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Abstract: Landslides triggered by heavy rainfall pose significant threats to human settlements and
infrastructure in temperate and equatorial climate regions. This study focuses on the development
of the Open Landslide Project (OLP), an open source landslide inventory aimed at facilitating
geostatistical analyses and landslide risk management. Using a multidisciplinary approach and open
source, multisatellite imagery data, more than 3000 landslides triggered by the extreme rainfall of
autumn 2019 in northwestern Italy were systematically mapped. The inventory creation process
followed well-defined criteria and underwent rigorous validation to ensure accuracy and reliability.
The dataset’s suitability was confirmed through multivariate correlation and Double Pareto probably
density function. The OLP inventory effectiveness in assessing landslide risks was proved by the
development of a landslide susceptibility model using binary logistic regression. The analysis of
rainfall and lithology revealed that regions with lower rainfall levels experienced a higher occurrence
of landslides compared to areas with higher peak rainfall. This was attributed to the response of the
lithological composition to rainfalls. The findings of this research contribute to the understanding
and management of landslide risks in anthropized climate regions. The OLP has proven to be a
valuable resource for future geostatistical analysis.

Keywords: inventory; landslide susceptibility; shallow landslide; extreme rainfall; Ordinary Kriging;
binary logistic regression; Italy; Sentinel-2; Google Earth; Double Pareto

1. Introduction

The temperate and equatorial climate regions [1] are generally highly anthropized, and
heavy rainfall is common in these areas, often occurring seasonally. The interaction between
precipitation and geological/geomorphological characteristics can trigger widespread
landslides [2,3], resulting in severe damage to human settlements.

In autumn 2019, high-rainfall events affected northwestern Italy: following several
days of heavy rain, an intense and persistent meteorological system remained stationary for
approximately 12 h on 12 October 2019 in southeast Piedmont, resulting in a peak of over
400 mm of rainfall during the afternoon [4]. Subsequently, the entire month of November
experienced significant rainfall, with a second peak of 600 mm/day on November 24
within the Ligurian–Piedmont boundary [5]. Consequently, thousands of landslides were
triggered, causing extensive damage to infrastructure and urban centers in the region and
resulting in severe economic losses.

Numerous authors have proposed landslide susceptibility models as powerful tools
for landslide risk management [6–8]. Therefore, the creation of a landslide inventory
assumes great importance due to its central role in the modeling methods. However, it
is crucial to establish well-defined criteria [9] and statistically validate the inventory [10].

Geosciences 2023, 13, 289. https://doi.org/10.3390/geosciences13100289 https://www.mdpi.com/journal/geosciences

https://doi.org/10.3390/geosciences13100289
https://doi.org/10.3390/geosciences13100289
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/geosciences
https://www.mdpi.com
https://orcid.org/0000-0002-1477-597X
https://orcid.org/0000-0002-1430-4836
https://doi.org/10.3390/geosciences13100289
https://www.mdpi.com/journal/geosciences
https://www.mdpi.com/article/10.3390/geosciences13100289?type=check_update&version=2


Geosciences 2023, 13, 289 2 of 31

Adhering to this rigorous procedure allows for a detailed understanding of the inventory
and its appropriate utilization in the modeling process.

In this study, we introduce the Open Landslide Project (OLP), an open source landslide
inventory specifically designed for landslide geostatistical analysis. As the project is in
its early stages, the data are not yet available for direct download. However, interested
parties can request access to the data directly from the authors. Our research proposes a
multidisciplinary approach to efficiently create an inventory of recent shallow landslides,
minimizing the time required for mapping while covering large spatial areas and multiple
years of data. By adapting the criteria suggested by Harp et al. [9] and Taylor et al. [10],
we systematically mapped over 3000 rainfall-triggered landslides that occurred during
autumn 2019 in the northwest region of Italy. This extensive mapping was made possible
using opensource, multisatellite imagery data.

To ensure the accuracy and reliability of the landslide inventory, it was subjected to
validation [2,11–19]. Additionally, a landslide susceptibility model was developed using
binary logistic regression [20] to assess the effectiveness of the dataset in a real case study.

2. Study Area
2.1. Geomorphological and Geological Setting

The study area is situated in the northwest of Italy, encompassing the regions of Pied-
mont and Liguria (Figure 1a). It is located approximately north of Genoa and southeast
of Acqui Terme (see Figure 1b). The study focused on ten different catchments situated
on the orographic right of the Bormida River, covering a total area of approximately
762 km2. The region consists of numerous scattered small villages, and the average pop-
ulation density is around 40 persons per km2. Notably, the area contains several key
transportation routes, including the “A26” highway and the Asti-Genoa railway, which
serve as vital connections between the Piedmont and Liguria regions (Figure 1b).
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The geomorphological setting in the study area can be distinguished between the
southern and northern regions, each exhibiting distinct landscapes and geomorphological
characteristics (Figure A2).

The southern area is situated in the upper sectors of watersheds, with elevations
ranging from 400 to 1200 m above sea level (Figure A1a). The average slope steepness in
this region is around 30–35 degrees (see Figure A1b), and the valleys typically exhibit V-
shaped profiles. The landscape features well-preserved and easily recognizable regressive
erosive morphologies (see a). The hydrographic network in this area is poorly hierarchical,
partly due to the slope steepness [21]. Consequently, the terrain is mountainous and often
characterized by outcrops of metamorphic rocks.

In contrast, the northern area is characterized by lower elevations ranging between
140 and 400 m above sea level (Figure A1a). The landforms in this region are relatively
smoothed (see Figures A1a and A2b), with wide alluvial valleys occupying the lower areas
and deep gullies present in the upper areas. The hilly morphology of southern Piedmont
is primarily influenced by the nature and structure of the bedrock [22]. The slopes in
this region are affected by significant colluvial deposits that rarely expose the underlying
sedimentary bedrock. After the Burdigalian stage, in conjunction with a phase of rapid
reversal in the drainage direction of the entire basin, this sector has experienced progressive
uplift (e.g., [23]). This uplift has led to increased incision of the hydrographic network,
resulting in a typical terraced morphology [21].

In the entire study area, the slope aspect does not exhibit significant isotropic behavior
(Figure A1c). This suggests a complex morphology that is not dominated by structural
elements at the basin scale. The slope patterns and characteristics display a diverse and
intricate arrangement rather than a consistent and uniform orientation throughout the
study area.

The land cover within the study area exhibits significant variation from south to north
(Figure A1d). In the southern sector, lower altitudes are primarily covered by broad-leaved
trees and mixed forests, while coniferous forests also appear at higher elevations. Sparse
vegetation areas and transitional forested areas occupy smaller portions of the landscape.
In the northern sector of the study area, agricultural crops, particularly viticultural ones, are
widespread. This region includes the UNESCO Langhe-Monferrato vineyard landscapes,
recognized as a World Heritage Site.

