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Abstract

We review Holst formalism and we discuss dynamical equivalence with
standard GR (in dimension 4). Holst formalism is written for a spin
coframe field eIµ and a Spin(3, 1)-connection ωIJ

µ on spacetime M and it
depends on the Holst parameter γ ∈ R− {0}.

We show the model is dynamically equivalent to standard GR, in the
sense that up to a pointwise Spin(3, 1)-gauge transformation acting on
(uppercase Latin) frame indices, solutions of the two models are in one-
to-one correspondence. Hence the two models are classically equivalent.

One can also introduce new variables by splitting the spin connection
into a pair of a Spin(3)-connection Ai

µ and a Spin(3)-valued 1-form ki
µ.

The construction of these new variables relies on a particular algebraic
structure, called a reductive splitting. A reductive splitting is a weaker
structure than requiring that the gauge group splits as the products of
two sub-groups, as it happens in Euclidean signature in the selfdual for-
mulation originally introduced in this context by Ashtekar, and it still
allows to deal with the Lorentzian signature without resorting to com-
plexifications.

The reductive splitting of SL(2,C) is not unique and it is parameter-
ized by a real parameter β which is called the Immirzi parameter. The
splitting is here done on spacetime, not on space as it is usually done
in the literature, to obtain a Spin(3)-connection Ai

µ, which is called the
Barbero–Immirzi connection on spacetime. One obtains a covariant model
depending on the fields (eIµ, A

i
µ, k

i
µ) which is again dynamically equivalent

to standard GR (as well as the Holst action).
Usually in the literature one sets β = γ for the sake of simplicity. Here

we keep the Holst and Immirzi parameters distinct to show that eventually
only β will survive in boundary field equations.

1 Foreword

This is the first paper in a series of lecture notes aiming to provide a coherent and
homogeneous introduction to Loop Quantum Gravity (LQG). LQG has grown
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considerably in the last decades and it now includes much more material than
what one can hope to include in a relatively general lecture note series and there
are books to provide physically well motivated accounts of the theory; see [1], [2],
[3]. The aim of this project is not to cover all material which is now considered
relevant to LQG but to select a coherent and notationally homogeneous path
to the core of the theory and to cover it in enough detail to be followed by
researchers and students who would like to get into the field. More will be
needed, something will have to be forgotten, but we believe this will give a solid
basis to build upon. We do not stress much on the physical motivations, we
focus on mathematical aspects and structure of the theory which we think will
turn out to be good tools when physics motivations will have to be discussed.
Anyway, each lecture is meant to be self-contained, focused on a particular
aspect of the theory.

Some of the topics along the way are not covered in the standard way. For
example, we start by defining Barbero-Immirzi SU(2)-connection on spacetime
while usually this is defined on a spatial leaf of an ADM foliation. We shall
show this is possible (contrary to what sometimes argued; see [4], [5]) and it
gives a better view of how the classical theory is defined and adapted to the
process one wishes to later apply to “guess” the quantum theory.

Another example is when later on we shall regard spin networks as encoding
functionals of the connection (as it is traditional, see e.g. [2], though not too
systematically discussed). We will practice a bit about this correspondence so
that graphic methods do not take over. This will allow us to better discuss
operators, and to render clearly the bridge between operators on spin networks
and discrete geometries which will be the starting point of covariant formulation
of spin foams, see [3].

We shall also focus on globality of the mathematical structures in order
to discuss the relation between global mathematical structures and physical
motivations. For example, we shall systematically discuss connections, which
are global connections on principal bundles as done in geometry; see [6], [7],
[8], [9]. We shall discuss how this relates with physical motivation. The issue
is still open, many researchers think a local language is simpler and sufficient,
we shall argue that the two viewpoints are eventually equivalent and discussing
the issue explicitly is useful whatever viewpoints one ends up with. Moreover,
by pinpointing that global properties are hidden in transformations laws, one
has a structure to adjust (a sort of) relational viewpoint already in a classical
framework. In fact, we shall argue intrinsic properties and transformation laws
are what really encode the physical knowledge (in view of the relativity principle)
and they are written in the relations among observers, which are identified with
conventions for describing physical observations in terms of numbers, namely,
in a relativistic context, with coordinate charts on spacetime.

We think that global notation is not much harder to develop, it is clearer, and
when one decides to work locally, as a matter of fact, as soon as transformation
laws of objects are taken into account, the global properties are recovered and
the whole issue becomes only a matter of notation. Considering transformation
laws is equivalent to global viewpoint even working with local representatives of
objects in coordinates. And GR without transformations laws is not GR. To the
very least this discussion will allow us to clarify what background free means, see
[10], [11], why physics should care, and why different attitudes are reasonable
in different situations. This is actually an important issue even though rather

2



non-technical, hence we discuss it in the Appendix A.

2 Introduction

Loop Quantum Gravity (LQG) is a (if you want, proposal for a) background
free quantization of the gravitational field as described by standard General
Relativity (GR) in dimension 4.

We discuss the Holst model (see [12], [13], [14], [15]) which is classically
equivalent to standard General Relativity (GR), as well as the starting point of
quantization à la LQG. Here we shall focus on the classical setting and equiva-
lence with standard GR.

Starting from the Holst model, we will make a field transformation and define
the Barbero–Immirzi formulation, which is similar to what is done in LQG before
starting quantization. However, we define the Barbero-Immirzi connection on
spacetime, while usually it is defined on a leaf of an ADM foliation, see [16],
[17], [18]. We shall see that starting from a covariant model will clarify the
constraint structure of the theory and allow us to derive some of the relations
which are assumed as definitions in the usual spatial formulation. We shall also
clarify the role of parameters appearing in defining the Holst action and the
Barbero–Immirzi connection. In both cases, our aim is not to (and we do not)
obtain new results, we simply confirm the choices which are usually taken by
definition by showing that one has not really other options.

There are many different, although somehow equivalent, formulations of
standard GR in dimension 4, based on different representations of the grav-
itational field in terms of various geometric objects. These are dynamically
equivalent field theories. Strictly speaking, by dynamically equivalent theories
one means that there is a one-to-one correspondence between solutions of the
two theories.

