
20 February 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

On Using Pretext Tasks to Learn Representations from Network Logs

Publisher:

Published version:

DOI:10.1145/3565009.3569522

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

ACM

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1891951 since 2024-11-25T18:37:46Z

On Using Pretext Tasks to Learn Representations
from Network Logs

Matteo Boffa, Luca Vassio,
Marco Mellia

Politecnico di Torino
Italy

first.last@polito.it

Idilio Drago
Università di Torino

Italy
idilio.drago@unito.it

Giulia Milan, Zied Ben Houidi,
Dario Rossi

Huawei Technologies Co. Ltd
France

first.(mid.)last@huawei.com

ABSTRACT
Learning meaningful representations from network data is critical
to ease the adoption of AI as a cornerstone to process network logs.
Since a large portion of such data is textual, Natural Language Pro-
cessing (NLP) appears as an obvious candidate to learn their repre-
sentations. Indeed, the literature proposes impressive applications
of NLP applied to textual network data. However, in the absence of
labels, objectively evaluating the goodness of the learned represen-
tations is still an open problem. We call for a systematic adoption of
domain-specific pretext tasks to select the best representation from
network data. Relying on such tasks enables us to evaluate different
representations on side machine learning problems and, ultimately,
unveiling the best candidate representations for the more interest-
ing downstream tasks for which labels are scarce or unavailable.

We apply pretext tasks in the analysis of logs collected from
SSH honeypots. Here, a cumbersome downstream task is to cluster
events that exhibit a similar attack pattern. We propose the fol-
lowing pipeline: first, we represent the input data using a classic
NLP-based approach. Then, we design pretext tasks to objectively
evaluate the representation goodness and to select the best one. Fi-
nally, we use the best representation to solve the unsupervised task,
which uncovers interesting behaviours and attack patterns. All in
all, our proposal can be generalized to other text-based network
logs beyond honeypots.

CCS CONCEPTS
• Networks→ Network security; • Computing methodologies
→ Knowledge representation and reasoning.

KEYWORDS
Representation Learning, Cybersecurity, NLP, Honeypots
ACM Reference Format:
Matteo Boffa, Luca Vassio, Marco Mellia, Idilio Drago, and Giulia Milan,
Zied Ben Houidi, Dario Rossi. 2022. On Using Pretext Tasks to Learn Rep-
resentations from Network Logs. In Native Network Intelligence (NativeNI
’22), December 9, 2022, Roma, Italy. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3565009.3569522

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NativeNI ’22, December 9, 2022, Roma, Italy
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9887-9/22/12. . . $15.00
https://doi.org/10.1145/3565009.3569522

1 INTRODUCTION
The success of deep learning in areas such as computer vision
(CV) and natural language processing (NLP) partly comes from the
relatively standard input format from which specialized models can
learn solid representations that are useful across different tasks. As
the success of AI spreads, the networking community is considering
options to natively integrate it in networks, as a way to ease its
adoption and take full profit from its potential. Learning how to best
represent network data is the basis for pursuing such objectives.

However, there is no consensus on what is the equivalent of an
image or a document for network data. The latter is complex and
multi-modal by nature: it may come from flowmonitors, server logs,
security systems, etc. Also, information changes rapidly over time
(e.g., the birth of new services, failures, attacks), space (e.g., new
servers or CDN nodes, new routes, new botnets) and semantically
(e.g., new protocols and new vulnerabilities).

Fortunately, despite this heterogeneity, a large portion of net-
work data is textual, putting NLP techniques in a good position
to learn representations from it. Noticing this similarity, recent
work successfully leveraged NLP techniques to learn represen-
tations from non-natural languages, including in networks. Ex-
amples include programming languages (e.g., code2vec [5], Cod-
Bert [13]), configuration languages [8] and also categorical data
such as ports and IP addresses [14, 21] for which word embed-
dings [16] were used to learn representations. Following this trend,
recent work [6, 9, 12, 22, 24] showed promising results on applying
NLP techniques also on bash logs for network security purposes.

