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Abstract

While scientists can often infer the biological function of proteins from their 3-dimensional quaternary structures, the gap between
the number of known protein sequences and their experimentally determined structures keeps increasing. A potential solution to this
problem is presented by ever more sophisticated computational protein modeling approaches. While often powerful on their own,
most methods have strengths and weaknesses. Therefore, it benefits researchers to examine models from various model providers
and perform comparative analysis to identify what models can best address their specific use cases. To make data from a large array
of model providers more easily accessible to the broader scientific community, we established 3D-Beacons, a collaborative initiative to
create a federated network with unified data access mechanisms. The 3D-Beacons Network allows researchers to collate coordinate
files and metadata for experimentally determined and theoretical protein models from state-of-the-art and specialist model providers
and also from the Protein Data Bank.

Keywords: structural biology, experimentally determined structures computationally predicted structures, federated data network,
bioinformatics

Introduction
Proteins are essential building blocks of almost every biologi-
cal process; therefore, understanding their functions is critical to
many applications, from drug discovery [1, 2] to tackling environ-
mental challenges such as plastic pollution [3]. Accurate informa-
tion on the structure of a protein, especially in the context of its
biological assembly, can help scientists understand and modulate
its function [4, 5].

Unfortunately, gaining such insights regarding the function
of proteins through their structures is severely hampered by

the lack of high-quality, experimentally determined structures.
As of 2022, the Universal Protein Resource (UniProt) contains
around 204 million nonredundant amino acid sequences, while
the Protein Data Bank (PDB) [6, 7] contains around 190,000
PDB entries mapped to approximately 52,000 UniProt acces-
sions. In other words, less than 0.03% of all the known pro-
tein sequences have experimentally determined atomic res-
olution structures. As sequencing becomes more accessible,
the gap between protein sequences and structures increases
(Fig. 1).
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Figure 1: Growth of the UniProt and the PDB databases. This figure shows the number of accessions (on a logarithmic scale) throughout the past
decade. In 2011, the UniProt had 161× as many protein sequences as the number of PDB entries. This ratio grew by an order of magnitude and was
1,132 to 1 in 2021, showing that the gap between known protein sequences and their structures keeps increasing.

A practical approach to addressing this challenge relies on
high-accuracy computational models to complement the exper-
imentally determined structures when the latter are unavailable
for a certain protein of interest [8]. The thermodynamic hypothe-
sis postulates that within certain limitations, the native structure
is determined only by the protein’s amino acid sequence [9, 10]. In-
deed, the past 50 years saw the development of many algorithms
and scientific software to predict protein structures [11, 12]. An
approach developed early in this field was to use homologous pro-
tein structures as templates. Several modeling tools and data re-
sources have long provided access to such models, for example,
the SWISS-MODEL and the ModBase web services and databases
[13–15]. In 2021, the field saw tremendous advances with tools
such as AlphaFold and RoseTTAFold achieving much higher accu-
racy for de novo predictions without homologous templates than
ever before [16, 17]. This new generation of prediction tools makes
it possible to try and predict the structure of virtually any known
protein based on its sequence.

While these new techniques are increasingly accurate, it is
important that they are supplemented with reliable estimates
of model confidence both for the whole model and locally for
each residue. Researchers should not expect all predictions to be
equally accurate neither globally nor in every region, and confi-
dence estimates should hence be used to determine if a predicted
structure can be used for downstream analysis [18]. Commonly
used model confidence methods aim to predict the global and lo-
cal similarity of the model compared to the correct coordinates
if those coordinates were provided by an experimentally deter-
mined structure. In recent years, several model prediction meth-
ods such as SWISS-MODEL [14], RoseTTAFold [17], and AlphaFold
[16] have chosen the superposition-free local distance difference
test (lDDT) score [19] as a similarity metric to provide model confi-
dence for their own models. The lDDT score measures differences
in interatomic distances within a short radius between model and
reference structure. It has been shown that superposition-free

measures are robust with respect to domain movements and have
advantages for the analysis of local structural details [20]. Simi-
larly, superposition-free measures have been used for a long time
in the creation of experimental structure models [21].

