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ABSTRACT 

Acoustic Emission (AE) refer to the release of energy that occurs due to inelastic 

deformation of media at the laboratory scale. Analogous to seismic data, they provide a 

crucial window into the analyses of energy propagation at a scale that is relatively easy to 

handle. In this thesis, the fracturing processes in the lead up to dynamic failure of rock 

samples are analysed in terms of the microfracturing source and the effects of a developing 

fault zone on the propagation of energy.  

Two families of rock samples were selected: (1) granites, represented by Alzo 

Granite and Westerly Granite, and (2) sandstones, represented by Darley Dale Sandstone. 

The former was selected as a relatively flaw free environment in which to study the 

nucleation of fractures with minimal biases. Meanwhile the latter, was selected to study 

these processes in an environment which already had a pre-existing network of 

damage/porosity. In both cases, the rock types were selected for their generally 

homogeneous properties, further minimising any influence from bedding or foliation on 

deformation structure. Samples were deformed under conventional triaxial deformation 

conditions until dynamic failure under a range of confining pressures. During 

experimentation, AE were detected by an array of Piezo-Electric Transducers (PZT), 

recording fracturing events as discrete variations in voltage. It is from this data that the 

following analyses are derived. 

A Distributed Time Delay Neural Network is trained under semi-supervised 

conditions to recognise the onset of a signal in Acoustic Emission (AE) data obtained 

during the laboratory deformation experiments. Time series of instantaneous frequency, 

permutation entropy and seismic envelope are separated into simple classifications of noise 

and signal. The model is trained in sequential batches, allowing for an automated process 

that steadily improves as new data are added. To validate the approach, real AE data from 

a triaxial deformation experiment of Darley Dale Sandstone (fully drained conditions and 

a confining pressure of 20 MPa) are used to train a model of 300 waveforms that is 

subsequently applied to pick the onsets of the remaining data.  When compared with a 

simple amplitude-threshold picking methodology, results demonstrate significant 

improvement in the number and quality of event source locations that may be used in later 

analyses. 
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Source mechanism were solved using a least squares minimisation of the 3D first-

motion polarity focal sphere to characterise AE as tensile (T-type), shearing (S-type) and 

compaction/collapsing (C-type). Samples of Alzo Granite and Darley Dale Sandstone were 

systematically deformed until dynamic failure at confining pressures of 5, 10, 20 and 40 

MPa. Periods of fracture nucleation and growth, crack coalescence, and dynamic failure 

are identified from relative percentages of fracture mechanisms. Spatio-temporal trends 

further reveal a dependency of fault zone formation on the competition between tensile and 

compaction type mechanisms, with a surprisingly small amount of shearing. Finally, the 

occurrence of a family of low amplitude tensile events prior to sample failure point towards 

predictable and deterministic behaviour in the development of fault zone highlighting the 

potential for the forecasting of fracture coalescence. 

The delay in the maximum amplitude arrival of seismic energy (peak delay) is an 

important attribute to map complex geology, fluid reservoirs, and faulting in the 

lithosphere. The parameter was measured and mapped in the frequency range 50 to 800 

KHz using Acoustic Emission data recorded during triaxial deformation experiments of 

Westerly Granite and Darley Dale Sandstone. The highest peak delay consistently appears 

when energy propagates perpendicular to an acoustic impedance surface such as the 

deformation-induced shear zone. Measurements confirm the dominance of forward 

scattering and anisotropy processes, with results that are strongly influenced by the 

distribution of time-dependent heterogeneity and stiffness.  
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1 INTRODUCTION 

1.1 ACOUSTIC EMISSION 

When a medium undergoes a sudden redistribution of stress, typically due to 

external forces, energy is released in the form of transient elastic waves (Figure 1.1). 

Within the dynamic processes of the earth, this release of energy is recorded as earthquakes 

and provides a wealth of information on the mechanisms of the source. Furthermore, and 

possibly more importantly, the nature of the medium between the origin and the recording 

device is revealed as the waveform becomes increasingly modified as it propagates. The 

difficulty lies in separating out the effects of the source and interpreting each subtle 

modification formed along the propagation path. Thus, providing the focus of this thesis. 

 

Figure 1.1: Acoustic emission waveform. 

As an interdisciplinary science, Seismology, the study of transient elastic waves, is 

not new. Much of the theory required to interpret seismic records was provided prior to 

1922 (Ben‐Menahem and Gibson, 1995). Through the efforts of mathematicians and 

physicists of the last 400 years, many achievements were made in continuum mechanics, 

applied mathematics and general wave theory. Although, it was not until the 1880s, with 

the advent of the teleseismic seismogram, did seismology become a globally recognised 

science. With every major earthquake new milestones in the documentation of surface 

faulting (Mikumo and Ando, 1976), the observation of a P,S, and R waves (Oldham, 1899), 

Reid's elastic rebound theory (Reid, 1910), earthquake engineering (Green and Watson, 

1989) and the experimental verification of the propagating rupture of faults (Kanamori and 

Cipar, 1974) has since allowed the science to flourish. With the introduction of digital 

computation in the 1950s, the ability to perform the required calculations increased tenfold. 
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Suddenly, huge amounts of data could be processed easily, allowing for the rapid and 

efficient evaluation of tectonically active regions (e.g. Figure 1.2). 

 

Figure 1.2: Seismic diffusion coefficient tomography from King et al. (2017) highlights a distinct 

anomaly at Mount St. Helens Volcano, USA. 

In the late 20th century (although recorded as early as 6,500 BC!, Grosse and Ohtsu, 

2008) scientists began to investigate the release of energy in materials such as tin and zinc, 

as well as various alloys; Czochralski (1916) noted a relationship between tin and zinc cry 

and twinning, whilst French scientists (Portevin and Le Chatelier, 1923) later identified the 

release of energy in stressed Aluminium-Copper-Manganese alloy. Over the next 20 years, 

scientists such as Robert Anderson, Erich Scheil and Friedrich Forster provided further 

verification of these observations (Anderson and Baird, 1924; Förster and Scheil, 1936). 

Finally culminating in the subject defining PhD thesis of Joseph Kaiser in 1950 (Kaiser, 
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1950), the relationship between applied stress and the release of energy was established, 

bringing with it the birth of modern-day Acoustic Emission testing in 1958 (Schofield et 

al., 1958).  

Acoustic Emissions (AE) drew a great deal of attention for their ability to passively 

record the presence of damage without the need of invasive and destructive methodologies. 

Although this could be considered counter intuitive as the formation of damage is necessary 

for testing, signals are recorded passively during loading, therefore monitoring the 

evolution of a defect as it forms without the need to disturb the specimen. The advantage 

of this is that AE can be used to detect fracturing at a very early stage, long before the 

sample fails. Beginning in the 1960s, studies on noise produced when compressive load 

was applied to concrete (e.g. Ruesch, 1959) observed the Kaiser effect (e.g. Figure 1.3) to 

approximately 75% of failure load, further noting that the generation of AE was closely 

related to volumetric change and the absorption of ultrasonic waves. A reduction in 

ultrasonic velocity and an increase in Poisson’s ratio are further summarised in Figure 1.4 

by L’Hermite (1960). By the 1970s it was demonstrated that AE waveforms are highly 

sensitive to variations in deformation structure, particularly P-wave and S-wave elastic 

velocity and velocity anisotropy as the density of fractures increases (Bonner, 1974; 

Hadley, 1976; Lockner et al., 1977; Nur, 1971). 

 

Figure 1.3: Example of the Kaiser effect occurred in a cyclically loaded concrete. Thick black lines 

represent the AE activity, thin lines the load and the dashed lines indicate the Kaiser effect (Grosse and 

Ohtsu, 2008). 
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From the 1980s AE methodologies began to be applied to a wide range of 

engineering industries (Scruby and Wadley, 1983; Spanner, 1981). During hydrostatic 

proof tests of pressure vessels, AE were used as an ‘add on’ technique for monitoring 

purposes. Both the nuclear and petrochemical industries found use in the ability of AE to 

detect and locate incipient defects in pressurised components (Sadri and Ying, 2019). As 

the field developed, additional problems brought on by background or environmental 

noises were eliminated as instrumentation and measuring systems improved. Owing to 

these advances, modern commercial systems now record elastic waves produced by the 

release of stored strain energy as cracks nucleate and propagate. These are then detected at 

the surface of the medium by AE sensors that convert the displacement caused by elastic 

energy into electrical signals. Although fully digitised, the sensors are effectively an 

analogue system. As a result, AE consist of a P-wave (longitudinal or volumetric waves), 

an S-wave (transverse or shear waves), surface waves (Rayleigh wave and Love waves), 

diffracted waves and guided waves (e.g. Lamb waves). Due to limitations in the acquisition 

setup, additional waves are induced by resonance of the sensors. Therefore, much like field-

scale earthquake data, AE waveforms are the result of the source, heterogeneity along the 

propagation path and the detection system used in acquisition. 

 

Figure 1.4: From L’Hermite (1960). Wave velocity and Poisson’s ratio are seen to decrease and 

increase, respectively, as axial displacement increases. 

1.2 ROCK DEFORMATION EXPERIMENTS 

Developed concurrently but independently, triaxial deformation apparatus sought 

to investigate the mechanical properties of various media whilst under different pressure, 

saturation and temperature conditions. Originally pioneered by Von Kármán (1911), the 
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essential elements are detailed in Figure 1.5. A cylindrical sample is surrounded by a fluid, 

commonly oil in present applications (Gehne, 2018), which is raised to a high pressure to 

provide confining pressure. A rubber jacket acts to separate the sample from the oil. A 

piston is then used to apply axial pressure along the length of the specimen. Some 

arrangements optionally include pore-fluid pressure for more complex analyses.  

 

Figure 1.5: Schematic representation of the elements of a conventional triaxial compression testing 

machine, including option arrangements for pore fluid pressure (Faulkner, 2006). 

Building on this design, Griggs (1936) later introduced an additional piston so as to 

induce identical movements from both ends of the sample, although it should be noted that 

only one piston was used to apply force. The second acted to compensate the other by 

maintaining constant volume between the two pistons and avoiding change in confining 

pressure due to piston movement. Furthermore, it greatly reduced the net axial force needed 

from the external loading device at high confining pressures by providing a counter balance. 

An alternative setup connects the confining fluid to the annular area of a stepped single 

piston to achieve the same effect (Murrell and Ismail, 1976; Paterson, 1990; Tullis and 

Tullis, 1986). 

In the Earth Sciences, the brittle behaviour of different rock types is of interest for 

use in understanding faulting and the mechanics of earthquakes. During rock mechanics 

testing, samples are typically deformed at confining pressures in the range of 1 to 200 MPa, 

although some apparatuses go as high as 2200 MPa when testing metals (Schock et al., 
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1973). Structural features such as fractures and pore space play a fundamental role in 

determining the bulk strength of the rock mass (Bubeck et al., 2017). When pressure is 

applied, these features often form nucleation sites and encourage the propagation of 

damage, eventually leading to sample failure (Sibson, 1985). Although the effects of scale 

play an important role in brittle behaviour, the environment under which force is applied, 

such as saturation or temperature conditions, will modify how damage develops (Benson 

et al., 2007). 

Conventionally there are two principal modes of brittle fracture: extension fracture 

where there is a separation of bonds normal to the failure surface and shear fracture when 

this separation has an associated displacement (Griggs and Handin, 1960). In either case, 

the brittle fracture of a rock is a discrete event that occurs when stress exceeds a threshold 

that is determined by the local environmental conditions. In triaxial compression tests, 

shear fracture is the dominant mechanism of failure and generally occurs between 20 and 

30 degrees to the maximum principal stress (e.g. Paterson, 1958). Whilst better known in 

uniaxial tension tests, the extension fracture occurs normal to the direction of minimum 

stress. However, they can also occur under compressive conditions in the form of axial 

splitting parallel to the compression axis,  due to local tensile stresses around pre-existing 

defects at a microscopic scale (Scholz et al., 1986), although this is strongly dependent on 

the strength of confining pressure (e.g. Griggs, 1936). 

Due to the complex interaction between the different stresses, that is further 

influenced by the mode of fracturing and environmental conditions, there is no simple 

universal law that governs when a given rock will fail (Mehranpour and Kulatilake, 2016). 

The conditions for when failure will occur is generally represented as: 

 𝜎1 = 𝑓(𝜎2, 𝜎3), (1. 1) 

where 𝜎1, 𝜎2 and 𝜎3 represent the three principal stresses acting upon the medium (Figure 

1.6). Known as the criterion of failure, the function f often takes many forms which are 

characteristic of the media under study. Broadly speaking, the compressive stresses 

required for failure are centred on the uniaxial strength of a sample and the confining 

pressure (Colmenares and Zoback, 2002). At room temperature, these conditions can be 

loosely summarised as (Faulkner, 2006): 
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1. Igneous and high-grade metamorphic rocks: At a confining pressure of 100 

MPa, compressive strengths are typically in the range of 100-200 MPa, although 

sometimes higher for fine-grained rocks. At the point of failure, differential stresses 

(σ1 – σ3) are often around 500-800 MPa, which increases to 1000-2000 MPa at very 

high confining pressures (e.g. 200 MPa). 

2. Low-porosity sedimentary and low-to-medium grade metamorphic rocks (i.e. 

calcite limestones and marbles): Uniaxial compressive strengths are typically 

between 50 and 100 MPa, with failure occurring at a differential stress of 200-300 

MPa at a confining pressure of 100 MPa.  

3. High-porosity and some low-grade metamorphic rocks: Relatively very weak 

with uniaxial compressive strengths of 10-50 MPa. 

4. Low-porosity dolomites and quartzites: Some of the strongest rocks that are 

studied, compressive strengths can exceed 300 MPa at 100 MPa confining pressure.  

 

Figure 1.6: Stress ellipsoid describes the state of stress at a point in a rock (Pramoda Raj, N.D). 

The role of pore fluid in fracture development is important for its ability to hold 

open asperities and reduce friction (Beeler et al., 2000). Moreover, fluid chemistry and 

suspended particles also present further complexities. Water, for example, acts to reduce 

the strength of rocks through stress corrosion (Amitrano and Helmstetter, 2006; Benson et 

al., 2010). As the majority of rocks are porous to some degree, under natural conditions 

they are likely to contain a fluid phase. The pore structure itself is often distinguished as a 

bimodal distribution: pores which are of equant shape and cracks which are non-equant 

(Walsh and Brace, 1966). When occurring together, it is termed as double-porosity 

(Berryman and Wang, 1995). The connectivity of these structures, as well as a third class 

known as channels, is of upmost importance as they control permeability and the flow of 

fluids through the rock mass. During triaxial deformation tests the force created by pore-
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fluid pressure acting against axial and compressive stresses has brought about the notion of 

effective stress theory (Terzaghi, 1936). Defined as the total macroscopic stress minus the 

pore pressure (Skempton, 1961), effective stress is a general approach to describe the gross 

mechanical behaviour of a porous solid under saturated conditions.  

Some additional factors that play a role in the strength of a rock are mineral 

composition (He et al., 2019), alteration due to burial or weathering effects (Crisci, 2019), 

prior deformation/temperature history (Liu et al., 2020) and the speed at which a sample is 

deformed (Cen et al., 2020).  

 

Figure 1.7: Non-linear dependence of differential stress at failure in compression on confining pressure 

for granite from Byerlee (1967). 

However, first and foremost it is predominantly confining pressure that plays the 

largest role in determining when a rock will fail under compressive conditions. The most 

commonly accepted relationship is known as the Mohr-Coulomb criterion (Hackston and 

Rutter, 2016; Mohr, 1900). Here, only the principal stresses are considered. It is frequently 

observed that the maximum differential stress prior to brittle failure depends markedly on 

the confining pressure. It is represented by the following linear equation: 

|𝜏| =  𝜏0 +  𝜎𝑡𝑎𝑛𝜑, (1. 2) 

where τ and σ represent the maximum shear stress and the normal stress acting upon a plane 

inclined at an angle 𝜃 = 𝜋/4 ± 𝜑/2 to the specimen axis. There are many situations where 
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this relationship is non-linear (Figure 1.7). However, due to the mathematical simplicity 

of the Coulomb relation, it is often valid and in other cases where it is less so, it can be used 

as a first approximation.  

Until this point, the focus of research has been on developing empirical models that 

attempt to identify criteria of failure that are consistent with the observed failure conditions 

under a particular set of conditions (Mehranpour and Kulatilake, 2016). Although these 

criteria may be summarised as physical conditions, i.e. strain percent, they say very little 

about the mechanisms of failure. Although a degree of empiricism is still involved, the 

Griffith theory of brittle fracture instead attempts to create a model that represents the actual 

physical mechanisms behind the propagation of damage. Originally proposed in 1920 

(Griffith, 1920), the theory states that the tensile strength of brittle materials is governed by 

the initial presence of small cracks. Here, the criterion of failure is based on the principal 

that the potential energy of a system will tend towards a minimum. In a population of 

randomly orientated cracks, only those that are the most vulnerably orientated towards the 

direction of stress will extend and thus facilitate the reduction of potential energy. In doing 

so, the sum of the following three terms will therefore be zero or negative: 

1. The surface energy of the new crack surface created 

2. The change in the elastic strain energy of the body 

3. The change in the potential energy of the loading system 

In the absence of any other changes, this is sometimes referred to as the thermodynamic 

criterion of failure (Murrell, 1964; Murrell and Digby, 1972). 

Nevertheless, this approach is not without its own weaknesses. Initial assumptions 

regarding the shape of the open crack (ellipsoidal) and the existence of infinite values of 

stress at the crack tip has led to several modifications of the theory (Rice, 1972). Difficulties 

further arise when considering compressive conditions and the closure of fractures. As 

confining pressure increases, it is likely many fractures will close and introduce frictional 

effects (van der Baan et al., 2016). Indeed, studies have shown a reduction in the attenuation 

of sound waves (Birch and Bancroft, 1938) and an increase in seismic velocity (Birch, 

1961, 1960) as pressure increases, suggesting the closure of open structure. This led to the 

creation of the modified Griffith theory (McClintock and Walsh, 1962). In both biaxial and 

triaxial stress conditions, cracks are now assumed to close when the macroscopic normal 
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stress perpendicular to the fracture is under a certain value of confining pressure. The 

initiation of tensile failure is governed by the modified criterion: 

τ =
𝛼′

2
𝑇0√1 +

𝜎𝑐

𝑇0
+ 𝜇(𝜎𝑛 − 𝜎𝑐). (1. 3) 

As with the Coulomb criterion, 𝜎1 and 𝜎3 are the principal maximum and minimum 

stresses. In addition, there are a frictional coefficient 𝜇, confining pressure 𝜎𝑐  and an 𝛼 

term which considers the elastic properties and the axial ratios of the fracture. Further 

extensions to this theory also consider the initiation of shear and compressive modes of 

failure (e.g. Ramsey and Chester, 2004). 

Although the Griffith theory and its modifications represent a first step towards 

physically realistic models of fracture propagation, it is still unable to predict accurate 

values of the strength of the rock. Several authors have suggested that as the strength 

observation refers to the final macroscopic failure and the Griffith theories only focus on 

the initiation of damage, they should be considered as separate processes (Bieniawski, 

1968; Brace, 1960; Brace and Bombolakis, 1963; Hoek and Bieniawski, 1965). It is 

therefore essential to consider the evolution of deformation structure through time as a 

series of discrete fracturing processes that are dependent on the prior state rather than only 

considering the initial conditions of the rock. 

During rock deformation experiments, inelastic damage (fracturing) represents the 

bulk density change of a sample and therefore reflects changes in the microstructure of the 

rock. As previously discussed, this is then highlighted as changes in seismic velocity, 

attenuation parameters and the mechanical measurements taken during testing. Mechanical 

data are typically represented as the individual stress measurements and relative 

deformation, recorded as strain percent. Figure 1.8 is a common output. The stress-strain 

curve demonstrates the behaviour of a material as it passes through various stages when it 

is subjected to load, i.e. tensile or compressive.  

The Elastic Limit is the maximum value of stress up to which the material is 

perfectly elastic. Prior to this point, the material will return to its original position. Ultimate 

stress is the maximum strength of a material prior to Dynamic Failure, corresponding to the 

peak point of the stress-strain curve. Post-failure phases of Dynamic Failure and Shearing 

typically involve the development of the shear zone. Several stress thresholds have been 
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further identified and are used to characterise the evolution of cracking or damage. The 

crack closure threshold, 𝜎𝐶𝑇, refers to the point when all pre-existing microcracks have 

closed due to compression of the sample. After closure, a material will behave elastically 

until the onset of fracturing at crack initiation, 𝜎𝐶𝐼. The deformation during this phase is 

considered to be stable as it requires an increase in load to induce further damage. The point 

at which damage propagation becomes unstable is known as the crack damage threshold, 

𝜎𝐶𝐷  (Bieniawski, 1967). 

 

Figure 1.8: Typical stress-strain curve from deformation experiments with major stress thresholds 

indicated. 

Deformation experiments provide a unique environment in the laboratory from 

which the material properties of different rocks can be determined. Tests can be performed 

under a range of pressure, saturation and temperature conditions allowing for the simulation 

of conditions found in the sub-surface. Schubnel et al. (2013) for example, modelled the 

generation of deep earthquakes. Fazio et al. (2019) simulated the occurrence of Tornillo 

seismic events as a marker of gas content in magma. The mechanical properties of rocks 

further depend on many variables due to inherent inhomogeneity in mineral composition 

and grain size. Such factors play a significant role in determining the overall strength of a 

sample.   
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The International Society for Rock Mechanics (ISRM) suggest standardised 

procedures for rock characterisation, testing and monitoring (Ulusay, 2014). The studies 

presented here are exclusively undertaken using experiments performed using a 

conventional triaxial deformation cell. In these tests, all stresses are compressive with one 

stress greater than the other two (which are equal in conventional testing to simplify the 

engineering requirements): 

 𝜎1 > 𝜎2 = 𝜎3 > 0. (1. 4) 

Although having 𝜎2 = 𝜎3, referred to as confining pressure, could be considered a 

limitation of the experimental setup, it is broadly representative of the majority of sub-

surface conditions (Kovári and Tisa, 1975).  

1.3 ‘CLASSICAL’ AE ANALYSIS 

Recent AE systems are so powerful that the AE signal waveform can be recorded 

in real-time allowing for parametric characterisation of the damage during the different 

stages. In the literature several “classical” parameters are used to characterise AE and infer 

fracture or other physical phenomena.  As the final goal of AE studies is to provide 

information to ultimately prevent sample failure, these parameters are often correlated with 

mechanical data (e.g. differential stress) and growing fracture structure. Standard 

definitions (Shiotani, 2008) used in this thesis are as follows: 

1. Threshold: The minimum amplitude at which a signal will be detected by a sensor. 

2. Hit: A point at which a waveform exceeds the threshold and causes a system 

channel to accumulate data. 

3. Trigger Time: The time at which the signal exceeds the threshold. 

4. Peak Amplitude: Peak voltage of the signal waveform. 

5. Duration: Time interval between “Trigger Time” and the time of signal drops 

below the threshold. 

6. Rise Time: Time interval between the “Trigger Time” and the time of “Peak 

Amplitude”. 

7. Energy: Measured area under the rectified signal envelope. 

8. Average Frequency: The mean frequency of energy over one AE event. 

9. Dominant Frequency: The frequency where the majority of energy is stored. 

10. RA Value: “Rise Time” divided by the “Peak Amplitude”. 
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Several statistical ratios have been defined that relate to the onset or rate of AE hit 

activity. The Kaiser effect (Kaiser, 1950) is a well-known phenomenon for quantitative 

assessment of damage. Where once stress has been applied and removed, AE activity will 

only resume once that prior level of stress is reached once more (Figure 1.3). As this effect 

begins to break down as damage propagation becomes less stable, Fowier (1986) proposed 

the Felicity ratio. Defined as: 

Felicity ratio =
𝑃𝐴𝐸

𝑃1𝑠𝑡
, (1. 5) 

where 𝑃𝐴𝐸 is the stress at AE onset on cycle n+1 and 𝑃1𝑠𝑡 is the maximum stress recorded 

at cycle n. When the Felicity ratio is larger or equal to one, the sample is considered stable 

and intact, whilst below this it is in a damaged condition. An expansion of this is to consider 

the ratios of any AE parameter between the onset and maximum stress. As the level of 

maximum stress is difficult to measure in-situ, the RTRI ratio (Luo et al., 2002) is 

sometimes applied. Rather than considering the whole test, the study can be broken up into 

inspection periods to identify multiple 𝑃𝐴𝐸 and 𝑃1𝑠𝑡. 

Further analyses seek to quantify the level of damage from the above AE 

parameters. Typically, extension or shearing, mode 1 and mode 2 fracture respectively, are 

known to occur at different stages during deformation of concrete structures (Bažant and 

Pfeiffer, 1986). Mode 1 tensile fracturing is the primary means of damage nucleation as 

mode 2 requires enough force or weakness of the medium to generate sliding. By 

considering the ratios of AE hit rate between loading and unloading, Figure 1.9a highlights 

how Load (also known as the Felicity ratio, see above) and Calm (ratio of total cumulative 

AE activity during the unloading phase to total cumulative AE activity during the entire 

loading cycle) ratios can be used to assess the amount of damage between cycles (Luo et 

al., 2004; Ohtsu et al., 2002).  

The frequency distribution of peak AE amplitudes is often modelled with the 

Gutenberg-Richter law. Larger values of  the so-called b-value (Mogi, 1962; Scholz, 1968), 

defined as the slope of the amplitude distribution, indicate a larger number of small events, 

whilst small values suggest a relative increase in the number of high magnitude events. 

Although originally intended for field-scale applications, an improved b-value (Ib-value) 

was proposed by Shiotani (1994) for use in the laboratory. Two methods have been 

identified to classify the number of peak amplitudes: a) accumulated peak AE hits from the 
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beginning of the test; and b) the rate per unit time. The latter, however, creates unrealistic 

values in the lead up to dynamic failure. Further difficulties occur due to the various 

methods of monitoring. Different calibrations of sensor equipment, propagation medium 

and even factors as simply as where the AE occurs in the sample can easily modify the final 

value. As a result, the b-value is often considered qualitatively and is determined from the 

statistical mean. 

 

Figure 1.9: a) Damage quantification with a combination of Calm and Load ratio. b) Crack type 

classification with a combination of average frequency and RA values. From Grosse and Ohtsu (2008) 

When considering the properties of individual AE, parameters such as average 

frequency and the RA value go a step further to directly classify fracturing (Figure 1.9b, 

JCMS-IIIB5706, 2003). Zhang (2018) highlighted that the dominant frequency of a 

fracturing event can also be related to its size and scale (e.g. Benson et al., 2010). However, 

the author further went on to state that these “classical” parameters are very limited in their 

ability to characterise AE. Rather, parameterisation should be based on waveform analysis 

techniques that consider the time-variant properties of the signal and relates them to the 

current deformation conditions.  

1.4 ADVANCEMENTS PROVIDED BY THIS THESIS 

Three different methodologies are proposed in this thesis. Whilst none are 

inherently new in the fields of rock mechanics and seismology, all the techniques presented 

are new to Acoustic Emission studies. The first focuses on arguably one of the most 

important aspects of waveform analysis, the identification or ‘picking’ of the onset of 

energy using cutting edge machine learning techniques. The second study seeks to 

characterise fracturing source mechanisms as opening, closing or shearing using a new 



   Introduction 

15 

 

inversion approach that better considers the 3D geometry of the source. A third study then 

investigates the effect deformation structure has on a propagating waveform through 

qualitative analysis of forward scattering mechanisms, something which no other study has 

successfully applied in this context. 

Accurate waveform picking is notoriously difficult as each recording is effectively 

unique. Varying source mechanisms, background noise and attenuation conditions result in 

a dataset, often >50’000 in number, that requires standardised methodologies that can 

account for this uniqueness. As all subsequent analyses depend on the pick time, any errors 

obtained at this stage will be propagated forward, potentially distorting results. To address 

this, a neural network is trained to recognise the onset of energy through characterisation 

of amplitude, frequency and noise content in chapter 3 (page 26). The method is developed 

in such a way that a unique model can be created for individual experiments reducing the 

need for calibration and threshold balancing that many other picking methodologies 

require. Results show that it is surprisingly accurate in onset determination, greatly 

improving the quality and the amount of data that can be subsequently analysed. 

To understand the development of a shear zone, the nucleation and propagation of 

fractures are characterised by the relative contributions of different source mechanisms as 

a sample is deformed in chapter 4 (page 43). Mechanisms of tensile, compaction and shear 

type events are solved through least squares minimisation of the misfit between idealised 

focal mechanism solutions and first-motion polarity picking of AE data. Systematic testing 

of Alzo Granite and Darley Dale Sandstone highlight distinctive trends in the fracturing 

process that are dependent on the material under study and the environmental conditions. 

The effects of this developing structure on a propagating waveform are studied by 

measuring the ‘Peak Delay’ of arriving energy in chapter 5 (page 65). Considered the 

result of the forward scattering of energy by heterogeneities, Peak Delay has been analysed 

at the field scale to map the distribution of complex geological structure (Takahashi et al., 

2009, 2007), however, there are little-to-no studies performed at the laboratory scale. 

Samples of Westerly Granite and Darley Dale Sandstone are deformed under conventional 

triaxial deformation conditions and the resultant AE analysed. Using a combined approach 

of quantitative analysis, tomographic mapping and synthetic modelling, this study 

investigates the various properties of fracture structure, i.e. length, orientation and width, 

on the forward scattering of a propagating wave.   
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2 Data Acquisition and Deformation Results 

2.1 SAMPLE DESCRIPTIONS 

Cylindrical rock samples are cored perpendicular to bedding (when present) with a 

40 mm diameter core barrel and then cut to 100 mm length with a diamond saw. End faces 

are accurately ground using a lathe fitted with a cross-cutting diamond grinding disk with 

surfaces flat and parallel to within 0.01 mm. At 40 x 100 mm, a ratio of 2:5 agrees with 

IRSM recommendations and current best practices in triaxial deformation research (Benson 

et al., 2010, 2007). The samples, described below, were specifically selected for their 

homogenous properties and lack of pre-existing damage or weathering. 

