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In this paper we study how the exact nonperturbative integrability methods in 4D N ¼ 4 super-Yang-
Mills can work efficiently together with the numerical conformal bootstrap techniques to go beyond the
spectral observables and access previously unreachable quantities such as correlation functions at finite
coupling. In the setup of 1D defect conformal field theory living on a Maldacena-Wilson line, we managed
to compute with good precision a nonsupersymmetric structure constant for a wide range of the ‘t Hooft
coupling. Our result is particularly precise at strong coupling and matches well with the recent analytic
results of Meneghelli and Ferrero.
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I. INTRODUCTION

When it comes to nonperturbative calculations in quan-
tum field theories (QFTs), the number of tools is rather
limited. Monte Carlo simulation could give rather accurate
results in some theories. In a smaller set of integrable QFTs
one can get access to a large number of observables, but
usually those theories are limited to 2D. There are a few
exceptions, such as N ¼ 4 supersymmetric Yang-Mills
(SYM) in 4D, where integrability gives access to non-
perturbative physics. The most accurate nonperturbative
results are limited to the spectrum of anomalous dimen-
sions, where the quantum spectral curve (QSC) [1,2]
method allows one to get extremely precise results at ‘t
Hooft coupling λ ≃ 1 (for example 60 digits in [3] for the
Balitsky-Fadin-Kuraev-Lipatov Pomeron intercept).
In this paper we focus on planar N ¼ 4 SYM. As a

conformal theory, for its complete solution, in addition to the
dimensions of the operators, one also needs to know the
operator product expansion (OPE) coefficients or structure
constants. Even though there have been many exciting
applications of integrability to the study of the structure
constants [4–7], these results are either limited to perturba-
tion theory, infinitely long operators, strongly γ-deformed

(Fishnet) theories, or are not explicit enough for numerical
evaluation.
Another powerful nonperturbative method to study

conformal field theories (CFTs) is the numerical conformal
bootstrap (NCB) (see [8–10] for some reviews). It allows
one to identify prohibited domains for the conformal
dimensions or OPE coefficients given the symmetries of
the CFT as an input. However, it may happen that an
interesting physical theory lies deep within the bounds
given by the conformal bootstrap, rather than on the

FIG. 1. The OPE coefficient of two protected line-deformation
operators Φi⊥ into unprotected operator Φjj. The thickness of the
black line indicates the precision. The interval of values of g ¼

ffiffi
λ

p
4π

spans a wide range in λ ∈ ð0; 2526.6Þ. It interpolates perfectly
between the weak [18,19] and strong [11,20,21] coupling analytic
results indicated by thick pink lines. We see that already at g ¼
1.5 our result matches perfectly the three-loop result of [21],
obtained by a very different method. At weak coupling we
compare with the preliminary result 2g2 þ 4

3
ðπ2 − 18Þg4 of [19].
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boundary. In this scenario, which seems to apply to the
interesting case of conformal gauge theories at finite values
of the coupling (see e.g. the cases studied in [11,12]), one
can only extract a limited amount of information from the
bootstrap constraints in the nonperturbative regime.
In this paper, we initiate a strategy to overcome these

limitations by combining the two powerful methods of QSC
and NCB. Specifically, we consider nonlocal operators
realized as insertions on an infinite supersymmetric Wilson
line in the4D theory. Their correlators are constrained by a 1D
version of the conformal bootstrap. We will show how, using
exact spectral data coming from the QSC as an input for the
NCB, accurate values for a nontrivial structure constant of
such nonlocal operators can be obtained in awide range of the
coupling (see Fig. 1). This result would not be reachable by
any present method based purely on integrability or the
conformal bootstrap. While the strategy of supplementing
conformal bootstrap equations with extra spectral data has
been applied in other contexts [13–17], this is the first time its
effectiveness is demonstrated for observables in a higher-
dimensional gauge theory.
We remark that there is also hope for an integrability

based nonperturbative analytical solution for correlators in
planar N ¼ 4 SYM, for example built upon the separation
of variables approach [5,22]. The strategy we introduce
with this paper provides an alternative method to generate
high precision data for future comparison. We also expect
that the synergy with bootstrap methods will be able to
consistently push the frontier of what can be achieved by
integrability alone.

