
24 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

LOss-Based SensiTivity rEgulaRization: towards deep sparse neural networks

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1737767 since 2020-04-29T18:11:15Z

LOss-Based SensiTivity rEgulaRization:
towards deep sparse neural networks

Enzo Tartaglione 1 Andrea Bragagnolo 1 Marco Grangetto 1 Skjalg Lepsøy

Abstract
LOBSTER is a sensitivity-based regularizer,
safely usable at training time, designed for mak-
ing deep neural network models very sparse.
LOBSTER drives some but not all weights to-
wards zero: it will shrink those weights for
which the loss derivative is small, such that many
weights eventually become close to zero. Those
that are close enough to zero will be deleted, i.e.
set to zero.
In scenarios such as LeNet-300, LeNet-5, ResNet-
32 and ResNet-102 trained on MNIST, Fashion-
MNIST, CIFAR-10 and ImageNet, LOBSTER
yields a significant and competitive reduction of
the number of nonzero weights with a minimal
computation overhead.

1. Introduction
Deep neural networks are nowadays the state-of-the-art
tool to solve some complex tasks, ranging from image
classification (Recht et al., 2019; Belilovsky et al., 2019;
Tartaglione et al., 2019) to segmentation (Badrinarayanan
et al., 2017; Li et al., 2018), natural language processing
(Greaves-Tunnell & Harchaoui, 2019) and many more
contexts because of their practical effectiveness. This,
however, comes at a cost: the complexity of the model
(in terms of number of learnable parameters). As an
example, ResNet architectures require tens of millions of
parameters, moving to hundreds of millions when talking
about VGG-Net (Simonyan & Zisserman, 2014). This, of
course, prevents their portability to embedded or more in
general low-memory devices.

Recently, many attempts on reducing the complexity of an
artificial neural network (ANN) model have been proposed:
one of these is introducing sparsity in these models. Such a
sparsity is introduced by pruning some connections in the

1Computer Science Dept., University of Torino, Italy. Corre-
spondence to: Enzo Tartaglione <enzo.tartaglione@unito.it>.

ANN and, consequently, reducing the complexity of the
model. Empirically, it was already known few years ago
that the typical ANN models trained are over-parametrized
(or, in other words, they have more parameters than
necessary) (Brutzkus et al., 2018; Mhaskar & Poggio,
2016) and also recently it is suggested that the number
of parameters effectively learning is reduced (Frankle &
Carbin, 2019).

One of the approaches aiming at promoting sparsity in ANN
model is based on the design of a proper regularization
term, to be used during the learning process or fine-tuning.
In a very general view, regularization replaces unstable
(ill-posed) problems with nearby and stable (well-posed)
ones by introducing a prior on the parameters (Groetsch,
1993).

The original contribution of this work is the design of a
new, efficient regularization term, LOss-Based SensiTivity
rEgulaRization (LOBSTER), an evolution of the classical
Tikhonov regularization and of the sensitivity-based
approach (Tartaglione et al., 2018). The aim of LOBSTER
is to supervisedly drive the parameters which are not useful
to the learning process (this is evaluated by a measure we
call loss-based sensitivity) to have a very small value. In
such a way, the contribution of non-relevant parameters
becomes negligible. Contrarily to the formulation of
sensitivity in (Tartaglione et al., 2018), LOBSTER can
be safely used also at training time. We will also see
that LOBSTER directly uses the gradient of the loss,
introducing a minimal computation overhead. Besides this,
a magnitude-based pruning method follows.

The rest of this paper is organized as follows. In Sec. 2
we review the relevant literature concerning sparse neural
architectures. Next, in Sec. 3 we describe our supervised
method for training a neural network such that its intercon-
nection matrix is sparse. We provide a general overview on
the technique in Sec. 4. Then, in Sec.5 we experiment with
our proposed training scheme over some deep architectures
on a number of different datasets. Finally, Sec. 6 draws the
conclusions while providing further directions for future

LOBSTER: towards deep sparse neural networks

research.

2. Related work
Recently a wide variety of works aimed at achieving sparsity
in ANNs via pruning. Some of these, furthermore, show
that some improvement in the generalization capability for
these models can be introduced as a beneficial side effect.
For example, in a recent work (Zhu & Gupta, 2018), have
shown that a large sparse architecture improves the network
generalization ability in a number of different scenarios.

Soft weight sharing is an interesting concept (Ullrich
et al., 2019): through such an approach, it is possible to
effectively introduce redundancy in the parameters value,
resulting in a lower number of parameters to be stored.

