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Planar closed curves with prescribed curvature
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Abstract. By variational methods, we prove existence of planar closed curves with
prescribed curvature, for some classes of curvature functions. The main difficulty is
to obtain bounded Palais-Smale sequences. This is achieved by adding a parameter in
the problem and using a version of the “monotonicity trick” introduced by M. Struwe
in [14, 15].
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1. Introduction

The prescribed curvature problem for closed curves consists of studying existence (or
non existence) of planar closed curves whose curvature at every point agrees with a
prescribed value, depending on the point.

This problem has been investigated in recent years by many authors and with different
techniques, see [1, 2, 3, 4, 6, 8, 9, 10]. As a geometrical problem, it constitutes a toy
model that could be useful to provide some information for understanding other, more
difficult geometrical issues in higher dimension, e.g., the H-bubble problem (see the
very recent paper [13] and the references therein). Moreover, regarding applications, it
is somehow related to the problem of magnetic geodesics (see, e.g., [5], and also [2, 3]
for very simple examples).

Let us state the problem in a more precise form. A planar closed parametric curve is
the image C of a nonconstant, periodic, continuous mapping u : R → R

2. A parametriza-
tion u of C is regular when u is of class C1 and u̇(t) 6= 0 for every t ∈ R. If C admits a
regular parametrization u of class C2, the curvature of C is given by

κ(t) =
ü(t) · iu̇(t)

|u̇(t)|3

where i denotes the rotation of π
2 . Given a continuous function K : R2 → R, we are

looking for planar closed curves C admitting a regular parametrization u of class C2

such that κ(t) = K(u(t)) for every t ∈ R. Such curves will be called K-loops, for short.
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Nazionale di Alta Matematica (INdAM).
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When K is a nonzero constant, every circumference with radius |K|−1 is a K-loop.
However, as soon as K is non constant, existence/non existence, uniqueness/multiplicity
of K-loops are nontrivial issues and the behaviour of the prescribed curvature function
K plays a decisive role. For example, when K is a Lipschitz-continuous positive function
depending just on one variable in a strictly monotone way, no K-loop exists (see [8]). On
the other hand, for some classes of functions K which converge to a nonzero constant at
infinity, existence of K-loops is obtained in [9, 4]. Let us also mention the papers [6, 2]
which deal with the case of symmetric curvature functions, under different assumptions,
and with different results and methods (see also [9]).

In this work we tackle the K-loop problem when K is periodic in its two variables.
This class of curvature functions is suitable for modeling periodic heterogeneous media.
Here is our first main result:

Theorem 1.1. Let K : R2 → R be a continuous function satisfying:

(K1) there exist a, b > 0 such that K(x+ a, y) = K(x, y + b) = K(x, y) ∀(x, y) ∈ R
2,

(K2)
∫
[0,a]×[0,b]K(x, y) dx dy 6= 0.

Then for almost every λ ∈ R \ {0} there exists a λK-loop.

The problem of K-loops for prescribed periodic curvatures was already considered in
[10], where for any periodic nonzero function K and for any ε > 0 the authors were able
to construct a perturbation Kǫ which is ε-close to K in L1, has the same average of
K and for which a convex Kε-loop exists. Our result differs substantially, both for the
techniques and because we do not modify the curvature function, up to a multiplicative
constant in a set of full measure.

In order to prove Theorem 1.1 we take a variational approach. Let us give more details.
As observed in [1], the K-loop problem is equivalent to find 1-periodic, nonconstant
solutions u : R → R

2 of

(1) ü = L(u)K(u)iu̇

where

L(u) :=

(∫ 1

0
|u̇|2 dt

) 1

2

.

The search for nonconstant 1-periodic solutions of (1) is a variational problem. Indeed,
let us consider the Sobolev space

(2) H1 := H1(R/Z,R2)

endowed with the Hilbertian norm

(3) ‖u‖2 =

∫ 1

0
|u̇|2 dt+

∣∣∣∣
∫ 1

0
u dt

∣∣∣∣
2

.