2.1.1 ALZO GRANITE 

The mineralogical properties of Alzo Granite are typical of the white granites found 

in North Italy: medium grained plutonic rocks of quartz and feldspar with a high biotite 

content (Cavallo et al., 2004). Crystal sizes range between 2.5-6 mm for the biotite and 4-

9 mm for the quartz and feldspars. Fluid porosity values are characteristically low at 0.72% 

± 0.1% (Bugini et al., 2000). Cavallo et al. (2004) report an unconfined compressive 

strength of 229 MPa. Four samples were selected for analysis in chapter 4 (deformed at 

confining pressures of 5, 10, 20 and 40 MPa). 

2.1.2 DARLEY DALE SANDSTONE 

Darley Dale Sandstone is a brown-yellow, feldspathic sandstone with a modal 

composition of quartz (69%), feldspars (26%), clay (3%) and mica (2%). Previous studies 

report a connected porosity of 13.3% ± 0.8% with grain sizes varying from 100-800 µm 

(Heap et al., 2009; Zhu and Wong, 1997). The unconfined compressive strength is 160 MPa 

(Baud and Meredith, 1997). At the scale analysed here, no distinct layering or laminations 

were present. One sample, presented in chapter 5 (deformed at a confining pressure of 24 

MPa), has a small shale inclusion on the surface. Four additional samples were also 

prepared for chapter 4 (deformed at confining pressures of 5, 10, 20 and 40 MPa). 

2.1.3 WESTERLY GRANITE 

Westerly Granite is a light-grey, near-isotropic microgranite consisting of feldspars 

(67%), quartz (24%), biotite (5%) and hornblende (1%) (Tullis and Tullis, 1986; T. Wong, 

1982). Haimson and Chang (2000) identify an unconfined compressive strength of 201 
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MPa. Only a single sample of this granite is studied here in chapter 5 (deformed at a 

confining pressure of 5 MPa). 

2.2 LABORATORY EQUIPMENT 

2.2.1 CONVENTIONAL TRIAXIAL DEFORMATION 

 

Figure 2.1: Triaxial deformation cell (left) and schematic (right). The sample is positioned inside a 

rubber jacket located in the centre of the apparatus (brown). AE are recorded by an array of PZT 

sensors (black squares) positioned along the walls of the jacket. Axial stress and confining pressure are 

controlled by pore fluid pumps. 

Experiments were undertaken using an externally heated, servo-controlled triaxial 

apparatus custom-built by Sanchez Technologies (Figure 1.9). Installed at the University 

of Portsmouth, UK, it is designed to test 40 x 100 mm specimens at confining pressures of 

up to 100 MPa and temperatures of 200°C (Fazio, 2017). Composed of heating pads bonded 

to the vessel outer walls, temperature is applied via an external furnace and is insulated by 

an external jacket wrapped around the vessel to minimise heat loss. A high flash-point oil 

(270°C) is used as a confining medium and provides confining pressure (σ2, σ3) via 100 

MPa precision piston pumps. Whilst confining pressure is measured using the pump 

pressure directly, axial stress (σ_1) is applied via a hydraulic piston of 70 mm diameter. 
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This is connected to smaller piston of 40 mm diameter that directly applies stress to the 

study material up to a maximum of 680 MPa. 

Axial displacement, or strain, is measured with an Eddy Displacement System 

(EDS) equipped to the apparatus. Consisting of three contactless Linear Variable 

Displacement Transducers (LDVTs), these devices are mounted to a ring fixed to the top 

driving piston. The transducers generate a magnetic field and record axial displacement by 

measuring the response from a target steel plate which varies with distance. Capable of sub-

micron accuracy, the three readings are averaged and used to calculate strain according to 

the sample length. Strain rate is controlled via feedback from the three LDVTs that measure 

the changing length of the sample.  Compared to more traditional approaches that use AE 

feedback to control strain rate (e.g. Lockner et al., 1991), this acquisition setup ensures that 

the process of fault growth is at a constant strain rate that is a better approximation of 

conditions found in the Earth (Lei et al., 2000). 

2.2.2  STRAIN CORRECTIONS 

 

Figure 2.2: Stress-strain curve for theoretical (black) and measured (grey) values of an aluminium-

alloy cylinder from Fazio (2017). 

As some load will be accommodated by the apparatus itself, sample strain values 

must first be corrected for the Young’s modulus, 𝐸, of the equipment (𝐸𝑎𝑝𝑝). To calibrate 
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values, I apply the methodology detailed in Fazio (2017). Load is applied to an aluminium-

alloy cylinder (100.05 mm x 40.01 mm) of a known Young’s modulus (𝐸𝑡 = 73 𝐺𝑃𝑎). The 

strain (𝜀𝑚 ) is recorded using the LDVTs and the measured Young’s modulus, 𝐸𝑚 , is 

calculated as: 

 𝐸𝑚 =
∆𝜎𝑚

∆𝜀𝑚
= 49 GPa, (2. 1) 

where ∆𝜎𝑚 and ∆𝜀𝑚 are the incremental differential stress and incremental strain 

measured on the linear elastic segment of the calibration curve (Figure 2.2), respectively.  

The Young’s modulus of the apparatus, 𝐸𝑎𝑝𝑝 , is calculated over the same 

incremental stress: 

𝐸𝑎𝑝𝑝 =
∆𝜎

∆𝜀𝑚 − ∆𝜀𝑡
=

∆𝜎

∆𝜀𝑎𝑝𝑝
= 130 𝐺𝑃𝑎, (2. 2) 

where ∆𝜀𝑡 is the theoretical incremental strain of the aluminium-alloy cylinder and ∆𝜀𝑎𝑝𝑝 

is the incremental strain of the apparatus. 

The apparent stiffness of the apparatus, 𝑘𝑎𝑝𝑝, is obtained by (Jaeger et al., 2007): 

 ∆𝜀𝑡 =
𝑘𝑎𝑝𝑝

𝐿 ∗ 𝑘𝑎𝑝𝑝 + 𝐴 ∗ 𝐸𝑚
∗ ∆𝑍𝑎𝑝𝑝. (2. 3) 

Here, L is the sample length and A, its cross-sectional area. The incremental 

deformation accommodated by the apparatus, ∆𝑍𝑎𝑝𝑝, is calculated over the linear elastic 

segment through: 

 ∆𝑍𝑎𝑝𝑝 = L ∗ ∆𝜀𝑎𝑝𝑝 = 0.03 mm. (2. 4) 

Rearranging equation 2.4 for 𝑘𝑎𝑝𝑝 yields: 

 𝑘𝑎𝑝𝑝 =

𝐴 ∗ 𝐸𝑚 ∗
∆𝜀𝑡

∆𝑍𝑎𝑝𝑝

1 − 𝐿 ∗
∆𝜀𝑡

∆𝑍𝑎𝑝𝑝

= 1.2𝑒9  𝑁 𝑚⁄ (2. 5) 

and the corrected strain, 𝜀𝑐𝑜𝑟𝑟: 



  Data Acquisition and Deformation Results 

20 

 

 𝜀𝑐𝑜𝑟𝑟 = 𝜀𝑚 −
∆𝜎𝑚

𝐸𝑎𝑝𝑝
. (2. 6) 

2.2.3 PIEZO-ELECTRIC TRANSDUCERS 

For data acquisition, the protocol of Benson et al. (2007) was followed. Each sample 

was positioned inside a rubber jacket in which an array of twelve 1 MHz single-component 

Piezo-Electric Transducers (PZTs, model PAC Nano30) were embedded (Figure 3.1). The 

sensors have a relatively flat frequency response between 125-750 KHz, ensuring high 

quality AE. The jacket was then placed inside the deformation cell and the PZTs connected 

to high speed digitizers (10 MHz sampling rate) via 40 dB signal preamplifiers. 

 

Figure 2.3: Piezo-Electric Transducers (diamonds) are evenly distributed around the sample. 

Unlike traditional geophones that measure ground motion through accelerometers, 

PZTs are devices that use the piezoelectric effect to monitor variations (Negi and 

Chakraborty, 2019). As such, certain considerations must be made when analysing the data. 

In each of the sensors a crystal of piezoelectric material is positioned and outputs a 

continuous voltage. When the crystal undergoes strain, e.g. from a passing acoustic wave, 

the output voltage changes in proportion to the applied displacement. Due to their 

amplitude sensitivity, ruggedness and extremely high frequency response they have been 

successfully applied in numerous fields. However, due to a lack of calibration of these 

sensors, comparing values of amplitude or frequency content of AE with the work of others 

should only be done when the equipment is identical.  

Active compressional (P) wave surveys for velocity measurements were obtained 

periodically during testing. For each survey, each PZT were individually triggered in turn 
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and the energy was recorded by the entire array. Triggered AE events were detected when 

energy exceeded a minimum threshold of 60 mV for 6 sensors. An ITASCA-Image Richter 

system (AE recorder) was used to digitise the signals with amplitudes recorded as a voltage. 

Acquired data is directly streamed to the storage system allowing for several hours of 

continuous data to be stored. 

2.3 DEFORMATION RESULTS 

In-situ measurements recorded during laboratory experimentation are shown below. 

Aside from changes in confining pressure, each experiment is performed identically and 

under drained conditions. Once the pressure vessel has been sealed, axial pressure is 

increased until 5 MPa to hold the sample in place without applying strain. Following this, 

confining pressure is increased until the desired value is met. Once the desired experimental 

conditions are achieved, axial load is increased causing deformation of the sample at a 

constant strain rate of 10-5 mm/second. 

2.3.1 ALZO GRANITE 

 

Figure 2.4: Acoustic Emission counts (black bars, 0.01% strain bins) and stress-strain curves (black 

line) for Alzo Granite. 

Mechanical data for the four Alzo Granite experiments of chapter 4 are presented 

in Figure 2.4. For confining pressures of 5, 10, 20, and 40 MPa, dynamic failure (Figure 

1.8, page 11) of the samples occur at 175 MPa, 240 MPa, 325 MPa and 475 MPa 
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respectively. Strain values at failure are 0.71%, 0.9%, 1.1% and 1.45%. Counts of Acoustic 

Emission (binned in windows of 0.01% strain) follow an increasing trend once each sample 

has passed the crack closure threshold, peaking 0.1-0.2% before failure during crack 

coalescence. Post-experimentation imaging (Figure 2.5) highlight relatively simple 

deformation structure in the form of singular shear planes. 

 

Figure 2.5: Post-experimentation imaging of Alzo Granite. Shear zone structure is highlighted in red. 

2.3.2 DARLEY DALE SANDSTONE 

Mechanical data for the sandstone samples used in chapter 4 are shown in Figure 

2.6. For confining pressures of 5, 10, 20, and 40 MPa, dynamic failure (Figure 1.8, page 

11) of the samples occur at 60 MPa, 110 MPa, 150 MPa and 220 MPa respectively. Strain 

values at failure are 0.75%, 0.9%, 1.2% and 1.3%. Unlike deformation in the Alzo Granite, 

failure of these samples is considerably more gradual. As confining pressure increases, a 

pseudo-ductile like behaviour (a slow decrease in differential stress as strain increases) 

becomes more apparent. Counts of AEs (binned in windows of 0.01% strain) show a similar 

exponential increase in events as samples near Ultimate Compressive Strength. As before, 

post-experimentation imagery reveals relatively simple shear zone structure. With the 

exception of the sample deformed at 40 MPa that demonstrates conjugate structure. 
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Figure 2.6: Acoustic Emission counts (black bars, 0.01% strain bins) and stress-strain curves (black 

line) for Darley Dale Sandstone. 

 

Figure 2.7: Post-experimentation imaging of Darley Dale Sandstone. Shear zone structure is 

highlighted in red. 
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For the sample used in chapter 5 deformation follows similar trends (Figure 2.8, 

left). Failure occurs at 110 MPa at a strain of 0.65%. Unlike the previous experiments, this 

sample was sheared after failure for 0.5% of strain. Peaks in AE count (binned in windows 

of 0.01% strain) correlate well with short-term decreases in differential stress. CT-imaging 

(Computed Tomography, Figure 2.9, left) reveals simple shear zone structure as a linear 

region (dark, less dense) from the centre right to the bottom left of the sample. 

 

Figure 2.8: Acoustic Emission counts (black bars, 0.01% strain bins) and stress-strain curves (black 

line) for Darley Dale Sandstone (left) and Westerly Granite (right). 

 

Figure 2.9: Selected CT images of the samples used in chapter 5. Deformation structure within the 

Darley Dale Sandstone sample is revealed to be relatively simple, whilst Westerly granite highlights 

diffuse and complex fracture structure. 
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2.3.3 WESTERLY GRANITE 

The sample of Westerly Granite shows comparable trends with the Alzo Granite. A 

rapid increase in AE events in the lead up to failure as well as a rapid drop during crack 

coalescence trends (Figure 2.8, right). As with the sandstone sample also analysed in 

chapter 5, the sample is sheared for 0.5% of strain. Unlike the sandstone however, 

deformation structure is revealed to be diffuse and broadly distributed (Figure 2.9, right). 

Several faults are observed to intercept a thicker shear fracture.   
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3 WAVEFORM PICKING AND SOURCE LOCATION 

3.1 INTRODUCTION 

Acoustic Emission (AE) analysis typically falls under the category of “Big Data”. 

During rock deformation experiments many thousands of AE are produced by fracturing 

events. Depending on the acquisition setup, a single experiment can easily yield > 60’000 

individual waveforms. Furthermore, low amplitudes, varying source mechanisms and 

uncertain energy arrivals complicate manual identification of the onset of energy, i.e. phase 

picking, resulting in possible error and uncertainty in source location. Consequently, an 

automated approach is required that can address the non-linearity and non-stationary nature 

of AE data.  

Acoustic Emission refers to the release of transient elastic waves produced by the 

sudden redistribution of stress when a material that is subjected to an external stimulus. In 

deformation experiments, AE are related to the initiation and growth of fractures (Lockner 

et al., 1992), matrix cracking (Scholey et al., 2010), fibre breakage and various debonding 

processes (Bohse, 2000). Detection of these signals is a valuable asset to non-destructive 

testing as they provide immediate feedback of a dynamically evolving system without the 

need for interference. However, a notable limitation of AE analysis is that results are 

dependent on the successful discrimination of the signal from the background noise.  

Many commercial systems currently employ a threshold-based methodology for 

phase picking, where signal is considered to be anything above a minimum amplitude. In 

situations where signal-to-noise ratios (S/N) are consistently high (e.g. > 10 dB) this 

method is very effective. However, as S/N reduces there is an increase in false detections 

and poor accuracy of phase identification (Pomponi and Vinogradov, 2013). In passive AE 

monitoring, where signal amplitudes can be less than -50 dB, such a method is limited to 

the level of noise in the dataset and the calibration between sensors. An additional weakness 

of such energy ratio methods is that whilst they are intuitive and less computationally 

intensive, they are limited by the use of a static partition window. Depending on the width 

of this window, the energy ratio may not be the largest at the signal onset resulting in an 

incorrect pick (Guoping et al., 2004). Additional difficulties are introduced by the lack of 

calibration of the PZT sensors typically used in AE studies (Høgsberg and Krenk, 2015). 
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3.1.1 HILBERT-HUANG TRANSFORM 

Widely recognised in non-destructive testing, the Hilbert-Huang Transform (HHT) 

(Huang et al., 1998) is a powerful tool for signal analysis and data processing of AE data. 

Composed of two main theoretical aspects, the HHT first decomposes complex signals into 

a series of intrinsic modal functions (IMF) by empirical mode decomposition. 

Subsequently, instantaneous frequency and instantaneous amplitude content of individual 

IMF are then computed through Hilbert spectral analysis. Unlike a traditional Fast Fourier 

Transform, as the signal is decomposed in the time-domain, the time varying characteristics 

of AE frequency content are preserved at a high resolution with minimal aliasing of the 

modal components.  

Already, several studies have highlighted the great potential of the HHT for 

classifying source and damage mechanisms. Hamdi et al. (2013) and Ding et al. (2018) 

evaluated the performance of the method in polymer composites. Both studies attributed 

different mechanisms of damage, e.g. delamination, to specific types of AE signal, whilst, 

Yang et al. (2014) applied the technique to monitor ‘burn’ features in surface grinding 

processes. Siracusano et al. (2016) even went so far as to propose separation of P and S 

wave signals using the HHT. 

3.1.2 PERMUTATION ENTROPY 

Theoretically and conceptually simple, permutation entropy (PE) is a measure of 

the complexity of time series data (Bandt and Pompe, 2002). Based on the distribution of 

ordinal patterns, which describe order relations between values of a time series, PE 

estimates a probability density function of the number of patterns within a sequence from 

which an entropy value is calculated, thus removing any dependence on amplitude values. 

The larger the value of permutation entropy (in the range 0 to 1) are, the higher the diversity 

of ordinal patterns is and the more complex the input data are (Unakafova and Keller, 

2013).  

Several entropy methods have been proposed and applied in a variety of disciplines 

such as medicine (Ródenas et al., 2015; Sharma et al., 2015), seismology (Ramírez-Rojas 

et al., 2018; Zoukaneri and Porsani, 2015) and rock mechanics (Jia et al., 2019; Jian et al., 

2004). Through analysis of synthetic microseismic signals Jia et al. (2019) concluded that 

their entropy based methodology had better noise immunity and a higher sensitivity to 
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changes in amplitude, frequency and seismic phase compared to traditional energy-ratio 

techniques. 

3.1.3 TIME DELAY NEURAL NETWORKS 

Designed with the purpose of identifying patterns and trends in shift-invariant time-

series data, time delay neural networks (TDNN) allow for the classification of data without 

explicitly knowing the beginning or end of a signal (Waibel et al, 1989). Similar to the PE 

method, TDNNs model the propagation characteristics of time series data. Used to great 

effect in speech recognition, TDNNs are able to construct models of the key elements of 

sounds, performing robustly in the presence of reverberations and even different speakers 

(Haffner and Waibel, 1992; Peddinti et al., 2015; Snyder et al., 2015). As AE are sounds 

that are prone to substantial variations in amplitude and frequency due to source and path 

effects, such an approach is suitable here.  

Through combined characterisation of the ordinal properties of frequency content, 

amplitude variations and entropy estimation of the received waveforms, a distributed time 

delay neural network is trained to recognise the differences between noise and signal data 

that is unique to the acquisition setup used in the experiment. The method proposed in this 

study overcomes the weaknesses inherent to each of the input parameters by effectively 

modelling a ‘best-fit’ approach to signal classification and allows for a more accurate 

pickup of the first arrival even when amplitudes are too low for traditional threshold and 

energy-ratio based methodologies. 

3.2 THEORY AND METHODS 

3.2.1 HILBERT-HUANG TRANSFORM 

Intrinsic modal functions represent simple oscillatory modes of complex signals. 

Unlike harmonic signals, IMF can have variable frequency and amplitude content through 

time. Known as empirical mode decomposition (EMD), IMF of individual AE are obtained 

through a continuous screening process called “sifting” and must satisfy the following 

requirements: the number of extrema and the number of zero-crossings must either be equal 

or differ by a minimum of one, whilst the mean of the upper and lower envelopes is zero 

(Huang et al., 1998). 

 



   Waveform Picking and Source Location 

29 

 

The procedure from Huang et al. (1998) follows as thus: 

1. The local extrema in the time series 𝑋(𝑡) are identified 

2. Local maxima are connected by a cubic spline line to produce an upper envelope 

3. This is repeated for the local minima to produce a lower envelope 

The difference between 𝑋(𝑡) and the mean of the two envelopes, 𝑚1, is the first 

component ℎ1: 

 ℎ1 = 𝑋(𝑡) −  𝑚1. (3. 1) 

Using ℎ1 as the new time series, this process is repeated 𝑘 times until the standard 

deviation of ℎ1𝑘 , 𝜎𝑘, is less than 0.1: 

 𝜎𝑘 =  ∑
|ℎ𝑘−1(𝑡) −  ℎ𝑘(𝑡)|2

ℎ𝑘−1
2 (𝑡)

𝑇

𝑡=0

. (3. 2) 

Thus, ℎ1𝑘  is defined as the first IMF component of the data: 

 𝑐1 =  ℎ1𝑘 . (3. 3) 

Typically, 𝑐1 contains the highest frequency component of 𝑋(𝑡). Subsequent IMF, 

which contain longer period data, are then calculated from the residue 𝑟𝑛 where: 

 𝑟𝑛 =  𝑟𝑛−1 −  𝑐𝑛 . (3. 4) 

The sifting process is stopped when 𝑟𝑛 becomes a monotonic function from which 

no new IMF can be extracted. Consequently, the test data is decomposed into 𝑛 empirical 

modes where 

 𝑋(𝑡) =  ∑ 𝑐𝑗 +  𝑟𝑛

𝑛

𝑗=1

. (3. 5) 

Once obtained, the Hilbert transform 𝐻, or instantaneous amplitude 𝐴𝑖𝑛𝑠𝑡, of each 

IMF component is calculated as: 

 𝐻(𝑐𝑛)(𝑡) =  
1

𝜋
∫

𝑐𝑛(𝜏)

𝑡 −  𝜏
𝑑𝜏

∞

−∞

. (3. 6) 
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The phase angle 𝜃,  

 𝜃 = 𝐼𝑚(log(𝐻(𝑐𝑛))), (3. 7) 

is then used to compute the instantaneous frequency content 𝑓𝑖𝑛𝑠𝑡  as 

𝑓𝑖𝑛𝑠𝑡 =  
∆(𝜃)/ 𝑇𝑠

2 ∗ 𝜋
, (3. 8) 

where 𝑇𝑠 is the sampling period. 

 

Figure 3.1: Dominant frequency content of the AE waveform. Red and blue indicates high and low 

frequency content respectively. Pre-signal noise is characterised by high frequency and the signal itself 

with low values. 

To characterise the data for use in classification, each step of the vector 𝑓𝑟𝑒𝑞(𝑡) is 

then defined as the 𝑓𝑖𝑛𝑠𝑡 (𝑡) of the highest 𝐴𝑖𝑛𝑠𝑡(𝑡) of all IMF components in 𝑋(𝑡). Thus, 

𝑓𝑟𝑒𝑞 is simply a high-resolution vector of the dominant frequency content through time. 

This is visually represented in Figure 3.1 where the colour of the AE trace indicates the 

dominant frequency. There are clear differences in the characteristic frequency content of 

the pre-signal noise (high frequency, red) and the onset of energy (low frequency, blue). 

The former is typically represented as high frequency data and can be considered as chaotic, 

with little-to-no relation between each time step. The latter, however, can easily be 

recognised through a consistent dominance of high amplitude, low frequency waves. It is 

these attributes that define the difference between AE signal and the background noise. 

3.2.2 SEISMIC ENVELOPE AND PERMUTATION ENTROPY 

The Root Mean Square (RMS) envelope provides a scaled amplitude estimate of 

the AE trace (Figure 3.2, red line). The envelope represents the instantaneous energy of 

the signal and is computed in a sliding window of 10 samples. Such a narrow window is 

selected to avoid smoothing of the low amplitudes at signal onset. In low-noise 
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environments the amplitude of the signal greatly exceeds that of the pre-signal noise and 

provides a good marker of the onset of energy. However, as noise increases, this onset 

becomes increasingly difficult to identify resulting in a high degree of uncertainty.  

 

Figure 3.2: Example Root Mean Square envelope (red) and calculated entropy series (blue). Pre-signal 

noise is characterised by low seismic envelope values and high values of entropy and vice-versa for the 

signal. 

The Permutation Entropy method describes the uncertainty and the degree of 

irregularity in a random series (Figure 3.2, blue line).  To compute the empirical PE (refer 

to Unakafova and Keller, (2013) for more details), ordinal patterns of the AE are obtained 

with delay of τ = 1, indicating a distance of 1 between points in patterns and an order of d 

= 5, meaning patterns contain 6 points (d+1). With a high degree of overlap between points, 

it is possible to use all of the information about order relations between points in the AE 

waveform. The distribution of ordinal patterns are obtained by the simple enumeration of 

the type of pattern (an example for d = 2 is provided in Table 3.1). To reflect the complexity 

in the time series, the PE is computed in a sliding time window of 30 points is calculated 

at time t as: 

𝑃𝐸𝑑
τ(𝑡) =  − ∑

𝑞𝑗

𝑀
ln

𝑞𝑗

𝑀
= ln𝑀 −  

1

𝑀

(𝑑+1)!−1

𝑗=0

∑ 𝑞𝑗ln𝑞𝑗

(𝑑+1)!−1

𝑗=0

, (3. 9) 

where 𝑞𝑗 = #{𝑘 ∈ {𝑡, 𝑡 − 1,.  .  . , 𝑡 − 𝑀 + 1} has the ordinal pattern j} (with 0ln0 := 0) and 

M is defined as the number of ordinal patterns in the window. 

Table 3.1: The ordinal patterns of order d = 2 from Unakafova and Keller (2013). 

Ordinal 

pattern 
      

(i1, i2) (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) 

n2(i1, i2) = 3i1+i2 0 1 2 3 4 5 
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3.2.3 DISTRIBUTED TIME DELAY NEURAL NETWORK 

In order to learn the critical attributes of noise and signal, a supervised Distributed 

Time Delay Neural Network (DTDNN) is sequentially trained on AE waveforms through 

binary separation of noise and signal data, assigned -1 and 1 respectively. Signal is defined 

as the time period between the theoretical onset of energy and the point at which energy 

drops below a pre-pick noise threshold. Due to uncertainties in the waveform content 

following the main arrival (i.e. reflections) the model is only trained on noise identified 

during the pre-signal period. Post-signal noise is classified with NaN values. 

Working as a feedforward neural network, multiple time-shifted copies of the input 

vectors are fed into a model, where each time step (t) are applied weights that relate them 

to past and future values, therefore, modelling the input vectors pattern or trajectory. This 

is performed through 10 successive hidden layers, where each subsequent layer provides a 

finer characterisation of the input data. The purpose of the time-shifted copies is to remove 

position dependence (e.g. the beginning of the signal) and achieve shift-invariance. An 

error gradient is computed by backpropagation through the network across time from the 

binary vector. After each training epoch, the error gradients of the shifted copies are 

averaged and then used to apply a weighting update. Thus, the network only learns the most 

important features of the input data. The output of the network is a binary vector from 

which the onset of energy can be identified (Figure 3.3). Intermediate values between -1 

and 1 highlight the uncertainty of signal classification. Performance of the network is 

measured by the mean square error between the binary training vector and the output model. 

Initially, the model is trained under supervision. Five high amplitude waveforms 

are randomly selected from an AE pool. They are manually picked, and the model 

iteratively trained on the concatenated input parameters (training dataset) after each 

waveform. At this stage, the model already has a relatively high degree of picking accuracy. 

Following this, the model then undergoes semi-supervised training. A waveform of any 

amplitude is randomly selected from the available pool. The input parameters are calculated 

and are simulated in the neural network model generating an output model.  

The difficulty in this methodology is picking the signal onset from the output model. 

The simplest approach tested here was to define a window around the likely onset, typically 

between the minimum and maximum values of the model output, and then select the highest 

signal-to-noise ratio (SNR) of the original waveform in this window. From a physical 



   Waveform Picking and Source Location 

33 

 

perspective (i.e. sample dimensions, acoustic velocity) there can only be a limited time 

window for subsequent energy to arrive, thus the window is set to between 20 and 60% of 

the waveform length. For subsequent waveforms for that event, this window is then set 

between the first arrival pick and that time plus 20% of the waveform length. The actual 

arrival time occurs approximately at the mean value of the model output between the 

minimum value in the window and 80% of the maximum. Several approaches were tested 

to select the onset in this window: when the model output equals zero, when the gradient 

along the model output exceeds a certain value. However, for the sake of simplicity, the 

onset was identified as the highest S/N ratio of the input waveform around this point.  

 

Figure 3.3: Model Output (red) provides a simpler time series from which to automatically identify the 

signal onset (blue). Portions of the waveform confidently classified as signal are represented by a 1, 

whilst pre-signal noise is classified as -1. 

Once the onset is identified, two ‘picking quality’ ratios are calculated around this 

value. A short-term SNR of the original waveform and an SNR of the model output. With 

extensive testing it was found that an SNR value of 2 for the former and values between 

0.3 and 0.9 for the latter were a reliable threshold. When both ratios are exceeded, the input 
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parameters are added to the training data and the neural network is updated. To improve 

computation speed, the model is trained in batches of 10 waveforms. Waveforms can be 

further down sampled to increase computation speed. As this is an iterative process, the 

model is steadily improved over time which allows for the later inclusion of data that may 

not have been initially included. The model ceased training once the training dataset 

exceeded 300 waveforms.  

3.2.4 SOURCE LOCATION 

During the deformation test (Figure 2.7 page 23, 20 MPa), 12 waveforms are 

recorded for each AE event. The waveforms are ordered in descending value according to 

their amplitude and simulated in the neural network model. The first trace (the highest 

amplitude and so likely the first to arrive) is picked within the same window definitions 

used in model training. Subsequent traces are picked within a window between this first 

arrival and maximum possible arrival time set according to the velocity of the medium. For 

the traces of length 2048 timesteps analysed here, the window was 350 timesteps wide. 

This window was then iteratively narrowed according to the model output. For low 

amplitude waveforms, this windowing proved crucial in identifying the correct peak in the 

model output (Figure 3.3, lower trace).  

Once the onset of energy has been identified for each arrival, pick times are inverted 

for source location using a Time Difference of Arrival (TDOA) method (Comanducci et 

al., 2020; Tobias, 1976). Although weak to velocity anisotropy, TDOA is commonly used 

in micro-seismic source location. TDOA values are calculated by pairwise subtraction of 

the time of arrival values to each sensor from a single source. Theoretical TDOA values 

are calculated through iterative estimation of the source location. The L2 norm of the 

residual between theoretical and true TDOA values arrives to a local minimum at the true 

source location. A minimum of nine arrival times is recommended as location errors begin 

to stabilise at this point; the accuracy of this method greatly improves with the addition of 

more sensors.  

3.3 RESULTS AND DISCUSSION 

3.3.1 ALL PARAMETER MODEL VALIDATION 

To validate the final neural network, performance indices are calculated for the 

training dataset once it is complete. In batches of 10 waveforms, two new models are 
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sequentially trained as before. For each model, the remaining data that is yet to be included 

into the model is then used as the validation dataset. For each validation waveform, a mean 

square error (MSE) between the model output and the idealised binary training vector ([-1 

1]), and the actual picking error. The latter is measured in timesteps (dimensionless) around 

the true arrival, negative values indicate early picking, whilst positive indicates late. With 

the second training instance, the training dataset is the validation dataset. The purpose of 

the first model is to assess the ability of the neural network to solve data it has not seen, 

whilst the second model investigates how well the model can solve its own training data. 

