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GENERALIZED FRACTAL TRANSFORMS WITH CONDENSATION: A

MACROECONOMIC-EPIDEMIOLOGICAL APPLICATION

Abstract. We establish novel results on generalized fractal operators with condensation and apply
them in the analysis of a macroeconomic-epidemiological model characterized by deep uncertainty
under the assumption that it is impossible to quantify with certainty the exact number of current and
future infectives. The setting is simple: the level of prevalence of a communicable disease determines
the size of the healthy labor force, affecting output and consumption; health policy is publicly funded
via income taxation but the availability of resources is endogenously determined depending on disease
prevalence. Since the high degree of uncertainty is reflected also in the policymakers’ choice of the policy
tools to limit the spread of the disease, we investigate how the peculiarities of different policymakers (a
short-sighted vs far-sighted approach) affect the asymptotic invariant distribution of macroeconomic
activity. Specifically, we exploit the condensation term of the fractal operator to characterize the
consequence of short-sighted policies. Through numerical simulations we find that, as we would expect,
far-sighted policies lead to asymptotic invariant probability distributions concentrating more mass on
high levels of aggregate consumption together with small numbers of infectives, while the invariant
distribution reached through short-sighted policies, besides concentrating more mass on low levels
of aggregate consumption together with large numbers of infectives, exhibits an additional layer of
(uniform) uncertainty generated by the condensation term.

1. Introduction

In this paper we enrich the theory on generalized fractal operators by establishing new results that
incorporate a condensation term into such operators for the case in which they transform probability
distributions. The notion of condensation was introduced by Barnsley (1989) for the classical notion
of Iterated Function Systems (IFS) and then extended by Kunze and others to the case of generalized
fractal transforms (see, e.g., Kunze et al., 2012). Our results, by establishing existence and uniqueness
of a fixed point for fractal transforms acting on probability densities and cumulative distributions when
a condensation term is included, allow for the application of deterministic operators that recursively
generate dynamics for purely random objects—densities or cumulative distributions—in macroeco-
nomic models. Such an approach seems to be especially suited to situations where the economic
variables under study are characterized by a diffuse uncertainty that prevents them to be treated as
standard random variables, so that tackling directly the probability distribution associated to them
may turn out to be more appropriate. Epidemics provide an intuitive example of such a situation.

The recent coronavirus epidemic has revealed the potential dramatic effects of infectious diseases on
macroeconomic outcomes. From the first case of COVID-19 reported in China in late 2019, in a matter
of few months the epidemic has reached a pandemic status in March 2020, and the entire world is
still today (early 2021) understanding how to cope with its devastating economic consequences which,
because of its effects on workers and firms, range from a large number of job losses to a substantial
reduction in GDP (Dong et al., 2020; La Torre et al., 2021a). This unexpected shock has severely hit
all worldwide economies and no single country has been spared by the disease outbreak, giving rise
to a growing interest in understanding the mutual relation between epidemics and macroeconomics.
Borrowing from previous works on economic epidemiology which mainly have a microeconomic focus
(Anderson et al, 2010; Gersovitz and Hammer, 2004; Goldman and Lightwood, 2002; Philipson, 2000),
and more specifically from those on macroeconomic epidemiology (Chakraborty et al., 2010; Goenka
and Liu, 2012; Goenka et al., 2014; La Torre et al., 2020), several studies analyze how different types
of public health policies, including preventive measures, prophylactic treatment, social distancing,
lockdowns, and restrictions on individuals’ mobility, affect both the disease and economic dynamics
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2 GENERALIZED FRACTAL TRANSFORMS WITH CONDENSATION

(Acemoglu et al., 2020; Alvarez et al., 2020; Eichenbaum et al., 2020; La Torre et al., 2021a). These
works obtain quite a wide range of conclusions regarding the optimal intensity and duration of the
different policy measures, highlighting that because of the large degree of uncertainty characterizing
the evolution of epidemics it is very difficult to derive definitive conclusions. Indeed, epidemiological
parameters including the recovery and the infectivity rates, along with the number of individuals
already exposed to the disease and of those effectively infectives at different moments in time can only
be roughly estimated and thus it is not possible to perform an accurate model calibration (Acemoglu
et al., 2020; La Torre et al., 2021a). Starting from this result, that is, the high uncertainty in
disease dynamics, our paper aims to develop a simple macroeconomic-epidemiological framework in
which health and macroeconomic outcomes are strictly related and quantified not by numbers but by
probability densities.

The fact that uncertainty plays an essential role in driving macroeconomic dynamics and thus needs
to be taken into account in the determination of macroeconomic policy has been known for a long
time (Brock and Mirman, 1972; Rodrik, 1991; Olson and Roy, 2005; Baker et al., 2016). However, in
order to properly design public policy it is important to recognize how different types of uncertainty
affect macroeconomic outcomes, overcoming the simplistic scenario-based analysis typically employed
in macroeconomics. Indeed, a standard assumption in macroeconomic theory is that the realization of
a shock determines the specific value taken by some variable with a specific probability. This kind of
approach does not allow to account for the high degree of uncertainty associated with parameter values
and for how policymakers may account for such a parameter uncertainty (Brainard, 1967; Brock and
Durlauf, 2006; Hansen and Sargent, 2007; Born and Pfeifer, 2014). In particular, different policymakers
may respond to such an uncertainty by adopting a different combinations of policy tools or different
levels of policy instruments, bringing the effects of uncertainty to be reflected in the implemented
policy measures, giving rise to “deep uncertainty”. Deep uncertainty may involve the inability to
identify the appropriate models or to quantify the relevant parameters to characterize a system’s
dynamics, the probability distributions to represent uncertainty about the model’s parameters, and/or
the desirability of alternative possible outcomes (Walker et al., 2013; Marchau et al., 2019). Several
studies have focused on a special case of deep uncertainty represented by ambiguity, which refers to the
uncertainty about the model’s parameters, analyzing its implications on macroeconomic policy in the
context of short run economic fluctuations (Karantounias, 2013; Caprioli, 2015; Hollmayr and Matthes,
2015) and long run economic growth (Cozzi and Giordani, 2011; La Torre et al., 2021b). Building
on La Torre et al.’s (2021b) approach based on iteration function systems on density functions, we
develop a generalized fractal transforms with condensation framework, in which in their response to
an epidemic outbreak different types of policymakers (short-sighted vs far-sighted) may implement
different policy measures which in turn yield uncertainty at aggregate level about the effective level
of disease prevalence and thus the effective level of economic activity. Unlike La Torre et al. (2021b),
in this model we shall focus on the condensation term, on which the original mathematical results
of Sections 3 and 4 are based, as the parameter generating some degree of “deep uncertainty”. This
setting allows us to discuss the implications of deep uncertainty on the epidemiological-macroeconomic
steady state outcome.

Our work is closely linked to the literature on IFS generating stochastic dynamics converging to
invariant probabilities possibly supported on fractal sets in macroeconomic models, which, in most
cases, are one- or multi-sector growth models. The randomness characterizing such models is most
commonly, but not exclusively, assumed to be originated by exogenous shocks on the productivity level
(Montrucchio and Privileggi, 1999; Mitra et al., 2003; Mitra and Privileggi, 2004, 2006, 2009; La Torre
et al., 2011, 2015, 2018b); there exist also a few works in which shocks affect other variables, such as
the pollution stock (Privileggi and Marsiglio, 2013; La Torre et al., 2018a; Marsiglio and Privileggi,
2021). To the best of our knowledge, none of these works has considered an epidemiological framework
and how epidemic and macroeconomic dynamics may mutually affect each other, while in most of
them uncertainty is described by a finite number of events, each occurring with a known probability,
without considering the implications of deep uncertainty on steady state outcomes. The only work in
which uncertainty is modeled as a form of ambiguity and thus it is taken into account in policymakers’
decisions according to their degree of ambiguity aversion is La Torre et al.’s (2021b). Unlike them, who
assume that some specific parameter values are not precisely known, we consider a situation in which
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the information about the value of a main variable (i.e., the number of infectives) is not available and
thus uncertainty at aggregate level affects the dynamic evolution of the key macroeconomic variables.
Moreover, we introduce a condensation term summarizing the spread uncertainty related on any aspect
of the epidemic in a scenario in which purposely—i.e., as a policy choice—no research activities are
being carried out to gather such information.