However, in different formulations one often has different gauge groups. In
standard GR one considers a Lorentzian metric g as a fundamental field, and
it is based on the Hilbert (second order) Lagrangian. Accordingly, the gravita-
tional field is identified with classes of metrics up to diffeomorphisms. In other
formulations, for example frame formulations, one uses a frame eI as a funda-
mental field, which is defined up to an automorphism of a structure bundle P ,
which in the Holst case means that besides diffeomorphisms, frames are defined
up to a pointwise Lorentz (or Spin(3, 1)) transformation.

When one compares a model based on metrics and a model based on a
frames, of course there are infinitely many frames associated to the same metric
due to the pointwise Lorentz transformations. However, one still has a one-to-
one correspondence between classes of metrics up to diffeomorphisms and classes
of frames up to diffeomorpfisms and Lorentz transformations. Let us still say the
two models are dynamically equivalent in this case, thus we define dynamical
equivalence when one has a one-to-one correspondence between states of the
gravitational field, in one theory and the other. In this way, the standard metric
and frame formulations are equivalent (as we shall discuss here in vacuum).

Accordingly, a model of gravity is dynamically equivalent to standard GR if
it induces from its solutions the same metrics standard GR does. Often different
formulations of gravitational theories are classified in terms of the fundamental
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fields they use. Fundamental fields are important since their choice dictates the
way we deform the action, e.g. to derive field equations.

Hence, we have purely metric models in which there is only a Lorentzian
metric g, metric-affine (or Palatini) formulations when one has a metric g and
an independent connection Γ̃ (with or without torsion), or purely affine for-
mulations when the action depends only on a connection Γ̃ (with or without
torsion).

Then we can use frames (to be defined precisely below) instead of the metric
and we have purely frame and frame-affine formulations. The Holst formulation
is based on a special case of frame eI , called a spin frame and an independent
Spin(3,1)-connection ωIJ , hence it is a frame-affine formulation; see [7], [8], [9],
[19], [20], [21], [22]. Of course, frame and frame-affine formulations are preferable
over metric and metric-affine ones, since sooner or later one will wish to describe
spinors and, as we shall argue, spin frames are also the exact structure needed
to deal with (global) Dirac equations in interaction with the gravitational field;
see [19], [21].

In general, spin frames exist on a manifold if some topological restrictions
on the manifold are satisfied; see [23]. These restrictions are global restrictions
on the spacetime manifold M which are encoded into a characteristic class and
they have to be satisfied if one eventually wants to have global Dirac equations
for spinors. When spin frames exist, they also define an associated metric, which
in this case appears as a by product of the spin frame and, as such, is not a
fundamental field in the model.

3 Holst formulation

The Holst formulation is a field theory (see [12], [14], [15]) defined for a spin
frame eµI (or, equivalently, the spin coframe eIµ) and a Spin(3, 1)-connection ωIJ

µ

(on a structure bundle P ) depending on a real parameter γ ∈ R−{0}, called the
Holst parameter, which is eventually dynamically equivalent to standard GR.

Let us start by defining a spin frame; see [21], [20]. Consider a manifold M
and its frame bundle L(M), which is a GL(m)-principal bundle. If we choose
coordinates xµ on M that induces natural coordinates (xµ, eµI ) on L(M), where
|eµI | ∈ GL(m). We fix a signature η = (3, 1), the relative spin group Spin(3, 1) ≃
SL(2,C), and a structure bundle P which is a SL(2,C)-principal bundle [π : P →
M ]; [8], [24]. As on any principal bundle, on P one has transition functions
between local trivializations t : π−1(U) → U × SL(2,C) : p 7→ (x, S) in the form

{

x′ = x

S′ = ϕ(x) · S
(1)

for some local function ϕ : U → SL(2,C), which is called the transition function
(in the group).

On the structure bundle, we have coordinates (xµ, S) with S ∈ SL(2,C)
and the canonical right action Rg : P → P : p 7→ p · g, which is well defined
(independent of the trivialization) and a vertical, transitive on the fibers, and
free action.

In view of the canonical right action, one has a one-to-one correspondence be-
tween local trivializations and local sections. Given a local section σ : U →
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π−1(U) ⊂ P and p ∈ π−1(U) we set x = π(p) and we can define a local trivial-
ization t : π−1(U) → U×SL(2,C) : p 7→ (x, S) where p = σ(x)·S, which uniquely
determines S since the right action is free.

Then we define a spin frame to be a (global) map e : P → L(M) which is ver-
tical and equivariant with respect to the group homomorphism ℓ : Spin(3, 1) →
SO(3, 1) →֒ GL(4), i.e. it preserves the right action as

P L(M)

MM

e(p · S) = e(p) · ℓ(S)........................................................
......
.
.....
......
.

........................................................

......
.
.....
......
.

π

..........................................................................
...........

.e

............................................................................

............................................................................

(2)

As a matter of fact, spin frames do not always exist for a generic choice of M
and P over it. Since [M × SL(2,C) → M ] is a (trivial) principal bundle, a
structure bundle always exists but not every structure bundle P admits a global
spin frame. For example if L(M) is not trivial (i.e. M is not parallelizable)
and P is trivial one can show immediately that there is no global spin frame
e : P → L(M). If it existed, a spin frame would be represented locally by a
matrix eµ

I
(x) ∈ GL(4) such that

e(σ(x)) = e
µ
I
(x)∂µ (3)

and we denote by eIµ its inverse matrix. But if the change the local trivialization
on P (i.e. the section σ to σ′(x) = σ(x) · ϕ̄(x)) and coordinates x′µ = x′µ(x) on
M , transformation laws are

e
′µ
I

= Jµ
ν e

ν
Jℓ

J
I (ϕ̄) (4)

where the bar denotes the inverse matrix or group element and Jµ
ν is the Jacobian

of the change of coordinates, i.e. transition functions on M . Together, the local
representation (3) and the transformation law (4), are equivalent to an intrinsic
and global description of the spin frame e : P → L(M).