Let Q : R2 → R
2 be the vector field defined by

(4) Q(x, y) =
1

2

(∫ x

0
K(s, y) ds ,

∫ y

0
K(x, s) ds

)
∀(x, y) ∈ R

2

and let

(5) E(u) := L(u) +G(u) where G(u) :=

∫ 1

0
Q(u) · iu̇ dt ∀u ∈ H1 .
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The energy functional E turns out to be continuous in H1 and of class C1 in H1 \ R2

(here we identify R
2 with the space of constant functions), and u is a nonconstant

(classical) 1-periodic solution of (1) if and only if u ∈ H1 \ R
2 is a critical point of E

(see Proposition 2.1). The assumptions on K guarantee that E has a mountain-pass
geometry. In particular, the value

c := inf
γ∈Γ

max
s∈[0,1]

E(γ(s)) where Γ := {γ ∈ C([0, 1],H1) : γ(0) = 0 , E(γ(1)) < 0}

is positive and is an asymptotic critical value. This means that there exists a Palais-
Smale sequence (PS sequence, for short) for E at level c, that is, a sequence (un) ⊂ H1

such that E(un) → c and E′(un) → 0 in the dual of H1. In fact, the main difficulty
is to show that E admits at least one bounded PS sequence at a nonzero level. In this
regard, we point out that the norm (3) is made up of two terms which essentially measure
the length and the barycenter of loops. The periodicity of K and a simple translation
argument allows us to obtain plainly PS sequences with bounded barycenter. As far
as concerns the L2-norm of the derivative, we are not able to obtain a bound for a PS
sequence of E. In order to overcome this difficulty we use a version of the “monotonicity
trick” introduced by M. Struwe in [14, 15]. More precisely, we consider a family of
problems

(6) ü = λL(u)K(u)iu̇ ,

where λ is a real parameter. For every λ ∈ R we introduce the energy functional
corresponding to (6), defined by

(7) Eλ(u) := L(u) + λG(u) ∀u ∈ H1 ,

with G as in (5). For every λ 6= 0 the functional Eλ admits a mountain-pass geometry,
with mountain-pass level cλ. It turns out that whenever the upper left Dini derivative of
the mapping λ 7→ cλ is finite or +∞ at λ0 (in this case, we say that the Denjoy property
for cλ holds true at λ0), then it is possible to construct a PS sequence (un) ⊂ H1 for
Eλ0

at level cλ0
with supn L(un) < ∞. With this additional information and in view

of the periodicity of K, after some standard work, one can plainly conclude that cλ0
is

a critical value and then that (6) with λ = λ0 admits a nonconstant periodic solution,
that is, a λ0K-loop exists. Then, the Denjoy-Young-Saks Theorem [12] ensures that the
Denjoy property holds true for almost every λ ∈ R \ {0}. In this way we prove Theorem
1.1.

The same strategy can be used to consider also prescribed curvature problems for
closed curves for a class of curvature functions which converge to a nonzero constant at
infinity. More precisely, we can show:

Theorem 1.2. Let K : R2 → R be a continuous function satisfying:

(K4) K(x, y) = K0 +K1(x, y) with K0 ∈ R \ {0} and K1(x, y) → 0 as |(x, y)| → ∞,
(K5) there exist r > 0 and a nonempty open interval I ⊂ S

1 such that K0K1(z) > 0
for |z| > r and arg(z) ∈ I.

Then for almost every λ ∈ R \ {0} there exists a λK-loop.

In fact, a more general version of Theorem 1.2 holds true, see Theorem 5.6, but under
less explicit assumptions on K. Theorems 1.2 and 5.6 can be compared to some existence
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results obtained in [9, Theorem 2.5] and [4]. The main differences are that we ask no
condition on the rate decay at infinity of the “nonconstant” part K1, neither any other
global condition. On the other hand, we cannot handle the exact case when λ = 1 and,
taking a sequence of λnK-loops un with λn → 1 and bounded energies, we are not able
to control in a uniform way the winding number of un, i.e., the degree of the mappings
u̇n

|u̇n|
. This additional information would be useful to pass to the limit in order to obtain

existence of a K-loop, but we suspect that further assumptions on K are necessary to
this aim.

2. The mountain pass geometry

As already observed in the Introduction, for every λ ∈ R the functional Eλ defined in
(7) is well defined and regular enough in the Hilbert space H1 introduced in (2). More
precisely:

Proposition 2.1. Assume that K : R2 → R is a continuous function and let Eλ : H
1 →

R be defined as in (7). Then Eλ ∈ C(H1) ∩ C1(H1 \R2) and

(8) E′
λ(u)[h] = L(u)−1

∫ 1

0
u̇ · ḣ dt+ λ

∫ 1

0
K(u)h · iu̇ dt ∀u ∈ H1 \ R2, ∀h ∈ H1.

In particular u is a nonconstant (classical) 1-periodic solution of (6) if and only if
u ∈ H1 \R2 is a critical point of Eλ, i.e. E′

λ(u) = 0.