II. SETUP

Here we focus on the one dimensional defect CFT that
lives on the infinite straight 1=2-Bogomol’nyi-Prasad-
Sommerfield (BPS) Maldacena-Wilson line (MWL) in
N ¼ 4 SYM defined by [23,24]

W ¼ TrWþ∞
−∞ ≡ TrP exp

Z þ∞

−∞
dtðiAt þΦjjÞ: ð1Þ

Φjj is one of the six real scalars. We denote the remaining
five scalars by Φi⊥. The MWL preserves an OSpð4�j4Þ
subgroup of the symmetry of N ¼ 4 SYM. It includes an
SOð5ÞR subgroup of R symmetry, the 1D conformal group
SOð1; 2Þ and the SOð3Þ group of rotations in the subspace
orthogonal to the line [25]. We mention that a similar line
defect CFT setup was also considered in the 3D Aharony-
Bergman-Jafferis-Maldacena theory, see [26,27], and the
related conformal bootstrap was studied in [28], while the
integrability side is not fully developed yet [29].
Correlation functions in the defect CFT are the expect-

ation values of the Wilson line with insertions of local
operators [20,22,32–37]:

⟪O1ðt1ÞO2ðt2Þ � � �OnðtnÞ⟫
≡ hTrWt1

−∞O1ðt1ÞWt2
t1O2ðt2Þ � � �OnðtnÞWþ∞

tn i; ð2Þ

where W
tf
ti is a segment of the line (1).

An important role is played by so-called line-
deformation BPS multiplets Bn. For example the simplest
B1 super-multiplet contains Φi⊥ as its top component. As a
consequence, the dimension of this operator is protected
and equal to 1. The simplest nonprotected operator is Φjj
[11,25,36,38].
In addition to conformal symmetry, N ¼ 4 SYM also

exhibits integrability, which controls the spectrum of the
defect CFT as we describe in the next section.

III. QSC AND THE SPECTRUM

The two point functions of conformal primary
operators are controlled by the conformal dimensions
⟪OAðt1ÞOBðt2Þ⟫ ∝ δABjt1 − t2j−2ΔA . Initially, thermody-
namic Bethe ansatz equations describing the spectrum of
some operators were written in [33,39], which then were
transformed into a QSC form more suitable for practical
calculations in [40], but for a long time it was not clear if
integrability could also compute dimensions of “neutral”
operators such as Φk. In [38] it was shown that the straight-
line limit of the QSC of [40] captures those operators too. It
is currently expected that all operators appearing in this
defect CFT can be studied in a similar way. In particular we
computed solutions of the QSC for all operators with
nontrivial anomalous dimensions appearing in the OPE of
Φi⊥ ×Φi⊥ with bare dimensions Δ0 ¼ 1, 2, 3, and further
solutions for Δ0 ¼ 4, 5 and 6 for a total of 35 states
(see Fig. 2).

A. QSC

For the details of the QSC constructions we refer to
recent reviews [42–44]. Let us briefly summarize the
construction: there are 4þ 4 functions pa and qi of
one complex variable u, which are related by some
finite difference relations. All these functions have a
quadratic branch cut starting at �2g in the complex

plane of u. Introducing xðuÞ ¼ uþ ffiffiffiffiffiffiffiffi
u−2g

p ffiffiffiffiffiffiffiffi
uþ2g

p
2g one can

represent pa functions as an expansion pa ¼
P

n
ca;n
xn .

After that one solves for qi, which satisfy a finite
difference equation in u with coefficients built out
of p’s. To select physical states, one has to impose
the “gluing condition” qkðu� i0Þ ¼ Mj

kqjð−u� i0Þ for
u ∈ ½−2g; 2g�, where Mi

i ¼ 1, M2
3 ¼ −M1

4 ¼ α sinhð2πuÞ
and other elements 0, which fixes the coefficients ca;n
to a discrete set of values. The dimensions Δ can be
read off the large u asymptotics: qiðuÞ ∼ uniþΔ (for
some integers ni).
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In order to find this large number of states, we have to
resolve the main technical problem preventing us from
getting good starting points for the numerical algorithm.
We reformulate the optimization problem for finding the
coefficients in pa into the search for the zeros of a vector
function for Fourier modes of the gluing condition, which
we then solve with the Newton method. Details of the
construction will be published elsewhere [19]. This method
is significantly more stable at weak coupling and allows us
to use the perturbative analytical solutions of the QSC (for
example [3,45,46]) as starting points for the numerical
algorithm efficiently even for highly excited states.