Let us stress that a spin frame is not a section of L(M). It can rather be seen
as a family of local sections of L(M) which differ on the overlaps by an SL(2,C)
transformation in the representation ℓ. Again, this is not an issue about globality,
it is an issue about transformation laws (and eventually about equivalence classes
representing physical states). If they were to be considered as (local) sections
of L(M), i.e. as frames, they would transform as sections of L(M), namely
as e′µ

I
= J

µ
ν e

ν
I
, with no SL(2,C) transformation, which eventually would lead

to a different covariant derivative. The fact that in the physics literature the
covariant derivative prescribed for spin frames is used is a clear indication that
they are in fact using spin frames even if, working locally, they are considered as
(local) sections of L(M) (with the side effect that one has to reintroduce SL(2,C)
transformations by an ad hoc procedure).

For a spin frame e : P → L(M) the image Im(e) = SO(M, g) ⊂ L(M) is the
sub-bundle of g-orthonormal frames on M , where the metric g induced by the

spin frame is
g = (eIµηIJe

J
ν ) dx

µ ⊗ dxν (5)

Then the pair (P, ê) with ê : P → SO(M, g) is a standard spin structure on
(M,g). For a standard spin structure to exist, one needs global Lorentzian
metrics to exist on M , i.e. the tangent bundle TM splits as the sum of a time

bundle T1 and a space bundle T3, of rank 1 and 3 respectively. Moreover, one
needs the second Stiefel-Whitney class of M to be vanishing; see [19], [23], [7]. If
this second condition is met, then one knows there exists some structure bundle
P which allows global spin frames e : P → L(M), even though sometimes not
all principal bundles on M are allowed as structure bundles, e.g. sometimes one
has principal bundles that do not allow global spin frames anyway. A manifold
M satisfying these conditions is called a spin manifold and we just argued that
spacetimes need to be spin manifolds. Given a spin manifold M , one can find a
structure bundle P over it and a global spin frame e : P → L(M) on it, possibly
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having more than one choice available as a structure bundle. These topological
constraints are there only as long as one requires the objects to be global since,
locally, one always has spin frames.

Finally, let us mention that given a structure bundle P one can functorially define
a spin frame bundle F (P ) whose global sections are in one-to-one correspondence
with global spin frames. Local coordinates on F (P ) are of course (xµ, eµ

I
) which

transforms according to (4).

Once we select a structure bundle [π : P → M ] we can also define principal
connections on P .

On the structure bundle P , one can locally fix a right invariant pointwise basis
σIJ (skew in [IJ ]) of vertical vectors one for each basis in the Lie algebra sl(2,C).
Then, a principal connection is

ω = dxµ ⊗ (∂µ − ωIJ
µ (x)σIJ ) (6)

which in fact is map ω : π∗TM → TP . The connection ω induces, at each point
p ∈ P , linear maps ωp : TxM → TpP which define the spaces of horizontal vectors
Hp = ωp(TxM) ⊂ TpP and the horizontal lift(s) ωp(v) = vµ(∂µ − ωIJ

µ (x)σIJ )
to TpP of a tangent vector v ∈ TxM .

By changing coordinates on M and local trivializations on the structure bundle
P , one gets transformation laws for the local representations of a connection by
its coefficients as

ω′IJ
µ = J̄ν

µℓ
I
K(ϕ)

(

ℓJL(ϕ)ω
KL
ν + ∂νℓ

K
L (ϕ̄)ηLJ

)

(7)

where ℓ : SL(2,C) → SO(3, 1) is the covering map (to be discussed later on when
we discuss spin groups more generally in their Clifford Algebras; see [25]).

As for spin frames, the local expression ωIJ
µ together with the transformation

laws (7) are equivalent to a global and intrinsic description of a connection.
As in the case of spin frames, one can functorially define a bundle Con(P )
with coordinates (xµ, ωIJ

µ ) so that there is a one-to-one correspondence between
global sections of Con(P ) and global connections on P .

Thus we have our fundamental fields (eµI , ω
IJ
µ ), they can be even regarded as

global sections in a suitable configuration bundle F (P ) ×M Con(P ) if needed,
although it is irrelevant here. Now we need a dynamics given by a Lagrangian.
We decide eµI enters at order zero (no derivatives), while the spin connection
ωIJ
µ enters at order 1 (i.e. with its first derivative). Moreover, the action must

be covariant with respect to transformation laws (4) and (7) combined (which
are an action of the group Aut(P ) of automorphisms of the structure bundle,
acting on the configuration bundle, but again here we ignore it).

At first order of the connection ωIJ
µ , we can define the curvature

RIJ
µν = ∂µω

IJ
ν − ∂νω

IJ
µ + ωI ·

Kµω
KJ
ν − ωI ·

Kνω
KJ
µ (8)

where uppercase Latin indices are moved consistently by the matrix ηIJ =
diag(−1, 1, 1, 1). Notice that RIJ

µν is a tensor, i.e. it transforms as

R′IJ
µν = ℓIK(ϕ)ℓJL(ϕ)R

KL
αβ J̄

α
µ J̄

β
ν (9)

One can obtain the Ricci and scalar curvature by contraction, namely

RI
µ = eνJR

IJ
µν R = e

µ
I
RI

µ (10)

which of course depend on the connection and the spin frame.
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We can define a curvature 2-form as well as a coframe 1-form (valued in the
algebra sl(2,C))

RIJ = 1
2R

IJ
µνdx

µ ∧ dxµ eI = eIµdx
µ (11)

In dimension 4, the Holst action then is

AD[e, j1ω] = 1
4κ

∫

D

RIJ∧eK∧eLǫIJKL+
2
γ
RIJ∧e ·

I∧e
·

J−
Λ
6 e

I∧eJ∧eK∧eLǫIJKL

(12)
The real (adimensional) parameter γ ∈ R − {0} is called the Holst parameter,
Λ is the cosmological constant, and κ = 8πGc−3. For later convenience, let us
define the 2-form

BIJ = 1
2e

K ∧ eLǫIJKL + 1
γ
e ·

I ∧ e ·

J (13)

so that we can re-write the action as

AD[e, j1ω] = 1
2κ

∫

D

RIJ ∧BIJ − Λ
12e

I ∧ eJ ∧ eK ∧ eLǫIJKL (14)

If BIJ were a fundamental field, this theory (with Λ = 0) would be a BF-theory.
That is well known and studied. Field equations would be

RIJ = 0 ∇̂µBIJ = 0 (15)

since the variation of the Lagrangian would be

δL = −∇̂BIJ ∧ δωIJ + RIJ ∧ δBIJ + ∇̂
(

BIJ ∧ δωIJ
)