Performance indices (Figure 3.4) demonstrate a high degree of accuracy of the model, even 

when the training data count is low. A reduction in the mean square error for both models 

highlights a steady improvement in noise and signal classification. An increase in average 

picking error in the first model (Figure 3.4a) at 125 training data suggests the inclusion of 

difficult to classify waveforms, however, the error is rapidly reduced at 200 training data. 

For the second model (Figure 3.4b), results are steady throughout training, demonstrating 

the consistency of the semi-supervised methodology used. For both models, an MSE of 

0.25 is acceptable as pre-signal noise is rarely free of artefacts in AE data. 

 

Figure 3.4: a) A model is sequentially trained in batches of 10 waveforms and then validated with the 

remaining data. Dark lines indicate the average value of performance indices and the lighter region 

indicates the 95% confidence interval. b) Here the model is validated on its own training data after 

each batch of 10 waveforms.  
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Further validation is performed through analysis of the error distribution according 

to waveform amplitudes (Figure 3.5). A histogram highlights a gaussian distribution to the 

training data. Picking errors (timesteps) highlight problematic amplitudes plotted as 

averages and their 95% confidence interval. It is likely that the large errors observed at -82 

dB and -60 dB are associated to only one or two difficult waveforms. However, it is also 

important to observe the similarity in error distribution between the two models, suggesting 

a uniqueness to the final neural network solution.  

 

Figure 3.5: Amplitude distribution of data used in training the neural network model (left) and 

associated picking errors (black circles) with 95% confidence interval plotted as error bars (right). 

3.3.2 SINGLE PARAMETER MODEL VALIDATION 

As in the previous section, performance indices are calculated for two separate 

validation models, however, only a single input parameter is tested for each model. Results 

for neural networks training only on instantaneous frequency, seismic envelope and entropy 

are plotted in Figure 3.6, Figure 3.7 and Figure 3.8, respectively. Both instantaneous 

frequency and seismic envelope impart relatively low errors. The seismic envelope rapidly 

converges to a solution that is able to solve known and unknown data. Entropy on the other 

hand, produces the largest error of the three input parameters. After 175 training data, the 

MSE rapidly increases.  



   Waveform Picking and Source Location 

37 

 

 

Figure 3.6: Validation of model trained only on instantaneous frequency content. Dark lines indicate 

the average value of performance indices and the lighter region indicates the 95% confidence interval. 

 

Figure 3.7: Validation of model trained only on seismic envelope. Dark lines 

indicate the average value of performance indices and the lighter region indicates the 95% 

confidence interval. 
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Figure 3.8: Validation of model trained only on entropy. Dark lines indicate the average value of 

performance indices and the lighter region indicates the 95% confidence interval. 

 

Figure 3.9: Associated picking errors in amplitude windows for the single parameter analysis. 
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The reason behind this becomes clear when examining the error distribution 

according to waveform amplitude (Figure 3.9). A significantly large error is created at the 

highest amplitudes. As stated before, this was found to be generally linked to one or two 

problematic waveforms, where the high amplitudes were producing anomalous entropy 

measurements. Whilst the semi-supervised approach is not without its flaws, the inclusion 

of several different waveform parameterisation methodologies acts to minimise the 

individual weaknesses of each. However, care should be taken to remove difficult data and 

ensure adequate sampling of the whole amplitude range. The histogram in Figure 3.5 

suggests a minimum of 50 waveforms for each amplitude window (windows with less than 

50 waveforms show the highest errors). 

3.3.3 FULL-DATASET VALIDATION 

Following the training of the neural network model, all waveforms from the 

triggered AE dataset are picked using the model. Sources are then located using the TDOA 

methodology. Of the 24360 detected AE, 6741 events are located within the sample, a 

recovery rate of 27%. Of the 12 available arrivals, an average of 11 are picked for each AE. 

Example waveform pick results for 2 AE are detailed in Figure 3.10. Both AE demonstrate 

a significant degree in variety in the character of the onset of energy. The second highlights 

an additional weakness of the acquisition setup used here. The PZT used to record AE, 

detect both P and S waves. At longer hypocentral distances (>1 cm) the P-wave tends to 

become heavily attenuated resulting in poor detection. As a result, it is likely that the S -

wave is picked in most cases. In the second AE, the first two arrivals have a P-arrival. A 

more in-depth methodology that can characterise these two separate onsets is required to 

overcome this. Although it does not play a significant role in this test, this is a likely cause 

of some of the errors occurring at high amplitudes seen previously. 
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Figure 3.10: Example AE with their recorded waveforms picked (red dots). Note in the second AE 

(right) the picking of a P-wave arrival for the bottom two waveforms. 

As a simple comparison, the same dataset is also picked using a simple RMS 

envelope threshold-based method. When waveform amplitudes exceed a set value of noise, 

an arrival time is identified. AE are then relocated using the above TDOA methodology 

with source locations plotted as scatter and density plots in Figure 3.11. Approximately 

four times as many events were successfully located by the neural network as compared to 

the threshold approach. Whilst both methods highlight source locations that localise to a 

shear zone (Figure 3.11), it is much more apparent in the method presented by this study.  

 

Figure 3.11: Source locations plotted as density plots. Data are plotted in 1200 event bins. a) Data 

picked with a threshold method. b) Data picked with the Neural Network results in a higher density of 

source locations and cleared fault zone structure. 
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Figure 3.12: Picking errors are compared for both methodologies. The threshold method has very high 

location residual errors compared to the neural network for low signal to noise ratios.  

Average signal to noise ratios further demonstrate systematic behaviour and a 

robust repeatability of the neural network (Figure 3.12). For the envelope method, high 

location residuals typically correlate with low S/N and vice versa for low, suggesting that 

the quality of picking plays a fundamental role in the location accuracy. However, for the 

neural network the average S/N value is 1 and the location residuals are far lower than the 

other. One explanation is that the neural network is more reliably picking low amplitude 

data, thus bringing down the average, or more likely, it is identifying the discrete change 

in waveform characteristics when an acoustic signal arrives. 

3.4 CONCLUSIONS 

This study has presented a workflow and an application of a machine learned 

waveform picking tool. A distributed time delay neural network is trained to recognise the 

onset of AE energy using instantaneous frequency, seismic envelope and entropy 

measurements. Statistical results demonstrate the reliability of the method and highlights 

the strength in using multiple waveform characterisation techniques in determining the 

arrival of acoustic energy. It is not crucial that the techniques presented here are the ones 

that are used. Any method that highlights a distinct change in character for each phase (i.e. 

pre-signal noise, signal) will work here. One advancement of this approach that could 

potentially be made is to characterise the differences between different wave types (e.g. P-

wave, S-wave) and pick the individual onsets of those. 
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It is important to stress that this is a fully automated process that can be applied to 

nearly any AE dataset the authors can think of. Aside from the 5 waveforms used to initially 

train the model no user intervention is required. A high degree of picking accuracy and the 

inclusion of low amplitude data that may normally be missed by traditional single 

parameter threshold methods results in datasets with a high source location recovery rate 

and a reduction in the propagation of errors in further analysis of the data.   
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4 FOCAL MECHANISMS AND SOURCE EFFECTS 

4.1 INTRODUCTION 

Fracturing of brittle media in the lead up to dynamic failure occurs as a result of 

discrete, sudden releases of stress. This accumulation of damage eventually leads to the 

connection of structure and coalescence of a fault. During controlled laboratory 

deformation experiments, fault growth is considered to be analogous to the development of 

earthquake rupture due to a statistical similarity in source dimensions (Hanks, 1992). 

Studies of Acoustic Emission (AE) data, the laboratory counterpart to seismic waveforms, 

are very useful as they highlight the development of fault zone structure in a controlled 

environment. Several studies point towards sequences of fracturing mechanisms that occur 

as damage propagates. Lei et al. (2000) demonstrated the occurrence of tensile fracturing 

at the front of a ‘process zone’ with significant shear cracking following in its wake. The 

authors further concluded that the linkage between fractures formed the major mechanism 

of crack interaction and fault development prior to the yield point. Experiments on fine-

grained granites suggest that this process is tensile dominated (Cox and Scholz, 1988), 

however a more significant shear-component is highlighted in coarser grained material (Lei 

et al., 1992).  

Although representing at least 30% of fracturing mechanisms (Graham et al., 2010; 

Stanchits et al., 2006), an often overlooked aspect of shear zone development is the 

Compensated Linear Vector Dipole (CLVD) or ‘closure’ fracture mechanism. Vavryčuk 

(2005) observed that shear fracturing in anisotropic media comprises of varying 

contributions of tensile and compaction components that is dependent on the orientation of 

faulting. The author highlighted a similarity in the directional variability of both 

components suggesting a common influence between the two. As the pressure required to 

keep a fracture open is lower than it is to extend (Belyadi et al., 2017), any open flaws 

ultimately play a role in shear zone formation as they will act to accommodate any applied 

strain before new tensile fracturing occurs. For example, van der Baan et al (2016) 

cyclically varied fluid pressures near the crack tip to simulate non-continuous fracturing. 

The authors observed that a drop in local pressures resulted in partial fracture closure and 

temporarily halted or slowed fracture propagation. As closing fractures also amplify local 

stress concentrations, new fractures may further develop and grow in proximity (McBeck 

et al., 2019). This ‘excitation’ of fault growth, where the propagation of unstable fractures 
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encourages the development of others in the vicinity (Chen et al., 2014), is an important 

aspect of shear zone formation as it ultimately leads to dynamic failure of the rock mass.  

Determination of fracturing mechanisms typically falls under two categories: first-

motion polarity analysis (e.g. Graham et al., 2010; Stanchits et al., 2006), and moment-

tensor inversion (e.g. Vavryčuk, 2002, 2001). A study demonstrated that the solutions for 

both methodologies result in broadly similar observations and trends suggesting that the 

choice of either approach will be due to limitations of the AE acquisition setup (Graham et 

al., 2010). Particularly the application of the moment tensor is more complicated at the 

laboratory scale due to reflections and other ringing effects distorting the waveform coda. 

On the other hand, they also noted that the use of an average polarity method to calculate 

focal mechanisms led to poor representation of the non-shear components of fracture 

development.  

To address these limitations this study applies a least squares methodology whereby 

first-motion polarity measurements are fitted to idealised focal spheres of tensile, shear and 

compaction type fracturing. This approach leads to a better representation of the 3D 

geometry of the source. It is however limited by the idealised spheres used in the fitting. 

Acoustic emission data from systematic testing of Alzo Granite and Darley Dale Sandstone 

highlight distinct fracturing processes in the lead up to dynamic failure that are dependent 

on the rock type and the confining pressure used.  

4.2  METHODOLOGY  

 

Figure 4.1: a) Absolute polarity of idealised focal mechanisms of C-type (left), S-type (middle) and T-

type (right) fracturing. b)  Deviatoric amplitude distribution of the same mechanisms. 
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Samples of Alzo Granite (Figure 2.5, page 22) and Darley Dale Sandstone (Figure 

2.7, page 23) are deformed until dynamic failure at confining pressures of 5, 10, 20 and 40 

MPa. Following picking and location (chapter 3), first motion amplitudes and their 

polarities are obtained for each waveform of the AE. The objective of the following 

procedure is to minimise the fit between idealised focal spheres of tensile (T-type), shearing 

(S-type) and compaction (C-type) events through iterative rotation (azimuth and elevation) 

of the picked polarity measurements. Polarity amplitudes are normalised according to the 

maximum amplitude arrival of each AE event and projected onto a sphere of the same 

dimension of the idealised models. Two constants are obtained and multiplied together to 

solve the minimisation problem; the L2 norm of absolute polarity (-1 or 1, Figure 4.1a) and 

the L2 norm of deviatoric amplitudes (smoothed distribution, Figure 4.1b), both calculated 

as the sum of least squares of the residual between idealised mechanism and the measured 

normalised amplitude distribution. Estimated orientation of a fracture plane is indicated by 

the black lines. Dip and dip direction are calculated relative to this plane. Although this 

may not be 100% correct for shearing events, either plane may be selected, normal faulting 

parallel to the shear direction is assumed for most of these data under compressive 

conditions. 

The are some limitations of this approach. First is the choice of segmentation of the 

idealised focal spheres. In reality, fracturing mechanisms fall on a range of distributions 

between pure compaction, pure shear and pure tensile (Frohlich et al., 2016). Unlike MTI, 

this method is limited to specific motions and so for example, is unable to precisely identify 

the amount of shear in a tensile event. The addition of intervening mechanisms to the 

inversion procedure would address this but would significantly increase processing time. 

Furthermore, an additional limitation of this method is that it does not consider attenuation 

or other scattering effects of the recorded waveforms which may affect the fitting to the 

deviatoric mechanism.  

For each mechanism type, probability density functions (PDF) are calculated for 

the time of occurrence of individual AE (converted here to a strain value). Data are further 

separated by AE amplitude. Low amplitude data are AE with amplitudes in the bottom 5% 

of the total amplitude range for each mechanism of an experiment. A relative threshold was 

selected as amplitudes are not calibrated between sensors and experiments. These PDF are 

then summed together, and a percentage contribution calculated. This approach was 

selected instead of histogram bins as it resulted in a smoother distribution and better 
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highlighted trends in the data. To ensure trends are statistically relevant, percentage values 

are calculated every 10 events for a specific experiment and then smoothed in a moving 

window of 0.04% strain. Plots are broken up into three characteristic deformation stages 

that correlate with phases of: a) Fracture Nucleation and Fault Growth (0 - 70% UCS), b) 

Crack Coalescence (70 - 95% UCS), c) Dynamic Failure of the sample (>95% UCS).  

4.2.1 MECHANISM ORIENTATIONS AND DIVERGENCE MAPS 

Assuming a dominance of normal faulting under compressive conditions, fracture 

azimuth and dip are assumed as slip vectors in order to calculate the divergence between 

neighbouring events. Vector directions are interpolated onto a 3D grid to identify broader 

trends, after which the along-strike component is set to zero to calculate vector divergence 

as a 2D plane. Data are windowed according to the previously discussed deformation 

stages. Colours scales are calibrated to individual plots to highlight contrasting structure. 

4.3 RESULTS 

Spatio-temporal variations of solved focal mechanism solutions are shown in the 

following section. Individual samples are discussed below. Phases of 1) Fracture 

Nucleation and growth, 2) Crack Coalescence and 3) Dynamic Failure are indicated in each 

of the panels. The current sample is in the top left of the figure with a failure plane drawn 

on the hand sample in red. Probabilities of solved mechanisms occurring at a specific strain 

highlight the relative proportions of T-type (tensile, yellow). S-type (shear, green) and C-

type (closure, blue). A specific period of fracture development marked as a red line and 

called ε critical is indicated for each sample. Spatial maps of fracture polarity orientation 

and mechanism slip divergence are plotted beneath with the observed failure plane marked 

with a dashed red line. 
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Figure 4.2: a) Post-failure imagery and fault plane in red (top left) for Alzo Granite at 5 MPa. Focal 

mechanism probabilities (top right) show T-type (yellow), S-type (green) and C-type (blue) events 

separated by amplitude (lighter for high, darker for low) as strain increases. Fracture mechanism plane 

distributions (bottom) show the spatial distribution and orientations of events. b) Divergence maps of 

mechanism slip vectors. Red regions indicate dilatational regions where vector directions are diverging. 

Blue indicates compactant regions where vector directions are converging. Data are windowed into 

phases of 1) Fracture Nucleation and Growth, 2) Crack Coalescence and 3) Dynamic Failure. 
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Figure 4.3: a) Post-failure imagery and fault plane in red (top left) for Alzo Granite at 10 MPa. Focal 

mechanism probabilities (top right) show T-type (yellow), S-type (green) and C-type (blue) events 

separated by amplitude (lighter for high, darker for low) as strain increases. Fracture mechanism plane 

distributions (bottom) show the spatial distribution and orientations of events. b) Divergence maps of 

mechanism slip vectors. Red regions indicate dilatational regions where vector directions are diverging. 

Blue indicates compactant regions where vector directions are converging. Data are windowed into 

phases of 1) Fracture Nucleation and Growth, 2) Crack Coalescence and 3) Dynamic Failure. 
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4.3.1 FRACTURE NUCLEATION AND GROWTH  

There is significant uncertainty as to the relative contributions of tensile, shear and 

closure type mechanisms during the early stages of deformation due to a low amount of 

data coverage. However, general trends suggest an early dominance of T-type fracturing 

that is replaced with varying contributions of S-type and C-type events. Nevertheless, the 

nucleation of new fractures forms the dominant mode of deformation during this stage in 

both Alzo Granite (AG) and Darley Dale Sandstone (DDS). Furthermore, reactivation of 

this tensile damage is also likely to occur for preferentially aligned fractures as strain 

increases. 

4.3.1.1 ALZO GRANITE 

Early alignment of fracture structure is visible as a rightward dipping region of 

mixed dilatancy and compaction in the Alzo Granite at 5 MPa (Figure 4.2b, Panel 1, red 

dashed line) and a preferential alignment of T-type fracturing (Figure 4.2a, bottom, Panel 

1). Dilatational regions to the top right and bottom left highlight off-fault damage not 

associated to the main structure. At 10 MPa, this phase in the granite is characterised by 

more low amplitude T-type events (Figure 4.3a, top right, Phase 1) that are broadly 

distributed in the sample (Figure 4.3a, bottom, Panel 1). The eventual failure plane is 

marked as weakly linear region of dilation (Figure 4.3b, Panel 1). At 20 MPa (Figure 4.4a, 

bottom, Panel 1) and 40 MPa (Figure 4.5a, bottom, Panel 1) clusters of C-type fracturing 

are observed to form above and below regions of increased dilation (Figure 4.4b, Panel 1, 

red dashed line). 

4.3.1.2 DARLEY DALE SANDSTONE 

A dominance (Figure 4.7a, top right) of poorly aligned tensile fracturing (Figure 

4.7a, bottom, Panel 1) occurs for the sandstone at 5 MPa (Figure 4.7a, top left). Unlike the 

granite which demonstrated relative continuous regions of dilatancy, deformation in the 

sandstone is notably “patchier” in its distribution as confining pressure increases. At 10 

MPa, T-type and C-type fracturing are broadly distributed throughout the sample (Figure 

4.8a, bottom, Panel 1). However, at 20 MPa, C-type events align preferentially along the 

eventual failure plane (Figure 4.9a, bottom, Panel 1). At 40 MPa conjugate regions of 

dilatancy follow the eventual failure planes (Figure 4.10b, Panel 1, red dashed line). 
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Figure 4.4: a) Post-failure imagery and fault plane in red (top left) for Alzo Granite at 20 MPa. Focal 

mechanism probabilities (top right) show T-type (yellow), S-type (green) and C-type (blue) events 

separated by amplitude (lighter for high, darker for low) as strain increases. Fracture mechanism plane 

distributions (bottom) show the spatial distribution and orientations of events. b) Divergence maps of 

mechanism slip vectors. Red regions indicate dilatational regions where vector directions are diverging. 

Blue indicates compactant regions where vector directions are converging. Data are windowed into 

phases of 1) Fracture Nucleation and Growth, 2) Crack Coalescence and 3) Dynamic Failure. 
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Figure 4.5: a) Post-failure imagery and fault plane in red (top left) for Alzo Granite at 40 MPa. Focal 

mechanism probabilities (top right) show T-type (yellow), S-type (green) and C-type (blue) events 

separated by amplitude (lighter for high, darker for low) as strain increases. Fracture mechanism plane 

distributions (bottom) show the spatial distribution and orientations of events. b) Divergence maps of 

mechanism slip vectors. Red regions indicate dilatational regions where vector directions are diverging. 

Blue indicates compactant regions where vector directions are converging. Data are windowed into 

phases of 1) Fracture Nucleation and Growth, 2) Crack Coalescence and 3) Dynamic Failure. 
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4.3.2 CRACK COALESCENCE AND DYNAMIC FAILURE 

 

Figure 4.6: The strain difference between ε critical and ultimate compressive strength follows a log-

linear relationship with confining pressure. 

The onset of this phase is recognised by a softening of the stress-strain curve as 

samples approach ultimate compressive strength (UCS). Crack coalescence is identified 

from a small increase in high amplitude C-type events coinciding with a reduction of low 

amplitude S-type events. This is shortly followed by a burst of low amplitude T-type events. 

This is marked as ε critical in each of the mechanism probability plots and occurs between 

70% and 95% of UCS. The strain difference between ε critical and UCS occurs 

systematically and shares a log-linear relationship with confining pressure (Figure 4.6).  

4.3.2.1 ALZO GRANITE 

During Crack Coalescence and Dynamic Failure (Phases 2 and 3), regions of 

dilatancy remain relatively continuous (Figure 4.2b). As confining pressure increases, 

more extensive off-fault fracturing that is not related to the final failure plane occurs (e.g. 

Figure 4.4b, Panel 2). Regardless of confining pressure, S-type events show very little 

relationship to Dynamic Failure. Rather, these events remain localised to specific regions 

throughout experimentation (e.g. Figure 4.3a, bottom). However, T-type events show clear 

alignment to the failure direction (Figure 4.2a, bottom, Panel 2). At 40 MPa, fracture 

damage is very broadly distributed throughout the sample with linear regions of dilatancy 

suggesting the formation of multiple, potential failure planes (Figure 4.5b, Panel 2). 

Dynamic failure is typically represented by a short burst of C-type events followed by high 

amplitude tensile fracturing (e.g. Figure 4.3a, top right, Phase 3). Regions of dilatancy 

remain from the previous phase of Crack Coalescence but become more localised along the 

failure plane whilst off-fault regions become more compactant. 
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Figure 4.7: a) Post-failure imagery and fault plane in red (top left) for Darley Dale Sandstone at 5 MPa. 

Focal mechanism probabilities (top right) show T-type (yellow), S-type (green) and C-type (blue) events 

separated by amplitude (lighter for high, darker for low) as strain increases. Fracture mechanism plane 

distributions (bottom) show the spatial distribution and orientations of events. b) Divergence maps of 

mechanism slip vectors. Red regions indicate dilatational regions where vector directions are diverging. 

Blue indicates compactant regions where vector directions are converging. Data are windowed into 

phases of 1) Fracture Nucleation and Growth, 2) Crack Coalescence and 3) Dynamic Failure. 
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Figure 4.8: a) Post-failure imagery and fault plane in red (top left) for Darley Dale Sandstone at 10 

MPa. Focal mechanism probabilities (top right) show T-type (yellow), S-type (green) and C-type (blue) 

events separated by amplitude (lighter for high, darker for low) as strain increases. Fracture 

mechanism plane distributions (bottom) show the spatial distribution and orientations of events. b) 

Divergence maps of mechanism slip vectors. Red regions indicate dilatational regions where vector 

directions are diverging. Blue indicates compactant regions where vector directions are converging. 

Data are windowed into phases of 1) Fracture Nucleation and Growth, 2) Crack Coalescence and 3) 

Dynamic Failure. 



   Focal Mechanisms and Source Effects 

55 

 

4.3.2.2 DARLEY DALE SANDSTONE 

C-type events occur as a pre-cursor to the eventual failure plane as either cross-fault 

structure (e.g. Figure 4.7a, bottom, Panel 2) or as along fault compaction (Figure 4.8a, 

bottom, Panel 2). Preferential localisation of T-type fracturing also occurs along fault zone 

structure, however events are not orientated in any particular direction. At 20 MPa, during 

Crack Coalescence multiple conjugate structures can be seen forming (Figure 4.8b, Panel 

2), although compaction along their length leads to preferential selection of a single failure 

plane (Figure 4.8b, Panel 3). At 40 MPa, conjugate structure that was established during 

Fracture Growth remains constant through the later phases (Figure 4.9b, Panel 3) with 

extensive off-fault fracturing occurring throughout the sample (Figure 4.9a, Panel 3). 
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Figure 4.9: a) Post-failure imagery and fault plane in red (top left) for Darley Dale Sandstone at 20 

MPa. Focal mechanism probabilities (top right) show T-type (yellow), S-type (green) and C-type (blue) 

events separated by amplitude (lighter for high, darker for low) as strain increases. Fracture 

mechanism plane distributions (bottom) show the spatial distribution and orientations of events. b) 

Divergence maps of mechanism slip vectors. Red regions indicate dilatational regions where vector 

directions are diverging. Blue indicates compactant regions where vector directions are converging. 

Data are windowed into phases of 1) Fracture Nucleation and Growth, 2) Crack Coalescence and 3) 

Dynamic Failure. 
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Figure 4.10: a) Post-failure imagery and fault plane in red (top left) for Darley Dale Sandstone at 40 

MPa. Focal mechanism probabilities (top right) show T-type (yellow), S-type (green) and C-type (blue) 

events separated by amplitude (lighter for high, darker for low) as strain increases. Fracture 

mechanism plane distributions (bottom) show the spatial distribution and orientations of events. b) 

Divergence maps of mechanism slip vectors. Red regions indicate dilatational regions where vector 

directions are diverging. Blue indicates compactant regions where vector directions are converging. 

Data are windowed into phases of 1) Fracture Nucleation and Growth, 2) Crack Coalescence and 3) 

Dynamic Failure. 
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4.3.3 MECHANISM ORIENTATIONS 

Table 4.1: Counts of mechanism orientations 

 Confining 

Pressure (MPa) 

Parallel to Shear  Perpendicular to Shear 

 C-Type S-Type T-Type  C-Type S-Type T-type 

A
G

 

5 325 64 1103  252 11 489 

10 109 45 705  132 8 390 

20 387 84 847  245 17 451 

40 813 283 2353  293 12 1113 
         

D
D

S
 

5 198 22 440  58 0 151 

10 822 161 1465  653 11 1202 

20 822 137 2493  620 112 1671 

40 1825 647 3879  1633 125 1900 

To investigate the effect of confining pressure on fracture orientation, slip planes 

are estimated directly from solved focal mechanisms (Error! Reference source not found.). 

Individual counts for each plot point are provided in  

Mechanism Orientations 

Table 4.1. Azimuthal directions are normalised according to the modal direction of 

S-type events for each experiment in order to separate out events which dip parallel to the 

macroscopic failure plane and those that dip perpendicular. Circular points indicate the 

average of each of the mechanism types at the different confining pressures. Error bars are 

calculated as the standard error (𝑆𝐸 =  𝜎/√𝑛) and represent the spread of the data. Lines 

of best fit are calculated using weighted linear least squares where the weighting is set as 

the inverse standard error.  

A steepening of S-type events and a shallowing of T-type with increasing confining 

pressure represent a switch from axial splitting to fault plane localisation in DDS (Error! 

Reference source not found.). However, AG demonstrates the opposite trend where S-type 

become shallower and T-type steepen. Furthermore, there is a steepening of C-type events 

in the perpendicular direction. It is likely that these rotations occur as a result of the same 

transitionary switch present in DDS. However, because the increased strength of AG will 

inhibit the propagation of S-type events, these events will occur as C-type, with fracturing 

occurring perpendicular to the direction of shear. This shear inhibition will further reflect 
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on shear parallel T-type events, raising the average dip as more events become localised 

along the failure plane at higher confining pressures. 

 

Figure 4.11: Average mechanism orientations are plotted against confining pressure for events dipping 

parallel or perpendicular to the sample failure plane. Error bars are defined as the standard error and 

represent the range of data from which the average is calculated. 

4.4 DISCUSSION 

4.4.1 COHESIVE VS. GRANULAR DRIVEN FAILURE 

During compressive loading, fracture growth is driven primarily by the presence of 

naturally occurring defects in a material. These flaws typically occur as grain boundaries, 

pores and pre-existing microfractures (Katcoff and Graham-Brady, 2014). The size, shape 

and distribution of these impurities have long been understood to play a fundamental role 

in the development of a fault as it is from these that new fractures are enucleated. Two end-

members are often used to describe the initial microstructure of a rock (Baud et al., 2014); 

1) a cohesive model where intergranular boundaries do not play a large role, instead fracture 
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initiation is largely driven by stresses at existing flaws and 2) a granular model where the 

bonds at grain contacts are readily ruptured by stress allowing neighbouring grains to slip 

and rotate relative to each other.  

For the materials analysed here, Alzo Granite (AG) represents the former and 

Darley Dale Sandstone (DDS) the latter. At 5 MPa (Figure 4.2), Alzo Granite demonstrates 

cohesive structure from the onset with a larger number of diffusely located fracturing events 

compared to DDS (Figure 4.7). As deformation increases dilatancy is observed to localise 

to a fault plane for both rock types, however, off-fault damage is more prevalent in AG. 

Early tensile activity in AG is highlighted by a burst of low amplitude T-type events that is 

only present for 5 and 10 MPa between 0.3 and 0.5% strain. It is likely that this is replaced 

with high amplitude fracturing at the higher pressures owing to increased rock strength with 

increasing confinement (Li et al., 1999). Conversely, at 10 MPa DDS demonstrates an 

earlier dominance of S-type fracturing that switches to compaction at this time (Figure 

4.10). At 20 MPa, there is a similar burst of low amplitude T-type fracturing to AG, 

however this is not present at 40 MPa.  

These early differences in the fracturing process are related to the granular nature 

of DDS, where the pre-existing porosity acts to accommodate strain (van der Baan et al., 

2016) and is shown by the patchy distribution of dilatant regions compared to the more 

continuous structure present in AG. It is not until 20 MPa that fault structure becomes 

evident in DDS with the divergence map approach. Interestingly, this is not demonstrated 

by the actual distribution of fracturing events within the samples, instead, DDS shows clear 

localisation of AE towards a fault zone whilst AG remains relatively diffuse regardless of 

confining pressure. Although, the latter observation may be related to a larger damage zone 

in AG that is not fully represented by the physical dimensions of the samples analysed here 

(Lyakhovsky et al., 2015).  