Specifically, we analyze a very simple macroeconomic-epidemiological model in which the level of
prevalence of a communicable disease determines the size of the healthy labor force, affecting out-
put and consumption. We focus on a simple epidemic management program in which health policy
is entirely publicly funded via income taxation but the availability of resources happens to be en-
dogenously determined as they depend on disease prevalence. The model is characterized by deep
uncertainty as the number of infective individuals is not known with precision and thus epidemiolog-
ical and macroeconomic outcomes seem to be more appropriately analyzed in terms of their density
functions. Such a level of uncertainty is reflected also in the policymakers’ choice of the policy tools
to employ during the epidemic management program. As different policymakers implement different
policy measures, the effective level of disease prevalence and thus the effective level of economic ac-
tivity is highly uncertain, and thus we can analyze how different types of policymaking (short-sighted
vs. far-sighted) approaches affect the asymptotic invariant distributions of macroeconomic activity,
quantified both by consumption and by the number of infectives. By means of a numerical simulation
under a specific parametrization we show that, if labor is sufficiently productive, far-sighted policies
lead to high consumption levels and low numbers of infectives in the long-run, while, short-sighted,
plainly redistributive policies asymptotically yield low consumption levels together with high numbers
of infectives. The novelty of our approach is that such outcomes are described in terms of asymptotic
invariant probability densities concentrating more mass on higher consumption levels and on lower
numbers of infectives in the former case, while in the latter case the opposite occurs, with long-run
invariant densities of consumption levels and infective numbers concentrating more mass on lower con-
sumption levels and on higher numbers of infectives respectively. Moreover, a constant condensation
term associated to the latter scenario lets the asymptotic densities in this case look flatter than in the
former scenario; this is because a further layer of deep uncertainty is being added by the condensation.

The paper is organized as follows. Section 2 discusses the mathematical tools that we will employ
in our analysis, presenting the theories of generalized fractal transforms, of Iterated Function Systems
on Maps (IFSM) and the notion of condensation. Sections 3 and 4 contain our original mathematical
results: they extend the theory of IFSM with condensation to the case of density functions and cumu-
lative distributions respectively. Section 5 discusses our macroeconomic-epidemiological application
and presents some numerical simulations. Section 6 as usual concludes and proposes directions for
future research.

2. Mathematical Preliminaries

In this section we recall the main mathematical techniques that will be used in the sequel of this
paper and mainly focused on the notion of condensation. We first recall the definition of Generalized
Fractal Transform, as this provides a general framework which includes all fractal operators. We
then present three different subsections dedicated to the notions of Iterated Function Systems with
Condensation, Iterated Function System with Probabilities and Condensation, and finally Iterated
Function Systems on Mappings with Condensation. This section introduces some classical mathemat-
ical preliminaries in fractal theory that will be used in the following sections to introduce the original
part of our paper.

2.1. Generalized Fractal Transforms. Let (X, d) be a metric space. A Generalized Fractal Trans-
form (GFT) is an operator T : X → X whose action on an element u ∈ X to get the element
v ∈ X, v = Tu, is described by the following procedure: starting from u, it first produces a set of N
spatially-contracted copies of u which are modified by means of a suitable range-mapping and then
it recombines them using an appropriate operator (Barnsley, 1989; Kunze et al., 2012). A crucial
property within the theory of GFT is the contractivity of T under appropriate conditions. Banach’s
fixed point theorem, in fact, the contractivity hypothesis, guarantees the existence of a unique fixed
point ū = T ū that is a global attractor for X.
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Definition 2.1 (Contraction mapping; Banach, 1922). Let T : X → X be a mapping on a complete
metric space (X, d). Then T is said to be contractive if there exists a constant c ∈ [0, 1) such that
d (Tx, Ty) ≤ cd (x, y) for all x, y ∈ X. The smallest such c ∈ [0, 1) for which the above inequality
holds true is the contraction factor of T .

The following result, known as Banach’s Fixed Point Theorem, is perhaps the most famous theorem
regarding contraction maps on metric spaces and certainly central to fractal-based methods.

Theorem 2.2 (Banach’s Fixed Point Theorem, 1922). Let T : X → X be a contraction mapping on
X with contraction factor c ∈ [0, 1). Then,

(1) There exists a unique element x̄ ∈ X, the fixed point of T , for which T x̄ = x̄.
(2) Given any x0 ∈ X, if we form the iteration sequence xn+1 = T (xn), then xn → x̄, i.e.,

d (xn, x̄) → 0 as n → ∞. In other words, the fixed point x̄ is globally attractive.

Theorem 2.2 states that, under the contractivity condition, there exists a unique fixed point of T ,
to which any orbit in X converges.

2.2. Iterated Function Systems with Condensation. Given a compact metric space (X, d), we
denote by H (X) the set of all nonempty compact subsets of X. The distance between two sets
A,B ∈ H (X) is defined by means of the classical Hausdorff metric h defined as follows:

h (A,B) = max

{

max
x∈A

min
y∈B

d (x, y) ,max
x∈B

min
y∈A

d (x, y)

}

.

It can be proved (see, for instance, Barnsley, 1989) that (H (X) , h) is a complete metric space. A set
w of contraction mappings on X is defined to be an N -map Iterated Function System (IFS) on X

(see Barnsley, 1989; Hutchinson, 1981; Kunze et al., 2012). Each element of w is a contraction map
wi : X → X, i = 1, . . . , N , with contraction factors ci ∈ [0, 1). Associated with an N -map IFS is the
following set-valued mapping ŵ on the space H (X) of nonempty compact subsets of X:

ŵ (A) :=
N
⋃

i=1

wi (A) , A ∈ H (X) .

Theorem 2.3 (Hutchinson, 1981). For A,B ∈ H (X),

h (ŵ (A) , ŵ (B)) ≤ ch (A,B) , where c = max
1≤i≤N

ci < 1.

Corollary 2.4 (Hutchinson, 1981). There exists a unique set Â ∈ H (X), the attractor of the IFS w,
such that

Â = ŵ
(

Â
)

=
N
⋃

i=1

wi

(

Â
)

.

Moreover, for any B ∈ H (X), h
(

Â, ŵnB
)

→ 0 as n → ∞.

The notion of condensation term was introduced by Barnsley and coworkers in Barnsley (1989)
for the classical notion of IFS and then extended by Kunze and others to the case of generalized
fractal transforms.1 In Kunze et al. (2012) several examples of generalized fractal transforms with
condensation term are presented as well as their applications to fractal image processing and inverse
problems. In particular it is shown that the condensation term arises quite naturally when analyzing
transformed fractal operators on the set of frequency-expanded images via Fourier transforms.

Given a subset Γ ⊂ X, an IFS operator with condensation set Γ is defined as:

ŵΓ (A) :=

(

N
⋃

i=1

wi (A)

)

⋃

Γ, A ∈ H (X) .

The operator ŵΓ (A) satisfies the same properties of a classical IFS operator, as well summarized in
the following results.

1see Kunze et al. (2012) and the references therein.
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Corollary 2.5 (Kunze et al.,2012). For A,B ∈ H (X),

h (ŵΓ (A) , ŵΓ (B)) ≤ ch (A,B) , where c = max
1≤i≤N

ci < 1.