The direct strategy to introduce sparsity in neural networks
should be l0 regularization which, however, is a non-
differentiable measure. A recent work (Louizos et al., 2017)
introduced a differentiable proxy measure to overcome this
problem introducing, though, some relevant computational
overhead. Having a similar overall approach, in another
work a regularizer based on group lasso whose task is to
cluster filters in convolutional layers is proposed (Wen et al.,
2016). As a backbone, such a technique is not directly
generalizeable to the bulky fully-connected layers, where
most of the complexity (as number of parameters) lies.

Dropout-based approaches constitute another possibility
to achieve sparsity. For example, variational dropout is
proposed to promote sparsity (Molchanov et al., 2017),
providing also an interesting Bayesian interpretation for
gaussian dropout. Another very recent dropout-based
approach is targeted dropout (Gomez et al., 2019): the
training of the ANN model is self-reinforcing sparsity
criterion by stochastically drop connections or units.

A more standard approach consists in the iterating of
learning and pruning steps, regularizing the ANN model
using the classical weight-decay (Han et al., 2015). Such a
simple approach showed good and promising results.

The sensitivity-based regularization (Tartaglione et al.,
2018) is the closest to our work: in their approach,
sensitivity is a measure of how much the output changes for
small perturbations of a given parameter (differently from
what proposed in other works (Engelbrecht & Cloete, 1996;
Mrázová & Reitermanová, 2011; Mrazova & Kukacka,
2012)). From such a measure, a regularization strategy,
aiming at pushing low-sensitivity parameters towards

zero, is designed, ensuring no output perturbation. Such
a technique, when compared with other state-of-the-art
pruning approaches, introduces a reduced computational
overhead; however, it requires the network to be pre-trained.

In this work, we are overcoming this limitation introducing
loss-based sensitivity, which is also beneficial for general-
ization and further reduces the computation overhead. A
detailed discussion between the differences from the two
formulations follows in Sec. 3.1.

3. Loss-driven sensitivity
In this section we are going to introduce our loss-driven
sensitivity regularization. As a first step, we are going to
discuss the state-of-the-art output-based sensitivity and its
limitations, moving to out proposed regularization term
(Sec. 3.1). A detailed analysis on the update rule (Sec. 3.2)
follows.

3.1. From output-based sensitivity to loss-based
sensitivity

A recent work introduced the concept of sensitivity of the
output of the ANN model y to the variation of a given
parameter:

S(y, wn,i) =
1

C

C∑
k=1

∣∣∣∣ ∂yk∂wn,i

∣∣∣∣ (1)

where wn,i is the i-th parameter of the n-th layer. For
instance, a high value of S results in a large variation of the
output. If we assume that a previously trained ANN model
yields optimal output, then we can target a sparser solution
by removing parameters exhibiting low values for S and
by keeping unmodified those with high S; towards this end,
the following update rule at time t has been proposed to
promote sparsity:

wtn,i := wt−1n,i − η
∂L

∂wt−1n,i

+

− λwt−1n,i

[
1− S(y, wt−1n,i)

]
P
[
S(y, wt−1n,i)

]
(2)

where
P (x) = Θ [1− |x|] (3)

and Θ(·) is the one-step function. The obvious limitation
of (2) is that the output-based sensitivity (1) regularization
term can not be applied at training time, as the outputs of
the network might not be satisfactory.
For this reason, we need the sensitivity to be both:

• a measure of how much the output of the network is
modified for small perturbations of a given parameter;

LOBSTER: towards deep sparse neural networks

• a measure of how satisfactory the output of the network
is.

We can modify (1) to this end by introducing a term which
indicates whether the output of the network will be modified
by the loss minimization:

SL(L, y, wn,i) =
1

C

C∑
k=1

∣∣∣∣ ∂L∂yk
∣∣∣∣ · ∣∣∣∣ ∂yk∂wn,i

∣∣∣∣ (4)

Substituting S with SL in (2) the effect will be that a given
parameter will be pushed towards zero both when the gra-
dient of the loss is not willing to modify the output of the
network and such a parameter is not relevant for the genera-
tion of the output.
However, computing (4) is extremely inefficient: nonethe-
less we can approximate it with the following lower bound

SL ≥
∣∣∣∣ ∂L∂wn,i

∣∣∣∣ (5)

that simply neglects the effect of wn,i on the output. It is ev-
ident that the remaining term ∂L

∂wn,i
is classical loss gradient,

necessary for any gradient-based optimization. Hence, we
can conclude that (4) can be approximated by the proposed
lower bound, i.e. the loss gradient: this simplification is
computationally efficient and more importantly can be used
to promote sparsification at training time.