Another important consideration when relying on any struc-
ture prediction tool is to consider its limitations. While structures
in the PDB have the advantage of experimental data backing the
coordinates, enabling experimental as well as geometric valida-
tion, it is a relatively small dataset, as discussed above. Template-
based models have the distinct advantage of enabling the map-
ping of a model to homologues with known structures, thus map-
ping to experimentally derived structures that can be in distinct
conformational states or in complex with other molecules. Some
tools excel at general-purpose protein structure modeling; others
specialize in placing relevant ligands in the context of a model or
representing conformational flexibility with ensembles of poten-
tial conformations [14, 16, 22–24] (Fig. 2). For example, AlphaFold
2.0 cannot perform docking of small molecules, even if they are
obligate ligands of the proteins, such as Zinc-finger proteins. How-
ever, data resources such as AlphaFill can tackle this problem by
building on existing models and adding known ligands to these
structures [23] (Fig. 2A). On the other hand, the central repos-
itory of AlphaFold models, the AlphaFold Structure Database,
only contains predictions for single polypeptide chains and not
necessarily the functional forms of proteins [25]. In the case of
multimeric complexes, the functional form can include several
polypeptide chains. Since the number of known protein com-
plexes is immense, having a comprehensive database for com-
plex structures soon is rather unlikely. Therefore, integrating 3-
dimensional data from experts in specialized fields of proteins is
important, as demonstrated by physiologically and pathologically
relevant transmembrane ABC half transporters [26] and by a set
of computed structures of core eukaryotic protein complexes de-
posited in the ModelArchive [27]. Databases such as the Small-
Angle Scattering Biological Data Bank (SASBDB) [28] and the Pro-
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Figure 2: Highlighting the strengths and weaknesses of modeling techniques. Each modeling approach has limitations and specific strengths. For
example, AlphaFill complements AlphaFold models by placing obligate ligands in their contexts (A). Other data providers, such as the Protein
Ensemble Database, provide conformational ensembles for intrinsically disordered proteins (IDPs), for example, for the human Alpha-synuclein (B).

tein Ensemble Database (PED) [22] highlight the dynamic nature
of intrinsically disordered proteins (Fig. 2B). Small-angle scatter-
ing provides low-resolution information on the shape and size of
biological macromolecules in solution, but it also offers powerful
means for the quantitative analysis of flexible systems, includ-
ing intrinsically disordered proteins (IDPs) [29]. Theses data, to-
gether with ab initio modeling approaches, can be used to gener-
ate an experimentally validated pool of IDP models. PED provides
access to such conformational ensembles but also those based
on other experimental approaches. Considering the limitations of
certain tools highlights the importance of using models and meth-
ods from various synergistic software and data providers to miti-
gate the weaknesses of individual modeling techniques.

While many prediction software and several publicly accessi-
ble data resources host and archive protein structures, these re-
sources are fragmented and often rely on their own data stan-
dards to describe the necessary meta-information essential for
providing context for a specific model. They also offer distinct
data access mechanisms, requiring the users to learn multiple
sets of technical details when interacting with various resources.
The lack of standardization can severely impede the comparative
analysis of these models, making it difficult to gain valuable in-
sights.

Here, we present the 3D-Beacons Network, an open, collabora-
tive platform for providing programmatic access to 3-dimensional
coordinates and their standardized meta-information from both

experimentally determined and computationally modeled pro-
tein structures.

Results
The 3D-Beacons Network is an open collaboration between
providers of experimentally determined and computationally pre-
dicted protein structures. To date, 10 data providers make their
protein structures available through this platform (Table 1). The
consortium is guided by a collaboration agreement that prospec-
tive data providers agree to comply with. We encourage and in-
vite macromolecular structure providers from research teams
focusing on small, curated datasets to large data resources to
join the 3D-Beacons Network and take advantage of its in-
frastructure to make their models more accessible to the sci-
entific community. Importantly, all the data provided through
the network must be freely available for academic and com-
mercial use under Creative Commons Attribution 4.0 license
terms.

The 3D-Beacons Network is based on an infrastructure that
helps providers of protein structures to standardize their meta-
information and easily link their model files to a centralized
search engine, called the 3D-Beacons Hub API (application pro-
gramming interface) (Fig. 3). Each data provider has its 3D-Beacon
connected to the central hub. The hub is the public access point
through which the users (or other data services) can retrieve mod-
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Table 1: Members of the 3D-Beacons Network

Data provider Model category Number of structures∗

AlphaFill Template based 995,411
AlphaFold DB Ab initio 214,684,311
Genome3D Template based In progress
HegeLab Ab initio 15
isoform.io Ab initio 48,551
ModelArchive Ab initio/template based 1,106
PDBe Experimentally determined 190,639
PED Conformation ensembles 275
SASBDB Experimentally determined 3,912
SWISS-MODEL Repository Template based 2,216,915

∗Numbers are accurate as of 29 July 2022.

Figure 3: Schematic overview of the 3D-Beacons Network. Data providers standardize their meta-information and make their models available
through 3D-Beacons API instances. The 3D-Beacons Registry links these instances to the central 3D-Beacons Hub API, which can be openly accessed
by the scientific community and other data services.

els from any members. This allows users to get all structures for a
given UniProt accession instead of manually retrieving them from
all the different structure providers.