Corollary 2.6 (Kunze et al., 2012). There exists a unique set ÂΓ ∈ H (X), the attractor of the IFS
ŵΓ, such that

ÂΓ = ŵΓ

(

ÂΓ

)

=

(

N
⋃

i=1

wi

(

ÂΓ

)

)

⋃

Γ.

Moreover, for any B ∈ H (X), h
(

ÂΓ, ŵ
nB
)

→ 0 as n → ∞.

2.3. Iterated Function Systems with (Constant) Probabilities and Condensation. An N -
map Iterated Function System on (constant) Probabilities (IFSP) (w,p) is an N -map IFS w with

associated probabilities p = {p1, . . . , pN},
∑N

i=1 pi = 1. Let (X, d) be a compact metric space and let
M (X) denote the set of probability measures on (Borel subsets of) X. The distance between two
probability measures µ, ν in M (X) is determined by means of the Monge-Kantorovich distance which
is defined as follows:

dMK (µ, ν) = sup
f∈Lip1(X)

[
∫

f dµ−
∫

f d ν

]

.

where µ, ν ∈ M (X), and Lip1 (X) = {f : X → R | |f (x)− f (y)| ≤ d (x, y)}. It can be proved
(Hutchinson, 1981; Barnsley, 1989) that the metric space (M (X) , dMK) is complete.

The Markov operator associated with an N -map IFSP is a mapping M : M → M defined as
follows: For any µ ∈ M (X), ν = Mµ, and any measurable set S ⊂ X,

ν (S) = (Mµ) (S) =

N
∑

i=1

piµ
(

w−1
i (S)

)

.

Theorem 2.7 (Hutchinson, 1981). For µ, ν ∈ M (X),

dMK (Mµ,Mν) ≤ cdMK (µ, ν) , where c = max
1≤i≤N

ci < 1.

Theorem 2.8 (Hutchinson, 1981). There exists a unique measure µ̄ ∈ M, the invariant measure of
the IFSP (w,p), such that

µ̄ (S) = (Mµ̄) (S) =

N
∑

i=1

piµ̄
(

w−1
i (S)

)

for any measurable set S ⊂ X. Moreover, for any ν ∈ M (X), dMK (µ̄,Mnν) → 0 as n → ∞.

Theorem 2.9 (Hutchinson, 1981). The support of the invariant measure µ̄ of an N -map IFSP (w,p)
is the attractor A of the IFS w, i.e.,

supp µ̄ = A.

An approximation of the attractor of an IFSP could be determined by implementing the following
random dynamical system, known as Chaos Game: Starting from x0 ∈ X, let us determine xt+1 =
wσ (xt) where σ is chosen in the set {1, . . . , N} with probabilities p1, . . . , pN . It can be proved2 that

the orbit of this random dynamical system is dense in the attractor Â of the IFS w.
Given a probability γ ∈ M and a trade-off parameter ξ ∈ [0, 1], let us define an N -map IFSP with

Condensation a mapping Mγ : M → M, defined as follows:

ν = Mγ,ξµ = ξ

N
∑

i=1

piµ ◦ w−1
i + (1− ξ) γ.

The following corollaries present the extension of the previous results to the case of IFSP with con-
densation.

2See Kunze et al. (2012) for more details.



6 GENERALIZED FRACTAL TRANSFORMS WITH CONDENSATION

Corollary 2.10 (Kunze et al., 2012). For µ, ν ∈ M (X),

dMK (Mγ,ξµ,Mγ,ξν) ≤ cdMK (µ, ν) .

Corollary 2.11 (Hutchinson, 1981). There exists a unique measure µ̄γ,ξ ∈ M, the invariant measure,
such that

µ̄γ,ξ = Mµ̄γ,ξ = ξ

N
∑

i=1

piµ̄γ,ξ ◦ w−1
i + (1− ξ) γ

Moreover, for any ν ∈ M (X), dMK

(

µ̄γ,ξ,M
n
γ,ξν

)

→ 0 as n → ∞.

2.4. Iterated Function Systems on Mappings with Condensation. This section focuses on
notion of IFSM (see Forte and Vrscay, 1995, for more details). The definition of IFSM extends the
one of IFS to the case of a space of functions (Kunze et al., 2012) and it can be used to generate
integrable “fractal” functions.

Let us recall that Lp ([0, 1]), with p ≥ 1, is the space of p-integrable functions and that this space
is complete when it is equipped with the distance dp induced by the classical p-norm. Ingredients of
an N -map IFSM on Lp ([0, 1]) are:

(1) a set of N contractive mappings w = {w1, w2, . . . , wN}, wi : [0, 1] → [0, 1], most often affine in
form:

(2.1) wi (x) = six+ ai, 0 ≤ |si| < 1, i = 1, 2, . . . , N ;

(2) a set of associated functions—the greyscale maps—φ = {φ1, φ2, . . . , φN}, φi : R → R. Affine
maps are usually employed:

(2.2) φi (y) = αiy + βi.

Associated with the N -map IFSM (w, φ) is the fractal transform operator T , the action of which
on a function u ∈ Lp ([0, 1]) is given by:

(2.3) (Tu) (x) =
N
∑

i=1

′φi

(

u
(

w−1
i (x)

))

,

where the prime means that the sum operates only on those terms for which w−1
i is defined. The

following result in Proposition 2.12 states that T is a Lipschitz map on Lp ([0, 1]).

Proposition 2.12. [Forte and Vrscay, 1995] For any p ≥ 1 we have that T : Lp ([0, 1]) → Lp ([0, 1])
and for any u, v ∈ Lp ([0, 1]) we have:

dp (Tu, Tv) ≤ Cdp (u, v)

where:

C =
N
∑

i=1

s
1

p

i |αi| .

Corollary 2.13. Suppose that C =
∑N

i=1 s
1

p

i |αi| < 1. Then T has a unique fixed point ū ∈ Lp ([0, 1])
and, for any u0 ∈ Lp ([0, 1]), the orbit generated by un+1 = Tun converges to ū whenever n → +∞.

The above corollary states that if
∑N

i=1 s
1

p

i |αi| < 1 then the IFSM operator is a contraction on
Lp ([0, 1]) and hence it has a unique fixed point ū that is attracting any orbit Tnu0 generated starting
from any point u0 ∈ Lp ([0, 1]). Notice that if ū ∈ Lp ([0, 1]), p ≥ 1, then ū ∈ Lq ([0, 1]) for any
1 ≤ q ≤ p.

We now recall the definition of IFSM with condensation (Kunze et al., 2012). Given a fixed function
θ ∈ Lp ([0, 1]), let us construct the following IFSM operator with condensation θ:

(2.4) (Tθu) (x) =
N
∑

i=1

′αiu
(

w−1
i (x)

)

+ θ (x)
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Let us notice that the operator Tθ collapses to the case of classical IFSM operator whenever the
condensation term θ is given by

θ (x) =
N
∑

i=1

βiIwi([0,1]) (x)

where Iwi([0,1]) (x) are the indicator functions of the sets wi ([0, 1]). The following result in Proposition
2.14 states that Tθ is a Lipschitz map on Lp ([0, 1]).

Proposition 2.14 (Kunze et al., 2012). For any p ≥ 1 and fixed θ ∈ Lp ([0, 1]) we have that Tθ :
Lp ([0, 1]) → Lp ([0, 1]) and for any u, v ∈ Lp ([0, 1]) we have:

dp (Tθu, Tθv) ≤ Cdp (u, v)

where:

C =
N
∑

i=1

s
1

p

i |αi| .