From a geological perspective, the study area exhibits a complex geodynamic evolution
and has experienced both compressive and extensional tectonic phases during the Alpine
and Apennine orogeneses. However, based on lithological and structural differences, two
primary regions can be distinguished: the Alpine metamorphic units to the south and the
Tertiary sedimentary units to the north.

The Alpine sector is situated within the southern termination of the Western Alps,
as described by Piana et al. [24]. It is bounded to the east by the Sestri-Voltaggio Zone
(SVZ), a transition zone between the Alps and the Apennines characterized by fragile
structures. The ongoing interaction between the European and Adria plates, along with the
intermediate oceanic domains, has shaped the orogenic system of the Alps and Apennines,
serving as a significant tectonic element in the central-western Mediterranean region [25,26].
Starting from the Oligocene period, the Ligurian Piedmontese Ocean began subducting
southeastward beneath the Adria microplate. This subduction continued until the collision
between the European and Adria plates in the Middle Eocene, resulting in the formation of
the western Alpine chain [27]. Subsequent subduction reversal in a northwesterly direction
during the late Eocene led to the development of the Apennine chain [28]. Consequently,
the southeastern termination of the Western Alps exhibits distinct characteristics compared
to the rest of the range [25]. This area is characterized by metaophiolite sequences belonging
to the Voltri Group and the Sestri-Voltaggio Zone, representing remnants of the oceanic
crust from the Ligurian Piedmontese Ocean and the Earth’s mantle [21]. The prominent
lithotypes in the mapped area include schists (calc-schists, mica-schists, quartz-schists),
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serpentinites, metabasites, gabbro/metagabbro, metabasites, and minor occurrences of
peridotites and quartzites.

In contrast, the northern sector of the study area is situated within the Tertiary Pied-
mont Basin (TPB), as described by Bigi et al. [29] and Balestro et al. [30] (see Figure 2a). This
is a sedimentary basin primarily located in Piedmont and is considered to be a synorogenic
basin that evolved into a piggy-back basin [25]. The TPB formed as a result of tectonic
and sedimentary processes between the European plate and the Adriatic microplate, with
nonuniform sedimentation occurring on the developing Alpine thrust belt [31,32]. Ini-
tial deposition consisted of sandy deposits, followed by marly and evaporitic sediments
typical of the ongoing transgressive phase [33] (Figure 2b). D’Atri et al. [34] identified
three primary tectonic-sedimentary domains within the TPB: the Langhe Basin, the Turin
Hills, and the Monferrato Hills. Within the study area, the Miocene deposits of the Alto
Monferrato domains are predominantly exposed [29], forming a regional monocline with a
dip of 15–20◦ and a dip direction toward the northwest. The main lithotypes in this region
consist of carbonate-rich mudstones, arenites, siltstones, and conglomerates (Figure 2b).
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Figure 2. Geological setting of the study area. (a) Tectono-stratigraphic map of the Western Alps
and the Northern Apennines (modified after Balestro et al. [30]). (b) Lithological map: (1) slate;
(2) basalt; (3) peridotite; (4) quartzite; (5) orthogneiss, paragneiss; (6) limestone; (7) jasper; (8) dolomite;
(9) calc schist, mica schist, quartz schist; (10) metabasite; (11) gabbro, metagabbro; (12) serpentinite;
(13) arenite, mudstone; (14) carbonate rich mudstone, arenite; (15) arenite, siltstone; (16) arenite,
impure limestone; (17) arenite, carbonate rich mudstone; (18) sand, gravel, clay/siltstone; (19) sand,
gravel; (20) carbonate rich mudstone; (21) carbonate rich mudstone, siltstone; (22) carbonate rich
mudstone, silt, sand; (23) conglomerate, arenite; (24) gypsum or anidrite, limestone, clay; and
(25) gravel, sand.

2.2. Pluviometric Setting and Rainfall 2019 Events

The rainfall patterns vary across the study area, with distinct differences between the
southern and northern sectors. In the northern Monferrato hilly area, the typical annual
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rainfall is around 600 mm, whereas in the southern mountainous region, the typical annual
rainfall is higher, ranging from 1300 to 1600 mm [22]. A recent study on rainfall in Piedmont
covering the period 2004–2016 classified the study area as having a sublittoral pluviometric
regime, characterized by maximum precipitation occurring in autumn and minimum in
winter [35]. In the analyzed period, the minimum annual rainfall recorded was 677 mm,
while the maximum reached 1800 mm.

Autumn 2019 was particularly rainy in the study area, with two main precipitation
events occurring in October and November. From October 19 to 24, intense, moist southern
currents associated with an Atlantic disturbance over Spain affected Piedmont. This
meteorological system brought adverse weather conditions and extremely heavy rainfall,
initially impacting the eastern part of Piedmont and then spreading to the western region. In
southeastern Piedmont, the peak of the event was observed on October 21, characterized by
a self-regenerating, semistationary weather system that produced a V-shaped thunderstorm
with intense convective precipitation [4]. The second major precipitation event took place
between November 22 and 25, with intense and prolonged rainfall affecting the entire
study area. It was caused by intense hot and humid sirocco currents, resulting in rainfall
associated with orographic blocking phenomena between the Alps and the Apennines [5].
The two meteorological events had very different meteorological features, representing
both extreme events. According to [5], in the study area, the cumulative precipitation in
2019 exceeded the annual average rainfall by 21%.

2.3. Rainfall-Induced Landslides

The cumulative precipitation during the October–November period, along with the oc-
currence of the two extreme rainfall events, led to a significant increase in landslides within
the study area. The majority of these landslides occurred in soil and/or debris materials,
exhibiting translational/rotational slide or flow kinematics (see Figure 3). Although only
one casualty was reported, extensive damage was inflicted upon infrastructure, buildings,
and crops across the entire territory. The northern sector, being more densely populated
and cultivated, experienced particularly severe impacts.Geosciences 2023, 13, x FOR PEER REVIEW 6 of 33 
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sector of the study area, between Belforte Monferrato and Gnocchetto, near the A6 motorway;
(c) complex landslide that occurred near Gavi; (d) related photograph taken from the top of the
landslide (© Davide Ferrarese 2019); (e) a translational landslide near the village of Cavatore; and
(f) a related photograph taken in the crown sector.

3. Materials and Methods
3.1. Rainfall Dataset

The rainfall dataset used in this research was collected from the meteorological net-
works of Arpa Piedmont, Arpa Liguria, and the Agrometeorological Network of Piedmont
(RAM Piedmont). These datasets have undergone quality control by the respective institu-
tional authorities and are publicly available for download from the official websites [36–38].