Proof. When K is of class C1, also the vector field Q defined in (4) is so and satisfies
div(Q) = K on R

2. Then, one can argue as in [3]. When K is only continuous, one
follows an approximation argument as in [4, Lemma 1.3.3] and concludes. �

Now, we show that Eλ admits a mountain pass geometry. More precisely, we prove:

Proposition 2.2. Assume that K : R2 → R is a continuous function satisfying (K1)-
(K2). Then, for every [α, β] ⊂ R \ {0} there exists u ∈ H1 such that

(9) Eλ(u) ≤ 0 and L(u) >
2π

|λ| ‖K‖∞
∀λ ∈ [α, β]

Moreover, setting Γ := {γ ∈ C([0, 1],H1) : γ(0) = 0 , γ(1) = u} and

cλ := inf
γ∈Γ

max
s∈[0,1]

Eλ(γ(s)) ,

one has that

cλ ≥
π

|λ| ‖K‖∞
∀λ ∈ [α, β] .

Let us start by stating a version of isoperimetric inequality.

Theorem 2.3 (weighted isoperimetric inequality). Assume that K : R2 → R is a con-
tinuous, bounded function and let G : H1 → R be the functional defined in (7). Then

(10) |G(u)| ≤
‖K‖∞
4π

(∫ 1

0
|u̇| dt

)2

≤
‖K‖∞
4π

L(u)2 ∀u ∈ H1 .
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Proof. Let u : R/Z → R
2 be a continuous, 1-periodic function, with piecewise continuous

derivative. Let Cu := range(u). The order of a point (x, y) := z ∈ Cu is defined by
#{t ∈ [0, 1): u(t) = z}. A point z ∈ Cu is a self-intersection point when its order is
larger than 1. Assume that u has isolated self-intersections of finite order. Let us denote
Indu(x, y) the index (or winding number) of the curve Cu := range(u) with respect to a
point (x, y) : R2 \ Cu. In complex notation

Indu(z) =
1

2πi

∫

Cu

dζ

ζ − z
= −

1

2π

∫ 1

0

(u− z) · iu̇

|u− z|2
dt .

It is well known that the map z 7→ Indu(z) takes integer values, is constant on each
connected component of R2 \ Cu, and vanishes on the unbounded component of R2 \ Cu.
Moreover, as proved in [8],

(11) G(u) = −

∫

R2

Indu(x, y)K(x, y) dx dy .

In addition,

(12)

∫

R2

|Indu(x, y)| dx dy ≤
1

4π

(∫ 1

0
|u̇| dt

)2

(see [11]). Then (11)–(12) plainly imply (10). If u ∈ H1, for every n ∈ N, one can easily
construct a sequence of piecewise linear mappings un : R/Z → R

2 which parameterize
polygonals with isolated self-intersections of finite order and such that un → u in H1.
Since (10) holds true for each un, passing to the limit, one obtains (10) for u, too. �

Lemma 2.4. If K : R2 → R is a continuous, bounded function, then for every λ ∈ R

and for every u ∈ H1 one has that

L(u) ≤
2π

|λ|‖K‖∞
⇒ Eλ(u) ≥

L(u)

2
.

Proof. Fix λ ∈ R \ {0}. In view of the isoperimetric inequality (10), for every u ∈ H1

one has that

Eλ(u) ≥ L(u)− |λ| |G(u)| ≥ L(u)

(
1−

|λ| ‖K‖∞
4π

L(u)

)

and the conclusion follows. �

Lemma 2.5. If K : R2 → R is a continuous function satisfying (K1), then for every
n ∈ N there exist piecewise linear parametrizations u+n , u

−
n ∈ H1 of the boundary of the

rectangle [0, na] × [0, nb], with counter-clockwise, or clockwise orientation, respectively,
such that

(13) L(u+n ) = 2n(a+ b) and Eλ(u
±
n ) = 2n(a+ b)∓ n2λ

∫

[0,a]×[0,b]
K(x, y) dx dy .
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Proof. Let us denote ei the i-th vector of the canonical basis of R2, i = 1, 2, let

u+n (t) :=





2(a+ b)nte1 as 0 ≤ t ≤ a
2(a+b)

na(e1 − e2) + 2(a+ b)nte2 as a
2(a+b) < t ≤ 1

2

(2a+ b)ne1 + bne2 − 2(a+ b)nte1 as 1
2 < t ≤ 1

2 + a
2(a+b)

2(a+ b)(1− t)ne2 as 1
2 +

a
2(a+b) < t ≤ 1

and let us extend u+n on R in a periodic way, with period 1. One easily checks that
u+n ∈ H1, u+n is a parametrization of the boundary of the rectangle [0, na]× [0, nb], with
counter-clockwise orientation,

L(u+n ) = 2n(a+ b) and G(u+n ) = −n2

∫

[0,a]×[0,b]
K(z) dz .