It is worth noting that we can give an explicit formula for the fixed point ū for the operator T in
(2.4). To see this, we note that T is an affine operator with T (u) = Au+ θ and so

ū = (I −A)−1 θ = θ +Aθ +A2θ + · · ·
(where the series converges since A is contractive). A nice way to think about this is that θ provides
the details of ū on the largest scale, then Aθ refines this on the next smaller scale, then A2θ refines
this by filling in even finer details, and so on.

3. IFSM with Condensation on Densities

We are now ready to show that, under certain hypotheses, an IFSM operator with condensation is
a contraction with respect to the usual norm introduced into the space of density functions.

Definition 3.1. For any p ≥ 1, the space of density functions Up is defined as follows:

Up =

{

u : [0, 1] → R, u ∈ Lp ([0, 1]) , u (x) ≥ 0 ∀x ∈ [0, 1] ,

∫

[0,1]
u (x) dx = 1

}

,

where dx denotes the Lebesgue measure on [0, 1].

Let us notice that Up ⊆ U q for any 1 ≤ q ≤ p. Now we show that under certain conditions the
IFSM operator with condensation Tθ earlier defined is a contraction mapping on Up. It is trivial to
prove that Up ⊂ Lp ([0, 1]) as defined earlier.

Proposition 3.2. The space Up is complete with respect to the usual dp metric.

Proof. The proof of this result follows from the following two facts: if fn is a converging sequence of
(a.e.) positive functions in Lp to f then there exists a subsequence that is a.e. pointwise converging
to f and this implies the positivity of f . Furthermore, if fn has integral over [0, 1] equal to 1 then the
Lp limit also possesses this property. �

Proposition 3.3. Suppose that the following conditions are satisfied:

i) αi ≥ 0 for all i = 1...N ,
ii) θ (x) ≥ 0 for a.e. x ∈ [0, 1],

iii)
∫ 1
0 θ (x) dx ∈ [0, 1),

iv)
∑N

i=1 siαi +
∫ 1
0 θ (x) dx = 1,

v)
∑N

i=1 s
1

p

i αi < 1.

Then the operator Tθ defined as:

(3.1) (Tθu) (x) =
N
∑

i=1

′αiu
(

w−1
i (x)

)

+ θ (x) ,
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maps Up into itself. Tθ is also a contraction over Up. This implies that Tθ has a unique fixed point
ūθ that is also a global attractor for any sequence taking the form:

un+1 = Tθun

for any initial condition u0 ∈ Up.

Proof. The only property that needs to be proved is that Tθ maps Up into itself. From the hypotheses
on αi and θ, it follows that Tθu is positive whenever u is positive. To show that the integral is one,
let us do some computations:

∫

[0,1]
(Tu) (x) dx =

∫

[0,1]

N
∑

i=1

′αiu
(

w−1
i (x)

)

dx+

∫

[0,1]
θ (x) dx

=
N
∑

i=1

∫

[0,1]

′αiu
(

w−1
i (x)

)

dx+

∫

[0,1]
θ (x) dx

=
N
∑

i=1

∫

wi([0,1])
αiu

(

w−1
i (x)

)

dx+

∫

[0,1]
θ (x) dx

=
N
∑

i=1

si

∫

[0,1]
αiu (x) dx+

∫

[0,1]
θ (x) dx

=
N
∑

i=1

siαi

∫

[0,1]
u (x) dx+

∫

[0,1]
θ (x) dx = 1

�

Proposition 3.3 states that the operator Tθ maps Up into itself and the fixed point equation Tθuθ =
uθ has a unique solution that is attracting any orbit Tnu0 for any u0 ∈ Up. In the sequel we will
suppose, for simplicity, p = 2 and we denote U2 by U . All the results can be easily extended to the
case p 6= 2.

4. IFSM with Condensation on Cumulative Distributions

In this section we extend the previous analysis to the case of cumulative distribution functions and
we show that, under certain hypotheses, an IFSM operator with condensation is a contraction on the
space of cumulative distribution functions endowed with the dsup metric.

Definition 4.1. The space of cumulative distribution functions D is defined as follows:

D = {F : [0, 1] → [0, 1] , F (0) ∈ [0, 1], F (1) = 1, F is non-decreasing, F is right continuous} .
Notice that we allow for the possibility of F (0) > 0 to have a point mass at x = 0.

Proposition 4.2. The space D is complete with respect to the d∞ metric.

Proof. The proof of this result follows from the notion of uniform convergence induced by the dsup
metric. �

In order for our IFSM operator T to map D into itself we need a few simple conditions. Letting
C =

∑

i αi, we require that

(1) αi ≥ 0 for i = 1, 2, . . . , n and C ≤ 1;
(2) 1

C
θ ∈ D;

(3) each mapping wi : [0, 1] → [0, 1] be non-decreasing.

Notice that we don’t require that wi is contractive or even continuous.
For each wi : [0, 1] → [0, 1], define its extended inverse ω−1

i : [0, 1] → [0, 1] by

ω−1
i (y) =











0, if y < wi (0) ;

sup{x : wi (x) ≤ y}, if y ∈ [wi (0) , wi (1)] ;

1, if y > wi (1) .
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It is straightforward to show that ω−1
i is non-decreasing since wi is and also that ω−1

i is right-

continuous. This means that F ◦ ω−1
i ∈ D whenever F ∈ D.

Now we show that the following IFSM operator with condensation Tθ is a contraction on the space
of cumulative distribution functions. Let us define for any F ∈ D the operator TθF as follows (recall

we have the condition that (
∑

i αi)
−1 θ ∈ D):

(4.1) TθF (x) =
N
∑

i=1

αiF
(

ω−1
i (x)

)

+ θ (x) , x ∈ [0, 1]

Proposition 4.3. Suppose that
∑

i αi < 1, then the operator Tθ defined as:

TθF (x) =
N
∑

i=1

αiF
(

ω−1
i (x)

)

+ θ (x) , x ∈ [0, 1]

maps D into itself and it is also a contraction over D. This implies that Tθ has a unique fixed point
F̄θ that is also a global attractor for any sequence taking the form:

Fn+1 = TθFn

for any initial condition F0 ∈ D.

Proof. The only property that needs to be proved is that Tθ is a contraction on D. In fact, from the
hypotheses on αi and θ, it follows that Tθ maps D into itself. To prove contractivity, let us compute:

dsup (TθF1, TθF2) = sup
x∈[0,1]

|TθF1 (x)− TθF2 (x)| = sup
x∈[0,1]

∣

∣

∣

∣

∣

N
∑

i=1

αi

(

F1

(

ω−1
i (x)

)

− F2

(

ω−1
i (x)

))

∣

∣

∣

∣

∣

≤
N
∑

i=1

αi sup
x∈[0,1]

∣

∣

(

F1

(

ω−1
i (x)

)

− F2

(

ω−1
i (x)

))∣

∣ ≤
(

N
∑

i=1

αi

)

dsup (F1, F2) .

�

Proposition 4.3 states that the operator Tθ mapsD into itself and the fixed point equation TθFθ = Fθ

has a unique solution that is attracting any orbit Tn
θ F0 for any F0 ∈ D.