(16)

where ∇̂ denotes the covariant derivative induced by ωIJ (and the Levi-Civita
connection {g} of the induced metric g for world indices). However, in our case
BIJ is not a fundamental field, it is a function of the spin (co)frame, which is
fundamental instead. A fundamental 2-form BIJ has 36 independent compo-
nents and variations, a spin frame only 16. That means that for us the allowed
deformations of BIJ are only the 16 dictated by the functional form of BIJ ,
namely

δBIJ =
(

ǫIJKLe
K + 2

γ
e[IηJ]L

)

∧ δeL (17)

Thus the field equations of the Holst model are

{

ǫIJKL∇̂eK ∧ eL + 2
γ
∇̂e[I ∧ eJ] = 0

RIJ ∧
(

ǫIJKLe
K + 2

γ
e[IηJ]L

)

= Λ
3 ǫIJKLe

I ∧ eJ ∧ eK
(18)

4 Dynamical equivalence with standard GR

We have to show that, although field equations (18) depend on an extra param-
eter γ, they are all dynamically equivalent to standard GR, i.e. they define the
same set of Lorentzian metrics as solutions.

The first field equation is actually algebraic and linear in the connection ωIJ .
It is not a surprise we can solve it explicitly.

The manipulation is quite complicated, though elementary. We first need to
know that the spin frame induces a connection Γ̃ on P such that ∇̃µe

I
ν = 0.

One readily has

∇̃µe
I
ν = 0 ⇐⇒ Γ̃IJ

µ = eIα

(

{g}αβµe
β
K

+ dµe
α
K

)

ηKJ (19)
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which is called the spin connection. Since it is a connection on P as ωIJ is, then
their difference is a tensor, thus let us set

zIJK := (ωIJ
µ − Γ̃IJ

µ )eKµ
· ⇒ z(IJ)K = 0 (20)

Let us stress that we need both ω and Γ̃ to be global connections, so that their
difference is a tensor. We shall show that z = 0, which makes sense intrinsically
just because it is tensor, therefore we are implicitly using the transformation
laws in the proof. One cannot ignore global properties. More examples will
follow.

Now we can go back to the field equations and use the identity ∇̂eI = ∇̃eI +
zIK ∧ eK to transform it into an algebraic linear equation for z, namely

(

γ2 + 1
)

∇̂e[I ∧ eJ] = 0 ⇒ ∇̂e[I ∧ eJ] = 0 ⇒

⇒ z[IKνe
K
ρ e

J]
σ ǫ

µνρσ = 0 ⇒ zIK[νe
J
σe

K
ρ] = zJK[νe

I
σe

K
ρ]

(21)

By tracing this identity we obtain zJIJ = 0 and plugging it back into the field
equations we can rewrite the first field equation as

zI[JK] = 0 (22)

Now that we know that zI[JK] = 0 and z(IJ)K = 0, we can apply a standard
argument to show that zIJK = 0, i.e.

zIJK = zIKJ = −zKIJ = −zKJI = zJKI = zJIK = −zIJK ⇒ zIJK = 0
(23)

Therefore we have ωIJ = Γ̃IJ along solutions from the first field equation.
Now we can check that the curvature R̃IJ of the connection Γ̃ can be written
in terms of the Riemann tensor R̃α

βµν of the induced metric g as

R̃IJ = 1
2e

I
αe

JβR̃α
βµνdx

µ ∧ dxν (24)

and substitute that into the second field equation. This way we obtain

−4γe
(

R̃σ
µ − 1

2 R̃δσµ

)

eµK = 4eγΛδσµe
µ
K ⇒ R̃µν − 1

2 R̃gµν = −Λgµν (25)

where we used the first Bianchi identity R̃α
[βµν] = 0 and we set e = det(eIµ).

Here is where we need γ to be non-zero.
This last equation is purely metric and it singles out as solutions the same

metrics as standard GR. Accordingly, the Holst formulation and standard GR
are dynamically equivalent.

5 Barbero-Immirzi formulation

Now we want to write the Holst formulation in terms of new fields; see [1], [26],
[27]. Once again, we need to fix some topological argument first, in order to
keep global properties under control. Since this is simply an (algebraic) field
transformation, we shall not even need to prove dynamical equivalence since it
will follow directly from the fact that the Lagrangian is global.

We discussed the Holst formulation which is written for fields defined on the
structure bundle P , which is a SL(2,C)-principal bundle. As a matter of fact, we
have a closed subgroup Spin(3, 0) ≃ SU(2) ⊂ SL(2,C) and we can ask whether
we can restrict trivializations on P so that transition functions are valued into
SU(2) ⊂ SL(2,C).
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We have similar examples on the frame bundle L(M). Initially, L(M) is a
principal bundle with the group GL(4) and one defines a local trivialization for
any local frame. For example, for natural frames ∂µ transition functions Jµ

ν are
clearly in GL(4).

However, if there is a strictly Riemannian metric h defined on M one can always
use h-orthonormal frames Va to define local trivializations on L(M) and, in that
case, transition functions are clearly in the orthogonal group O(4) ⊂ GL(4). As
a matter of fact, this is always possible, since one can show that on any manifold
one can define a strictly Riemannian metric h.

If the manifold M is orientable, one can define positively oriented frames and
further reduce the structure group to SO(4) ⊂ O(4) ⊂ GL(4). Of course, the
first reduction to O(4) is always possible, the second reduction to SO(4) needs
a topological condition (orientability) to be met.

Also, if we want to reduce to the orthogonal group in a different signature, we
need topological conditions. That is because we need topological conditions for
the metric in non-Euclidean signature to exist. Once it does exist, orthonormal
frames do exist and they define reductions as in the strictly Riemannian case.

In the physical language, we have a gauge theory for the group SL(2,C) and
we want to discuss whether we are able to partially gauge fix to a subgroup
SU(2). This can be done if and only if we can find an SU(2)-principal bundle
[τ : Σ → M ] and a bundle map ι : Σ → P such that that is vertical and
equivariant with respect to the group homomorphism i : SU(2) → SL(2,C),
namely we have

Σ P

MM

ι(p · U) = e(p) · i(U)........................................................
......
.
.....
......
.

π
........................................................
......
.
.....
......
.