Unlike other domains, however, network data labels are often
scarce, leaving few-shot and unsupervised learning as the only
options. Luckily, if sufficiently good representations – or embed-
dings – are learned from complex data, then few labels are often
enough to solve the desired downstream task. This was recently
demonstrated for both computer vision [23] and natural language
processing [10]. In these cases, unsupervised or self-supervised
techniques can be used to learn representations. A prominent ex-
ample is word2vec [16] (W2V), which we also use here. It assigns
vectors to words by learning to predict a word from it context. How-
ever, a big challenge is how to know if the unsupervisedly learned
representations are of good quality. Indeed, different W2V models
and different hyper-parameters leads to different embeddings. How
to select the best is thus critical.

In this paper we propose to systematically use objective domain-
specific pretext tasks to measure the quality of intermediate repre-
sentations of network data. In machine learning, pretext tasks are
side tasks that are not necessarily useful, but for which labels are
cheaply available. Historical examples include hiding a portion of

21

https://doi.org/10.1145/3565009.3569522
https://doi.org/10.1145/3565009.3569522
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3565009.3569522&domain=pdf&date_stamp=2022-12-06

NativeNI ’22, December 9, 2022, Roma, Italy Boffa et al.

an image and learning to impute it (in CV), or learning to predict
the next word or sentence in a given context (in NLP). Intuitively,
the better the model performs on such tasks, the better the interme-
diate learned representations are. When exploring different models
and different hyper-parameters, we thus select the one that yields
the best results on the pretext tasks.

For our use case, we focus on network security and more specif-
ically on honeypot SSH logs. Honeypots are efficient sensors to
collect data about ongoing attacks. However, the data they expose
is complex by nature, given the unknown and stealthy goals of at-
tackers [18]. Successfully learning meaningful representations from
such logs can drastically ease the work of security analysts even
in the absence of labels. For example, it is useful to automatically
group together (unknown) events that belong to the same threat
and detect novel threats that were never seen before.

Having clustering as a downstream task in mind, we apply the
following pipeline on honeypot logs. We generate different word
embedding models to obtain a self-learned representation for to-
kens present in the logs. Given a set of representations obtained
with different parameters, we design pretext tasks in the form of
objective classification tasks, and use their performance as a proxy
to choose the best representations. We next apply clustering on
the best representations, qualitatively observing that they capture
useful information.

2 PRETRAINING PIPELINE
2.1 Dataset
We rely on data collected using Cowrie [19], a honeypot that em-
ulates a UNIX shell exposed via Telnet and SSH. Cowrie allows
attackers to access the emulated server and saves all attackers’ shell
inputs. We call an attacking session the inputs captured after the
login until the attacker’s logout. As part of its engagement strat-
egy, Cowrie provides attackers with a virtual file system, generates
realistic outputs for hundreds of inputs, and downloads files and
scripts as requested by the attackers. Cowrie record all sessions in
textual logs, serving as a valuable source of information for secu-
rity analysts. Sessions in logs are however difficult to analyze given
the unpredictable behaviour of attackers.

Here, we use open data from the Honeypot as a Service (HaaS)
project [3], which aggregates logs of attacks observed by a dis-
tributed network of volunteers’ devices. All attempts are proxied
to Cowrie honeypots in the cloud. We consider ∼ 175 000 sessions
in total, and use the dataset both in our pretext tasks and on a
downstream ML task. Clearly, sessions have no labels that we can
leverage.

2.2 Representation learning and Word2Vec
Representation Learning plays a crucial role in domains such as NLP
and CV. As we focus on textual network logs, we restrict ourselves
to representations learned from sequences of textual tokens. In
particular, we investigate the quality of different representations
learned with W2V, one of most famous and useful embedding tool
in NLP.

W2V exploits a simple neural architecture to leverage word co-
occurrences in a sentence and project them into a high-dimensional
space, i.e., the embedding space. An embedding is a numerical

Table 1: W2V parameters. Each combination generates a dif-
ferent embedding.