5. A Macroeconomic-Epidemiological Application

We now consider a very simple epidemiological-macroeconomic model describing the dynamics of
an infectious disease which affects economic production and how alternative policies may affect epi-
demiological and macroeconomic outcomes, entirely captured by the level of consumption which, since
proportional to income, depends on disease prevalence. Such an example is certainly too stylized to
provide a true insight on how an epidemic outbreak may be handled by the public authorities in order
to minimize its socio-economic impact, but its purpose is to show how the mathematical approach
described in the previous sections can be meaningful in macroeconomic applications as its structure
contains the main, if minimal, traits that characterize deterministic operators that transform prob-
ability distributions rather than numbers. Specifically, we study the dynamics that are defined by
parameters which are purely deterministic but act directly on the probability distribution, assumed
to be a density, of consumption over time rather than on the consumption itself. The uncertainty that
in our basic model lets consumption be a random variable with some probability density associated
to it, originates from the intrinsic randomness related to the outbreak of any epidemic, which, at any
time, makes it impossible to predict with certainty how many people in the population are currently
infected and with even less certainty how many will be infected in the future periods.
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5.1. A Simple Epidemic Dynamic. Independently of the specific epidemiological setup considered,
during the early phase of an epidemic we can describe the evolution of the infectives (i.e., individuals
who have already contracted a disease and can transmit it to others via social contacts) through a sim-
ple linear equation (La Torre et al. 2021a). Specifically, the epidemic dynamics are fully characterized
by one parameter measuring the net infectives growth rate, quantifying the infectivity rate adjusted
for recovery and the effects of different policy measures. For the sake of simplicity and without loss
of generality we assume that the population size is normalized to 1, so that the level and share of
infectives perfectly coincide. We consider two alternative scenarios: an active policy, which we will
index with i = 1, in which the policymaker relies on a broad range of economic and health measures
to limit and control the spread of the epidemics (like lockdown, social distancing, prophylactic inter-
vention, vaccination, travel bans, etc.), and a laissez-faire situation in which no policy is being taken
at all, labelled with i = 2. To each scenario i = 1, 2 we associate an affine map defining the infectives
dynamics according to

(5.1) It+1 =

{

sIt if i = 1
(1− s) It + (1− s) if i = 2,

where 0 < s < 1 denotes the net infectives growth rate while 0 < (1− s) < 1 represents the gross
infectives growth rate. Therefore, an active policy reduces the disease incidence and thus also disease
prevalence over time. Apart from the infectives growth term, in the laissez-faire scenario the disease
dynamics is also increased by the additive constant3 a2 = (1− s) representing a further spread of
infections independent of public health policy (due to new infections associated with social contacts
with individuals outside the economy’s borders, as for example to business travels or commuting).
Under an active policy we assume that interactions with other economies are limited to the extent
that this term is null, and so such an additive constant does not show up in the first map.

Therefore, the first map in (5.1), describing the active policy scenario, can be interpreted as an
affine map in which the additive constant a1 = 0 represents the effect of economic policies aimed at
limiting social contacts outside the economy’s borders; it reduces the overall number of infected people
by transforming any number It ∈ [0, 1] into a number It+1 in the sub-interval [0, s] ⊂ [0, 1]. The second
map in (5.1), describing the laissez-faire scenario, increases the overall number of infected people by
transforming any value It ∈ [0, 1] into a value It+1 in the sub-interval [1− s, 1] ⊂ [0, 1]. We can think
of the latter map as the one describing the onset of an epidemics in t = 0, in which no active policies
take place because the epidemic has not burst yet. The key assumption here is that the (unique)
parameter s is well known to policymakers, or, equivalently, that they are aware of an emergency plan
envisaging exactly how a potential epidemic can spread and what options are available to contain it.

5.2. The Macroeconomic Setting. By maintaining a balanced budget at any moment in time,
policymakers finance active containment policies through income taxation, leading thus to a diversion
of resources away from other alternative uses (i.e., consumption). Similar to (La Torre et al. 2020),
output is produced according to a linear production function employing only (healthy) labor as input,
Yt = A (1− It), where A > 0 denotes the labor productivity, while agents consume entirely their
disposable income: Ct = (1− τ)Yt = (1− τ)A (1− It), where 0 < τ < 1 denotes the tax rate. At
time t the total tax revenue, τYt, can be either employed in the active policy in which the policymaker
puts in place actions to limit and control the spread of the epidemics or it can be directly transferred
to the whole population as a lump-sum transfer to sustain income (for simplicity, covering both
healthy workers employed in production and the sick and unemployed, a “helicopter money” type of
intervention). Hence, assuming that a fraction γ, with 0 < γ < 1, of the tax revenue τYt is devoted
to the active policy i = 1 while a fraction 1− γ of the tax revenue τYt is devoted to the direct income
assistance, consumption turns out to be given by:

(5.2) Ct = (1− τ)Yt + (1− γ) τYt = [1− τ + (1− γ) τ ]Yt = (1− γτ)A (1− It) .

We emphasize that all the economic parameters introduced so far, the labor productivity A, the tax
rate τ , and the coefficient γ that distributes the tax revenues between the two policies available, are
well known and controlled by policymakers.

3For simplicity we assume this additive constant to be equal to the gross infectives growth rate in order to keep the
population normalized to 1 at all moments in time.
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To further simplify the model, with regard to the choice on parameter γ we consider only the two
alternative extreme policies, corresponding to the two scenarios i = 1, 2 for the spread of the epidemics
envisaged by (5.1), in which either all tax revenues are employed in active policies to contain disease
prevalence or all of them are employed to sustain income through lump-sum transfers to the population,
without any active policy aimed at disease containment. That is, we assume that γ = 1 for the i = 1
active policy, while γ = 0 for the i = 2 laissez-faire scenario. Hence, at each time t consumption is
given by:

Ct =

{

(1− τ)Yt if i = 1
(1− τ)Yt + τYt = Yt if i = 2,

or equivalently:

(5.3) Ct =

{

(1− τ)A (1− It) if i = 1
A (1− It) if i = 2,

while, as Ct = (1− τ)A− (1− τ)AIt when i = 1 and Ct = A−AIt when i = 2, we have

(5.4) It =

{

1− 1
(1−τ)ACt if i = 1

1− 1
A
Ct if i = 2,

which, by using (5.1) and (5.4), leads to the following consumption dynamics:

Ct+1 = (1− τ)A (1− It+1) = (1− τ)A (1− sIt) = (1− τ)A

[

1− s+
s

(1− τ)A
Ct

]

= sCt + (1− τ) (1− s)A if i = 1,

Ct+1 = A (1− It+1) = A [1− (1− s) It − (1− s)] = A

[

s− (1− s)

(

1− 1

A
Ct

)]

= A

(

2s− 1 +
1− s

A
Ct

)

= (1− s)Ct + (2s− 1)A if i = 2,

that is,

(5.5) Ct+1 =

{

w1 (Ct) = sCt + (1− τ) (1− s)A if i = 1
w2 (Ct) = (1− s)Ct + (2s− 1)A if i = 2.

Note that this construction holds under the simplifying assumption that the active policy leading to
the infectives dynamics It+1 = sIt in the scenario i = 1 requires funds equal to the whole tax revenue
τYt, regardless on how much it is. In other words, we assume that, whenever the whole amount τYt
is employed in containment policies, they always manage to reach the target a1 = 0 associated to the
first map in (5.1); this may be possible because in order to limit the spread of infections independent
of health policy, border closure is an economic costless intervention independent of τYt.

According to (5.3), besides depending on the tax rate τ , consumption Ct depends directly on
the number of infected workers, It. As the recent coronavirus epidemic has shown, there is a large
degree of uncertainty associated with the actual number of infectives, both in the current and in
the future periods. Therefore, it seems sensible to treat the number of infectives at time t, It, as a
random variable affected by the uncertainty characterizing the epidemic trend or the future (desired
or undesired) effects of containment policies. Thus, in the sequel we assume that It is a random
variable with an associated density function vt, to which, according to the one-to-one correspondence
between Ct and It defined by (5.3) and (5.4), implies that also consumption Ct is a random variable
with associated some density ut.

