t) + Q

(0)
k (x, y, t)

}
= 0, (6.31a)

ϑ1(x, yI, t) = ϑ2(x, yI, t), (6.31b)

q
(1)
1 (x, yI, t) + Q

(0)
1 (x, yI, t) = q

(1)
2 (x, yI, t) + Q

(0)
2 (x, yI, t), (6.31c)

with (x, y, t) ∈ X × Yk×]0, tf [ and3389

q
(1)
k (x, y, t) = −

∫
X ×Yk

fk(x− x̃, y − ỹ)dk(ỹ)∂ỹϑk(x̃, ỹ, t)∂x̃c
(0)(x̃, t)dx̃dỹ, (6.32a)

Q
(0)
k (x, y, t) = −

∫
X ×Yk

fk(x− x̃, y − ỹ)dk(ỹ)∂x̃c
(0)(x̃, t)dx̃dỹ. (6.32b)

We notice that the structure of the non-local problem (6.31a)-(6.31c) does not3390

permit, in general, to factorise the macroscopic term ∂x̃c
(0)(x̃, t). This implies that3391

one should account for the macroscopic contributions at the micro-structural level3392

and, thus, for the interchange of information between the two length scales.3393
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(iii) To the order ε2,

∂tc
(0)(x, y, t) + ∂x

{
q

(1)
k (x, y, t) + Q

(0)
k (x, y, t)

}
+ ∂y

{
q

(2)
k (x, y, t) + Q

(1)
k (x, y, t)

}
= 0, (6.33a)

c
(2)
1 (x, yI, t) = c

(2)
2 (x, yI, t), (6.33b)

q
(2)
1 (x, yI, t) + Q

(1)
1 (x, yI, t) = q

(2)
2 (x, yI, t) + Q

(1)
2 (x, yI, t), (6.33c)

with (x, y, t) ∈ X × Yk×]0, tf [.3394

Before going further in our analysis, we introduce, for a given field ϕ, defined3395

in the cell Y or in a subset of it having the same measure, the operators3396

⟨ϕ⟩k(x, t) :=
1

|Y |

∫
Yk

ϕ(x, y, t)dy, k ∈ {1,2}, (6.34)

such that the sum ⟨ϕ⟩1 + ⟨ϕ⟩2 = ⟨ϕ⟩ is the average of ϕ over the cell Y . Then, by3397

applying these operators to (6.33a), we have3398

⟨∂tc(0)(x, t)⟩k +
〈
∂x

{
q

(1)
k (x, y, t) + Q

(0)
k (x, y, t)

}〉
k

+
〈
∂y

{
q

(2)
k (x, y, t) + Q

(1)
k (x, y, t)

}〉
k
= 0. (6.35)

Because of Equation (6.26), c(0) depends only on x and t and then,3399

⟨∂tc(0)(x, t)⟩k =
|Yk|
|Y |

∂tc
(0)(x, t). (6.36)

Moreover, the assumption of macroscopic uniformity (see Section 6.3.2) implies3400

that the differential operator ∂x and the integral operator ⟨·⟩k commute, so that,3401

the second term of (6.35) rewrites as,3402 〈
∂x

{
q

(1)
k (x, y, t) + Q

(0)
k (x, y, t)

}〉
k
= ∂x

〈
q

(1)
k (x, y, t) + Q

(0)
k (x, y, t)

〉
k
. (6.37)

Therefore, summing up Equation (6.35) over k and taking into account the relations3403

(6.36) and (6.37), we obtain3404

∂tc
(0)(x, t) + ∂x

{
2∑

k=1

〈
q

(1)
k (x, y, t) + Q

(0)
k (x, y, t)

〉
k

}

+
2∑

k=1

〈
∂y

{
q

(2)
k (x, y, t) + Q

(1)
k (x, y, t)

}〉
k
= 0. (6.38)
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We notice that the third term of (6.38) can be computed as3405

2∑
k=1

〈
∂y

{
q

(2)
k (x, y, t) + Q

(1)
k (x, y, t)

}〉
k
=

1

|Y |

2∑
k=1

∫
Yk

∂y

{
q

(2)
k (x, y, t) + Q

(1)
k (x, y, t)

}
dy

=
1

|Y |

{(
q

(2)
1 (x, y−I , t) + Q

(1)
1 (x, y−I , t)

)
−
(
q

(2)
1 (x,0+, t) + Q

(1)
1 (x,0+, t)

)
+
(
q

(2)
2 (x,1−, t) + Q

(1)
2 (x,1−, t)

)
−
(
q

(2)
2 (x, y+I , t) + Q

(1)
2 (x, y+I , t)

)}
= 0, (6.39)

where we have employed Gauss’ theorem and the continuity of the fluxes at the3406

interface and at the boundaries of the cell. Specifically, because of the continuity3407

of the fluxes at the interface yI, it holds true that3408 (
q

(2)
1 (x, y−I , t) + Q

(1)
1 (x, y−I , t)

)
−
(
q

(2)
2 (x, y+I , t) + Q

(1)
2 (x, y+I , t)

)
= 0, (6.40)

which eliminates the first and the fourth summands on the far right-hand-side of3409

Equation (6.39). Moreover, the flux computed at the right boundary of the cell,3410

i.e., q
(2)
2 (x,1−, t) + Q

(1)
2 (x,1−, t), must be equal to the flux entering or leaving the3411

neighbouring cell, which can be written as q
(2)
1 (x,1+, t) + Q

(1)
1 (x,1+, t). Therefore,3412

by invoking the Y -periodicity of the flux, we can conclude that the second and the3413

third term of Equation (6.39) also cancel themselves, i.e.,3414 (
q

(2)
2 (x,1−, t) + Q

(1)
2 (x,1−, t)

)
−
(
q

(2)
1 (x,0+, t) + Q

(1)
1 (x,0+, t)

)
=
(
q

(2)
1 (x,1+, t) + Q

(1)
1 (x,1+, t)

)
−
(
q

(2)
1 (x,0+, t) + Q

(1)
1 (x,0+, t)

)
= 0. (6.41)

Equations (6.40) and (6.41) explain in detail the reason why Equation (6.39) holds3415

true. Before going further, we emphasise that the considerations done so far hold3416

true also for all the other orders of the asymptotic expansion of the flux, like, for3417

instance, q
(1)
k + Q

(0)
k .3418

Then, the substitution of (6.39) into (6.38) yields the homogenised problem for3419

the leading order term c(0), i.e.,3420

∂tc
(0)(x, t) + ∂xq

eff(x, t) = 0, (6.42)

where3421

q eff(x, t) := −
∫

X

d eff(x, x̃, t)∂x̃c
(0)(x̃, t)dx̃ (6.43)
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is referred to as the non-local effective mass flux, while d eff is defined through the3422

expression3423

d eff(x, x̃, t) :=
2∑

k=1

〈∫
Yk

fk(x− x̃, y − ỹ)dk(ỹ)[1 + ∂ỹϑk(x̃, ỹ, t)]dỹ

〉
k

=
1

|Y |

2∑
k=1

∫
Yk×Yk

fk(x− x̃, y − ỹ)dk(ỹ)[1 + ∂ỹϑk(x̃, ỹ, t)]dỹdy, (6.44)

and represents the non-local effective diffusivity. We notice that the homogenised3424

equation (6.42) has the same structure as (6.1a), but, in this case, the contributions3425

of the micro-structure are resolved by means of the non-local effective coefficient3426

d eff .3427

Finally, according to [219, 237] we introduce the notation Xh to denote the3428

homogenised version of the composite medium, and we reformulate the homogenised3429

problem (6.42) and (6.43) as follows3430

∂tc
(0)(x, t) + ∂xq

eff(x, t) = 0, in Xh×]0, tf [, (6.45a)

q eff(x, t) = −
∫

Xh

d eff(x, x̃, t)∂x̃c
(0)(x̃, t)dx̃, (6.45b)

which has to be supplemented with appropriate initial and boundary conditions for3431

the unknown c(0).3432

Remark 11. Note that, since fk and dk are short-hand notations for fα,βk and3433

dα,βk , both the non-local effective diffusivity, d eff , and the non-local effective flux,3434

q eff , depend on the collection of all the parameters that describe the non-locality of3435

the problem, i.e., α, β1 and β2. Hence, the effective quantities d eff and q eff keep3436

track simultaneously of the non-locality occurring both at the scale of the sub-cells,3437

through β1 and β2, and at the scale of the medium, through α. In the following,3438

with the purpose of leaving the notation at a minimum level of complexity, we shall3439

keep the symbols d eff and q eff , although we mean d eff
α,β1,β2

and q eff
α,β1,β2

, respectively.3440

■3441

Remark 12. It is worth noticing that if the non-locality function is fk(x−x̃, y−ỹ) =3442

δ(x− x̃)δ(y− ỹ), we end up with classical results of homogenisation theory [34, 72,3443

219, 239]. That is, by substituting this expression for fk into Equation (6.31a), the3444

cell problem reads3445

− dy {dk(y)[1 + dyϑk(y)]} = 0, (6.46)

where dyϑk(y) denotes the total derivative of ϑk. Furthermore, the non-local effec-3446

tive diffusivity, d eff , is3447

d eff(x, x̃) = δ(x− x̃)
2∑

k=1

⟨dk(y)[1 + dyϑk(y)]⟩k
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= δ(x− x̃)d̂ eff
st , (6.47)

with d̂ eff
st being entirely defined by the sum over k in (6.47). In this case, d̂ eff

st is a3448

constant coefficient that coincides with the effective diffusivity of a standard diffu-3449

sion problem in a composite medium [34, 206, 186]. Furthermore, after substitution3450

of (6.47) into (6.45a), we obtain the standard homogenised equations3451

∂tc
(0)(x, t) + ∂xq

eff
st (x, t) = 0, (6.48a)

q eff
st (x, t) = −d̂ eff

st ∂xc
(0)(x, t), (6.48b)

where standard Fick’s law is re-obtained for the flux. ■3452

Remark 13. We notice that in the present framework, we do not take into account3453

the timescales associated with the problems (6.24a), (6.27a) and (6.33a), since we3454

intend to focus on the spatial connections between heterogeneity and non-locality.3455

Nevertheless, one can notice that the characteristic length scales Lc and ℓ associ-3456

ated with the composite medium and with its internal structure, respectively, induce3457

different timescales (see, e.g., [181]). In fact, by virtue of a reference diffusivity3458

dR, these can be expressed as3459

ζc =
L2
c

dR
and ηc =

ℓ2

dR
. (6.49)

Since in the sequel we specialise Equation (6.49) to the case of media with different3460

diffusivities inside the sub-cells Y1 and Y2, we can prescribe dR := min{d1R, d2R}.3461

By employing (6.49), we deduce the following relationship between the charac-3462

teristic time scales,3463

ηc
ζc

= ε2 < ε≪ 1. (6.50)

Now, before proceeding further, we mention that in this multi-scale framework, a3464

given physical quantity Φ(X, t) can be rewritten as3465

Φ(X, t) = Φ̂(x, x/ε, ζ, ζ/ε2) = ϕ(x, y, ζ, η), (6.51)

with ζ := t/ζc and η := ζ/ε2 (compare Equation (6.51) with Equation (6.5) in3466

which time was not rescaled). Therefore, Equation (6.16a) rewrites3467

1
ζc
(∂ζ +

1
ε2
∂η)ck(x, y, ζ, η) +

(
∂x +

1
ε
∂y
)
qα,βk(x, y, ζ, η) = 0, (6.52)

which, after substituting the two-scale expansion (6.18) and equating in the same3468

powers of ε, up to the order ε2, yields3469

ε0 : 1
ζc
∂ηc

(0)
k (x, y, ζ, η) + ∂yq

(0)
k (x, y, ζ, η) = 0, (6.53a)
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ε1 : 1
ζc
∂ηc

(1)
k (x, y, ζ, η) + ∂xq

(0)
k (x, y, ζ, η)

+ ∂y

{
q

(1)
k (x, y, ζ, η) + Q

(0)
k (x, y, ζ, η)

}
= 0, (6.53b)

ε2 : 1
ζc
∂ηc

(2)
k (x, y, ζ, η) + 1

ζc
∂ζc

(0)
k (x, y, ζ, η)

+ ∂x

{
q

(1)
k (x, y, ζ, η) + Q

(0)
k (x, y, ζ, η)

}
+ ∂y

{
q

(2)
k (x, y, ζ, η) + Q

(1)
k (x, y, ζ, η)

}
= 0. (6.53c)

As Equations (6.53a)-(6.53c) prescribe, this approach calls for the solution of dif-3470

fusion problems at each order of ε. Moreover, the consideration of the separation3471

of the time scales conduces to leading-order problems that are characterised by the3472

presence of the rapid time variable η. The analysis of these equations is part of our3473

current research.3474

In the next chapter, we present two simplified benchmark tests in which non-3475

local interactions are considered at the micro-scale or at the macro-scale only to3476

quantify the effects of the non-locality.3477
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Chapter 73478

Selected benchmark problems3479

The work reported in this chapter has been previously published in [241].3480

3481

7.1 Introduction3482

Here, we specialise the model presented in Chapter 6 by considering two sim-3483

plified models in which the non-local effects are only present at the macro-scale or3484

at the micro-scale, and we report some details of the numerical schemes based on3485

FE methods. In both cases, we show that in the limit in which the non-locality3486

parameters β (in the benchmark test I) and α (in the benchmark test II) tend to3487

1 from below, the fractional cell and homogenised problems lead to the standard3488

ones given in the classical homogenisation literature.3489

It is worth mentioning that the cell and the homogenised problems obtained in3490

this work feature integro-differential equations of fractional type in bounded do-3491

mains and, therefore, the classical solution techniques, such as Laplace and Fourier3492

transforms, used in Fractional Calculus are not suitable. Consequently, either do3493

we need to develop dedicated numerical algorithms or we resort to well-establi-3494

shed numerical methods, and we adapt them to take into account the presence of3495

fractional differential operators in the considered problems. Here, we follow the3496

second path and, indeed, we write a numerical scheme based on a finite element3497

discretisation of the original integro-differential problems. In doing this, we need to3498

emphasise that, partly because of the very easy geometry of the problems (we deal,3499

in fact, with one-dimensional benchmark studies), and partly because the focus of3500

our work is not on the numerics, the presentation of the FE scheme is very elemen-3501

tary. Indeed, it can be obtained by appropriately rephrasing the one-dimensional3502

formulation of the FE method as presented e.g. in [152]. Moreover, we do not fuss3503

over some technical aspects of the finite element procedures, such as the “element3504

point of view” [152] et similia, since our scope is solely meant to highlight how the3505
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symmetrised Caputo fractional derivatives affect the stiffness matrix and the nodal3506

force of the discretisation. Clearly, a more detailed numerical study is required,3507

and this is part of our current investigations. We highlight that previous works in3508

this direction are [244, 151, 106]. In particular, the work we took major inspiration3509

from is [151].3510

7.2 Considerations on the benchmark problems3511

In the remainder of this work, the following considerations are adopted.3512

(i) Fractional diffusivity. We prescribe d1 and d2 to be constant in Y1 and Y2,3513

respectively. Then, by recalling the discussion made in Section 6.3.4, we express3514

each dk as3515

dk = dkRL
−2+ξ(α,βk)
c , k = 1,2, (7.1)

where dkR is the constant reference diffusivity of Yk and it has the dimensions of a3516

standard diffusivity, i.e., length squared over time [220].3517

(ii) Initial and boundary conditions for the homogenised equation. We3518

enforce an initial spatial distribution for c(0) of the form3519

c(0)(x,0) = cin(x) := 1− k exp

(
−2

(x− x0)
2

(r/Lc)2

)
, (7.2)

where k, r and x0 are model parameters.3520

To contextualise our work, we mention that the initial condition cin(x) in (7.2) is3521

sometimes employed to simulate the initial concentration of molecules after photo-3522

bleaching in a Fluorescence recovery after photobleaching (FRAP) experiment [31,3523

220] (see Chapter 5). In this way, following [140], the model is prepared to describe3524

the fluorescence recovery pattern of molecules surrounding a certain region of a3525

tissue (e.g. articular cartilage) after being photobleached, by using a high-intensity3526

laser beam. Here, we do not go into the technical details pertaining to a FRAP3527

experiment, since this is not the focus of our work, and the benchmark proposed3528

hereafter is also markedly different from the one developed in [140]. Thus, we do3529

not claim that our results are meant to simulate a FRAP experiment. Still, since3530

the setting presented in [140] refers to a tissue with hierarchical internal structure,3531

as is the case of articular cartilage, our work might bring some new insight into3532

the interpretation of the experimental results. To this end, we adapt the frame-3533

work described in [140] to the setting of the homogenised problem (6.45a)-(6.45b)3534

and, specifically, we identify k, r and x0 with the bleaching depth parameter, the3535

dimension of the bleached area, and the centre of the bleached region, respectively.3536
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We notice that, since this work is framed in a one-dimensional setting, r char-3537

acterises the measure of a line-segment of Xh, and we choose x0 as the centre of3538

the macroscopic domain Xh, namely x0 = 1
2
(L/Lc). In addition, we adapt the3539

boundary conditions given in [140] to the geometry of our problem, and impose3540

Dirichlet boundary conditions for c(0) at x = 0 and x = L/Lc. Specifically, we set3541

c(0)(0, t) = cin(0), (7.3a)

c(0)(L/Lc, t) = cin(L/Lc), (7.3b)

which implies3542

cin(0) = cin(L/Lc) =: cb. (7.4)

(iii) Parameters. In Table 7.1, we provide the values of the parameters used in3543

our numerical simulations. We notice that the value of r is meant to “cover” 1003544

reference cells.3545

Table 7.1: List of parameters used in the numerical simulations.

Parameter Value Unit Equation Reference

Lc L = 10 mm (6.4) [91]
ℓ 10−2 mm (6.4) This work
d1R d2R/2 mm2/s (7.1) This work
d2R 3.2× 10−3 mm2/s (7.1) [255]
k 0.7 − (7.2) [140]
r 1 mm (7.2) This work
yI

1
2

− (6.16b) This work

7.3 Benchmark problem I: Micro-scale non-locality3546

Let us consider the case in which the non-locality is accounted for only at the3547

micro-scale. This can be achieved by prescribing3548

fk(x− x̃, y − ỹ) = δ(x− x̃)gk(y − ỹ), (7.5)

that is, we accept the existence of “long-range” interactions in each sub-cell Yk.3549

Note that we use quotation marks because the concept of long-range interactions3550

has to be understood with respect to each sub-cell, which is microscopic and, in this3551

context, as a synonym of non-locality. We also notice that the index k in gk allows3552

to characterise two different non-local frameworks occurring in each sub-cell Yk.3553

For instance, as discussed above, we could enforce that the non-local interactions3554
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exist only in one of the two sub-cells, although here we consider non-locality acting3555

in both sub-cells.3556

Clearly, different forms for gk can be considered, each of which leading to diverse3557

non-local models of diffusion. In this work, we adopt the decaying power-law [215,3558

19, 55, 252, 220]3559

gk(y − ỹ) :=
L1−βk
c

2Γ(1− βk)

1

|y − ỹ|βk
, (7.6)

where Γ(·) denotes the Euler Gamma function and βk∈ ]0,1[. From here on, we set3560

β1 = β2 = β, thereby obtaining g1 = g2 = g and f1 = f2 = f. We notice that g scales3561

multiplicatively with L1−β
c because it is expressed as a function of dimensionless3562

variables. Accordingly, the physical dimensions of the fractional diffusivities dk are3563

given by [dk] = L−1+β
c t−1

c for each k = 1,2. Hence, Equation (7.1) yields3564

dk = dkRL
−2+(−1+β)
c = dkRL

−3+β
c . (7.7)

7.3.1 The non-local cell problem3565

By considering Equations (7.5) and (7.6), the non-local cell problem is given by3566

3567

∂y

{
q

(1)
k (x, y, t) + Q

(0)
k (x, y, t)

}
= 0, (7.8a)

ϑ1(x, yI, t) = ϑ2(x, yI, t), (7.8b)

q
(1)
1 (x, yI, t) + Q

(0)
1 (x, yI, t) = q

(1)
2 (x, yI, t) + Q

(0)
2 (x, yI, t), (7.8c)

where (x, y, t) ∈ X × Yk×]0, tf [ and3568

q
(1)
k (x, y, t) = −dkRL

−2
c ∂xc

(0)(x, t)

2Γ(1− β)

∫
Yk

∂ỹϑk(x, ỹ, t)

|y − ỹ|β
dỹ, (7.9a)

Q
(0)
k (x, y, t) = −dkRL

−2
c ∂xc

(0)(x, t)

2Γ(1− β)

∫
Yk

1

|y − ỹ|β
dỹ. (7.9b)

As shown in (7.9a) and (7.9b), the assumption of non-locality only at the micro-scale3569

permits to factorise ∂xc
(0) from the integrals expressing q

(1)
k and Q

(0)
k . Consequently,3570

the auxiliary unknowns ϑ1 and ϑ2 can be reformulated as functions of y only, and3571

for further use, the following notation is introduced3572

qk(y) := − dkRL
−2
c

2Γ(1− β)

∫
Yk

dỹϑk(ỹ)

|y − ỹ|β
dỹ, (7.10a)

Qk(y) := − dkRL
−2
c

2Γ(1− β)

∫
Yk

1

|y − ỹ|β
dỹ. (7.10b)
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We notice that the quantities qk(y) and Qk(y) defined in (7.10a) and (7.10b) rep-3573

resent, up to the sign, “dressed” diffusivities rather than fluxes. In fact, we may3574

write3575

q
(1)
k (x, y, t) = qk(y)∂xc

(0)(x, t), (7.11a)

Q
(0)
k (x, y, t) = Qk(y)∂xc

(0)(x, t). (7.11b)

We further mention that, in the proper limit, qk(y) and Qk(y) return the negative3576

of the standard diffusivities (see Remark 14). Particularly, in Equations (7.10a)3577

and (7.10b), we recognise the symmetrised Caputo fractional derivative of order3578

β∈ ]0,1[ [21]. Then, it holds true that3579

qk(y) = −dkRL
−2
c D

β
k [ϑk](y), (7.12a)

Qk(y) = −dkRL
−2
c D

β
k [κ](y), (7.12b)

where κ(y) = y, and3580

D
β
k [ϕ](y) :=

1

2Γ(1− β)

∫
Yk

dỹϕ(ỹ)

|y − ỹ|β
dỹ (7.13)

denotes the symmetrised Caputo fractional derivative of order β of a generic differ-3581

entiable function ϕ. Furthermore, we notice that Qk(y) can be computed explicitly3582

for each k = 1,2, and reads3583

Qk(y) = − dkRL
−2
c

2Γ(1− β)
Ak(y; β), (7.14)

where the functions A1 and A2 are given by3584

A1(y; β) =

∫
Y1

1

|y − ỹ|β
dỹ =

∫ yI

0

1

|y − ỹ|β
dỹ

=
y1−β + (yI − y)1−β

1− β
, (7.15a)

A2(y; β) =

∫
Y2

1

|y − ỹ|β
dỹ =

∫ 1

yI

1

|y − ỹ|β
dỹ

=
(y − yI)

1−β + (1− y)1−β

1− β
. (7.15b)

Because of these results, the flux (7.11b) admits the explicit expression3585

Q
(0)
k (x, y, t) = − dkRL

−2
c

2Γ(1− β)
Ak(y; β)∂xc

(0)(x, t), (7.16)
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while, for the time being, no explicit expression can be given to qk, since the3586

functions ϑk are still unknowns. Upon recalling the definition (6.12), in which a3587

given function restricted to the elementary cell is assigned in a piecewise manner,3588

the fluxes Q
(0)
1 and Q

(0)
2 in (65) can be rejoined in a unique flux, whose restriction3589

to Y is given by3590

Q(0)(x, y, t)|Y =

{
Q

(0)
1 (x, y, t) y∈ ]0, yI[ ,

Q
(0)
2 (x, y, t) y∈ ]yI,1[ .