In any case, microstructural analysis (Hallbauer et al., 1973; Menéndez et al., 1996; 

T.-F. Wong, 1982) and acoustic emission studies (Lockner et al., 1992; Zang et al., 1996) 

have demonstrated that the faulting process involves a multiplicity of flaws (e.g. cracks, 

pores) that interact along regions that are preferentially aligned to each other (Baud et al., 

2014). For equant pores, tensile fractures nucleate at the pore boundary and propagate 

parallel to the maximum direction of compressive stress. As they propagate further, the 

bonding at grain contacts are ruptured in the sandstone, whilst in the granite these fractures 
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are likely to interact leading to a pseudo-granular structure as fracturing becomes more 

diffuse (e.g. Figure 4.5b).  

In DDS prior to crack coalescence, c-type fracturing is observed to localise along 

the eventual fault plane, signifying an important precursor to dynamic failure of the sample. 

It is likely that these events represent reactivation of pre-existing damage or flaws through 

pore-collapse or fracture closure due to the lower stresses required compared to tensile 

initiation. However, as the amount of slip is limited in these events, their ability to 

accommodate strain is low and so are shortly followed by shearing (DDS) and tensile (AG) 

damage as the flaw ruptures. It is likely that extensive grain crushing/communition will 

establish along a single failure plane at this time (e.g. Zang et al., 1996). 

Several models seek to assess the distribution of this damage as a fracture grows 

through a tensile process zone at its tip and a shear-compaction wake along its length (Lei 

et al., 2000). The results presented here highlight that this model of fracture extension is 

occurring at multiple sites at once (e.g. Figure 4.4b, Panel 2), however, there is an overall 

dominance of a single mechanism throughout the entire sample at a particular time (Figure 

4.4a, top right). This observation and the distribution of S-type events highlight significant 

interaction between the different sites where if one site is too cohesive to allow for shear, 

another weaker site will accommodate. This leads to repeated activation of previously 

sheared regions that are not necessarily located along a developing fault plane (Figure 

4.10a, bottom, Panel 3). Although the method presented here does not consider the shearing 

components of individual T-type or S-type events, it demonstrates that the fault 

development process is more dependent on the interaction between neighbouring 

dilatational and compactant regions rather than shearing along a discrete plane.  

4.4.2 FORECASTING DYNAMIC FAILURE 

Following each fracture growth cycle there is a discrete burst of low amplitude T-

type events that accommodates the applied load before the system stabilises and a new 

cycle begins. Although all the events involved may not be low amplitude, this study 

proposes that they represent a phase of fracture extension and the connection of 

preferentially aligned patches of damage. |In the results presented here, the final cycle is 

represented by the parameter ε critical. The timing of this follows a log-linear relationship 

with confining pressure, highlighting its potential for use as a forecaster of dynamic failure. 
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The length of ε critical itself will be dependent on several additional factors. The 

strain rate controls the speed at which micro-fracturing can occur, where higher values will 

lead to an increased shortening of ε critical. When strain rate and confining pressure are 

held constant, it is likely that the materials cohesiveness prior to failure has the main 

influence. For example, AG is consistently shown in Figure 4.6 to predict having higher 

values of ε critical compared to DDS due to a higher cohesiveness at the same pressure. 

Nonetheless, AG also demonstrates a larger standard deviation from the line of best fit 

suggesting a further dependency on the distribution of induced fracture damage. As this is 

related to the initial distribution of flaws, this aspect is difficult to quantify.  

4.4.3 FAILURE PATTERNS 

Two end members of brittle failure pattern are identified (Figure 4.12) and follow 

the traditional models of axial splitting and fault plane localisation as confining pressure 

increases. A transitionary phase at 20 MPa in DDS indicates that the switch from one to the 

other takes place during fracture growth, however as confining pressure is increased (e.g. 

DDS at 40 MPa), fault plane localisation begins earlier. It is likely that this process is also 

occurring in AG but as failure is driven by the interaction of cracks rather than pores it is 

far less visible, and due to an increased sample cohesiveness, occurs at higher pressures 

than those analysed here. 
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Figure 4.12: Simplified brittle failure patterns. Dilatant regions (black) highlight the changing 

distribution of deformation structure as confining pressure increases for the different deformation 

stages. A transitionary phase between axial splitting is identified where zones of deformation form into 

planar structure during crack coalescence.  
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4.5 CONCLUSIONS 

This study presents the results of high-resolution analysis of focal mechanism 

solutions derived from laboratory acoustic emission data. Samples of Alzo Granite and 

Darley Dale Sandstone were systematically deformed under conventional triaxial 

conditions until dynamic failure occurred at confining pressures of 5, 10, 20 and 40 MPa. 

Mechanism were solved using a least squares minimisation of the 3D first-motion polarity 

focal sphere to characterise AE as tensile (T-type), shearing (S-type) and 

compaction/collapsing (C-type). Results are biased towards T-type or C-type, with pure 

double-couple fracturing represented by a relatively small percentage of S-type fracturing. 

Divergence maps of mechanism slip vectors reveal a dependency on the distribution 

of dilatational and compactant regions for fault zone development, where the distribution 

itself is dependent on the relative cohesiveness of the material under study and the confining 

pressure. The more cohesive AG follows a model of crack-driven failure, with previously 

failed regions being repeatedly activated as deformation progresses as shown through 

consistent dilatational structures present throughout the tests. Conversely, DDS initiates 

with pore driven failure with multiple, unrelated fractures developing. However, once 

damage reaches a critical threshold, it begins to localise in a similar way to AG. A key 

difference in DDS, however, is the localisation of C-type events along the eventual fault 

plane prior to crack coalescence. This is an important precursor to dynamic failure that does 

not appear to occur in AG.  

Overall, however, it is T-type fracturing which dominates crack coalescence. Low 

amplitude tensile events, that may represent an end member to larger scale processes, act 

as connectors of regions of damage that facilitate macroscopic weakening. The final phase 

of this occurs systematically and shares a log-linear relationship with confining pressure. 

The parameter ε critical, defined as the difference in strain between the last onset of low 

amplitude T-type fracturing and ultimate compressive strength, demonstrates an increase 

with confining pressure that is dependent on the cohesiveness of the sample prior to 

dynamic failure.  
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5 PEAK DELAY AND PATH EFFECTS 

5.1 INTRODUCTION 

As a seismic wave propagates through a medium, heterogeneities (e.g., high-aspect 

ratio cracks) cause velocity variations (Benson et al., 2007) resulting in the broadening of 

seismic envelopes. The time delay between the onset of the wave and the maximum 

amplitude of the seismic energy (so-called Peak Delay) is rapidly becoming a useful 

parameter to investigate the distribution of heterogeneities in the lithosphere (Calvet et al., 

2013; Napolitano et al., 2019). An increase in Peak Delay is generally associated with 

increasing forward-scattering effects resulting from the interaction with geologically-

complex regions (Abubakirov and Gusev, 1990; Calvet et al., 2013; Sato, 1989; De Siena 

et al., 2016; Takahashi et al., 2009, 2007) and may be described by the Markov 

approximation of the parabolic wave equation (Saito, 2002; Sato, 1989; Sato and Fehler, 

1998). The mentioned field studies interpreted these structures as strongly fractured media 

presenting large-scale fracture networks that align with the regional tectonic fabric. To 

better understand how these networks influence geophysical measurements, laboratory 

rock-physics experiments are now providing new simulations of rock deformation linked 

to Acoustic Emission (AE), the laboratory proxy for field scale seismicity, under known 

and controlled conditions (e.g. pressure, temperature, strain rate). Here, the propagation of 

energy can be simulated in fractured media analogous to the subsurface, either artificially 

pre-fabricated or dynamically created in triaxial deformation cells (Harnett et al., 2018). 

AE waveforms are highly sensitive to variations in sample structures, particularly P-wave 

and S-wave elastic velocity and velocity anisotropy once the density of fractures increases 

(Bonner, 1974; Hadley, 1976; Lockner et al., 1977; Nur, 1971; Schubnel et al., 2003). AE 

emissions can thus help us establish a holistic link between the geological structures, their 

geophysical attributes, and the model outputs of the lithosphere derived from peak-delay 

mapping.  

Considering Peak Delay as a path effect with little input from the source or the 

receiver, Takahashi et al. (2009, 2007) and Tripathi et al. (2010) developed a simple 

tomographic method to map this heterogeneity in Japan. They observed a hypocentral, 

frequency, and spatial correlation of high peak-delays with the distribution of quaternary 

age volcanoes. Calvet et al. (2013) and Borleanu et al. (2017) further observed that high 

Peak Delay measurements can easily be corrupted by near-source and near-receiver 
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heterogeneities, as confirmed when using active data (Zieger et al., 2016) and by finite 

difference simulations (Takemura et al., 2015) respectively. De Siena et al. (2016) observed 

significant frequency-dependent peak-delay variations at Mount St. Helens volcano that 

cannot be explained by small velocity fluctuations. Spatial Peak Delay variations at low 

frequency (3 Hz) were linked to the lateral impedance contrasts associated to the debris 

flow of the 1980 eruption. Napolitano et al. (2019) demonstrate that peak-delays (in 

conjunction with coda attenuation mapping) can reconstruct the complex space-frequency 

evolution of seismically active, fluid-filled fault systems. The authors observe that peak-

delay variations can track shorter-scale cross faulting with increasing frequency, allowing 

them to discriminate faults affected by historical activity from those where recent 

earthquakes nucleated. 

While the relationship between geological structure and an increase in Peak Delay 

is evident at the field scale in the far field, there is no direct experimental calibration linking 

Peak Delays with the structures that influence them in the near field, or at laboratory scale. 

The Markov approximation is only valid in the far field for a point source when assuming 

that the wavelength λ is much shorter than the correlation distance (a) of heterogeneities. 

In near-source studies, the effect of the propagation medium has often been disregarded or 

roughly corrected (Ripperger et al., 2008). Still, the role of statistical fluctuations in 

increasing the duration and complexity of ground motion has been recently recognized 

already at few kilometres away from the source, where source effects were generally 

thought to dominate (Imperatori and Mai, 2015). 

In addition to a structural sensitivity, active surveying across synthetic media 

suggests a strong geometry-dependence of scattering parameters on the relative position of 

geological structure and the AE acquisition array. Rao and Wang (2009) apply a frequency-

domain procedure to calculate attenuation parameters in differently orientated fractured 

media. Numerical studies identify a dependence of scattering attenuation parameters on 

frequency where the inverse quality factor is linearly dependent on fracture density (Fang 

et al., 2013; Vlastos et al., 2007) When fracture and shear zone lengths are less or equal to 

one-half wavelength, they act as point scatterers. However, as the size approaches one 

wavelength, attenuation becomes strongly dependent on fracture orientation. Indeed, P-

wave attenuation systematically increases with fracture thickness for rays travelling 

perpendicular to a shear zone (Ekanem et al., 2014). 
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In this chapter, I examine the multiple forward scattering effects of fractured 

samples of Westerly Granite and Darley Dale Sandstone as analogues for crustal-scale 

interfaces. Samples were deformed in conditions representative of the shallow subsurface 

to produce a shear zone. I applied the peak-delay methodology of Takahashi, et al. (2007) 

to map the heterogeneity in the samples using AE data. Still, modelling the seismic 

wavefield in anisotropic and dissipative samples (cm dimension) at frequencies in the range 

of 50-1000 KHz requires an appropriate characterization of the AE sources. As the Markov 

approximation is unfulfilled at these frequencies, the imaging is thus paired by models of 

wave propagation in anisotropic and dissipative media for which the propagation distance 

is of the order of a few wavelengths (Treeby and Cox, 2010).  

Results provide new evidence for scale-specific and geometry-dependent effects 

that corrupt the waveform in a predictable and deterministic manner: thus, it becomes 

possible to link a simple peak-delay analysis to a more complex pre-existing shear zone 

structure. Fracture structure is reconstructed with high detail across a band of frequencies 

when cross-fracturing is sufficiently dense. These results show that peak-delay mapping 

can become a valid marker of fracture networks and discrete heterogeneities at laboratory 

scale and in the near field. 

5.2 DATA AND METHOD 

5.2.1 PEAK DELAY 

The measurement of the Peak Delay time (𝑡𝑝) follows the approach of Takahashi 

et al. (2007) where Peak Delay times are measured on the S-phase. Due to limitations of 

the acquisition equipment used here, (the sensors do not differentiate between P and S 

waves), the automated strategy applied in this thesis picks P-wave arrivals (chapter 3). 

However, De Siena et al. (2016) demonstrated that, at the field scale, relative lateral 

variations of 
𝑉𝑝

𝑉𝑠
 higher than 2 are necessary to explain Peak Delay time fluctuations of the 

order of those measured at different 𝑡𝑝. For dry sandstone and granite samples velocity 

ratios do not exceed this threshold (Pickett, 1963; Stanchits et al., 2006), thus suggesting 

the use of the P-wave here. 

During testing, additional complexity was noted in the coda of waveforms where 

reflected arrivals from the sides of the samples would arrive. To address this, the signals 
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were cropped between T and 3*T (where T = arrival time). The cropped signals are filtered 

(6th order Butterworth Bandpass) in four frequency bands, i.e. 50-100, 100-200, 200-400 

and 400-800 KHz and the upper RMS envelope calculated to fully encompass the available 

data and highlight frequency dependent trends. Envelopes are weakly smoothed with a 

moving time window of 0.001ms to minimise strong scattering effects whilst avoiding 

smoothing of the peak arrival, which can be easily lost in low amplitude data. The 

maximum of the envelope is identified as the peak arrival and 𝑡𝑝 is measured in micro-

seconds as the time difference between the onset of the waveform and this value. An error 

for this measurement is defined as the time range for signal envelope values that lie above 

90% of the peak value (Figure 5.1). Only waveforms that have an error of less than 0.04ms 

for all frequency bands are selected for further study.  

 

Figure 5.1: Peak Delay is defined as the time between the onset of energy and the maximum energy 

arrival.  The raw AE waveform (above) is filtered within a specified frequency bands and the maximum 

is identified from the RMS envelope calculated. As there is significant overlap of energy (e.g. direct, 

transmitted and reflected arrivals), the maximum is selected between the onset, T, and 3*T. The range 

of time for the signal to be above 90% of the signal maximum is defined as the error (red line). 

Being cumulative the Peak Delay time cannot be reduced even if along the raypath 

there are weak heterogeneities (Takahashi, et al., 2007). Therefore, the high values of Peak 

Delay at the longer distances are simply due to more exposure to heterogeneity along the 

raypath when measured at the laboratory scale. As a result, Peak Delay is hereafter 
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considered as a relative value ∆𝑙𝑜𝑔(𝑡𝑝) around the average. Where a small 𝛥𝑙𝑜𝑔𝑡𝑝 marks 

the absence of strong heterogeneity along the ray-path, the opposite is true for high values: 

∆𝑙𝑜𝑔(𝑡𝑝) = 𝑙𝑜𝑔(𝑡𝑝) −  
1

𝑛
∑ 𝑙𝑜𝑔 (𝑡𝑝𝑖

)

𝑛

𝑖=1

. (5. 1) 

5.2.2 SOURCE LOCATIONS AND PEAK DELAY MAPPING 

 

Figure 5.2: Source locations (black dots), PZT receivers (diamonds) and grey lines (raypaths) used in 

the Peak Delay tomography analysis. 

To simplify the analysis, arrivals to PZTs that do not lie orthogonal to the observed 

failure plane are removed and AE source locations flattened to this orthogonal plane. 

Subsequently, 5222 waveforms (2320 AE) and 3144 waveforms (1391 AE) were used in 

the peak-delay study for the granite and sandstone (Figure 2.9, page 24), respectively. 

Epicentres, PZTs and raypaths used in the tomography (assumed here to be straight) are 

detailed in Figure 5.2 by black dots, diamonds and grey lines, respectively.  

In analogy with field-scale mapping, source-receiver pathways are assigned their 

associated peak-delay measurement. The medium is discretised into model blocks of 

0.01x0.01cm in size and each block is assigned the average  𝛥𝑙𝑜𝑔𝑡𝑝  of all the raypaths that 

cross it. To speed up the procedure and minimise anomalous variations in regions of low 
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ray-path coverage, only blocks that were crossed by a minimum of 5 rays are solved. Peak-

delay values are smoothed at each block by averaging each block value with blocks within 

1cm distance. 

5.2.3 2D MODELLING OF ANISOTROPY VARIATIONS 

 

Figure 5.3: Source and receiver array (both represented as diamonds) used in the numerical modelling. 

Grey lines indicate raypaths. 

The MATLAB toolbox K-Wave (Treeby & Cox, 2010) allows for the modelling of 

elastic wave propagation and accounts for nonlinearity, acoustic heterogeneities and power-

law absorption of energy at a scale identical to laboratory conditions. As fractures are 

developing from the start of the experiment, it is suitable to examine the effects of a single 

inclusion on Peak delay at low and high frequencies. For simplicity the inclusion is 

modelled as a stiff central region of lower velocity and density characteristics compared to 

the rest of the sample.  

To understand if (and at which frequencies) Peak Delay is affected by an inclusion, 

the model is setup as a sample of x = 20 mm by z = 20 mm with a grid step of 0.1 mm. The 

lowest/highest velocities are assumed as 3.5 km/s and 5.5 km/s. To ensure sufficient 

acoustic impedance between the inclusion and host medium densities are assumed as 1.8 x 

103 kg/m3 and 2.3 x 103 kg/m3. An isotropic medium is assumed at the start of the laboratory 

experiment, thus the scattering effects of the host medium is disregarded. Synthetic P-wave 

energy pulses are then propagated across the medium from an array of receivers around 
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inclusion (source-receiver paths are detailed in Figure 5.3). The source itself is defined as 

a circular monopole source 0.1 mm in diameter and an initial pressure distribution of 5 Pa.  

To simulate fracture structure of various shapes and at different stages of 

development, two inclusion models are analysed. The first is a 4 mm circular pore at 

different stages of coalescence. Here, equidistant structure of equal acoustic impedance 

within the pore region becomes increasingly sparse. The second study then investigates the 

impact of aspect ratio on Peak Delay tomography where a fully coalesced pore is shortened 

along the z axis.  

The steps of the simulation are at 1e-2 milliseconds and the simulation is restricted 

to 3 microseconds. To maintain the comparison with the laboratory study, Peak Delay 

values are calculated for the simulated waveforms using the method described in section 

5.2.1 and section 5.2.2. Thus, the wavelengths for the simulations are: 47 mm (75 KHz), 

23 mm (150 KHz), 12 mm (300 KHz) and 6 mm (600 KHz). In the first two cases, no more 

than a wavelength will propagate into the medium, whilst only a couple will occur for the 

higher frequencies. In the real experiment hypocentral distances are of different lengths and 

heterogeneity may occur at any stage of the raypath, however, as the interest of the 

modelling is in the variations of Peak Delay when an inclusion is fully sampled from all 

directions, this setup is a useful indicator of what may happen in the laboratory. Recent 

research further questions the development of fractures just along strike, showing that 

failure is also the consequence of the dynamic coupling with diffuse off-fault cracking 

(Renard et al., 2019). This setup allows the modelling of heterogeneity that is not 

necessarily related to the development of the shear zone but possibly due to the coalescence 

of any porous structure. 

5.3 RESULTS 

5.3.1 TIME DEPENDENCIES OF PEAK DELAY 

An important distinction of AE data obtained in the laboratory are the timescales 

over which deformation occurs. Unlike seismic data, which typically sample structures that 

may change over a few decades (Napolitano et al., 2019), the nature of the laboratory setup 

results in extreme variations that can occur over seconds. This is shown to a have a clear 

and noticeable effect on the AE waveform in Figure 5.4.  



  Peak Delay and Path Effects 

72 

 

 

Figure 5.4: Average values of Peak Delay are plotted with their standard error (shaded region) in a 

moving window of 1500 measurements for each of the analysed frequency bands. Comparison with 

differential stress highlights a marked increase in the average delay following dynamic failure of the 

samples.  
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Figure 5.5: Selected waveforms from the sandstone highlight the changing frequency content for before 

and after sample failure for DDS. As with Figure 5.4, a marked increase in Peak Delay values occur 

following shear zone coalescence. This trend does not occur at 600 KHz where Peak Delay remains 

relatively constant.  
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Peak Delay averages (moving window of 1500 measurements) are plotted against 

time and compared with differential stress. The shaded region indicates the standard error 

of the moving window. Except for 600 KHz, values of ∆𝑙𝑜𝑔(𝑡𝑝) are significantly higher 

following dynamic failure of the two samples at approximately 30 minutes and 10 minutes 

respectively. Four periods of Peak Delay development can be identified in each of the 

panels; 1) A steady increase of values until the crack damage threshold (Figure 1.8, intro), 

2) A decrease in values until maximum stress, 3) A rapid and sudden increase of ∆𝑙𝑜𝑔(𝑡𝑝) 

during dynamic failure that ends with permanently high values in 4), A phase of 

consistently high values during the post-failure phase of deformation. 

 

Figure 5.6: Peak amplitude to pre-signal noise ratios are calculated for each Peak Delay measurement 

to investigate differences in waveform attenuation for before and after failure. Although the effect is 

minor, attenuation does play a role where counts of low and high amplitude ratios increase and 

decrease respectively. 

Selected high amplitude waveforms (Figure 5.5) highlight the change in character 

of frequency content following shear zone coalescence. Very high amplitudes in the pre-

signal noise at 75 KHz do suggest corruption of the actual signal may occur when peak 

amplitude to noise ratios are low. However, waveforms for after failure do show an 

increased broadening, and thus higher Peak Delay, at the lower frequencies that is not 

present at 600 KHz. The lack of any change in the waveform filtered at 600 KHz in each 

of these plots suggest that at these high frequencies, wavelengths are potentially simply too 
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short to sample the correlation distance of heterogeneities present in the laboratory samples 

under normal Rayleigh scattering. However, the assumption of small-scattering deviations 

that are used in the far-field should be made with care here due to the small wavelengths 

and the typical scattering distances (mm to cm scale) present in the laboratory data. 

It is likely that waveforms that occur after failure will experience intrinsic 

attenuation due to crack coalescence that lowers amplitudes below the noise floor. As a 

simple measure of this, peak amplitude to pre-signal noise ratios are calculated for each 

Peak Delay measurement. Results are binned (Figure 5.6) for before (left) and after (right) 

failure. Ratio counts reveal minor variations that suggest fault zone structure does indeed 

attenuate the waveform, counts of low and high amplitude ratios increase and decrease 

respectively. However, the effect is not deemed to be significant as count distributions 

remain relatively consistent for before and after failure.  

5.3.2 HYPOCENTRE DEPENDENT VARIATIONS 

As observed at field scale by Takahashi, et al. (2007), 𝑡𝑝 generally increases with 

hypocentral distance (R) at low frequencies. As with those authors, the deviation of 𝑙𝑜𝑔(𝑡𝑝)  

can be fitted with the linear regression line: 

∆𝑙𝑜𝑔(𝑡𝑝)[𝑓] = 𝑙𝑜𝑔(𝑡𝑝)[𝑓] − (A[𝑓] + B[𝑓] ∗ log(R) , (5. 2) 

where f is the frequency band and A & B are regression coefficients. There are some 

problems with applying this approach here. The variations in Peak Delay with R, are in fact 

very low (of the order of 0.1) and the spread in the data becomes very high as frequency 

increases (Figure 5.7). When the level of heterogeneity increases, as in exploration or 

volcano seismology, large angle (also known as Mie or resonance) scattering becomes 

increasingly important. This is a possible explanation for a family of measurements that 

occur at 𝑙𝑜𝑔(𝑡𝑝)  values of -9 ms. Resonance has been recognised as a relevant, fractured-

induced effect at 100 KHz in fractured (manufactured) plexiglass (Shih and Frehner, 2016). 

As recognized by those authors, in plexiglass, scattering does not play a significant role at 

100 KHz while scattering and anisotropy are likely more relevant in a rock, especially 

during fracturing. As such data will ultimately affect the regression fit, ∆𝑙𝑜𝑔(𝑡𝑝)  is 

calculated as the deviation around the mean value as described by equation 5.1.  
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Figure 5.7: log(tp) is compared with hypocentral distance R. The black line indicates the regression fit 

proposed by Takahashi, et al. (2007), however, as the data spread is very high at the higher frequencies 

and the dependency on R is low, this study calculates the deviation around the average value. A family 

of anomalously high measurements further suggest the presence of resonant scattering in the data.  
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5.3.3 MAPPING PEAK DELAY 

 

Figure 5.8: Simplified CT image of internal fracture network (left) and spatial distribution of 𝜟𝒍𝒐𝒈𝒕𝒑 

values. Logarithmic Peak Delay variations are shown in the lower colour bar while diamonds show the 

PZT positions. Only regions crossed by a minimum of 5 rays are displayed. Azimuthal coverage of 

model blocks (and so confidence) is reduced towards the edges and outside the region delineated by the 

receivers. Diamonds indicate receivers used in mapping. The bounding boxes indicate the dimensions 

of the sample. 

 As with the prior analyses, Peak Delays are revealed to be strongly variable and 

show spatially dependent trends (Figure 5.8). In the case of the granite, regions of high and 

low ∆𝑙𝑜𝑔(𝑡𝑝) do not initially correlate very well with the CT Map (top left panel). This 
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likely due to the diffuse nature of the fracturing within the granite resulting in a 

heterogeneity that is not evenly sampled from all directions. The sandstone, on the other 

hand, demonstrates a linear region of high Peak Delay at the low frequencies ([50 -100KHz 

and [100-200KHz]). The anomaly follows fracture structure (bottom left panel), where the 

dimensions suggest a sensitivity to the distance between the two linear structures present 

in the CT image.  

5.3.4 2D MODELLING OF ANISOTROPY VARIATIONS 

The circular pore is visible as a high Peak Delay anomaly regardless of frequency 

or simulated coalescence conditions (Figure 5.9). Clear variations in the magnitude of the 

anomaly further highlight a sensitivity of low frequency waves (50-100 KHz) to larger, or 

less densely distributed, structures such as the pore edges. Moreover, as structures become 

increasingly coalesced, the highest magnitude of ∆𝑙𝑜𝑔(𝑡𝑝) shifts to higher bandwidths. 

The dimensions of the inclusion are further shown to play an important role in Peak Delay 

mapping (Figure 5.10). Like the fully coalesced pore in Figure 5.9, modelling 

demonstrates a frequency isotropic Peak Delay anomaly for inclusions that are roughly 

equant. However, when the thickness of the inclusion is less than its length, anomalies 

begin to show significant variation, becoming negative in the last set of panels.  

One possible explanation for these observations is the presence of a direct wave 

and a transmitted wave in the data (Figure 5.11). When energy propagates across the 

length of the fracture, only a small portion of the wave front will directly sample the 

inclusion resulting in two separate arrivals at low angles of incidence (relative to the 

orientation of the inclusion). This is further revealed in Figure 5.12 where a family of 

anomalously low Peak Delay values that may corrupt the mapping. An alternative 

explanation, however is the previously discussed resonance scattering generating 

additional surface waves when energies of a specific wavelength interact with similarly 

scaled structure. Although it is outside of the scope of this thesis, the results of this study 

suggest resonance is playing a role in the measurements. Further studies into Acoustic 

Emission should investigate these effects using a more appropriate modelling approach 

than the one presented here (e.g. Zhu and Carcione, 2014). The simulations presented 

here do show at least that the creation of internal interfaces in the sample will produce 

important delays in the peak of the waveform amplitudes.   
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Figure 5.9: Synthetic circular pore Peak Delay modelling. To simulate coalescence conditions, pore 

structure becomes increasingly sparse. Modelling identifies clear structure dependent amplitude 

variations of ∆𝐥𝐨𝐠(𝐭𝐩). Sparsely distributed structure more strongly influences lower frequencies with 

a high Peak Delay anomaly shifting to higher frequencies as coalescence increases. Once fully formed, 

the circular pore demonstrates very high Peak Dela anomalies for all frequency bands. 
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Figure 5.11: Synthetic waveforms reveal the occurrence of two separate wave fronts in the form of 

direct and transmitted arrivals. These occur when energy propagates along the length of a narrow 

inclusion. 

 

Figure 5.12: a) Angle of Incidence 𝜽𝒊 vs. Peak Delay for synthetic narrow fracture modelling. Below 

30° and above 60° Peak Delays are reflective of the travel time through the fracture medium (solid 

line). Anomalously low values (dashed line) are present between 30° and 60° when energy that travels 

around the fracture arrives just before the transmitted wave. b) This strongly affects tomography 

results where the Peak Delay anomaly is observed to rapidly invert as frequency increases. As it is 

difficult to separate the direct from the transmitted wave at these small hypocentral distances, it is 

suggested that this behaviour be used as an indicator for narrow or sparse structure. 
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5.4 DISCUSSION 

From the results presented here (Figure 5.8), the ability of Peak Delay at imaging 

fracture networks likely comes from the high acoustic impedance (AI) contrasts of 

deformation structure with respect to the surrounding, more homogenous medium. Pyrak 

(1988) and Pyrak-Nolte et al. (1990) demonstrated that the acoustic impedance of fractures 

follows the equation 𝐴𝐼 = 𝑘/𝜔, where k is the fracture stiffness (stress/length) and 𝜔 is the 

angular frequency of the wave. As the strength of acoustic impedance directly controls the 

seismic visibility of a structure, this relation suggests that high Peak Delays are dependent 

on both fracture stiffness and the frequency of the sampling wave. 

Even so, as structural complexity increases (e.g., in Westerly Granite) the imaging 

ability at the laboratory scale rapidly diminishes as more receivers are required to ensure 

sufficient coverage around masking structures. Moreover, structures that form late in the 

experiment will not be visible as they will not be adequately sampled. Whilst this presents 

a challenge to tomographic techniques, further analysis of how heterogeneity evolves 

through time, for instance reactivation of microfractures, and its relationship to Peak Delay 

is required: such an observation could track the changing stress field of, e.g., underground 

reservoirs. 

Rao & Wang (2009) noted that seismic attenuation parameters are strongly 

dependent on fracture thickness and orientation. In field mapping, where receiver 

distribution is typically at a scale larger than the structures of interest, this leads to the 

ability of scattering to image high acoustic impedance at the surface: low-frequency (3 Hz) 

Peak Delays are able to contour extinct shallow volcanic centres and even wide 10-m thick 

debris flows (De Siena, et al., 2016). Similar effects have recently been observed at even 

shallower depths and in relation with the distribution of trees at sub-wavelength scale 

(Colombi et al., 2016) 

In general, fractures act as a low-pass filter where the characteristic cut-off 

frequency (𝜔𝑐) is dependent on fracture stiffness (𝜔𝑐 ∝ stiffness - Schoenberg, 1980). For 

a given frequency, only portions of the fracture with stiffness high enough to produce an 

𝜔𝑐 higher than the frequency of the propagating wave will transmit the signal, while regions 

with lower 𝜔𝑐 will more likely reflect or backscatter the energy in the coda of the signal. 