5.3. From Numeric Variables to Densities. In general, if xt is a random variable depending on
the underlying probability space X = [0, 1] with density ut, and evolving over time according to
xt+1 = wi (xt) = sixt + ai then, denoting by wi ([0, 1]) the image set of wi, for any δ1 ≤ δ2 such that



12 GENERALIZED FRACTAL TRANSFORMS WITH CONDENSATION

[δ1, δ2] ⊆ wi ([0, 1]),

∫ δ2

δ1

ut+1 (y) dy = Pr (δ1 ≤ xt+1 ≤ δ2) = Pr (δ1 ≤ sixt + ai ≤ δ2)

= Pr (δ1 − ai ≤ sixt ≤ δ2 − ai) = Pr

(

δ1 − ai

si
≤ xt ≤

δ2 − ai

si

)

=

∫

δ2−ai
si

δ1−ai
si

ut (y) dy .(5.6)

By setting

y = w−1
i (z) =

z − ai

si
⇐⇒ z = w (y) = siy + ai,

the integral in (5.6) boils down to:

∫ δ2

δ1

ut+1 (y) dy =

∫

δ2−ai
si

δ1−ai
si

ut (y) dy =

∫ w−1(δ2)

w−1(δ1)
ut (y) dy =

∫ δ2

δ1

ut
[

w−1 (z)
] (

w−1
)′
(z) dz

=
1

si

∫ δ2

δ1

ut
[

w−1 (z)
]

dz .

As this is true for any pair δ1, δ2 such that δ1 ≤ δ2 and [δ1, δ2] ⊆ wi ([0, 1]), we can summarize the
temporal evolution of the density ut of xt by means of the following operator T ∗ : U2 → U2 defined
as:

(5.7) ut+1 = T ∗ut =
1

si
ut ◦ w−1.

Whenever N maps of the form xt+1 = wi (xt) = sixt + ai, for i = 1, . . . , N , are considered, such
a construction can be generalized either to the operator T : L2 ([0, 1]) → L2 ([0, 1]) defined in (2.3)
according to

ut+1 = Tut =
N
∑

i=1

′ 1

si
ut ◦ w−1

i ,

where the prime means that the sum operates only on those terms for which w−1
i belong to [0, 1], or

to the operator T ∗
θ : L2 ([0, 1]) → L2 ([0, 1]) defined in (2.4) as

(5.8) ut+1 = T ∗
θ ut =

N
∑

i=1

′ 1

si
ut ◦ w−1

i + θ.

whenever a condensation term θ ∈ L2 ([0, 1]) is being included. Clearly, as, according to (5.7), each

single term 1
si
ut◦w−1

i in (5.8) defines a density over [0, 1] such that
∫ 1
0

1
si
ut
(

w−1
i (x)

)

dx = 1, necessarily
∫ 1
0

[

∑N
i=1

′ 1
si
ut
(

w−1
i (x)

)

+ θ (x)
]

dx > 1 and thus the whole term T ∗
θ ut cannot be a density itself. In

order to build an operator that maps densities into densities, Tθ : U2 → U2, we must introduce
constants ωi and consider a condensation term θ so that the weights defined as αi =

ωi

si
, for i = 1...N ,

together with θ satisfy conditions (i)–(v) of Proposition 3.3. Under these assumptions Proposition 3.3
guarantees that the operator defined as

(5.9) Tθu =
N
∑

i=1

′ωi

si
u ◦ w−1

i + θ

maps U2 into itself and successive iterations of Tθ on any u0 ∈ U2 converge to a unique fixed point
ūθ ∈ U2.
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5.4. An IFSM Operator with Condensation on Densities. For the specific model we are dis-
cussing here we set N = 2 and consider the IFS (5.5) defined by the two maps w1 and w2 transforming
Ct into Ct+1 under the two alternative policy scenarios i = 1 (active policy) and i = 2 (laissez-faire).
Rather than applying such a dynamic to the numeric variable consumption, Ct, under the assumption
that consumption is highly uncertain due to its dependence on the number of infected workers It
according to (5.3), we consider the probability density ut associated to Ct at time t and study its time
evolution by defining the following operator Tθ : U

2 → U2:

(5.10) ut+1 = Tθut =
ω1

s1
ut ◦ w−1

1 +
ω2

s2

(

ut ◦ w−1
2 + θ

)

,

in which the second term, associated to the map w2 describing the evolution of consumption under
laissez-faire, includes the exogenous condensation term θ (C) having the purpose of modeling the
uncertainty specifically related to the laissez-faire scenario, in which neither policies nor research
to gather information on how the epidemics spreads are undertaken; it has the effect of diffusing
the probability distribution over the space of all possible consumption levels by adding a (possibly
uniform) positive probability to all such values, thus adding a dispersed uncertainty component to
this specific scenario. Hence, operator Tθ in (5.10) can be written as

Tθut =
ω1

s1
ut ◦ w−1

1 +
ω2

s2
ut ◦ w−1

2 +
ω2

s2
θ,

resembling the formulation in (5.9) in which the condensation function ω2

s2
θ (C) appears to be exogenous

with respect to both scenarios i = 1, 2 considered. In what follows we shall assume that both weights
α1 = ω1

s1
and α2 = ω2

s2
together with the condensation term α2θ (C) = ω2

s2
θ (C) satisfy conditions (i)–

(v) of Proposition 3.3, so that the sequence of densities ut associated to consumption at each time t

generated by successive iterations of operator Tθ in (5.10) converges to a unique time-invariant density
ūθ.

Before discussing the interpretation of the constants ω1 and ω2 in (5.10), we further restrict the
assumptions on the model’s parameters by assuming that labor productivity satisfies A > 1 and by
setting

(5.11) s = (1− s) =
1

2
and τ = 1− 1

A
.

Under conditions (5.11) the dynamics defined by (5.5) become

(5.12) Ct+1 =

{

w1 (Ct) =
1
2Ct +

1
2 if i = 1

w2 (Ct) =
1
2Ct if i = 2,

having the properties that the invariant (trapping) region for consumption is the interval [0, 1], i.e.,
w1 ([0, 1]) ∪ w2 ([0, 1]) = [0, 1], and that the images of the maps w1 and w2 intersect on the unique
middle point 1

2 , i.e., w1 ([0, 1]) ∩ w2 ([0, 1]) =
{

1
2

}

, thus satisfying the so called almost no-overlap
property. Moreover, if A > 1 condition 0 < τ < 1 certainly holds. Note that for the parameterization
in (5.11) the dynamics of consumption defined by (5.12) becomes the same as those of the infectives in
(5.1), only with the maps switched between the two scenarios because more infections correspond to
less consumption and viceversa. This relationship holds because we, crucially, assume that A > 1; in
other words, the technology available in production lets labor be sufficiently productive so to generate
a substantial output increase which is worth the tax revenues τYt employed in the active policy scenario
aimed at increasing the number of healthy workers. Such an assumption determines the property that
in (5.12) the map w1 lies all above the map w2, thus associating larger consumption to a population
of less infected workers.4

4We investigated different values for parameters s,A and τ for the dynamics defined by (5.5) and realized that, in order
to have non negative consumption and a tax rate satisfying 0 < τ < 1, the range of values for the net infectives growth
rate parameter s happens to be quite narrow: 1

2
≤ s < 3

5
. Whenever 1

2
< s < 3

5
two different possibilities occur: a

situation similar to the case discussed in the text in which w1 > w2 whenever 0 < τ < 2−3s
1−s

, so that active policies
financed by taxation have a positive effect on output and consumption, and a situation in which w1 < w2 whenever
2−3s
1−s

< τ < 1, when active policies financed by taxation turn out to depress output and consumption while lassaize-faire
together with lump-sum transfers to the population yields higher aggregate consumption. In both situations the invariant
consumption set is a proper subinterval of [0, 1] and the maps w1, w2 have overlapping images. While such variants of
the model may provide interesting insights from the economic perspective, they are beyond the scope of the example
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In this specific model, provided that conditions (i)–(v) of Proposition 3.3 are satisfied (namely,