(7.17)

Now, for the function Q(0) given in (7.17), we can employ the definition of periodicity3591

specified in (6.13), so that it holds3592

Q(0)(x,0+, t) = Q(0)(x,1+, t). (7.18)

It follows from this result that Q(0) is Y -periodic and that such periodicity does3593

not depend on the point yI in which the interface is placed within the elementary3594

cell.3595

By using the above results, the non-local cell problem (7.8a)-(7.8c) can be rewrit-3596

ten as3597

dyqk(y) = −dyQk(y), (7.19a)

ϑ1(yI) = ϑ2(yI), (7.19b)

q1(yI)− q2(yI) =

[
d1Ry

1−β
I − d2R(1− yI)

1−β
]
L−2
c

2Γ(2− β)
, (7.19c)

where the right-hand-side of (7.19c) is the result of the difference Q2(yI)− Q1(yI).3598

We recall that all the expressions at the interface are to be understood for the3599

values of the limits of the corresponding physical quantities for y → y±I . Indeed,3600

for instance, Q1(yI) means, with a slight abuse of notation, Q1(yI) = limy→y−I
Q1(y).3601

Remark 14. We notice that for y ∈ Yk, it holds3602

lim
β→1−

Qk(y) = − lim
β→1−

dkRL
−2
c Ak(y; β)

2Γ(1− β)
= −dkRL

−2
c , (7.20)

while3603

lim
β→1−

Qk(yI) = −dkRL
−2
c

2
, (7.21a)

lim
β→1−

[Q2(yI)− Q1(yI)] =
[d1R − d2R]L

−2
c

2
. (7.21b)

Then, it follows from Equations (7.20)-(7.21b) that the convergence of Qk for β →3604

1− is not uniform in Y k.3605
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By comparing with classical results of the asymptotic homogenisation technique,3606

the above computations suggest that, for β → 1−, the solution of the non-local cell3607

problem must approach the solution of the classical, local cell problem. We notice3608

that the 2 in the denominator of (7.21b) does not appear in the formulation of the3609

standard cell problem. Nevertheless, it compensates with the 2 in the denominator3610

of the left-hand-side of (7.19c), hidden in the fractional derivatives defining qk,3611

which can be determined after finding ϑk. ■3612

7.3.2 The homogenised equation3613

By taking into account Equations (7.5) and (7.6), the non-local effective coeffi-3614

cient can be rewritten as3615

d eff(x, x̃, t) = δ(x− x̃)
2∑

k=1

〈
dkRL

−2
c

2Γ(1− β)

∫
Yk

1 + dỹϑk(ỹ)

|y − ỹ|β
dỹ

〉
k

, (7.22)

and, therefore, according to Equation (6.43), the effective flux is given by3616

q eff(x, t) = −
∫

Xh

d eff(x, x̃, t)∂x̃c
(0)(x̃, t)dx̃

= −d̂ eff(β)∂xc
(0)(x, t), (7.23)

where we have set3617

d̂ eff(β) :=
2∑

k=1

〈
dkRL

−2
c

2Γ(1− β)

∫
Yk

1 + dỹϑk(ỹ)

|y − ỹ|β
dỹ

〉
k

=
2∑

k=1

〈
dkRL

−2
c

[
Ak(y; β)

2Γ(1− β)
+ D

β
k [ϑk](y)

]〉
k

. (7.24)

Hence, the effective fractional diffusivity, d̂ eff(β), can be expressed in terms of the3618

symmetrised Caputo fractional derivative of ϑk. We notice that, in this particu-3619

lar case, d̂ eff(β) does not depend on space and time, while it is parametrised by3620

β. Furthermore, from its mathematical expression it is clear that it ciphers the3621

information on the non-local interactions at the micro-scale.3622

Remark 15. The form of the effective fractional diffusivity (7.24) recalls the re-3623

lation obtained in the standard case by means of asymptotic homogenisation [34,3624

29, 239]. Particularly, by Fubini’s theorem and Equation (7.14), d̂ eff(β) can be3625

equivalently rewritten as3626

d̂ eff(β) =
2∑

k=1

1

|Y |

∫
Yk

dkRL
−2
c

2Γ(1− β)
Ak(ỹ; β)[1 + dỹϑk(ỹ)]dỹ
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= −
2∑

k=1

1

|Y |

∫
Yk

Qk(ỹ)[1 + dỹϑk(ỹ)]dỹ. (7.25)

Therefore, taking into account Equation (7.20), we obtain that3627

lim
β→1−

d̂ eff(β) =
2∑

k=1

1

|Y |

∫
Yk

dkRL
−2
c [1 + dyϑk(y)] dy, (7.26)

which coincides with the effective diffusivity of a standard diffusion problem with3628

unitary reference cell (see e.g. [72]).3629

Furthermore, since Equations (7.24) and (7.25) provide equivalent writings for3630

d̂ eff(β), from (7.26) it follows that, in the limit β → 1−, the symmetrised Caputo3631

fractional derivative of ϑk converges to the first derivative of ϑk, namely,3632

lim
β→1−

D
β
k [ϑk](y) = dyϑk(y), (7.27)

and therefore, we can conclude that q
(1)
k (see Equation (7.11a)) recovers Fick’s law3633

in bounded domains. ■3634

Finally, taking into account Equation (7.24) and the initial and boundary con-3635

ditions (7.2)-(7.4), the homogenised problem reads3636

∂tc
(0)(x, t)− d̂ eff(β)∂2xc

(0)(x, t) = 0, in Xh×]0, tf [, (7.28a)

c(0)(x,0) = cin(x), (7.28b)

c(0)(0, t) = c(0)(L/Lc, t) = cb. (7.28c)

We notice that, in this simplified case, the non-local cell problem (7.19a)-(7.19c)3637

and the homogenised problem (7.28a)-(7.28c) are not coupled.3638

7.3.3 Numerical solution3639

In this section, we solve numerically the mathematical model given by the non-3640

local cell problem (7.19a)-(7.19c) and the homogenised problem (7.28a)-(7.28c).3641

In particular, the homogenised problem is characterised by a partial differential3642

equation, while the non-local cell problem features an integro-differential equation3643

of fractional type.3644

Before going further, we notice that, in the classical homogenisation literature,3645

the uniqueness of the solution of the cell problem is guaranteed by imposing that3646

⟨ϑk⟩k is equal to zero. However, from a computational point of view, a more feasible3647

condition is to fix the value of the auxiliary variables ϑk at one point in the cell3648

[222]. Accordingly, here, we impose that ϑ1 is zero at y = 0, and by periodicity ϑ23649

is also zero at y = 1.3650

134



7.3 – Benchmark problem I: Micro-scale non-locality

Now, let us introduce the following spaces of test functions3651

W12 =
{
v1 ∈ H 1(Y1) : v1(0) = 0, v1(yI) = v2(yI)

}
, (7.29a)

W21 =
{
v2 ∈ H 1(Y2) : v2(1) = 0, v2(yI) = v1(yI)

}
, (7.29b)

where H 1(Yk) is the Sobolev space of functions of L2(Yk) with finite L2(Yk)-norm3652

of their distributional derivatives up to order one [247]. Then, by multiplying3653

Equation (7.19a) by vk, integrating over Yk, and adding over k = 1,2, we obtain3654

−

{
2∑

k=1

∫
Yk

qk(y)dyvk(y)dy

}
+ q1(y)v1(y)

∣∣yI
0

+ q2(y)v2(y)
∣∣1
yI
=

{
2∑

k=1

∫
Yk

Qk(y)dyvk(y)dy

}
− Q1(y)v1(y)

∣∣yI
0
− Q2(y)v2(y)

∣∣1
yI
. (7.30)

Hence, due to the continuity condition at the interface (7.19c), and the restrictions3655

made for vk, Equation (7.30) reads3656

−
2∑

k=1

∫
Yk

qk(y)dyvk(y)dy =
2∑

k=1

∫
Yk

Qk(y)dyvk(y)dy. (7.31)

Equation (7.31) represents the weak formulation of the non-local cell problem3657

(7.19a)-(7.19c), and is discretised by employing the FE technique. Therefore, we3658

introduce for Y1 and Y2, N1+1 and (N2+1)−N1 discretisation points, respectively,3659

and the function bases {ψ1
i }

N1
i=0 and {ψ2

i }
N2
i=N1

, with N1 > 1 and N2 > N1 + 1 and,3660

for each k = 1,2,3661

ψki (yj) = δij =

{
1, i = j,

0, i /= j,
(7.32)

with yN1 = yI. Then, the test functions vk are approximated by3662

v̌k(y) =

{∑N1

j=1 υ
1
jψ

1
j (y), k = 1,∑N2−1

s=N1
υ2sψ

2
s(y), k = 2,

(7.33)

where υkj , k = 1,2, are non-zero, arbitrary constants. Analogously, the approxi-3663

mated trial functions ϑ̌k(y) are written as3664

ϑ̌k(y) =

{∑N1

i=1 ω
1
iψ

1
i (y), k = 1,∑N2−1

r=N1
ω2
rψ

2
r(y), k = 2,

(7.34)
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where ωki are unknown constant coefficients representing the nodal values of ϑ̌k.3665

We notice that, in this particular case, the coefficients ωki do not depend on time,3666

whereas in a more general setting they should be defined as functions of time.3667

Next, by substituting expressions (7.34) and (7.33) into (7.31), we obtain the3668

following system of equations for ωki ,3669

N1∑
j=1

N1∑
i=1

υ1j
[
L1ji(β)ω

1
i + F1

j(β)
]
+

N2−1∑
s=N1

N2−1∑
r=N1

υ2s
[
L2sr(β)ω

2
r + F2

s(β)
]
= 0, (7.35)

where3670

Lkji(β) := dkRL
−2
c

∫
Yk

dyψ
k
j (y)D

β
k [ψ

k
i ](y)dy, (7.36a)

Fkj (β) :=
dkRL

−2
c

2Γ(1− β)

∫
Yk

Ak(y; β)dyψ
k
j (y)dy, (7.36b)

represent, for each k = 1,2, the components of the fractional stiffness matrix of the3671

FE discretisation of the sub-cell Yk, and of the nodal fractional force associated3672

with the j-th node of Yk, respectively.3673

Remark 16. [Density and limit of Lk(β) and Fk(β)]3674

It is worth noting that, whereas in the standard cell problem the stiffness matrix3675

is tridiagonal for each k = 1,2, in the present framework it is dense because the3676

cross integrations between the derivatives of the basis functions lead to non-zero3677

components of3678

Lkji(β) = dkRL
−2
c

∫
Yk

dyψ
k
j (y)D

β
k [ψ

k
i ](y)dy

=
dkRL

−2
c

2Γ(1− β)

∫
Yk

dyψ
k
j (y)

[∫
Yk

dỹψ
k
i (ỹ)

|y − ỹ|β
dỹ

]
dy, (7.37)

for each pair of j and i. This is due to the non-locality introduced by the frac-3679

tional derivatives D
β
k [ψ

k
i ], as reported in the far right-hand-side of Equation (7.37).3680

Specifically, even though two discretisation nodes are far away from each other, the3681

entries of the matrix corresponding to those nodes are non-zero. This results in3682

a dense stiffness matrix and, the stronger the non-locality, the denser the matrix3683

will be. Nevertheless, the fractional stiffness matrix will converge to a tridiagonal3684

matrix when β → 1−. Indeed, as discussed in Remark 15, when β → 1− we obtain3685

lim
β→1−

Lkji(β) = dkRL
−2
c

∫
Yk

dyψ
k
j (y)dyψ

k
i (y)dy. (7.38)

Analogously, from the definition of Fkj (β), i.e.,3686

Fkj (β) =
dkRL

−2
c

2Γ(1− β)

∫
Yk

Ak(y; β)dyψ
k
j (y)dy
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=
dkRL

−2
c

2Γ(1− β)

∫
Yk

[∫
Yk

1

|y − ỹ|β
dỹ

]
dyψ

k
j (y)dy, (7.39)

we infer that the existence of the non-locality function implies that the entries of3687

Fkj (β) are non-zero. Furthermore, recalling that limβ→1− [Ak(y; β)/2Γ(1 − β)] = 1,3688

for y ∈ Yk, we have that3689

lim
β→1−

Fkj (β) = dkRL
−2
c

∫
Yk

dyψ
k
j (y)dy. (7.40)

Equation (7.40) returns 0 for all j /= N1 and dkRL
−2
c if j = N1.3690

To exemplify the limit of the symmetrised Caputo fractional derivative of the3691

bases functions, we report in Figure 7.1 a comparison of the symmetrised Caputo3692

fractional derivative of order β∈ ]0,1[ of the function3693

ψ(y) =


y − 0

1/2− 0
, 0 ≤ y < 1/2,

1− y

1− 1/2
, 1/2 ≤ y ≤ 1,

(7.41)

which recalls a Lagrange polynomial of the first order, with the classical first deriva-3694

tive of the same function. ■

0.0 0.2 0.4 0.6 0.8 1.0

-2

-1

0

1

2

Figure 7.1: Comparison of the symmetrised Caputo fractional derivative of ψ(y),
for different values of β∈ ]0,1[, with the classical first derivative of ψ(y).

3695

Next, to obtain the algebraic form of the FE procedure, we introduce the nota-3696

tion3697

{υ} := {υ11, . . . , υ1N1−1, υ
I
N1
, υ2N1+1, . . . , υ

2
N2−1}T, (7.42a)

{ω} := {ω1
1, . . . , ω

1
N1−1, ω

I
N1
, ω2

N1+1, . . . , ω
2
N2−1}T, (7.42b)

where υIN1
= υ1N1

= υ2N1
and ωI

N1
= ω1

N1
= ω2

N1
are the nodal values of the virtual3698

concentration and of the unknown concentration at the interface, and we write the3699
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final forms of the fractional stiffness matrix and of the fractional nodal force, as3700

follows3701

[L] :=



[L1ji], j, i = 1, . . . , N1 − 1,

[L1jN1
], j = 1, . . . , N1 − 1,

[0], j = 1, . . . , N1 − 1, i = N1 + 1, . . . , N2 − 1,

[L1N1i
], i = 1, . . . , N1 − 1,

[L1ji + L2sr], j, i, s, r = N1,

[L2N1r
], r = N1 + 1, . . . , N2 − 1,

[0], s = N1 + 1, . . . , N2 − 1, r = 1, . . . , N1 − 1,

[L2sN1
], s = N1 + 1, . . . , N2 − 1,

[L2sr], s, r = N1 + 2, . . . , N2 − 1,

(7.43a)

{F} := {F 1
1 , . . . , F

1
N1−1, F

1
N1

+ F 2
N1

, F 2
N1+1, . . . , F

2
N2−1}T. (7.43b)

Note that in (7.43a) and (7.43b), we have omitted the dependence on β, although3702

this dependence is understood.3703

Then, by using the notation introduced in Equations (7.42a)-(7.43b), Equation3704

(7.35) can be rewritten as3705

{υ}T[L(β)]{ω} = −{υ}T{F(β)}, (7.44)

which leads to the algebraic equation3706

[L(β)]{ω} = −{F(β)}. (7.45)

On the other hand, by using the expression for ϑ̌k given in (7.34), the approximation3707

of the effective fractional diffusivity (7.24) can be numerically calculated as3708

d̂ eff
num(β) := d1RL

−2
c

〈
A1(y; β)

2Γ(1− β)
+

N1∑
i=1

ω1
i D

β
1 [ψ

1
i ](y)

〉
1

+ d2RL
−2
c

〈
A2(y; β)

2Γ(1− β)
+

N2−1∑
r=N1

ω2
rD

β
2 [ψ

2
r ](y)

〉
2

, (7.46)

which we call numerical effective fractional diffusivity. We provide details about3709

the explicit form of Equations (7.45) and (7.46) in Appendix 8.2.3710

7.3.4 Results and discussion3711

In this section, we show the numerical results for the benchmark problem de-3712

scribed above, and we discuss the influence of the micro-scale non-local interactions3713

on the homogenised behaviour of the concentration.3714
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To begin with, in Figure 7.2, we report the profile of the solution of the non-3715

local cell problem (7.19a)-(7.19c), i.e., ϑ̌k, and compare it with the solution of the3716

standard, local cell problem. Specifically, the solid lines distinguish the solutions of3717

the non-local cell problem for different values of the non-locality parameter β∈ ]0,1[,3718

and the dashed line represents the solution of the standard, local cell problem. In3719

particular, the space discretisation of the computational domain was done by fixing3720

the grid size to h := yi − yi−1 = 1.3 × 10−3 uniformly with respect to i. We3721

notice that the results of the finite element analysis are not affected appreciably by3722

subsequent mesh refinements.3723

In Figure 7.2, we observe that the spatial distribution of ϑ̌k varies with β and it3724

converges to the solution of the local cell problem as β → 1− (dashed line in Figure3725

7.2). This outcome is coherent with the theoretical results previously obtained in3726

this section. Furthermore, we notice that the non-local solutions fluctuate around3727

the local one, and they intersect each other and the local solution in symmetric3728

points. Nevertheless, the non-local solutions are not symmetric with respect to the3729

line y = yI.3730

Before going further, few words should be spent about the issue of symmetry.3731

To this end, let us assume just for this discussion that the interface between the3732

sub-cells, yI, is not the midpoint of the cell Y = ]0,1[, and let us start with the3733

local case (recovered for β → 1−). In the local case, the solution of the cell prob-3734

lem, here denoted by ϑlocal and defined as ϑlocal(y) = ϑlocal
1 (y) for y ∈ [0, yI] and3735

ϑlocal(y) = ϑlocal
2 (y) for y ∈ ]yI,1], is in general not symmetric because the diffusivity3736

coefficients are distributed within the cell in a non-symmetric way (clearly, this3737

asymmetry would disappear if the diffusivities were equal to each other). Within3738

the framework studied here, the solution will have, indeed, the shape of a non-3739

symmetric “roof”, with an increasing straight line on [0, yI] and a decreasing straight3740

line on ]yI,1], whose slopes have different sign and different absolute value. In other3741

words, the inequality d1R /= d2R and the position of the interface break the sym-3742

metry that the solution would have in the homogeneous case (the solution of the3743

problem at hand would trivially boil down to a constant in the homogeneous case).3744

Symmetry, however, can be partially restored if the interface is assumed to be3745

placed at the midpoint, as is the case in our simulations. This condition, indeed,3746

places a geometric constraint that forces the solution to be symmetric, thereby3747

acquiring the shape of a symmetric “roof”, with the slope of the straight line on3748

[0, yI] being the opposite of the slope of the straight line on ]yI,1]. This means that3749

we have passed from the continuous symmetry of the homogeneous solution to the3750

discrete symmetry of the heterogeneous solution with interface in the midpoint of3751

the cell.3752

The picture just described changes considerably when the non-local case is stud-3753

ied. Indeed, for β ∈ ]0,1[, the fractional derivatives featuring in the non-local cell3754

problem are an additional source of symmetry breaking that, together with the3755

heterogeneity of the diffusivity, make the solution even more non-symmetric. This3756
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remains true even though yI is the midpoint of the cell. More importantly, since3757

the local solution is symmetric for yI = 1/2, in spite of the heterogeneity of the dif-3758

fusivity, this setting singles out the contribution of the fractional derivatives to the3759

symmetry breaking of the problem. We believe that asymmetry of the non-local so-3760

lution, which decreases in β may be ascribable to an interplay between non-locality3761

and heterogeneity: in the sub-cell in which the medium is more diffusive, the solu-3762

tion is “stiffer” which results into moderate deviations from the standard solution;3763

on the other hand, in the sub-cell in which the diffusivity is smaller, the solution is3764

more “compliant”, thereby producing large deviations from the local solution.3765

0.0 0.2 0.4 0.6 0.8 1.0
y

0.00

0.05

0.10

0.15

5 #
k

- = 0:1
- = 0:5
- = 0:9
Local

Figure 7.2: Solution of the non-local cell problem and comparison with the solution
of the standard cell problem.

Now, once ϑ̌k is known, we can compute the effective fractional diffusivity d̂ eff
num3766

as prescribed by formula (7.46). Particularly, in Figure 7.3, we plot the values3767

of this homogenised coefficient for varying β ∈ [0,1] and compare them with the3768

classical effective diffusivity, i.e. the one resulting from the local case. Specifically,3769

a closer look at the data reported in Figure 7.3 reveals that, for increasing β,3770

the value of the effective fractional diffusivity resulting from a non-local setting is3771

higher. In particular, as discussed in Remark 15, as β tends to 1 from below, the3772

approximated effective fractional diffusivity converges to the standard effective one3773

given by the local case.3774

We notice that for β = 0 the auxiliary problem is ill-posed and, thus, ϑ̌k cannot3775

be determined. This is also reflected by the fact that the stiffness matrix of the3776

problem, L(0), becomes singular for β = 0, and ϑ̌k becomes non-differentiable at3777

y = yI and at the boundaries of the cell. On the other hand, for β > 0, the3778

gradients of ϑ̌k exist at these points but their magnitude increases for β → 0+.3779

Nevertheless, it is worth remarking that, for very small values of β, the numerical3780

solution almost does not change. Particularly, the L∞-norm of the error between3781

the numerical solutions for β = 10−8 and β = 10−3 is of the order of 10−4. In3782

addition to these considerations, we would like to point out that neither ϑ̌k nor3783

its gradient are observable physical quantities. Rather, ϑ̌k(y) is just an auxiliary3784

quantity for determining the observables q
(1)
k (x, y, t), qk(y), and more importantly,3785
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Figure 7.3: Effective fractional diffusivity for ten different values of β ∈ [0,1], and
comparison with the standard effective diffusivity resulting from the local counter-
part of the cell problem (7.19c)-(7.19a).

the effective fractional diffusivity and the homogenised solution. To this end, we3786

notice that, in fact, d̂ eff(β) and c(0) are well behaved for all values of β ∈ ]0,1[ as3787

shown in Figures 7.3 and 7.4, and also for β = 0. Specifically, in spite of the3788

technical difficulty for β = 0, which makes the employment of the FE method3789

impossible, it is still possible to determine the variations3790

ϑ1(yI)− ϑ1(0) = ϑ1(yI) = −ϑ2(1) + ϑ2(yI) = ϑ2(yI)

=
d2R − d1R

2(d1R + d2R)
, (7.47)

which return the value of ϑk at the interface. This calculation allows us to compute,3791

even in this limit case, the effective diffusivity coefficient d̂ eff(β), which, as shown3792

in Equation (7.24), we rephrase as a function of β and, for β = 0, reads3793

d̂ eff
0 =

d1Rd2R
2(d1R + d2R)L2

c

. (7.48)

Since, as per Figure 7.3, which is the plot of Equation (7.24), d̂ eff(β) is a continuous3794

and monotonically increasing function of β ∈ [0,1], it occurs that the value d̂ eff
03795

represents the absolute minimum of the effective diffusivity coefficient, i.e., d̂ eff
0 =3796

minβ∈[0,1]{d̂eff(β)}, and the absolute maximum is d̂ eff(1) = maxβ∈[0,1]{d̂ eff(β)}.3797

The above result describes, for each β ∈ [0,1], the influence of the micro-scale3798

non-locality on the macroscopic distribution of the concentration c(0) (see Figure3799

7.4). In particular, for β tending towards zero, i.e., for increasing “strength” of3800

the micro-scale non-locality, the macro-scale diffusion of the considered substance3801

is hindered, and c(0)(x, t) consistently tends to vary rather slowly in time. On the3802

contrary, in the limit case β → 1−, c(0)(x, t) varies more rapidly in time, since3803

the diffusion tends to acquire the “classical” behaviour predicted by Fick’s law (see3804
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Figure 7.4). In this respect, the consideration of non-local interactions at the micro-3805

scale influences the way in which diffusion takes place in the composite medium.3806

Returning to the FRAP experiment in the context of the benchmark problem, this3807

theoretical behaviour implies that the recovering pattern of chemical species after3808

being photobleached is slower for β near 0, whereas it is faster for β close to 1,3809

thereby simulating a standard diffusion process.
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Figure 7.4: Numerical solution of the homogenised equation for different values of
β and different times. The diffusion of chemical species is rather slow for β = 0.1,
while it is much faster for β = 0.9, thereby conducing to the standard diffusion
predicted by Fick’s law.