3.2. Update rule

In the previous sub-section we have introduced a new mea-
sure for the sensitivity which, contrarily from the standard
sensitivity measure in (1), can be used also at training time.
In particular, plugging SL in (2) we can rewrite the update
rule as:

wtn,i = wt−1n,i − η
∂L

∂wt−1n,i

− λΓ
(
L,wt−1n,i

) [
1−

∣∣∣∣∣ ∂L

∂wt−1n,i

∣∣∣∣∣
]

(6)
where

Γ (y, x) = x · P
(
∂y

∂x

)
(7)

and where we assume η, λ two positive hyper-parameters.
After some algebraic manipulations, we can equivalently
rewrite (6) as

wtn,i = wt−1n,i − λΓ
(
L,wt−1n,i

)
+

− ∂L

∂wt−1n,i

[
η − sign

(
∂L

∂wt−1n,i

)
λΓ
(
L,wt−1n,i

)]
(8)

In (8) we can distinguish two different contributions pro-
vided by the proposed regularization term:

Table 1. Behavior of η̃ compared to η (η > 0).

P
(

∂L
∂wn,i

)
SIGN

(
∂L

∂wn,i

)
SIGN (w) η̃

η

0 ANY ANY 1
1 + + ≤ 1
1 + - ≥ 1
1 - + ≥ 1
1 - - ≤ 1

(a) (b)

(c) (d)

Figure 1. Update rule effect on the parameters. Red dotted is the
tangent to the loss function in the black dot, in blue the standard
SGD contribution, in purple the weight decay while in orange the
LOBSTER contribution. Here we assume P (L,wn,i) = 1.

• a weight decay-like term Γ (L,wn,i) which is en-
abled/disabled by the magnitude of the gradient on
the parameter;

• a correction term for the learning rate. In particular,
the full learning process follows an equivalent learning
rate

η̃ = η − sign
(

∂L

∂wn,i

)
λΓ (L,wn,i) (9)

Assuming the hyper-parameters η, λ are positive, let
us analyze the corrections in the learning rate. If∣∣∣ ∂L
∂wn,i

∣∣∣ ≥ 1 (highly sensitive parameter), then it follows

that P
(

∂L
∂wn,i

)
= 0 and Γ (L,wn,i) = 0 and the dominant

contribution comes from the gradient. Indeed, in this case

LOBSTER: towards deep sparse neural networks

our update rule reduces to the classical GD:

wtn,i = wt−1n,i − η
∂L

∂wt−1n,i

(10)

When we consider less sensitive wn,i with
∣∣∣ ∂L
∂wn,i

∣∣∣ < 1, we
get Γ (L,wn,i) = wn,i (weight decay term) and we can
distinguish two sub-cases for the learning rate:

• if sign
(

∂L
∂wn,i

)
= sign (w), then η̃ ≤ η (Fig. 1a and

Fig. 1d),

• if sign
(

∂L
∂wn,i

)
6= sign (w), then η̃ ≥ η (Fig. 1b and

Fig. 1c).

A schematics of all these cases can be found in Table 1
and the representation of the possible effects are shown in
Fig. 1. The contribution coming from Γ (L,wn,i) aims at
minimizing the parameter magnitude, disregarding the loss
minimization. If the loss minimization tends to minimize
the magnitude as well, then the equivalent learning rate is
reduced. On the contrary, when the gradient minimization
tends at increasing the magnitude, the learning rate is
increased, to compensate the contribution coming from
Γ (L,wn,i). This mechanism allows us to actually train a
deep model while introducing sparsity.

In the next section we are going to detail the overall training
strategy, which cascades regularization and a pruning step.

4. Training procedure
In this section we are going to provide a general overview
on how the training procedure is structured. Leveraging
on the update rule, we can define an iterative procedure to
prune ANNs. In particular, two phases represent the main
core of the proposed training strategy:

• regularization phase, in which we regularize the ANN
model according to the update rule (6),

• pruning phase, in which we prune some parameters.

Regularization phase lasts until we are reaching a plateau
in the performance for PWE (we call it plateau waiting
epochs) epochs. This measure is of course taken from a
validation set we are sampling from the training set. Once
we detect a plateau in the performance, we move to the
pruning phase (more details on the pruning phase will be
provided in Sec. 4.1). After this phase, we go back to the
regularization phase.

4.1. Pruning phase

While the sensitivity-based regularization pushes less
important parameters towards zero, a magnitude pruning
step is required to actually remove them. Towards this end,
the thresholding value T can be considered the variable we
aim to maximize: in other words, we would like to find
the highest T value such that the performance, evaluated
as the loss on the validation set, worsens at most by a
relative quantity we name thresholding worsening tolerance
(TWT), from the un-pruned model. Once we find the
optimal T , we apply a magnitude pruning on the parameters
and we move back to the regularization phase. We would
like to highlight that the proposed regularization pushes
the parameters having low sensitivity towards zero, and
then we perform magnitude pruning instead of “sensitivity
ranking-based pruning” because the sensitivity is a local
measure: if the parameter is not in the neighborhood of zero,
such a measure can not be used to prune the parameter itself.