Thanks to the standardized data formats, the infrastructure en-
sures complete transparency in data provenance and allows users
to easily compare protein structures and their relevant meta-
information. This initiative has evolved in parallel with efforts to
improve the standardization of the coordinate files for theoret-
ical models. In particular, members of the 3D-Beacons Network
contributed to the ModelCIF extension of the PDBx/mmCIF for-
mat, which supports more exhaustive meta-information and in-
cludes mappings to the corresponding UniProt accessions next to
the atomic coordinates.

While the primary purpose of 3D-Beacons is to provide efficient
and scalable programmatic access to protein structures, we also
offer a graphical user interface that allows researchers to get an
overview of the available protein structures. For example, users
can view all the available data from any member data provider

for the human cellular tumor antigen p53 protein by searching
based on its UniProt accession (Fig. 4).

We divided the protein structures into 4 categories: (i) experi-
mentally determined, (ii) template based, (iii) ab initio, and (iv) con-
formational ensembles. We defined the categories as follows:

Experimentally determined structures are based on data
from techniques such as X-ray crystallography, cryo-electron mi-
croscopy, nuclear magnetic resonance spectroscopy, or small-
angle scattering. This category is exemplified by structures in the
PDB and the SASBDB databases.

Template-based models use alignments to similar sequences
with known structure (i.e., templates) as their main input. SWISS-
MODEL is an example of data providers with such models.

Ab initio models can use templates as an auxiliary input but do
not depend on them. AlphaFold models are considered ab initio in
this framework.

Finally, conformational ensembles are created using a combi-
nation of experimental data and computational modeling, yield-
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Figure 4: Graphical user interface of 3D-Beacons. While the main focus of the 3D-Beacons Network is to provide programmatic access to
experimentally determined and computationally predicted protein structures, we also provide a graphical user interface where researchers can query
for specific proteins using UniProt accessions. This interface displays which section of the protein sequence the models cover and provides an
interactive 3-dimensional view.

ing a large number of possible conformations. Ensembles in the
PED database are an example of this category.

Researchers can view the number of models under each cat-
egory and inspect which parts of the amino acid sequences are
covered by which models in a 2D viewer, PDB ProtVista [30]. Users
can also display the structures using an embedded 3-dimensional
molecular graphics viewer, Mol∗ [31], and download the models in
PDB or mmCIF formats.

Discussion
The purpose of the 3D-Beacons Network is to standardize the rep-
resentation of protein structure models and associated metadata
and to provide efficient, high-throughput programmatic access
to experimentally determined and theoretical models and their
standardized metadata. The current version (as of 29 July 2022) of
3D-Beacons supports querying any number of UniProt accessions,
while future updates are planned to collate models based on other
identifiers such as taxonomy IDs or domain IDs. This platform en-

ables both the scientific community and developers of data visu-
alization and data-providing services to access and seamlessly in-
tegrate 3-dimensional models from various protein structure data
providers.

While designing the data access points and data formats, we
had extensive discussions with scientists and developers who pro-
vided specific use cases that are relevant to their work. We used
these data to drive the development of 3D-Beacons, starting with
the most frequently requested data (i.e., information keyed on
UniProt accessions) that can answer the question, “What exper-
imental or theoretical structures are available for my protein of
interest?” Going forward, we will address more of the collated use
cases, such as searching by sequence or by gene identifiers and se-
lecting structures based on protein families. Already, the API end-
points of 3D-Beacons provide easy access to models from sparse
and fragmented data resources, supporting researchers and soft-
ware developers alike.

For example, the 3D-Beacons infrastructure allows users of
Jalview, a workbench for creating multiple sequence alignments
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(MSAs) and analyzing them, to discover 3-dimensional models for
MSAs of proteins from the UniProt and place them in the context
of genetic variation from Ensembl [32]. It can also visualize lo-
cal model quality scores such as pLDDT (Predicted Local Distance
Difference Test).

The Protein Data Bank in Europe–Knowledge Base (PDBe-KB)
[33] displays all the experimentally determined and computation-
ally predicted structures for proteins of interest on their aggre-
gated views of proteins. To retrieve metadata and the location of
model files, it uses the 3D-Beacons Hub API. This integration also
allows PDBe-KB to display functional and biophysical annotations
both for theoretical models in addition to experimentally deter-
mined structures.

The SWISS-MODEL Repository (SMR) [13] fetches models from
AlphaFold DB and the ModelArchive using the 3D-Beacons Hub
API. SMR displays these models next to homology models from
SWISS-MODEL [14] and experimental structures from the PDB [6]
to facilitate comparative analysis. SMR also takes advantage of the
confidence measure information, and the models are displayed
with a consistent coloring based on these confidence metrics.