3810

7.4 Benchmark problem II: Macro-scale non-locality3811

In this section, we assume that the non-local interactions are present at the3812

macro-scale only. Thus, by specialising fα,βk in (6.17b) to the limit case βk → 1−,3813

we consider the following form for the non-locality function3814

fα(x− x̃, y − ỹ) = hα(x− x̃)δ(y − ỹ). (7.49)

Hence, since hα depends only on the difference x − x̃, the non-local character of3815

the diffusion process is accounted for at the macroscopic level only, and similarly3816
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to what was done in the previous section, we write3817

hα(x− x̃) :=
L1−α
c

2Γ(1− α)

1

|x− x̃|α
. (7.50)

In this particular case, the physical dimensions of the fractional diffusivities dk are3818

[dk] = L−1+α
c t−1

c and hence, from (7.1), we have that3819

dk = dkRL
−3+α
c . (7.51)

7.4.1 The cell problem3820

By considering the expressions (7.49)-(7.51), the non-local cell problem (6.31a)-3821

(6.31c) rewrites3822

∂y

{
q

(1)
k (x, y, t) + Q

(0)
k (x, y, t)

}
= 0, (7.52a)

ϑ1(x, yI, t) = ϑ2(x, yI, t), (7.52b)

q
(1)
1 (x, yI, t) + Q

(0)
1 (x, yI, t) = q

(1)
2 (x, yI, t) + Q

(0)
2 (x, yI, t), (7.52c)

where (x, y, t) ∈ X × Yk×]0, tf [ and3823

q
(1)
k (x, y, t) = − dkRL

−2
c

2Γ(1− α)

∫
X

∂x̃c
(0)(x̃, t)

|x− x̃|α
∂yϑk(x̃, y, t)dx̃, (7.53a)

Q
(0)
k (x, y, t) = − dkRL

−2
c

2Γ(1− α)

∫
X

∂x̃c
(0)(x̃, t)

|x− x̃|α
dx̃

= −dkRL
−2
c Dα[c(0)](x, t). (7.53b)

In (7.53b), Dα[c(0)] represents the symmetrised Caputo fractional derivative of order3824

α∈ ]0,1[ of c(0).3825

Particularly, the computational complexity of the above cell problem is signifi-3826

cantly reduced if the solution ϑk is x-constant (which in the present framework also3827

implies that it is constant in time). Then, with a slight abuse of notation we write3828

ϑk(x, y, t) = ϑk(y), and q
(1)
k in (7.53a) becomes3829

q
(1)
k (x, y, t) = −dkRL

−2
c dyϑk(y)

[
1

2Γ(1− α)

∫
Xh

∂x̃c
(0)(x̃, t)

|x− x̃|α
dx̃

]
= −dkRL

−2
c dyϑk(y)D

α[c(0)](x, t), (7.54)

while Equation (7.52a) rewrites3830

− dy
{
dkRL

−2
c [1 + dyϑk(y)]

}
Dα[c(0)](x, t) = 0. (7.55)
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We notice that c(0)(x, t) ≡ c(0)(t) is the only solution of the equation Dα[c(0)](x, t) =3831

0 [19]. Therefore, by excluding this case, the cell problem can be written in the3832

more standard form3833

− dy
{
dkRL

−2
c [1 + dyϑk(y)]

}
= 0, (7.56a)

ϑ1(yI) = ϑ2(yI), (7.56b)

− d1RL
−2
c dyϑ1(yI)− d1RL

−2
c = −d2RL

−2
c dyϑ2(yI)− d2RL

−2
c . (7.56c)

In this specific case, the analytical solution of the cell problem (7.56a)-(7.56c) can3834

be found by using standard techniques for differential equations. However, since3835

our scope is to find the effective coefficient, this is not necessary. Indeed, from3836

(7.56a) we can deduce that3837

dkRL
−2
c [1 + dyϑk(y)] = ak, (7.57)

where ak, with k = 1,2, are two constants to be determined. In particular, substi-3838

tuting (7.57) in (7.56c) yields a1 = a2 ≡ a, and the constant a can be computed by3839

invoking periodicity and (7.56b). In fact, from (7.57), it follows that3840

dyϑk(y) =
ak

dkRL−2
c

− 1, (7.58)

and, by applying the operators defined in (6.34) to the last equation, we have3841

0 =
2∑

k=1

⟨dyϑk⟩k =
a

d1RL−2
c

yI +
a

d2RL−2
c

(1− yI)− 1, (7.59)

which implies that3842

a =
d1Rd2RL

−2
c

d2RyI + d1R(1− yI)
. (7.60)

Therefore, after substitution of (7.49) and (7.50) into Equation (6.44), and using3843

(7.57) and (7.60), the non-local effective coefficient can be computed as3844

d eff(x, x̃) =
1

2Γ(1− α)

1

|x− x̃|α
2∑

k=1

〈
dkRL

−2
c [1 + dyϑk(y)]

〉
k

=
d1Rd2RL

−2
c

d2RyI + d1R(1− yI)

1

2Γ(1− α)

1

|x− x̃|α
. (7.61)

It is worth mentioning that, even though, in this particular formulation, the cell and3845

the homogenised problems have been decoupled, the non-local effective diffusivity3846

(7.61) is still influenced by the non-local interactions occurring at the macroscopic3847

level through the scalar function |x − x̃|−α. Note also that the last two factors of3848

d eff(x, x̃) in (7.61) are the kernel of the operator defined in (7.50).3849
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7.4.2 The homogenised equation3850

By using the previous results, the effective non-local mass flux can be recast in3851

the form3852

q eff(x, t) = −
∫

Xh

d eff(x, x̃)∂x̃c
(0)(x̃, t)dx̃

= −d̂ eff
st

1

2Γ(1− α)

∫
Xh

∂x̃c
(0)(x̃, t)

|x− x̃|α
dx̃

= −d̂ eff
st Dα[c(0)](x, t), (7.62)

which is thus entirely determined by the symmetrised Caputo fractional derivative3853

of order α of the leading order concentration c(0) and by the effective diffusivity3854

coefficient3855

d̂ eff
st :=

d1Rd2RL
−2
c

d2RyI + d1R(1− yI)
. (7.63)

We notice that definition (7.63) coincides (not surprisingly) with the constant a3856

defined in Equation (7.60), and with the standard effective diffusivity [34, 72, 219].3857

Besides, the physical dimensions of d̂ eff
st are those of the reciprocal of time.3858

Finally, the homogenised equation (6.45a), with the boundary and initial con-3859

ditions given in (7.2) and (7.4), reduces to3860

∂tc
(0)(x, t)− ∂x

{
d̂ eff
st Dα[c(0)](x, t)

}
= 0, (7.64a)

c(0)(x,0) = cin(x), (7.64b)

c(0)(0, t) = c(0)(L/Lc, t) = cb. (7.64c)

7.4.3 Numerical solution3861

In this section, we find the numerical solution of the non-local, homogenised3862

problem (7.64a)-(7.64c) by means of FE methods. As we previously mentioned, in3863

this context, the effective diffusivity can be found without recurring to solve the3864

cell problem (compare Equations (7.63) and (7.60)).3865

To start with, we discretise the time interval [0, tf ] in M subintervals, which we3866

assume of equal amplitude τ . Then, for simplicity of notation, we set c(0)(x, tm) =3867

um(x) and we adopt an implicit Euler scheme for Equation (7.64a) which is thus3868

approximated as3869

um+1(x)− τ d̂ eff
st ∂x

{
Dα[um+1](x)

}
= um(x). (7.65)

Next, by introducing the space of test functions [247]3870

V = {v ∈ H 1(Xh) : v|∂Xh
= 0} ≡ H 1

0 (Xh), (7.66)
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where H 1(Xh) is defined analogously to H 1(Yk), we put Equation (7.65) in weak3871

form. To this end, we multiply Equation (7.65) by the test function v ∈ V , and3872

after integrating over Xh, we find3873 ∫
Xh

um+1(x)v(x)dx+ τ d̂ eff
st

∫
Xh

Dα[um+1](x)dxv(x)dx =

∫
Xh

um(x)v(x)dx. (7.67)

Next, we discretise the spatial domain Xh in N finite elements, and introduce the3874

function basis {ψi}Ni=0, with ψi(xj) = δij and i, j = 0, . . . , N . Then, we approximate3875

v(x), the initial condition u0(x), and um(x), for all m, as3876

v̌(x) :=
N−1∑
i=1

υiψi(x), (7.68a)

ǔ0(x) := cbψ0(x) +
N−1∑
i=1

cin(xi)ψi(x) + cbψN(x), (7.68b)

ǔm(x) := cbψ0(x) +
N−1∑
i=1

ωmi ψi(x) + cbψN(x), (7.68c)

where ωmi , with m = 1, . . . ,M + 1, are constant coefficients to be determined and3877

tM+1 = tf . Thus, by substituting (7.68a) and (7.68c) into (7.67), and adopting a3878

standard procedure in FE, we find3879

N−1∑
j=1

N−1∑
i=1

υj [Mji + τLji(α)]ω
m+1
i =

N−1∑
j=1

N−1∑
i=1

υjMjiω
m
i −

N−1∑
j=1

υjτFj(α), (7.69)

where3880

Lji(α) := d̂ eff
st

∫
Xh

dxψj(x)D
α[ψi](x)dx, (7.70a)

Mji :=

∫
Xh

ψj(x)ψi(x)dx, (7.70b)

Fj(α) := d̂ eff
st

∫
Xh

{cbDα[ψ0](x) + cbD
α[ψN ](x)} dxψj(x)dx. (7.70c)

It is worth to remark that both the stiffness matrix Lji(α) and the nodal force Fj(α)3881

depend on the parameter α∈ ]0,1[.3882

Then, Equation (7.69) can be rewritten as3883

{υ}T ([M] + τ [L(α)]) {ωm+1} = {υ}T ([M]{ωm} − τ{F(α)}) , (7.71)

which, by factorising {υ}T, leads to the linear system3884

([M] + τ [L(α)]) {ωm+1} = [M]{ωm} − τ{F(α)}. (7.72)

Details about the explicit form of Equation (7.72) are provided in Appendix 8.3.3885
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7.4.4 Results and discussion3886

We notice that, in the present framework, to find the numerical solution of the3887

homogenised problem, we only need to know d̂ eff
st as prescribed by Equation (7.63).3888

Particularly, by using the values reported in Table 7.1, we obtain3889

d̂ eff
st =

d1Rd2RL
−2
c

d2RyI + d1R(1− yI)
= 2.13̄× 10−5 s−1. (7.73)

Then, in Figure 7.5, we show the distribution of c(0) for different values of α∈ ]0,1[3890

and for different instants of time. According to the plots, and similarly to the3891

previous benchmark problem, the variation of the non-locality parameter influences3892

the way in which diffusion takes place, and in which the stationary state is attained.3893

That is, the progression of the solution towards the stationary states for α = 0.13894

is much slower than in the case determined by α = 0.9. In particular, when3895

α approaches 1 from below, the standard diffusion is recovered. We remark that,3896

although we have imposed an initial concentration with very small spatial derivative3897

at the boundary, once time initiates to increase, the tails of the concentration profile3898

tend to raise. This behaviour can be explained by the production of concentration3899

gradients that are needed for the chemical species to diffuse, in this case, towards3900

the centre of the specimen. However, such gradients tend to “turn off” themselves3901

in the course of time since the concentration has to move towards its stationary3902

value.3903

It is worth noticing that the way in which the non-local interactions are in-3904

troduced influences the diffusion profile of the chemical species (see Figure 7.6).3905

Indeed, when considering the existence of non-local interactions at the micro-scale,3906

these are ciphered into the effective coefficient d̂ eff(β), which is parametrised by3907

β, while the effective mass flux has the classical form given by Fick’s law. On the3908

other hand, the consideration of long-range interactions at the macro-scale leads, as3909

prescribed by (7.61), to a non-local effective diffusivity that depends on the spatial3910

points, and thus to a homogenised equation of fractional type for the leading order3911

of concentration. In this case, as shown in Figure 7.6, there is a strong memory3912

of the initial concentration, that is, the fractional operators appearing in Equa-3913

tion (7.64a) help to preserve the information of the initial distribution of chemical3914

species as time passes. This phenomenon is less pronounced when the non-locality3915

is considered only at the micro-scale, and therefore, for t ≤ 6 h the diffusion near3916

the boundary of the composite is slower. We further notice that, by comparing the3917

curves resulting from the benchmark problem I with the ones from the standard,3918

local framework, the assumption of the non-locality at the micro-scale produces a3919

slower diffusion of the species. Thus, we can conclude that the consideration of3920

non-local effects at the micro-structure impacts the evolution of the concentration3921

at the macro-scale.3922

Finally, we remark that for α → 1− and β → 1− both benchmark tests restore3923
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Local case

Figure 7.5: Numerical solution of the homogenised equation for different values
of α and different times. For α = 0.1, there is a strong memory of the initial
distribution, whereas for α near 1 the standard diffusion is attained.

the standard diffusion given by Fick’s law and, thus, they become indistinguishable3924

in the limit. For this reason, in Figure 7.6, we report only the cases in which there3925

is a strong non-locality, that is when α and β are near zero.3926
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Figure 7.6: Comparison of the numerical solutions resulting from the benchmark
problems I and II with the ones from the local framework. The way in which non-
locality is introduced influences the diffusion of the chemical species.
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Chapter 83927

FE discretisation of the non-local3928

cell and homogenised problems3929

The work reported in this chapter has been previously published in [241].3930

3931

8.1 Introduction3932

As remarked in [220], the numerics of fractional diffusion in bounded domains3933

requires special care because of the way in which the integro-differential operators3934

featuring in the constitutive laws are to be handled, e.g., within FE methods.3935

These difficulties increase if the medium in which fractional diffusion takes place is3936

heterogeneous, as is the case in this work. A standard way of addressing numerically3937

fractional differential equations in bounded domains is to have recourse to finite3938

differences, specifically in the form of Grünwald-Letnikov schemes (see, e.g., [182,3939

196]), although we are aware of works in which FE procedures are adopted [244,3940

151, 106, 220]. However, this is not done for fractional differential equations in a3941

multi-scale context, at least to our knowledge.3942

In the case of the benchmark problem I (see Section 7.3), to solve Equations3943

(7.19a)-(7.19c) in a bounded domain, the techniques based on Fourier and Laplace3944

transforms are of little help and, consequently, we solve the non-local cell problem3945

by means of a FE scheme which accounts for fractional derivatives and interface3946

conditions. Since the homogenised problem (7.28a)-(7.28c) involves classical FE3947

techniques, in what follows we report some details concerning the matrices and vec-3948

tors that arise from the discretisation of the non-local cell problem (7.19a)-(7.19c).3949

Besides, we show how to compute the discretised non-local effective diffusivity de-3950

fined in (7.24).3951

On the other hand, here, we also show some specifics in the computation of3952
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the matrices and vectors resulting from the discretisation concerning the bench-3953

mark problem II (see Section 7.4). In this particular case, we concentrate on the3954

homogenised equation because it features a derivative of fractional type since the3955

cell problem, described by Equations (7.56a)-(7.56c), takes the form of an ordi-3956

nary differential equation for which it is possible to find an analytical solution by3957

considering a standard approach.3958

8.2 Benchmark problem I3959

Here, we calculate the matrices appearing in Equation (7.45) and the non-local3960

effective diffusivity (7.46). Firstly, we recall that the system (7.45) reads3961

[L(β)]{ω} = −{F(β)}, (8.1)

with3962

Lkji(β) = dkRL
−2
c

∫
Yk

dyψ
k
j (y)D

β
k [ψ

k
i ](y)dy, (8.2a)

Fkj (β) =
dkRL

−2
c

2Γ(1− β)

∫
Yk

Ak(y; β)dyψ
k
j (y)dy. (8.2b)

For the sake of simplicity, let us consider that the basis functions are Lagrange3963

polynomials of the first order,3964

ψki (y) =



y − yi−1

yi − yi−1

, yi−1 ≤ y < yi,

yi+1 − y

yi+1 − yi
, yi ≤ y ≤ yi+1,

0, elsewhere,

(8.3)

for i = 1, . . . , N1 − 1 if k = 1, and i = N1 + 1, . . . , N2 − 1 for k = 2, and at the3965

interface yN1 = yI, we prescribe3966

ψ1
N1
(y) =


y − yN1−1

yN1 − yN1−1

, yN1−1 ≤ y < yN1 ,

0, elsewhere,

(8.4a)

ψ2
N1
(y) =


yN1+1 − y

yN1+1 − yN1

, yN1 ≤ y ≤ yN1+1,

0, elsewhere.

(8.4b)

Then, from the above expressions, the fractional stiffness matrices Lkji(β) are com-3967

puted in two steps. First, we calculate the symmetrised Caputo fractional deriva-3968

tives of (8.3)-(8.4b) and then, we substitute the results into (8.2a) and (8.2b).3969
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However, before doing this, we find it convenient to compute the following inte-3970

grals,3971

Cp,q(y; β) := (1− β)

∫ yq

yp

1

|y − ỹ|β
dỹ

= |y − yp|1−βsign(y − yp)

− |y − yq|1−βsign(y − yq), (8.5a)

H
p,q
k,l (β) := (2− β)

∫ yl

yk

Cp,q(y; β)dy

= |yq − yk|2−β − |yq − yl|2−β

+ |yp − yl|2−β − |yp − yk|2−β. (8.5b)

From here on, for the sake of a lighter notation, we omit the dependence of Hp,q
k,l3972

on β. Moreover, we notice that3973

A1(y; β) = C0,N1(y; β)/(1− β), (8.6a)

A2(y; β) = CN1,N2(y; β)/(1− β). (8.6b)

Therefore, by using the definitions for the basis functions ψki and (8.5a), the sym-3974

metrised Caputo fractional derivative of ψki is given by3975

D
β
k [ψ

k
i ](y) =

1

2Γ(2− β)

{
Ci−1,i(y; β)

yi − yi−1

− Ci,i+1(y; β)

yi+1 − yi

}
, (8.7)

where i = 1, . . . , N1 − 1, if k = 1, and i = N1 + 1, . . . , N2 − 1, if k = 2. Besides,3976

D
β
1 [ψ

1
N1
](y) =

1

2Γ(2− β)

CN1−1,N1(y; β)

yN1 − yN1−1

, (8.8a)

D
β
2 [ψ

2
N1
](y) = − 1

2Γ(2− β)

CN1,N1+1(y; β)

yN1+1 − yN1

. (8.8b)

We remark that, by taking the limit in expressions (8.7)-(8.8b) for β → 1−, we3977

obtain3978

lim
β→1−

D
β
k [ψ

k
i ](y) = dyψ

k
i (y)

=


1

yi−yi−1
, yi−1 < y < yi,

− 1
yi+1−yi , yi < y < yi+1,

0, y < yi−1 and y > yi+1,

(8.9)

for y /= yi, i = 1, . . . , N1 − 1, N1 + 1, . . . , N2. Moreover, for y /= yN1 ,3979

lim
β→1−

D
β
1 [ψ

1
N1
](y) = dyψ

1
N1
(y), (8.10a)
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lim
β→1−

D
β
2 [ψ

2
N1
](y) = dyψ

2
N1
(y). (8.10b)

Therefore, the results (8.9)-(8.10b), as previously proved, imply that the sym-3980

metrised Caputo fractional derivative of ψki tends to the first derivative of ψki for3981

β → 1−.3982

8.2.1 Computation of Lk3983

From (8.5b) we have that for j, i = 1, . . . , N1 − 1, if k = 1, and j, i = N1 +3984

1, . . . , N2 − 1, if k = 2, the components of the fractional stiffness matrix are3985

Lkji(β) =
dkRL

−2
c

2Γ(3− β)

{
1

yi − yi−1

(
H
j−1,j
i−1,i

yj − yj−1

−
H
j,j+1
i−1,i

yj+1 − yj

)

− 1

yi+1 − yi

(
H
j−1,j
i,i+1

yj − yj−1

−
H
j,j+1
i,i+1

yj+1 − yj

)}
. (8.11)

Furthermore,3986

• if j = 1, . . . , N1 − 1 and i = N13987

L1j N1
(β) =

d1RL
−2
c

2Γ(3− β)

1

yN1 − yN1−1

(
H
j−1,j
N1−1,N1

yj − yj−1

−
H
j,j+1
N1−1,N1

yj+1 − yj

)
, (8.12)

• if j = N1 and i = 1, . . . , N1 − 13988

L1N1i
(β) =

d1RL
−2
c

2Γ(3− β)

1

yN1 − yN1−1

(
H
N1−1,N1

i−1,i

yi − yi−1

−
H
N1−1,N1

i,i+1

yi+1 − yi

)
, (8.13)

• if i, j = N13989

L1N1N1
(β) =

d1RL
−2
c

2Γ(3− β)

1

(yN1 − yN1−1)2
H
N1−1,N1

N1−1,N1
, (8.14a)

L2N1N1
(β) =

d2RL
−2
c

2Γ(3− β)

1

(yN1+1 − yN1)
2
H
N1,N1+1
N1,N1+1 , (8.14b)

• if j = N1 and i = N1 + 1, . . . , N2 − 13990

L2N1i
(β) = − d2RL

−2
c

2Γ(3− β)

1

yN1+1 − yN1

(
H
N1,N1+1
i−1,i

yi − yi−1

−
H
N1,N1+1
i,i+1

yi+1 − yi

)
, (8.15)
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• if j = N1 + 1, . . . , N2 − 1 and i = N13991

L2j N1
(β) = − d2RL

−2
c

2Γ(3− β)

1

yN1+1 − yN1

(
H
j−1,j
N1,N1+1

yj − yj−1

−
H
j,j+1
N1,N1+1

yj+1 − yj

)
. (8.16)

By looking at the above expressions, and exploiting the symmetry of Hp,q
k,l (here,3992

symmetry means that the subscripts can be exchanged with the superscripts),3993

namely3994

H
p,q
k,l (β) = |yq − yk|2−β − |yq − yl|2−β + |yp − yl|2−β − |yp − yk|2−β

= |yl − yp|2−β − |yl − yq|2−β + |yk − yq|2−β − |yk − yp|2−β

= Hk,l
p,q (β), (8.17)

it can be proven that the non-local stiffness matrices (one for each subcell) are3995

symmetric as in the standard case, i.e.,3996

Lkji(β) = Lkij(β), ∀β∈ ]0,1[. (8.18)

8.2.2 Computation of Fk3997

By recalling the definition of Fk(β) given in (8.2b), and using the expressions3998

(8.6a)-(8.8b), the components of the nodal fractional force are given by3999

• if j = 1, . . . , N1 − 14000

F1
j(β) =

d1RL
−2
c

2Γ(3− β)

(
H

0,N1

j−1,j

yj − yj−1

−
H

0,N1

j,j+1

yj+1 − yj

)
, (8.19)

• if j = N14001

F1
N1
(β) =

d1RL
−2
c

2Γ(3− β)

H
0,N1

N1−1,N1

yN1 − yN1−1

, (8.20a)

F2
N1
(β) = − d2RL

−2
c

2Γ(3− β)

H
N1,N2

N1,N1+1

yN1+1 − yN1

, (8.20b)

• if j = N1 + 1, . . . , N2 − 14002

F2
j(β) =

d2RL
−2
c

2Γ(3− β)

(
H
N1,N2

j−1,j

yj − yj−1

−
H
N1,N2

j,j+1

yj+1 − yj

)
. (8.21)
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8.2.3 Numerical approximation of the effective coefficient4003

By using the definitions introduced in the previous sections, the numerical ef-4004

fective diffusivity d̂ eff
num in Equation (7.46) can be computed as4005

d̂ eff
num =

d1RL
−2
c

2Γ(3− β)

{
H

0,N1

0,N1
+

N1−1∑
i=1

ω1
i

(
H
i−1,i
0,N1

yi − yi−1

−
H
i,i+1
0,N1

yi+1 − yi

)

+ω1
N1

H
N1−1,N1

0,N1

yN1 − yN1−1

}

+
d2RL

−2
c

2Γ(3− β)

{
H
N1,N2

N1,N2
− ω2

N1

H
N1,N1+1
N1,N2

yN1+1 − yN1

+

N2−1∑
r=N1+1

ω2
r

(
H
r−1,r
N1,N2

yr − yr−1

−
H
r,r+1
N1,N2

yr+1 − yr

)}
. (8.22)

We notice that in Equation (8.22), the coefficients ωki are the solutions of the4006

algebraic equation (7.45) and represent the nodal concentrations. Therefore, the4007

effective coefficient can be computed after the non-local cell problem has been4008

solved.4009

8.3 FE discretisation of the non-local homogenised4010

problem. Benchmark problem II4011

Analogously to what has been done above, we consider the basis functions to4012

be defined by Lagrange polynomials of the first order, i.e.4013

ψ0(x) =


x1 − x

x1 − x0
, x0 ≤ x < x1,

0, elsewhere,
(8.23a)

ψi(x) =


x− xi−1

xi − xi−1

, xi−1 ≤ x < xi,

xi+1 − x

xi+1 − xi
, xi ≤ x ≤ xi+1,

0, elsewhere,

i = 1, . . . , N − 1 (8.23b)

ψN(x) =


x− xN−1

xN − xN−1

, xN−1 < x ≤ xN ,

0, elsewhere.
(8.23c)
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Then, by using (8.23b), the mass matrix is given by4014

Mji =


(xj − xj−1)/6, i = j − 1,

(xj+1 − xj−1)/3, i = j,

(xj+1 − xj)/6, i = j + 1,

0, otherwise.