Hence (13) is proved for u+n . Finally, the mapping u−n (t) := u+n (−t) is in H1, is a
parametrization of the boundary of the same rectangle, with clockwise orientation,
L(u−n ) = L(u+n ), and G(u−n ) = −G(u+n ). Hence (13) holds also for u+n . �

Proof of Proposition 2.2. Fix α, β > 0 with α < β. We use the assumption (K2).
Assume, in particular, that

∫
[0,a]×[0,b]K(x, y) dx dy > 0. By Lemma 2.5, there exists

n ∈ N such that L(u+n ) >
2π

|λ|‖K‖∞
and Eλ(u

+
n ) ≤ 0 for every λ ∈ [α, β]. Set u := u+n .

Then for every γ ∈ C([0, 1],H1) such that γ(0) = 0 and γ(1) = u, by continuity, there
exists s ∈ (0, 1) such that L(γ(s)) = 2π

|λ|‖K‖∞
. Thence, by Lemma 2.4

max
s∈[0,1]

Eλ(γ(s)) ≥ Eλ(γ(s)) ≥
π

|λ|‖K‖∞

and the conclusion plainly follows. In case
∫
[0,a]×[0,b]K(x, y) dx dy < 0 one takes u := u−n .

If α < β < 0, one argues in a similar way. �

Remark 2.6. The assumption (K2) is used just to guarantee the existence of some
u ∈ H1 satisfying (9). Actually (9) might hold true also in other cases, even if the
average of K on the periodicity rectangle is null. Suppose for instance that

(K3) K(x0, y0) 6= 0 at some (x0, y0) ∈ R
2.

In particular, if K(x0, y0) > 0, then for r > 0 small enough, K(x, y) ≥ K(x0,y0)
2 > 0

in a disc Dr(x0, y0). Let u(t) = u0 + re2πit. Then L(u) = 2πr and Eλ(u) = 2πr −

λπr2K(x0,y0)
2 . Therefore (9) holds true for λ > 0 sufficiently large. Many variations of

this argument can be developed.

3. Palais-Smale sequences with bounded length

Let us fix an interval [α, β] ⊂ R \ {0} and for every λ ∈ [α, β] let cλ be the mountain
pass level of Eλ (see Proposition 2.2). In this section we assume that the mapping
λ 7→ cλ satisfies the Denjoy property at some λ0 ∈ (α, β), that is:

(D) there exists a sequence (λn)n∈N ⊂ (α, β) such that

λn < λn+1 ∀n ∈ N , λn → λ0 as n → ∞ , sup
n∈N

cλn
− cλ0

λ0 − λn
< ∞ .

Our goal is to show:
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Proposition 3.1. Let λ0 ∈ (α, β) be such that (D) holds. Then the functional Eλ0

admits a PS sequence (un)n ⊂ H1 at level cλ0
such that supn L(un) < ∞.

The proof of Proposition 3.1 uses the monotonicity trick conceived by M. Struwe in [14,
15]. This method, in its original form, exploits the almost everywhere differentiability
of monotone functions (hence the name) and allows us to obtain some bound on the PS
sequences. It has found several applications for different variational problems (see [16])
and many versions and refinements have been developed. Here we follow essentially a
version due to Jeanjean and Toland [7], which works when one has no information on
monotonicity or almost everywhere differentiability of the function λ 7→ cλ. Actually, as
pointed out in [7], the Denjoy property (D) is enough.

Lemma 3.2. Let λ0 ∈ (α, β) and let (λn)n∈N be a sequence satisfying (D). Then there
exists (γn)n∈N ⊂ Γ and a constant C0 > 0 (depending on λ0) such that:

(i) if Eλ0
(γn(s)) ≥ cλ0

− (λ0 − λn) then L(γn(s)) ≤ C0,
(ii) maxs∈[0,1]Eλ0

(γn(s)) → cλ0
as n → ∞.

Proof. For every n ∈ N there exists γn ∈ Γ such that

(14) max
s∈[0,1]

Eλn
(γn(s)) ≤ cλn

+ λ0 − λn .

If Eλ0
(γn(s)) ≥ cλ0

− (λ0 − λn), then

−G(γn(s)) =
Eλn

(γn(s))− Eλ0
(γn(s))

λ0 − λn

≤
cλn

+ (λ0 − λn)− cλ0
+ (λ0 − λn)

λ0 − λn
≤ sup

n∈N

cλn
− cλ0

λ0 − λn
+ 2 := C1

thence

L(γn(s)) = Eλn
(γn(s))− λnG(γn(s)) ≤ cλn

+ λ0 − λn + λnC1 ≤ C0

Thus (i) is proved. Let us discuss (ii). For every n ∈ N there exists sn ∈ [0, 1] such that

Eλ0
(γn(sn)) = max

s∈[0,1]
Eλ0

(γn(s)) .