τ

........................................................................................
...........

.ι

............................................................................

............................................................................

(26)

The pair (Σ, ι) is called a reduction to the subgroup SU(2).

As we discussed, in general, existence of reductions depends on topological con-
ditions which only occasionally are automatically satisfied. Well, one can prove
this is a case in which the reduction comes for free, it always exists a reduction
to the group SU(2).

Actually this generalizes to any spin manifold M of dimension n+ 1, where one
has a reduction from Spin(n, 1) to Spin(n, 0), for free.

Then we are in the situation where

Σ P L(M)

M M M

........................................................

......
.
.....
......
.

GL(m)

........................................................

......
.
.....
......
.

SL(2,C)

........................................................

......
.
.....
......
.

SU(2)

........................................................................................
..........

..ι
..........................................................................

..........
..e

............................................................................

............................................................................
............................................................................
............................................................................

(27)

We define an SU(2)-frame a map ǫ : Σ → L(M), thus, for any spin frame
e : P → L(M), the map e ◦ ι : Σ → L(M) is a SU(2)-frame (still on spacetime).
Locally, an SU(2)-frame is still represented by an invertible matrix eµI (x) ∈
GL(4) (or its inverse eIµ(x)). What is characteristic of the SU(2)-frame is the
transformation laws, which are with respect to the automorphisms of Σ instead
of automorphisms of P .
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We have a group embedding Aut(Σ) → Aut(P ) and an element of Aut(Σ) is in
the form

{

x′µ = x′µ(x)

U ′ = ψ(x) · U ψ(x) ∈ SU(2)
(28)

Let us denote by λ : SU(2) → SO(3) →֒ GL(3) the covering map of the group
Spin(3, 0) = SU(2), we have transformation laws

e
′µ
I

= Jµ
ν e

ν
J ℓ

J
I (ψ̄) ℓJI (ψ̄) = ℓJI ◦ i(ψ̄) =

(

1 0
0 λ(ψ̄)

)

(29)

Hence we split a tetrad eµ
I
into a vector n = e0 and a triad ǫi := ei

When we then consider a Spin(3, 1)-connection ωIJ , the situation is more
complicated since its horizontal spaces Hp may or may not be tangent to the
image ι(Σ) ⊂ P . We need a way to project the horizontal subspaces onto the
image to define a new connection Ai on Σ, as well as some other field ki which
carries the information we need to rebuild uniquely ωIJ ; see [27].

Definition: when we have a closed subgroup H ⊂ G, we say that (G,H) is a
reductive pair iff at the level of Lie algebras h ⊂ g the exact sequence of vector
spaces

0 → h → g → m → 0 (30)

where we set m = g/h, allows a reductive splitting Φ: m → g, i.e. the image
Φ(m) ⊂ g is an invariant subspace with respect to the adjoint action of G
restricted to H , namely TAdG|H : Φ(m) → Φ(m).

Notice that we are not requiring the reductive splitting to be a Lie algebra
homomorphism, nor that m is a Lie subalgebra, which means that we are not
requiring we have an exact sequence of groups, i.e. G does not need to split as
a product of groups G = H ×K. Of course, if this is the case, as it was in the
Euclidean case Spin(4) = SU(2)× SU(2) that Ashtekar originally considered in
the selfdual-formalism (see [1], [2]), the pair (G,H) is a reductive pair setting
m = k to be the Lie algebra of the subgroup K.

The same thing does not happen in the case Spin(3, 1) = SL(2,C). We still
have SU(2) ⊂ SL(2,C), but to define a complement one should have a sort of
group generated by boosts, which unfortunately do not close to define a group.
More generally, at the level of algebras in any dimension we have the sequence

0 spin(n, 0) spin(n, 1) m 0......................................................
..........

..
.......................................................................

..........
..i

...............................................................................
..........

..
p .....

.....
...

...........
...................................................................

..........

......
.
.....
......
.

Φ

...............................................................
..........

..

(31)

which sits in the corresponding Clifford algebra C(n, 1); see [19], [9]. The spin
algebra spin(n, 1) is spanned by the elements eIJ , the spin algebra spin(n, 0) is
spanned by the elements eij , m is spanned by Ei := p(e0i), which of course do
not close to form a subalgebra.

We can define a splitting map Φ: m → g : Ei 7→ e0i+ i ◦β(Ei) for any linear
map β : m → spin(n, 0) −֒→ spin(n, 1), so that p◦ i◦β = 0, by exactness. We see
immediately that Φ is a reductive splitting iff the map β : m → spin(n, 0): Ei 7→

β(Ei) = βjk
i ejk is an intertwiner between m, which supports the vector represen-

tation λ of Spin(n, 0), and spin(n, 0), which supports the adjoint representation
of Spin(n, 0). Since both representations are irreducible, by Schur’s Lemma this
is possible only if dim(m) = dim(spin(n, 0)), which is true only for n = 3 (or
β = 0).
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In n = 3, we hence have a whole family of reductive splittings βjk
i = − 1

2βǫi
jk

parameterized by β which is called the Immirzi parameter. Since the character-
istic polynomial of β has at least a real root, then β ∈ R. In all other dimensions,
we have only one reductive splitting with β = 0.

Let us remark that Holst parameter has a dynamical origin, while Immirzi
parameter comes from kinematics. Setting a priori β = γ is certainly possible,
although rather suspect.

For any reductive splitting we have a different way of identifying spin(n, 1) =
spin(n, 0)⊕m. In particular, for n = 3 we have

1
2ω

IJσIJ = ω0iσ0i +
1
2ω

ijσij = ω0iΦ (Ei)⊕
1
2

(

ωjk + βǫi
jkω0i

)

σjk (32)

We see that we can split a SL(2,C)-connection ωIJ
µ as a pair (Ai

µ = βω0i +
1
2ǫ

i
jkω

jk, kiµ = ω0i
µ ), which is one-to-one map since it has inverse

ωjk = ǫjki
(

Ai
µ − βki

)

ω0i = ki (33)

The map induced by A = dxµ ⊗
(

∂µ −Ai
µσi

)

defines in fact an SU(2)-
connection on the structure bundle [Σ → M ] which is called the Barbero–
Immirzi connection, while k = kiµdx

µ ⊗ σi is 1-form on Σ valued in the Lie
algebra su(2). The expression of Barbero–Immirzi connection depends on a real
parameter β, the Immirzi parameter, since it relies on the reductive splitting.