B. States

The nonprotected states appearing in the OPE of two B1

multiplets should have all quantum numbers zero (except
Δ) [11]. In general the mixing problem is quite complicated
and there are no simple closed sectors. However, at one
loop, mixing is limited. For example the scalars Φjj and
Φi⊥Φi⊥ form a closed sector and the mixing matrix is
known explicitly [47]. We notice that the spectrum of
this mixing matrix coincides exactly with the spectrum
of a one-loop PSUð2; 2j4Þ effective Bethe ansatz for a
particular choice of Bethe roots numbers. It is convenient to
use the oscillator notation [48–51], which translates into
roots numbers easily (see e.g. [52]). For those states we
find nfi ¼ fΔ0þ 1;Δ0þ 1;Δ0;Δ0g and nai ¼ nbi

¼ 0.
Plugging those numbers into the Bethe ansatz equation
solver of [52], and selecting states satisfying a parity in u
(accompanied with a flip of the Dynkin diagram), we
reproduce the spectrum of the mixing matrix of [47].
Having this one-loop solution, we use it as a starting point
for the iterative procedure [3] to obtain a four-loop
analytico-numerical solution of the QSC (keeping 200
digits precision). This is then fed into the purely numerical

algorithm of [53] with the new implementation of the
optimization problem. In this way we obtain high precision
(around 20 digits) data for the spectrum (see Fig. 2). The
fact that those initial points lead to a convergent procedure
for the QSC at finite g is a very nontrivial test of the above
construction.
In addition to the scalar sector, other states can, for

example, include covariant derivatives Dt and also some
combinations of fermions.
The simplest way to describe those states at one loop is

again by means of the effective “doubling-trick” oscillator
numbers ½na1 ; na2 jnf1 ; nf2 ; nf3 ; nf4 jnb1

; nb2
�, which in gen-

eral have to be set to

½Δ0 − T;Δ0 − Tj1þ T; 1þ T; T; TjΔ0 − T;Δ0 − T�; ð3Þ

where Δ0 − T, roughly, corresponds to the number of
covariant derivatives Dt (which can also potentially mix
with fermions even at one loop). Note that, whereas T
changes the Bethe roots numbers, it does not affect the
quantum numbers of the states. One can call the parameter
T a twist, in analogy with higher dimensional cases. Above,
T ¼ 2;…;Δ0, except for Δ0 ¼ 1 where T ¼ 1 (this state is
exceptional as it satisfies a semishortening condition at
weak coupling). The oscillator numbers (3) then lead to a
set of one-loop states, which are used for numerical
calculation as before.
At weak coupling, for Δ0 ¼ 1, 2, 3 our procedure

produces 1,2,6 solutions respectively, in agreement with
the counting produced by free field theory. For Δ0 ¼ 4, we
computed 19 levels. These are all states with a parity
symmetry of the solutions of the QSC, and are possibly not
an exhaustive list. We postpone clarifying this point to
future work, as our bootstrap results do not rely on these
states. From Δ0 ¼ 5 onward, we only solved for twist-2
states, which dominate at weak coupling, as they are the
only ones with order Oð1Þ OPE coefficients (this can be
seen at tree level in perturbation theory).
All of the states we found proceed to constant integers

Δ∞ at strong coupling, in contrast with the early expect-
ations [54] and also very different to the spectrum of local
operators, where all unprotected states scale to infinity.
For Δ∞ ¼ 2, 4, 6, 7, 8, we found 1,2,4,1,9 states respec-
tively, which matches with the counting of [55]. As we
only computed 35 states, at higher Δ∞, we already miss
some levels (for example for Δ∞ ¼ 9 we are two states
short).

IV. FOUR-POINT FUNCTION AND
CROSSING SYMMETRY

In order to extract the structure constant C1 we consider
the correlator of four arbitrary operators belonging to the
contour deformation multiplet B1. All such four-point
functions are related and can be expressed in terms of a
single nontrivial function fðχÞ [11,21,25] thanks to the

FIG. 2. Dimensions of 35 states computed with high precision
with the QSC using an improved method of [19]. For several
lowest lying states we have data in a wider range g ∈ ½0; 4�. The
oscillator content and one-loop anomalous dimensions of the
states are given in Table I of the Supplemental Material [41].
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analytic superspace formalism of [56]. For example for four
identical scalars,