Parameter Preliminary Study Deeper analysis
W2V model ["CBOW", "Skip Gram"] ["Skip Gram"]

Context window [w] [3, 5, 10] [2, 4, 6, 8, 10, 12, 14]
Negative samples [ns] [2, 5, 10] [2, 4, 6, 8, 10, 12, 14]

Vector size [H] [100] [20, 50, 80, 100, 150, 200, 300]
total W2V models 18 343

representation for a given word. The implicit goal of W2V is to
project “similar” words (i.e., words that generally appear in similar
contexts) into neighboring regions of the embedding space.

The algorithm has been applied to scenarios outside NLP, such
as to learn embeddings for programming languages [5]. We here
face a similar scenario, in which network logs are our documents,
containing words and sentences.

W2V receives as input a set of N sentences 𝑆 , that we use as
training corpus. W2V scope is to learn, for each token 𝑐 , an em-
bedding 𝐶 ∈ R𝐻 , where 𝐻 determines the size of the embedding,
an hyper-parameter of the model. W2V can have two objectives,
known respectively as Skip-Gram and CBOW [15]. Consider the
i-th position of a token in the sentence 𝑗 , 𝑐𝑖 𝑗 : Skip-Gram guesses
the𝑤 tokens around 𝑐𝑖 𝑗 [𝑐 (𝑖− 𝑤

2) 𝑗 ; 𝑐 (𝑖+𝑤
2) 𝑗], where𝑤 is an hyper-

parameter defining the context window. Contrarily, CBOW receives
as input the𝑤 tokens around 𝑐𝑖 𝑗 [𝑐 (𝑖− 𝑤

2) 𝑗 ; 𝑐 (𝑖+𝑤
2) 𝑗] and has to find

𝑐𝑖 𝑗 . The negative samples parameter 𝑛𝑠 [17] represents the number
of negative examples of 𝑐𝑖 𝑗 , i.e., tokens not present in the word con-
text window. The idea is that, while W2V wants to maximize the
closeness of 𝑐𝑖 𝑗 with actual tokens in its context window (neigh-
bors), it also wants to maximize the distance to other tokens (non-
neighbors). Choosing the right number 𝑛𝑠 of negative samples is
an open problem [7, 11].

Each combination of parameters generates a different embed-
ding. Choosing which one results the best is complicated. Here we
consider all models generated by any combinations of parameters
in Table 1.

2.3 Pretext tasks
As there is no general way to measure the quality of W2V embed-
dings, we propose to leverage pretext tasks to evaluate the learned
representations. We design two tasks as follows.

2.3.1 Token type classification. The goal of our first pretext task
is the classification of Bash token types. We consider each session
to be a document and each input line to be a sentence. Then, we
parse all inputs with Bashlex [2] to split sentences into tokens, thus
generating our training corpus (i.e., ingress words for W2V).

Bashlex let us also identify the token types, i.e., whether each
token refers to commands, flags, parameters or separators. We ben-
efit from those easy-to-obtain labels to construct our pretext task.
In details, tokens belong to three categories, that we use to train
supervised classifiers: (i) commands, which includes both builtin
bash commands and executable files, (ii) parameters, (iii) flags, and
(iv) operators.

For example, given the line received from an attacker
curl -O http://10.0.0.1/file; ./file | chpasswd;

we identify three commands (curl, ./file and chpasswd), one

22

On Using Pretext Tasks to Learn Representations from Network Logs NativeNI ’22, December 9, 2022, Roma, Italy

parameter (http://10.0.0.1/file), one flag (-O), and two opera-
tors (| and ;).

Overall, our dataset contains 3 162 commands, 158 838 param-
eters, 462 flags, and 6 separators. Since the separators represents
a minute fraction of the total we chose to exclude them from the
classification task. The pretext task therefore consist in classifying
tokens into 3 classes, using as input features only the representa-
tions learned with W2V.

2.3.2 Command goal classification. The second pretext task con-
sists in classifying tokens belonging to the commands category
according to their goals. For instance, both wget and curl primary
goal is to download content, while cd and rm allow file system
manipulations.