As a result, the transmitted wave will only sample the stiffer portions of the fracture 
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structure, where different frequencies sample different subsets of the geometry. Large open 

fractures thus affect lower frequency bands more than small stiff fractures (Baird et al., 

2013; Biwa et al., 2007; Pyrak-Nolte and Nolte, 1992). This suggests that Peak Delay is a 

measure of forward scattering due to stiff fractures sampled along the raypath and the 

frequency dependence of ∆𝑙𝑜𝑔(𝑡𝑝) a result of the inhomogeneous distribution of structures 

in the sample. High Peak Delays are simply the dynamic response of elastic waves sensitive 

to the intrinsic length scale of heterogeneity present in the system. 

Something that is not adequately addressed by this study, are those data that are 

affected by resonance scattering. Particularly frequencies above 150 KHz will be strongly 

affected and this likely explains the loss of recognisable structures in the mapping. Several 

attempts were made to remove such data, however automated removal methods proved 

inconclusive. As Peak Delay values, normally, do not vary strongly with frequency, 

removing waveforms with high standard deviations of measurements, or simply using a 

window to remove those high valued events showed some promise. What is required is an 

approach that can reliably identify those events that are affected by Mie scattering and those 

that can be assumed to be dominated by Rayleigh scattering. Both processes act as markers 

of heterogeneity, but the time at which they are recorded in the waveform are different. 

Indeed, Mie scattering should be considered in any attenuation modelling involving the late 

coda as such measurements will corrupt amplitudes. 

Following these analyses, it is likely that the relative simplicity of the deformation 

structure allows for the imaging of the shear zone in the sandstone (Figure 5.8, DDS). The 

higher confining pressures and initially porous media readily encouraged the formation of 

large tensile fracturing in a localised region resulting in high Peak Delays similar to those 

in the circular pore model (Figure 5.9). Conversely, the granite (Figure 5.8, WG) which 

was deformed at a lower confining pressure, demonstrates a far broader zone of damage 

with significant axial splitting. This complexity of structure resulted in Peak Delay maps 

that more closely follow the narrow fracture models of Figure 5.10 with rapid inversions 

of Peak Delay value as frequency is increased. 

5.5 CONCLUSIONS 

I adapted standard approaches of Peak Delay and focal mechanism analysis to map 

shear zone structure and deformation features created in triaxial deformation experiments 
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of Westerly Granite and Darley Dale Sandstone. Furthermore, the study provides new 

information to evaluate the biases induced by the relative geometry of acoustic impedance 

structure and source receiver array in regions of strong deformation. Measurement of 

seismic Peak Delay on acoustic emission data highlight frequency dependent results that 

are strongly influenced by the distribution of heterogeneity and stiffness. 

 At low frequencies (50-100 KHz), regions of anomalously high Peak Delays 

typically contour broader macroscopic structure such as the shear zone. As frequency is 

increased, further dependencies on fracture coalescence, orientation and width are 

identified. When fractures are narrow or sparsely distributed and orientated between 30° 

and 60° to a propagating wavefield, energy that travels around the structure arrives to a 

receiver shortly before the transmitted energy. As these arrivals often overlap each other at 

the low hypocentral distances analysed here, it results in an anomalously low measurement 

of Peak Delay that is difficult to correct. However, as this effect is weakest at the low 

frequencies, a significant reduction in Peak Delay in the higher bandwidths can be used as 

an indicator for sparse or narrow structure.  

Furthermore, as a macro-fracture becomes increasingly coalesced, e.g. through a 

reduction in the distance between adjacent microfractures, the maximum Peak Delay is 

observed to shift to higher bandwidths. Once a fracture is fully coalesced, it demonstrates 

a high-magnitude, frequency-isotropic peak-delay. With consideration to the results 

presented here, I propose it is possible to perform frequency characterisation of time-

dependent deformation structure and track the development of a shear zone using Peak 

Delays.  
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6 CONCLUDING REMARKS 

The overarching objective of this thesis was the development of a set of tools to 

analyse Acoustic Emission data from triaxial deformation testing of rock samples. The 

purpose being to elucidate subtle changes of the waveform in response to developing 

fracture structure, with the longer-term view to improving understanding of field-scale 

processes. However, due to the unique nature and scale of the laboratory environment 

several challenges were encountered that eventually decided how the research would 

progress. Although the studies here were presented in a somewhat sequential order of 

arrival time, mechanism source and propagation path effects, the research itself was very 

much a back and forth process with each of the presented chapters heavily dependent on 

the results of the others. 

First and foremost, the greatest challenge was found in picking the arrival time of 

waveforms. Although this is a common occurrence in time series analysis (there are many 

studies dedicated to this field of research), AE are characteristically low amplitude with 

complex source effects which are not sufficiently attenuated over cm scale hypocentral 

distances. This is further compounded by several thousand AE that can be detected in a 

single experiment, thus requiring an automated approach. In chapter 3, I propose training 

a Time Delay Neural Network to recognise the differences between signal and background 

noise. This proved to be incredibly powerful as it relied on a “best fit” approach of multiple 

waveform derived parameters. For example, over 3 million waveforms were automatically 

picked for the focal mechanism analysis using this methodology, revealing details that may 

not have been observed with other techniques. 

The next set of difficulties revolved around separating out the effects of the source 

and the path on waveform characteristics. Source classification was addressed in chapter 

4 using a least squares minimisation of the fit between 3D focal spheres of measured first-

motion polarity and idealised models of tensile, shearing and compaction type fracturing 

mechanisms. Results revealed clear trends in the type and distribution of the different 

mechanisms that demonstrated dependencies on individual rock properties and the 

environmental conditions used in the study. One of the most important features identified 

were a discrete phase of low amplitude tensile fracturing associated with crack coalescence. 

The timing of these events followed a log-linear relationship with confining pressure 

highlighting the potential for failure forecasting. Furthermore, a transitionary phase 
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between axial splitting and fault plane localisation was identified using divergence maps of 

mechanism slip vectors, providing additional clues to the type of dynamic failure that will 

occur. 

In chapter 5, I investigated the forward scattering effects of developing fracture 

structure on the Acoustic Emission waveform. By modelling the Peak Delay of arriving 

energy as a result of deforming structure results highlight that clear frequency dependent 

variations do occur due to changes in the medium. However, the processes by which this 

occurs is complex, both Rayleigh (small angle) and Mie (resonance or large angle) 

scattering occur and are dependent on the wavelengths and the scale of scattering structure 

as revealed by synthetic modelling. Furthermore, the dynamic nature of the experiments 

meant that such structure was constantly evolving, resulting in additional complexity that 

could not be fully accounted for. 

Irrespective of the challenges encountered, this thesis has demonstrated that the 

Acoustic Emission waveform is a powerful diagnosis tool for rock deformation 

experiments. Waveforms have been shown to dynamically evolve through varying source 

and path effects, immediately reacting to deformation structure as it coalesces and allowing 

for 4D mapping of fracture development. Furthermore, with the advent of easy-to-apply 

machine learning methodologies, these effects can be observed at a sufficiently high 

resolution to make quantitative predictions on how fracture structure will evolve through 

time. Ideally providing avenues on how such techniques may be applied at the field scale 

for use in the prediction and disaster mitigation of earthquakes and volcanoes, as well as 

industrial applications in oil and gas extraction, CO2 sequestration and other sub-surface 

investigations of fractures and faulting. 
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7 APPENDIX: MATLAB CODE 

The main programs created for this thesis are available below. The codes and the 

various dependencies that are used throughout are available at 

https://github.com/thomaskingunito/thesismatlabcodes. All the codes are written to work 

with MATLAB version 2018a. 

7.1 WAVEFORM PICKING AND LOCATION 

7.1.1 TRAIN PICKING MODEL 

This is a semi-supervised programme to train a distributed time delay neural 

network to recognise the differences between pre-signal noise and signal. It has two main 

elements; 1) A supervised picking stage where the user manually selects the time   of arrival 

on 5 high amplitude waveforms.   2) An unsupervised picking stage where the algorithm is 

sequentially   trained automatically using several 'quality' ratios to evaluate the data It is 

suggested to create a unique picking model for each experiment. Training datasets are 

created from the experimental data itself (stored in folder sg2). Model is trained in 

sequential batches and steadily improves as more data is incorporated. 

7.1.1.1 VERSION 

Version 1.0, 16th January 2019. Thomas King   - First Version 

7.1.1.2 PARAMETER CUSTOMISATION 

Below are the suggested parameters to be modified. I don't recommend changing 

any of the code outside of these parameters. 

clear all; close all; 

 

% This is the name of the picking model. I recommend to use folder names to 

% avoid confusion as this testname is required when using the locating code 

testname = 'Example-Training-Model'; 

 

% Set to 1 (yes) or 0 (no) to compile the training dataset 

compile = 0; 

 

% Resamples waveforms to a shorter length. It can increase the speed of the 

% code but time resolution is lost. 

sigsamp = 2048; 

 

% Minimum arrival time. Recommended at 10% of signal length 
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minpick = round(sigsamp/10); 

 

% Neural network parameters 

d1 = 0:20; d2 = 0:5; % Delays 

dtdnn_net = distdelaynet({d1,d2},5); % Hidden sizes set to 5 

dtdnn_net.trainFcn = 'trainbr'; % Model trained with bayesian regularisation 

dtdnn_net.divideFcn = ''; 

dtdnn_net.trainParam.epochs = 10; % Model is trained for 10 epochs per sequence 

dtdnn_net.trainParam.min_grad = 3e-4; 

 

% Manual training size 

manualsize = 5; 

 

% Size of training dataset 

trainingsize = 10000; 

 

% Number of training events per sequence 

batchsize = 10; 

 

% Final number of events to be in the model 

modelsize = 304; 

7.1.1.3 DATA COMPILATION 

To avoid continual re-reading of data, training waveforms are compiled into a single 

matrix. 

if compile == 1 

    index = 0; 

    dirls = dir('sg2/*seg2'); % Directory search for waveforms 

    index = 0; clear event 

    for i = 1:size(dirls,1) 

        event{i,1} = dirls(i).name; % Compile filenames 

    end 

    cd sg2; 

    for i = 1:length(event) 

        t = randi(length(event)); % Random waveform selection 

        try 

            [signal,SR] = leggisg2(char(event{t})); % Load data 

            if index == 0 

                Ts = SR; % Obtain sampling rate 

                Fs = 1/SR; % Obtain sampling frequency 

            end 

        catch 

            continue 

        end 

        for r = 1:size(signal,2) 

            index = index+1; % Compiles data into a single matrix 

            allsig(:,index) = resample(signal(:,r),sigsamp,length(signal(:,r))); 

        end 

        if index > trainingsize % Stop compiling when dataset is big enough 

            break 

        end 
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    end 

    cd .. 

    save rays.mat allsig SR % Store waveform data 

end 

load rays.mat 

Ts = SR*10; 

Fs = 1/SR; 

7.1.1.4 SUPERVISED TRAINING WITH HIGH AMPLITUDE DATA 

Interactive manual picking for initial training dataset. User picks the onset and end 

of the main pulse of the waveform. If the onset is uncertain, click twice off of the graph to 

the right to skip that data. 

% Reset parameters 

p = []; t = []; 

index = 0; 

istore = 0; 

 

while index < manualsize 

 

    % Randomly find high amplitude waveform 

    amp = 1; 

    while amp > 0.1 

        i = 0; 

        while ismember(i,istore) == 1 

            i = randi(size(allsig,2)); 

        end 

        sig = allsig(:,i); sig = sig./max(abs(sig)); 

        amp = max(abs(sig(1:100))); 

    end 

    sig = allsig(:,i); 

 

    % Compiles input data 

    try 

        IFcontent 

    catch 

        continue 

    end 

 

    % Interactive picking plot 

    y = (test(:,2)./max(test(:,2)))'; 

    y(end) = NaN; 

    col = cc'.*scalef;  % This is the color, vary with x in this case. 

    figure(1); subplot(2,1,1); yyaxis left; cla;hold on 

    

patch(1:1:length(y),y,col,'EdgeColor','interp','Marker','none','MarkerFaceColor','flat'); 

    colormap(jet) 

    xlim([0 sigsamp]) 

    figure(1); subplot(2,1,2); yyaxis left; cla;hold on 

    plot(esig,'r-') 

    yyaxis right; cla; 

    plot(sn,'b-') 

    xlim([0 sigsamp]) 
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    title('Pick signal pulse start') 

    [pk1,pk2] = ginput(1); 

    title('Pick signal pulse end') 

    [pk3,pk2] = ginput(1); 

 

    sigtest = sigsamp; 

 

    % Training sequence 

    if pk1 < sigtest && minpick ~= pk1 

 

        % Compiles training vectors 

        try 

            training_vector 

        catch 

            continue 

        end 

 

        % Train the model 

        index = index + 1; 

        if index > 1 

            p_mul = catsamples(p_mul,p1,'pad'); 

            t_mul = catsamples(t_mul,t2,'pad'); 

            [p,Pi,Ai,t] = preparets(dtdnn_net,p_mul,t_mul); 

            dtdnn_net = train(dtdnn_net,p,t,Pi); 

 

            % Sometimes the training fails and the model breaks, this is a 

            % workaround. 

            if sum(isnan(tr.gradient)==1) > 0 | tr.gradient > 100 

                load(char(['pkmodel-

',char(testname),'.mat']),'p_mul','t_mul','dtdnn_net','sigstore','istore') 

                continue 

            else 

                istore = [istore;i]; % Do not repeat waveforms in model 

                sigstore{end+1} = sig; 

                save(char(['pkmodel-

',char(testname),'.mat']),'p_mul','t_mul','dtdnn_net','sigstore','istore') 

            end 

        else 

            % Builds initial model for first waveform. Modify this add more 

            % data categories 

            dtdnn_net.numinputs = 3; 

            dtdnn_net.inputConnect = [1 1 1; 0 0 0]; 

            dtdnn_net = configure(dtdnn_net,p1); 

 

            dtdnn_net.inputWeights{1,1}.delays = [0:1:10]; 

            dtdnn_net.inputWeights{1,2}.delays = [0:1:10]; 

            dtdnn_net.inputWeights{1,3}.delays = [0:1:10]; 

 

            [dtdnn_net,tr] = train(dtdnn_net,p1,t2); 

            p_mul = p1; 

            t_mul = t2; 

            sigstore{1} = sig; 

        end 

    end 

end 
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save(char(['pkmodel-

',char(testname),'.mat']),'p_mul','t_mul','dtdnn_net','sigstore','istore') 

7.1.1.5 UNSUPERVISED TRAINING 

This section works in the same way as before but uses 'quality' ratios to select 

training data 

% Reset parameters 

load rays.mat; close all; 

load(char(['pkmodel-

',char(testname),'.mat']),'p_mul','t_mul','dtdnn_net','sigstore','istore') 

i = 0; 

ampadj = 0; 

pick_p1_cat = []; 

pick_t2_cat = []; 

 

% Training sequence 

testindex = 0; 

while size(p_mul{1,1},2) < modelsize 

    Ts = 1/Fs; 

    amp = 2; 

    while amp >= 0.95 || amp < 0.05 % Amplitude range 

        i = istore(1); 

        while ismember(i,istore) == 1 

            i = randi(size(allsig,2)); 

        end 

        sig = allsig(:,i); sig = sig./max(abs(sig)); 

        amp = max(abs(sig(1:100))); 

    end 

 

    sig = allsig(:,i); 

    Ts = Ts*(length(sig)/sigsamp); 

 

    try 

        IFcontent 

    catch 

        continue 

    end 

 

    y = (test(:,2)./max(test(:,2)))'; 

    y(end) = NaN; 

    col = cc'.*scalef;  % This is the color, vary with x in this case. 

    figure(1); yyaxis left; cla;hold on 

    

patch(1:1:length(y),y,col,'EdgeColor','interp','Marker','none','MarkerFaceColor','flat'); 

    colormap(jet) 

 

    p1 = [con2seq(cc(1:length(sn))');con2seq(esig(1:length(sn)));... 

        con2seq(sn(1:length(sn)));]; 

 

    % Using the current model iteration, the current waveform is picked 

    o = 0; % Tells the picking code that this is a training sequence 

    try 
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        pick_output_3 

    catch 

        continue 

    end 

 

    figure(1); yyaxis left; 

    plot(yp,'k-') 

    ylim([-2 2]) 

    drawnow 

    pk1 = ind(1); 

 

    % Finds the end of the main pulse, otherwise training vector is a fixed 

    % length. Data is then plotted 

    try 

        esig2 = double(envelope((x(1:sigtest))',50,'rms')); esig2 = 

esig2./max(abs(esig2)); 

        pk3 = find(esig2(round(pk1+(sigsamp/20.48)):end) < ... 

            max(esig2(round(pk1-(sigsamp/20.48))-100:round(pk1-(sigsamp/20.48))))); pk3 = 

pk3(1) + round(pk1+100); 

    catch 

        pk3 = pk1 + 200; 

    end 

    figure(1); yyaxis left; 

    scatter(pk1,0,'bo','filled') 

    try 

        scatter(ind2,0,'ro','filled') 

        plot(yp2,'r-') 

    end 

    scatter(pk3,0,'bo','filled') 

    drawnow 

 

    % Picking 'quality' ratios 

    try 

        output_quality 

    catch 

        continue 

    end 

 

    % Do NOT adjust these values. They work. 

    if sn3 > 0.3 && sn2 > 2 && sn1 > 1.5 && minpick ~= pk1 

        try 

            training_vector 

        catch 

            continue 

        end 

 

        p_mul = catsamples(p_mul,p1,'pad'); 

        t_mul = catsamples(t_mul,t2,'pad'); 

        testindex = testindex +1; 

        plot(yp,'r-') 

        istore = [istore;i]; 

        sigstore{end+1} = sig; 

        if testindex > batchsize 

            testindex = 0; 

            [p,Pi,Ai,t] = preparets(dtdnn_net,p_mul,t_mul); 

            [dtdnn_net,tr] = train(dtdnn_net,p,t,Pi); 

 

            if sum(isnan(tr.gradient)==1) > 0 
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                load(char(['pkmodel-

',char(testname),'.mat']),'p_mul','t_mul','dtdnn_net','sigstore','istore') 

                continue 

            else 

                ampadj = ampadj + (0.5/150); 

                save(char(['pkmodel-

',char(testname),'.mat']),'p_mul','t_mul','dtdnn_net','sigstore','istore') 

                display(['Number of training data: ',num2str(size(p_mul{1,1},2))]); 

            end 

        end 

    end 

end 

save(char(['pkmodel-

',char(testname),'.mat']),'p_mul','t_mul','dtdnn_net','sigstore','istore') 

display(['Number of training data: ',num2str(size(p_mul{1,1},2))]); 
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7.1.2 GENERATE VELOCITY MODEL 

Creates an output velocity model, identical to the one produced by InSite. Survey 

data (stored in sg2_survey) is automatically picked using an RMS amplitude threshold 

method. The code attempts to automatically avoid including miss-picked velocities but it 

is here and there in terms of confidence. 

7.1.2.1 VERSION 

Version 1.0, 16th January 2019. Thomas King   - First Version 

7.1.2.2 PARAMETER CUSTOMISATION 

clear all; close all; 

 

testname = 'Example-Training-Model'; 

sigsamp = 2048; 

figon = 1; 

7.1.2.3 COMPILE DATA 

% Waveform origin time 

tempi = []; 

dirls = dir('sg2_survey/*seg2'); 

index = 0; clear event 

event = cell(size(dirls,1),1); 

for i = 1:size(dirls,1) 

    event{i,1} = dirls(i).name; 

    filename = event{i}; 

    filename([9,16,20:end]) = '-'; 

    formatIn = 'yyyymmdd-HHMMSS-fff---------'; 

    tempi(i,1) = datenum(filename,formatIn); 

end 

save tempi_survey.mat tempi 

 

% Find receiver positions 

if exist('recloc_survey') == 0 || exist('recloc') == 0 

    cd sg2_survey 

    filename = event{1}; 

    [tracce,SR,Shot,X,n_samples,RL] = leggisg2(char(filename)); 

    Ts = SR; 

    Fs = 1/SR; 

    for j = 1:size(RL,1) 

        rec = strsplit(char(RL(j,:))); 

        recloc(j,1) = str2num(rec{3}); % NED to XYZ 

        recloc(j,2) = str2num(rec{2}); 

        recloc(j,3) = str2num(rec{4}); 

    end 

    cd .. 

    save recloc_survey.mat recloc 

end 
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% Identify individual survey sequences 

minpick = 525; 

sepsurvey = diff(tempi); 

ind = find(sepsurvey > 1e-4)+1; 

ind = [1;ind;length(sepsurvey)+2]; 

 

% Source position equals receiver positions 

index = 0; 

for i = 2:length(ind) 

    crows = [ind(i-1):1:ind(i)-1]; 

    if length(crows)~=size(recloc,1) 

        continue 

    end 

    for r = 1:length(crows) 

        index = index+1; 

        sourcelocs{index,1} = event{crows(r)}; 

        sourcelocs{index,2} = recloc(r,1); 

        sourcelocs{index,3} = recloc(r,2); 

        sourcelocs{index,4} = recloc(r,3); 

        sourcelocs{index,5} = tempi(crows(r)); 

    end 

end 

 

save sourceloc_survey_ml.mat sourcelocs 

 

% Reset workspace 

event = sourcelocs(:,1); 

pktimes = cell(size(recloc,1),9,length(event)); 

i = 1; 

7.1.2.4 WAVEFORM PICKING 

i = i - 1; 

ordersize= 0; 

while i ~=size(event,1) 

    % Reset 

    pk = cell(size(recloc,1),9); sigM = ones(size(recloc,1),1); 

    pk(:,:) = num2cell(NaN); 

    sourcestore = cell(1,5); 

    filename = []; 

 

    % Load file 

    i = i + 1; 

    display(['Event ',num2str(i)]) 

    filename = event{i}; 

    cd sg2_survey 

    try 

        [tracce,SR,Shot,X,n_samples,RL] = leggisg2(filename); 

    catch 

        cd .. 

        pktimes(:,:,i) = pk; 

        continue 

    end 

    signal = tracce; 

    cd .. 
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    % Picking 

    if ordersize ~= size(recloc,1) 

        ordersize = ordersize+1; 

    else 

        ordersize = 1; 

    end 

    for o = 1:size(signal,2) 

        Ts = 1/Fs; 

        r = o; 

        % Does not pick source waveform 

        if o == 1 

            pk{r,1} = filename; 

            pk{r,2} = NaN; 

            pk(r,3:9) = num2cell(NaN); 

            continue 

        end 

        % Does not pick receivers on same axis as source 

        if ismember(recloc(r,1),recloc(ordersize(1),1)) && 

ismember(recloc(r,2),recloc(ordersize(1),2)) 

            pk{r,1} = filename; 

            pk{r,2} = NaN; 

            pk(r,3:9) = num2cell(NaN); 

            continue 

        end 

        display(num2str(o)) 

 

        % Pads data 

        n = randn(500,1); n = n./max(abs(n)); 

        n1 = n.*0.05; 

        n = randn(sigsamp,1); n = n./max(abs(n)); 

        n2 = n.*0.05; 

        sig = [n1;resample(signal(:,r)+n2,sigsamp,length(signal(:,r)))]; 

        Ts = Ts*(length(signal(:,r))/sigsamp); 

 

        % Calculate signal envelope 

        esig = envelope(sig,10,'rms'); 

 

        % Normalise envelope to pre-signal noise 

        esig = esig./max(esig(1:200)); 

 

        % Finds first amplitude rise above noise 

        ind = find(esig>1.1); ind = ind(ind > 550); 

        try 

            ind = ind(1); 

        catch 

            pk{r,1} = filename; 

            pk{r,2} = NaN; 

            pk(r,3:9) = num2cell(NaN); 

            continue 

        end 

 

        % Calculate signal to noise ratio around first rise 

        sn = []; testrange = 300; 

        for s = 1:testrange 

            try 

                sn(s) = mean(esig((s+ind-round(testrange/2)):(s+ind-

round(testrange/2))+100))/mean(esig((s+ind-round(testrange/2))-100:(s+ind-
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round(testrange/2)))); 

            catch 

                sn(s) = NaN; 

            end 

        end 

 

        % Picks highest signal to noise ratio 

        try 

            s = find(sn >= 2); % Preferably above 2 

            s = s(1); 

            ind = ind-round(testrange/2)+s; 

        catch 

             s = find(sn >= max(sn)); % Otherwise just the maximum 

             s = s(1); 

            ind = ind-round(testrange/2)+s; 

        end 

 

        % Correct for padding 

        try 

            pk1 = ind(1) - 500; 

        catch 

            pk{r,1} = filename; 

            pk{r,2} = NaN; 

            pk(r,3:9) = num2cell(NaN); 

            continue 

        end 

 

        % Generate picking matrix with signal to noise ratios 

        if ind(1) > minpick 

            try 

                rayt = [Ts:Ts:(length(signal)*Ts)]; 

                fill_pk 

            catch 

                pk{r,1} = filename; 

                pk{r,2} = NaN; 

                pk(r,3:9) = num2cell(NaN); 

                continue 

            end 

        else 

            pk{r,1} = filename; 

            pk{r,2} = NaN; 

            pk(r,3:9) = num2cell(NaN); 

            continue 

        end 

        test = find(abs(sig) == max(abs(sig))); 

        sigM(r)= test(1)*Ts; 

    end 

 

    % Removes late picking 

    for q = 1:size(recloc,1) 

        [~,order] = sort(cell2mat(pk(:,2)),'ascend'); 

        ind = find(diff(cell2mat(pk(order,2))) > 0.16e-4)+1; 

        for p = 1:length(ind) 

            r = order(ind(p)); 

            pk{r,2} = NaN; 

            pk(r,3:9) = num2cell(NaN); 

        end 

    end 
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    % Plots waveforms and picks 

    pktimes(:,:,i) = pk; 

    if ismember(i,1:1:length(event)) == 1 && figon == 1 

        [~,order] = sort(cell2mat(pk(:,2)),'ascend'); 

        stp = max(max(abs(signal))); 

        figure(2); yyaxis left; cla 

        for jj = 1:length(order) 

            Ts = 1/Fs; 

            try 

                csig = signal(:,order(jj)); 

                plot(csig+(stp*(jj-1)),'k-'); hold on; 

                scatter(round(pk{order(jj),2}/Ts),(stp*(jj-1)),'ro','filled') 

            end 

        end 

        drawnow 

    end 

end 

7.1.2.5 WRITE VELOCITY MODEL 

This writes the velocity model in the same structure as InSite 

% Compile data 

sepsurvey = diff(tempi); 

ind = find(sepsurvey > 1e-4)+1; 

ind = [1;ind;length(sepsurvey)+2]; 

vel = []; 

rindex = 0; 

for i = 2:length(ind) 

    crows = [ind(i-1):1:ind(i)-1]; 

    if length(crows)~=size(recloc,1) 

        continue 

    end 

    rindex = rindex+1; cindex = 0; 

    for r = 1:length(crows) 

 

        for r2 = 1:length(crows) 

            cindex = cindex + 1; 

            if r == r2 

                vel(rindex,cindex) = NaN; 

            else 

                try 

                    if pktimes{r2,3,crows(r)} < 2 

                        vel(rindex,cindex) = NaN; 

                        continue 

                    end 

                    dist = norm(recloc(r,:) - recloc(r2,:)); 

                    vel(rindex,cindex) = dist/pktimes{r2,2,crows(r)}; 

                    qual(rindex,cindex) = pktimes{r2,3,crows(r)}; 

                catch 

                    vel(rindex,cindex) = NaN; 

                end 

            end 

        end 
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    end 

end 

 

% Removes questionable picks 

velim = [mean(vel(isnan(vel)==0))-2000 mean(vel(isnan(vel)==0))+2000]; 

for p = 1:size(vel,1) 

    [~,order] = sort(vel(p,:),'descend'); 

    ind = find(vel(p,order) > velim(2) | vel(p,order) < velim(1)); 

    vel(p,order(ind)) = NaN; 

 

end 

 

% Calculate velocity data 

Vmax = max(vel'); 

Vmin = min(vel'); 

Vhet = Vmin./Vmax; 

 

% Write file 

cHeader = {'VP' 'VS' 'PAni' 'Sani' 'Azimuth' 'Dip' 'Start_year' 'Start_month' ... 

    'Start_day' 'Start_hour' 'Start_minute' 'Start_second' 'End_year' ... 