The Arpa Piedmont network has been recording data since 1988 and consists of
400 monitoring stations, with a density of approximately one station every 100 km2. The
rain gauges used in this network are CAE PMB2 tipping buckets, equipped with a 1000 cm2

diameter collector [39]. The Arpa Liguria network, on the other hand, was established in
1998 and includes 70 monitoring stations using the same instrument as the Arpa Piedmonte
network. The RAM Piedmont network has been active since the second half of the 1990s and
comprises 120 monitoring stations. These stations were primarily installed for agricultural
monitoring purposes and are located in close proximity to the main cultivation areas. The
rain gauges used in the RAM Piedmont network are tipping buckets of the SIAP UM7525
model, equipped with a 1000 cm2 diameter collector [35].

For the purpose of this research, only the stations located within the considered
catchment areas and their surrounding regions (as depicted in Figure 4) were selected. The
entire dataset was analyzed to determine the temporal distribution of precipitation and to
ensure the temporal continuity of precipitation records. Only stations that had complete
records without gaps for the entire duration of both rainfall events were considered. This
allowed for standardization in data analysis between the two events.
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In order to interpolate the rainfall data within the study area, Ordinary Kriging
(OK) was employed as an interpolation method. The Kriging method is commonly used
for geostatistical analysis of rainfall data [40–44]. However, it should be noted that the
number of stations and their spatial distribution are important parameters that influence
the reliability of the final interpolated pattern [45]. To carry out the interpolation, we used
the Smart-Map plugin developed by Pereira et al. [46] for the QGIS software (version 3.10
or higher). Smart-Map is an open source plugin implemented in Python 3.7 and based
on the OK algorithm developed by Isaaks et al. [47]. It allows for fitting five models of
isotropic theoretical semivariograms (linear, linear with sill, exponential, spherical, and
Gaussian) and selecting the best model based on the cross-validation method.

3.2. Landslide Inventory

The criteria utilized for creating the OLP dataset were inspired by Harp et al. [9] and
Taylor et al. [10]. Harp et al. [9] provided valuable guidelines for developing a compre-
hensive and statistically robust landslide inventory. The specific imagery and mapping
criteria proposed by these authors, along with the strategies we adopted, can be found in
Tables 1 and 2, respectively. While basing our work on these original papers, we made slight
modifications to the criteria to suit the requirements of our current research. These modifi-
cations primarily involved condensing the criteria for improved conciseness and splitting
the fourth imagery criterion into distinct components that consider spatial continuity and
temporal resolution properties. Taylor et al. [10] introduced an additional implementation
of the third mapping criterion, which assesses whether the landslide inventory aligns with
the established statistical behavior of substantially complete inventories. This criterion is
of fundamental importance to the OLP as it ensures the statistical robustness required for
geostatistical analysis of landslides.

Table 1. Imagery criteria adopted for the creation of OLP dataset. Modified after Harp et al. [9].

N Imagery Criterion Strategies Adopted

1

The imagery must be continuous in space
and time in the entire area to span the

landslides’ distribution triggered by the
same event.

GEP and S2 satellite images covering all
the area for the period considered in

this research.

2

The imagery must have a resolution that
allows identification of individual

landslides as small as a few
meters across.

In the area considered for this research,
GEP provided very high-pixel

resolution imagery.

3

The imagery must have stereo coverage
or be able to be draped over a digital

elevation model to obtain a stereo-like
perspective view.

GEP 2.5D viewer provides a stereo-like
perspective view.

4 The imagery must be as cloud-free and
shadow-free as possible.

GEP images are elaborated to be cloud
free. As for the S2 image, it is possible to

select the maximum cloud-coverage

5

The imagery must be acquired as soon as
possible after the triggering event to

capture the initial features of the
landslides and the terrain or

infrastructure that they affect.

The GEP images available: pre-events
and postevents. The S2 images available

(according to the 4th criterion) were
pre-events, between the events, and

post-events.
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Table 2. Mapping criteria adopted for the creation of OLP dataset. Modified after Harp et al. [9].

N Mapping Criterion Strategies Adopted

1

The landslides must be defined as polygons
in a GIS system, either as a single polygon

representing the entire landslide or as two or
more polygons that define the landslide

source and the landslide deposit.

Single polygon and derivatives.

2

The landslide polygons must be plotted on a
topographic map or GIS layer that is
registered to a topographic map or

geo-registered image.

QGIS Geodatabase.

3
The entire population of the event’s triggered

landslides exceeding the minimum
resolution of the imagery must be mapped.

Frequency–Area analysis.

Regarding the imagery criteria, we utilized multitemporal images from Google Earth
Pro® (GEP) and Sentinel-2 (S2) for the mapping of landslides. GEP provides high spatial
resolution and cloudless imagery (Figure 5a), but its temporal coverage is discontinuous
with significant gaps. However, the pseudo three-dimensional (2.5D) viewer in GEP offers
a stereoscopic-like perspective of the study area, and the digital elevation model (DEM)
with a resolution of 30 m is sufficient for understanding the topographic relief [48]. On the
other hand, S2 has offered a continuous-up-to-5-day temporal resolution of multispectral
imagery since 2016, covering almost the entire globe. However, these images are affected
by seasonal cloud cover conditions, which can locally impact the temporal images for wide
areas. The maximum spatial resolution of S2 imagery is 10 m [49]. In terms of the area
of interest, GEP images were available only for the pre-events period (April 2018) and
postevents period (April 2020) (Figure 5a). S2 images available for the 4th imagery criterion
included the pre-events period (14 September 2019) (Figure 5b), between the events period
(13 November 2019) (Figure 5c), and postevents period (23 December 2019) (Figure 5d).
Additionally, we considered S2 imagery corresponding to the postevents period of GEP (11
April 2020) (Figure 5e).

The mapping procedure was conducted using GIS software to create a geodatabase in
accordance with the first and second mapping criteria. For each landslide, the following
elements were mapped: (i) a polygon encompassing the source area, run-out zone, and
accumulation zone; (ii) the centroid of the mapped polygon; (iii) the highest point along
the crown of the landslide; (iv) the lowest point of the landslide tip; and (v) the minimum
oriented bounding rectangle along the sliding direction. The combination of GEP desktop
multitemporal images and the 2.5D viewer facilitated the identification and mapping of
the areas affected by landslide phenomena. The geospatial analysis was carried out using
QGIS and Python in order to extract the morphometric parameters for each landslide.

The field-mapping procedure for landslides encountered three technical limitations:
(i) the logistical challenge of mapping a large number of landslides across a wide area, (ii)
the historical period of the events occurring a few months prior to the implementation
of strict COVID-19 lockdown measures, and consequently (iii) the significant time gap
between the occurrence of the events and the ability to access and survey the study area.
These limitations made it infeasible to conduct direct field surveys to measure parameters
such as alteration thickness of geological materials and the depth of the slide surface.
However, it was observed that nearly all the mapped landslides exhibited the following
characteristics:

1. They were triggered by a single accumulation of seasonal precipitation during the
October–November period.

2. They displayed clearly identifiable crowns, flanks, and main scarps and/or main
bodies through satellite imagery.

3. They were in an initial state of activation.
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4. They exhibited velocity rates ranging from m/min to m/s, classified as “rapid” and
“very rapid” movements [50].
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Based on points 1–4, the mapped phenomena were classified as “shallow landslides”
according to the general definition proposed by Cruden and Varnes [50], referring to
landslides involving soil/earth materials and exhibiting rapid to very rapid movement.