Since determining command goals is subjective, depending
strongly on the application context, we use two different sources
to define the labels for the pretext tasks. In the first setup (which
we call general), we rely on an introductory bash tutorial [1] to
define intuitive goals for the commands. The tutorial identifies 9
classes. We obtain 100 labeled commands, ignoring those for which
we have no labels.

As a second set of labels (which we call security), we rely on the
categories presented in [9] to label commands found in SSH honey-
pot logs. Authors use the Mitre taxonomy [4] to group commands
according to the possible reasons attackers would employ them.
We have 8 classes, including Privilege escalation, User password ma-
nipulation, and Reconnaissance, etc. As before, commands for which
we have no class are ignored, leading to a dataset composed by ∼
60 labeled commands.

2.4 ML models for pretext tasks
To solve the pretext tasks we rely on different ML algorithms: a sim-
ple 3 hidden layer feed-forward Neural Network (NN), a K-Nearest
Neighbour (KNN) and a Random Forest (RF) classifier. We use mod-
els of different types and complexity to observe if the obtained
embeddings are consistently informative for all of them, and obtain
thus stronger evidences when selecting the best representation.

Given thus a representation obtained with a W2V configuration,
we fit a classifier to solve the pretext task. Following good practices
in ML, we split the dataset into 70% for training, 20% for testing
and 10% for validation, repeating 5 times each experiment and
performing each time a grid search with the scope of optimizing
the main parameters of each classifier.

To assess whether representations bring any discriminative
power, we also include baseline models, consisting of three naive
classifiers: (i) a random classifier that uniformly samples a class, (ii)
a classifier that always returns the most popular class, and (iii) a
classifier that selects a class randomly based on a priori probabili-
ties of the labels.

3 PERFORMANCE ON PRETEXT TASKS
3.1 Token type
3.1.1 CBOW vs Skip-Gram. We first test a limited set of param-
eter configurations for each model in a preliminary benchmark
to choose between Skip-Gram and CBOW W2V models (see the
middle columns of Table 1).

Table 2: Macro F1-scores stats for 18 preliminary settings for
the two token-based tasks.

Token Type Command goal - General
W2V Model CBOW Skip-Gram CBOW Skip-Gram

min 0.390 0.771 0.175 0.246
max 0.579 0.779 0.257 0.357
mean 0.514 0.775 0.203 0.303
std 0.107 0.004 0.022 0.025

0.2 0.4 0.6 0.8
Recall

0.2

0.4

0.6

0.8

P
re

ci
si

on

KNN classifier

RF classifier

Neural classifier

Dummy classifier

Figure 1: Token type task – macro average precision and
recall of different classifiers and the baselines.

Table 2 show the results when using the NN classifier. It reports
the minimum, maximum, average and standard deviation of the
macro-average F1-score obtained in the experiments. The higher
are the results, the better it is.

Focusing on the token type column, the representations obtained
with the Skip-Gram model outperform those of the CBOW model.
The mean macro F1-Score grows from 0.51 to 0.77, and the overall
best configuration (“max” line) leads tomuch higher macro F1-Score
when using the Skip-Gram model. These results are consistent also
for the other classification models. We thus pick the Skip-Gram
model as the best option, and deepen the analysis with additional
benchmarks varying other W2V parameters.

3.1.2 Performance across ML models. Figure 1 shows a scatter plot
of the macro average precision and recall across classes. Different
colors highlight results for the NN, KNN, RF, and three “dummy”
baseline classifiers. Each point in the figure is equivalent to a dif-
ferent W2V configuration, with 343 representations tested for each
classification alternative. The classifiers face strong class unbal-
ance in this task, since our dataset contains around 3 k commands,
462 flags and 150 k parameters. Whenever possible, we use class
weighting when training the models.

First, comparing results of the ML algorithms against the base-
lines, we conclude that the embeddings do provide informative fea-
tures for this task. The neural classifier has better average precision
and recall than the other algorithms. More interesting, notice how
the performance of the same ML algorithm changes significantly as
we vary the parameters of W2V. In other words, the representation
quality substantially impacts performance, thus supporting our call
for good pretext tasks for the choice of the best representation.