    'End_month' 'End_day' 'End_hour' 'End_minute' 'End_second'}; %dummy header 

commaHeader = [cHeader;repmat({','},1,numel(cHeader))]; %insert commaas 

commaHeader = commaHeader(:)'; 

textHeader = strjoin(cHeader, ','); %cHeader in text with commas 

%write header to file 

fid = fopen([testname,'_velocity model.csv'],'w'); 

fprintf(fid,'%s\n',textHeader); 

fclose(fid); 

model = []; 

model(:,1) = Vmax; 

model(:,2) = ones(length(Vmax),1); 

model(:,3) = Vhet; 

model(:,4) = ones(length(Vmax),1); 

model(:,5) = zeros(length(Vmax),1); 

model(:,6) = 90.*ones(length(Vmax),1); 

model = num2cell(model); 

 

sepsurvey = diff(tempi); 

ind = find(sepsurvey > 1e-4)+1; 

ind = [1;ind;length(sepsurvey)+2]; 

 

index = 0; 

modeltime = cell(1,1); 

for i = 2:length(ind) 

    crows = [ind(i-1):1:ind(i)-1]; 

    if length(crows)~=size(recloc,1) 

        continue 

    end 

    try 

        index = index +1; 

        filename = sourcelocs{ind(i)-1,1}; 

        filename([9,16,20:end]) = '-'; 

        formatIn = 'yyyymmdd-HHMMSS-fff---------'; 

        modeltime{index,1} = str2num(filename(1:4)); 

        modeltime{index,2} = str2num(filename(5:6)); 

        modeltime{index,3} = str2num(filename(7:8)); 

        modeltime{index,4} = str2num(filename(10:11)); 

        modeltime{index,5} = str2num(filename(12:13)); 
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        modeltime{index,6} = str2num(filename(14:15)); 

    catch 

        index = index-1; 

        continue 

    end 

end 

 

for i = 1:index 

 

    if i == index 

        modeltime{i,7} = modeltime{i,1}+1; 

        modeltime{i,8} = modeltime{i,2}; 

        modeltime{i,9} = modeltime{i,3}; 

        modeltime{i,10} = modeltime{i,4}; 

        modeltime{i,11} = modeltime{i,5}; 

        modeltime{i,12} = modeltime{i,6}; 

    else 

        modeltime{i,7} = modeltime{i+1,1}; 

        modeltime{i,8} = modeltime{i+1,2}; 

        modeltime{i,9} = modeltime{i+1,3}; 

        modeltime{i,10} = modeltime{i+1,4}; 

        modeltime{i,11} = modeltime{i+1,5}; 

        modeltime{i,12} = modeltime{i+1,6}; 

    end 

end 

 

model = [model(1:size(modeltime,1),:),modeltime]; 

ind = find(isnan(cell2mat(model(:,1))) == 1); 

model(ind,:) = []; 

model{1,7} = model{1,7} - 1; 

 

display('fin') 

dlmwrite([testname,'_velocity model.csv'],model,'-append'); 

save pktimes_survey_ml.mat pktimes; save tempi_survey_ml.mat tempi 
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7.1.3 AE SOURCE LOCATION 

Picks AE data (stored in folder sg2) using trained neural network. Data is then 

located using Time Difference of Arrival 

7.1.3.1 VERSION 

Version 1.0, 16th January 2019. Thomas King   - First Version 

7.1.3.2 PARAMETER CUSTOMISATION 

Below are the suggested parameters to be modified. I don't recommend changing 

any of the code outside of these parameters. 

clear all; close all 

 

% This is the name of the picking model. I recommend to use folder names to 

% avoid confusion as this testname is required when using the locating code 

testname = 'DDS_NSA2'; 

 

figon = 1; % Display figures. 1 (on), 0 (off) 

location = 1; % Locate data. 1 (on), 0 (off) 

 

nPick = 4; % Minimum number of picks for source location 

 

% Resamples waveforms to a shorter length. It can increase the speed of the 

% code but time resolution is lost. 

sigsamp = 2048; 

 

% Minimum arrival time. Recommended at 10% of signal length 

minpick = round(sigsamp/10); 

7.1.3.3 COMPILE DATA 

% Find origin time 

dirls = dir('sg2/*seg2'); 

index = 0; clear event 

for i = 1:size(dirls,1) 

    event{i,1} = dirls(i).name; 

    filename = event{i}; 

    sourcelocs{i,1} = filename; 

    filename([9,16,20:end]) = '-'; 

    formatIn = 'yyyymmdd-HHMMSS-fff---------'; 

    tempi(i,1) = datenum(filename,formatIn); 

end 

 

% Find receiver positions 

if exist('recloc') == 0 

    cd sg2 

    filename = event{1}; 

    [tracce,SR,Shot,X,n_samples,RL] = leggisg2(char(filename)); 
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    Ts = SR; 

    Fs = 1/SR; 

    for j = 1:length(RL) 

        rec = strsplit(char(RL(j,:))); 

        recloc(j,1) = str2num(rec{3}); % NED to XYZ 

        recloc(j,2) = str2num(rec{2}); 

        recloc(j,3) = str2num(rec{4}); 

    end 

    if max(max(recloc)) > 0.1 

        recloc = recloc./1000; 

    end 

    cd .. 

    save recloc.mat recloc 

else 

    load recloc.mat 

end 

 

% Load velocity model. If it cannot find, sample velocity is set to 5500 

try 

ls = dir('*velocity model.csv'); 

velmodimport; clear velwin 

for i = 1:size(velocitymodel,1) 

    velwin(i,1) = datenum(velocitymodel(i,7),velocitymodel(i,8),velocitymodel(i,9),... 

        velocitymodel(i,10),velocitymodel(i,11),velocitymodel(i,12)); 

    velwin(i,2) = datenum(velocitymodel(i,13),velocitymodel(i,14),velocitymodel(i,15),... 

        velocitymodel(i,16),velocitymodel(i,17),velocitymodel(i,18)); 

    velwin(i,3) = velocitymodel(i,1); 

    velwin(i,4) = velocitymodel(i,3); 

end 

catch 

    velwin = [0, 1000000000, 5500, 1]; 

end 

 

% Angles between receivers for velocity anisotropy 

angles = []; 

for i = 1:length(recloc) 

    for j = 1:length(recloc) 

        [~,ang] = rangeangle(recloc(i,:)',recloc(j,:)'); 

        ang = ang(2); 

        angles(i,j) = ang; 

    end 

end 

 

% Reset workspace 

sources = []; error = []; 

i = 1; 

load(char(['pkmodel-',char(testname),'.mat']),'p_mul','t_mul','dtdnn_net') 

pktimes = cell(size(recloc,1),9,length(event)); 

7.1.3.4 PICKING AND SOURCE LOCATION 

i = i - 1; 

bindex = 0; fstp2 = 0; 

while i ~= size(event,1) 

 

    % Reset 
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    pk = cell(size(recloc,1),9); sigM = ones(size(recloc,1),1); 

    pk(:,:) = num2cell(NaN); 

    sourcestore = cell(1,5); 

    global cvel 

    cvel = []; filename = []; 

    Ts = 1/Fs; 

 

    % Load file and set current velocity 

    i = i + 1; 

    display(['Event ',num2str(i)]) 

    filename = event{i}; 

    etime = tempi(i); 

    ind = find(velwin(:,1) < etime & velwin(:,2) > etime); 

    if isempty(ind) == 1 

        continue 

    else 

        global cvel 

        cvel = velwin(ind(1),:); 

        cd sg2 % Load file 

        try 

            [tracce,SR,Shot,X,n_samples,RL] = leggisg2(filename); 

       catch 

           cd .. 

           pktimes(:,:,i) = pk; 

            sourcestore{1,1} = filename; 

            sourcestore(1,2:5) = num2cell(NaN); 

            sourcelocs(i,1:5) = sourcestore; 

            continue 

        end 

        signal = tracce; %(:,rec) 

        cd .. 

    end 

 

    % Picking 

 

    % Sort waveforms according to amplitude 

    rsig = max(signal(1:length(signal)/2,:)); 

    [~,ordersize] = sort(rsig,'descend'); 

    try 

        if isempty(ordersize) == 1 

            pktimes(:,:,i) = pk; 

            sourcestore{1,1} = filename; 

            sourcestore(1,2:5) = num2cell(NaN); 

            sourcelocs(i,1:5) = sourcestore; 

            continue 

        end 

    catch 

        [~,ordersize] = sort(rsig,'descend'); 

    end 

 

    % Begin 

    for o = 1:length(ordersize) 

 

        % Reset 

        Ts = 1/Fs; 

        r = ordersize(o); 

        display(num2str(o)) 

        sig= resample(signal(:,r),sigsamp,length(signal(:,r))); 
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        Ts = Ts*(length(signal(:,r))/sigsamp); 

 

        % Get neural network input parameters 

        try 

           % tic 

            IFcontent 

            %toc 

        catch 

            pk{r,1} = filename; 

            pk{r,2} = NaN; 

            pk(r,3:9) = num2cell(NaN); 

            continue 

        end 

        p1 = [con2seq(cc(1:length(sn))');con2seq(esig(1:length(sn)));... 

            con2seq(sn(1:length(sn)));]; 

 

        % Get arrival time 

        try 

            pick_output_3 

        catch 

            pk{r,1} = filename; 

            pk{r,2} = NaN; 

            pk(r,3:9) = num2cell(NaN); 

            continue 

        end 

        pk1 = ind(1); 

 

        % Store arrival times 

        if pk1 > minpick 

            try 

                fill_pk 

                if pk{r,3} > 800 % Clipped data 

                    pk = cell(size(recloc,1),9); sigM = ones(size(recloc,1),1); 

                    pk(:,:) = num2cell(NaN); 

                    sourcestore = cell(1,5); 

                    pktimes(:,:,i) = pk; 

                    sourcestore{1,1} = filename; 

                    sourcestore(1,2:5) = num2cell(NaN); 

                    sourcelocs(i,1:5) = sourcestore; 

                    i = i+1; 

                    fstp2 = 1; 

                end 

            catch 

                pk{r,1} = filename; 

                pk{r,2} = NaN; 

                pk(r,3:9) = num2cell(NaN); 

                continue 

            end 

        else 

            pk{r,1} = filename; 

            pk{r,2} = NaN; 

            pk(r,3:9) = num2cell(NaN); 

            continue 

        end 

 

        % Some traces don't work, this is part of a workaround 

        if fstp2 == 1 

            fstp2 = 0; 
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            break 

        end 

 

    end 

 

    % If arrival time is after maximum, set time to NaN 

    TOA = cell2mat(pk(:,2)); 

    test = (sigM-TOA); 

    pk(test<0 | isnan(test) == 1,:) = num2cell(NaN); 

    test(test<0 | isnan(test) == 1) = NaN; 

    TOA(test<0 | isnan(test) == 1) = NaN; 

    pktimes(:,:,i) = pk; 

 

    % Locate AE 

 

    % Checks for minimum picks and if locating is turned on 

    if sum(cell2mat(pk(:,2))) > size(recloc,1)-nPick || location == 0 

        sourcestore{1,1} = filename; 

        sourcestore(1,2:5) = num2cell(NaN); 

        sourcelocs(i,1:5) = sourcestore; 

        continue 

    end 

 

    % Reset 

    restore = []; sourceopts = []; 

    p=1; 

 

    % Source inversion 

        [answer,res] = localize2(0,[0,0,0],TOA,... 

            recloc,cvel,angles); 

        restore(p,:) = res; % Location residual 

        sourceopts(p,:) = answer % Source location 

    global calcdelays 

    global BUSHDelays 

 

    try 

        ind = find(restore == min(restore)); 

        res = restore(ind(1)); 

        answer = sourceopts(ind(1),:); 

    catch 

        sourcestore{1,1} = filename; 

        sourcestore(1,2:5) = num2cell(NaN); 

        sourcelocs(i,1:5) = sourcestore; 

        continue 

    end 

 

    % Plots waveforms and arrival times 

     if ismember(i,1:1:length(event)) == 1 && figon == 1 

        [~,order] = sort(cell2mat(pk(:,2)),'ascend'); 

        stp = max(max(abs(signal))); 

        figure(2); yyaxis left; cla 

        for jj = 1:length(order) 

            Ts = 1/Fs; 

            try 

                csig = signal(:,order(jj)); 

                plot(csig+(stp*(jj-1)),'k-'); hold on; 

                scatter(round(pk{order(jj),2}/Ts),(stp*(jj-1)),'ro','filled') 

            end 
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        end 

        drawnow 

     end 

 

    % Compile results 

    x0 = answer; 

    sources = [sources;x0]; % Source location 

 

    numpicks(i) = size(recloc,1)-ind(1); % Number of picks 

    residual(i) = res; % Location residual 

    snrrat(i) = max(cell2mat(pk(:,3))); % Signal to noise ratio 

 

    sourcelocs{i,1} = filename; % Position 

    sourcelocs{i,2} = x0(1); 

    sourcelocs{i,3} = x0(2); 

    sourcelocs{i,4} = x0(3); 

    sourcelocs{i,5} = tempi(i); 

 

    % Plot source locations 

    if ismember(i,1:1:size(event,1)) == 1 && figon == 1 

        figure(4); cla; hold on 

       try 

%             ind = find(snrrat > 2 & numpicks >= 9 & snrrat < 300 & residual < 2e-6);% & 

residual > .01e-8); 

%             sources = cell2mat(sourcelocs(ind,2:4)); 

             scatter3(sources(:,1),sources(:,2),sources(:,3),4,'ko','filled') 

            alpha(0.3334) 

            scatter3(sources(end,1),sources(end,2),sources(end,3),10,'ro','filled') 

       catch 

           continue 

       end 

        xlim([-0.02 0.02]) 

        ylim([-0.02 0.02]) 

        zlim([-0.05 0.05]) 

 

        pbaspect([4 4 10]) 

        ax = gca;               % get the current axis 

        ax.Clipping = 'on'; 

        view([0 0]) 

        camproj('perspective') 

        xlabel('x') 

        ylabel('y') 

        xhandle = get(gca, 'Xlabel'); 

        yhandle = get(gca, 'Ylabel'); 

        thandle = get(gca, 'Title'); 

        set([xhandle; yhandle; thandle], 'units', 'normal'); 

        drawnow 

    end 

end 

7.1.3.5 CLEANUP AND SAVING 

display('Removing NaN and Inf') 

ind = find(sum(isnan(cell2mat(sourcelocs(:,2:4))'))' 

+sum(isinf(cell2mat(sourcelocs(:,2:4))'))' == 0); 

sourcelocs = sourcelocs(ind,:); % Sets events to only those found in the cylinder 
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pktimes = pktimes(:,:,ind); 

tempi = tempi(ind); 

numpicks= numpicks(ind); 

residual= residual(ind); 

snrrat = snrrat(ind); 

 

display('Removing External Events') 

% Remove external events 

[X1 Y1 Z1] = cylinder(max([max(recloc(:,1)) max(recloc(:,2))])); % Makes a cylinder with 

radius 

Z1(2,:) = 0.1; % Sets cylinder height 

shp = surf2patch(X1,Y1,Z1); % Makes it into a patch 

X = shp.vertices(:,1); 

Y = shp.vertices(:,2); 

Z = shp.vertices(:,3)-max(recloc(:,3)); % Puts into the correct place 

shp = alphaShape(X,Y,Z,1,'HoleThreshold',10000); % Makes it into a shape 

ind = 

find(inShape(shp,cell2mat(sourcelocs(:,2)),cell2mat(sourcelocs(:,3)),cell2mat(sourcelocs(

:,4))) == 1); 

sourcelocs = sourcelocs(ind,:); % Sets events to only those found in the cylinder 

pktimes = pktimes(:,:,ind); 

tempi = tempi(ind); 

numpicks= numpicks(ind); 

residual= residual(ind); 

snrrat = snrrat(ind); 

 

save pktimes_ml.mat pktimes; save sourceloc_ml.mat sourcelocs; save tempi_ml.mat tempi; 

save error_ml.mat numpicks residual snrrat 
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7.1.4 AUTOMATED WAVEFORM PICKING (IFCONTENT) 

This code picks the input waveform. Input data are simulated and an output model 

(yp) is produced. Signal onset is determined from this output. 

7.1.4.1 SIMULATE MODEL 

yp = sim(dtdnn_net,p1); 

yp = cell2mat(yp); 

yp = smooth(yp,round(sigsamp/40)); % Smooth model output 

7.1.4.2 SET PICKING LIMITS FOR TRAINING OR LOCATION CODE 

if o ~= 0 

    rayt = [Ts:Ts:(sigsamp*Ts)]; 

end 

if o > 1 

    adj =  round(pk{ordersize(1),2}/Ts); 

    if isnan(adj) == 0 

        test = 'adj:adj+round(sigsamp/5.5)'; 

        test2 = 'adj'; 

    else 

        test = 'minpick:(length(yp))'; 

        test2 = 'minpick'; 

    end 

else 

    test = 'minpick:(length(yp))'; 

    test2 = 'minpick'; 

end 

7.1.4.3 DETERMINE WINDOW AROUND TRANSITION BETWEEN SIGNAL 

AND NOISE 

if max(yp(eval(test))) > 0 

    lim = 0.8; fstp = 0; 

    while fstp == 0 

        try 

            ind = find(yp(eval(test)-1) > ... 

                lim*max(yp(eval(test)-1)) & ... 

                yp(eval(test)-1) < 1.5)+eval(test2); 

            try 

                ind = ind(ind < length(sig)); ind = ind(1); 

            catch 

                ind = ind(ind < sigtest); ind = ind(1); 

            end 

            fstp = 1; 

        catch 

            lim = lim-0.1; 

            if lim <= 0 

                fstp = 2; 

                break 

            end 
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            fstp = 0; 

            continue 

        end 

    end 

    if fstp == 2 

        pot 

    end 

else 

    ind = diff([0.8*max(yp(eval(test)-1)),max(yp(eval(test)-1))]); 

    ind = find(yp(eval(test)-1) > max(yp(eval(test)-1))+ind)+eval(test2); 

    ind = ind(ind < length(sig)); ind = ind(1); 

end 

 

ind = find(yp(eval(test2):ind) < mean([yp(ind) min(yp(eval(test2):ind))]))+eval(test2); 

7.1.4.4 PICKS HIGHEST SIGNAL TO NOISE RATIO 

snnew = []; 

for p = ind(end)-200:length(ind) 

    try 

        snnew(p) = rms(sig(ind(p):ind(p)+100))/rms(sig(ind(p)-100:ind(p))); 

    end 

end 

 

try 

    indbck = ind; 

    ind = ind(find(snnew == max(snnew))); 

    pick = ind(end); 

catch 

    ind = indbck; 

    ind = find(abs(yp(ind)) == min(abs(yp(ind)))) + ind(1); 

    pick = ind(1); 

end 
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7.2 FOCAL MECHANISMS 

7.2.1 FOCAL MECHANISM SOLUTIONS 

Solves for focal mechanism solutions using first motion polarity amplitudes. 

Measurements are projected onto spheres and iteratively rotated minimising the fit to 

idealised mechanisms. I apologise for the state of 'eventdata'. 

7.2.1.1  

clear all; close all; 

warning off all 

7.2.1.2 INITIALISATION 

load sourceloc_ml.mat 

load pktimes_ml.mat 

load recloc.mat 

 

compiledata = 1; % Set to 1 to compile waveform data 

compilemodel = 1; % Set to 1 to generate fitting models 

7.2.1.3 COMPILE DATA 

if compiledata == 1 

    index = 0; 

    sources = cell2mat(sourcelocs(:,2:5)); 

    cd sg2 

    for e = 1:size(sourcelocs,1) 

        index = index+1; 

        eventdata{index,1} = sourcelocs(e,1); 

        eventdata{index,2} = sources(e,4); 

        eventdata{index,3} = sources(e,1:3); 

 

        clear azimuth takeoff 

        for r = 1:size(recloc,1) 

 

            % Azimuth and takeoff 

            receiver = recloc(r,:); 

            source = eventdata{index,3}; 

            [~,ang] = rangeangle(receiver',source'); 

            azimuth(r) = ang(1); 

            takeoff(r) = ang(2); 

 

        end 

 

        eventdata{index,4} = azimuth; 

        eventdata{index,5} = takeoff; 

        try 

            signal = leggisg2(char(eventdata{index,1})); 
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        catch 

            index = index - 1; 

            continue 

        end 

        eventdata{index,6} = signal; 

 

        ind = find(cellfun(@isempty,pktimes(:,2,e))==1); 

        pktimes(ind,2,e) = num2cell(0); 

 

        eventdata{index,7} = cell2mat(pktimes(:,2,e)); 

 

    end 

    cd .. 

    save focaleventdata.mat eventdata -v7.3 

else 

    load focaleventdata.mat 

end 

7.2.1.4 GENERATE FITTING SPHERES 

if compilemodel == 1 

 

    % Generate blank sphere 

    [x1,y1,z1] = sphere(80); 

    x = x1(:); 

    y = y1(:); 

    z = z1(:); 

 

    % Double Couple Quad 

    fitDCQ = [x y z]; 

    ind = find(fitDCQ(:,2) > 0 & fitDCQ(:,3) > 0); 

    fitDCQ(ind,4) = 1; 

    ind = find(fitDCQ(:,2) < 0 & fitDCQ(:,3) < 0); 

    fitDCQ(ind,4) = 1; 

    ind = find(fitDCQ(:,2) < 0 & fitDCQ(:,3) > 0); 

    fitDCQ(ind,4) = -1; 

    ind = find(fitDCQ(:,2) > 0 & fitDCQ(:,3) < 0); 

    fitDCQ(ind,4) = -1; 

 

    for i = 1:size(fitDCQ,1) 

        [Idx,D] = knnsearch(fitDCQ(i,1:3),fitDCQ(:,1:3)); 

        ind = find(D < 0.5); 

        val = fitDCQ(ind,4); 

        val = val(find(isnan(val) == 0)); 

        fitDCQ(i,5) = mean(val); 

    end 

 

    figure(1); subplot_tight(1,3,2,[0.04,0.01]); 

surf(x1,y1,z1,reshape(fitDCQ(:,4),size(x1,1),size(x1,2)),'linestyle','none'); 

    set(gcf,'color','white') 

    pbaspect([1 1 1]) 

    set(gca,'xtick',[]) 

    set(gca,'xticklabel',[]) 

    set(gca,'ytick',[]) 

    set(gca,'yticklabel',[]) 

    set(gca,'box','off') 
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    set(gca,'ztick',[]) 

    set(gca,'zticklabel',[]) 

    title('S-type') 

    axis off 

 

    % CLVD 

    fitCLVD = [x y z]; 

    [X1 Y1 Z1] = cylinder(0.75); 

    Z1(2,:) = 1; 

    shp = surf2patch(X1,Y1,Z1); 

    X1 = shp.vertices(:,1); 

    Y1 = shp.vertices(:,2); 

    Z1 = shp.vertices(:,3)-1; 

    ind = find(Z1 == 0); 

    X1 = vertcat(X1,X1(ind)); 

    Y1 = vertcat(Y1,Y1(ind)); 

    Z1 = vertcat(Z1,Z1(ind)+1); 

    XYZold = [X1 Y1 Z1]; XYZold = XYZold'; x0=[0 0 0].'; u=[0 1 0].'; deg=90; 

    [XYZnew, R, t] = AxelRot(XYZold, deg, u, x0); XYZnew = XYZnew'; 

    X1 = XYZnew(:,1); Y1 = XYZnew(:,2); Z1 = XYZnew(:,3); 

    shp = alphaShape(X1,Y1,Z1,1,'HoleThreshold',15); 

    ind = find(inShape(shp,fitCLVD(:,1),fitCLVD(:,2),fitCLVD(:,3)) == 1); 

    fitCLVD(:,4) = 1; 

    fitCLVD(ind,4) = -1; 

 

    for i = 1:size(fitCLVD,1) 

        [Idx,D] = knnsearch(fitCLVD(i,1:3),fitCLVD(:,1:3)); 

        ind = find(D < 0.5); 

        val = fitCLVD(ind,4); 

        val = val(find(isnan(val) == 0)); 

        fitCLVD(i,5) = mean(val); 

    end 

 

    figure(1); subplot_tight(1,3,1,[0.04,0.01]); 

surf(x1,y1,z1,reshape(fitCLVD(:,4),size(x1,1),size(x1,2)),'linestyle','none'); 

    view([0 30]); pbaspect([1 1 1]) 

    set(gcf,'color','white') 

    set(gca,'xtick',[]) 

    set(gca,'xticklabel',[]) 

    set(gca,'ytick',[]) 

    set(gca,'yticklabel',[]) 

    set(gca,'box','off') 

    set(gca,'ztick',[]) 

    set(gca,'zticklabel',[]) 

    title('C-type') 

    axis off 

 

    % Mixed Mode 

    fitMM = [x y z]; 

    ind = find(fitMM(:,3) < 0.1 & fitMM(:,3) > -0.1); 

    fitMM(:,4) = 1; 

    fitMM(ind,4) = -1; 

 

    for i = 1:size(fitMM,1) 

        [Idx,D] = knnsearch(fitMM(i,1:3),fitMM(:,1:3)); 

        ind = find(D < 0.5); 

        val = fitMM(ind,4); 

        val = val(find(isnan(val) == 0)); 



   Appendix: MATLAB Code 

113 

 

        fitMM(i,5) = mean(val); 

    end 

 

    figure(1); subplot_tight(1,3,3,[0.04,0.01]); 

surf(x1,y1,z1,reshape(fitMM(:,4),size(x1,1),size(x1,2)),'linestyle','none'); 

    view([0 30]); pbaspect([1 1 1]) 

    title('T-type') 

    set(gcf,'color','white') 

    set(gca,'xtick',[]) 

    set(gca,'xticklabel',[]) 

    set(gca,'ytick',[]) 

    set(gca,'yticklabel',[]) 

    set(gca,'box','off') 

    set(gca,'ztick',[]) 

    set(gca,'zticklabel',[]) 

    axis off 

 

    save focalmechmodel.mat fitDCQ fitCLVD fitMM 

end 

7.2.1.5 DATA PREP 

clear all; close all 

 

load focaleventdata.mat 

load focalmechmodel.mat 

 

Fs = 1000000;           % Sampling frequency 

T = 0.1/(Fs);           % Sampling period 

L = 2048;               % Length of signal 

rayt = (0:L-1)*T;       % Time vector 

 

Wn = ([0.0001 20]/1000); %frequency band 

[z,p,k] = butter(6,Wn,'stop'); %butter filter 

[sos,g] = zp2sos(z,p,k);      % Convert to SOS form 

Hd3 = dfilt.df2tsos(sos,g);   % Create a dfilt object 

7.2.1.6 PICK FIRST MOTIONS 

fmstore = []; 

for e = 1:size(eventdata,1) 

    display(num2str(size(eventdata,1) - e +1)) 

    signal = eventdata{e,6}; 

    ptimes = eventdata{e,7}; 

    if length(ptimes) == size(signal,2) 

        [~,order] = sort(max(abs(signal)),'descend'); 

        amp = zeros(1,length(order)); error = amp; pol = amp; 

        for o = 1:size(signal,2) 

            r = order(o); 

            csignal = filter(Hd3,signal(:,r)); csignal = csignal - mean(csignal); 

            cpick = round((ptimes(r))/T); %*10 

            if cpick-100 <= 0 || isnan(cpick) == 1 

                amp(r) = 0; 

                pol(r) = 0; 

                error(r) = 0; 



  Appendix: MATLAB Code 

114 

 

                continue 

            end 

            env = smooth(envelope(csignal,1,'rms'),5); 

            noise = max(env(1:cpick)); 

            cropenv = env(cpick-100:cpick+100); 

            scsig = smooth(csignal,5); 

            for i = 1:length(csignal)-cpick 

                if i < cpick 

                    continue 

                end 

                if env(i) > 1.1*noise && env(i+3) < env(i) 

                    amp(r) = csignal(i); 

                    if amp(r) < 0; pol(r) = -1; else; pol(r) = 1; end 

                    error(r) = abs(diff([i cpick])); 

                    break 

                end 

            end 

        end 

        eventdata{e,8} = amp; % First motion amplitude 

        eventdata{e,9} = pol; % First motion polarity 

        eventdata{e,10} = error; % Difference of onset to first motion pick 

        fmstore = [fmstore,amp]; 

    end 

end 

7.2.1.7 COMPILE POLARITY DATA 

pol = []; 

for e= 1:size(eventdata,1) 

    cpol = eventdata{e,9}; 

    if isempty(cpol) == 0 

        pol = [pol;cpol]; 

    else 

        pol = [pol;zeros(1,length(order)).*NaN]; 

    end 

end 

 

% Reset 

sources = cell2mat(eventdata(:,3)); 

chk = []; 

e = 1; 

7.2.1.8 MECHANISM INVERSION 

tic 

while e ~= size(eventdata,1)+1 

    display(num2str(size(eventdata,1) - e +1)) 

 

    % Minimum of 8 polarity measurements 

    if sum(abs(pol(e,pol(e,:) ~= 0))) < 8 

        e = e+1; 

        continue 

    end 

 

    ind = e; 
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    eventdata{e,11} = ind; 

 

    % Compile measurements 

    th = cell2mat(eventdata(ind,4)); 

    rho = cell2mat(eventdata(ind,5)); 

    amp = cell2mat(eventdata(ind,8)); 

    th = reshape(th,size(th,1)*size(th,2),1); 

    rho = reshape(rho,size(rho,1)*size(rho,2),1); 

    amp = reshape(amp,size(amp,1)*size(amp,2),1); 

    amp = amp./max(abs(amp)); 

 

    % Models to test 

    global modlist 

    modlist = {'fitCLVD','fitMM','fitDCQ'}; 

 

    % Compile input data 

    [x,y,z] = sph2cart(th,rho,1); 

    modS = [x(:) y(:) z(:) amp zeros(length(x(:)),1)]; % Measured 

    global models 

    for x = 1:size(modlist,2) 

        models{x} = eval(modlist{x}); % Modeled 

    end 

 

    % Reset 

    storebck = cell(11,size(modlist,2)); 

    residualbck = []; 

    mechsolbck = []; 

 

    % Inversion 

    for x = 1:length(modlist) 

        [output] = focmech(modS,x); % x is current model 

        store = output{3}; 

        storebck(:,x) = store(:,x); % Inversion results 

        residualbck(x) = output{2}; % Residual 

 

    end 

    store = storebck; 

    eventdata{e,13} = store; 

 

    % Mechanism is model with lowest residual 

    try 

        order = find(residualbck == min(residualbck)); 

 

        eventdata{e,14} = store{1,order(1)}; 

    catch 

        eventdata{e,14} = []; 

    end 

 

    display(eventdata{e,14}) 

    e = e+1; 

 

    % Autosave 

    if toc > 3000 

        save eventdatamech_ml_residual.mat eventdata -v7.3 

        tic 

    end 

 

    % Event percentages 
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    figure(12); cla; 

    A = eventdata(:,14); 

    ind = find(~cellfun(@isempty,A)); 

    A = A(ind); 

    [u,~,n] = unique(A(:)); 

    B = accumarray(n, 1, [], @sum); 

    bar(B) 

    set(gca,'XTickLabel',u) 

    drawnow 

end 

 

save eventdatamech_ml_residual.mat eventdata -v7.3 
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7.2.2 MECHANISM PROBABILITY DENSITY PLOTS 

This code plots the focal mechanisms as probability densities against time or strain. 