The definition of Barbero–Immirzi connection is not only local but also
global, in view of the globality of the reductive splitting. In fact, if one considers
an automorphism φ ∈ Aut(Σ), it induces an automorphism on P (as we already
used in (29)), which acts on ωIJ and hence on (Ai, ki).

One can check globality directly by using the special expression of (29). These
are SU(2)-gauge transformations, one can easily check that the transformation
laws induced on (Ai, ki) are in fact

A′i
µ = J̄ν

µ

(

λijA
j
ν − 1

2
ǫiljλ

j
mdν λ̄

m
l

)

k′iµ = λij(ψ)k
j
ν J̄

ν
µ (34)

which are what is expected from an SU(2)-connection and a 1-form valued in
su(2).

Since A is a global connection on Σ, it defines its curvature 2-form F k =
1
2F

k
µν dxµ ∧ dxν where we set

F i
µν = dµA

k
ν − dνA

k
µ − ǫkijA

i
µA

j
ν (35)

which transforms in the adjoint representation of su(2). This (as well as the
invariance of holonomy we shall use later on) is obtained only in view of the
globality of A as an SU(2)-connection. Globality of A is crucial, even when
Σ is trivial; not (only) for geometric reasons, but (and more importantly) for
ensuring the correct transformation laws of objects which are important from a
physical perspective in the first place.

We can now write the Holst Lagrangian in terms of the new fields (eIµ, A
i
µ, k

i
µ)

as

LH = 1
κ
F i ∧ Li +

1
κ
∇ki ∧ (Ki − βLi)−

1
2κ ǫijkk

i ∧ kj ∧
((

β2 − 1
)

Lk − 2βKk
)

+

+ Λ
3κ

γ2

1−γ2K
k ∧ Lk

(36)
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where we set Kk = 1
2ǫkije

i ∧ ej − 1
γ
e0 ∧ ek and Lk = e0 ∧ ek + 1

2γ ǫk
ijei ∧ ej,

for the boost and rotational parts of the BIJ field, respectively; see [3]. Here
the covariant derivative ∇ is the covariant derivative with respect to the SU(2)-
connection Ai. In particular, we have ∇kk = dki − ǫijkA

j ∧ kk.

Let us stress that since this is a Lagrangian for the fundamental fields (eIµ, A
i
µ, k

i
µ),

it must be varied with respect to its fundamental fields, not with respect to
(Ki

µν , L
i
µν , A

i
µ, k

i
µ). Variations with respect to (Ki

µν , L
i
µν , A

i
µ, k

i
µ) are, in fact,

not independent.

To find the Lagrangian in the Barbero–Immirzi formulation, one can use the
identities

R0i = ∇ki+βǫijkk
j∧kk 1

2
ǫkijR

ij = F k−β∇kk−β2
−1
2

ǫkijk
i∧kj (37)

which relate the curvature of ωIJ to the curvature of Ai.

Field equations in the Barbero-Immirzi formalism read as



































∇Lk = β−γ
γ

ki ∧ ei ∧ ek +
γβ+1
γ2+1 ǫkijk

i ∧ (Kj − γLj)

∇Kk = βγ+1
γ

ki ∧ ei ∧ ek +
γ−β
γ2+1ǫkijk

i ∧ (Kj − γLj)

F k ∧ ek −
1+βγ

γ
∇kk ∧ ek +

γ−2β−γβ2

2γ ǫkijk
i ∧ kj ∧ ek +

Λ
6 ǫijke

i ∧ ej ∧ ek = 0
(

γFh − (1 + βγ)∇kh + γ−2β−γβ2

2 ǫhijk
i ∧ kj − Λ

2 ǫ
h
ije

i ∧ ej
)

∧ e0+

+
(

ǫhkjF
k ∧ ej + (γ − β)ǫhkj∇kk ∧ ej +

(

β2 − 1− 2βγ
)

kh ∧ kl ∧ el
)

= 0

(38)
The first two field equations can be recast as

ǫkij∇̂ei ∧ ej = 0 ∇̂e0 ∧ ek = ∇̂ek ∧ e0 (39)

These are definitely not simple or beautiful. Keep the sensation in mind
because it will call for a miracle when we shall see how simple they get after the
(rather horrific) decomposition along a foliation; [16], [17], [28]. In particular
we shall see that, without assuming anything about the Holst and the Immirzi
parameters, the Holst parameter disappears from constraint equations and they
depend on the Immirzi parameter β only. Moreover, we are able to completely
solve algebraic field equations to completely determine ki as a function of the
frame, in the bulk actually. Finally, we shall see that on the foliation we will
have Ki = βLi, which will be important later in the quantum theory; see [3].
In any event, these field equations are just obtained from the Holst ones by a
field transformation to define (A, k), hence they are dynamically equivalent to
Holst equations and standard GR.

6 Conclusions and Perspectives

Although field equations in the Barbero–Immirzi formalism on spacetime are
not particularly appealing, this is a good place to stop the first lecture. All
the topological arguments to ensure existence of global structures have been
discussed here.

The relevant structures we introduced here are:

- the spacetime M has to be a spin manifold, so that it allows spin struc-
tures, which are required both for the existence of spin frames and for
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maintaining the possibility of having global Dirac equations. This guar-
antees the existence of a structure bundle P as well as a global spin frame
e : P → L(M), which we use as fundamental fields.

- the SU(2)-reduction (Σ, ι) of P from the Spin(3, 1) group to Spin(3, 0).
For a spin manifold, this comes for free, with no topological obstruction;
see [23]. It is used here to define the structure bundle Σ on which we
define the Barbero–Immirzi fields (A, k). Later on, this will also be used
to adapt frames to the foliation. LQG is a SU(2)-gauge theory hence this
structure is particularly important.

- the reductive splittings which are used in n = 3 to project the spin con-
nection ωIJ to SU(2) fields (A, k). This is a weaker structure than the
group splitting Spin(4, 0) = SU(2) × SU(2) which was originally used for
selfdual formalism. Reductive splittings are needed to deal with the group
Spin(3, 1) which does not split, without resorting to complexification.