(8.24)

Now, by recalling the expressions (8.5a) and (8.5b), with a slight abuse of no-4015

tation, we have that4016

Cp,q(x;α) := |x− xp|1−αsign(x− xp)

− |x− xq|1−αsign(x− xq), (8.25a)

H
p,q
k,l (α) := |xq − xk|2−α − |xq − xl|2−α

+ |xp − xl|2−α − |xp − xk|2−α, (8.25b)

where x replaces y, and the parameter α replaces β. In the following discussion,4017

we omit the dependence of Hp,q
k,l on α.4018

Thus, by using expressions (8.25a) and (8.25b), and the symmetrised Caputo4019

derivative of order α of ψi, i = 1, . . . , N , i.e.4020

Dα[ψi](x) =
1

2Γ(2− α)

{
Ci−1,i(x;α)

xi − xi−1

− Ci,i+1(x;α)

xi+1 − xi

}
, (8.26)

the fractional stiffness matrix L(α) can be computed as follows4021

Lji(α) =
d̂ eff
st

2Γ(3− α)

{
1

xi − xi−1

(
H
j−1,j
i−1,i

xj − xj−1

−
H
j,j+1
i−1,i

xj+1 − xj

)

− 1

xi+1 − xi

(
H
j−1,j
i,i+1

xj − xj−1

−
H
j,j+1
i,i+1

xj+1 − xj

)}
. (8.27)

Moreover, by taking into account that4022

Dα[ψ0](x) = − 1

2Γ(2− α)

1

x1 − x0
C0,1(x;α), (8.28a)

Dα[ψN ](x) =
1

2Γ(2− α)

1

xN − xN−1

CN−1,N(x;α), (8.28b)

the elements of the fractional nodal force F(α) are given by

Fj(α) =
d̂ eff
st

2Γ(3− α)

{
− cb
x1 − x0

(
H

0,1
j−1,j

xj − xj−1

−
H

0,1
j,j+1

xj+1 − xj

)
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+
cb

xN − xN−1

(
H
N−1,N
j−1,j

xj − xj−1

−
H
N−1,N
j,j+1

xj+1 − xj

)}
. (8.29)

As previously discussed, also in this case both the fractional stiffness matrix and4023

the fractional nodal force tend to their classical counterparts when α → 1−.4024
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The content reported in this chapter has been previously published in [241].4026

4027

In this second part of the Thesis, we study the two-scale, non-local diffusion4028

of a chemical species in a composite medium. This is addressed by prescribing4029

a two-scale constitutive law of fractional type for the mass flux of the chemical4030

species and, with the aid of the asymptotic homogenisation technique, we obtain4031

an effective characterisation of the composite, which is subjected to the existence4032

of non-local interactions at both length scales. As a result, the non-local effects at4033

the micro-scale are ciphered in the effective diffusivity while, at the macro-scale,4034

the homogenised problem features an integro-differential equation. In particular,4035

we show that we can obtain classical results of homogenisation theory if the non-4036

locality assumption is ignored.4037

4038

In Chapter 6, we establish a combined framework in which some constitutive4039

laws involving fractional derivatives are studied in conjunction with asymptotic4040

homogenisation, in order to solve problems characterised by non-local diffusion at4041

different scales. Furthermore, we note that even though we adopted a formal-4042

ism that can be easily adapted to a two- or three-dimensional context, we prefer,4043

for the time being, to contextualise our mathematical model in a one-dimensional4044

framework. It is worth mentioning that although we focus our attention on the4045

connections between spatial environment and non-locality, we present some discus-4046

sions towards the addition of the time scales induced by the characteristic length4047

scales in our model.4048

4049

Furthermore, in Chapter 7, we employ asymptotic homogenisation to determine4050

the effective diffusivity coefficient of the considered medium. Our computations4051

predict that, at the macro-scale, the attainment of the stationary state of the4052

diffusion process is appreciably hindered by the non-local interactions accounted for4053

by the operators of fractional differentiation that define the diffusion fluxes. This4054

retardation manifests itself for decreasing values of a real parameter (the fractional4055

order of differentiation) that defines the strength of such non-local interactions, at4056

the micro- and at the macro-scale.4057
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It is important to emphasise that the way in which the non-local interactions4058

influence the macroscopic behaviour of the system depends on the scale at which4059

these interactions are introduced. When the non-local interactions are considered at4060

the micro-scale, they emerge also at the macro-scale through the effective fractional4061

diffusivity d̂ eff(β) and by slowing down the diffusion. However, the effect of the non-4062

local interactions is more evident when those are accounted for at the macro-scale,4063

and occurs through a deceleration of the diffusion process that is stronger than in4064

the previous case. Hence, the information enclosed in the initial distribution of the4065

concentration is kept for a “longer” time.4066

As we stated before, we conceived a model in one dimension. Clearly, this model4067

can be generalised to higher dimensions. However, there are some issues that must4068

be tackled. One of them is that the non-locality function and the normalisation4069

factors should be conceived in a symmetry- and dimension-dependent way. More-4070

over, a more detailed numerical study would be required. These issues are part of4071

our current research.4072

4073

Finally, in Chapter 8, we address the FE discretisation of benchmark problems4074

that include the non-local nature of the mass flux and the role of the heterogeneous4075

structure of the medium under study. We remark that the presentation of the FE4076

scheme presented in this work is very elementary and can be obtained by appropri-4077

ately rephrasing the one-dimensional formulation of the FE method as presented4078

e.g. in [152]. Nevertheless, the simplicity of the numerics allows us to discuss some4079

of the specific properties of the algebraic equations resulting from the discretisation4080

process. In particular, in the benchmark problems, the presence of the symmetrised4081

Caputo fractional derivative results in fractional stiffness matrices and fractional4082

nodal forces. More specifically, we prove that the fractional stiffness matrices are4083

symmetric and, although they are dense because of the presence of the fractional4084

derivatives, in the limits α → 1− and β → 1− they become the standard stiffness4085

matrices of tridiagonal form. The numerical simulations are in harmony with these4086

theoretical predictions.4087
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Part III4088

Non-locality in the4089

electrophysiology of nerve cells4090
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Chapter 94091

Electrophysiology of nerve cells:4092

The Poisson–Nernst–Planck4093

model4094

The work reported in this chapter is taken from [236]1.4095

4096

9.1 Introduction4097

A neuron is a cell within the nervous system distinguished by its function of4098

transmitting information to other nerve cells. A neuron consists of three main4099

parts: the soma (or cell body), the dendrites and the axon. The function of the4100

dendrites is to carry information received from other neurons to the soma, where4101

this information is contained, and then transmitted through the axon to other cells.4102

So, the dendrites act as the “input” part of the neuron, whereas the axon acts as4103

the “output” part.4104

The soma is the largest volumetric part of the cell body. On the other hand, the4105

dendrites form a dense chain of branches and the axon is the longest branch ending4106

with a number of terminals that are connected to the dendrites of other neurons4107

[256]. A membrane separates the interior of the cell to the external aqueous en-4108

vironment having very different compositions. At the interior of the cell chloride4109

(Cl−) and sodium (Na+) ions have lower concentrations than at the outside, while4110

the concentration of potassium (K+) ions is larger at the exterior of the cell with4111

respect to its interior [256]. One of the roles of the membrane is to handle the move-4112

ment of ions in the direction of the concentration gradient between the intracellular4113

1The work [236] is also used in the MSc thesis of Mr. Vito Napoli. The Author of this PhD
thesis was co-advisor of that MSc thesis.
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and extracellular space through ion channels. This movement determines what is4114

known as the membrane potential, denoted by V . This is an electro-chemical signal4115

given by the difference in electrical potential between the internal and external part4116

of the cell membrane.4117

The membrane potential of a non-excited nerve cell at rest is called the rest-4118

ing potential. That is the resting potential is the baseline state of the membrane4119

potential. On the other hand, the terminology action potential is used to describe4120

the membrane potential of an excited nerve cell during the transmission of a nerve4121

impulse. In particular, the action potential is evoked when a sufficiently large4122

depolarisation (the interior voltage becomes less negative) happens because of the4123

activation of certain voltage-gated ion channels allowing the exchange of ions across4124

the membrane [256].4125

As pointed out in [187, 180] several neuropathological incidents occur in the4126

membrane structure and/or are a consequence of membrane dysfunctioning. Ab-4127

normalities in the membrane potential induced, e.g. by improper levels of ions4128

concentrations, affect the neurophysiological function of the brain and stimulates4129

conduction, which is at the base of various diseases, such as epilepsy [7]. Therefore,4130

the mathematical modelling of the concentration dynamics in brain tissues, as well4131

as their effect on the membrane potential is fundamental in the understanding of4132

neurodegeneration and neuroprotection.4133

In this chapter, we revisit some of the more salient aspects of the model pre-4134

sented in [96], which we slightly modify according to our needs. In doing so, to4135

highlight the differences in our approach, we compare the model in [96] with some4136

other models available in the literature of the sector, such as, for example, those4137

discussed in [261, 279, 277, 278].4138

9.2 Integral and local form of Maxwell’s equa-4139

tions4140

We start by outlining Maxwell’s equations retrieved in the form they take in the4141

matter [169, 193, 208, 167, 103], and under the hypothesis that the material is at4142

rest in the chosen reference system. In the most general formulation, but restricted4143

to the problem under consideration, Maxwell’s equations in their integral form are4144

given by4145 ∫
∂Σ

E · τ ds = − d

dt

∫
Σ

B · n da, (9.1a)∫
∂Ω

B · n da = 0, (9.1b)∫
∂Σ

H · τ ds =

∫
Σ

J · n da +
d

dt

∫
Σ

D · n da, (9.1c)
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∫
∂Ω

D · n da =

∫
Ω

ϱf dv, (9.1d)

where E and B represent the electric and the magnetic induction fields, respec-4146

tively. Moreover, H is the magnetic field, J is the current density, D is the electric4147

induction field, and ϱf is the the volumetric density of the free charges. In the4148

framework of this work, it is assumed that the current density J is constituted by4149

a term generated because of the relative motion of the electric charges with respect4150

to the motion of the considered medium and by any conduction and/or imposed4151

current densities.4152

In equations (9.1a)–(9.1d), the open and connected set Ω represents the fixed4153

region of space contained in the considered body and whose boundary is given4154

by the closed surface ∂Ω. Additionally, Σ denotes an open surface, also fixed and4155

contained in the body under study, and whose boundary is represented by the closed4156

and regular curve ∂Σ. The symbol τ is used to denote the vector field tangent to4157

the curve ∂Σ, while n is the vector field normal to a given surface, which, in4158

our context, can be Σ or ∂Ω. Finally, “ds”, “da” and “dv” are, respectively, the4159

“classic” line, area and volume measures (e.g. Riemann or Lebesgue).4160

Since we are considering that Σ is a fixed surface in space, Reynolds’ theorem4161

for surfaces allows us to conclude that the time rate of change of the magnetic and4162

electric induction terms in Equations (9.1a) and (9.1c) can be written as4163

d

dt

∫
Σ

B · n da =

∫
Σ

∂tB · n da, (9.2a)

d

dt

∫
Σ

D · n da =

∫
Σ

∂tD · n da. (9.2b)

We remark that if Σ is a surface changing with time, the above expressions have4164

to be accordingly rewritten with the help of Reynolds’ transport theorem (refer to,4165

e.g. [59]).4166

Substituting the results (9.2a) and (9.2b) in Equations (9.1a) and (9.1c), and4167

considering Stokes’ theorem for the integrals on ∂Σ and Gauss’s theorem for the4168

integrals on ∂Ω in Equations (9.1b) e (9.1d), we obtain4169 ∫
Σ

(curlE) · n da = −
∫
Σ

∂tB · n da, (9.3a)∫
Ω

divB dv = 0, (9.3b)∫
Σ

(curlH) · n da =

∫
Σ

J · n da +

∫
Σ

∂tD · n da, (9.3c)∫
Ω

divD dv =

∫
Ω

ϱf dv. (9.3d)
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Finally, the localisation of Equations (9.3a)–(9.3d), leads to the local form of4170

Maxwell’s equations, namely4171

curlE = −∂tB, (9.4a)

divB = 0, (9.4b)

curlH = J + ∂tD, (9.4c)

divD = ϱf . (9.4d)

9.3 Maxwell’s equations in the electrodynamics4172

of nerve cells4173

The electrodynamics of nerve cells is usually studied by considering that the4174

magnetic induction field, B, varies slowly over time, so that the partial derivative4175

∂tB can be neglected in (9.4a) [96, 277]. Consequently, Maxwell’s equations reduce4176

to4177

curlE = 0, (9.5a)

divB = 0, (9.5b)

curlH = J + ∂tD, (9.5c)

divD = ϱf . (9.5d)

All the quantities involved in (9.5a)–(9.5d) are referred to a generic region4178

R ⊂ S of the three-dimensional Euclidean space, S , identifiable either with4179

the intra-cellular space or with the extra-cellular space of the nerve cell, indicated,4180

respectively, with Ω(i) and Ω(e). Here and in the following, R is a connected open4181

subset of S . In this context, when specifying whether a given physical quantity4182

f , which can be a scalar, vector or tensor quantity, is defined in Ω(i) or in Ω(e),4183

we will adopt the notation f (i) := f|Ω(i) or f (e) := f|Ω(e) . In this section, however,4184

to streamline the presentation of the results, we omit to explicitly write to which4185

portion of space the fields considered are restricted. Furthermore, we assume that4186

all the fields considered are of class C2 in the region of space in which they are4187

defined or restricted.4188

Equation (9.5a) implies that the electric field E can be expressed as4189

E = −gradϕ, (9.6)

where ϕ is referred to as the scalar potential (see, for instance [167]). Moreover,4190

because of the form of the system (9.5a)–(9.5d), the electric induction field, D, still4191

appears coupled with the magnetic field, H . However, this coupling can be elimi-4192

nated by combining Equation (9.5c) with (9.5d) such that we obtain the equation4193

of conservation of free electric charges. For this purpose, we apply the divergence4194
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operator to Equation (9.5c) and consider the vector identity div(curlH) = 0 and4195

the property4196

div ∂tD = ∂t divD = ∂tϱf . (9.7)

Then, by decoupling the condition on B of solenoid field, i.e. divB = 0, from the4197

remaining three Maxwell’s equations, we obtain that4198

E = −gradϕ, (9.8a)

0 = divJ + ∂tϱf , (9.8b)

divD = ϱf . (9.8c)

9.4 The Poisson–Nernst–Planck (PNP) model4199

Following [96], in the next sessions, we discuss some of the main considerations4200

that lead to the Poisson–Nernst–Planck (PNP) model.4201

9.4.1 Ion concentration dynamics4202

We denote by ck, with k = 1,2, . . . , N , the molar concentrations of the k-th4203

ionic species. Then, the density of free charges is considered to be given by the4204

expression [96]4205

ϱf :=
N∑
k=1

Fzkck, (9.9)

where F is Faraday constant and zk ∈ Z is the valence of the k-th ionic species.4206

The current density, J , is defined through the sum of the current density of the4207

k-th ionic species, Jk, weighted by the respective valences of the ionic species [96].4208

That is,4209

J :=
N∑
k=1

FzkJk. (9.10)

In particular, the current density of the k-th ionic species is supposed to be addi-4210

tively split in a diffusive and an electric part so that [96]4211

Jk :=−Dk grad ck +
FzkDk

RT
ckE

=−Dk grad ck −
FzkDk

RT
ck gradϕ, (9.11)
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with R being the gas constant, T the absolute temperature, and Dk the molecular4212

diffusion coefficient of the k-th ionic species [96]. Particularly, it is assumed that4213

the temperature T is constant in time and space, and that each Dk, k = 1,2, . . . , N ,4214

is scalar function, since the materials contained in R are considered isotropic with4215

respect to the phenomenon of molecular diffusion. The combination of Equations4216

(9.10) and (9.11) yields4217

J = −
N∑
k=1

FzkDk grad ck − σ gradϕ, (9.12)

where σ is the conductivity of the medium [261] and is given by4218

σ :=
N∑
k=1

(Fzk)
2Dk

RT
ck. (9.13)

We notice that the form of J given in (9.12) deviates from Ohm’s law because it4219

includes the influence of the ionic species on the total current density.4220

Now, we turn our attention to the third Maxwell equation given by (9.8b) in its4221

simplified form. This expression represents the local form of the law of conservation4222

of the total density and it will be used in the model as a balance law. Furthermore,4223

each ionic species must obey its own balance law and, therefore, in the absence of4224

sources and sinks of electric charge, we can write [96]4225

∂tck + divJk = 0, k = 1, . . . , N, (9.14)

where Jk is specified in (9.11).4226

The total number of ionic concentrations c1, . . . , cN are constrained by the elec-4227

troneutrality condition which implies that the production or removal of negative4228

and positive charges happen at equal rates. In our framework, this condition is4229

equivalent to requiring that the total current, J , be solenoidal [23, 96], namely4230

divJ ≡ div

(
N∑
k=1

FzkJk

)
= 0. (9.15)

Equation (9.15) establishes the new form of the balance equation given in (9.8b).4231

Therefore, the fields involved in (9.15), i.e. the concentrations c1, . . . , cN and the4232

scalar potential ϕ, must be such that the total current density J is solenoidal.4233

We notice that, according to (9.8b), the electroneutrality condition implies that4234

∂tϱf = 0 and, consequently, the total density of free charges is time-independent.4235

This property, however, does not allow us to conclude that the ionic concentrations4236

of the single species, that is c1, . . . , cN , are constant functions of time. In fact, by4237

virtue of (9.9), only the combination ϱf =
∑N

k=1 Fzkck will be time-independent.4238
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Taking into account the above considerations, we have that4239

divJ = 0, (9.16a)

∂tck + divJk = 0, (9.16b)

or equivalently,4240

0 = div

[
N∑
k=1

Fzk

(
−Dkgrad ck −

FzkDk

RT
ck gradϕ

)]
, (9.17a)

0 = ∂tck + div

[
−Dkgrad ck −

FzkDk

RT
ck gradϕ

]
, k = 1, . . . , N. (9.17b)

In (9.17a) and (9.17b), the unknowns are given by the scalar potential, ϕ, and by4241

the ionic concentrations, c1, . . . , cN .4242

Following the ideas put forward in [96] and assuming that the electric induction4243

field, D depends linearly on the electric field E, we write4244

D = ε0εrE = −ε0εrgradϕ, (9.18)

where ε0 and εr are, respectively, the dielectric constant in the vacuum and the4245

relative permittivity of the region that the material occupies. Therefore, known ϕ,4246

it is possible to go back to the electric field, E, and the density of free charges, ϱf ,4247

through the relations4248

E = −gradϕ, (9.19a)

ϱf = divD = div (ε0εrE) = −div (ε0εrgradϕ) . (9.19b)

9.4.2 Governing equations in the intracellular and extra-4249

cellular space4250

We observe that each of the Equations (9.17a)–(9.19b) must be particularised4251

to Ω(i) and to Ω(e). This means that each term, be it an unknown field or a material4252

parameter, acquires a “label”, which specifies whether the term itself is defined in4253

Ω(i) or in Ω(e). Thus, we will set ϕ(e) and ϕ(i) depending on whether the scalar4254

potential is restricted to Ω(e) or Ω(i). Similarly, we will write c
(e)
k and c

(i)
k for ion4255

concentrations, and D
(e)
k and D

(i)
k for the molecular diffusion coefficients. Therefore,4256

we can write [96]:4257

4258

In Ω(i):4259

div

[
N∑
k=1

Fzk

(
−D(i)

k grad c
(i)
k − FzkD

(i)
k

RT
c
(i)
k gradϕ(i)

)]
= 0, (9.20a)
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∂tc
(i)
k + div

[
−D(i)

k grad c
(i)
k − FzkD

(i)
k

RT
c
(i)
k gradϕ(i)

]
= 0, k = 1, . . . , N. (9.20b)

In Ω(e):4260

div

[
N∑
k=1

Fzk

(
−D(e)

k grad c
(e)
k − FzkD

(e)
k

RT
c
(e)
k gradϕ(e)

)]
= 0, (9.21a)

∂tc
(e)
k + div

[
−D(e)

k grad c
(e)
k − FzkD

(e)
k

RT
c
(e)
k gradϕ(e)

]
= 0, k = 1, . . . , N. (9.21b)

Thus, each equation of the system (9.17a)–(9.19b) splits into two equations, coupled4261

through the interface M, which denotes the cell membrane and forms both the4262

boundary of Ω(i) and the inner boundary of Ω(e) (see Figure 9.1). We denote by4263

∂Ω(i) the boundary of Ω(i), and the boundary of Ω(e) is represented in the form4264

∂Ω(e) = ∂Ω(e,i) ⊔ ∂Ω(e,e), where ∂Ω(e,e) and ∂Ω(e,i) are, respectively, the outer and4265

the inner boundaries of Ω(e). Therefore, we have M ≡ ∂Ω(i) ≡ ∂Ω(e,i). Based on4266

these geometric properties, we emphasize that for the model to be well-posed, we4267

must impose appropriate conditions on M and ∂Ω(e,e).4268

Figure 9.1: Schematic of a neuron. In our framework Ω(i) denotes the intracellular
space, Ω(e) is the extracellular space and M defines the interface between Ω(i) and
Ω(e).