7.2.2.1 VERSION 

Version 1.0, 27th January 2019. Thomas King   - First Version 

7.2.2.2 PARAMETER CUSTOMISATION 

Below are the suggested parameters to be modified. I don't recommend changing 

any of the code outside of these parameters. 

clear all; close all 

 

% Plotting Parameters 

pressure = '40 MPa'; % This is the title of the plot 

TorS = 2; % time or strain 1 or 2 

averagepolarity = 0; % 1 on 0 off 

ampthresh = 0.05; % Seperate mechanisms with an amplitude threshold 

saving = 1; 

 

% Plotting colours. Have the same number of colours as mechanisms 

C = brighten(parula(3),.25); 

C1 = C(1,:); 

C2 = brighten(C(2,:),-.1); 

C3 = C(3,:); 

C = [C1;C2;C3]; 

 

% Smoothing Parameters 

pdfsmooth = 40; % PDF plot smoothing 

nEvents = 10; % Event windowing 

 

% Time Corrections 

timecorr = 0; 

7.2.2.3 COMPILE DATA 

% load mechanical data 

stress_strain 

 

% Load and order data 

load eventdatamech_ml_residual.mat 

[~,order] = sort(cell2mat(eventdata(:,2))); 

eventdata = eventdata(order,:); 

 

% Mechanism list 

modlist = {'fitCLVD','fitDCQ','fitMM'}; 

 

% Compile mechanism data 

ind = []; 

load focalmechmodel.mat fitMM 
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for i = 1:size(eventdata,1) 

 

    % Skip unsolved mechanisms 

    if isempty(eventdata{i,14}) == 1 || isempty(eventdata{i,2}) == 1 

        continue 

    end 

 

    % Time correction 

    eventdata{i,2} = eventdata{i,2} - start - timecorr; 

    eventtime(i) = eventdata{i,2}; 

 

    % Load data for event 

    store = eventdata{i,13}; % Fitting parameters 

    amp = eventdata{i,8}; % Polarity amplitude 

    pol = eventdata{i,9}; % Polarity direction 

    avepol = mean(pol(pol~=0)); % Average Polarity 

 

    % Maximum amplitude of event 

    csig = eventdata{i,6}; csig = csig(:,rms(csig)==max(rms(csig))); 

    csig = log(max(abs(csig))); 

 

    % Fitting 

    test = cell2mat(store(5:8,:))'; 

    test(:,[1,3]) = 1./test(:,[1,3]); 

    test2(:,1) = test(:,1).*test(:,2); 

    test2(:,2) = test(:,3).*test(:,4); 

    [~,order] = sort(test2(:,2),'descend'); 

    eventdata{i,16} = test(order(1),3); 

    eventdata{i,17} = test(order(1),4); 

    eventdata{i,18} = test2(order(1),2); 

    fitvalue(i) = test2(order(1),2); 

 

%     if fitvalue(i) < 2 

%         continue 

%     end 

 

    % Amplitude data 

    aT2(i,find(ismember(modlist,eventdata(i,14)) == 1)) = csig; 

 

    aT3(i) = csig; 

 

    % Average Polarity Fitting 

    if averagepolarity == 1 

        if avepol < -0.25 

            eventdata{i,14} = modlist{4}; 

        elseif avepol > 0.25 

            eventdata{i,14} = modlist{1}; 

        elseif avepol >= -0.25 && avepol <= 0.25 

            eventdata{i,14} = modlist{3}; 

        end 

    end 

 

    % Removes skipped data 

    ind = [ind,i]; 

    eventdata{i,15} = length(ind); 

 

    % Converts event time to strain value 

    straintime(i,1) = mean(deform(abs(deform(:,1) - eventdata{i,2}) == 
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min(abs(deform(:,1) - eventdata{i,2})),2)); 

 

end 

 

% Cropping 

eventdata = eventdata(ind,:); 

straintime = straintime(ind); 

aT2 = aT2(ind,:); 

fitvalue = fitvalue(ind); 

aT3 = aT3(ind); 

eventtime =  eventtime(ind); 

7.2.2.4 PLOTTING 

% Use this to choose specific events 

indE = [1:1:size(eventdata,1)]; 

 

% Amplitude thresholding 

mechsep = 2.*[1:1:size(modlist,2)]-1; ls = []; ls2 = []; 

for j = 1:length(indE) 

    % Compile event data 

    ls(j,1) = eventdata{indE(j),2}; % Event time 

    ls(j,2) = find(ismember(modlist,eventdata(indE(j),14)) == 1); % Event mechanism 

    ls(j,3) = aT3(indE(j)); 

 

    % Sets an amplitude threshold for each mechanism type 

    aT = 

min(aT2(aT2(eventtime<mean(stress(stress(:,2)==max(stress(:,2)),1)),ls(j,2))~=0,ls(j,2)))

... 

        + 

ampthresh*(range(aT2(aT2(eventtime<mean(stress(stress(:,2)==max(stress(:,2)),1)),ls(j,2))

~=0,ls(j,2)))); 

 

    % Seperates mechanism by amplitude 

    if ls(j,3) < aT 

        ls2(j) = mechsep(ls(j,2)); 

    else 

        ls2(j) = mechsep(ls(j,2))+1; 

    end 

end 

ls(:,2) = ls2; 

 

% Calculate probability densities 

test = []; 

for i = 1:max(mechsep)+1 

 

    % Strain 

    if TorS == 2 

        gridx1 = [straintime(indE(1):nEvents:end,1);max(max(deform(:,2)))]; 

        x = straintime(ls(:,2) == i,1); 

        try 

            [f,xi,bw] = ksdensity(x,gridx1,'bandwidth',pdfsmooth*0.001); 

        catch 

            f = zeros(length(gridx1),1); 

        end 
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    % Time 

    else 

        gridx1 = ls(indE(round(nEvents/2):nEvents:end),1); 

        x = ls(ls(:,2) == i,1); 

        try 

            smoot = find(abs(deform(:,2)-(pdfsmooth*0.001)) == min(abs(deform(:,2)-

(pdfsmooth*0.001)))); 

            [f,xi,bw] = ksdensity(x,gridx1,'bandwidth',deform(smoot(1),1)); 

        catch 

            f = zeros(length(gridx1),1); 

        end 

    end 

    test(:,i) = f; 

end 

 

% Converts density to a percentage 

test2 = []; 

for i=1:size(test,1) 

    for k = 1:max(mechsep)+1 

        test2(i,k) = test(i,k)/sum(test(i,:)); 

    end 

end 

 

% Plots percentage data 

figure(10); %title(pressure); 

left_color = [0 0 0]; right_color = [0 0 0]; 

set(figure(10),'defaultAxesColorOrder',[left_color; right_color]); 

yyaxis left; cla; hold on; 

h = area(xi,test2.*100,'linewidth',1.1); 

 

% Colours 

h(1).FaceColor = C1; 

h(2).FaceColor = brighten(C1,0.5); 

h(3).FaceColor = C2; 

h(4).FaceColor = brighten(C2,0.8); 

h(5).FaceColor = C3; 

h(6).FaceColor = brighten(C3,0.9);% 

 

% Plot stuff 

xt = get(gca, 'YTick'); 

set(gca, 'FontSize', 30,'Ycolor','k') 

xt = get(gca, 'XTick'); 

set(gca, 'FontSize', 30) 

ylabel('Relative mechanism percentage') 

xlabel('Strain (%)') 

set(gcf,'color','white') 

ylim([0 100]) 

 

% Plots mechanical data 

yyaxis right; cla; hold on; 

hold on 

plot(deform(:,TorS),(stress(:,2)),'-','color',[0.5 0.5 0.5],'linewidth',4); 

plot(deform(:,TorS),(stress(:,2)),'k-','linewidth',3); 

 

% Adds a box 

plot([0 max(deform(:,TorS)) max(deform(:,TorS)) 0 0],... 

    [0 0 1.1*max(stress(:,2)) 1.1*max(stress(:,2)) 0],'k-','linewidth',2) 
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% Plot stuff 

ylabel('Differential stress (MPa)') 

ylim([0 1.1*max(stress(:,2))]) 

xt = get(gca, 'YTick'); 

set(gca, 'FontSize', 30,'Ycolor','k') 

xt = get(gca, 'XTick'); 

set(gca, 'FontSize', 30) 

pbaspect([4 2 1]) 

if TorS == 1 

    xlim([0 max(deform(:,TorS))]) 

else 

    xlim([0 max(deform(:,TorS))]) 

end 

 

badj = [0.7 0.95]; 

B = badj.*deform(round(mean(find(max(stress(:,2))==stress(:,2)))),2); 

 

for i = 1:length(B) 

    yyaxis left 

    plot([B(i) B(i)],[0 100],'w-','linewidth',4) 

    plot([B(i) B(i)],[0 100],'k-','linewidth',3) 

end 

 

 

if saving == 1 

    set(gcf,'units','normalized','outerposition',[0 0 1 1]) 

    %myaa('publish') 

    saveas(gcf,'mechprobability.png') 

end 
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7.2.3 MECHANISM INVERSION 

Measurement spheres are iteratively rotated to minimise the fit with idealised 

models 

function [output] = focmech(modS,number) 

 

global mechsol 

global modFIT 

global modnum 

modFIT = modS; 

modnum = number; 

 

Guess = [0 0 0 0]; 

 

options = optimset('MaxFunEvals',1000); 

 

[answer,res,store] = fminsearchbnd(@ellipseMerit,Guess,[0 0 0 -360],[1 1 1 360],options); 

 

global param 

 

output = param; 

 

% Residual calculation 

function [res] = ellipseMerit(s) 

 

global modFIT 

 

[store] = ellipseFun(s, modFIT); 

 

test = cell2mat(store(5:8,:))'; 

test(:,[1,3]) = 1./test(:,[1,3]); 

test2(:,1) = test(:,1).*test(:,2); 

test2(:,2) = test(:,3).*test(:,4); 

test2(:,2) = 1./test2(:,2); 

 

answer = find(test2(:,2)~=0); 

answer = answer(test2(answer,2) == min(test2(answer,2))); 

res = test2(answer,2); 

if isempty(res) 

    res = 10000; 

end 

global param 

param = {answer,res,store}; 

 

% Model iteration 

function [store] = ellipseFun(s, modS) 

 

%store = []; 

 

global modFIT 

global models 

global modnum 

for x = modnum%1:length(models) 
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    fitC = models{x}; 

 

    if mean(s(:,1:4)) ~= 0 

        XYZold = fitC(:,1:3); XYZold = XYZold'; x0=[0 0 0].'; u=[s(:,1) s(:,2)  

s(:,3)].'; deg=s(:,4); 

        [XYZnew, R, t] = AxelRot(XYZold, deg, u, x0); fitC(:,1:3) = XYZnew'; 

    end 

 

    modS = modFIT; 

    IDX = knnsearch(fitC(:,1:3),modS(:,1:3)); 

    modC = [fitC(IDX,:), modS(:,4)]; 

    modC(modC(:,4) > 0 & modC(:,5) > 0,6) = 1; 

    modC(modC(:,4) < 0 & modC(:,5) < 0,6) = 1; 

    modC(1:size(modS,1),7) = 1; 

 

    global mechsol 

    mechsol = s; 

 

    test = []; test2 = []; 

    test(1) = sum((modC(:,4) - modC(:,5)).^2); 

    test(2) = sum(modC(:,6))/size(modC,1); 

    try 

        test(3) = sum((modC(1:size(modS,1),4) - 

(modC(1:size(modS,1),5)./max(abs(modC(1:size(modS,1),5))))).^2); 

        test(4) = sum(modC(1:size(modS,1),7))/size(modS,1); 

    catch 

        test(3) = 10; 

        test(4) = 0; 

    end 

    global modlist 

    store{1,x} = modlist{x}; 

    store{2,x} = []; 

    store{3,x} = [s(:,1) s(:,2) s(:,3) s(:,4)]; 

    store{4,x} = []; 

    store{5,x} = test(1); 

    store{6,x} = test(2); 

    store{7,x} = test(3); 

    store{8,x} = test(4); 

    store{9,x} = []; 

    store{10,x} = []; 

    store{11,x} = modC; 

 

end 
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7.2.4 MECHANISM ORIENTATIONS AND DIVERGENCE PLOTS 

This code plots the orientations of the mechanisms in different forms. 

7.2.4.1 VERSION 

Version 1.0, 27th January 2019. Thomas King   - First Version 

7.2.4.2 PARAMETER CUSTOMISATION 

Below are the suggested parameters to be modified. I don't recommend changing 

any of the code outside of these parameters. 

clear all; close all; warning off all 

 

% Animation and saving 

anim = 0; % set to 1 to turn on animation plots for divergence maps 

saving = 0; % set to 1 to save plots as they generate 

 

% Time Corrections 

timecorr = 132; 

 

% Fracture plot options 

sz = 0.4e-3; % Fracture display size 

 

% Divergence map options 

gstp = 0.005; % Gridding step 

 

% Mechanism list 

modlist = {'fitCLVD','fitDCQ','fitMM'}; 

 

% Mechanism colours 

C = brighten(parula(3),.25); 

C1 = C(1,:); 

C2 = brighten(C(2,:),-.1); 

C3 = C(3,:); 

 

% Data windowing 

wtype = 0; % Set to 0 for UCS, set to 1 for strain 

badj = [0.7 0.95]; % Data windowing as a percent of UCS 

wind = 0.005; % Data windowing as a value of strain 

winmax = 0.1; % Maximum width of window in strain if using animation 

numevents = 50; % minimum number of events per animation window 

7.2.4.3 COMPILE DATA 

% load mechanical data 

stress_strain 

 

% Load and order data 

load eventdatamech_ml_residual.mat 

load focalmechmodel.mat 
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[~,order] = sort(cell2mat(eventdata(:,2))); 

eventdata = eventdata(order,:); 

etime = cell2mat(eventdata(:,2)) - start - timecorr; 

7.2.4.4 WINDOWING 

if anim == 1 

    if wtype == 1 

        badj = [min(deform(:,2)):wind:max(deform(:,2))]; 

        B = badj; 

    elseif wtype == 0 

        B = badj.*deform(round(mean(find(max(stress(:,2))==stress(:,2)))),2); 

    end 

    for j = 1:length(B) 

        B3(j) = mean(deform(abs(deform(:,2) - B(j)) == min(abs(deform(:,2) - B(j))),1)); 

        B(j) = find(abs(etime - B3(j)) == min(abs(etime - B3(j)))); 

    end 

    B = unique(B); 

    B = [1,B,size(eventdata,1)]; 

    B2 = []; index = 0; strainave = []; 

    for i = 1:length(B) 

        index = index+1; 

        try 

            stp = 1; 

            B2(index,:) = [B(i-stp),B(i+stp)]; 

            while diff(B2(index,:)) < numevents 

                B2(index,:) = [B(i-stp),B(i+stp)]; 

                strainave(index) = mean([badj(i-stp),badj(i+stp)]); 

                stp = stp + 1; 

                if diff([badj(i-stp),badj(i+stp)]) > winmax || i+stp > length(B) 

                    break 

                end 

            end 

        catch 

            index = index-1; 

        end 

    end 

    ind = find(diff(B2')>100); 

    badj = badj(ind); B2 = B2(ind,:); strainave = strainave(ind(ind<length(strainave))); 

    B2(1,1) = 1; 

    B2(end,end) = size(eventdata,1); 

else 

    if wtype == 1 

        badj = [0:wind:max(deform(:,2))]; 

        B = badj; 

    elseif wtype == 0 

        B = badj.*deform(round(mean(find(max(stress(:,2))==stress(:,2)))),2); 

    end 

    for j = 1:length(B) 

        B3(j) = mean(deform(abs(deform(:,2) - B(j)) == min(abs(deform(:,2) - B(j))),1)); 

        B(j) = find(abs(etime - B3(j)) == min(abs(etime - B3(j)))); 

    end 

    B = [1,B,size(eventdata,1)]; index = 0; 

    for i = 1:length(B)-1 

        try 

            index = index + 1; 
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        B2(i,:) = [B(i),B(i+1)]; 

        strainave(i) = mean([badj(i),badj(i+1)]); 

        catch 

            index = index -1; 

        end 

    end 

    ind = find(diff(B2')>100); 

    B2 = B2(ind,:); strainave = strainave(ind(ind<length(strainave))); 

    B2(1,1) = 1; 

    B2(end,end) = size(eventdata,1); 

end 

7.2.4.5 CALCULATE ORIENTATIONS 

% Orientations for each mechanism 

tensile = cell(1,1,1); ind = []; 

collapse = tensile; 

shear = tensile; 

tindex = 0; cindex = 0; sindex = 0; 

tlist = ''; clist= ''; 

tmech = []; smech = []; cmech = []; 

 

for i = 1:size(eventdata,1) 

 

    % Skip unsolved mechanisms 

    if isempty(eventdata{i,14}) == 1 || isempty(eventdata{i,2}) == 1 

        continue 

    end 

 

    % Time correction 

    eventdata{i,2} = eventdata{i,2} - start - timecorr; 

    eventtime(i) = eventdata{i,2}; 

 

    % Fitting 

    store = eventdata{i,13}; 

    test = cell2mat(store(5:8,:))'; 

    test(:,[1,3]) = 1./test(:,[1,3]); 

    test2(:,1) = test(:,1).*test(:,2); 

    test2(:,2) = test(:,3).*test(:,4); 

    [~,order] = sort(test2(:,2),'descend'); 

 

    % Orientation prep 

    rot = store{3,order(1)}; 

    rot = store{3,order(1)}; 

    rotangle(i) = NaN; 

    azangle(i) = NaN; 

    Cang = [NaN NaN]; 

 

    % Mechanism prep 

    loc = eventdata{i,3}; 

    fitMOD = eval(eventdata{i,14}); % Load mechanism model 

    fit = fitMOD(:,1:3); 

    XYZold = fit; XYZold = XYZold'; x0=[0 0 0].'; u=[rot(1) rot(2) rot(3)].'; deg=rot(4); 

    [XYZnew, R, t] = AxelRot(XYZold, deg, u, x0); fit = XYZnew'; 

 

    ind1 = find(fitMOD(:,3) == max(fitMOD(:,3)))'; 
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    ind2 = find(fitMOD(:,3) == min(fitMOD(:,3)))'; 

    ind3 = find(fitMOD(:,2) == max(fitMOD(:,2)))'; 

    ind4 = find(fitMOD(:,2) == min(fitMOD(:,2)))'; 

    ind5 = find(fitMOD(:,1) == max(fitMOD(:,1)))'; 

    ind6 = find(fitMOD(:,1) == min(fitMOD(:,1)))'; 

 

    if mean(ismember(eventdata{i,14},modlist{3})) == 1 

        etype(i) = 3; 

        ind1 = []; ind2 = []; 

    elseif mean(ismember(eventdata{i,14},modlist{2})) == 1 

        etype(i) = 2; 

        ind5 = []; ind6 = []; 

    elseif mean(ismember(eventdata{i,14},modlist{1})) == 1 

        etype(i) = 1; 

        ind5 = []; ind6 = []; 

    end 

 

    % Generate surface for rotated mechanism 

    p = []; 

    for pp = 1:6 

        try 

            p = [p;(fit(eval(['ind',num2str(pp)]),:))]; 

        catch 

            p = [p;(fit(eval(['ind',num2str(pp)]),:))']; 

        end 

    end 

    x = p(:,1); y = p(:,2); z = p(:,3); 

    xq = linspace(min(x), max (x),10); 

    yq = linspace(min(y), max (y),10); 

    [X,Y] = meshgrid(xq,yq); 

    Z = griddata(x,y,z, X, Y, 'cubic'); 

    corn = [x,y,zeros(size(z,1),1)]; 

 

    % Generate surface for non-rotated mechanism 

    p = []; 

    for pp = 1:6 

        try 

            p = [p;fitMOD(eval(['ind',num2str(pp)]),1:3)]; 

        catch 

            p = [p;fitMOD(eval(['ind',num2str(pp)]),1:3)']; 

        end 

    end 

    x = p(:,1); y = p(:,2); z = p(:,3); 

    xq = linspace(min(x), max (x),10); 

    yq = linspace(min(y), max (y),10); 

    [X1,Y1] = meshgrid(xq,yq); 

    Z1 = griddata(x,y,z, X1, Y1, 'cubic'); 

    corn2 = [x,y,zeros(size(z,1),1)]; 

 

    % Calculate angular difference between the two surfaces 

    [nx1 ny1 nz1] = surfnorm(X,Y,Z); 

    [nx2 ny2 nz2] = surfnorm(X1,Y1,Z1+10); 

    beta = acosd(dot([nx2(:),ny2(:),nz2(:)]',[nx1(:),ny1(:),nz1(:)]')); 

    alpha = atan2d(nx1(:),ny1(:)); 

    alpha = mean(alpha(isnan(alpha)==0)); 

    Cang(1) = alpha; 

    Cang(2) = 90-mean(beta(isnan(beta)==0)); 
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    % Angular corrections 

    if Cang(1) < 0 

        Cang(1) = 180 + abs(diff([Cang(1) -180])); 

    end 

    if ismember(eventdata{i,14},modlist{3}) == 1 

        Cang(1) = Cang(1) + 90; % Tensile correction 

    end 

    if Cang(1) > 360 

        Cang(1) = 0 + abs(diff([Cang(1) 360])); 

    end 

 

    azangle(i) = Cang(1); % Fracture Azimuth 

    rotangle(i) = 90 - abs(Cang(2)); % Fracture Dip 

 

    % Set window for current event 

    if badj ~= 0 

 

        tind = find(B2(:,1) <= i & B2(:,2) >= i); 

 

        %         tind = find(B < i); 

        %         try 

        %             tind = tind(end); 

        %         catch 

        %             tind = 1; 

        %         end 

    else 

        tind = find(B2(:,1) <= i & B2(:,2) >= i); 

    end 

 

    % Generate fracture ellipsoids 

    C = loc;   % center of circle 

    R = 1;    % Radius of circle 

    teta=0:0.01:2*pi ; 

    X=R*cos(teta); 

    Y=R*sin(teta) ; 

    Z = zeros(size(X)); 

    X = X.*4; 

    Y = Y./2; 

    fit = [X',Y',Z']; 

 

    % Rotations 

    XYZold = fit; XYZold = XYZold'; x0=[0 0 0].'; u=[1 0 0].'; deg = 90; 

    [XYZnew, R, t] = AxelRot(XYZold, deg, u, x0); fit = XYZnew'; 

    XYZold = fit; XYZold = XYZold'; x0=[0 0 0].'; u=[0 1 0].'; deg = abs(Cang(2)); 

    [XYZnew, R, t] = AxelRot(XYZold, deg, u, x0); fit = XYZnew'; 

    XYZold = fit; XYZold = XYZold'; x0=[0 0 1].'; u=[0 0 1].'; deg = 180 + azangle(i); 

    [XYZnew, R, t] = AxelRot(XYZold, deg, u, x0); fit = XYZnew'; 

 

    % Resizing 

    X = fit(:,1).*sz+loc(1); Y = fit(:,2).*sz+loc(2); Z = fit(:,3).*sz+loc(3); 

 

    % Store data for individual mechanism types 

    if mean(ismember(eventdata{i,14},modlist{3})) == 1 

        for ttt = 1:length(tind) 

            tindex = tindex+1; 

            tensile{tindex,1,tind(ttt)} = X; 

            tensile{tindex,2,tind(ttt)} = Y; 

            tensile{tindex,3,tind(ttt)} = Z; 
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            tensile{tindex,4,tind(ttt)} = C3; 

            tensile{tindex,5,tind(ttt)} = loc; 

            tensile{tindex,6,tind(ttt)} = Cang(1); 

            tensile{tindex,7,tind(ttt)} = abs(Cang(2)); 

        end 

    elseif mean(ismember(eventdata{i,14},modlist{2})) == 1 

 

        for ttt = 1:length(tind) 

            sindex = sindex+1; 

            shear{sindex,1,tind(ttt)} = X; 

            shear{sindex,2,tind(ttt)} = Y; 

            shear{sindex,3,tind(ttt)} = Z; 

            shear{sindex,4,tind(ttt)} = C2; 

            shear{sindex,5,tind(ttt)} = loc; 

            shear{sindex,6,tind(ttt)} = Cang(1); 

            shear{sindex,7,tind(ttt)} = abs(Cang(2)); 

        end 

    elseif mean(ismember(eventdata{i,14},modlist{1})) == 1 

        for ttt = 1:length(tind) 

            cindex = cindex+1; 

            collapse{cindex,1,tind(ttt)} = X; 

            collapse{cindex,2,tind(ttt)} = Y; 

            collapse{cindex,3,tind(ttt)} = Z; 

            collapse{cindex,4,tind(ttt)} = C1; 

            collapse{cindex,5,tind(ttt)} = loc; 

            collapse{cindex,6,tind(ttt)} = Cang(1); 

            collapse{cindex,7,tind(ttt)} = abs(Cang(2)); 

        end 

    end 

 

    % Removes skipped data 

    ind = [ind,i]; 

 

    % Converts event time to strain value 

    straintime(i,1) = mean(deform(abs(deform(:,1) - eventdata{i,2}) == 

min(abs(deform(:,1) - eventdata{i,2})),2)); 

 

end 

 

eventdata = eventdata(ind,:); 

straintime = straintime(ind); 

etype = etype(ind); 

rotangle = rotangle(ind); 

azangle = azangle(ind); 

7.2.4.6 SEPERATE EVENTS BY AZIMUTH ACCORDING TO PRINCIPAL 

SHEAR DIRECTION 

% Compile 

infstore = [straintime,abs(rotangle'),etype']; 

infstore2 = [straintime,azangle',etype']; 

 

% Remove bad data 

ind = find(isnan(infstore(:,2)) == 1 | isnan(infstore2(:,2)) == 1); 

infstore(ind,:) = []; 
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infstore2(ind,:) = []; 

 

% Shear direction 

viewang = mode(round(infstore2(infstore2(:,3) == 2,2),-1)); % - 30 

 

% Seperation and correction 

infstore2(:,2) = infstore2(:,2)-viewang; 

for i = 1:size(infstore2,1) 

    if infstore2(i,2) > 180 

        infstore2(i,2) = -180 + abs(diff([infstore2(i,2) 180])); 

    elseif infstore2(i,2) < -180 

        infstore2(i,2) = 180 - abs(diff([infstore2(i,2) -180])); 

    end 

end 

ind = find(infstore2(:,2) >= -90 & infstore2(:,2) <= 90); 

infstore(:,4)  = 2; % Perpendicular to shear 

infstore(ind,4)  = 1; % Parallel to shear 

 

%return 

7.2.4.7 DIVERGENCE MAPS 

figure 

 

% Plotting stuff 

windows = FindClosestFactorization(min(min([size(shear,3) size(collapse,3) 

size(tensile,3)]))); 

if windows(1) == 1 && windows(2) > 5 

    windows = FindClosestFactorization(min(min([size(shear,3) size(collapse,3) 

size(tensile,3)]))+1); 

end 

 

for k = 1:min(min([size(shear,3) size(collapse,3) size(tensile,3)])) 

 

    % Set current plot 

    if anim == 1 

        cla; hold on; 

        title([num2str(mean([badj(k) badj(k+1)])),'% Strain']) 

    else 

        subplot(windows(1),windows(2),k);cla; hold on; 

    end 

    pbaspect([4 10, 1]) 

    xlim([-0.02 0.02]) 

    ylim([-0.05 0.05]) 

 

    % Compile data for window 

    cCol = cell2mat(collapse(:,6,k)); 

    cdip = cell2mat(collapse(:,7,k)); 

    csip  = 90-abs(cdip); 

    cCol = cCol -180; 

    cCol(cCol < 0) = 360 - abs(diff([cCol(cCol < 0), zeros(length(cCol(cCol < 

0)),1)]'))'; 

    cloc = [cell2mat(tensile(:,5,k))]; 

    cstrike = [cell2mat(tensile(:,6,k))]; 

    cdip = [cell2mat(tensile(:,7,k))]; 

    cloc = [cloc;cell2mat(collapse(:,5,k));cell2mat(shear(:,5,k))]; 
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    cstrike = [cstrike;cCol;cell2mat(shear(:,6,k))]; 

    cdip = [cdip;csip;cell2mat(shear(:,7,k))]; 

 

    % Removes some more bad data 

    ind = find(isnan(cstrike)==1); 

    cloc(ind,:) = []; 

    cstrike(ind) = []; 

    cdip(ind) = []; 

 

    % Converts angular data into vectors 

    slocs = cloc; 

    posarray = []; magarray = []; magindex = 0; 

    for i = 1:size(cstrike,1) 

        s1  = [cstrike(i),cdip(i)]; 

        lr = [-gstp/2 0 0;gstp/2 0 0]; 

        fit = lr; 

        XYZold = fit; XYZold = XYZold'; x0=[0 0 1].'; u=[0 0 1].'; deg = 90+s1(1,1)-

mode(round(infstore2(infstore2(:,3) == 2,2),-1)); 

        [XYZnew, R, t] = AxelRot(XYZold, deg, u, x0); fit = XYZnew'; 

        XYZold = fit; XYZold = XYZold'; x0=[0 0 0].'; u=[0 1 0].'; deg =  s1(1,2); 

        [XYZnew, R, t] = AxelRot(XYZold, deg, u, x0); fit = XYZnew'; 

        lr = fit+slocs(i,:); 

        a = lr(lr(:,3)==max(lr(:,3)),:); 

        b = slocs(i,:); 

        c = lr(lr(:,3)==min(lr(:,3)),:); 

        mpoint = (a+b)./2; 

        magindex = magindex + 1; 

        posarray(magindex,:) = [mpoint(1),mpoint(2),mpoint(3)]; 

        magarray(magindex,:) = [diff([a(1),c(1)]),diff([a(2),c(2)]),diff([a(3),c(3)])]; 

    end 

 

    % Grid 3D vector data into 2D plane 

 

    gstp2 = gstp/5; 

    [X3,Y3,Z3] = meshgrid(-0.02:gstp2:0.02,-0.02:gstp2:0.02,-0.05:gstp2/(5/2):0.05); 

    xx = posarray(:,1); 

    yy = posarray(:,2); 

    zz = posarray(:,3); 

    Vxx = magarray(:,1); 

    Vyy = magarray(:,2); 

    Vxx = zeros(length(magarray),1); 

    Vzz = magarray(:,3); 

    FVx = griddata(xx,yy,zz,Vxx,X3,Y3,Z3,'natural'); 

    FVy = griddata(xx,yy,zz,Vyy,X3,Y3,Z3,'natural'); 

    FVz = griddata(xx,yy,zz,Vzz,X3,Y3,Z3,'natural'); 

    V3x = FVx; 

    V3y = FVy; 

    V3z = FVz; 

 

    % Calculate divergence map 

    div = divergence(V3x,V3y,V3z); 

 

    % Regrids the data a bit more 

    div = div(:); 

    Y3 = Y3(:); Z3 = Z3(:); 

    Y4 = Y3(isnan(div)==0); 

    Z4 = Z3(isnan(div)==0); 

    div2 = div(isnan(div)==0); 
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    gstp3 = gstp/50; 

    [x,y] = meshgrid(-0.02:gstp3:0.02,-0.05:gstp3:0.05); 

    vq = griddata(Y4,Z4,div2,x(:),y(:),'cubic'); 

 

    vq(vq>5e-4) = 5e-4; 

    vq(vq<-5e-4) = -5e-4; 

    lim = 5e-4; 

 

 

    % Plotting 

    contourf(-x,y,reshape(vq,size(x,1),size(x,2)),11,'LineStyle','none') 

    if anim == 1 

        mapstore{k,1} = strainave(k); 

        mapstore{k,2} = x; 

        mapstore{k,3} = y; 

        mapstore{k,4} = vq; 

    end 

    colormap(jet); 

 

    cmin = -lim; 

    cmax = lim; 

    caxis([cmin cmax]) 

        colorbar('location','southoutside','Ticks',[cmin,cmax],... 