It has been argued that Barbero-Immirzi connection cannot be defined on space-
time. The argument goes like showing that one can fix a particular spacetime
and a foliation, define the Barbero-Immirzi connection A on a leaf and then
compare the holonomy along a path γ on a leaf of the two connections A and
ω; see [4], [5]. One can show that in some cases the result is different and that
shows that the Barbero-Immirzi connection Ai cannot be a restriction of the
spin connection ωIJ . In fact it is not, neither for us it is. The connection ωIJ

is not tangent to Σ, it has to be projected and splitted as (Ai, ki) to become
tangent to Σ. The connection ωIJ is not restricted to Σ, it is projected on it.
Accordingly, there is no need for the holonomies of ωIJ and Ai to be the same
(and in fact they are not). The holonomy of Ai is not the original holonomy of
ωIJ , it just encodes it together with ki. Nevertheless, we could define a global
SU(2)-connection Ai on spacetime, which can be then restricted to the leaves of
a foliation to define the standard Barbero-Immirzi on space.

Of course, one can assume structures and ignore these topological arguments.
The physical important fact is that fundamental fields transform as they should
to be global (as they do and one can check it directly). This is important be-
cause in many instances we shall consider structures (e.g., curvature, holonomy,
tensors) just because they transform in a given way and they would not if the
fundamental fields did not transform as they do. Here topological arguments
are mainly a motivation for definitions which otherwise would come out of the
blue.

Notice that K and L are 2-forms induced by the spin frame, thus given
a frame the first two equations are algebraic in the field ki, while the other
equations involve the curvature F i of the Barbero–Immirzi connection.

In the next lecture we shall give a unifying framework to discuss Cauchy
problems and pre-quantum equations. Although the discussion applies to quite
a general field theory (including Maxwell equations), we will apply it to Barbero–
Immirzi formulation of standard GR; see [28], [29].

Mathematically speaking, field equations for a generic Lagrangian are quasi-
linear, although usually they are not elliptic nor hyperbolic. Then one can
split the field equations (as well as the fields) in two parts, one which is hy-
perbolic and one which are constraints on initial conditions, which account for
over-determination of Einstein (or Maxwell) equations. These initial conditions
produce the Cauchy data for the Cauchy problem, which is defined for the
hyperbolic part of the equations and fields. Usually, this splitting is done in
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Hamiltonian formalism as the canonical analysis of the theory. We shall do it
first in Lagrangian formalism. It is not a property of a particular formalism for
field theory, it is a property of field equations whatever formalism one uses to
write them in.

Depending on the interest, one can solve constraints for allowed initial con-
ditions, find a solution of Cauchy problem and rebuild a covariant solution of
the original covariant field equations. This is a classical attitude, which is more
or less a starting point for classical numerical gravity; see [30].

Alternatively, one can realize that determining bulk fields is a classical goal
that is unrealistic in a quantum context. In mechanics, it would correspond
to trace the trajectory of particles, which, we know, does not make sense in
quantum mechanics. A quantum attitude is to forget what happens in the
bulk and focus only on the boundary to assign a probability amplitude to the
propagation of boundary data. For this reason, one should quantize constraint
equations, then possibly average for a classical initial condition (e.g. by using
some coherent state formulation) and then solve a classical Cauchy problem to
rebuild the covariant field. This route is the pre-quantum formalism and it is
followed by LQG, which in fact quantizes constraint equations of the Barbero–
Immirzi model. In other words, the splitting of field equations will provide us
with an initial step both for classical numerical solutions and for quantization.

Appendix. Structures on spacetimes and back-

ground free models.

This is almost trivial but it is worth saying explicitly. There are two things we
call GR, which are different and must be kept distinct.

When we describe the motion of planets around a star, that of a star in
the galaxy, the evolution of density perturbations during the expansion of the
universe, or the propagation of gravitational waves, we describe the spacetime
as a manifold M with a fixed Lorentzian metric g on top of it. In this context,
spacetime is a Riemannian manifold (M, g). Mathematically speaking, studying
the properties of (M, g) is what one does in differential geometry. Also in
cosmology, when we fix the cosmological principle, we obtain an ansatz for
the metric to be used and we try to adjust the metric to observations, which is
pure and clear differential geometry.

On the contrary, when we discuss (quantum or classical) field equations for
gravity, e.g. by fixing a variational principle, spacetime is a bare manifold M ,
which allows Lorentzian metrics, but we do not fix any metric (or any other
structure) on it. We write a variational principle for any metric, we obtain
field equations, and we find metrics as solutions of these field equations. Here
most of the work is done with no metric fixed on M , the metric is the result
of the process, but spacetime is a bare manifold. In a quantum setting, one
does not even quantize a spacetime metric at all, we shall see that in LQG we
quantize a conjugated pair made of an SU(2)-connection and a (densitized) triad
on space from which the Lorentzian covariant metric will eventually emerge. In
mathematics, studying the property of a bare manifold M is called differential
topology.

Let us remark that one of Riemann’s motivations for introducing abstract

14



manifolds was exactly to point out that a manifold exists first as a bare manifold,
with no geometric structure fixed on it. Then, eventually, it can be embedded
in an environmental space so that it inherits an induced metric from the metric
in the environmental space in which it is embedded into. That is the novelty
introduced by Riemann over Gauss and his generation, who studied surfaces
which are defined as embedded manifolds.

In the context of GR, manifolds (and spacetimes) are bare manifolds. They
become Riemannian manifolds when one fixes a metric on them.

As a consequence, when discussing Einstein equations, one should not say that
leaves of an ADM foliation are spacelike submanifolds, since there is no metric
to be spacelike for. On the contrary, one fixes a foliation, solves the equations,
defines a covariant metric and proves that the leaves are by construction spacelike
with respect to the resulting metric. As a matter of fact, the foliation being
spacelike is a property of field equations, not a property of the foliation.