Setting un = γn(sn), by (10) and (14) we estimate

Eλ0
(un) = Eλn

(un) + (λ0 − λn)G(un) ≤ max
s∈[0,1]

Eλn
(γn(s)) + (λ0 − λn)

‖K‖∞
4π

L(un)
2

≤ cλn
+ (λ0 − λn)

[
1 +

‖K‖∞
4π

L(un)
2

]

= cλ0
+ (λ0 − λn)

[
1 +

cλn
− cλ0

λ0 − λn

+
‖K‖∞
4π

L(un)
2

]
.(15)

Since

(16) Eλ0
(un) = max

s∈[0,1]
Eλ0

(γn(s)) ≥ cλ0
> cλ0

− (λ0 − λn) ,

by (i), L(un) ≤ C0. Therefore, by (D), from (15)–(16) it follows that

cλ0
≤ max

s∈[0,1]
Eλ0

(γn(s)) ≤ cλ0
+ o(1) .
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Hence, also (ii) is proved. �

Lemma 3.3. If λ0 ∈ (α, β) is such that (D) holds, and C0 is the constant (depending
on λ0) given by Lemma 3.2, then for every ε > 0 the set Mε := {u ∈ H1 : L(u) ≤
C0 + 1 , |Eλ0

(u)− cλ0
| ≤ ε} is nonempty and inf{‖E′

λ0
(u)‖ : u ∈ Mε} = 0.

Proof. Fixing ε > 0, by Lemma 3.2, there exists γ ∈ Γ and s ∈ [0, 1] such that cλ0
− ε ≤

Eλ0
(γ(s)) ≤ cλ0

+ ε and then L(γ(s)) ≤ C0. Hence Mε 6= ∅. Let us prove the second

part of the Lemma. Arguing by contradiction, assume that there exists ε0 ∈
(
0,

cλ0
2

)

such that

‖E′
λ0
(u)‖ ≥ ε0 ∀u ∈ Mε0 .

Then, by a standard deformation argument, there exist ε1 ∈ (0, ε0) and a homeomor-
phism η : H1 → H1 such that

Eλ0
(η(u)) ≤ Eλ0

(u) ∀u ∈ H1(17)

η(u) = u if |Eλ0
(u)− cλ0

| ≥ ε0(18)

Eλ0
(η(u)) ≤ cλ0

− ε1 if Eλ0
(u) < cλ0

+ ε1 and L(u) ≤ C0 .(19)

Let (λn)n∈N ⊂ (α, β) be a sequence satisfying (D) and let (γn)n∈N ⊂ Γ be given by
Lemma 3.2. Let γ̃n = η ◦ γn ∈ C([0, 1],H1). When Eλ0

(γn(s)) ≤ cλ0
− ε0 then, by

(18), γ̃n(s) = γn(s) and, consequently, also Eλ0
(γ̃n(s)) ≤ cλ0

− ε1. In particular this

holds true for s = 0 since Eλ0
(γn(0)) = Eλ0

(0) = 0 and cλ0
− ε0 >

cλ0
2 > 0. The

same occurs at s = 1, since Eλ0
(γn(1)) = Eλ0

(u) < 0 (Proposition 2.2). Thus γ̃n ∈ Γ.
For n large enough maxs∈[0,1]Eλ0

(γn(s)) < cλ0
+ ε1. In particular, when Eλ0

(γn(s)) ≥
cλ0

−(λ0−λn), then L(γn(s) ≤ C0 and, by 19, Eλ0
(γ̃n(s)) ≤ cλ0

−ε1. Otherwise, by (17),
Eλ0

(γ̃n(s)) ≤ Eλ0
(γn(s)) < cλ0

− (λ0 − λn) < cλ0
. Thence maxs∈[0,1]Eλ0

(γ̃n(s)) < cλ0
,

contrary to the definition of cλ0
. �

Proof of Proposition 3.1. It plainly follows from Lemma 3.3, taking a sequence εn → 0+.

4. Proof of Theorem 1.1

Fix an interval [α, β] ⊂ R \ {0} and set

(20) Λα,β := {λ0 ∈ (α, β) : λ0 satisfies (D)}

For every λ0 ∈ Λα,β, by Proposition 3.1, there exists a PS sequence (un)n ⊂ H1 \R2 for
Eλ0

at level cλ0
, with supn L(un) < ∞. For every n ∈ N there exists mn ∈ Z

2 such that
∫ 1

0
(un +mn,1ae1 +mn,2be2) dt ∈ [0, a] × [0, b] ∀n ∈ N .