9.4.3 Interface conditions between the scalar potentials4269

The potentials ϕ(i) and ϕ(e), in general, cannot be “collected” with continuity on4270

M, from which it follows that ϕ
(i)
|M(x, t) /= ϕ

(e)
|M(x, t). From a physical point of view,4271

this is due to the fact that the cell membrane, here described by the surface M,4272

is the site where electrochemical phenomena occur, the most relevant of which are4273

due to the accumulation of electrical charges on its two faces. As we mentioned4274

above, these charge accumulations generate the scalar potential difference at the4275
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two faces of the membrane (i.e. the membrane potential) [256, 96, 261, 278, 95,4276

147]4277

V := ϕ
(i)
|M− ϕ

(e)
|M, (9.22)

which, in turn, produces both capacitive and conductive electric currents through4278

the membrane.4279

The definition (9.22) can be employed as a Dirichlet condition for ϕ(i) on M,4280

thus providing [96]4281

ϕ
(i)
|M = ϕ

(e)
|M+ V (9.23)

as the first boundary condition for Equation (9.20a). Given the geometry of the4282

problem, Equation (9.23) constitutes an inner-boundary condition also for ϕ(e),4283

although for the latter field it is necessary to provide conditions also on the outer4284

boundary of Ω(e).4285

Since M constitutes an inner boundary for Ω(i) (and, more precisely, a discon-4286

tinuity surface), a further condition on M is needed for ϕ(i). The latter is provided4287

by the physical condition of continuity of the normal component to M of the total4288

electric current density. As in [96], we therefore consider that4289

J (i) · n(ie) = −J (e) · n(ei), on M, (9.24)

where n(ie) and n(ei) are the unit normal vectors to M from Ω(i) to Ω(e) and from Ω(e)
4290

to Ω(i). Furthermore, J (i) and J (e) are the current densities defined, respectively,4291

in Ω(i) and in Ω(e), i.e.4292

J (i) :=
N∑
k=1

Fzk

(
−D(i)

k grad c
(i)
k − FzkD

(i)
k

RT
c
(i)
k gradϕ(i)

)
, (9.25a)

J (e) :=
N∑
k=1

Fzk

(
−D(e)

k grad c
(e)
k − FzkD

(e)
k

RT
c
(e)
k gradϕ(e)

)
. (9.25b)

Each member of Equation (9.24) must, at the same time, equal the total current4293

density that crosses the membrane in the direction normal to it. Therefore, if we4294

denote by I the transmembrane current density, it is possible to write [96]4295

J (i) · n(ie) =I, on M, (9.26a)

−J (e) · n(ei) =I, on M. (9.26b)

Note that Equations (9.26a) and (9.26b) become inhomogeneous Neumann condi-4296

tions for ϕ(i) and for ϕ(e), i.e.4297

−
N∑
k=1

(Fzk)
2D

(i)
k

RT
ck
∂ϕ(i)

∂n(ie)
= I +

N∑
k=1

FzkD
(i)
k

∂c
(i)
k

∂n(ie)
, on M, (9.27a)

171



Electrophysiology of nerve cells: The Poisson–Nernst–Planck model

N∑
k=1

(Fzk)
2D

(e)
k

RT
ck
∂ϕ(e)

∂n(ei)
= I −

N∑
k=1

FzkD
(e)
k

∂c
(e)
k

∂n(ei)
, on M. (9.27b)

9.4.4 Constitutive relations of the membrane current: The4298

Hodgkin & Huxley model4299

According to the physics of the membrane [256, 96, 279, 261, 278, 277, 95, 147],4300

the current I consists of a capacitive term, several conductive terms —due to the4301

conductivity of transmembrane ion channels—, and possible other contributions of4302

synaptic or electrical stimuli. Specifically, we consider that [96, 277, 278, 261, 279]4303

I = I(cap) + I(ionic). (9.28)

Capacitive current: The capacitive term of the total current I can be written4304

as (see, e.g. [96, 147, 95, 256])4305

I(cap) = C ∂t

(
ϕ
(i)
|M− ϕ

(e)
|M

)
≡ C ∂tV, (9.29)

where C is the membrane capacitance.4306

Ionic currents: The total conductive contribution, associated with the ionic cur-4307

rents flowing through the membrane, is given by [256, 261, 96]4308

I(ionic) =
N∑
k=1

I
(ionic)
k , (9.30)

with I
(ionic)
k denoting the transmembrane current density produced by the passage4309

of the k-th ionic species through M. In particular, for each k = 1, . . . , N , the total4310

ion current of the k-th species is given by [96, 279, 278, 277]4311

I
(ionic)
k = I

(pass)
k + I

(HH)
k + I

(syn)
k , (9.31)

where I
(pass)
k is called the passive current, I

(HH)
k is the Hodgkin & Huxley ion current4312

and I
(syn)
k denotes the synaptic current density. We notice that in the classical4313

model of the Hodgkin & Huxley axon, only three ionic species are considered,4314

identified with sodium, potassium and chlorine. We therefore assume N = 3 and,4315

by convention, assign k = 1 to the sodium, k = 2 to the potassium and k = 3 to4316

the chlorine species. In doing so, and for consistency with the Hodgkin & Huxley4317

model, we impose [96]4318

I
(syn)
k = 0, for k ∈ {2,3}, (9.32a)
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I
(HH)
3 = 0. (9.32b)

We notice that each I
(ionic)
k is expressed as a function of the potential difference V4319

through constitutive laws [256, 96, 147].4320

4321

In particular, the explicit expressions of I
(pass)
k for the considered ionic species4322

[96, 279, 261, 278, 277, 256, 147] are4323

I
(pass)
1 = G

(pass)
1 [V − E1], (9.33a)

I
(pass)
2 = G

(pass)
2 [V − E2], (9.33b)

I
(pass)
3 = G

(pass)
3 [V − E3], (9.33c)

where G
(pass)
1 , G

(pass)
2 and G

(pass)
3 are the membrane conductances of the passive4324

model. Note that each of these conductances is constant and the corresponding4325

reference value is chosen as in [256, 96]. Moreover, in (9.33a)–(9.33c), the Nernst4326

potentials, Ek, are given by (see e.g., [256, 96, 95, 147])4327

Ek = Ek ◦ (c(e)k|M, c
(i)
k|M) =

RT

zkF
log

(
c
(e)
k|M

c
(i)
k|M

)
, k = 1, . . . ,3. (9.34)

Equivalently, the expressions for IHH
k are given by [256, 96, 147]4328

I
(HH)
1 = G

(HH)
1 [V − E1], (9.35a)

I
(HH)
2 = G

(HH)
2 [V − E2], (9.35b)

I
(HH)
3 = G

(HH)
3 [V − E3]. (9.35c)

In this case, the conductances of individual ionic species vary both explicitly in4329

time and in response to the instantaneous value of the membrane potential. In4330

particular, the way in which these dependencies are described defines the type of4331

axon studied. In the Hodgkin & Huxley model, G
(HH)
3 is set equal to zero, while4332

G
(HH)
1 and G

(HH)
2 are expressed by functions dependent both explicitly on time and4333

on the membrane potential through three gating variables, denoted by m, n and h.4334

The latter are auxiliary functions, obtained as solutions of the decoupled system of4335

ordinary differential equations [96, 256, 147]4336

∂tm = αm − [αm + βm]m, (9.36a)

∂th = αh − [αh + βh]h, (9.36b)

∂tn = αn − [αn + βn]n, (9.36c)

where αm, βm, αh, βh, αn and βn are phenomenological functions of the membrane4337

potential V which, in the Hodgkin & Huxley model, are given by [256, 147]4338

αm(x, t) = α̂m(V (x, t)) = 0.1
25− V (x, t)

exp([25− V (x, t)] /25)− 1
, (9.37a)
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αh(x, t) = α̂h(V (x, t)) = 0.07 exp(−V (x, t)/20) , (9.37b)

αn(x, t) = α̂n(V (x, t)) = 0.01
10− V (x, t)

exp([10− V (x, t)] /10)− 1
, (9.37c)

βm(x, t) = β̂m(V (x, t)) = 4 exp(−V (x, t)/18) , (9.37d)

βh(x, t) = β̂h(V (x, t)) =
1

exp[(30− V (x, t)] /10) + 1
, (9.37e)

βn(x, t) = β̂n(V (x, t)) = 0.125 exp(−V (x, t)/80) . (9.37f)

Note that each of the functions defined in (9.37a)–(9.37f) is dimensionally homo-4339

geneous to the reciprocal of the characteristic time –dependent on V – of the cor-4340

responding gating variable. For example, αm + βm is the reciprocal of the char-4341

acteristic time of m. Moreover, each of the numerical coefficients in Equations4342

(9.37a)–(9.37f) possesses physical dimensions such that the expression in which it4343

appears makes sense. For example, with reference to (9.37a), the numerical coef-4344

ficient “25” has dimensions [25] = V, while the coefficient “0.1” has dimensions4345

[0.1] = (V · s)−1.4346

4347

From the knowledge of the gating variables, it is possible to determine, by means4348

of the Hodgkin & Huxley model, the conductances G
(HH)
1 and G

(HH)
2 , which are then4349

given by [96, 256, 147]4350

G
(HH)
1 (x, t) = g1[m(V (x, t), t)]3h(V (x, t), t), (9.38a)

G
(HH)
2 (x, t) = g2[n(V (x, t), t)]4. (9.38b)

The expressions (9.38a) and (9.38b) are derived from the fact that each of the4351

gating variables represents the dynamics of a gate present in a channel, which is4352

selective to the passage of a given ion [147]. In the specific case of sodium, with4353

conductance G
(HH)
1 , there are three gates of type “m” and one gate of type “h”4354

[147], corresponding, respectively, to the exponents 3 and 1 in (9.38a). Each of4355

these types of gates refers to a given protein complex which, by remodelling, allows4356

the passage of sodium [147]. Similarly, in the case of potassium, there are four “n”4357

gates, i.e. of another type of protein complex which, as the potential V changes,4358

becomes permeable or impermeable to this ion. For a more in-depth discussion of4359

the gating variables we refer to the works [96, 277, 278, 261, 279, 256]. Here, we4360

merely point out that the Equations (9.36a)-(9.36c) are to be considered an integral4361

part of the model.4362

4363

Finally, the term I
(syn)
k refers to the synapses that the cell forms with other4364

surrounding neurons. In particular, for the sodium, we write [96]4365

I
(syn)
1 (x, t) =I

(syn)
1 (V (x, t), c

(i)
1|M(x, t), c

(e)
1|M(x, t), x, t)
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=G
(syn)
1 H(x) exp

(
−t− t0

α

)
[V (x, t)− E1(c

(i)
1|M(x, t), c

(e)
1|M(x, t))], (9.39)

where t0 is the initial time instant of observation of the system; G
(syn)
1 is the synap-4366

tic conductance; H is the characteristic function of the considered synaptic domain4367

(this function specifies the region of the membrane where such currents actually4368

take place); α is the time constant of synaptic excitation; and E1 is sodium’s Nernst4369

potential, which is assigned in terms of a constitutive function of the ratio of the4370

sodium concentration at the membrane from the “inner side” of the cell to that4371

from the “outer side” as defined in (9.34).4372

4373

Putting together the results reported in this Section, we conclude that I must4374

be determined through the equation [96, 277, 278, 261, 279]4375

I = C ∂tV +
N∑
k=1

I
(ionic)
k . (9.40)

9.4.5 Interface conditions for the ionic concentrations4376

A condition on M concerning the k-th ionic species is obtained by requiring that4377

J
(i)
k · n(ie) and J

(e)
k · n(ei), rather than being equal to each other, are equal to den-4378

sities of membrane currents associated with the ionic species under consideration.4379

Denoting such current densities by I
(i)
k and I

(e)
k , we assume that [96]4380

J
(i)
k · n(ie) =I

(i)
k , (9.41a)

−J
(e)
k · n(ei) =I

(e)
k . (9.41b)

We notice that the introduction of I
(i)
k and I

(e)
k , with k = 1, . . . , N , introduces 2N4381

new unknowns into the model. For the problem at hand, they can be constitutively4382

specified as (see [96])4383

I
(i)
k =

1

Fzk

{
I
(ionic)
k + α

(i)
k

[
I − I(ionic)

]}
, (9.42a)

I
(e)
k =

1

Fzk

{
I
(ionic)
k + α

(e)
k

[
I − I(ionic)

]}
, (9.42b)

where α
(i)
k , α

(e)
k ∈ ]0, 1[ are partition coefficients that measure the proportion of mem-4384

brane capacitive current that contributes to the normal flows J
(i)
k ·n(ie) and J

(e)
k ·n(ei),4385

according to (9.41a) and (9.41b). Following [96], we write4386

α
(i)
k =

D
(i)
k z

2
kc

(i)
k∑N

j=1D
(i)
j z

2
j c

(i)
j

, (9.43a)

α
(e)
k =

D
(e)
k z2kc

(e)
k∑N

j=1D
(e)
j z2j c

(e)
j

. (9.43b)

175



Electrophysiology of nerve cells: The Poisson–Nernst–Planck model

9.4.6 Further conditions on the model unknowns4387

Following [96], we assume that the outer boundary of Ω(e), i.e. ∂Ω(e,e), is imper-4388

meable to the passage of the ionic species considered in model and, therefore, that4389

the normal component to ∂Ω(e,e) of each current density J
(e)
k is zero. Therefore,4390

[96]4391

J
(e)
k · n(ee) = 0, on ∂Ω(e,e), ∀ k = 1, . . . , N. (9.44)

Considering the definition (9.11), Equation (9.44) constitutes a Robin condition4392

for each concentration c
(e)
k on ∂Ω(e,e). Furthermore, from Equation (9.44) it follows4393

directly that the normal component of the total current density, J (e), must be zero4394

(see [96]), i.e.4395

J (e) · n(ee) =

(
N∑
k=1

FzkJ
(e)
k

)
· n(ee) = 0, on ∂Ω(e,e). (9.45)

Equation (9.45) constitutes an inhomogeneous Neumann condition on ϕ(e).4396

4397

It is also necessary to provide conditions on ϕ(e). In particular, we set [96]4398

⟨ϕ(e)⟩Ω(e) :=
1

|Ω(e)|

∫
Ω(e)

ϕ(e) = 0, (9.46)

according to which ϕ(e) must have zero mean on Ω(e). This constraint is necessary4399

for the well-posedness of the boundary problem, although it is not the only possible4400

option. In fact, it eliminates the indeterminacy on the solution of the considered4401

problem, due to the fact that, for the typology of the model equations, and for the4402

Neumann condition (9.45), if a given field ϕ(e) is a solution, so will be ϕ(e) + ϕ0,4403

with ϕ0 an arbitrary constant. Alternatively, it is possible to impose a Dirichlet4404

condition for ϕ(e) on ∂Ω(e,e), e.g.4405

ϕ
(e)

|∂Ω(e,e) = ϕb, (9.47)

so that, by varying ϕb, it is possible to perform a parametric study of the model.4406

This option, however, makes the problem more “rigid”, since it prescribes that ϕ(e)
4407

takes on ∂Ω(e,e) fixed known values. On the other hand, the condition ⟨ϕ(e)⟩Ω(e) = 04408

leaves to ϕ(e) the possibility of self-adjustment, implying also an alternation of sign4409

compatible with the physics of the problem.4410

9.4.7 Membrane variables4411

Based on the above discussions, we note that it is possible to proceed by choos-4412

ing as membrane variables either the potential difference V and the transmembrane4413
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current density I or only one of them. In the first case, we speak of mixed refor-4414

mulation and, by virtue of the similarity of the latter with Hu-Washizu’s method4415

[42], we will call it formulation according to Hu-Washizu. In the following, we will4416

focus on this computational choice.4417

We take both V and I as model unknowns for the membrane, and express4418

constitutively the current densities I
(ionic)
k and the partition coefficients α

(i)
k and4419

α
(e)
k , for k = 1, . . . , N , so that the current densities I

(i)
k and I

(e)
k are also assigned4420

by constitutive laws. More specifically, we have that:4421

(i) From the definition (9.39) of the synaptic current, we infer that the constitu-4422

tive form of this current can be assigned as4423

I
(syn)
1 =I

(syn)
1 ◦ (V, c(i)1|M, c

(e)
1|M, κS, κT), (9.48)

where κS : S ×T→ S and κT : S ×Tare two auxiliary functions, such that4424

κS(x, t) = x and κT(x, t) = t, S being the three-dimensional Euclidean space4425

and T a time interval, and where c
(i)
1 and c

(e)
1 are, respectively, the sodium4426

concentrations in Ω(i) and in Ω(e). Employing this result, and considering4427

Equation (9.31) together with the explicit functional laws (9.33a)–(9.35c) of4428

the passive axon and Hodgkin & Huxley [147, 256, 261, 96], the constitutive4429

expression of the k-th total ion current is given by4430

I
(ionic)
k := I

(ionic)
k ◦ (V, c(i)k|M, c

(e)
k|M, κS, κT), k = 1, . . . , N. (9.49)

(ii) Since the writing I(ionic) =
∑N

k=1 I
(ionic)
k holds, Equation (9.49) allows us to4431

conclude that the total ionic current density admits constitutive expression4432

of the type4433

I(ionic) := I(ionic) ◦ (V, C(i)
|M, C

(e)
|M, κS, κT), (9.50)

where we have used the notation4434

C(i) := (c
(i)
1 , . . . , c

(i)
N ), (9.51a)

C(e) := (c
(e)
1 , . . . , c

(e)
N ). (9.51b)

(iii) According to the definitions (9.43a) and (9.43b), the partition coefficients α
(i)
k4435

and α
(e)
k can be rewritten as constitutive functions, respectively, of the ion4436

concentrations C
(i)
|M and C

(e)
M . Therefore,4437

α
(i)
k := α̂

(i)
k ◦ C

(i)
|M, (9.52a)

α
(e)
k := α̂

(e)
k ◦ C

(e)
|M. (9.52b)
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(iv) On the basis of the definitions (9.49), (9.52a) and (9.52b) and recalling that4438

V and I are independent variables of the model, we conclude that I
(i)
k and I

(e)
k4439

(refer to (9.42a) e (9.42b)) can be expressed through the constitutive laws4440

I
(i)
k = I

(i)
k ◦ (V, I, C(i)

|M, C
(e)
|M, κS, κT), k = 1, . . . , N, (9.53a)

I
(e)
k = I

(e)
k ◦ (V, I, C(i)

|M, C
(e)
|M, κS, κT), k = 1, . . . , N. (9.53b)

9.4.8 Summary of the PNP model4441

In summary, the model equations are given by: (i) the electroneutrality condi-4442

tions (9.20a) and (9.21a), written for Ω(i) and for Ω(e); (ii) the 2N balance equations4443

for the ionic species (9.20b) and (9.21b), one for each k = 1, . . . , N and written4444

for Ω(i) and for Ω(e); (iii) the relation (9.22), which binds V to the potentials at4445

the membrane, i.e. ϕ
(i)
|M and ϕ

(e)
|M; (iv) Equations (9.26a) and (9.26b), which express4446

both the continuity of the total current densities normal to the membrane and the4447

way that each binds to the transmembrane current density I; (v) the equation for4448

the membrane, given by (9.40), which binds together I to V . Below, we summarise4449

these equations [96]4450

div

[
−

N∑
k=1

FzkD
(i)
k grad c

(i)
k −

(
N∑
k=1

(Fzk)
2D

(i)
k

RT
c
(i)
k

)
gradϕ(i)

]
= 0, in Ω(i), (9.54a)

div

[
−

N∑
k=1

FzkD
(e)
k grad c

(e)
k −

(
N∑
k=1

(Fzk)
2D

(e)
k

RT
c
(e)
k

)
gradϕ(e)

]
= 0, in Ω(e), (9.54b)

ϕ(i)(x, t) = ϕ(e)(x, t) + V (x, t), on M, (9.54c)

J (i) · n(ie) = I, on M, (9.54d)

J (e) · n(ei) = −I, on M, (9.54e)

J (e) · n(ee) = 0, on ∂Ω(e,e), (9.54f)

⟨ϕ(e)⟩Ω(e) = 0, in Ω(e), (9.54g)

∂tc
(i)
k + div

[
−D

(i)
k grad c

(i)
k −

FzkD
(i)
k

RT
c
(i)
k gradϕ(i)

]
= 0, in Ω(i), (9.54h)

∂tc
(e)
k + div

[
−D

(e)
k grad c

(e)
k −

FzkD
(e)
k

RT
c
(e)
k gradϕ(e)

]
= 0, in Ω(e), (9.54i)

J
(i)
k · n(ie) =

1

Fzk

{
I
(ionic)
k + α

(i)
k

[
I − I(ionic)

]}
≡ I

(i)
k , on M, (9.54j)

J
(e)
k · n(ei) = − 1

Fzk

{
I
(ionic)
k + α

(e)
k

[
I − I(ionic)

]}
≡ I

(e)
k , on M, (9.54k)

J
(e)
k · n(ee) = 0, on ∂Ω(e,e), (9.54l)

I = C ∂tV +
N∑
k=1

I
(ionic)
k , on M, (9.54m)
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where I
(ionic)
k , α

(i)
k , α

(e)
k , and I(ionic) are to be understood constitutively defined, as4451

stated in the previous sections. Finally, the model must be completed by assigning4452

appropriate initial conditions.4453

9.5 Weak form of the model equations4454

In this section, we put in weak form the Equations (9.54a)–(9.54m). For this4455

purpose, we introduce the test functions4456

• u(i) and u(e), associated, respectively, to ϕ(i) and ϕ(e);4457

• ω
(i)
k and ω

(e)
k , associated, respectively, to c

(i)
k and c

(e)
k , for each k = 1, . . . , N ;4458

• Θ, associated to V ;4459

• Y , associated with I.4460

Each test function belongs to an appropriate functional space, which will be4461

discussed when we address the more technical issues related to the Finite Element4462

procedure. For the moment, we focus only on the fact that, having required ϕ(e) to4463

have zero mean on Ω(e), the test function u(e) must also share the same property.4464

It, therefore, cannot be completely arbitrary and must be compatible with the4465

constraint ⟨u(e)⟩Ω(e) = 0. Note that, in the following, we will take the implicit4466

notation J (i), J (e), J
(i)
k and J

(e)
k for the current densities given in square brackets4467

in Equations (9.54a), (9.54b), (9.54h) and (9.54i), as well as for the scalar current4468

densities I
(ionic)
k and I(ionic) and for the coefficients α

(i)
k and α

(e)
k . However, we specify4469

that each of the quantities listed is a “functional” of the unknowns of the model4470

given by4471

J (i) := J(i) ◦ (C(i), ϕ(i)), (9.55a)

J (e) := J(e) ◦ (C(e), ϕ(e)), (9.55b)