In this research, we adopted a morphometrical classification approach for landslides.
The criteria considered the aspect-ratio parameter [51,52] to classify shallow landslides
into four categories: transversal, isometric, longitudinal, and elongated, as defined by Tian
et al. [53] (Figure A3). A statistical analysis was applied to the entire dataset to identify
additional morphometric parameters for classifying shallow landslides.
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According to Stark and Hovius [54] and Tebbens [55], the ideal theoretical distribution
of landslide areas should follow a power-law distribution. However, the mapping of
small-size landslides often leads to a censoring effect, which affects the probability density
estimation for this category. To quantify this underestimation, area-frequency analysis
is a valuable tool (as specified in the third mapping principle in Table 2). Several land-
slide datasets worldwide were tested with the Double Pareto [54] probability distribution
function [2,10–17,19].

In the analysis of the OLP dataset, Python statistical tools were employed, and the
Double Pareto probability density function (Equation (1)) was calculated using constant
logarithmic (base 10) bins with a size of 0.1 [55].
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where AL is the landslide area, α is the scaling exponent that controls the power function
for the large-sized landslides, β is the scaling exponent that controls the power function for
the small-sized landslides, t is a parameter that constrains the rollover position; c and m
are, respectively, the minimum and the maximum sizes of the landslide area.

3.3. Landslide Susceptibility Model

The selection of mapping units is a crucial step in landslide susceptibility modeling
and has been extensively investigated [8,56–62] due to its impact on prediction performance,
resulting metrics, and mapping design. In this research, we opted to use grid-cell units, as
they offer advantages such as faster procedures for data partitioning and easier and more
representative assignment of covariate values. Grid-cell units have demonstrated their
reliability in assessing flow and moderately sized landslides.

Various factors contribute to slope instability, including topography, climate, and
geology. Drawing from the extensive scientific literature on landslide predisposing factors
for susceptibility models [63–66], we considered ten different parameters as predictors
based on their potential significance as proxies. These parameters include elevation (ELE),
steepness (SLO), aspect (ASP), profile curvature (PRF), plan curvature (PLC), stream power
index (SPI), topographic wetness index (TWI), topographic roughness index (TRI), land
use obtained from the Corine Land Cover 2018 (USO), and outcropping lithology (LITO)
(Figure 6).

ELE is considered to be primarily closely related to topographical conditions, but also
to climatic conditions (temperature and precipitation). SLO is a key factor widely used in
modeling, as it influences slope angles, water speed, shear stress, and shear strength. ASP
is considered for its association with the orientation of layered materials and environmental
processes related to insolation, such as soil moisture and vegetation presence. PLC and PRF
are important for surface-runoff characteristics, including velocity and water concentration.
The TWI serves as an indicator of soil saturation, while the TRI reflects surface texture
based on elevation differences among grid-cells. Lastly, the SPI measures the potential for
water-induced flow erosion, considering slope and contributing area.
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Most of the selected parameters were treated as continuous variables and derived from
a DEM provided by Tarquini et al. [67] with a spatial resolution of 10 m pixel size. The
DEM was processed using the open source System for Automated Geoscientific Analyses
(SAGA) [68]. For the categorical variables, we reclassified the ASP into eight categories:
north (0–22.5; 337.5–360), northeast (22.5–67.5), east (67.5–112.5), southeast (112.5–157.5),
south (157.5–202.5), southwest (202.5–247.5), west (247.5–292.5), and northwest (292.5–337.5).

The outcropping lithology (LITO) data, obtained from Arpa Piemonte at a scale of
1:250,000, was reclassified into ten categories based on the main lithotypes. These cate-
gories include (13) arenite, mudstone; (14) carbonate-rich mudstone, arenite; (15) arenite,
siltstone; (16) arenite, impure limestone; (18) sand, gravel, clay/siltstone; (19) sand, gravel;
(22) carbonate-rich mudstone, silt, sand; (23) conglomerates, arenite; (24) gypsum or anhy-
drite, limestone, clay; (25) gravel, sand (Figure 6).

For the land use (USO) variable, we reduced the number of categories to seven based
on our knowledge of the area: (1) urban fabric; (2) nonirrigated arable land; (3) vineyards;
(4) complex cultivation patterns; (5) land principally occupied by agriculture, with signifi-
cant areas of natural vegetation; (6) forest; (7) transitional woodland-shrub.

Regarding the response variable, we extracted the highest point along the crown
(LIP—Landslide Identification Point) from each polygon in our landslide
inventory [65,69,70] and assigned a value of 0 or 1 to each pixel based on the absence
or presence of landslides, respectively.

To assess multicollinearity among the selected parameters, a Variance Inflation Factor
(VIF) analysis (Equation (2)) was conducted using the R-package “usdm” [71]. This analysis
was performed prior to the statistical modeling technique to ensure the reliability of
interpreting the regression coefficients as the result of a linear relationship between a set of
variables that are considered independent from each other.

VIFi =
1

1− Ri
2 =

1
Tolerance

(2)

where Ri
2 is defined as the unadjusted coefficient for regressing the ith independent

variable on the remaining ones. High values of Ri
2 means that most of the variation in the

ith covariate is explained by all other covariates [72].
The procedure was applied to both continuous and categorical variables. The results

showed that, excluding the slope (SLO) and the topographic roughness index (TRI) param-
eters, all the variables passed the multicollinearity test. Considering the results, we decided
to exclude the TRI and to keep the SLO for further analysis.

With regard to landslide susceptibility assessment, various statistical methodologies
have been developed and compared in recent years to improve the ability to predict future
landslides [6–8,20,73–75]. Among these techniques, Binary Logistic Regression has been
widely utilized due to its reliable performance and several advantages compared to other
methodologies. These advantages include its ease of implementation and interpretation of
results, providing measures of predictor importance and the direction of association, and
assuming a linear relationship between the response variable and the covariates [20,75,76].

Binary logistic regression is used to describe the variability of a binary response
variable based on a set of covariates, and the general expression can be written as follows:

Y = β0 + β1x1 + . . . + βpxp (3)

where Y represents the dependent or response variable, which in this case is the presence
or absence of landslides in a given grid-cell. The β coefficients represent the regression
coefficients for each independent variable, denoted as xp.