By providing easy access to experimentally determined and
computationally predicted protein structures, we aim to make
these data an essential part of the toolbox of researchers in the
broader scientific fields of life sciences. Establishing an infrastruc-
ture of federated model providers if a scalable and expandable
approach can efficiently adjust to include new models and pro-
vides a more sustainable model than if a single data repository
would try and archive all the data in one place. By taking advan-
tage of the 3D-Beacons Network, protein structures can better re-
alize their full impact on fields from structure-based drug discov-
ery [2, 34] to structural bioinformatics [35, 36] and from scientific
software development [37] to experimental structure determina-
tion [38, 39]. The amount of available protein structures has never
been as large as it is now, and providing convenient access to these
models is a key service that will enable further research.

Methods
The infrastructure of the 3D-Beacons Network consists of a
registry, a hub, and the data access implementations. The 3D-
Beacons Network is open to data providers of protein structures.
Such data resources are invited to contact the 3D-Beacons consor-
tium to discuss ways their data can be linked. Briefly, the common
steps are as follows: data providers review the consortium guide-
lines and the latest API specification. The data providers then con-
vert their metadata to the specified format and make these data
available either through their APIs or by setting up a 3D-Beacon
client. Once these steps are completed, the registry can be up-
dated to link the new data resource with the 3D-Beacons Hub API.
The following sections give more detailed information on each of
these elements of the infrastructure.

3D-Beacons Registry
The 3D-Beacons Registry is a transparent, publicly accessible reg-
istry that stores information on all the data providers linked to
the 3D-Beacons Network. The registry is available on GitHub. It
contains information on the public URLs of data providers, a
brief description of the protein structures they provide, and a list
of API endpoints they support. For example, PDBe [40, 41] sup-
ports the API endpoint that is keyed on a UniProt accession and
that provides high-level information about the models, while SMR
[13] supports both the high-level and the detailed API endpoints,

which additionally provides per-chain and per-residue informa-
tion on the models.

3D-Beacons data exchange format
The API endpoints comply with the data exchange format, which
the 3D-Beacons members collaboratively design and improve. We
defined the data exchange format as a JavaScript Object Nota-
tion (JSON) specification, an industry-standard format for sharing
textual meta-information. The specification is available on Apiary
and GitHub.

3D-Beacons client
Members of the 3D-Beacons Network can either implement their
own API endpoints according to the API specification described
above or install a local instance of the 3D-Beacons client. This
client is a Docker-containerized, lightweight Python package that
can import and parse PDB or mmCIF formatted protein structure
files and their corresponding meta-information (in JSON format).
It also includes capabilities to add model confidence scores using
QMEANDisCo [42] if models do not already include comparable
scores such as pLDDT. QMEANDisCo, which is used internally by
SWISS-MODEL, can be applied to models from any provider and
has proven to be an accurate confidence predictor for homology
modeling and some ab initio methods [20]. The client indexes the
collated data in an embedded MongoDB database instance and
exposes the information through an embedded API implemen-
tation that complies with the 3D-Beacons API specifications. The
client is freely available on GitHub.

3D-Beacons Hub API
At the core of the 3D-Beacons infrastructure lies the Hub API, a
programmatic aggregator of the meta-information from all the
member data providers. We implemented the Hub API using the
FastAPI framework. This API relies on the previously described
registry to retrieve information on which data provider supports
which specific API endpoints. It aggregates data and provides its
own API endpoints that researchers, services, and software can di-
rectly access to retrieve the location of available model files and
their corresponding meta-information, such as the overall model
quality or residue-level confidence measures. It is important to
note that in the current implementation, the model confidence
measures are provided by the original data sources, and different
providers might have different approaches to estimating confi-
dence. This can hamper effective comparison of the models based
on these scores, and it is an active focus area both within the 3D-
Beacons Network and the broader modeling community to design
a broadly applicable confidence measure.

3D-Beacons front-end
Finally, we provide a graphical user interface that contains doc-
umentation and showcases the information one can retrieve us-
ing the 3D-Beacons Hub API. We implemented this interface us-
ing the Angular framework, and it relies on the sequence feature
viewer, PDB ProtVista [30], and the 3D molecular graphics viewer,
Mol∗ [31]. The source code of this front-end application is avail-
able from GitHub.

Availability of Supporting Source Code and
Requirements
The source codes of the 3D-Beacons Registry, Client, Hub API, and
front-end application are all publicly available:
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Project name: 3D-Beacons
Project homepage: https://3d-beacons.org
Operating system(s): Platform independent
Programming language: Python, TypeScript
Other requirements: Python 3.7 or higher, Angular 11.1.3 or

higher
License: Apache License 2.0
biotools: 3d-beacons

Data Availability
All the data provided through the network are freely available for
academic and commercial use under Creative Commons Attribu-
tion 4.0 license terms. Documentation of the 3D-Beacons Hub API
is available at https://www.ebi.ac.uk/pdbe/pdbe-kb/3dbeacons/a
pi/. The specification of the data exchange format is available at
https://3dbeacons.docs.apiary.io/#. An archival copy of the code
and other supporting data are also available via the GigaScience
database GigaDB [43].
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