During testing, we found out that, because of the stochastic-
ity introduced by mini-batch based optimizers, it is likely
that parameters previously pruned might be re-introduced
by the subsequent regularization step. To overcome such an
effect, we have decided to make the pruning of a parameter
permanent: during the process we are storing which
parameters have been pruned and we never allow them to
be re-introduced. We call this parameter pinning.

In the next section, some experiments will be presented,
testing the effectiveness of the proposed training procedure.

5. Results
In this section we are going to test the effectiveness of LOB-
STER. Towards this end, we have decided to experiment
with different neural architectures and datasets commonly
used as benchmark in the relevant literature; in particular,
we focused on the following combination of networks and
datasets:

• LeNet-300 on MNIST (Table 2),

• LeNet-5 on MNIST (Table 3),

• LeNet-5 on Fashion-MNIST (Table 4),

• ResNet-32 on CIFAR-10 (Table 5),

• ResNet-102 on ImageNet (Table 6).

To evaluate the performance of our method we measure
the model sparsity versus the achieved classification error
(indicated as Top-1 or Top-5). The network sparsity is
defined as the ratio between the number of parameters in the

LOBSTER: towards deep sparse neural networks

original network and the number of remaining parameters
after sparsification (i.e. |θ|

|θ 6=0| , the higher the better), and it
is also referred to as compression ratio. Our algorithms are
implemented in Python, using PyTorch 1.2 and simulations
are run over an RTX2080 TI NVIDIA GPU. All the hyper-
parameters have been tuned via grid-search. The validation
set size for all the experiments is 5k large.1

5.1. LeNet-300 on MNIST

As a first test, we sparsified the well-known LeNet-300 (Le-
Cun et al., 1998) architecture, which consists in three fully-
connected layers with 300, 100 and 10 neurons respectively.
We trained this network on the MNIST dataset, made of
60k training images and 10k test gray-scale 28×28 pixels
large images, depicting handwritten digits. Starting from a
freshly initialized network, we trained LeNet-300 via SGD
with learning rate η = 0.1, λ = 10−4, PWE = 20 epochs
and TWT = 0.05.

The related literature reports several compression results
that can be clustered in two different groups in terms of
achieved classification error: the first group is composed
of methods whose error is around 1.65% while the second
concerns methods with a classification error around 1.95%.
Table 2 provides results for the proposed procedure with
respect to both error ranges, separated by a horizontal line.

From the reported results we can observe that our method
reaches a higher compression ratio than the the approaches
found in literature. This is particularly noticeable in the
1.65% classification error group, where we almost double
the sparsity of the second best method, from 27.87× of
(Tartaglione et al., 2018) to 50.04× of our procedure. LOB-
STER also achieves the highest result for the 1.95% error
range, gaining especially in regards to the number of pa-
rameters removed from the first fully-connected layer (the
largest, consisting of 235k parameters), in which just the
0.59% of the parameters survives.

5.2. LeNet-5 on MNIST

Next, we again experimented with the MNIST dataset, this
time on the Caffe version of the LeNet-5 architecture, con-
sisting in two convolutional and two fully-connected layers.
Again, we used a freshly-initialized model, trained via SGD
with learning rate η = 0.1, λ = 10−4, PWE = 20 epochs
and TWT = 0.05. The results are shown in Table 3.

Also with an architecture with convolutional layers, we are
able to obtain a competitively small network with a com-
pression ratio of 230×. The compression ratio approaches
the state-of-the-art (Molchanov et al., 2017). Interestingly,

1The source code will be made available upon acceptance of
the article.

LOBSTER is the approach that sparsifies the most the first
layer (Conv1), while maintaining a competitive Top-1 error
(DNS is the only technique that removes even more parame-
ters in Conv1, but it allows a broader drop in performance
and its compression ratio is non-competitive).

5.3. LeNet-5 on Fashion-MNIST

To scale-up the difficulty of the training task, we ex-
perimented on the classification of the Fashion-MNIST
dataset (Xiao et al., 2017), using once more the LeNet5
network; this dataset has the same size and image format of
the MNIST dataset, yet it contains images of clothing items,
resulting in a non-sparse distribution of the pixel intensity
value. Since the images are not as sparse, such dataset is no-
toriously harder to classify than MNIST. For such a test we
trained the network from scratch using SGD with η = 0.1,
λ = 10−4, PWE = 20 epochs and TWT = 0.1. The
results of the test are shown in Table 4.

As expected, given the more challenging task, the achieved
sparsity is lower than the one obtained in the MNIST case.
Even then, the proposed method still reaches a higher com-
pression ratio than (Tartaglione et al., 2018), removing an
higher percentage of parameters, especially in the fully con-
nected layers, while maintaining good generalization. In
this case, the first layer is the least sparsified, and this is an
effect of the higher complexity in extracting features from
Fashion-MNIST: in such a sense, LOBSTER self-adapts to
the complexity of the problem to be learned.