Since, in general, for every u ∈ H1 \ R2 and for every m1,m2 ∈ Z,

L(u+m1ae1 +m2be2) = L(u) ,

G(u+m1ae1 +m2be2) = G(u) ,

‖E′
λ(u+m1ae1 +m2be2)‖ = ‖E′

λ(u)‖ ,

setting

vn := un +mn,1a1 +mn,2a2
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the sequence (vn)n is a PS sequence for Eλ0
at level cλ0

, and it is bounded in H1. Passing
to a subsequence, if necessary, we can assume that vn ⇀ u weakly in H1. Then we apply:

Lemma 4.1. If (un) ⊂ H1 \R2 satisfies ‖E′
λ(un)‖ → 0 and un ⇀ u weakly in H1, then

un → u strongly in H1.

Let us complete the proof of Theorem 1.1. By Lemma 4.1 vn → u strongly in H1.
Then Eλ0

= cλ0
and E′

λ0
(u) = 0. By Proposition 2.1, u is a classical, 1-periodic solution

of (6) with λ = λ0 and is nonconstant because cλ0
6= 0. Thus u is a parametrization of a

λ0K-loop. . By the Denjoy-Young-Saks Theorem [12], for every interval [α, β] ⊂ R \{0}
the set Λα,β has full measure in [α, β]. Therefore, we conclude that for almost every
λ ∈ R there exists a λK-loop at energy level cλ.

Proof of Lemma 4.1. The proof is standard (see, e.g. [9, 4]). We sketch it for the reader’s
convenience. Set ∫ 1

0
u dt := u and

∫ 1

0
un dt := un ∀n ∈ N .

By the compact embedding of H1 into L1, un → u in R
2. If L(un) → 0 then

‖un − u‖2 = L(un)
2 + |un − u|2 → 0

and hence u = u and the lemma is proved. If L(un) 6→ 0, it is not restrictive to assume
that L(un) → ℓ ∈ (0,∞). Then, by (8) and since un ⇀ u weakly in H1

∫ 1

0
|u̇n − u̇|2 dt =

∫ 1

0
u̇n · (u̇n − u̇) dt+ o(1)

= ℓ

(
E′

λ(un)[un − u]− λ

∫ 1

0
K(un)(un − u) · iu̇n dt

)
+ o(1) .

Since ‖E′
λ(un)‖ → 0 and (un) is bounded inH1, E′

λ(un)[un−u] → 0. Moreover, using the
compact embedding of H1 into L2 and the fact that K is bounded, K(un)(un − u) → 0
in L2 and then, since (u̇n) is bounded in L2,

∫ 1

0
K(un)(un − u) · iu̇n dt → 0 .

Thence u̇n → u̇ in L2 and the conclusion follows also in this case. �

5. The case of prescribed curvature constant at infinity

In this Section we consider the case in which K : R2 → R is a continuous function
satisfying (K4). We set

G0(u) =
1

2

∫ 1

0
u · iu̇ dt and G1(u) =

1

2

∫ 1

0
Q1(u) · iu̇ dt

with Q1 ∈ C1(R2,R2) such that div(Q1) = K1. Then we define

(21) E0,λ(u) := L(u) + λK0G0(u) , Eλ(u) := E0,λ(u) + λG1(u) ∀u ∈ H1 .

Also in this case, our first goal is to show that Eλ has a mountain pass geometry as soon
as λ 6= 0. It is not restrictive to assume λ > 0, otherwise we change K with −K. We
can always use Lemma 2.4 but not Lemma 2.5. In its place, we have:
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Lemma 5.1. If K : R2 → R is a continuous function satisfying (K4) with K0 > 0, then
for every α, β > 0 with α < β there exist r0, R > 0 such that, setting u0(t) = r0e

2πit,
one has

(22) L(u0 + z) >
2π

λ ‖K‖∞
and Eλ(u0 + z) < 0 ∀z ∈ R

2 with |z| ≥ R , ∀λ ∈ [α, β] .

If K0 < 0 the same conclusion holds with u0(t) = r0e
−2πit.

Proof. Let us consider the case K0 > 0. One has that L(u0 + z) = L(u0) = 2πr0 for
every r0 > 0 and z ∈ R

2. Moreover, by (11)

G0(u0 + z) = −πr20 and G1(u0 + z) = −

∫

Dr0
(z)

K1(x, y) dx dy ∀r0 > 0 , ∀z ∈ R
2

where Dr0(z) is the disc centered at z and with radius r0. Hence, if λ ∈ [α, β],

Eλ(u0 + z) ≤ 2πr0 − απr20K0 + β

∫

Dr0
(z)

K1(x, y) dx dy .