J
(i)
k := J

(i)
k ◦ (c(i)k , ϕ

(i)), k = 1, . . . , N, (9.55c)

J
(e)
k := J

(e)
k ◦ (c(e)k , ϕ

(e)), k = 1, . . . , N, (9.55d)

I
(ionic)
k := I

(ionic)
k ◦ (V, c(i)k|M, c

(e)
k|M, κS, κT), k = 1, . . . , N, (9.55e)

I(ionic) := I(ionic) ◦ (V, C(i)
|M, C

(e)
|M, κS, κT), (9.55f)

α
(i)
k := α̂

(i)
k ◦ C

(i)
|M, k = 1, . . . , N, (9.55g)

α
(e)
k := α̂

(e)
k ◦ C

(e)
|M, k = 1, . . . , N, (9.55h)

I
(i)
k = I

(i)
k ◦ (V, I, C(i)

|M, C
(e)
|M, κS, κT), k = 1, . . . , N, (9.55i)

I
(e)
k = I

(e)
k ◦ (V, I, C(i)

|M, C
(e)
|M, κS, κT), k = 1, . . . , N. (9.55j)
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9.5.1 Weak form of the equations for the scalar potentials4472

We start with Equation (9.54a) for the scalar potential ϕ(i), which is not sub-4473

jected to constrains, and multiply it by the test function u(i), so that4474

u(i)div[J(i) ◦ (C(i), ϕ(i))] = 0. (9.56)

Thus, by using Leibniz’s rule of the derivative of a product, integrating the re-4475

sult over the region Ω(i), employing Gauss’s Theorem and the boundary condition4476

(9.54d), the weak form of (9.54a) is4477 ∫
M

u(i) [J(i) ◦ (C(i), ϕ(i))] · n(ie)︸ ︷︷ ︸
=I

−
∫
Ω(i)

[J(i) ◦ (C(i), ϕ(i))]gradu(i) = 0. (9.57)

We now turn to Equation (9.54b) for the scalar potential ϕ(e). In this case, we4478

multiply Equation (9.54b) by the test function u(e) such that ⟨u(e)⟩Ω(e) = 0. To4479

account for this restriction, we follow the same procedure as described for ϕ(i) and4480

which led to (9.57) but, this time, we add to the result the term Λ(e)⟨u(e)⟩Ω(e) , where4481

Λ(e) is an unknown Lagrange multiplier. Therefore, by also employing Equations4482

(9.54e) and (9.54f), we get4483 ∫
M

u(e) [J(e) ◦ (C(e), ϕ(e))] · n(ei)︸ ︷︷ ︸
=−I

+

∫
∂Ω(e,e)

u(e) [J(e) ◦ (C(e), ϕ(e))] · n(ee)︸ ︷︷ ︸
=0

−
∫
Ω(e)

[J(e) ◦ (C(e), ϕ(e))]gradu(e) + λ(e)
∫
Ω(e)

u(e) = 0, (9.58)

where4484

λ(e) :=
Λ(e)

|Ω(e)|
, (9.59)

identifies the “rescaled” Lagrange multiplier λ(e) as the new unknown of the prob-4485

lem. We observe that, since λ(e) is dual to the integral
∫
Ω(e) ϕ

(e), it is a function of4486

time constant in space.4487

4488

In summary, the weak forms for the equations determining the scalar potentials4489

ϕ(i) and ϕ(e) are given by4490

−
∫
Ω(i)

[J(i) ◦ (C(i), ϕ(i))]gradu(i) +

∫
M

u(i)I = 0, (9.60a)

−
∫
Ω(e)

[J(e) ◦ (C(e), ϕ(e))]gradu(e) −
∫
M

u(e)I + λ(e)
∫
Ω(e)

u(e) = 0. (9.60b)
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9.5.2 Weak form of the equations for the concentrations4491

For each k = 1, . . . , N , we multiply Equations (9.54h) and (9.54i) by the test4492

concentrations ω
(i)
k and ω

(e)
k , respectively. Furthermore, by using Leibniz’s rule;4493

integrating the resulting expressions over Ω
(i)
k and Ω

(e)
k ; invoking Gauss’s theorem;4494

and employing the boundary conditions (9.54j), (9.54k) and (9.54l), we obtain, for4495

all k = 1, . . . , N ,4496 ∫
Ω(i)

ω
(i)
k ∂tc

(i)
k −

∫
Ω(i)

[J
(i)
k ◦ (c(i)k , ϕ

(i))]gradω
(i)
k

+

∫
M

ω
(i)
k [I

(i)
k ◦ (V, I, C(i)

|M, C
(e)
|M, κS, κT)] = 0, (9.61a)

∫
Ω(e)

ω
(e)
k ∂tc

(e)
k −

∫
Ω(e)

[J
(e)
k ◦ (c(e)k , ϕ

(e))]gradω
(e)
k

+

∫
M

ω
(e)
k [I

(e)
k ◦ (V, I, C(i)

|M, C
(e)
|M, κS, κT)] = 0. (9.61b)

9.5.3 Weak form of the equations in the membrane4497

The membrane potential, V , binds the extensions of ϕ(i) and ϕ(e) to the mem-4498

brane, which we denoted by ϕ
(i)
|M and ϕ

(e)
|M, as prescribed by Equation (9.54c). The4499

latter is an algebraic equation and, as such, does not, in principle, need to be put4500

into weak form. However, for the sake of uniformity, it is convenient to perform4501

this step. We multiply, therefore, Equation (9.54c) by the test function Y , which4502

represents a virtual variation of current, and integrate the result on the membrane,4503

obtaining4504 ∫
M

[ϕ(i) − ϕ(e)]Y −
∫
M

V Y = 0. (9.62)

9.5.4 Weak form of the equation for the membrane current4505

density4506

The weak form of Equation (9.54m) is obtained by multiplying (9.54m) by the4507

test function Theta, which is defined exclusively on M and represents a virtual4508

variation of membrane potential. Thus, by integrating the result on M, we obtain4509 ∫
M

ΘI =

∫
M

ΘC ∂tV +

∫
M

N∑
k=1

Θ[I
(ionic)
k ◦ (V, c(i)k|M, c

(e)
k|M, κS, κT)]. (9.63)
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9.5.5 The null mean condition4510

Finally, we account for the null mean condition for ϕ(e) by multiplying the4511

constraint ⟨ϕ(e)⟩Ω(e) by a constant ℓ̄(e), which represents the virtual variation of the4512

Lagrange multiplier Λ(e). We obtain, therefore,4513

ℓ̄(e)⟨ϕ(e)⟩Ω(e) = ℓ(e)
∫
Ω(e)

ϕ(e) = 0, ℓ(e) :=
ℓ̄(e)

|Ω(e)|
, (9.64)

with ℓ(e) being the virtual variation of λ(e).4514

9.5.6 Summary of equations in weak form4515

The model equations, written in weak form, are given by the following 5 + 2N4516

integral equations4517

−
∫
Ω(i)

[J(i) ◦ (C(i), ϕ(i))]gradu(i) +

∫
M

u(i)I = 0, (9.65a)

−
∫
Ω(e)

[J(e) ◦ (C(e), ϕ(e))]gradu(e) −
∫
M

u(e)I + λ(e)
∫
Ω(e)

u(e) = 0, (9.65b)∫
M

[ϕ(i) − ϕ(e)]Y −
∫
M

V Y = 0, (9.65c)

−
∫
M

ΘI +

∫
M

ΘC ∂tV +

∫
M

N∑
k=1

Θ[I
(ionic)
k ◦ (V, c(i)k|M, c

(e)
k|M, κS, κT)] = 0, (9.65d)

ℓ(e)
∫
Ω(e)

ϕ(e) = 0, (9.65e)∫
Ω(i)

ω
(i)
k ∂tc

(i)
k −

∫
Ω(i)

[J
(i)
k ◦ (c(i)k , ϕ

(i))]gradω
(i)
k

+

∫
M

ω
(i)
k [I

(i)
k ◦ (V, I, C(i)

|M, C
(e)
|M, κS, κT)] = 0, (9.65f)∫

Ω(e)

ω
(e)
k ∂tc

(e)
k −

∫
Ω(e)

[J
(e)
k ◦ (c(e)k , ϕ

(e))]gradω
(e)
k

+

∫
M

ω
(e)
k [I

(e)
k ◦ (V, I, C(i)

|M, C
(e)
|M, κS, κT)] = 0, (9.65g)

in the 5 + 2N unknowns grouped in the following set4518

U := {ϕ(i), ϕ(e), V, I, λ(e), c
(i)
1 , . . . , c

(i)
N , c

(e)
1 , . . . , c

(e)
N }. (9.66)

Remark 17 (Non-linearities and couplings in the model). Equations (9.60a)–(9.63)4519

constitute a non-linear and strongly coupled system. In particular, the non-linearity4520

depends on the law by which the constitutive expressions of the coefficients α̂
(i)
k and4521
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α̂
(e)
k depend on the concentrations, and the law by which the constitutive expressions4522

of the membrane ionic currents I
(ionic)
k and I(ionic) depend on the potential differ-4523

ence V on M as well as on the ratio of the ionic concentrations on either side of4524

M. On the other hand, the strong coupling between the equations depends on the4525

interface conditions on the current densities, which cause I and V to appear in both4526

the equations for the evolution of the ion concentrations and those for the scalar4527

potentials in the regions Ω(i) and Ω(e) as well as in the equation linking I to V on4528

M.4529

Remark 18 (Simplified version of the model). We note that the model equations4530

and the corresponding unknowns are listed in such a way that the subsystem (9.65a)–4531

(9.65e), in the 5 unknowns ϕ(i), ϕ(e), V , I, λ(e), can be “extracted” from the system4532

(9.65a)–(9.65g). The system (9.65a)–(9.65e) can be seen as a simplified version4533

of the full model in which the concentrations are considered known. The study of4534

this simplified model is instructive to understand the mathematical structure of the4535

problem under consideration, especially from the point of view of the Finite Element4536

implementation. In fact, the presence of the Lagrange multiplier λ(e) leads to a4537

matrix with a zero on the main diagonal, which is typical of constrained problems.4538

9.6 Benchmark problem in a simplified geometry4539

In this section, we report some numerical results of the PNP model using the4540

commercial software COMSOL Multiphysics®. Following [96], we consider the4541

two-dimensional domain shown in Fig. 9.2. Specifically, we define Ω as the union4542

of two sets representing the intra-cellular space Ω(i) and the extra-cellular space4543

Ω(e) communicating through the membrane M. In particular, the intra-cellular4544

domain is defined as the rectangle Ω(i) = [6 ·10−6m, 5.6 ·10−5m]× [2.8 ·10−5m, 3.4 ·4545

10−5m]. On the other hand, the extra-cellular domain is specified by the domain4546

Ω(e) = [0m, 6 · 10−5,m] × [0m, 6 · 10−5m] \ Ω(i). The size of Ω has been chosen4547

so that the solution, being strongly variable in the immediate vicinity of the cell4548

membrane, is not affected by the null flux condition imposed on ∂Ω(ee). With such4549

an arrangement, the cell membrane is given by the edge of the innermost rectangle,4550

i.e. M≡ ∂Ω(i).4551

We mention that, in [96], the numerical simulations were conducted by acti-4552

vating, time by time, the different terms of the ionic current presented in Section4553

9.4.4. Here, we simulate the system in the time interval T= [0ms, 100ms] with a4554

synaptic stimulus generated by a train of pulses centred at the instants 0ms, 30ms4555

and 60ms with the synaptic current defined in (9.39). That is, in our simulations4556

I
(syn)
1 =

3∑
i=1

χ[ti,100ms]G
(syn)
1 H exp

(
−t− ti

α

)
[V − E1(c

(i)
1|M, c

(e)
1|M)], (9.67)
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Figure 9.2: Computational domain used in the computational simulations.

where χ[ti,100ms](t) = 1 if t ∈ [ti,100ms] and χ[ti,100ms](t) = 0, otherwise. The4557

synaptic current is only activated on the “left part” of the cell via the characteristic4558

function H[5·10−6,10−5]×[0, 6·10−5](x, y). The values of the parameters chosen to carry4559

out the simulations are given in Table 9.1.4560

We start our analysis by activating only the passive ionic current terms, so that

I = I(cap) + I(ionic) = C∂tV +
3∑

k=1

I
(pass)
k + I

(syn)
1

= C∂tV +
3∑

k=1

G
(pass)
k (V − Ek) + I

(syn)
1 , (9.68)

where the Nernst potentials, Ek, were introduced in (9.34) and the synaptic current4561

for the sodium, I
(syn)
1 , is given in (9.67). In Figure 9.3 (left panel), we show the4562

membrane potential of the PNP model for the case of a passive membrane. In this4563

case, it is observed that the membrane potential, starting from an initial value of4564

−65mV peaks at about −30mV with each stimulus of the synaptic current. After4565

the realisation of this peak, the potential shows the attainment of a steady state4566

(about −45mV) which is perturbed only when a new stimulus occurs. In this case,4567

because the model is linear, the hyper-polarisation process does not occur. That is,4568

the membrane potential does not become more negative (i.e. less than −65mV).4569

So, in this situation, action potentials are inhibited.4570

A different situation can be observed when we include the Hodgkin & Huxley
current in the model. In such a case, we have that

I = I(cap) + I(ionic)

= C∂tV +
3∑

k=1

I
(pass)
k +

2∑
k=1

I
(HH)
k + I

(syn)
1

= C∂tV +
3∑

k=1

G
(pass)
k (V − Ek) +

2∑
k=1

G
(HH)
k (V − Ek) + I

(syn)
1 , (9.69)
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Table 9.1: List of parameters used in the numerical simulations [96].

Description Symbol Value

Faraday constant F 9.648 · 106C/mol
Absolute temperature T 300K
Gas constant R 8.31 J/(molK)
Membrane capacitance C 0.01F/m

Sodium diffusion coefficient D
(i)
1 ≡ D

(e)
1 1.33 · 10−9m2/s

Potassium diffusion coefficient D
(i)
2 ≡ D

(e)
2 1.96 · 10−9m2/s

Chloride diffusion coefficient D
(i)
3 ≡ D

(e)
3 2.03 · 10−9m2/s

Initial intracellular sodium concentration c
(i)
10

12mM

Initial extracellular sodium concentration c
(e)
10

100mM

Initial intracellular potassium concentration c
(i)
20

125mM

Initial extracellular potassium concentration c
(e)
20

4mM

Initial intracellular chloride concentration c
(i)
30

137mM

Initial extracellular chloride concentration c
(e)
30

104mM

Passive conductivity of sodium G
(pass)
1 2.0 S/m2

Passive conductivity of potassium G
(pass)
2 8.0 S/m2

Passive conductivity of chloride G
(pass)
3 0 S/m2

Conductivity of sodium g1 1200 S/m2

Passive conductivity of potassium g2 360 S/m2

Passive conductivity of chloride g3 0.3 S/m2

where G
(HH)
k , with k = 1,2, are expressed as functions of the gating variables m, h4571

and n as described in (9.38a) and (9.38b). In this situation, as shown in Figure 9.34572

(right panel), starting from an initial condition of 65mV, the membrane potential4573

shows the realisation of three peaks, each corresponding to a stimulus from the4574

synaptic current. In this context, the process of hyper-polarisation that the cell4575

undergoes after the peak potential is realised. That is, the membrane potential4576

reaches values lower than the resting potential of the cell, VR = −65mV.4577

Of particular interest is the evolution of the concentration of the ions con-4578

tributing to the conduction of the membrane potential (in our framework, sodium,4579

potassium and chlorine). In particular, in Figure 9.4, we show the evolution of the4580

sodium in the extracellular space for the case in which all currents are active at4581

two different instants of time coinciding with the activation of the synaptic current,4582
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Figure 9.3: (Left) Membrane potential in a passive membrane. (Right) Membrane
potential with Hodgkin & Huxley membrane model.

namely t = 30 [ms] (left panel) and t = 60 [ms] (right panel). The study of the vari-4583

ation of the ionic concentration in Ω(i) and in Ω(e), shows how, given stimulation in4584

the synaptic zone, the membrane potential propagates along the length of the cell4585

reaching the opposite end. In this case, it is observed that the concentration differs4586

from the initial value only in the vicinity of the cell membrane. In particular, the4587

value of the membrane potential at locations where the cell is not stimulated by4588

the synapse can be used to study the response of synaptic buttons to the electrical4589

potential for neurotransmitter release [159].4590

Figure 9.4: Extracellular sodium concentration in the surroundings of a cell mem-
brane at t = 30 [ms] (left panel) and t = 60 [ms] (right panel)
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Chapter 104591

The fractal PNP model4592

The work reported in this chapter is taken from [236]1.4593

4594

10.1 Introduction4595

According to [259], the complex branching pattern of neuron dendrites can be4596

described by means of a fractal dimension, which reflects the fractal-like geometry4597

of neurons. Knowing how neurons connect to each other and how this distribu-4598

tion influences the propagation of electrochemical signals is fundamental in the4599

understanding of neuropathological diseases [259].4600

In the last decades, there has been a growing interest in using the mathematical4601

tools offered by the theory of fractional calculus for the description of fractal media4602

[56, 54, 214, 266]. For instance, in [266], Maxwell’s Equations are presented in the4603

case of a medium with fractal geometry. In this context, fractal current densities4604

are introduced through the definition of appropriate transition functions from the4605

fractal to the “classical” measure [266]. By virtue of the presence of such functions,4606

Tarasov [266] speaks of “fractional currents”. Here, taking inspiration in [266], we4607

reformulate the PNP model introduced in Chapter 9 in a fractal context, i.e. by4608

assuming that the current densities J
(i)
k and J

(e)
k , with k = 1, . . . , N , are expressed4609

in terms of constitutive laws of fractal type.4610

10.1.1 Brief on fractal integration4611

In order to carry out the fractal formulation of Maxwell’s Equations, we start4612

by reviewing the introduction of the fractal measure for volume, surface and line4613

1The work [236] is also used in the MSc thesis of Mr. Vito Napoli. The Author of this PhD
thesis was co-advisor of that MSc thesis.
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integrals, according to Tarasov’s [266].4614

Fractal measure for volume integrals4615

4616

Let us consider the region of space Ω ⊂ S , where S is the three-dimensional4617

Euclidean space, and let us denote by µ3(Ω) ≥ 0 the Lebesgue measure of Ω, which4618

can be identified with the integral4619

µ3(Ω) =

∫
Ω

dv ≡ Vol(Ω), (10.1)

with dv denoting the classical Lebesgue volume measure. Introducing the real4620

number P3 ∈ ]2,3[, referred to as fractal dimension, we call fractal measure of Ω,4621

the positive real number defined by4622

µP3(Ω) :=

∫
Ω

fP3(x)dv(x) ≥ 0, (10.2)

where fP3 : Ω → R is a transition function linking the classical Lebesgue measure4623

to the fractal measure. In [266], fP3 is given by4624

fP3(x) := 23−P3
Γ(3/2)

Γ(P3/2)

1

∥x− x0∥3−P3
, (10.3)

with x0 being a fixed point (coincident, for example, with the origin of the reference4625

system in consideration), and Γ is the Gamma function. In particular, by defining4626

the measure4627

dvP3(x) := fP3(x)dv(x), (10.4)

we can rewrite Equation (10.2) in the compact form [266]4628

µP3(Ω) =

∫
Ω

dvP3(x). (10.5)

Note that, in (10.3), P3 plays the role of a parameter and, as P3 varies in ]2,3[, it4629

is possible to vary the fractal measure of Ω, µP3(Ω), with continuity.4630

Remark 19 (Fractal volume measure in volume integrals). The second member of4631

Equation (9.1d) determines the total free electric charge in Ω, i.e.4632

Qf,3(ϱf ,Ω; t) :=

∫
Ω

ϱf(x, t) dv(x), (10.6)

calculated with respect to the classical Lebesgue measure in Ω. The subscript “3”4633

in “Qf,3(ϱf ,Ω; t)” indicates that the integral in Equation (10.6) is performed in the4634
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three-dimensional region Ω. This charge is itself a measure (with sign), generally4635

time-varying, and whose numerical value, at a given instant of time t and for Ω4636

fixed, depends on the measure with respect to which it is integrated in Ω. Using the4637

definition in (10.4), we define the fractal total charge, by replacing the measure4638

dv(x) with the fractal measure dvP3(x), i.e. by writing4639

Qf,P3(ϱf ,Ω; t) :=

∫
Ω

ϱf(x, t) dvP3(x)

=

∫
Ω

ϱf(x, t)fP3(x)dv(x)

=

∫
Ω

[fP3(x)ϱf(x, t)]dv(x)

= Qf,3(ϱf,P3 ,Ω; t), (10.7)

where we have introduced the fractal total free charge density4640

ϱf,P3(x, t) := fP3(x)ϱf(x, t). (10.8)

This result indicates that the total fractal charge calculated with respect to the den-4641

sity ϱf , i.e. Qf,P3(ρf ,Ω, t), is equal to the total classical charge calculated with respect4642

to the fractal density ϱf,P3, namely Qf,3(ϱf,P3 ,Ω; t).4643

Fractal measure for surface integrals4644

4645

Let us consider a fixed surface, denoted by A, which can be either open or4646

closed, and let µ2(A) ≥ 0 be the measure of A, i.e.4647

µ2(A) =

∫
A

da. (10.9)

Following, with slight modifications, Tarasov’s notation [266], we consider the frac-4648

tal dimension P2 ∈ ]P3−1,2[, and define the fractal measure of Aby the expression4649

µP2(A) :=

∫
A

fP2(x)da(x) ≥ 0, (10.10)

where, analogously to the above discussions, fP2 : A→ R is the transition function4650

from the classical surface measure to the fractal surface measure. As in [266], we4651

write4652

fP2(x) := 22−P2
1

Γ(P2/2)

1

∥x− x0∥2−P2
, (10.11)

and, by introducing the measure4653

daP2(x) := fP2(x)da(x), (10.12)
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we rewrite Equation (10.10) in the compact form4654

µP2(A) =

∫
A

daP2(x). (10.13)

Remark 20 (Fractal surface measure in flux integrals). In the “classical” Maxwell4655

equations (see Equations (9.1a)–(9.1d)), one often encounters integrals of the type4656

Φ2(Y ,A; t) =

∫
A

Y (x, t) · n(x) da(x), (10.14)

where the surface A can represent either the open surface Σ or the closed surface4657

∂Ω. In the above expression, Y ( · , t), at each time t, is a generic field of pseudo-4658

vectors on A, which can represent B( · , t), ∂tB( · , t), J( · , t), D( · , t) or ∂tD( · , t)4659

(refer to Chapter 9). Furthermore, Φ2(Y ,A; t) is the flow of Y ( · , t) through A4660

at time t. Note that the subscript “2” in Φ2(Y ,A; t) reminds us that the flow is4661

referred to a surface of dimension 2. So, we generalise the expression (10.14) as4662

[266]4663

ΦP2(Y ,A; t) =

∫
A

Y (x, t) · n(x) daP2(x)

=

∫
A

[Y (x, t) · n(x)] fP2(x)da(x)

=

∫
A

[fP2(x)Y (x, t)] · n(x)da(x)

= Φ2(YP2 ,A; t), (10.15)

where we have introduced the fractal pseudo-vector field4664

YP2(x, t) := fP2(x)Y (x, t) ≡ ŶP2(x, t; fP2), (10.16)

whose definition depends on the transition function fP2. Note that the identity4665

ΦP2(Y ,A; t) = Φ2(YP2 ,A; t), (10.17)

for which it is possible to redefine the fractal flux of the “classical” field Y as the4666