23

NativeNI ’22, December 9, 2022, Roma, Italy Boffa et al.

2 4 6 8 10 12 14
0.5

0.7

0.9

F
1

sc
or

e

2 4 6 8 10 12 14
0.5

0.7

0.9
Neural Network

20 50 80 100 150 200 300
0.5

0.7

0.9

2 4 6 8 10 12 14
0.4

0.5

0.6

F
1

sc
or

e

2 4 6 8 10 12 14
0.4

0.5

0.6
Random Forest

20 50 80 100 150 200 300
0.4

0.5

0.6

2 4 6 8 10 12 14

Context window [w]

0.4

0.5

0.6

F
1

sc
or

e

2 4 6 8 10 12 14

Negative samples [ns]

0.4

0.5

0.6
KNN

20 50 80 100 150 200 300

Embedding size [H]

0.4

0.5

0.6

Figure 2: Token type task – impact of W2V parameters on the performance of the ML classifiers.

3.1.3 How to pick the best representation? In order to pick the best
representation, we must consider both the fact that a number of
parameter configurations are available, as well as the possibility that
different classification models may prefer different representations.

To better appreciate the impact of each W2V parameter, we
breakdown the performance when varying on parameter at a time.
In Figure 2 we plot the F1-score distributions obtained while keep-
ing one W2V parameter fixed and varying the others. Each box in
the figure therefore summarizes multiple experiments, in which
NN, KNN and RF classifiers are trained with different representa-
tions. We focus on context window𝑤 , number of negative samples
𝑛𝑠 , and embedding size 𝐻 (cf. Table 1, rightmost column).

Focus first on the NN classifier (top plots). It achieves the highest
scores when W2V is trained with large context window, negative
sample and embedding size. Particularly, the best combination ap-
pears with context window ∼ 12, negative samples ∼ 10 and em-
bedding size ∼ 150. The RF and KNN broadly concur with those
choices, highlighting the importance of considering multiple ML
algorithms in the pretext task to gather evidences for selecting a
representation. The only exception refers to the KNN choice re-
garding the context-window. There, the F1-scores are very similar,
suggesting that for the KNN, the context window parameter is not
vital for the overall behavior.

3.2 Command goal
Our second pretext task is classifying the command goal. We per-
form experiments following the same methodology adopted in the
previous pretext task. In this case, however, we repeat all experi-
ments twice, using the general and security class labels introduced
in Section 2.3.2. We have ∼ 100 and ∼ 60 labeled commands for the
general and for the security case, respectively. This limited number
of labelled samples discouraged us from training a NN for the task.

0.1 0.2 0.3 0.4
Recall

0.1

0.2

0.3

0.4

0.5

P
re

ci
si

on

General purpose classes

0.1 0.2 0.3 0.4
Recall

0.1

0.2

0.3

0.4

0.5

P
re

ci
si

on

Security based classes

KNN classifier RF classifier Dummy classifier

Figure 3: Command goal task – Precision vs Recall for differ-
ent classifiers and the baselines.

We thus resort only to KNN and RF.
First, check in Table 2 the columns comparing CBOW and Skip-

Gram for this pretext task (general labels) obtained with the RF clas-
sifier. Results still confirm the better quality of representations ob-
tained with Skip-Gram than CBOW, with F1-score of 0.303 against
0.203. As expected, notice how the F1-scores of both versions are
much lower with respect to the previous case. While the previous
task was based on 3 well-defined labels easily obtained with the
grammar parser, the commands goal classifier relies on 8-9 labels
that are subjective, thus resulting in a much harder task.

Figure 3 expands the analysis testing moreW2V parameters with
the Skip-Gram model. Each point is a different embedding. The
results confirm that this task is more complex than the previous
one – i.e., the performance is generally worse than in Sec 3.1. Yet,
we see that classifiers successfully learn how to classify commands,
showing results far above the baseline classifiers. Furthermore, it
is again evident that different representations produce different

24

On Using Pretext Tasks to Learn Representations from Network Logs NativeNI ’22, December 9, 2022, Roma, Italy

Reconnaissance Download & Execute

Download & Execute Execute

PATH Other Unix script (.sh) URL IP

Figure 4: Examples of parameters in the same cluster.

performance, hence underlying the importance of the validation
via pretext tasks.