Since K0 > 0 we can find r0 > 0 such that

(23) 2πr0 − απr20K0 < 0 and 2πr0 >
2π

β ‖K‖∞
.

Moreover, by (K4), there exists R > 0 such that

β

∫

Dr0
(z)

|K1(x, y)| dx dy < −πr0 +
απr20K0

2
∀z ∈ R

2 with |z| ≥ R .

Then the conclusion follows. Similarly when K0 < 0. �

Now we introduce the mountain pass level and we prove some some bounds.

Proposition 5.2. Assume that K : R2 → R is a continuous function satisfying (K4).
Let α, β > 0 with α < β and let r0, R, u0 as in Lemma 5.1. Set u := u0 + z0 for some
fixed z0 ∈ R

2 with |z0| ≥ R, Γ := {γ ∈ C([0, 1],H1) : γ(0) = 0 , γ(1) = u} and

(24) cλ := inf
γ∈Γ

max
s∈[0,1]

Eλ(γ(s)) .

Then
π

λ ‖K‖∞
≤ cλ ≤

π

λ |K0|
∀λ ∈ [α, β] .

Proof. We assume K0 > 0. The lower bound for cλ can proved as in Proposition 2.2,
using Theorem 2.3 and Lemma 5.1. Let us check the upper bound. Let

ε0 := −2πr0 + απr20K0

and observe that ε0 > 0, by (23). For every ε ∈ (0, ε0) there exists Rε ≥ R such that

β

∫

Dr0
(z)

|K1(x, y)| dx dy < ε ∀z ∈ R
2 with |z| ≥ Rε .
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Fix zε ∈ R
2 with |zε| ≥ Rε. Let γ = γ1 ∪ γ2 ∪ γ3 with γ1 = [0, zε], γ2(s) = zε + su0

(s ∈ [0, 1]) and γ3(s) = g(s) + u0 with g ∈ C([0, 1],R2) such that g(0) = zε, g(1) = z0
and |g(s)| ≥ R for every s ∈ [0, 1]. We compute

Eλ(γ1(s)) = 0(25)

Eλ(γ2(s)) = 2πr0s− λK0sπr
2
0 − λ

∫

Dsr0
(zε)

K1(x, y) dx dy(26)

Eλ(γ3(s)) = E0,λ(u0)− λ

∫

Dsr0
(g(s))

K1(x, y) dx dy(27)

for every s ∈ [0, 1]. In particular

Eλ(γ3(s)) ≤ 2πr0 − λπr20K0 + λ

∫

Dr0
(g(s))

|K1(x, y)| dx dy ≤ 2πr0 − απr20K0 + ε < 0

because ε < ε0. Hence γ ∈ Γ and

max
s∈[0,1]

Eλ(γ(s)) = max
s∈[0,1]

Eλ(γ2(s))

≤ max
s∈[0,1]

[
2πr0s− λK0s

2πr20 + β

∫

Dr0
(zε)

|K1(x, y)| dx dy

]

≤
π

λK0
+ ε .

Therefore, by definition of cλ and by the arbitrariness of ε > 0, the upper bound for cλ
is proved. The case K0 < 0 is similar. �

Let Λα,β be defined as in (20). Arguing as for Proposition 3.1, we have

Lemma 5.3. If λ ∈ Λα,β then there exists a PS sequence (un) ⊂ H1 \R2 for Eλ at level
cλ, with supn L(un) < ∞.

As a next step, we analize the behaviour of the PS sequences given by Lemma 5.3.

Lemma 5.4. Fix λ ∈ Λα,β and let (un) be the PS sequence for Eλ given by Lemma 5.3.
For every n ∈ N, set

un :=

∫ 1

0
un(t) dt and vn := un − un .

(i) If lim inf |un| < ∞, then there exists u ∈ H1 \R2 such that, up to a subsequence,
un → u strongly in H1 and u is a λK-loop.

(ii) If |un| → ∞, then there exists v ∈ H1\R2 such that, up to a subsequence, vn → v
strongly in H1 and v is a λK0-loop.

Moreover, if cλ < π
|λK0|

, then only the case (i) can occur.