“classical” flux of the fractal flow YP2.4667

Fractal measure for line integrals4668

4669

Let us consider a regular curve, C , which can be either closed or open, and let4670

us call by µ1(C ) ≥ 0 the measure of C , i.e. its length4671

µ1(C ) =

∫
C

ds, (10.18)
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where s represents the curvilinear abscissa of the curve itself. As above, we intro-4672

duce the fractal dimension P1 ∈ ]P2 − 1,1[, to redefine the fractal measure of C4673

as4674

µP1(C ) =

∫
C

fP1(x)ds(x) ≥ 0, (10.19)

where fP1 : C → R is the transition function connecting the classical line measure4675

to the fractal measure. In [266], fP1 is defined as4676

fP1(x) := 21−P1
Γ(1/2)

Γ(P1/2)

1

∥x− x0∥1−P1
. (10.20)

As in the three-dimensional and two-dimensional case, we can define the new fractal4677

measure4678

dsP1(x) := fP1(x)ds(x), (10.21)

so that Equation (10.19) takes the compact form [266]4679

µP1(C ) =

∫
C

dsP1(x). (10.22)

Remark 21 (Fractal line measure in line integrals). The fractal measure for line4680

integrals can be used to compute integrals of the type4681

U(T ,C ; t) :=

∫
C

T (x, t) · τ (x)ds(x), (10.23)

which appear in Maxwell’s Equations, where C represents a closed path, τ is the4682

field of tangent vectors to C and T (· , t) is a generic field of co-vectors on C , which4683

can be interpreted either by E( · , t) or by H( · , t). To generalise the expression4684

(10.23) to the fractal measure given in (10.22), we write [266]4685

UP1(T ,C ; t) =

∫
C

T (x, t) · τ (x) dsP1(x)

=

∫
A

[T (x, t) · τ (x)] fP1(x)ds(x)

=

∫
A

[fP1(x)T (x, t)] · τ (x)ds(x)

= U(T P1 ,C ; t), (10.24)

where we have introduced the fractal co-vector field4686

T P1(x, t) := fP1(x)T (x, t) ≡ T̂ P1(x, t; fP1), (10.25)

whose definition depends on the transition function fP1.4687

191



The fractal PNP model

10.2 Fractal Maxwell equations4688

In order to introduce the fractal measure in Maxwell’s Equations, we start from4689

their writing in integral form. In particular, following the ideas in [266], we write4690 ∫
∂Σ

[fP1(x)E(x, t)] · τ (x)ds(x) = − d

dt

∫
Σ

[fP2(x)B(x, t)] · n(x)da(x), (10.26a)∫
∂Ω

[fP2(x)B(x, t)] · n(x)da(x) = 0, (10.26b)∫
∂Σ

[fP1(x)H(x, t)] · τ (x)]ds(x) =
∫
Σ

[fP2(x)J(x, t)] · n(x)da(x)

+
d

dt

∫
Σ

[fP2(x)D(x, t)] · n(x)da(x), (10.26c)∫
∂Ω

[fP2(x)D(x, t)] · n(x)da(x) =
∫
Ω

[fP3(x)ϱf(x, t)]dv(x), (10.26d)

in which the region of space Ω, the surfaces ∂Ω and Σ, and the closed curve ∂Σ are4691

the same as those introduced in the “classical” Maxwell equations (9.1a)–(9.1d)2.4692

Thus, localising (10.26a)–(10.26d), we obtain the local form of Maxwell equations,4693

namely4694

curl[fP1E] = −fP2∂tB, (10.27a)

div[fP2B] = 0, (10.27b)

curl[fP1H ] = fP2J + fP2∂tD, (10.27c)

div[fP2D] = fP3ϱf . (10.27d)

We observe that, from now on, we neglect the term ∂tB, exactly as we did in4695

Chapter 9. Therefore, Equation (10.27a) becomes4696

curl[fP1E] = 0, (10.28)

from which we can deduce the existence of a generalised potential, that we also4697

indicate with ϕ, so that4698

fP1E = −gradϕ and E = − 1

fP1

gradϕ. (10.29)

Now, considering the divergence in Equation (10.27c), we obtain4699

0 = div[fP2J ] + div[fP2∂tD], (10.30)

2Note that, given a generic function g : Σ×T→ R, such that (x, t) → g(x, t), we are employing
the slight abuse of notation d

dt

∫
Σ
g(x, t)da(x) ≡

[
d
dt

∫
Σ
g(x, ·, )da(x)

]
(t).
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and, taking into account that fP2 does not explicitly depend on time, we can write4700

0 = div[fP2J ] + ∂tdiv[fP2D]. (10.31)

So, by substituting (10.27d) in the second term of the right-hand side of (10.31),4701

we obtain4702

0 = div[fP2J ] + ∂t[fP3ϱf ]. (10.32)

Here, we also consider the electroneutrality condition [96], which, in the present4703

framework reads4704

div[fP2J ] = 0. (10.33)

We notice that this constraint requires the fractal current, fP2J , to be solenoidal,4705

rather than J , as in the classical model studied in the previous chapter.4706

10.3 The fractal PNP model4707

In this section, we specialise the results obtained in Chapter 9 for the geometry4708

specified therein. For this purpose, we consider that Ω ≡ Ω(i) for the internal region4709

of the cell, and Ω ≡ Ω(e) for the external space. Moreover, as in Chapter 9, we4710

denote by M the surface dividing Ω(i) and Ω(e). Consequently, the electroneutrality4711

condition (10.33) must be written as4712

div[f
(i)
P2
J (i)] = 0, in Ω(i), (10.34a)

div[f
(e)
P2
J (e)] = 0, in Ω(e). (10.34b)

Together with the currents J (i) e J (e), it is necessary to introduce the potentials4713

ϕ(i) and ϕ(e), defined, respectively, in Ω(i) and Ω(e), and such that, in general, we4714

have that ϕ
(e)
|M /= ϕ

(i)
|M. Therefore, also in this fractal case, we define the difference4715

between the potentials on the membrane M as4716

V (x, t) := ϕ(i)(x, t)− ϕ(e)(x, t), for all x ∈ M and t ∈ T, (10.35)

and, as in the standard case, we call V membrane potential.4717

In order to study the transport of ionic species in the context of the fractal4718

model, it is necessary to study the fractal form of the mass balance laws. In4719

particular, we need to determine the fractal expressions of the electric currents J
(i)
k4720

and J
(e)
k , with k = 1, . . . , N , due to the motion of each ionic species. This implies4721

that we need to find Fick’s law in fractal form for each species, which, at the same4722

time, requires to study the dissipation of the system under investigation. Before4723
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going further, we consider that the equation for the membrane current (9.54m)4724

remains unchanged also in the fractal case. Thus, we write4725

I = C ∂tV +
N∑
k=1

I
(ionic)
k , (10.36)

where the different terms involved in the above equation have been introduced in4726

Chapter 9.4727

We mention that, to close the model, we still need to introduce the correspond-4728

ing boundary conditions, an initial condition for the membrane potential, and the4729

constitutive laws for the ionic currents (for instance, by considering the Hodgkin &4730

Huxley model [147]).4731

With reference to the k-th ionic species, without specifying whether we refer to4732

Ω(i) or Ω(e), we recall that, in the non-fractal case, the current density, which we4733

here simply denote by Jk, is given by the expression4734

Jk = −Dkgrad ck −
FzkDk

RT
ckgradϕ, (10.37)

where the physical units of Jk are [Jk] = mol/(m2 · s). Moreover,4735

[Dk] =
m2

s
, [ck] =

mol

m3
, [F ] =

C

mol
, [R ] =

J

mol ·K
, (10.38a)

[zk] = 1, [ϕ] = V =
N ·m
C

, and [T ] = K (10.38b)

10.3.1 Balance equations in fractal form4736

In order to determine the fractal expressions for the ionic currents J
(i)
k and J

(e)
k4737

and for the total currents J (i) and J (e), we investigate the mass balance equations4738

and the dissipation of the system under study. For this purpose, we follow the4739

approach presented in [142, 39, 129, 236]3 and adapt the main results in [142, 39,4740

129] to the fractal case we are considering here for the case of a monophasic mixture4741

with N +1 constituents. Particularly, the first N constituents are considered to be4742

the ionic species, while the N + 1 constituent is the fluid in which we found these4743

species.4744

We remark that a more systematic approach to the problem under consideration4745

should take into account the “mechanical” balance laws together with Maxwell’s4746

equations. Indeed, the electric field, beyond influencing the motion of the charges4747

through Fick’s law, acts on the mechanics of the system by redefining its stress4748

3The work [236] is also used in the MSc thesis of Mr. Vito Napoli. The Author of this PhD
thesis was co-advisor of that MSc thesis.
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tensor through Maxwell’s tensor. Yet, since at this stage we concentrate solely on4749

the main aspects of transport, and thus on the determination of its current, we4750

coherently consider the stress tensor of purely mechanical nature.4751

Before going further, we write below a list of the symbols we will work with in4752

the following sections [129].4753

• ρi, with i = 1, . . . , N + 1, is the volumetric mass density of the i-th con-4754

stituent of the mixture and ρ :=
∑N+1

i=1 ρi is the volumetric mass density of4755

the mixture.4756

• qi := ρi/ρ, with i = 1, . . . , N + 1, is the mass fraction of the i-th constituent,4757

so that ρi can be computed as ρi = ρqi. The mass fractions are not all linearly4758

independent since, by definition, it holds
∑N+1

i=1 qi = 1.4759

• Mmi, with i = 1, . . . , N +1, is the molar mass of the i-th constituent. In par-4760

ticular, ρi = ρqi = Mmici, where ci is the molar concentration, with physical4761

unit [ci] = mol ·m−3.4762

• vi, with i = 1, . . . , N + 1, is the velocity of the i-th constituent.4763

• v :=
∑N+1

i=1 qivi is the velocity of the mixture’s centre of mass.4764

• wi := vi − v, with i = 1, . . . , N + 1, is the velocity of the i-th constituent4765

relative to the velocity of the centre of mass of the mixture. By construction,4766

the relative velocity w1, . . . ,wN+1 must be compatible with the constraint4767 ∑N+1
i=1 qiwi = 0.4768

• mi, with i = 1, . . . , N + 1, is the internal volumetric force density due to4769

the interchange of momentum between the i-th constituent and all the other4770

constituents of the mixture. Since the mixture is closed in terms of momentum4771

[142, 39, 236]4, the force densities m1, . . . ,mN+1 must satisfy the constraints4772

N+1∑
i=1

mi = 0. (10.39)

• ti, with i = 1, . . . , N + 1, is the Cauchy stress tensor relative to the i-th4773

constituent of the mixture.4774

• fi, with i = 1, . . . , N + 1, is the external volumetric force density acting on4775

the i-th constituent of the mixture. Such force density (in the sequel referred4776

to as “force”) is identified with the Lorentz force.4777

4The work [236] is also used in the MSc thesis of Mr. Vito Napoli. The Author of this PhD
thesis was co-advisor of that MSc thesis.
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10.3.2 Mass and momentum balance equations4778

Let us consider a mixture with N + 1 constituents occupying a region R of4779

the three-dimensional Euclidean space, S , having boundary ∂R. This region can4780

denote, here, both the internal space and the space inside the cell.4781

Mass balance laws4782

We write the mass balance equation of the mixture in global form as4783

d

dt

∫
P

ρ dv = 0, (10.40)

where P is an element of the set of parts of R and where the contribution of4784

sink and source terms has been neglected. This equation, which is written for a4785

region with a standard Riemann or Lebesgue measure, can be rewritten by virtue4786

of Gauss’s and Reynolds’ transport theorems as4787 ∫
P

∂tρ dv +

∫
∂P

ρv · n da = 0. (10.41)

If we consider the region P endowed with fractal measure, Equation (10.41) can4788

be written, using the transition functions fP3 and fP2 , as4789 ∫
P

∂t(fP3ρ) dv +

∫
∂P

[fP2ρv · n] da = 0, (10.42)

which following the usual localisation procedures takes the local form4790

∂t(fP3ρ) + div(fP2ρv) = 0. (10.43)

On the other hand, the integral form of the mass balance equation for the i-th4791

constituent of the mixture can be written, in the case of a standard Riemann or4792

Lebesgue measurement, as4793

d

dt

∫
P

ρqi dv +

∫
∂P

ρqiwi · n da = 0, i = 1, . . . , N + 1, (10.44)

where qi denotes the mass fraction of the i-th constituent and wi := vi − v is the4794

velocity of the i-th constituent relative to the velocity of the centre of mass of the4795

mixture. We note that, also in this case, we have neglected the contribution of sink4796

and source terms for the i-th constituent. In particular, if the region P is endowed4797

with the fractal volume measure dvP3 and its boundary with the fractal surface4798

measure daP2 , Equation (10.44) takes the form4799

d

dt

∫
P

ρqi dvP3 +

∫
∂P

ρqiwi · n daP2 = 0, i = 1, . . . , N + 1, (10.45)

196



10.3 – The fractal PNP model

which can be rewritten by virtue of the definitions (10.4) and (10.12) as4800

d

dt

∫
P

ρqifP3 dv +

∫
∂P

ρqiwi · nfP2 da = 0, i = 1, . . . , N + 1. (10.46)

Following usual localisation procedures, by virtue of Gauss’s theorem, we arrive at4801

the local form of the mass balance equation for the i-th constituent in the form4802

∂t(fP3ρqi) + div(ρqifP2wi) = 0, i = 1, . . . , N + 1. (10.47)

Momentum balance4803

We write the linear momentum balance law for a mixture withN+1 components4804

as4805 ∫
∂P

tn da +

∫
P

f dv = 0, (10.48)

where t denotes the Cauchy stress tensor of the mixture as a whole and f denotes4806

the volumetric density of external force, which, here, can represent the Lorentz4807

force. We note that the inertial terms have been neglected in (10.48). Equivalently4808

to what has been done for the mass balance equation, if the region P is provided4809

with a fractal volumetric measure dvP3 and its boundary, ∂P, is endowed with a4810

fractal surface measure daP2 , we write Equation (10.48) as4811 ∫
∂P

tn daP2 +

∫
P

f dvP3 = 0, (10.49)

which, by virtue of the expressions of the transition functions to the fractal measure4812

(10.3) and (10.11), becomes4813 ∫
∂P

[fP2t]n da +

∫
P

fP3f dv = 0. (10.50)

So, the local form of (10.50) is given by4814

div[fP2t] + fP3f dv = 0. (10.51)

On the other hand, by neglecting inertia terms, we write the integral form of4815

the linear momentum balance equation for the i-th constituent of the mixture as4816 ∫
∂P

[fP2ti]n da +

∫
P

fP3 [mi + f i] dv = 0, i = 1, . . . , N + 1, (10.52)

where we are considering the region P to be equipped with fractal volume and4817

surface measures. We note that, in this case, the momentum balance relative to4818

the i-th constituent predicts a volumetric internal force density, mi, due to the4819

impulse exchanges between the i-th constituent and all other constituents in the4820

mixture. In particular, localising Equation (10.52), we obtain4821

div(fP2ti) + fP3 [mi + f i] = 0, i = 1, . . . , N + 1. (10.53)
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Remark 22. We remark that, by summing the (10.53) over i = 1, . . . , N + 1 and4822

using the property (10.39), we obtain that4823

N+1∑
i=1

fP3 [f i +mi] +
N+1∑
i=1

div (fP2ti) = 0. (10.54)

Furthermore, recalling the constraint on volume fractions, namely4824

N+1∑
i=1

qi = 1 ⇒ −
N∑
i=1

qi
qN+1

= 1, (10.55)

Equation (10.54) can be rewritten as4825

N∑
i=1

fP3

[
f i − qi

qN+1
fN+1

]
+

N∑
i=1

[
div (fP2ti)− qi

qN+1
div (fP2tN+1)

]
+

N∑
i=1

fP3

(
mi − qi

qN+1
mN+1

)
= 0. (10.56)

Equation (10.56) represents the linear momentum balance law written in relative4826

terms.4827

10.3.3 Fractal dissipation4828

Here, we aim of providing a thermodynamically admissible expression of the4829

fractal current density by studying the dissipation in the light of the fractal theory4830

presented in [266]. To this end, by adapting the approach presented in [39], we4831

write the dissipation of the system on the portion P of R endowed with fractal4832

volume and surface measures (10.4) and (10.12), so that4833 ∫
P

fP3 Ddv =− d

dt

∫
P

fP3 ρψ dv +

∫
P

N+1∑
i=1

fP3 f i ·wi dv

+

∫
∂P

N+1∑
i=1

fP2 (tin) ·wi da−
∫
∂P

N+1∑
i=1

fP2 ρqiψiwi · n da ≥ 0,

(10.57)

where ψ :=
∑N+1

k=1 qkψk and ψk, for each k = 1, . . . , N , denotes the Helmholtz free4834

energy density per unit mass of the k-th species. Thus, Equation (10.57) can be4835

rewritten as4836 ∫
P

fP3 Ddv =−
∫

P

fP3ρ ∂tψ dv +

∫
P

N+1∑
i=1

fP3f i ·wi dv
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+

∫
P

N+1∑
i=1

[div (fP2ti) ·wi + fP2ti : gradwi] dv

−
∫

P

N+1∑
i=1

[grad(fP2ρqiψi) ·wi + fP2ρqiψiI : gradwi] dv ≥ 0,

(10.58)

where we have used Gauss’s theorem and the tensorial identity div(fP2tiwi) =4837

div(fP2ti) · wi + fP2ti : gradwi. Furthermore, by virtue of momentum balance4838

equation for the mixture given in (10.54), (10.58) takes the equivalent form4839 ∫
P

fP3 Ddv =−
∫

P

fP3ρ ∂tψ dv +

∫
P

N+1∑
i=1

[fP2ti − fP2ρqiψiI] : gradwidv

−
∫

P

N+1∑
i=1

[grad(fP2ρqiψi) + fP3mi] ·wi dv ≥ 0. (10.59)

In particular, considering the constraint on the relative velocities, i.e.4840

wN+1 = −
N∑
i=1

qi
qN+1

wi, (10.60)

and working on the second addend of Equation (10.59), we can write4841 ∫
P

N+1∑
i=1

Qi : gradwidv =

∫
P

N∑
i=1

Qi : gradwidv +

∫
P

QN+1 :

(
−

N∑
i=1

qi
qN+1

gradwi

)
dv

−
∫

P

QN+1 grad
(

qi
qN+1

)
·widv

=

∫
P

N∑
i=1

(
Qi − qi

qN+1
QN+1

)
: gradwidv

−
∫

P

QN+1 grad
(

qi
qN+1

)
·widv, (10.61)

where we have defined the quantity Qi := [fP2ti − fP2ρqiψiI]. In a similar way, by4842

defining pi := [grad(fP2ρqiψi) + fP3mi], the third addend in (10.59) is rewritten as4843

−
∫

P

N+1∑
i=1

pi ·wi dv =−
∫

P

N∑
i=1

pi ·wi dv + pN+1 ·

(
−

N∑
i=1

qi
qN+1

wi

)

=−
∫

P

N∑
i=1

(
pi − qi

qN+1
pN+1

)
·wi dv. (10.62)
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Thus, combining the results obtained in (10.61) and (10.62), Equation (10.59) can4844

be equivalently rewritten as4845 ∫
P

fP3 Ddv =−
∫

P

fP3ρ ∂tψ dv

+

∫
P

N∑
i=1

[
fP2

(
ti − qi

qN+1
tN+1

)
− fP2ρ

(
qiψi − qi

qN+1
qN+1ψN+1

)
I
]
: gradwidv

−
∫

P

N∑
i=1

[fP2tN+1 − fP2ρqN+1ψN+1] grad
(

qi
qN+1

)
·widv

−
∫

P

N∑
i=1

{
grad (fP2ρqiψi)− qi

qN+1
grad (fP2ρqN+1ψN+1)

}
·wi

−
∫

P

N∑
i=1

{
fP3

(
mi − qi

qN+1
mN+1

)}
·wi dv ≥ 0, (10.63)

or by reorganising the terms as4846 ∫
P

fP3 Ddv =−
∫

P

fP3ρ ∂tψ dv

+

∫
P

N∑
i=1

[
fP2

(
ti − qi

qN+1
tN+1

)
− fP2ρqi (ψi − ψN+1) I

]
: gradwidv

−
∫

P

N∑
i=1

fP2tN+1grad
(

qi
qN+1

)
·widv

−
∫

P

N∑
i=1

grad (fP2ρqi [ψi − ψN+1]) ·widv

−
∫

P

N∑
i=1

fP3

[
mi − qi

qN+1
mN+1

]
·wi dv ≥ 0. (10.64)

Furthermore, by assigning a constitutive relation for ψ of the type4847

ψ = ψ̂ ◦ (q1, . . . , qN), (10.65)

we have that4848

gradψ =
N∑
i=1

(
∂ψ̂
∂qi

◦ (q1, . . . , qN)
)
grad qi. (10.66)

Therefore, by virtue of the (10.65) and (10.66), and assuming the mixture velocity4849

v to be null, it is possible to rewrite the first addend of (10.64) as4850

−
∫

P

fP3ρ ∂tψ dv =−
∫

P

N∑
i=1

fP3ρ
(
∂ψ̂
∂qk

◦ (q1, . . . , qN)
)
∂tqidv
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=

∫
P

N∑
i=1

(
∂ψ̂
∂qi

◦ (q1, . . . , qN)
)
fP2ρqiI : gradwidv

+

∫
P

N∑
i=1

(
∂ψ̂
∂qi

◦ (q1, . . . , qN)
)
grad (fP2ρqi) ·widv, (10.67)

where we have used the local mass balance equations of the first N constituents.4851

Therefore, the substitution of (10.67) into the (10.64) leads to4852 ∫
P

fP3 Ddv =

∫
P

N∑
i=1

[
fP2ρqi

(
∂ψ̂
∂qi

◦ (q1, . . . , qN)
)]

I : gradwidv

+

∫
P

N∑
i=1

[
fP2

(
ti − qi

qN+1
tN+1

)
− fP2ρqi (ψi − ψN+1) I

]
: gradwidv

+

∫
P

N∑
i=1

(
∂ψ̂
∂qi

◦ (q1, . . . , qN)
)
grad (fP2ρqi) ·widv

−
∫

P

N∑
i=1

fP2tN+1grad
(

qi
qN+1

)
·widv

−
∫

P

N∑
i=1

grad (fP2ρqi [ψi − ψN+1]) ·widv

−
∫

P

N∑
i=1

fP3

[
mi − qi

qN+1
mN+1

]
·wi dv ≥ 0. (10.68)

By merging the first two terms of (10.68) under the same integral sign, the new4853

integrand function has the form4854

fP2ρqi

[
−
(
ψiI − ti

ρqi

)
+
(
ψN+1I − tN+1

ρqN+1

)
+
(
∂ψ̂
∂qi

◦ (. . . )
)
I
]
: gradwi, (10.69)

where, in order not to make the notation more cumbersome, we have chosen to use4855

(. . . ) to indicate the list of volume fractions (q1, . . . , qN).4856

4857

Now, following the approach discussed in [39, 236]5, the Cauchy stress tensors,4858

ti, can be written as ti := −piti, where pi denotes the partial pressure of the i-th4859

constituent, so Equation (10.69) can be rewritten as4860

fP2ρqi

[
−
(
ψi +

pi
ρqi

)
+
(
ψN+1 +

pN+1

ρqN+1

)
+
(
∂ψ̂
∂qi

◦ (. . . )
)]

I : gradwi, (10.70)