As the response variable Y can only take two possible values (0 for absence and 1 for
presence of landslides), the binary logistic regression model calculates the probability that
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a particular grid-cell will have a value of 1 based on the conditions determined by the set
of covariates. The expression for this probability is:

η(π) = β0 + β1x1 + . . . + βpxp (4)

where η is the link function that relates the right-hand side of Equation (4) to the probability
that Y takes the value 1, denoted as π. In binary logistic regression, the objective is to
calculate the probability that a particular grid-cell belongs to one of the two categories,
either presence or absence. Therefore, the y-axis of the regression is constrained to the
range of probability values between 0 and 1.

To address this constraint, the probability of occurrence is transformed using the
logit function, which is the inverse of the logistic function. The logit function allows for
the calculation of the log-odds of occurrence, providing a linear relationship between the
predictors and the log-odds. The logit function is expressed as:

η(π) = loglog{π/(1− π)} (5)

By applying Equation (5), the floor restriction on the probability range of 0 to 1 is
removed, and the transformed probability now covers the entire real number range from
negative infinity to positive infinity [77]. This transformation allows for a linear relationship
between the predictors and the log-odds. The resulting outcomes of this transformation
are the log-odds, also known as the logit values. The coefficients in the binary logistic
regression model describe the constant unit by which the log-odds increase with the increase
in every unit in the corresponding covariate. These coefficients provide insights into the
strength and direction of the association between the predictors and the likelihood of
landslide occurrence.

The code for the analysis was implemented using the statistical software R [78]. The
data preprocessing stage involved creating 50 balanced partition samples, with an equal
number of positive (presence of landslides) and negative cases (absence of landslides). A
random splitting procedure was then performed, where 75% of the cases were used for
training the models, and the remaining 25% were used for validation. This process was
repeated 100 times to obtain multiple fitting models.

For each repetition, various outputs were generated, including regression coefficients,
confusion matrices, Receiver Operating Characteristics (ROC) curves, Area Under the
Curve (AUC) values, and maps showing the probabilities of landslide occurrence. The
AUC values were calculated to assess the discriminatory power of the models, with higher
AUC values indicating better performance.

To determine the best probability cutoff for classifying landslides, the Youden in-
dex [79] was used. This index is obtained by dividing the sum of true positives and true
negatives (accuracy) by the total population, which includes true positives, true negatives,
false positives, and false negatives. The different probability cutoffs were evaluated to find
the one that maximizes the average accuracy across the 100 replicates.

4. Results
4.1. Rainfall Analysis Results

The pluviometric stations selected for the analysis included 27 stations from Arpa
Piedmont, 27 stations from Arpa Liguria, and 22 stations from RAM Piedmont.

When examining the daily rainfall data collected between 1 October and 31 December
2019 (Figure 7a), three distinct clusters can be observed. The first cluster occurred in
October, followed by a second cluster in November, and finally a third cluster in December.
However, it is important to note that the December cluster was excluded from rainfall data
interpolation. This exclusion was determined based on the observation that between 4
December and 31 December, a total of 22 out of the 77 stations experienced at least one day
of nonoperation, which could introduce inconsistencies in the data.
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Figure 7. Daily rainfall data recorded for the 77 stations considered for the October–December time
range. (a) Full time range and main pluviometric clusters highlighted in black dash-dotted rectangles;
(b) focus on the time range of the main clusters (CL1 and CL2): the Arpa events’ timings (Event 1 and
Event 2) are highlighted in green dashed lines, while the periods (P1, P2, and P3) chosen for Kriging
interpolation are represented by red dashed lines.

In Figure 7b, two distinct rainfall periods can be observed. The first period (P1)
occurred from 14 October to 25 October, with the maximum daily rainfall recorded on 21
October. The second period (P2) occurred from 2 November to 3 December, with the peak
daily rainfall observed on 23 November. In addition to P1 and P2, we also identified a third
period (P3) from 14 October to 3 December (Figure 7b) that embraced the whole time-range
from the start of P1 until the end of P2.

The P1 was characterized by a twelve-day period of rainfall, including two days of
extremely heavy rain. The highest peak of rainfall (505.2 mm/day) occurred on 21 October
in the Campo Ligure village, which is located near the middle of the study area in the Stura
di Ovada river catchments (see Figure 1b). In contrast, P2, which lasted for about a month,
experienced almost continuous rainfall. Only one extreme rainfall peak (420.6 mm/day)
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was recorded on 23 November at the Piampaludo station, situated in the southwest of the
Orba river catchments (see Figure 1b).

The cross-validation analysis of OK revealed R2 values ranging between 0.832 and
0.873, with an RMSE between 93.37 and 148.79 (see Figure A4a). The Smart-Map plugin
suggested using the spherical model only for P2 based on the R2 comparison. However,
considering the minimal variation in R2 values between the spherical and linear models,
we used the linear model (see Figure A4b) for all period interpolations to facilitate model
comparisons. Ordinary Kriging maps are showed in Figure 8.
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The minimum and maximum cumulative rainfall in each catchment highlight sig-
nificant differences. The Stura di Ovada river catchments and the Orba river catchments
(Figure 1b) exhibit a considerable gap between the minimum and maximum values. This
disparity is particularly noticeable in P1 (Figure 9a) compared to P2 (Figure 9b). However,
in P3, which considers both the P1 and P2 periods, there is a smoothing effect on the
difference between the minimum and maximum values (Figure 9c).

Geosciences 2023, 13, x FOR PEER REVIEW 17 of 33 
 

 

The minimum and maximum cumulative rainfall in each catchment highlight signif-

icant differences. The Stura di Ovada river catchments and the Orba river catchments (Fig-

ure 1b) exhibit a considerable gap between the minimum and maximum values. This dis-

parity is particularly noticeable in P1 (Figure 9a) compared to P2 (Figure 9b). However, in 

P3, which considers both the P1 and P2 periods, there is a smoothing effect on the differ-

ence between the minimum and maximum values (Figure 9c). 

 

Figure 9. Minimum and maximum rainfall cumulative for catchments in the study area. (a) Kriging 

interpolation of P1, (b) Kriging interpolation of P2, (c) Kriging interpolation of P3. 

4.2. Landslide Inventory 

The OLP inventory for landslides triggered by the extreme precipitation events of 

autumn 2019 record a total of 3300 landslides over a studied area of approximately 762 

km2 (see Figure 10a). Using the QGIS software, we extracted the area value and average 

raster values of DEM, slope steepness, and slope aspect for each landslide polygon. The 

overall statistics for the entire dataset are summarized in Table 3. 

Table 3. Summary of the main morphometric parameters of the slope where the landslides occurred. 

Parameter Elevation [m] Slope Steepness [°] Slope Aspect [°] Area [m2] 

min 148 1.95 3 11 

max 825 53.48 360 7875 

std 90 6.48 80 690 

median 281 21.56 207 280 

The spatial distribution of landslides was analyzed using the QGIS Kernel Density 

Estimation (KDE) interpolation toolbox (see Figure 10b); the morphometric characteristics 

(elevation, slope steepness, slope aspect) of the landslide source areas were compared 

with those of the entire study area (see Figure 10c–e). 