5.4. ResNet-32 on CIFAR-10

To evaluate how our method scales to deeper, modern ar-
chitectures, we applied it on a PyTorch implementation2 of
the ResNet-32 network (He et al., 2015) that classifies the
CIFAR-10 dataset. This dataset consists of 60k 32x32 RGB
images divided in 10 classes, split in 50k training images
and 10k test images.

For this test we started from the parameters configuration
provided in the implementation’s repository. We trained
the network using SGD with momentum β = 0.9, λ =
10−6, PWE = 10 and TWT = 0. To maximize both
performance and compression, we employed a learning rate
cycling strategy in which we cycled the value of the learning
rate η between 10−2 and 10−3 every 300 epochs. The full
training is performed for 11k epochs.

In Table 5 we show the results of this experiment, comparing
it to Targeted Dropout (Gomez et al., 2019), Sparse Varia-
tional Dropout (Molchanov et al., 2017), l0 regularization
from (Louizos et al., 2017) and l1 regularization proposed
in (Han et al., 2015). To better show the effectiveness of

2https://github.com/akamaster/pytorch_
resnet_cifar10

https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/akamaster/pytorch_resnet_cifar10

LOBSTER: towards deep sparse neural networks

Table 2. LeNet-300 trained on MNIST. Top: 1.65% error rate. Bottom: 1.95% error rate.

Approach
Remaining parameters(%) |θ|

|θ6=0| Top-1 (%)
FC1 FC2 FC3

Baseline 100 100 100 1× 1.44

(Han et al., 2016) 8 9 26 12.2× 1.6

(Tartaglione et al., 2018) 2.25 11.93 69.3 27.87× 1.65

LOBSTER 1.46 5.29 29.6 50.04× 1.65

(Louizos et al., 2017) 9.95 9.68 33 9.99× 1.8

Sparse VD (Molchanov et al., 2017) 1.1 2.7 38 68× 1.94

(Tartaglione et al., 2018) 0.93 1.12 5.9 103× 1.95

DNS (Guo et al., 2016) 1.8 1.8 5.5 56× 1.99

LOBSTER 0.59 2.53 18.3 114.92× 1.95

Table 3. LeNet-5 trained on MNIST.

Approach
Remaining parameters (%) |θ|

|θ 6=0| Top-1 (%)
Conv1 Conv2 FC1 FC2

Baseline 100 100 100 100 1× 0.68
Sparse VD (Molchanov et al., 2017) 33 2 0.2 5 280× 0.75

(Han et al., 2016) 66 12 8 19 11.9× 0.77

(Tartaglione et al., 2018) 67.6 11.8 0.9 31.0 51.1× 0.78

DNS (Guo et al., 2016) 14 3 0.7 4 111× 0.91

SWS (Ullrich et al., 2019) - - - - 162× 0.97

(Louizos et al., 2017) 45 36 0.4 5 70× 1.00

LOBSTER 22 2.38 0.22 5.98 230× 0.79

our method, in Table 5 we report the achieved classifica-
tion error for different compression ratios, corresponding
to the pruning of about 40%, 60% and 80% of the original
parameters.

As reported, our method performs particularly well on this
task and outperforms other state-of-the-art techniques. Fur-
thermore, with our procedure, we are able to improve the
baseline classification error even when removing a signifi-
cant portion of the network parameters (around 80%), going
from a Top-1 error of 7.37% of the baseline to a 7.33% of
the pruned model. This effect is most likely due to the LOB-
STER technique itself, which self-tunes the regularization
on the parameters as explained in Sec. 3.2.

5.5. ResNet-102 on ImageNet

Finally, we scale-up both the output and the complexity of
the classification problem testing the proposed method on
the ResNet-102 network over the well-known ImageNet
dataset (ILSVRC-2012), composed of more than 1.2 million
train images and 50k validation images, for a total of 1k
classes. For this test we used SGD with momentum β =
0.9, λ = 10−6 and TWT = 0. In this case we decided
that, instead of waiting for the occurrence of a performance
plateau, we would greedily perform the pruning step every
time one fifth of the train set (around 7.9k iterations) is used
in the regularization step. We again employ the cycling
learning rate strategy between a learning rate η1 = 10−2

and η2 = 10−3. The epochs for η1 as learning rate are fixed
to 2, while the epochs for η2 depends on the compression

LOBSTER: towards deep sparse neural networks

Table 4. LeNet-5 trained on Fashion-MNIST.