Let us point out that one can do a lot of mathematics on bare manifolds.
One can define tangent vectors, tensor fields, discuss topological obstructions to
the existence of tensor fields with given properties, define variational principles
and global PDEs, discuss Cauchy problems (see [31], [28], [29]), flows of vector
fields, and so on. Let us also stress that a background free theory is precisely a
theory written on a bare manifold, something which does not depend on any
structure fixed (by us) on the manifold. That is one of the (not so) hidden
assumptions of GR: all the structures on spacetime have to be determined by
equations, all structures are dynamical. This is an important axiom since it
is not trivial to write a variational principle with a given set of fields without
introducing other fixed structures. That issue sits at the core of the discussion
between Einstein and Kretschmann (1917) which dates back to the origin of
GR and one of the times in which Einstein was too fast in acknowledging to be
wrong; see [32], [11], [33].

The issue is not completely settled, however. As a matter of fact, one does have
structures (fields) fixed on a bare manifold. For example the Kronecker delta is
a (1, 1)-tensor field, the Levi-Civita symbols define an (m, 0) and a (0, m)-tensor
density. These are canonical structures and nobody has ever argued they need
to be varied or need to be determined by equations.

The problem is that there is no clear-cut definition of canonical structures, which
are exceptions to the rule above. One example is when one fixes a signature and
defines ηIJ which determines what is an orthonormal frame. These ηIJ live
in the algebra of frames, not on the manifold and they are considered to be
a canonical structure. This is a particularly beautiful example, since it has
not to be confused with the metric (with coefficients ηµν , written with world
indices, not with frame indices) in Minkowski spacetime, which being a metric
on spacetime is a structure and fixing it to do special relativity (SR) is the reason
why SR is not a relativistic theory.

On a (gauge-)natural bundle, one can define a structure to be canonical if it
is invariant with respect to the action of the group of diffeomorphisms Diff(M)
(or generalized gauge transformations Aut(P )), which in fact acts on (gauge-
)natural bundles. This covers the examples of canonical structures given above.
In a more general setting, one needs to discuss what is meant by canonical
structure and, consequently, by background free.

Anyway, as a matter of fact, a relativistic theory (and GR in particular) is
a field theory on a bare manifold, in which all (non-canonical) structures are
dynamically determined by field equations. When one fixes which fields are
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involved (as well as to which order they enter in the action) that does impose
strong constraints on the allowed dynamics (Utiyama theorems; see [34], [24],
[9]), which eventually contradicts what Kretschmann said.

Originally Einstein was presenting GR as a theory based on general covariance,
saying that general covariance was the core of the new theory. At one of his
first lectures, Kretschmann argued that, mathematically speaking any equation
can be written in general covariant form at the price of adding more fields and
possibly more equations. That is obviously true, but the argument was never
formulated properly, being precise on what one had to understand by a field

theory and what did it mean to add fields to it. Instead Einstein, based on
few examples provided by Kretschmann, conceded that he was right and started
introducing the theory as based in equivalence principle which soon became
recognised as the physical core of GR.

Later on, also discussing gauge theories, we learned clearly that discussing the
issue starting from a variantional principle and fixing the set of fields involved
in the theory, general covariance (as well as gauge covariance) as well as requir-
ing the theory to be background free, actually imposes strong constraints on
allowed dynamics. The issue was actually coded into a family of results called
the Utiyama theorem.

Not only one did not need to abandon general covariance as the core of a rela-
tivistic theory, rather the other way around, one can show that a combination of
general covariance and background freedom actually implies equivalence princi-
ple. As a matter of fact, one can even prove that geodesics equations for freely
falling material points (which are in fact a form of weak equivalence principle)
are in fact the simplest equations one can write on a bare manifold, based only
on covariance requirements, showing in some sense that (weak) equivalence prin-
ciple follows from covariance requirements; see [35], [9], [36]. Moreover, one has
one of such equations for any projective class of connections which then arise as
a natural candidate of a (part of the) description of gravitational field.

Finally, let us mention that, in differential topology, one does not really
work on a bare manifold. There are (global) diffeomorphisms acting on bare
manifolds which are required to be symmetries in gravitational theories. As
a result, one defines an equivalence relation among bare manifolds (two bare
manifolds are equivalent if they are (globally) diffeomorphic) and takes the
quotient. Spacetime is not a bare manifold, it is a bare manifold up to diffeo-
morphisms. A geometry on spacetime is not a metric on M , it is a whole class
[(M, g)] = {(φ(M), φ∗g)} of isometric Riemannian manifolds.

Einstein equations are not equations for a metric on a bare manifold, they
are covariant equations for metrics on a bare manifold, which exactly means
that they are compatible with the quotient, hence they induce “equations” for
classes on the quotient. On the quotient they are equations for the gravitational
field which is represented by classes [(M, g)]. The physical equations are on the
quotient, they are defined just as far as the equations on the manifold are
covariant. Of course, if the quotient were a manifold itself, one could write
PDEs directly on the quotient. However, this is not the case and, with the
current technology, the only consistent way of writing equations for classes of
bare manifolds is to write covariant PDEs on bare manifolds which represent
points in the quotient space.

By the way, that is why one says points on spacetime are not observables,
meaning precisely that the (local) coordinate functions xµ(p) are not diffeomor-
phic invariant, they are a characteristic of the bare manifold M , not of the class
[M ], which is where the physical theory is defined. A precise language has been
developed in differential topology to discuss these kind of issues. Ignoring it and
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adding instead a new imprecise one to go along our physical intuition (which
in this case goes back to Newton and the need to rely on an absolute space or
pretend to) is not a good idea in this case.

Moreover, the mathematical language adapts perfectly to physics. Bare man-
ifolds are covered by local observers (their charts). Ignoring specific representa-
tives means exactly looking for properties which are independent of observers,
absolute properties which are, by definition, the real physics. Real physics is
in the quotient, on bare manifolds up to diffeomorphisms. The gravitational
field is geometry which is in the quotient. It is not a metric, it is a class of
equivalent Lorentzian manifolds. Unfortunately, we are not able to give dynam-
ics directly on the quotient as we are not able to describe physics (meaning
real world observations) without using observers. Bare manifolds encode what
observers measure, they are relative to the observations. These two worlds are
connected, precisely, by diffeomorphisms, which encode changes of observers.
Physical information is in the relations among observes, not in the observers
themselves.
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A.Einsteins neue und seine ursprüngliche Relativitätstheorie, Annalen der
Physik, 53, (1917),

[33] L. Fatibene, M. Ferraris, G. Magnano, Constraining the Physical State by
Symmetries, Annals of Physics 378, (2017); arXiv:1605.03888
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