        'TickLabels',{'Compaction','Dilation'},'FontSize',30) 

 

    % Plot bounding box 

    plot([-0.02 -0.02 0.02 0.02 -0.02],[-0.05 0.05 0.05 -0.05 -0.05],'k-') 

 

    % 1cm Scale bar 

    plot([-0.019 -0.019 -0.009 -0.009],[-0.0479 -0.049 -0.049 -0.0479],'k-

','linewidth',3) 

    plot([-0.019 -0.019 -0.009 -0.009],[-0.048 -0.049 -0.049 -0.048],'w-

','linewidth',1.5) 

 

    % Plot stuff 

    set(gca,'xtick',[]) 

    set(gca,'xticklabel',[]) 

    set(gca,'ytick',[]) 

    set(gca,'yticklabel',[]) 

    set(gca,'box','off') 

    set(gcf,'color','w') 

 

    drawnow 

    display(k) 

 

    if anim == 1 && saving == 1 

        cd focalmechanimation 

        set(gcf,'units','normalized','outerposition',[0 0 1 1]) 

        %myaa(10) 

        saveas(gcf,[num2str(k),'.png']) 

        cd .. 

    end 

end 

 

if anim == 0 && saving == 1 

    set(gcf,'units','normalized','outerposition',[0 0 1 1]) 

    %myaa('publish') 

    saveas(gcf,'divergencemaps.png') 
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end 

 

%return 

7.2.4.8 MECHANISM LOCATION PLOTS 

% Sample cylinder 

[X1 Y1 Z1] = cylinder(0.02); % Makes a cylinder with radius 0.02 

Z1(2,:) = 0.1; % Sets cylinder height to 0.1 

shp = surf2patch(X1,Y1,Z1); % Makes it into a patch 

X = shp.vertices(:,1); 

Y = shp.vertices(:,2); 

Z = shp.vertices(:,3)-0.05; % Puts into the correct place 

shp = alphaShape(X,Y,Z,1,'HoleThreshold',10000); % Makes it into a shape 

 

% Plot Tensile events 

figure; 

for k = 1:min(min([size(shear,3) size(collapse,3) size(tensile,3)])) 

 

    % Plot stuff 

    subplot(1,min(min([size(shear,3) size(collapse,3) size(tensile,3)])),k);hold on; 

    pbaspect([4 4, 10]) 

    xlim([-0.02 0.02]) 

    ylim([-0.02 0.02]) 

    zlim([-0.05 0.05]) 

    view([viewang 0]) 

 

    % Plot fracture ellipses 

    for i = 1:size(tensile(:,:,k),1) 

        if i == 1; cla;    

plot(shp,'FaceColor','black','EdgeColor','none','Facealpha',0.1) 

            set(gcf,'color','w') 

            axis off 

            %camproj('perspective') 

        end 

        fill3(tensile{i,1,k},tensile{i,2,k},tensile{i,3,k},tensile{i,4,k},'linestyle','-

','edgecolor',[0.25 0.25 0.25]); 

    end 

% 

%     % 1cm Scale bar 

%     plot3([0 0 0 0],[-0.019 -0.019 -0.009 -0.009],[-0.0479 -0.049 -0.049 -0.0479],'k-

','linewidth',3) 

%     plot3([0 0 0 0],[-0.019 -0.019 -0.009 -0.009],[-0.048 -0.049 -0.049 -0.048],'w-

','linewidth',1.5) 

 

end 

 

% Plot Shearing events 

%figure; 

for k = 1:min(min([size(shear,3) size(collapse,3) size(tensile,3)])) 

 

    % Plot stuff 

    subplot(1,min(min([size(shear,3) size(collapse,3) size(tensile,3)])),k);hold on; 

    pbaspect([4 4, 10]) 

    xlim([-0.02 0.02]) 

    ylim([-0.02 0.02]) 
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    zlim([-0.05 0.05]) 

    view([viewang 0]) 

 

    % Plot fracture ellipses 

    for i = 1:size(shear(:,:,k),1) 

        %         if i == 1; %cla; 

        %             plot(shp,'FaceColor','black','EdgeColor','none','Facealpha',0.1) 

        %             set(gcf,'color','w') 

        %             axis off 

        %             camproj('perspective') 

        %         end 

        fill3(shear{i,1,k},shear{i,2,k},shear{i,3,k},shear{i,4,k},'linestyle','-

','edgecolor',[0.25 0.25 0.25]); 

    end 

end 

 

% Plot Closing events 

%figure(2); 

for k = 1:min(min([size(shear,3) size(collapse,3) size(tensile,3)])) 

 

    % Plot stuff 

    subplot(1,min(min([size(shear,3) size(collapse,3) size(tensile,3)])),k);hold on; 

    pbaspect([4 4, 10]) 

    xlim([-0.02 0.02]) 

    ylim([-0.02 0.02]) 

    zlim([-0.05 0.05]) 

    view([viewang 0]) 

 

    % Plot fracture ellipses 

    for i = 1:size(collapse(:,:,k),1) 

        %         if i == 1; %cla; 

        %             plot(shp,'FaceColor','black','EdgeColor','none','Facealpha',0.1) 

        %             set(gcf,'color','w') 

        %             axis off 

        %             camproj('perspective') 

        %         end 

        

fill3(collapse{i,1,k},collapse{i,2,k},collapse{i,3,k},collapse{i,4,k},'linestyle','-

','edgecolor',[0.25 0.25 0.25]); 

    end 

end 

 

if saving == 1 

    set(gcf,'units','normalized','outerposition',[0 0 1 1]) 

    %myaa('publish') 

    saveas(gcf,'mechmaps.png') 

end 
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7.3 PEAK DELAY 

7.3.1 PEAK DELAY MEASUREMENT 

Automatically picks the peak delay for the chosen frequency ranges 

7.3.1.1 VERSION 

Version 1.0, 12th February 2019. Thomas King   - First Version 

7.3.1.2 PARAMETER CUSTOMISATION 

Below are the suggested parameters to be modified. I don't recommend changing 

any of the code outside of these parameters. 

clear all; close all; warning off all 

 

% sourceloc or eventdatamech (0 or 1) 

sources = 0; % Loading data from eventdatamech allows to pick for specific types of 

events e.g. T-type 

mechtype = 'fitMM'; 

 

% Frequencys. Nx3 matrix, [min, max, mean] 

freq(:,1) = [50000;100000;200000;400000]; 

freq(:,2) = 2.*freq(:,1); 

freq(:,3) = round(freq(:,1) + (freq(:,2)-freq(:,1))/2,0); 

 

% Pre-compiles waveform data 

compile = 1; 

7.3.1.3 COMPILE DATA 

if compile == 1 

    % Load data 

    load('recloc.mat'); 

    load('pktimes_ml.mat') 

    load tempi_ml.mat 

    load('sourceloc_ml.mat'); 

    if sources == 1 

        load eventdatamech_ml.mat 

 

        % Data clearing 

        emptyCells = cellfun(@isempty,eventdata(:,14)); 

        eventdata(emptyCells,:) = []; 

 

        % Match sourcelocs to eventdata file list 

        ind = []; 

        for i = 1:size(sourcelocs,1) 

            for j = 1:size(eventdata,1) 

                test = strcmp(sourcelocs{i,1},eventdata{j,1}); 

                if test == 1 
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                    ind = [ind,i]; 

                    break 

                end 

 

            end 

        end 

        sourcelocs = sourcelocs(ind,:); 

        pktimes = pktimes(:,:,ind); 

        tempi = tempi(ind); 

    end 

 

    % Compiles data into matrices 

    cd sg2; index = 0; 

    for i = 1:size(sourcelocs,1) 

        display(num2str(size(sourcelocs,1)-i+1)) 

 

        % Skip mechanisms you don't want 

        if sources == 1 && mean(ismember(eventdata{i,14},mechtype)) ~= 1 

            continue 

        end 

 

        % Load waveform 

        [signal,SR] = leggisg2(char(sourcelocs(i,1))); 

        if index == 0; Ts = SR; Fs = 1/SR; end 

 

        % Compile 

        for j = 1:size(recloc,1) 

                if isempty(pktimes{j,2,i}) == 1 || isnan(pktimes{j,2,i}) == 1 

                    continue 

                end 

                index = index + 1; 

                allsig(:,index) = signal(:,j); % waveform data 

                rayparam(index,1) = j; % channel 

                rayparam(index,2) = pktimes{j,2,i}; % pick time pk(i,n);% 

                rayparam(index,3) = norm(cell2mat(sourcelocs(i,2:4)) - recloc(j,:)); % 

distance 

                rayparam(index,4) = sourcelocs{i,5}; % Source time 

                rayparam(index,5:7) = cell2mat(sourcelocs(i,2:4)); % Source Location 

                rayparam(index,8:10) = recloc(j,:); % Receiver location 

                rayparam(index,12) = i; %Event 

                rayparam(index,13) = pktimes{j,3,i}; % SNR ratios 

                rayparam(index,14) = pktimes{j,4,i}; 

                rayparam(index,15) = pktimes{j,5,i}; 

                rayparam(index,16) = pktimes{j,6,i}; 

                rayparam(index,17) = pktimes{j,7,i}; 

        end 

    end 

    cd .. 

    save peakdelayrays.mat allsig rayparam 

else 

    load peakdelayrays.mat 

end 

7.3.1.4 MEASURE PEAK DELAY 
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indextt = 0; % Clock 

for fr = 1:size(freq,1) % Frequency 

    for r = 1:size(allsig,2) 

        % Set bandpass filter 

        if r == 1 

            [fsignal,Hd] = bandpass(allsig(:,r),[freq(fr,1) freq(fr,2)],Fs); 

        else 

            fsignal = filter(Hd,allsig(:,r)); 

        end 

 

        % Clock 

        indextt = indextt + 1; 

        time = round((indextt/(size(freq,1)*size(allsig,2)))*100,1); 

        if indextt == 1 

            timemem = time; 

        end 

        if time > timemem 

            display([num2str(time),'%']) 

            timemem = time; 

        end 

 

        % Measurements 

        tt = round(rayparam(r,2)/Ts,0); % arrival time 

        sigbck = allsig(:,r); % backup 

        efsignal = smooth(envelope(fsignal,round(freq(fr,3)/Fs)+1,'rms'),100); % smoothed 

envelope 

 

        try 

            delay = find(efsignal(tt:end) == max(efsignal(tt:end))); % peak delay 

            lapseerr(r,fr) = abs(efsignal(delay+tt))./max(abs(efsignal(1:tt))); % error 

measurement peak-SNR 

            lapse(r,fr) = delay*Ts; % Convert to real time 

        catch 

            lapseerr(r,fr) = NaN; 

            lapse(r,fr) = NaN; 

        end 

    end 

end 

 

save peakdelay_measurements.mat lapse lapseerr freq 
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7.3.2 PEAK DELAY PLOTTING 

Plots peak delay in various forms 

7.3.2.1 VERSION 

Version 1.0, 12th February 2019. Thomas King   - First Version 

7.3.2.2 PARAMETER CUSTOMISATION 

Below are the suggested parameters to be modified. I don't recommend changing 

any of the code outside of these parameters. 

clear all; close all; warning off all 

 

% Spatial maps parameters 

modstp = 0.005; % Grid size used in mapping 

numwin = 1; % Splits data into a number of time windows 

numrays = 1000; % Maximum number of rays to use in maps, smaller = faster 

deg = -70; % Rotate data for 2D maps 

minrays = 2; % Mininum number of raypaths per grid block 

smoothing = 1.1; % Smoothing parameter 

 

% Corrections 

timecorr = 132; 

7.3.2.3 COMPILE 

% Load data 

 

load peakdelay_measurements.mat 

load peakdelayrays.mat 

load recloc.mat 

 

% Time calibration 

stress_strain 

rayparam(:,4) = rayparam(:,4) - start - timecorr; 

 

nevents = round(size(rayparam,1)/numwin); % Fixed number of events 

 

% Data sorting 

[~,order] = sort(rayparam(:,4)); 

rayparam = rayparam(order,:); 

lapse = lapse(order,:); 

lapseerr = lapseerr(order,:); 

 

% Data cleaning 

tlim = [-8.91 -9.415 -9 -9.15]; % e.g. Mie resonance thresholds 

for fr = 1:size(lapse,2) 

    %ind = find(log(lapse(:,fr)) > tlim(fr)); % For example, anomalously high delays 

    ind = find(lapseerr(:,fr) > 50 | lapseerr(:,fr) < 2 | ... 

        log(lapse(:,fr)) > tlim(fr)); % Or too low Peak SNR 
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    %ind = find(lapseerr(:,fr) > 2 & log(lapse(:,fr)) < tlim(fr) & lapseerr(:,fr)<200); 

    lapse(ind,fr) = NaN; 

    ind = 1:1:length(lapse(:,fr)); 

 

    if fr == 1 

        indmem = ind; 

    else 

        ind2 = find(ismember(indmem,ind)); 

        indmem = indmem(ind2); 

    end 

end 

ind = indmem; 

rayparam = rayparam(ind,:); 

lapse = lapse(ind,:); 

lapseerr = lapseerr(ind,:); 

 

% Compile into single cell array 

for fr = 1:size(lapse,2) 

    clapse = lapse(:,fr); 

    cerr = lapseerr(:,fr); 

    crayparam = rayparam; 

    lapsetimes{fr,1} = clapse; 

    lapsetimes{fr,2} = crayparam; 

    lapsetimes{fr,4} = cerr; 

end 

7.3.2.4 PEAK DELAY VS. TIME 

% Time of sample failure 

ind = find(diff(deform(:,2)) > 0.02); 

failuretime = deform(ind(1),1); 

factors = FindClosestFactorization(size(lapse,2)); 

 

for fr = 1:size(lapse,2) 

 

    % Load 

    cerr = lapsetimes{fr,4}; 

    crayparam = lapsetimes{fr,2}; 

    clapse = lapsetimes{fr,1}; 

 

    % Normalise around average 

    clapse = clapse - mean(clapse(isnan(clapse)==0)); 

 

    % Calculate standard error in bins 

    err = []; smtlapse = []; smoot = 1500; 

    for e = 1:length(clapse) 

        try 

            chk = clapse(e-round(smoot/2):e+round(smoot/2)); 

            chk = chk(isnan(chk)==0); 

            smtlapse(e) = mean(chk); 

            err(e) = std(chk)/sqrt(length(chk)); 

        catch 

            err(e) = NaN; 

            smtlapse(e) = NaN; 

        end 

    end 
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    % Plotting 

    figure(1); subplot(factors(1),factors(2),fr); 

    title([num2str(freq(fr,3)),'KHz']) 

    yyaxis left; cla 

    shadedErrorBar(crayparam(:,4),smtlapse,err,'lineprops','k') 

    ylabel('Peak Delay') 

    xt = get(gca, 'YTick'); 

    set(gca, 'FontSize', 16,'Ycolor','k') 

    xt = get(gca, 'XTick'); 

    set(gca, 'FontSize', 16) 

    set(gcf,'color','white') 

    yyaxis right; cla; 

    hold on 

    plot(smooth(deform(:,1),100),(stress(:,2)),'w-','linewidth',4); 

    f = plot(smooth(deform(:,1),100),(stress(:,2)),'k-','linewidth',2); 

    ylabel('D. stress (MPa)','Fontsize',24,'Color','k') 

    xlabel('Experimental time (minutes)','Fontsize',24) 

 

    xt = get(gca, 'YTick'); 

    set(gca, 'FontSize', 16,'Ycolor','k') 

    xt = get(gca, 'XTick'); 

    set(gca, 'FontSize', 16) 

    set(gcf,'color','white') 

    xlim([deform(1,1) deform(end,1)]) 

    

xticks([0:mean(diff(deform(:,1)))*round((max(deform(:,1))/mean(diff(deform(:,1))))/5):max

(deform(:,1))]) 

    datetick('x','MM:SS','keeplimits') 

    drawnow 

end 

7.3.2.5 AMPLITUDE RATIO COUNTS 

for fr = 1:size(lapse,2) 

 

    % Load 

    cerr = lapsetimes{fr,4}; 

    crayparam = lapsetimes{fr,2}; 

 

    % Sets a threshold value 

    bmax = 25; % If plots come out blank, increase this value 

    [c,d] = find(cerr>bmax); 

    for j = 1:length(c) 

        cerr(c(j),d(j)) = bmax; 

    end 

 

    % Before failure 

    figure(2); subplot(factors(1),factors(2),fr); cla 

    [a,b] = histcounts(cerr(crayparam(:,4) < failuretime),'BinEdges',[0:bmax/10:bmax]); 

    [a2,b2] = histcounts(cerr(crayparam(:,4) > failuretime),'BinEdges',[0:bmax/10:bmax]); 

    ind = find(a == max(a)); 

    a = a(ind:end); b = b(ind+1:end)-0.25; 

    ind = find(a2 == max(a2)); 

    a2 = a2(ind:end); b2 = b2(ind+1:end)-0.25; 

    histogram(cerr(crayparam(:,4) < failuretime),'BinEdges',[0:bmax/10:bmax],... 
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        'FaceColor',[0.65 0.65 0.65],'FaceAlpha',0.5) 

    hold on; 

    title([num2str(freq(fr,3)),' KHz before'],'Fontsize',16) 

    try 

        ylim([0 1.1*max(a(b<bmax))]) 

    end 

    ylabel('Counts','Fontsize',16); xlabel('Peak amplitude to noise ratio','Fontsize',16) 

    set(gcf,'color','w') 

    xt = get(gca, 'YTick'); 

    set(gca, 'FontSize', 16,'Ycolor','k') 

    xt = get(gca, 'XTick'); 

    set(gca, 'FontSize', 16) 

 

    % After failure 

    figure(3); subplot(factors(1),factors(2),fr); cla 

    histogram(cerr(crayparam(:,4) > failuretime),'BinEdges',[0:bmax/10:bmax],... 

        'FaceColor',[0 0 0],'FaceAlpha',0.5) 

    hold on 

    try 

        ylim([0 1.1*max(a2(b2<bmax))]) 

    end 

    ylabel('Counts','Fontsize',16); xlabel('Peak amplitude to noise ratio','Fontsize',16) 

    title([num2str(freq(fr,3)),' KHz after'],'Fontsize',16) 

    set(gcf,'color','w') 

    xt = get(gca, 'YTick'); 

    set(gca, 'FontSize', 16,'Ycolor','k') 

    xt = get(gca, 'XTick'); 

    set(gca, 'FontSize', 16) 

    drawnow 

 

end 

7.3.2.6 PEAK DELAY VS. FREQUENCY 

mpeak = []; stack = []; 

for fr = 1:size(lapse,2) 

 

    % Load 

    crayparam = lapsetimes{fr,2}; 

    clapse = lapsetimes{fr,1}; 

 

    % Stack data and take average 

    mpeak(fr,:) = [freq(fr,3),mean(clapse(isnan(clapse)==0))]; 

    stack = vertcat(stack, [repmat(freq(fr,3),length(clapse),1),clapse, crayparam(:,4)]); 

 

end 

 

% Data fitting 

p1 = polyfit(stack(stack(:,3)<failuretime,1),(stack(stack(:,3)<failuretime,2)),1); 

p2 = polyfit(stack(stack(:,3)>failuretime,1),(stack(stack(:,3)>failuretime,2)),1); 

 

% Plotting 

figure(4); cla; title('Frequency') 

scatter(stack(:,1),(stack(:,2)),5,[0.5 0.5 0.5],'filled'); hold on 

plot(freq(:,3),freq(:,3)*p1(1)+p1(2),'r-'); % before 

plot(freq(:,3),freq(:,3)*p2(1)+p2(2),'b-'); % after 
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ylabel('Peak Delay','Fontsize',16) 

xlabel('Frequency (Hz)','Fontsize',16) 

set(gcf,'color','w') 

xt = get(gca, 'YTick'); 

set(gca, 'FontSize', 16,'Ycolor','k') 

xt = get(gca, 'XTick'); 

set(gca, 'FontSize', 16) 

drawnow 

7.3.2.7 PEAK DELAY VS. HYPOCENTRAL DISTANCE 

b2 = []; 

for fr = 1:size(lapse,2) 

 

    % Load 

    crayparam = lapsetimes{fr,2}; 

    clapse = lapsetimes{fr,1}; 

 

    % Data fitting 

    y = (clapse); 

    x = (crayparam(:,3)); 

    [~,order] = sort(x); 

    x = x(order); 

    y = y(order); 

    ind = find(isnan(y) == 0 & isinf(y) == 0 & ... 

        crayparam(:,3) > 0.02 & crayparam(:,3) < 0.04);% > 0 & err < 100); 

    W = ones(length(x),1); 

    W(log(y(ind)) > -11 & log(y(ind)) < -9) = 10; 

 

    b2(:,fr) = flipud(wpolyfit(log(x(ind)),log(y(ind)),1,W(ind))'); 

 

    % Plotting 

    figure(5); subplot(factors(1),factors(2),fr); cla; hold on 

    scatter((x).*1000,log(y),5,[0.5 0.5 0.5],'filled') 

    plot([min(x):0.001:max(x)].*1000,log([min(x):0.001:max(x)])*b2(2,fr) + b2(1,fr),'k-

','Linewidth',2) 

    title([num2str(freq(fr,3)),'KHz'],'Fontsize',16) 

    ylabel('log(t_p) (ms)','Fontsize',16) 

    xlabel('R (mm)','Fontsize',16) 

    set(gcf,'color','w') 

    xt = get(gca, 'YTick'); 

    set(gca, 'FontSize', 16,'Ycolor','k') 

    xt = get(gca, 'XTick'); 

    set(gca, 'FontSize', 16) 

 

    % Hypocentral distance correction 

    cpobs = real(log(y) - log(x)*b2(2,fr) + b2(1,fr)); 

    cpobs(isinf(cpobs)==1) = NaN; 

    dtpobs{fr,1} = cpobs; 

    drawnow 

 

end 
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7.3.2.8 SPATIAL MAPPING 

[x,y,z] = meshgrid(-0.04:modstp:0.04,-0.04:modstp:0.04,-0.1:modstp/(5/2):0.1); 

model = x(:); 

model(:,2) = y(:); 

model(:,3) = z(:); 

model(:,4) = [1:1:size(model,1)]; 

modelbck = model; % backup 

 

for n = 1:numwin 

    for fr = 1:size(freq,1) 

        % Load 

        crayparam = lapsetimes{fr,2}; 

 

        % Ray tracing 

        if fr == 1 

            raypath = []; 

            if n ~= numwin 

                sources = [crayparam(nevents*(n-1)+1:nevents*n,5:7) crayparam(nevents*(n-

1)+1:nevents*n,... 

                    8:10) [1:1:length(crayparam(nevents*(n-1)+1:nevents*n,5))]' 

crayparam(nevents*(n-1)+1:nevents*n,4)]; 

            else 

                sources = [crayparam(nevents*(n-1)+1:end,5:7) crayparam(nevents*(n-

1)+1:end,... 

                    8:10) [1:1:length(crayparam(nevents*(n-1)+1:end,5))]' 

crayparam(nevents*(n-1)+1:end,4)]; 

            end 

            % Draw rays 

            figure(6); cla; hold on 

            for i = 1:round(size(sources,1)/numrays)+1:size(sources,1) 

 

                % Source position 

                x3 = sources(i,1); 

                y3 = sources(i,2); 

                z3 = sources(i,3); 

 

                % Receiver position 

                x4 = sources(i,4); 

                y4 = sources(i,5); 

                z4 = sources(i,6); 

 

                % Event time 

                t = sources(i,end); 

 

                % Compiles rays 

                raystep = 0:modstp/4:norm([x3 y3 z3] - [x4 y4 z4]); 

                try; raypath2 = linspaceNDim([x3 y3 z3],[x4 y4 z4], length(raystep)); 

                catch; continue; end 

                raypath2 = raypath2'; 

                raypath2(:,4) = sources(i,7); 

                raypath2(:,6) = i; 

                raypath2(:,10) = t; 

                [~,ang] = rangeangle([x3 y3 z3]',[x4 y4 z4]'); 

                raypath2(:,7) = ang(1); 

                % Plot rays 

                plot3(raypath2(:,1),raypath2(:,2),raypath2(:,3),'color',[0.5 0.5 0.5]) 
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                raypath = vertcat(raypath,raypath2); 

 

            end 

 

            % Plot source locations 

            scatter3(sources(:,1),sources(:,2),sources(:,3),'ko','filled') 

 

            % Rotate data 

            XYZold = raypath(:,1:3); XYZold = XYZold'; x0=[0 0 0].'; u=[0 0 1].'; 

            [XYZnew, R, t] = AxelRot(XYZold, deg, u, x0); raypath(:,1:3) = XYZnew'; 

            XYZold = sources(:,1:3); XYZold = XYZold'; x0=[0 0 0].'; u=[0 0 1].'; 

            [XYZnew, R, t] = AxelRot(XYZold, deg, u, x0); sources2 = XYZnew'; 

 

            % Ray tracing 

            for i = 1:size(raypath,1) 

                [ind, d] =  dsearchn(model(:,1:3),raypath(i,1:3)); 

                ind = ind(d<modstp); 

                try; raypath(i,5) = model(ind,4); 

                catch; raypath(i,5) = model(ind(1),4);end 

            end 

            [C, IA, IC] = unique(raypath(:,4:6),'rows','stable'); 

            raypath = raypath(IA,:); 

            raypathbck = raypath; 

        end 

 

        % Reset 

        raypath = raypathbck; 

        model = modelbck; 

 

        % Set data to current frequency band 

        dtlapse =  dtpobs{fr,1}; 

        raypath(:,4) = dtlapse(raypath(:,4)); 

 

        % Find average value for each grid step 

        for i = 1:size(model,1) 

            ind = find(raypath(:,5) == i); 

            ind2 = find(isnan(raypath(ind,5)) == 0); 

            ind = ind(ind2); 

            if length(ind) > minrays 

                val = raypath(ind,4); 

                val = val(isoutlier(val,'quartiles')==0); 

                try 

                    model(i,5)= mean(val); 

                catch 

                    model(i,5) = NaN; 

                end 

                % model(i,7) = std(val)/sqrt(length(ind)); % standard deviation of block 

                model(i,7) = range(val); % or the range 

                % model(i,5) = model(i,7); % Debugging 

                model(i,8) = length(ind); % number of measurements 

            else 

                model(i,5) = NaN; 

                model(i,7) = NaN; 

                model(i,8)= NaN; 

            end 

        end 

        % Plot smoothing 

        for i = 1:size(model,1) 
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            if isnan(model(i,5)) == 1 

                model(i,6) = NaN; 

                continue 

            end 

            [Idx,D] = knnsearch(model(i,2:3),model(:,2:3)); 

            ind = find(D < modstp*smoothing); 

            val = model(ind,5); 

            val = val(find(isnan(val) == 0)); 

            model(i,6) = mean(val); 

        end 

 

        % Normalise to average 

        ind = find(isnan(model(:,6)) == 1); 

        mtp = mean(model(isnan(model(:,6)) == 0,6)); 

        model(ind,:) = []; 

        model(:,6) = model(:,6) - mtp; 

 

        % Regrid data onto a finer mesh 

        [x,y] = meshgrid(-0.02:0.0001:0.02,-0.05:0.0001:0.05); 

        vq = griddata(model(:,2),model(:,3),model(:,6),x(:),y(:)); 

 

        % Plotting 

        figure(6+n); 

        subplot(1,size(freq,1),fr); cla; 

        contourf(x,y,reshape(vq,size(x,1),size(x,2)),11,'LineStyle','none') 

        newmap = brighten(jet(11),-.2); colormap(newmap); 

        hold on 

        scatter(sources2(:,2),sources2(:,3),'k.') 

        title(['[',num2str(freq(fr,1)/1000),'-',num2str(freq(fr,2)/1000),' 

KHz]'],'FontSize',16,'Color','k') 

        set(gcf,'color','white') 

        set(gca,'Visible','on') 

        ylim([-0.05 0.05]) 

        xlim([-0.02 0.02]) 

        pbaspect([4 10 1]) 

        xt = get(gca, 'YTick'); 

        set(gca, 'FontSize', 16,'Ycolor','k') 

        xt = get(gca, 'XTick'); 

        set(gca, 'FontSize', 16) 

        h = colorbar('southoutside','FontSize',16,'Color','k'); 

        caxis([-0.1 0.1]) % colour limits 

        xlabel(h,'\Deltalog(t_p)','FontSize',16,'Color','k') 

        plot([-0.02 -0.02 0.02 0.02 -0.02],[-0.05 0.05 0.05 -0.05 -0.05],'k-') 

        set(gca,'xtick',[]) 

        set(gca,'xticklabel',[]) 

        set(gca,'ytick',[]) 

        set(gca,'yticklabel',[]) 

        set(gca,'box','off') 

 

        % Scale 

        plot([-0.019 -0.019 -0.009 -0.009],[-0.048 -0.049 -0.049 -0.048],'k-

','linewidth',1.5) 

        text(-0.014,-

0.0485,'1cm','HorizontalAlignment','center','VerticalAlignment','bottom','Fontsize',16) 

        drawnow 

    end 

end  
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