Approach
Remaining parameters (%) |θ|

|θ 6=0| Top-1 (%)
Conv1 Conv2 FC1 FC2

Baseline 100 100 100 100 1× 8.1
(Tartaglione et al., 2018) 76.2 32.56 6.5 44.02 11.74× 8.5

LOBSTER 78.6 26.13 2.88 32.66 23.31× 8.47

Table 5. ResNet-32 trained on CIFAR-10.

Approach
|θ|
|θ 6=0| = 1× |θ|

|θ 6=0| = 1.67× |θ|
|θ6=0| = 2.5× |θ|

|θ 6=0| = 5×
Top-1 (%) Top-1 (%) Top-1 (%) Top-1 (%)

Baseline 7.37 - - -

Targeted Dropout (Gomez et al., 2019) - 7.37 7.45 7.46

Variational Dropout (Molchanov et al., 2017) - 7.88 8.52 16.56

l0 (Louizos et al., 2017) - 7.20 8.80 37.00

l1 (Han et al., 2015) - 14.68 30.52 76.29

LOBSTER - 7.16 7.29 7.33

Table 6. ResNet-102 trained on ImageNet.

Approach
|θ|
|θ6=0|=1× |θ|

|θ 6=0|=1.67× |θ|
|θ 6=0|=2.5× |θ|

|θ 6=0|=5×
Top-1(%) Top-5(%) Top-1(%) Top-5(%) Top-1(%) Top-5(%) Top-1(%) Top-5(%)

Baseline 22.63 6.44 - - - - - -

Targeted Dropout
- - 26.50 - 49.50 - 99.60 -

(Gomez et al., 2019)

l1 - - 37.90 - 61.70 - 98.60 -
(Han et al., 2015)

LOBSTER - - 25.63 7.81 26.37 8.42 26.45 8.24

LOBSTER: towards deep sparse neural networks

ratio: when we detect a plateau on the compression ratio (in
other words, when the regularization + pruning strategy is
not pruning any further parameter), we increase the learning
rate back to η1 for 2 epochs. The full training lasts 95
epochs. Due to time constraints, we decided to use the pre-
trained network offered by the torchvision library.3 Notice
that the validation set we are using to find the optimal T
value also in this case is randomly sampled from the training
set, and it does not contain any sample from the validation
set provided by default in the dataset.

In Table 6 we show our results and compare them with
(Gomez et al., 2019) Targeted Dropout and (Han et al., 2015)
l1 regularization. As in the previous section, we decided
to report the compression bands corresponding to about
40%, 60% and 80% pruned parameters. Since an ImageNet
test set is not publicly available, the classification errors
are computed on the validation set. As explained in Sec. 4,
during our procedure, we employ a validation set to perform
the pruning stage. Using the actual ImageNet validation set
may lead to over-fitting the images on which we evaluated
the model performance; to avoid this issue, we manually
built another validation set by sampling 5 elements of the
train set for each class, resulting in a total of 5k images, and
we used it in the pruning step.

This approach has proven to be particularly efficient since
we are able to remove the 80% of the total parameters while
also maintaining good generalization with a Top-1 error
of 26.45% and a Top-5 error of 8.24%. These results are
achieved on a complex architecture like ResNet-102 trained
on a complex dataset like ImageNet, showing the broad
effectiveness of LOBSTER. Contrarily from what observed
in Sec. 5.4, in this case we are not observing an improvement
in the baseline performance. We believe this is an effect of
the greedy pruning strategy adopted for such a huge dataset.

6. Conclusion
In this work we have proposed LOBSTER, a new regular-
ization strategy aiming to train sparse ANNs. Differently
from other fine-tuning strategies, LOBSTER can be directly
used at training time with no significant performance loss.
Furthermore, as it directly uses the gradients coming from
back-propagation, no significant computational overhead is
introduced, with a computational complexity comparable
to weight-decay regularization strategy. Differently from
L2 regularization, LOBSTER is aware of the global contri-
bution of the parameter and self-tunes the regularization
effect on the parameter depending on factors like the ANN
architecture or the training problem itself (in other words,
the dataset). Moreover, tuning its hyper-parameters is

3https://pytorch.org/docs/stable/
torchvision/models.html

easy and the optimal threshold for parameter pruning is
self-determined by the proposed approach employing a
validation set.

LOBSTER achieves competitive compression ratios for
small architectures like LeNet-300 and LeNet-5 while it
proves its effectiveness in sparsifying deep architectures,
like ResNet-32 trained on CIFAR-10 and ResNet-102,
trained on a more complex task like ImageNet: in these
cases, LOBSTER significantly improves the current
state-of-the-art results.

Future research includes the extension of LOBSTER to
achieve a more structured sparsity and a study on the mem-
ory footprint of the pruned models.