For the sake of brevity, we do not report all results on varying
the W2V parameters. However, consistently with the previous case,
we obtain the best performance with large context window, while
we notice small variations when changing negative sample and
embedding size. Thus, the best choices fall in similar ranges also for
this pretext task, showing a consistent choice. We hence proceed
picking the best parameter previously identified.

4 DOWNSTREAM TASK
4.1 Goals and clustering methodology
Once the learned representations have been successful on the pre-
text tasks, we can select the best embedding and proceed to solve
more challenging downstream tasks. In this section we show a
case study where we cluster parameters in bash scripts using their
best W2V embeddings as features. One possible application of such
clustering is threat analysis. Our assumption is that parameters in
similar scripts could be mapped to neighboring regions in the em-
bedding space, and clustering could help to uncover related threats.

We use agglomerative clustering on the parameters embeddings.
We select the number of clusters by optimizing the average sil-
houette, ending up with ∼ 800 clusters from the original ∼ 160𝑘
parameters. Most clusters are small, but we also identify very large
clusters composed by more than 10k tokens, still with high silhou-
ette score.

4.2 Interpreting the clusters
Manually going through the clusters, we find that many of them
curiously present similarities in the way the parameters are spelled.
This is illustrated in Figure 4. See the top-right and bottom-left
clusters, in which variants of8UsA and sunlesses strings are notice-
able. We identify parameters in these clusters belonging to stan-
dard scripts used by attackers that download particular files for
later execution, and we therefore name them Download & Execute.

URL PATH IP Other Unix script (.sh)

Figure 5: t-SNE plot of the most popular parameter embed-
dings. Colors mark parameters of the same type.

These scripts’ file names, paths and IP addresses are put in the
same clusters, even if they belong to different attack sessions and
have different spells. Remind that we build our input features by ex-
ploiting the co-occurrence patterns of commands, parameters and
flags within ssh sessions, i.e., we do not leverage any information
about the strings and their semantics. Hence, W2V detects those
similarities based only on the parameters’ contexts.

Figure 5 extends the analysis by showing a t-SNE plot [25] of the
most popular parameters, which we color based on their semantic
– e.g., whether they are paths, names of shell scripts, URLs, IP ad-
dresses or others. Two clear regions can be identified. On the top of
the figure, several points fall in small groups. We confirm that the
t-SNE in this region reflects pretty well several small clusters, com-
prehending Download & Execute patterns of Figure 4. In the bottom
part of the figure we observe a large number of points, equivalent
to paths, shell scripts and others. These points are the same as those
in the bottom-right cluster in Figure 4. It contains thousands of
random strings, that are file names, which are downloaded using
multiple procedures. Yet, as they are used as executable files in later
parts of the scripts, the representation has captured their context,
mapping all these parameters to a single region of the space.

All in all, results illustrate how our W2V embeddings, whose
selection was guided by pretext tasks, carry informative representa-
tions that can be exploited in more complex downstream ML tasks.

5 CHALLENGES FOR PRETEXT TASKS
We also illustrate a case of an ultimately poorer pretext task – prob-
ably due to limitations of the groundtruth data. Pretext tasks should
be indeed avoided whenever they provide little useful information
about the representations, as was the case with this task.

5.1 Statement output prediction
This, also domain-specific, pretext task aims at determiningwhether
an attacker’s input, which we here name statement, produces shell
outputs. The pretext task is thus a binary classification problem,
with the positive class occurring when either errors or outputs are
sent back to attackers.

This problem has the characteristics of a good pretext task: it is a
well-defined classification problem, where labels are easy to obtain.
To generate the labels, we select a subset of∼ 10 000 inputs observed
in our data. We then run them in a sandbox virtual machine (VM).