⟪Φ1⊥ðx1ÞΦ1⊥ðx2ÞΦ1⊥ðx3ÞΦ1⊥ðx4Þ⟫

¼ Fχ2 þ ð2χ−1 − 1Þf − ðχ2 − χ þ 1Þf0
x212x

2
34

; ð4Þ

where χ ¼ x12x34
x13x24

, xij ¼ xi − xj. Finally, F ¼ 1þ C2
BPS ¼

3WW00
ðW0Þ2 with W ¼ 2I1ð

ffiffi
λ

p Þffiffi
λ

p [24,57,58]. The function (4) has a

symmetry under the cyclic permutation of the coordinates
xi, which translates into the crossing equation:

ð1 − χÞ2fðχÞ þ χ2fð1 − χÞ ¼ 0: ð5Þ

Furthermore, since Φ1⊥ is a superconformal primary fðχÞ
can be decomposed into a sum over conformal blocks

fðχÞ ¼ χ þ C2
BPSFB2

ðχÞ þ
X
n

C2
nFΔn

ðχÞ; ð6Þ

where FB2
¼ χ − χ2F1ð1; 2; 4; χÞ and

FΔ ¼ χΔþ1

1 − Δ 2F1ðΔþ 1;Δþ 2; 2Δþ 4; χÞ: ð7Þ

It is clear that the equation (5) can be written as

X
n

C2
nGΔn

ðχÞ ¼ HðχÞ; ð8Þ

where the functions G andH are known. Assuming that we
have access to the full spectrum, (8) becomes a system of
linear equations for C2

n. An obvious problem is that (8)
contains an infinite number of equations (by picking
various values of χ) for an infinite number of unknowns
fC2

ng∞n¼1. As we managed to compute a large number of
low lying states Δn from integrability, the main hurdle is
finding an efficient truncation scheme which would allow
one to obtain a good approximation (at least numerically)
for the OPE coefficients C2

n. In the next section we describe
several possibilities and our main result for C2

1 given
in Fig. 1.

V. SOLVING THE CROSSING EQUATION

In this section we report on various attempts to truncate
the crossing equation (7) to a finite dimensional system.

A. Pointlike functionals

One of the obvious ways to get a finite system out of (7)
is to truncate the sum at some level ΔN and sample N
different values of the cross-ratio χi. One can then solve a
N × N linear system for the OPE coefficients an ≡ C2

n.
Assuming the procedure converges, different sets of points

fχig should give similar results, but in practice that is not
the case. It was proposed in [16] to average the result over a
large number of sampling sets, and use the statistical
variance of an as an error estimate. Even though this
method at the first sight is quite unusual, it does give good
results in situations where the density of the spectrum does
not increase too fast with Δ. Indeed it worked well in the
context of the 2D critical lattice models studied in [16,17].
In our case, the number of states increases rapidly and

this method gives almost 100% error in the intermediate
coupling region. Similar problems were observed also by
the authors of [17].
We attempted to improve the method slightly by making

it more deterministic. First we rewrite the truncated
equation (8) as

P
N
n¼0 anGnðχÞ ¼ 0 with G0 ¼ H and

a0 ¼ −1. Then we sample M > N points χi and find an
by minimization of

SðfangÞ ¼
XM
i¼1

�XN
n¼0

anGnðχiÞ
�2
: ð9Þ

This method converges better, but still gives large error
bars in our case. Again, for a spectrum whose density does
not grow too fast it works well, e.g. for the free spectrum
Δn ¼ 2n it gives for N ¼ 6 the known result a1 ¼ 2

5
with 7

digits. This number also gives the strong coupling asymp-
tote of our result in Fig. 1.

B. Oscillating optimized functionals

In a more abstract way, one can define a linear functional
α which, when acting on GΔn

ðχÞ, returns a number ωðΔnÞ.
For the case of the pointlike functional, α simply evaluates
its argument as some point χi. In order for the procedure of
extracting the OPE coefficients to work well, one should
make sure that ωðΔÞ is decaying fast at large Δ. Whereas
the pointlike functional does decay with Δ, one can
construct much faster decaying functionals. A simple
way is to look for such functionals in the form

α½f� ¼
XN=2

n¼0

cn∂2nfðχÞjχ¼1=2 ð10Þ

for some large N. One can find the coefficients cn from the
requirement that the corresponding ωðΔÞ is small (with
respect to a suitable measure) for all Δ > Δg. This type of
functionals allows one to truncate the system very effi-
ciently and give a result for C2

1, consistent with more
traditional optimal positive functionals, which we describe
below. The advantage of this method is that it does not
require positivity of the OPE coefficients C2

n and thus could
be used for nonunitary theories. The disadvantage is that
estimating the error of the approximation requires extra
effort, whereas the positive functionals give exclusion
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domains from which one can estimate the error
immediately.