References
Badrinarayanan, V., Kendall, A., and Cipolla, R. Segnet: A

deep convolutional encoder-decoder architecture for im-
age segmentation. IEEE transactions on pattern analysis
and machine intelligence, 39(12):2481–2495, 2017.

Belilovsky, E., Eickenberg, M., and Oyallon, E. Greedy
layerwise learning can scale to imagenet. volume
2019-June, pp. 911–925, 2019. URL https:
//www.scopus.com/inward/record.uri?
eid=2-s2.0-85077961538&partnerID=40&
md5=1b6ad4b8f6abbe6a527d0ef9e9f54c6f.
cited By 0.

Brutzkus, A., Globerson, A., Malach, E., and Shalev-
Shwartz, S. Sgd learns over-parameterized
networks that provably generalize on lin-
early separable data. 2018. URL https:
//www.scopus.com/inward/record.uri?
eid=2-s2.0-85061601180&partnerID=40&
md5=47c7d44ed33d4afa1a4d39b8757650ea.
cited By 14.

Engelbrecht, A. P. and Cloete, I. A sensitivity analysis
algorithm for pruning feedforward neural networks. In
Neural Networks, 1996., IEEE International Conference
on, volume 2, pp. 1274–1278. IEEE, 1996.

Frankle, J. and Carbin, M. The lottery ticket hy-
pothesis: Finding sparse, trainable neural net-
works. 2019. URL https://www.scopus.
com/inward/record.uri?eid=2-s2.
0-85069453436&partnerID=40&md5=
fd1a2b2384d79f66a49cc838a76343d3. cited
By 8.

Gomez, A. N., Zhang, I., Swersky, K., Gal, Y., and Hinton,
G. E. Learning sparse networks using targeted dropout.

https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077961538&partnerID=40&md5=1b6ad4b8f6abbe6a527d0ef9e9f54c6f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077961538&partnerID=40&md5=1b6ad4b8f6abbe6a527d0ef9e9f54c6f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077961538&partnerID=40&md5=1b6ad4b8f6abbe6a527d0ef9e9f54c6f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077961538&partnerID=40&md5=1b6ad4b8f6abbe6a527d0ef9e9f54c6f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061601180&partnerID=40&md5=47c7d44ed33d4afa1a4d39b8757650ea
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061601180&partnerID=40&md5=47c7d44ed33d4afa1a4d39b8757650ea
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061601180&partnerID=40&md5=47c7d44ed33d4afa1a4d39b8757650ea
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061601180&partnerID=40&md5=47c7d44ed33d4afa1a4d39b8757650ea
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069453436&partnerID=40&md5=fd1a2b2384d79f66a49cc838a76343d3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069453436&partnerID=40&md5=fd1a2b2384d79f66a49cc838a76343d3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069453436&partnerID=40&md5=fd1a2b2384d79f66a49cc838a76343d3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069453436&partnerID=40&md5=fd1a2b2384d79f66a49cc838a76343d3

LOBSTER: towards deep sparse neural networks

CoRR, abs/1905.13678, 2019. URL http://arxiv.
org/abs/1905.13678.

Greaves-Tunnell, A. and Harchaoui, Z. A statistical investi-
gation of long memory in language and music. In Chaud-
huri, K. and Salakhutdinov, R. (eds.), Proceedings of the
36th International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research,
pp. 2394–2403, Long Beach, California, USA, 09–15 Jun
2019. PMLR. URL http://proceedings.mlr.
press/v97/greaves-tunnell19a.html.

Groetsch, C. W. Inverse Problems in the Mathematical
Sciences. Vieweg, 1993.

Guo, Y., Yao, A., and Chen, Y. Dynamic network surgery
for efficient dnns. In Advances In Neural Information
Processing Systems, pp. 1379–1387, 2016.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network. In
Advances in Neural Information Processing Systems, pp.
1135–1143, 2015.

Han, S., Mao, H., and Dally, W. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding. 2016. URL https:
//www.scopus.com/inward/record.uri?
eid=2-s2.0-85060057269&partnerID=40&
md5=0ea8db1c541d1c9abf366149fa4aa7cb.
cited By 525.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. CoRR, abs/1512.03385, 2015.
URL http://arxiv.org/abs/1512.03385.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278 – 2324, November
1998.

Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.-W., and Heng, P.-A.
H-denseunet: hybrid densely connected unet for liver and
tumor segmentation from ct volumes. IEEE transactions
on medical imaging, 37(12):2663–2674, 2018.

Louizos, C., Welling, M., and Kingma, D. P. Learning
sparse neural networks through l 0 regularization. arXiv
preprint arXiv:1712.01312, 2017.

Mhaskar, H. N. and Poggio, T. Deep vs. shallow networks:
An approximation theory perspective. Analysis and Ap-
plications, 14(06):829–848, 2016.