25

NativeNI ’22, December 9, 2022, Roma, Italy Boffa et al.

Each attack session is run starting from a clean VM snapshot, and
we register both the stderr and stdout outputs after each input line.
This procedure results in a dataset with 10k samples, 72% of them
producing no output.

Notice that the problem is a statement-based task, as opposed to
the per-token tasks discussed in the previous sections. Each state-
ment is a variable-size series of tokens, each represented by its own
embedding. We thus need additional steps to handle the complex in-
put features in the pretext classifiers. We follow a basic sentence em-
beddings approach: we encode each statement by weight-averaging
all embeddings composing the statement. We use the tf-idf [20]
as weights to give higher importance to tokens that may be more
relevant for the statement.

5.2 Results and discussion
First, naively splitting the statements into training, validation and
test sets leads to a suspicious 100% accuracy, regardless of the
representation. This happens because many of the statements that
produce output are similar sequences of commands, with small
variations of (usually random) parameters. For example:

echo -e aiwoe9ye9thaemoPh4ei | passwd | bash
sudo echo -e Ahrie2sai2aic0Wohroe | sudo passwd

are two statements in our corpus producing similar output. The
presence of random parameters results in tokens with high tf-idf,
which easily uncovers the class label. In other words, the pretext
task becomes trivial and/or models are easily biased. The task does
not fully exercise the discrimitative power of the representation
and, as such, it is a useless pretext task.

We then test more challenging variations in which we exclude
all parameters, ending up with ∼ 290 statements. Yet, a common
pattern emerges: by cancelling the parameters, the sequence repre-
sentations obtained with weighed tf-idf lack discriminative power.
The task turns out to be too difficult to be answered using such rep-
resentations. Not shown for brevity, performance of all ML models
results similar to those of the baseline models.

Summarizing, when the pretext task becomes too easy, we can-
not compare representations since all of them succeed in the task.
Upgrading the difficulty, our representations come short in solving
the problem. Finding better tasks for statement-based cases will be
our focus in future work.

6 CONCLUSIONS
Self-supervised NLP representation learning techniques can ex-
tract rich features from network logs even in the absence of la-
bels. Learned features depend however on the learning technique
and its hyperparameters, making it difficult to decide which rep-
resentations are better suited for downstream ML task, especially
when they are unsupervised. We illustrated how carefully designed
pretext tasks help objectively choosing the best representation: (i)
results show that certain representations consistently give good
results across pretext tasks, regardless of the ML model; (ii) our
qualitative analysis of clusters obtained using our pipeline confirms
the good and useful quality of our selected representations.

REFERENCES
[1] 2022. Bash Command Classification. http://etutorials.org/Linux+systems/how+

linux+works/Appendix+A+Command+Classification/.
[2] 2022. bashlex - Python parser for bash. https://github.com/idank/bashlex.
[3] 2022. Honeypot as a Service. https://haas.nic.cz/.
[4] 2022. Mitre Enterprise tactics. https://attack.mitre.org/tactics/enterprise/.
[5] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learn-

ing distributed representations of code. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 1–29.

[6] N. Aussel, Y. Petetin, and S. Chabridon. 2018. Improving Performances of Log
Mining for Anomaly Prediction Through NLP-Based Log Parsing. In 2018 IEEE
26th International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS). IEEE Computer Society, Los Alami-
tos, CA, USA, 237–243. https://doi.org/10.1109/MASCOTS.2018.00031

[7] Pranjal Awasthi, Nishanth Dikkala, and Pritish Kamath. 2022. Do More
Negative Samples Necessarily Hurt in Contrastive Learning? arXiv preprint
arXiv:2205.01789 (2022).

[8] Zied Ben Houidi and Dario Rossi. 2022. Neural language models for network
configuration: Opportunities and reality check. Computer Communications 193
(2022), 118–125. https://doi.org/10.1016/j.comcom.2022.06.035

[9] Matteo Boffa, Giulia Milan, Luca Vassio, Idilio Drago, Marco Mellia, and Zied
Ben Houidi. 2022. Towards NLP-based Processing of Honeypot Logs. In 2022 IEEE
European Symposium on Security and Privacy Workshops (EuroS&PW). 314–321.
https://doi.org/10.1109/EuroSPW55150.2022.00038

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[11] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning. PMLR, 1597–1607.