Proof. (i) If lim inf |un| < ∞, then (un) admits a bounded subsequence in H1 and then
a subsequence weakly converging to some u. In this case, the conclusion follows from
Lemma 4.1.
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(ii) Observe that (vn) is bounded in H1 and

E′
λ(un)[h] = E′

0,λ(vn)[h] + λ

∫ 1

0
K1(vn + un)h · iu̇n dt

and

(28)

∫ 1

0
|K1(vn + un)u̇n| dt → 0

Indeed, observe that (u̇n) is bounded in L1, (vn) is bounded in C0, and |un| → ∞. Hence
(28) follows from (K4). Therefore, by the embedding H1 →֒ C0,

‖E′
0,λ(vn)‖ ≤ ‖E′

λ(un)‖+ C

∫ 1

0
|K1(vn + un)u̇n| dt

which yields ‖E′
0,λ(vn)‖ → 0. Moreover, for a subsequence, vn converges weakly in H1

to some v ∈ H1. By Lemma 4.1 (applied to E0,λ), vn → v strongly in H1. In particular,
v is a 1-periodic solution of

(29) v̈ = L(v)λK0iv̇

with

(30)

∫ 1

0
v dt = 0

because
∫ 1
0 vn dt = 0 for every n. The case v ∈ R

2 cannot occur, otherwise L(un) =
L(vn) → L(v) = 0. By (2.3) also G(un) → 0 and thus Eλ(un) → 0, which is impossible,
since cλ 6= 0. Hence, v is a λK0-loop. More precisely, by an elementary argument, one
can easily obtain that the nonconstant 1-periodic solutions of (29)–(30) are

v(t) =
e2πijt+it0

|λK0|

with j ∈ Z \{0} and t0 ∈ R. In particular the sign of j must be equal to the sign of λK0

and

(31) E0,λ(v) =
jπ

λK0
.

Using (11), noticing that range(un) ⊂ Dρ(un) for some ρ > 0 independent of n and
recalling that the index of a curve Cu = range(u) vanishes on the unbounded component
of R2 \ Cu, we can estimate

G1(un) = −

∫

R2

Indun(z)K1(z) dz = −

∫

Dρ(un)
Indun(z)K1(z) dz .

Then, by (12),

|G1(un)| ≤ sup
z∈Dρ(un)

|K1(z)|

∫

R2

|Indvn(z)| dz ≤
1

4π
sup

z∈Dρ(un)
|K1(z)|

(∫ 1

0
|v̇n| dt

)2

= o(1)

thanks to (K4). Thence, since vn → v in H1 and by (31),

cλ = Eλ(un) + o(1) = E0,λ(vn) + λG1(un) + o(1) = E0,λ(v) =
jπ

λK0
.
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This proves the last statement. �

Finally, we show:

Lemma 5.5. If (K5) holds, then cλ < π
|λK0|

.

Proof. Suppose K0 > 0. Fix an interval [α, β] ⊂ (0,∞) containing λ. Let r0, R > 0
be given by Lemma 5.1. Let Ω := {z ∈ R

2 : |z| > r , arg(z) ∈ I}, where r > 0
and I ⊂ S

1 are given according to the assumption (K5). Let z1 ∈ R
2 be such that

Dr0(z1) ⊂ Ω ∩ {z ∈ R
2 : |z| ≥ R}. Finally, let γ = γ1 ∪ γ2 ∪ γ3 with γ1 = [0, z1],

γ2(s) = z1 + su0 (s ∈ [0, 1]) and γ3(s) = g(s) + u0 with g ∈ C([0, 1],R2) such that
g(0) = z1, g(1) = z0 and |g(s)| ≥ R for every s ∈ [0, 1]. By computations like (25)–(27),
one obtains that γ ∈ Γ and

cλ ≤ max
s∈[0,1]

Eλ(γ(s)) = max
s∈[0,1]

Eλ(γ2(s)) < max
s∈[0,1]

E0,λ(γ2(s)) =
π

λK0

where the strict inequality is due to the fact that, by (K5), K1 > 0 in Dsr1(z0) for all
s ∈ [0, 1]. �

Proof of Theorem 1.2. Fix an interval [α, β] ⊂ (0,∞). By the Denjoy-Young-Saks The-
orem [12], the set Λα,β (defined in (20))) has full measure in [α, β]. Then, by Lemmata
5.3–5.5, for a.e. λ ∈ [α, β] there exists a λK-loop. Similarly, when [α, β] ⊂ (−∞, 0).
The conclusion follows from the arbitrariness of [α, β] in R \ {0}. �

One can recognize that in fact we proved:

Theorem 5.6. Let K : R2 → R be a continuous function satisfying (K4). For every
λ ∈ R \ {0} let Eλ and cλ be defined as in (21) and (24), respectively. Then

cλ ≤
π

λ |K0|
∀λ ∈ R \ {0}

and cλ is a critical value of Eλ (hence a λK-loop exists) for a.e. λ such that cλ < π
λ|K0|

.
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