Molchanov, D., Ashukha, A., and Vetrov, D. Vari-
ational dropout sparsifies deep neural networks.
volume 5, pp. 3854–3863, 2017. URL https:
//www.scopus.com/inward/record.uri?

eid=2-s2.0-85048506601&partnerID=40&
md5=c352a4786ef977ccea7e397bd7469f14.
cited By 29.

Mrazova, I. and Kukacka, M. Can deep neural networks dis-
cover meaningful pattern features? Procedia Computer
Science, 12:194–199, 2012.

Mrázová, I. and Reitermanová, Z. A new sensitivity-based
pruning technique for feed-forward neural networks that
improves generalization. In Neural Networks (IJCNN),
The 2011 International Joint Conference on, pp. 2143–
2150. IEEE, 2011.

Recht, B., Roelofs, R., Schmidt, L., and Shankar, V. Do
imagenet classifiers generalize to imagenet? volume
2019-June, pp. 9413–9424, 2019. URL https:
//www.scopus.com/inward/record.uri?
eid=2-s2.0-85078277942&partnerID=40&
md5=9654692723fc1784285d124343fb26c1.
cited By 0.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Tartaglione, E., Lepsøy, S., Fiandrotti, A., and Francini, G.
Learning sparse neural networks via sensitivity-driven
regularization. In Advances in Neural Information Pro-
cessing Systems, pp. 3878–3888, 2018.

Tartaglione, E., Perlo, D., and Grangetto, M. Post-synaptic
potential regularization has potential. In International
Conference on Artificial Neural Networks, pp. 187–200.
Springer, 2019.

Ullrich, K., Welling, M., and Meeds, E. Soft weight-sharing
for neural network compression. 2019. URL https:
//www.scopus.com/inward/record.uri?
eid=2-s2.0-85071003624&partnerID=40&
md5=dc00c36113f775ff4a6978b86543814d.
cited By 2.

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. Learn-
ing structured sparsity in deep neural networks. In Ad-
vances in Neural Information Processing Systems, pp.
2074–2082, 2016.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. CoRR, abs/1708.07747, 2017. URL http:
//arxiv.org/abs/1708.07747.

Zhu, M. and Gupta, S. To prune, or not to
prune: Exploring the efficacy of pruning for
model compression. 2018. URL https:
//www.scopus.com/inward/record.uri?
eid=2-s2.0-85070986022&partnerID=40&

http://arxiv.org/abs/1905.13678
http://arxiv.org/abs/1905.13678
http://proceedings.mlr.press/v97/greaves-tunnell19a.html
http://proceedings.mlr.press/v97/greaves-tunnell19a.html
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060057269&partnerID=40&md5=0ea8db1c541d1c9abf366149fa4aa7cb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060057269&partnerID=40&md5=0ea8db1c541d1c9abf366149fa4aa7cb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060057269&partnerID=40&md5=0ea8db1c541d1c9abf366149fa4aa7cb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060057269&partnerID=40&md5=0ea8db1c541d1c9abf366149fa4aa7cb
http://arxiv.org/abs/1512.03385
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048506601&partnerID=40&md5=c352a4786ef977ccea7e397bd7469f14
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048506601&partnerID=40&md5=c352a4786ef977ccea7e397bd7469f14
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048506601&partnerID=40&md5=c352a4786ef977ccea7e397bd7469f14
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048506601&partnerID=40&md5=c352a4786ef977ccea7e397bd7469f14
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078277942&partnerID=40&md5=9654692723fc1784285d124343fb26c1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078277942&partnerID=40&md5=9654692723fc1784285d124343fb26c1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078277942&partnerID=40&md5=9654692723fc1784285d124343fb26c1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078277942&partnerID=40&md5=9654692723fc1784285d124343fb26c1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071003624&partnerID=40&md5=dc00c36113f775ff4a6978b86543814d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071003624&partnerID=40&md5=dc00c36113f775ff4a6978b86543814d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071003624&partnerID=40&md5=dc00c36113f775ff4a6978b86543814d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071003624&partnerID=40&md5=dc00c36113f775ff4a6978b86543814d
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070986022&partnerID=40&md5=88c06ed239deec99b2e18925921c611f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070986022&partnerID=40&md5=88c06ed239deec99b2e18925921c611f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070986022&partnerID=40&md5=88c06ed239deec99b2e18925921c611f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070986022&partnerID=40&md5=88c06ed239deec99b2e18925921c611f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070986022&partnerID=40&md5=88c06ed239deec99b2e18925921c611f

LOBSTER: towards deep sparse neural networks

md5=88c06ed239deec99b2e18925921c611f.
cited By 1.

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070986022&partnerID=40&md5=88c06ed239deec99b2e18925921c611f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070986022&partnerID=40&md5=88c06ed239deec99b2e18925921c611f