ωi ≥ 0 for i = 1, 2, θ (C) ≥ 0 for a.e. C ∈ [0, 1],
∫ 1
0 θ (C) dC ∈ [0, 1), ω1 + ω2 + 2ω2

∫ 1
0 θ (C) dC = 1

and
√
2 (ω1 + ω2) < 1), the constants ω1 and ω2 to be associated to each policy scenario, i = 1

(active policy) and i = 2 (laissez-faire) respectively, in operator (5.10) have the role of considering
how different policymakers (governments) may attribute relatively different importance to the two
alternative policies i = 1, 2. Whenever a government is elected, it has a strong pressure from its
electors to adopt the latter policy, which envisages direct monetary transfers to the population, which
are actually unproductive and can only sustain income, rather than an indirect (and more efficient)
welfare effect that occurs through the technology in the productive sector (A > 1), but the latter
policy requires a reduction in consumption in the short term due to taxation (not compensated by the
direct lump-sum transfers), so that myopic electors prefer the laissez-faire policy i = 2 which, besides
increasing disease prevalence, also reduces consumption in the long-run through a missing opportunity
due to under-capacity in the productive sector. In short, as in this simple model the issuance of public
debt is not allowed, the i = 1 active policy, besides reducing the number of infectives, may be seen
as a long-run investment policy to be confronted with a myopic i = 2 policy based exclusively on
short-run income assistance. From this perspective, different relative values for the pairs ω1 and ω2

in operator (5.10) may denote different types of governments: ω1 < ω2 characterizes a “short-sighted”
government, while ω1 > ω2 characterizes a “far-sighted” government. Such a construction allows for a
wide range of choices for the ω1, ω2 parameters’ values and for the condensation term θ (C) to study
how different types of government lead to different asymptotic invariant distributions (densities) for
consumption.

Note that this model is based on the construction of a truly deterministic operator—Tθ in (5.10),
which depends on the parameters s,A, τ, ω1, ω2 that, together with the condensation term θ (C), under
our assumptions are all determined with certainty—that transforms density functions into density
functions. Specifically, we have explicitly chosen not to assume a convex linear combination of tax
revenues being devoted to both policies (transfers together with disease containment policy), that is,
we have ruled out any value 0 < γ < 1 in the definition of disposable income according to (5.2) and
considered only the extreme alternative policies (γ = 1 when i = 1 and γ = 0 when i = 2) in the
deterministic model, only to mix them up by means of the weights α1 =

ω1

s
= 2ω1 and α2 =

ω2

s
= 2ω2

through the (deterministic) operator Tθ in (5.10).

5.5. Numerical Simulations. In the sequel we shall assume that the condensation term describes
a uniform noise exogenously added to the consumption density only in the laissez-faire scenario, i.e.,
θ (C) ≡ θ. The interpretation of such a type of condensation term is that, because in the laissez-faire
scenario no research effort to gather information on how the epidemics spreads—and thus on how
consumption is being affected by the number of infected workers—is being undertaken, the intrinsic
uncertainty on the distribution of infectives is increased by a further uniform component resembling
some “veil of ignorance”.

Hence, taking into account all assumptions introduced so far, the operator Tθ with condensation
defined in (5.10) becomes:

(5.13) Tθut = 2ω1ut ◦ w−1
1 + 2ω2ut ◦ w−1

2 + 2ω2θ,

with coefficients ω1, ω2 and θ that must satisfy conditions (i)–(v) of Proposition 3.3; specifically:

(5.14) ω1, ω2, θ ≥ 0, ω1 + ω2 + 2ω2θ = 1, ω1 + ω2 <
1√
2
.

From the second condition we get

(5.15) ω2 =
1− ω1

1 + 2θ
,

which, when replaced into the third condition, easily yields

ω1 <
1 + 2θ −

√
2√

2
.

discussed in this section, which has the only purpose of illustrating the approach described in the previous sections based
on the deterministic operator Tθ defined in (3.1).
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The last inequality, together with the first condition in (5.14), requires that 1 + 2θ −
√
2 > 0, that is,

θ >
1√
2
− 1

2
≃ 0.21.
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Figure 1. First 7 iterations of operator Tθ defined in (5.13) applied to the density of
consumption for ω1 = 5

6
and ω2 = 1

9
starting from u0 (C) = 3C2.
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Figure 2. Cumulative distribution functions associated to the densities ut in Figure 1.

We set θ = 1
4 = 0.25 and consider two pairs of values for ω1 and ω2 that satisfy (5.15): ω1 =

5
6 , ω2 =

1
9

compatible with a “far-sighted” government, and ω1 = 1
10 , ω2 = 3

5 compatible with a “short-sighted”
government. As far as the initial density of consumption before the epidemic outbreak is concerned,
we assume that u0 (C) = 3C2, which is increasing and thus representing a probability distribution that
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concentrates most of the mass on higher values of consumption. Conversely, we conjecture that the
probability distribution of infectives before the epidemic outbreak is decreasing, thus concentrating
most of the mass on lower values of disease prevalence; specifically, for the infectives at time t = 0,
I0, we assume a density v0 (I) = 3 (I − 1)2, which is symmetric with respect to u0.
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Figure 3. First 7 iterations of operator Tθ defined in (5.13) applied to the density of infected

people for ω1 = 5

6
and ω2 = 1
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starting from v0 (I) = 3 (I − 1)
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Figure 4. Cumulative distribution functions associated to the densities vt in Figure 3.

To study the evolution over time of the density vt associated to the number of infectives we consider
the same operator Tθ as defined in (5.13) in which the two maps w1 and w2 in (5.12) are exchanged,
that is, it is defined according to

(5.16) It+1 =

{

w1 (It) =
1
2It if i = 1

w2 (It) =
1
2It +

1
2 if i = 2,



GENERALIZED FRACTAL TRANSFORMS WITH CONDENSATION 17

while the condensation term corresponding to the laissez-faire scenario i = 2 remains the same as that
considered for consumption: θ (I) = 2ω2θ.
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Figure 5. First 7 iterations of operator Tθ defined in (5.13) applied to the density of
consumption for ω1 = 1

10
and ω2 = 3

5
starting from u0 (C) = 3C2.

C

F0

0 0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

(a)
C

F1

0 0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

(b)
C

F2

0 0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

(c)
C

F3

0 0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

(d)

C

F4

0 0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

(e)
C

F5

0 0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

(f)
C

F6

0 0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

(g)
C

F7

0 0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

(h)

Figure 6. Cumulative distribution functions associated to the densities ut in Figure 5.

A modified version of the algorithm5 used in La Torre et al. (2021b) allows for plotting the density
functions ut of consumption (as well as the densities vt of infections) obtained through successive
iterations of operator Tθ defined in (5.13) starting from the initial density u0 (C) = 3C2 [or using
the same operator Tθ on the dynamics of infection given by (5.16) starting from the initial density

v0 (I) = 3 (I − 1)2]. For the coefficients ω1 =
5
6 and ω2 =

1
9 describing the behavior of a “far-sighted”

5The detailed code is available upon request.
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government, Figure 1 plots the first 7 iterations of operator Tθ applied to the density on consumption
according to (5.12) starting from the initial density u0 (C) = 3C2, while Figure 2 plots the evolution
of the corresponding cumulative distribution functions Ft associated to the densities ut reported in
Figure 1. The latter plots can be interpreted as the evolution of cumulative distributions generated
by the operator TθF defined in (4.1) of Section 4 for the special case in which the initial probability
distribution is defined by means of a density.