C. Optimal positive functionals

A more standard NCB approach is to use optimized
functionals which are positive above Δ > Δg. The SDPB
package [59,60] allows one to find such functionals
easily. For example, SDPB can find cn from (10) such
that ωðΔÞ > 0 for Δ > Δg, ωðΔ1Þ ¼ �1 and α½H� is
minimal. It is easy to see that then �α½H� gives the
upper/lower bound for C2

1 if there are no states in the
interval ðΔ1;ΔgÞ. This methods works very well in our
case, by taking Δg ¼ Δ2 we get a very narrow allowed
interval for C2

1 (Fig. 1). Half of the length of this interval
gives the error of our result as shown on Fig. 3. The
precision of this method increases with the number of
terms in the sum (10). By computing the bounds for
N ¼ 5; 7;…; 45 we found that a 1=N fit gives a very
stable prediction for the N ¼ ∞ limit, with ∼10−7 extrapo-
lation error, which is also shown in Fig. 3 by a thick
black line. This gives our final estimate for the error of our
result for C2

1. We see that the estimation for C2
1 works the

best above g > 1, but even at smaller coupling the absolute
error is ⪅ 0.0023, it decreases quickly to ⪅ 0.0001 for
g ¼ 1.5 and for g ¼ 4 it reaches ⪅ 0.00001. The full result
is given in the Supplemental Material [41].

D. Incorporating higher states

What is very striking is that the NCB already gives very
precise bounds given only two statesΔ1 andΔ2 as an input.
In order to improve it further one can consider more states
and different types of optimization problems. The numeri-
cal analysis with current methods becomes more compli-
cated. Here we present some preliminary results, which
incorporate two more states.

In Fig. 4 we plot the allowed regions for C2 and C3.
The NCB gives a very narrow domain, which shrinks
further with increased N. The reason the domain is
stretched in one direction is the fact that these two states
are situated rather close to each other, and it requires higher
resolution and large N to resolve between them. Notably,
for each allowed value of C2 and C3 the corresponding
allowed region for C1 is much narrower than we found
previously. This gives hope that the bounds on C1 could be
further improved. It remains, however, an open question if
one can reach an arbitrary high precision for C1, or if there
is a fundamental limit. We reserve these questions for
future study.

VI. CONCLUSIONS

The combination of integrability and conformal boot-
strap methods gave us surprisingly precise results. Yet we
only used a small amount of data available from integra-
bility. In addition to obvious things such as incorporating
more states and increasing numerical precision, we believe
there is more information from the integrability side which
can be incorporated in the current setup [19]. Moreover,
more constraints come from considering the OPE decom-
position of more correlators. We expect that using these
approaches it will be possible to improve the bounds on the
OPE coefficients, and obtain accurate predictions also for
excited states.
Another direction would be to try to use the combination

of QSC and NCB in order to extract bulk CFT data.

FIG. 3. The orange lines show half of the difference between
upper and lower bound for N ¼ 5; 7;…; 45 number of nontrivial
derivatives. The black line is an extrapolation to an infinite
number of derivatives. Thus, it gives our estimate for the upper
limit of the error of our result.

FIG. 4. Bounds for OPE coefficients a2 ¼ C2
2, a3 ¼ C2

3 of the
two higher states of bare dimension 2 for g ¼ 1. The very narrow
allowed domain is situated along the line a3 þ 1.13a2 ¼ 0.19
(dashed line), which shrinks further with increased N.
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Crossing equations in 4D can provide more constraints than
the 1D crossing we use here.
The type of problem we considered here may require

some further development on the NCB side. For example,
when the spectrum is partially known, one can relax the
positivity requirement in the intervals between the states,
which would potentially give tighter bounds on the OPE
coefficients.
In conclusion, whereas we cannot yet claim with

certainty that

QSCþconformal bootstrap¼solution of SYM

we have produced clear evidence that these two methods
work well together, giving us rich insights about the
nonperturbative regime of planar N ¼ 4 SYM.
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