5The work [236] is also used in the MSc thesis of Mr. Vito Napoli. The Author of this PhD
thesis was co-advisor of that MSc thesis.
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in which we recognise the expression of the chemical potential µi := ψi+
pi
ρqi

relative4861

to the i-th constituent. Particularly, by defining the relative chemical potential as4862

m̃ui = µi − µN+1, we get the most compact writing4863

fP2ρqi

[
−µ̃i +

(
∂ψ̂
∂qi

◦ (. . . )
)]

divwi, (10.71)

which, when substituted in the (10.68), returns4864 ∫
P

fP3 Ddv =

∫
P

N∑
i=1

fP2ρqi

[
−µ̃i +

(
∂ψ̂
∂qi

◦ (. . . )
)]

divwidv

+

∫
P

N∑
i=1

(
∂ψ̂
∂qi

◦ (. . . )
)
grad (fP2ρqi) ·widv

−
∫

P

N∑
i=1

fP2tN+1grad
(

qi
qN+1

)
·widv

−
∫

P

N∑
i=1

grad (fP2ρqi [ψi − ψN+1]) ·widv

−
∫

P

N∑
i=1

fP3

[
mi − qi

qN+1
mN+1

]
·wi dv ≥ 0. (10.72)

Equivalently, operating on the remaining terms of (10.72), we obtain the integrand4865

function4866

N∑
i=1

[(
∂ψ̂
∂qi

◦ (. . . )
)
grad (fP2ρqi)− fP2tN+1grad

(
qi

qN+1

)
− grad (fP2ρqi [ψi − ψN+1])

− fP3

(
mi − qi

qN+1
mN+1

)]
·wi, (10.73)

which, by applying Leibniz’s rule, we rewrite as4867

N∑
i=1

[
−fP2ρqigrad

(
∂ψ̂
∂qi

◦ (. . . )
)
− fP2tN+1grad

(
qi

qN+1

)
− fP3

(
mi − qi

qN+1
mN+1

)
−grad

(
fP2ρqi [ψi − ψN+1]− fP2ρqi

(
∂ψ̂
∂qi

◦ (. . . )
))]

·wi. (10.74)

From the expression given in (10.74), we obtain the following new form of the fractal4868

dissipation4869 ∫
P

fP3 Ddv =

∫
P

N∑
i=1

fP2ρqi

[
−µ̃i +

(
∂ψ̂
∂qi

◦ (. . . )
)]

divwidv
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−
∫

P

N∑
i=1

[
fP2ρqigrad

(
∂ψ̂
∂qi

◦ (. . . )
)
+ fP2tN+1grad

(
qi

qN+1

)
+ fP3

(
mi − qi

qN+1
mN+1

)
+ grad (fP2ρqi [ψi − ψN+1])

− grad
(
fP2ρqi

(
∂ψ̂
∂qi

◦ (. . . )
))]

·widv ≥ 0. (10.75)

At this point, we proceed by considering the mass balance equation for the4870

mixture in global form as a constraint, and study the constrained dissipation by4871

introducing the Lagrange multiplier ζ [39]. Therefore, we write4872 ∫
P

fP3 Ddv =

∫
P

N∑
i=1

fP2ρqi

[
−µ̃i +

(
∂ψ̂
∂qi

◦ (. . . )
)
− ζ

ρ

(
∂ρ̂
∂qi

◦ (. . . )
)]

divwidv

−
∫

P

N∑
i=1

{
fP2ρqigrad

(
∂ψ̂
∂qi

◦ (. . . )
)
+ fP2tN+1grad

(
qi

qN+1

)
+ fP3

[
mi − qi

qN+1
mN+1

]
+ grad

[
fP2ρqi

(
[ψi − ψN+1]−

(
∂ψ̂
∂qi

◦ (. . . )
))]

+ ζ
ρ

(
∂ρ̂
∂qi

◦ (. . . )
)
grad(fP2ρqi)

}
·widv ≥ 0, (10.76)

in which we have introduced the constitutive dependency ρ = ρ̂ ◦ (q1, . . . , qN).4873

Following [39], we write the Lagrange multiplier in the form ζ := p/ρ and, then,4874

returning to the dissipation, with a slight abuse of notation we obtain4875 ∫
P

fP3 Ddv =

∫
P

N∑
i=1

fP2ρqi

[
−µ̃i + ∂

∂qi

(
ψ̂ + p

ρ̂

)]
divwidv

−
∫

P

N∑
i=1

{
fP2ρqigrad

[
∂
∂qi

(
ψ̂ + p

ρ̂

)]
+ fP2tN+1grad

(
qi

qN+1

)
+ grad

[
fP2ρqi

(
[ψi − ψN+1]− ∂

∂qi

(
ψ̂ + p

ρ̂

))]
+ fP3

[
mi − qi

qN+1
mN+1

]}
·widv ≥ 0. (10.77)

As done in [39], we provide the expression of the Gibbs free energy as4876

Ĝ= ψ̂ +
p

ρ̂
, (10.78)

which permits to write the i-th relative chemical potential as4877

µ̃i =
∂ Ĝ

∂qi
=

∂

∂qi

[
ψ̂ +

p

ρ̂

]
. (10.79)
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If we use (10.79) in Equation (10.77), we obtain that4878 ∫
P

fP3 Ddv =−
∫

P

N∑
i=1

{
fP2ρqigrad µ̃i + fP2tN+1grad

(
qi

qN+1

)
+ grad [fP2ρqi ([ψi − ψN+1]− µ̃i)]

+ fP3

[
mi − qi

qN+1
mN+1

]}
·widv ≥ 0. (10.80)

So, if we introduce the notation4879

fP3mdi := fP2ρqigrad µ̃i + fP2tN+1grad
(

qi
qN+1

)
+ grad [fP2ρqi ([ψi − ψN+1]− µ̃i)]

+ fP3

[
mi − qi

qN+1
mN+1

]
. (10.81)

where mdi denotes a dissipative volumetric density force relative to the i-th con-4880

stituent, the dissipation can be written as4881 ∫
P

fP3 Ddv = −
∫

P

N∑
i=1

fP3mdi ·widv. (10.82)

Moreover, in view of (10.81), it is possible to rewrite the i-th relative momentum4882

balance equation as4883

fP3

(
f i − qi

qN+1
fN+1

)
+ div

(
fP2ti − qi

qN+1
fP2tN+1

)
+ fP3mdi + grad [fP2ρqi (µ̃i − (ψi − ψN+1))]− fP2ρqi gradµ̃i = 0, (10.83)

which in the light of the definition of the relative chemical potential µ̃i and the4884

Cauchy stress tensor ti becomes4885

fP3

(
f i − qi

qN+1
fN+1

)
+ fP3mdi − fP2ρqi gradµ̃i = 0. (10.84)

Finally, by writing the volumetric density of dissipative force as4886

mdi = −M−1
i wi, (10.85)

it is possible to give the expression of the i-th relative velocity, i.e.4887

wi = −Mi

[
fP2

fP3

ρqi gradµ̃i −
(
f i − qi

qN+1
fN+1

)]
, (10.86)

where, we denote the motility of the i-th constituent with Mi. By means of the4888

(10.86), we define the i-th flux as4889

J i =
ρqi
Mmi

wi, (10.87)
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having physical units [J i] = mol/(m2 · s). From Equation (10.87) we obtain an4890

explicit expression of the fractal current density which, by means on the consid-4891

erations made for the Lorentz force, leads to the fractal current density of the4892

PNP-fractal model, namely4893

J i : = − 1

Mmi

[
ρqiMi

fP2

fP3

ρqi gradµ̃i − ρqiMi

(
f i − qi

qN+1
fN+1

)]
. (10.88)

10.3.4 The fractal flux4894

In this section, we write an expression for the current density by making explicit4895

the various components as a function of the variables of the fractal PNP Model. For4896

this purpose, we assign an expression for the volumetric force density f i related to4897

the i-th constituent. Since the only non-negligible volumetric force in the problem4898

under consideration is electric, we identify with f i the constitutive expression of4899

the Lorentz force, i.e.4900

f i := FziciE = −Fzicigradϕ. (10.89)

We note that the (N + 1)-th constituent, i.e. water, has zero valence zN+1, so it is4901

possible to write the (10.88) as4902

J i = −
[
ρqi
Mmi

fP2

fP3

Miρqi gradµ̃i −
ρqi
Mmi

Mif i

]
. (10.90)

Defining the volumetric mobility as Mi := ρqiMi and noting that4903

Mmici = ρqi, (10.91)

we write Equation (10.90) as4904

J i = −
[
fP2

fP3

Mici gradµ̃i −
Mi

Mmi

f i

]
. (10.92)

Given the constitutive dependence of the relative chemical potential on the volume4905

fractions (q1, . . . , qN), it is possible to write4906

grad µ̃i =

(
∂ ˇ̃µi
∂qi

◦ (q1, . . . , qN)
)
grad qi, (10.93)

which leads to4907

J i = −
[
fP2

fP3

Mici

(
∂ ˇ̃µi
∂qi

◦ (q1, . . . , qN)
)

grad qi −
Mi

Mmi

f i

]
. (10.94)
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Using the relation (10.91) in (10.94), and prescribing an appropriate functional4908

relation for ˇ̃µi, we obtain4909

J i = −
[
fP2

fP3

Digrad ci +Di
Fzi
RT

gradϕ

]
. (10.95)

Making the assumption that the concentration fields are assigned and constant, we4910

write, by means of the (10.95), the total current density as4911

J =
N∑
i=1

FziJ i = −σgradϕ, (10.96)

where we have defined the conductivity σ as [261]4912

σ =
N∑
i=1

Di
F 2z2i
RT

ci. (10.97)

Note that the conductivity in (10.97) also depends on the fractality of the geom-4913

etry via the definition of the diffusivity tensor Di related to the i-th constituent.4914

Equation (10.96), when specialised to the domains Ω(i) and Ω(e) gives the current4915

density of the fractal PNP Model.4916

10.3.5 The fractal PNP model4917

In summary, the equations defining the fractal PNP model are given by: (i) the4918

electroneutrality conditions (10.34a) and (10.34b), written for Ω(i) and for Ω(e); ; (ii)4919

the 2N fractal balance equations for the ionic species, one for each k = 1, . . . , N4920

and written for Ω(i) and for Ω(e); (iii) the relation (9.22), which binds V to the4921

potentials at the membrane, i.e. ϕ
(i)
|M and ϕ

(e)
|M; (iv) the equations expressing both4922

the continuity of the total current densities normal to the membrane and the way4923

that each binds to the transmembrane current density I; (v) the equation for the4924

membrane which binds together I to V ; and (vi) the null average condition for ϕ(e)
4925

and the boundary condition at ∂Ω(e,e). Specifically,4926

div

[
−(fP2)

2

fP3

N∑
k=1

FzkD
(i)
k grad c

(i)
k − fP2σ

(i)gradϕ(i)

]
= 0, in Ω(i),

(10.98a)

div

[
−(fP2)

2

fP3

N∑
k=1

FzkD
(e)
k grad c

(e)
k − fP2σ

(e)gradϕ(e)

]
= 0, in Ω(e),

(10.98b)

∂t(fP3c
(i)
k ) + div

[
−(fP2)

2

fP3

D
(i)
k grad c

(i)
k − fP2

FzkD
(i)
k

RT
c
(i)
k gradϕ(i)

]
= 0, in Ω(i), (10.98c)
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∂t(fP3c
(e)
k ) + div

[
−(fP2)

2

fP3

D
(e)
k grad c

(e)
k − fP2

FzkD
(e)
k

RT
c
(e)
k gradϕ(e)

]
= 0, in Ω(e),

(10.98d)

ϕ(i)(x, t) = ϕ(e)(x, t) + V (x, t), on M, (10.98e)

J (i) · n(ie) = I, on M, (10.98f)

J (e) · n(ei) = −I, on M, (10.98g)

J
(i)
k · n(ie) = I

(i)
k , on M, (10.98h)

J
(e)
k · n(ei) = I

(e)
k , on M, (10.98i)

I = C ∂tV +

N∑
k=1

I
(ionic)
k , on M, (10.98j)∫

Ω(e)

ϕ(e)fP3dv = 0, in Ω(e),

(10.98k)

J
(e)
k · n(ee) = 0, on ∂Ω(e,e).

(10.98l)

where I
(ionic)
k , α

(i)
k , α

(e)
k , and I(ionic) are to be understood constitutively defined, as4927

stated in the previous chapter. Finally, the model must be completed by assigning4928

appropriate initial conditions.4929
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Conclusions to Part III4930

The content reported in this chapter is taken from [236]6.4931

4932

This part constitutes a starting point of a research project concerning the math-4933

ematical and computational modelling of problems in neurobiology.4934

4935

Following [96], in Chapter 9, we start by considering the Poisson–Nernst–Planck4936

(PNP) model, but adapted to our context with slight modifications. The main scope4937

of this chapter is to construct a benchmark model from which we can start adding4938

additional hypothesis and that serves us as a foundation in the development of com-4939

putational simulations. In doing this, we start by considering Maxwell’s equations4940

for the derivation of the mathematical model and we adopt standard modelling as-4941

sumptions found in the scientific literature [261, 279, 277, 278]. Particularly, we pay4942

special attention to the description of the weak formulation of the model, which4943

is essential for the development of the numerical simulations. Finally, following4944

[96], we present some numerical results to describe the electrophysiology of a single4945

neuron in the case of a simplified geometry.4946

4947

In Chapter 10, we reformulate the PNP model presented in Chapter 9 using the4948

ideas and definitions introduced in [266]. For this purpose, we reinterpret Maxwell’s4949

equations in a fractal context by making use of the fractal measures presented in4950

[266], which involve the definition of transition functions from the standard mea-4951

sure to the fractal measure [266]. A particularly delicate and crucial aspect in this4952

fractal framework is the definition of the fractal current density, which is obtained4953

through a detailed study of the dissipation of the system following the ideas pro-4954

posed in [141, 39, 129]. Therefore, the proposed fractal PNP Model is derived by4955

following the investigation of the mass and momentum balance equations, together4956

with the dissipation principle, for the the case of a mixture by adapting the ap-4957

proach presented in [141, 39, 129] to the fractal framework under consideration.4958

4959

6The work [236] is also used in the MSc thesis of Mr. Vito Napoli. The Author of this PhD
thesis was co-advisor of that MSc thesis.
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Among the further developments of the investigation presented in this part, we4960

mention the need of the conception of computational simulations to describe the4961

electrophysiology of neurons. However, this constitutes a demanding and challeng-4962

ing task because, for instance, of the complexities in describing the computational4963

domain. Even though the design of such numerical simulations are out of the scope4964

of the Thesis, this is part of our current and future research.4965
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Appendix A4966

Some aspects of non-locality on4967

manifolds4968

In the following, we propose a possible way for the formulation of non-local4969

diffusion on manifolds. For this purpose, let us recall that the fractional mass flux4970

vector yα is defined through the duality product4971

⟨yα, grad č⟩ := −ϱf
∫

Bt

{∫
Bt

[grad č(x)]dα(x, x̃, t)[grad ca(x̃, t)]dv(x̃)

}
dv(x),

(A.1a)

dα(x, x̃, t) := fα(x, x̃)dα(x, x̃, t), (A.1b)

where the non-locality function is given by the following relationship4972

fα(x, x̃) := f(0)α (x0,T
x0
x (x̃)) . (A.2)

In Equation (A.2), the notation Tx0
x := expx0 ◦ (Px

x0
)−1 ◦ exp−1

x is used, and the4973

following operators are introduced:4974

• Let Tx,δBt be the subset of the tangent space TxBt defined by4975

Tx,δBt := {vx ∈ TxBt | ⟨vx,vx⟩g ≤ δ, with δ > 0}, (A.3)

and let Ut(x, δ) := {x̃ ∈ Bt| distBt(x, x̃) ≤ δ} be a closed neighbourhood of x4976

having radius δ, with distBt : Bt×Bt → R+
0 denoting the distance function1

4977

on Bt [253]. The operator4978

expx : Tx,δBt → Ut(x, δ), (A.4)

1Given the geodesic from x to x̃, and denoting by η : [0,1] → Bt its parameterisation, so that

x = η(0) and x̃ = η(1), we set distBt(x, x̃) :=
∫ 1

0
∥η′(σ)∥dσ.
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referred to as exponential map, is injective and associates each element of4979

Tx,δBt with the point x̃ = expx(vx) ∈ Ut(x, δ), which is the projection of vx4980

onto Ut(x, δ). Note that the result of this operation generalises the concept4981

of translation to the case of a manifold. To construct expx(vx), we take4982

vx ∈ Tx,δBt and consider the unique solution to the geodesic equation (see4983

e.g. [189]), parameterised by η : [0,1] → Ut(x, δ), and in harmony with the4984

“initial” conditions η(0) = x and η′(0) = vx. Then, we identify expx(vx) with4985

η(1), i.e., expx(vx) = η(1) ≡ x̃.4986

By construction, the exponential map is invertible and its inverse, i.e., exp−1
x :4987

Ut(x, δ) → Tx,δBt, returns a unique tangent vector of Tx,δBt for each point4988

of Ut(x, δ). Therefore, by taking x̃ ∈ Ut(x, δ), with x̃ = η(1), it holds that4989

exp−1
x (η(1)) = η′(0).4990

4991

• Let us consider two points of the manifold, e.g. x0, x ∈ Bt, and let ζ :4992

[0, s] → Bt, with ζ(0) = x0 and ζ(s) = x, be the parameterisation of the4993

geodesic connecting x0 to x. Moreover, let us take the sets of tangent vectors4994

Tx0,δBt and Tx,δBt, with δ > 0. Then, to transport parallely the elements4995

of Tx0,δBt into Tx,δBt along the geodesic parameterised by ζ, we define the4996

shifter operator4997

Px
x0

: Tx0,δBt → Tx,δBt, vx0 → Px
x0
vx0 = vx. (A.5)

Clearly, Px
x0

is invertible and its inverse reads (Px
x0
)−1 = Px0

x : Tx,δBt →4998

Tx0,δBt. In addition, Px0
x0

is the identity operator from Tx0,δBt into itself.4999

5000

• To represent fα(x, x̃) properly, we explain in detail our understanding of the5001

procedure sketched in [253]. For this purpose, we start recalling that fα(x, x̃)5002

measures how, at time t, the value of gradca(x̃, t) is “felt” at x, for all pairs5003

of points x, x̃ ∈ Bt, such that x̃ ∈ Ut(x, δ), with δ > 0. This influence has to5004

be described in a way respectful of the geometry of the manifold, which can5005

be achieved as follows. Given fα(x, x̃), we select arbitrarily a point x0 ∈ Bt5006

and we introduce an auxiliary function f
(0)
α (x0, · ) : Ut(x0, δ) → R, such that,5007

for an appropriate x̃0 ∈ Ut(x0, δ), f
(0)
α (x0, x̃0) = fα(x, x̃). In order for x̃0 to be5008

“appropriate”, it has to depend on x and x̃ (and on x0). This can be obtained5009

by calling for the operator5010

Tx0
x := expx0 ◦ (P

x
x0
)−1 ◦ exp−1

x : Ut(x, δ) → Ut(x0, δ). (A.6)

As anticipated above, for each x̃ ∈ Ut(x, δ), exp−1
x returns a vector vx,5011

such that ∥vx∥ ≤ δ. Then, (Px
x0
)−1 transports vx parallely to x0, so that5012
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(Px
x0
)−1vx = vx0 . Finally, the operator expx0 maps vx0 into x̃0 = expx0(vx0) ∈5013

Ut(x0, δ). Therefore, it holds that x̃0 = Tx0
x (x̃), thereby explaining how x̃05014

depends on x and x̃, for a given x0. More specifically, the action of Tx0
x on x̃5015

permits to find the only x̃0 such that Equation (A.2) becomes5016

fα(x, x̃) = f(0)α (x0,T
x0
x (x̃)) = f(0)α (x0, x̃0), (A.7)

where the composition fα(x, · ) = f
(0)
α (x0, · ) ◦ Tx0

x : Ut(x, δ) → R is implied.5017

The essence of this result is that the information on the non-locality of a given5018

phenomenon between x and x̃, encompassed by fα(x, x̃), is “transported” to5019

the pair of points x0 and x̃0 (see Fig. A.1).5020

x0

x0

vx0

x vx

x

U (   ,  )δt x0

Bt

U (  ,  )δt x

ζ

Figure A.1: The convolution on manifolds is defined by transporting fα(x, ·) :
Ut(x, δ) → R to every point of Bt, while taking into account the manifold ge-
ometry. Thus, given a point x̃ = η(1) ∈ Ut(x, δ), the operation exp−1

x (x̃) returns
the vector vx = η′(0), which is parallel transported to vx0 through a geodesic
ζ : [0, s] → Bt connecting x = ζ(s) and x0 = ζ(0), and the operation expx0(vx0)
returns the point x̃0 ∈ Ut(x0, δ). In this way, fα(x, ·) is transported from Ut(x, δ)
to Ut(x0, δ).

x0

x0

ζ

x

x

xx = x-vx x0 0vx0
= -

U (   ,  )δt x0 U (  ,  )δt x

Bt

Figure A.2: In a flat subset of an affine space vx0 = x̃0 − x0 is equipollent to vx =

x̃− x. Therefore, fα(x, x̃) and f
(0)
α (x0, x̃0) can be rephrased as fα(x, x̃) = f̂α(x− x̃)

and f
(0)
α (x0, x̃0) = f̂

(0)
α (x0 − x̃0).

To conclude, we notice that, in an affine space or, more generally, in a flat5021

subset of an affine space, the procedure outlined above boils down to the5022

determination of the unique point x̃0 such that vx0 = x̃0 − x0 is equipollent5023

to vx = x̃ − x, for given x0, x and x̃. Indeed, within this framework, Tx0
x5024
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operates in such a way that vx0 = Tx0
x (x̃) − x0 = x̃0 − x0 is parallel to5025

vx (because vx is parallel transported along the geodesic —now, a straight5026

line— connecting x with x0) and ∥vx0∥ ≡ ∥x̃0 − x0∥ = ∥x̃ − x∥ ≡ ∥vx∥.5027

Moreover, fα(x, x̃) and f
(0)
α (x0, x̃0) can be rephrased as fα(x, x̃) = f̂α(x − x̃)5028

and f
(0)
α (x0, x̃0) = f̂

(0)
α (x0 − x̃0), respectively, and Equation (A.2), or Equation5029

(A.7), is trivially satisfied. In this respect, we say that Equation (A.2) adapts5030

the meaning of convolution from the case of an affine space to the case of a5031

manifold (see Fig. A.2).5032
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[20] T. Atanacković et al. “The Cattaneo type space-time fractional heat con-5094

duction equation”. In: Continuum Mechanics and Thermodynamics 24.4-65095

(Oct. 2011), pp. 293–311. doi: 10.1007/s00161-011-0199-4.5096
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2013), pp. 298–303. doi: 10.1016/j.crme.2012.11.013.5227

[62] M.A.J. Chaplain, L. Graziano, and L. Preziosi. “Mathematical modelling of5228

the loss of tissue compression responsiveness and its role in solid tumour5229

development”. In: Mathematical Medicine and Biology: A Journal of the5230

IMA 23.3 (Sept. 2006), pp. 197–229. doi: 10.1093/imammb/dql009.5231

[63] G. A. Chauvet. “Non-locality in biological systems results from hierarchy”.5232

In: Journal of Mathematical Biology 31.5 (May 1993). doi: 10.1007/bf00173887.5233

[64] A. S. Chaves. “A fractional diffusion equation to describe Lévy flights”. In:5234
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