The KDE interpolation reveals a widespread density of values up to 15 land-

slides/km2, with a higher concentration in the northern sector of the area, except for the 

area of Prato Ligure, which exhibits an anomalous density between 16 and 30 land-

slides/km2. The main cluster corresponds to basins 1 and 4, with densities reaching up to 

66 landslides/km2, and to a lesser extent in the northern sector of river basins 2 and 3. A 

second smaller cluster can be identified in the northern sectors of basins 5, 6, 7, 8, and 10, 

with density values up to 29 landslides/km2. 

Diagrams in Figure 10c illustrate the slope aspect orientation of the area and the land-

slides. In the catchment area, it exhibits slight isotropy with a preferential orientation to-

ward the west, north, and east. Regarding the orientation of the landslides, a strong iso-

tropic trend toward the south and southwest is evident. The elevation in the mapped area 

(Figure 10d) displays a bimodal behavior, with the first absolute frequency peak around 

300 m above sea level (a.s.l.) and a second flattened peak around 500 m a.s.l. Conversely, 

the landslides exhibit only one frequency peak around 300 m a.s.l. Both the catchment 

area and the landslides demonstrate a unimodal distribution in terms of slope steepness 

(Figure 10e), with peaks slightly out of phase, measuring 18 and 21 degrees, respectively. 

Figure 9. Minimum and maximum rainfall cumulative for catchments in the study area. (a) Kriging
interpolation of P1, (b) Kriging interpolation of P2, (c) Kriging interpolation of P3.

4.2. Landslide Inventory

The OLP inventory for landslides triggered by the extreme precipitation events of
autumn 2019 record a total of 3300 landslides over a studied area of approximately 762 km2

(see Figure 10a). Using the QGIS software, we extracted the area value and average raster
values of DEM, slope steepness, and slope aspect for each landslide polygon. The overall
statistics for the entire dataset are summarized in Table 3.
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Figure 10. Landslides on the study area. (a) Landslides; (b) Kernel Density Estimation heatmap of
landslides (landslides/km2); (c) slope aspect of study area versus landslides; (d) elevation frequency
distribution of study area versus landslides; (e) slope steepness frequency distribution of study area
versus landslides; (f) tectonostratigraphic units of study area versus landslides.
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Table 3. Summary of the main morphometric parameters of the slope where the landslides occurred.

Parameter Elevation [m] Slope Steepness [◦] Slope Aspect [◦] Area [m2]

min 148 1.95 3 11
max 825 53.48 360 7875
std 90 6.48 80 690

median 281 21.56 207 280

The spatial distribution of landslides was analyzed using the QGIS Kernel Density
Estimation (KDE) interpolation toolbox (see Figure 10b); the morphometric characteristics
(elevation, slope steepness, slope aspect) of the landslide source areas were compared with
those of the entire study area (see Figure 10c–e).

The KDE interpolation reveals a widespread density of values up to 15 landslides/km2,
with a higher concentration in the northern sector of the area, except for the area of Prato
Ligure, which exhibits an anomalous density between 16 and 30 landslides/km2. The main
cluster corresponds to basins 1 and 4, with densities reaching up to 66 landslides/km2, and
to a lesser extent in the northern sector of river basins 2 and 3. A second smaller cluster can
be identified in the northern sectors of basins 5, 6, 7, 8, and 10, with density values up to
29 landslides/km2.

Diagrams in Figure 10c illustrate the slope aspect orientation of the area and the
landslides. In the catchment area, it exhibits slight isotropy with a preferential orientation
toward the west, north, and east. Regarding the orientation of the landslides, a strong
isotropic trend toward the south and southwest is evident. The elevation in the mapped
area (Figure 10d) displays a bimodal behavior, with the first absolute frequency peak around
300 m above sea level (a.s.l.) and a second flattened peak around 500 m a.s.l. Conversely,
the landslides exhibit only one frequency peak around 300 m a.s.l. Both the catchment
area and the landslides demonstrate a unimodal distribution in terms of slope steepness
(Figure 10e), with peaks slightly out of phase, measuring 18 and 21 degrees, respectively.
Lastly, Figure 10f provides information about the area coverage for both Alpine and TPB
lithologies in the entire study area. It indicates that the area coverage is similar for both
lithologies. However, there is a higher frequency of landslide occurrence in TPB lithologies
(89.9%) compared to Alpine lithologies (12.1%) (Figure 11a).

Regarding the TPB lithologies, landslides are more frequent where alternations of
mudstones and arenite in various proportions are present. There are also minor occurrences
in alternations of arenite and siltstones or arenite and conglomerates (Figure 11b). For
the Alpine lithologies, the highest frequency of landslides is observed in schists, with
minor occurrences in Serpentinites lithologies (See Figure 11c). Figure 11d shows the
existent link between number of landslides, rainfall, and main lithological units. The two
different clusters correspond to TPB and Alpine lithologies with precipitation peaks around
1200 mm/km2 and 1800 mm/km2, respectively.

The OLP dataset was subjected to statistical analysis to quantify the correlation be-
tween landslide morphometric and topographical parameters across the entire landslide
inventory. A correlation matrix was calculated on the entire dataset and the results are
shown in the correlogram depicted in Figure 12.
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The correlogram shows that the slope aspect has a very weak statistical influence.
Similarly, the average slope steepness (slope steepness avg) and the maximum elevation
(elevation max.) exhibit light significance, showing only a relationship with the reach angle
and the maximum difference in elevation between the crown and tip (∆ elevation). On
the other hand, statistically significant correlations are observed for the landslide width,
length, and derived aspect-ratio. The most notable correlations are observed between area
and width (Corr. = 0.86), area and length (Corr. = 0.82), as well as ∆ elevation and length
(Corr. = 0.87) (see Figure 12a–c).

Following the approach suggested by Tian et al. [53], we divided the landslides into
four classes based on aspect-ratio thresholds (Figure 13a). The majority of the mapped
landslides (66%) fall under the “elongated” type, while the remaining percentages include
“longitudinal” (20.8%) and “isometric” (11.9%) types. The classification identified only 1.3%
of landslides as “transversal” (see Figure 13b).
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Figure 13. Aspect-ratio classification (purple: transverse, green: isometric, light-blue: longitudinal,
red: elongated) and correlation with morphometrical parameters and lithologies. (a) Landslides’
length versus width distribution; (b) aspect-ratio frequency distribution.

The frequency-area distribution of the OLP inventory is shown in Figure 14a. To fit
the observed data, we employed a maximum likelihood estimation approach to fit the
Double Pareto model to the observed data. The obtained values for α and β are 1.4 and 2.4,
respectively, in radians. Additionally, the rollover for area values occurs at 140 m2.