[12] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly
Detection andDiagnosis from System Logs throughDeep Learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security
(Dallas, Texas, USA) (CCS ’17). Association for Computing Machinery, New York,
NY, USA, 1285–1298. https://doi.org/10.1145/3133956.3134015

[13] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv:2002.08155 (2020).

[14] Luca Gioacchini, Luca Vassio, Marco Mellia, Idilio Drago, Zied Ben Houidi, and
Dario Rossi. 2021. DarkVec: automatic analysis of darknet traffic with word
embeddings. In Proceedings of the 17th International Conference on emerging
Networking EXperiments and Technologies. 76–89.

[15] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[16] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality.
Advances in neural information processing systems 26 (2013).

[17] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality.
Advances in neural information processing systems 26 (2013).

[18] Marcin Nawrocki, Matthias Wählisch, Thomas C Schmidt, Christian Keil, and
Jochen Schönfelder. 2016. A survey on honeypot software and data analysis.
arXiv preprint arXiv:1608.06249 (2016).

[19] Devi Putri. 2019. Honeypot Cowrie Implementation to Protect SSH Protocol in
Ubuntu Server with Visualisation Using Kippo-Graph. International Journal of
Advanced Trends in Computer Science and Engineering 8 (12 2019), 3200–3207.
https://doi.org/10.30534/ijatcse/2019/86862019

[20] Juan Ramos et al. 2003. Using tf-idf to determine word relevance in document
queries. In Proceedings of the first instructional conference on machine learning,
Vol. 242. Citeseer, 29–48.

[21] Markus Ring, Alexander Dallmann, Dieter Landes, and Andreas Hotho. 2017.
IP2Vec: Learning Similarities Between IP Addresses. In 2017 IEEE International
Conference on Data Mining Workshops (ICDMW). 657–666. https://doi.org/
10.1109/ICDMW.2017.93

[22] Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample.
2020. Unsupervised translation of programming languages. Advances in Neural
Information Processing Systems 33 (2020).

[23] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip
Isola. 2020. Rethinking few-shot image classification: a good embedding is all
you need?. In European Conference on Computer Vision. Springer, 266–282.

[24] Risto Vaarandi. 2003. A data clustering algorithm for mining patterns from event
logs. In Proceedings of the 3rd IEEE Workshop on IP Operations & Management
(IPOM 2003)(IEEE Cat. No. 03EX764). Ieee, 119–126.

[25] Laurens van der Maaten and Geoffrey Hinton. 2008. Viualizing data using t-SNE.
Journal of Machine Learning Research 9 (11 2008), 2579–2605.

26

http://etutorials.org/Linux+systems/how+linux+works/Appendix+A+Command+Classification/
http://etutorials.org/Linux+systems/how+linux+works/Appendix+A+Command+Classification/
https://github.com/idank/bashlex
https://haas.nic.cz/
https://attack.mitre.org/tactics/enterprise/
https://doi.org/10.1109/MASCOTS.2018.00031
https://doi.org/10.1016/j.comcom.2022.06.035
https://doi.org/10.1109/EuroSPW55150.2022.00038
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.30534/ijatcse/2019/86862019
https://doi.org/10.1109/ICDMW.2017.93
https://doi.org/10.1109/ICDMW.2017.93

	Abstract
	1 Introduction
	2 Pretraining pipeline
	2.1 Dataset
	2.2 Representation learning and Word2Vec
	2.3 Pretext tasks
	2.4 ML models for pretext tasks

	3 Performance on pretext tasks
	3.1 Token type
	3.2 Command goal

	4 Downstream task
	4.1 Goals and clustering methodology
	4.2 Interpreting the clusters

	5 Challenges for pretext tasks
	5.1 Statement output prediction
	5.2 Results and discussion

	6 Conclusions
	References