Figure 3 plots the first 7 iterations of operator Tθ applied to the density on the number of infectives
starting from the initial density v0 (I) = 3 (I − 1)2 for the same values ω1 = 5

6 and ω2 = 1
9 , while

Figure 4 plots the evolution of the corresponding cumulative distribution functions Ft associated to
the densities vt reported in Figure 3. Clearly, as the number of infectives evolves according to the
dynamics (5.16) described by the same maps w1 and w2 as in (5.12) only exchanged in their order,
both densities and cumulative distributions in Figures 3–4 appear to be perfectly symmetric with
respect to those in Figures 1–2, so that higher probability values on larger consumption correspond
to lower probability values on larger numbers of infectives and viceversa. Note that, as Proposition
3.3 establishes uniqueness of the asymptotic invariant density, the densities vt pictured in Figure 3
(as well as the cumulative distributions reported in Figure 4) would converge to the same fixed point
accumulating most of the mass on healthy (non-infective) workers as time elapses also if the initial
density v0 were increasing, e.g., of the form v0 (I) = 3I2, that is, also if the implementation of active
policies in scenario i = 1, corresponding to a coefficient ω1 > ω2, would start in a depressed economy
characterized by a large number of infectives. The shape of such an invariant density (cumulative
distribution) turns out to be very close to its approximation provided by Figure 3(h) (Figure 4(h)).

Figures 5–8 report the same plots as in Figures 1–4 but for the coefficients’ values ω1 = 1
10 and

ω2 = 3
5 describing the behavior of a “short-sighted” government in which the laissez-faire scenario

dominates. As we would expect, the densities’ evolution turns out to be all reversed with respect to the
former active policy scenario, as the density on consumption accumulates more on lower consumption
levels while the density on the number of infectives concentrates on higher levels of prevalence as time
elapses. There is, however, an important difference with respect to the former case: both Figures 5(h)
and 7(h) report densities that manifestly exhibit a larger noise uniformly spread on all consumption
amounts and infectives with respect to their counterparts in Figures 1(h) and 3(h). Such a higher
degree of uncertainty is due to the larger weight put on the condensation term, 2ω2θ, representing
a more diffuse uncertainty characterizing the laissez-faire scenario in which less information on the
epidemic are available.
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Figure 7. First 7 iterations of operator Tθ defined in (5.13) applied to the density of infected

people for ω1 = 1

10
and ω2 = 3

5
starting from v0 (I) = 3 (I − 1)
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Figure 8. Cumulative distribution functions associated to the densities vt in Figure 7.

To summarize, our numerical simulations show that, under the assumption that production is suf-
ficiently productive in labor (A > 1), far-sighted active policies generate a virtuous circle capable of
obtaining both higher consumption levels and lower numbers of infectives in the long-run. The pecu-
liarity of our analysis implies that such goals are described in terms of invariant densities concentrating
more mass on higher consumption levels and on lower numbers of infectives, as reported in Figures
1(h) and 3(h) respectively. The price to pay for such an approach is lower consumption levels in the
short-run due to higher taxes charged on consumers’ income, which may trigger high pressure on the
government to rather pursue an unproductive short-sighted redistribution policy based exclusively on
income transfers. If such a pressure turns out to be successful and only redistributive policies with no
investment in broad active treatment of the epidemic are implemented, the resulting long-run densities
of consumption levels and infective numbers would exhibit shapes that are symmetrical with respect
to those in Figures 1(h) and 3(h), concentrating more mass on lower consumption levels and on higher
numbers of infectives, as shown in Figures 5(h) and 7(h) respectively. Additionally, the inclusion
in the analysis of a constant condensation term associated to the latter scenario lets the asymptotic
densities in this case be flatter than in the former scenario, as this term adds a further layer of (deep)
uncertainty to the stochastic steady state of the economy.

It is easy to imagine how different parametrizations may lead to completely different outcomes,
starting form different values for parameters s, A and τ as mentioned in Footnote 4, and continuing
with parameters ω1 and ω2 together with the condensation term θ, which further reinforces the deep
uncertainty already characterizing the model. In other words, this method of analysis paves the way
for the study of a broad range of models.

6. Conclusion

From the recent coronavirus epidemic experience, a wide consensus has grown on the fact that in-
fectious diseases may have dramatic implications for macroeconomic outcomes and so more research is
needed to understand the possible mutual epidemic-macroeconomic links and how public policy may
be used to limit the spread of such diseases. Several papers discuss the large degree of uncertainty
which surrounds the information about the effective level of disease prevalence and thus how difficult
obtaining accurate policy prescriptions might be. In order to take this into account we develop a
simple macroeconomic-epidemiological framework in which health and macroeconomic outcomes are
strictly related and characterized by deep uncertainty as the number of infectives is not known with
precision and thus health and economic outcomes need to be analyzed in terms of density functions.
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Specifically, in our setting the level of prevalence determines the size of the healthy labor force, af-
fecting output and consumption, and so the availability of resources to finance public policy, which
is funded via income taxation. The high degree of uncertainty is reflected also in the policymakers’
choice of the policy tools to employ in order to mitigate the socio-economic effects of the disease. As
different policymakers implement different policy measures, the effective level of disease prevalence
and thus the effective level of economic activity is highly uncertain, and thus we can analyze how
different types of policymaking (short-sighted vs. far-sighted) approaches affect the asymptotic in-
variant distributions of macroeconomic activity, quantified by consumption, together with the spread
of infectives. Through numerical simulations we show that short-sighted policies (far-sighted policies)
lead to asymptotic invariant probability distributions concentrating more mass on low (high) levels
of consumption together with large (small) numbers of infectives, and exhibit an additional layer of
(uniform) uncertainty generated by the condensation term.

Our model is based on some simplistic assumptions which limit our ability to provide insightful
policy recommendations. In particular, the epidemiological framework describes the early epidemic
stage and thus cannot be applied to later stages of an epidemic dynamics; the macroeconomic setting is
very simple as it abstracts from capital accumulation and thus does not allow us to analyze how health
policy may impact saving decisions and long run growth; the model is very aggregative in nature and
thus it does not permit to analyze how social interactions at individual level may impact the disease
dynamics. Moreover, besides abstracting from possibly optimal behavior by individuals, our analysis
here lacks a whole synthesis on welfare considerations, as, although consumption levels and the number
of infectives both contribute to total welfare, they are studied separately. It seems sensible to add
welfare targets to be pursued by policymakers, which are clearly affected both by macroeconomic and
health outcomes. Extending our baseline analysis in order to account for the above mentioned issues
will help us to develop a comprehensive analysis of the macroeconomic-epidemiological links and to
better understand the working mechanisms of alternative policy tools. This is left for future research.
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Email address: davide.latorre@skema.edu

(S. Marsiglio) Department of Economics and Management, University of Pisa, Pisa, Italy

Email address: simone.marsiglio@unipi.it

(F. Mendivil) Department of Mathematics and Statistics, Acadia University, Wolfville, Canada

Email address: franklin.mendivil@acadiau.ca

(F. Privileggi) Corresponding author: Department of Economics and Statistics “Cognetti de Martiis”,

University of Turin, Torino, Italy

Email address: fabio.privileggi@unito.it


	1. Introduction
	2. Mathematical Preliminaries
	2.1. Generalized Fractal Transforms
	2.2. Iterated Function Systems with Condensation
	2.3. Iterated Function Systems with (Constant) Probabilities and Condensation
	2.4. Iterated Function Systems on Mappings with Condensation

	3. IFSM with Condensation on Densities
	4. IFSM with Condensation on Cumulative Distributions
	5. A Macroeconomic-Epidemiological Application
	5.1. A Simple Epidemic Dynamic
	5.2. The Macroeconomic Setting
	5.3. From Numeric Variables to Densities
	5.4. An IFSM Operator with Condensation on Densities
	5.5. Numerical Simulations

	6. Conclusion
	References