In Figure 14b, the frequency-area distributions of landslides are shown for different
aspect-ratio classes. The area distribution of landslides exhibits a similar power-law behav-
ior, and the rollover is consistent across the classified subset. However, when considering
small landslides below the rollover, the frequency distribution of the longitudinal type is
an order of magnitude lower than that of other classes. The transverse class, on the other
hand, deviates from this pattern, displaying a lack of areas above 2 × 103. The rollover is
not clearly identifiable, and the distribution does not fit the Double Pareto distribution.

Further analysis of the frequency-area distribution of landslides was conducted by
classifying them based on lithotypes. The distributions for both “Alpine” (Figure 14c)
and “TPB” bedrock (Figure 14d) lithologies demonstrate a good fit with the Double Pareto
distribution. However, the peridotite and quartzite lithotypes exhibit a gap in landslide
sizes greater than 2 × 102 m2.



Geosciences 2023, 13, 289 20 of 31

Geosciences 2023, 13, x FOR PEER REVIEW 21 of 33 
 

 

Figure 13. Aspect-ratio classification (purple: transverse, green: isometric, light-blue: longitudinal, 

red: elongated) and correlation with morphometrical parameters and lithologies. (a) Landslides’ 

length versus width distribution; (b) aspect-ratio frequency distribution. 

Figure 14. Frequency-area analysis of OLP inventory. (a) Full dataset analysis and double Pareto 

probability density function; (b) frequency-area distribution for aspect-ratio classes; (c) frequency-

area distribution for main Alpine lithologies; (d) frequency-area distribution for main TPB litholo-

gies. 

Figure 14. Frequency-area analysis of OLP inventory. (a) Full dataset analysis and Double Pareto
probability density function; (b) frequency-area distribution for aspect-ratio classes; (c) frequency-area
distribution for main Alpine lithologies; (d) frequency-area distribution for main TPB lithologies.
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4.3. Landslide Susceptibility Model

Multicollinearity analysis was conducted on both continuous and categorical variables
(Figure 15). The analysis revealed that all variables, except for SLO and TRI, passed the
multicollinearity test. Based on these results, the decision was made to exclude TRI from
further analysis, while retaining SLO as a parameter for subsequent analysis.
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Figure 16a presents the results of the confusion matrix calculation, indicating the
performance metrics of the validation model. These metrics demonstrate a relatively high
performance of the model in terms of prediction accuracy and precision. The precision
score of 0.81 indicates the rate between true positives (TP) and all positive cases predicted
by the model, including both true and false positives. Sensitivity (recall), which measures
the model’s ability to correctly predict the presence of landslides, is slightly higher than
specificity, which measures the model’s ability to predict absence cases correctly.

Figure 16a shows the ROC curve mean derived from 100 replicates, resulting in an area
under the curve (AUC) of 0.85 with a low standard deviation of 0.09. The best probability
cutoff point, determined using the Youden index, is 0.52.

Finally, the bar chart in Figure 16a shows the most important predictors using t-
statistics and considering, for the 100 replicates, those variables with the most significant
p-values. SSLO, PRF, and TWI are the most important DEM-derived morphometric pa-
rameters. Regarding the categorical variables, ASP classes corresponding to west (ASP.7),
southwest (ASP.6), and south (ASP.5), and lithology classes representing ‘Arenite, Siltstone’
(15), ‘Conglomerates, Arenite’ (23), and ‘Arenite, Mudstone’ (13), are those ones which play
the most important role in the classification of stable/unstable grid-cells.

The susceptibility map was generated by calculating the mean fitted probability values
per pixel using data from the 100 replicates (Figure 16b). The map reveals that the central
sector of the catchment and the steepness slopes of the valleys exhibit higher susceptibility
values. However, it is worth noting that the bottom valleys in the same area show low
susceptibility levels. The northern sector of the catchment displays low susceptibility
values, while the southern sector exhibits varying levels of susceptibility, ranging from low
to moderate.
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logistic regression algorithm and the OLP landslide dataset. (a) Landslide susceptibility model
metrics: validation model, ROC curve, and principal predictors using t-statistics. (b) Landslide
susceptibility map.
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5. Discussion

The analysis of precipitation data through rainfall maps provided a comprehensive
assessment of the spatial and temporal variations in rainfall across the study area.

By interpolating the data for P1 and P2, two grid maps of cumulative rainfall were
generated. The map for P1 (Figure 8a) clearly indicates the Campo Ligure zone as the
most affected by precipitation. In particular, the thunderstorm event on 21 October had
a significant impact, with an affected area extending from the southwest to the northeast.
The grid map clearly illustrates the development direction of the V-shaped thunderstorm.
In contrast, the hydrographic basins located in the northwest recorded considerably lower
rainfall accumulations, ranging from 100 to 200 mm.

For the P2 grid map (Figure 8b), the highest rainfall was observed in the proximity of
the village of Urbe, situated southwest of the study area. Conversely, the northern regions
reported lower rainfall amounts, approximately half of those in the southern regions. The
precipitation data for P3 were presented as a contour map (Figure 8c), which confirmed
significant differences in precipitation patterns between the northern and southern areas.
Specifically, the Orba and Stura di Ovada river catchments were the most affected, with
cumulative daily rainfall values ranging from 1100 to over 1900 mm over a 50-day period.

Overall, the interpolation of pluviometric data confirmed the results presented in
Arpa Piemonte’s reports, improving precision in local rainfall observations. The notable
difference in rainfall from north to south within the study area can be mainly attributed to
the terrain’s orography, which features significant elevation variations of approximately
1000 m from north to south.

These results provide a solid basis for a better understanding of precipitation distri-
bution and its impact on the territory, providing valuable information for further detailed
studies on the trigger thresholds of rainfall-induced landslides.

The distribution of landslides in the area is found to be nonuniform, as shown in
Figure 10. Notably, there is a marked difference in the orientation (slope aspect) of the
landslides compared to the surrounding study area. The slope steepness data reveal a
unimodal distribution, with the highest frequency of landslides occurring around a slope
angle of approximately 21◦. Additionally, an analysis of the elevation range indicates
that landslides are more common in the elevation band between 200 and 400 m. It is
worth noting that this distribution is not related to relief energy but rather to variations in
lithology in the study area.

Interestingly, the frequency of landslides does not appear to be solely dependent
on precipitation patterns. The analysis shown in Figure 11d reveals that the correlation
between landslides and rainfall is not absolute. Other factors related to lithology and
geological characteristics likely play a substantial role in landslide occurrence.

Further analysis of the lithology and landslide occurrence reveals interesting pat-
terns. The frequency of landslides is significantly influenced by the underlying lithological
composition. In the case of TPB (Figure 11b), the highest number of landslides occurs in
lithologies characterized by alternating layers of permeable sandstones and impermeable
mudstones or siltstones. Examples of lithological combinations associated with increased
landslide occurrence include carbonate-rich mudstone and arenite, arenite and mudstone,
and arenite and siltstone. In contrast, the landslides in the Alpine region show a different
pattern (Figure 11c). Here, landslides are primarily concentrated in schist formations,
which suggests a dominant influence of foliation and alteration processes. The lithology of
serpentinites is also significantly influenced by landslides; probable causes are to be found
in the foliate structure (such as serpentinite-shists and talc-rich formations) and in their
vulnerability to hydrometeorological alteration.

According to Stark and Hovious [54], the landslide inventory compiled for the study
area is considered comprehensive, and the Double Pareto distribution fits well with the
observed data of the entire inventory (as shown in Figure 14a). The aspect-ratio-classified
landslides also demonstrate a good distribution (Figure 14b). However, it should be noted
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that transverse landslides are relatively less represented in the inventory, indicating their
rarity within the area.

Regarding landslide parameters, a correlation analysis reveals strong linear relation-
ships between length–area, width–area, and length–∆ elevation (as depicted in Figure 12a,b).
These findings allow for the extrapolation of coefficients, suggesting the possibility of es-
timating landslide length and width based on the area and ∆ elevation derived from the
landslide polygons and digital elevation model (DEM). This approach differs from the
current procedure, which involves minimum bounding box calculations and major and
minor axis analyses.

The statistical model demonstrates a strong performance for the entire validation
area, as evidenced by the calculated performance metrics, including the confusion matrix
and the ROC curve (Figure 16a). Despite the lower Positive Predictive Values (PPV)
and the generation of false positive cases, it is important to consider that these instances
may represent potential future landslides rather than type I errors. This interpretation is
supported by the high Negative Predictive Values (NPV), indicating successful predictions
of absence cases.

The model performance is further reinforced by the metrics derived from the one-
hundred replicates, including the AUC, the low standard deviation (SD), and the high
accuracy (0.77) and precision (0.81). Additionally, both sensitivity and specificity values
exhibit significantly good performance. These results confirm the model reliability and
effectiveness in accurately predicting landslides.

The statistical model’s ability to correctly classify landslide and nonlandslide areas
is robust, and the high precision and accuracy values further emphasize its performance.
These findings, in conjunction with the strong performance indicated by sensitivity, speci-
ficity, and the AUC, provide solid evidence of the model’s high performance and reliability
in the validation process.

The susceptibility map was successfully generated using the mean fitted probability
values per pixel derived from the 100 replicates models. The map clearly depicts three
distinct sectors within the catchment area, each characterized by different susceptibility
values (Figure 16b). The northern sector of the catchment exhibits low susceptibility, which
can be attributed to the presence of lithological characteristics such as anhydrites, con-
glomerates, and gravel–sand formations. The slope steepness in this area ranges from low
to medium. In contrast, the middle sector shows high susceptibility, with varying slope
steepness ranging from low to high. The lithological composition in this region consists
of layers of arenites (sandstones) and mudstones/siltstones, contributing to the increased
landslide susceptibility. The southern sector displays low to medium susceptibility levels,
with medium to high slope steepness. The predominant lithology in this area is conglom-
erates. Overall, the susceptibility values observed in the northern and southern parts of
the catchment are strongly influenced by the lithological characteristics, in addition to the
slope steepness.

6. Conclusions

Landslides are a common occurrence in regions with temperate and equatorial climates,
especially during periods of abundant and intense rainfall. These rainfall events have the
potential to trigger numerous landslides, resulting in devastating consequences for the
surrounding environment and human settlements. Therefore, it is crucial to assess landslide
risks to ensure sustainable and resilient development in these areas.

To conduct accurate geostatistical analyses, large datasets of landslides are neces-
sary. In order to contribute to this field, we have established the Open Landslide Project
(OLP). Our approach focused on efficiently creating an inventory of recent shallow land-
slides, while minimizing the time required for mapping and covering large spatial areas
and multiple years of data. To achieve this, we mapped over 760 km2 in northwest
Italy using freely accessible satellite imagery from the extreme rainfall events in autumn
2019. A total of 3300 landslides were mapped and classified according to Tian et al. [53],
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based on aspect-ratio. The OLP inventory has successfully undergone statistical testing
and validation.

Our analysis has revealed correlations between morphometric parameters of land-
slides. This finding opens up new possibilities for future research to expedite the clas-
sification of landslides based on aspect-ratio, a significant characteristic of landslides.
Further investigations in this area could greatly enhance the efficiency of the landslide
classification process.

Interestingly, when examining the relationship between rainfall patterns and litholo-
gies where landslides occur, we found that the frequency of landslides is strongly influenced
by lithology rather than solely being tied to precipitation levels. Surprisingly, areas with
lower levels of rainfall, such as TPB, have recorded a higher number of landslides compared
to regions with higher peak precipitation, like the Alpine region. This discrepancy cannot
be attributed to morphometry factors such as slope steepness or elevation; instead, it is the
lithological composition of the region that plays a significant role, as highlighted in the
results of our analysis.

In addition to our landslide mapping efforts, we have developed a susceptibility
model for the Albedosa river catchment, corresponding to the maximum peak of land-
slide occurrence. It was developed using binary logistic regression, and the resulting
model achieved excellent metrics, particularly in terms of the statistical significance of
the input data, indicating that the dataset used for the model is suitable for assessing
landslide susceptibility.

Author Contributions: Conceptualization, M.L., V.B.T., F.S. and G.F.; methodology, M.L., V.B.T. and
F.S.; software, M.L., V.B.T. and F.S.; validation, M.L., V.B.T., F.S. and G.F.; formal analysis, M.L., V.B.T.
and F.S.; investigation, M.L., V.B.T. and F.S.; resources, M.L., V.B.T., F.S. and G.F.; data curation,
M.L., V.B.T. and F.S.; writing—original draft preparation, M.L., V.B.T., F.S. and G.F.; writing—review
and editing, M.L., V.B.T., F.S. and G.F.; visualization, M.L., V.B.T. and F.S.; supervision, M.L. and
G.F.; project administration, G.F.; funding acquisition, G.F. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.



Geosciences 2023, 13, 289 26 of 31

Appendix A

Geosciences 2023, 13, x FOR PEER REVIEW 28 of 33 
 

 

Appendix A 
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(c) slope aspect; (d) CORINE 2018: (1) discontinuous urban fabric; (2) road and rail networks and
associated land; (3) sport and facilities; (4) industrial or commercial units; (5) mineral extraction
sites; (6) vineyards; (7) complex cultivation patterns; (8) nonirrigated arable land; (9) pastures;
(10) sparsely vegetated areas; (11) land principally occupied by agriculture, with significant areas of
natural vegetation; (12) natural grassland; (13) broad-leaved forest; (14) mixed forest; (15) coniferous
forest; (16) transitional woodland-shrub; (17) water bodies; (18) water courses.
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