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Abstract

This document presents an elementary approach using ε-Poincaré inequality to prove generation of Lp-
bounds, p ∈ (1, ∞), for the homogeneous Landau equation with moderate soft potentials γ ∈ [−2, 0). 
The critical case γ = −2 uses an interpolation approach in the realm of Lorentz spaces and entropy. Al-
ternatively, a direct approach using the Hardy-Littlewood-Sobolev (HLS) inequality and entropy is also 
presented. On this basis, the generation of pointwise bounds p = ∞ is deduced from a De Giorgi argument.
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1. Introduction

The spatially homogeneous Landau equation describes the evolution of a density distribution 
f := f (t, v) � 0 of a plasma of particles having velocity v ∈Rd at a time t > 0. It is given by

∂tf (t, v) = Q(f,f ) , t � 0, v ∈ Rd , (1.1)

where the collision operator is given by

Q(f,f )(v) := ∇v ·
∫
Rd

|v − v∗|γ+2 �(v − v∗)
{
f∗∇f − f ∇f ∗

}
dv∗ , (1.2)

with the usual shorthand f := f (v), f∗ := f (v∗) and �(z) = Id − z⊗z
|z|2 . The Landau equation 

(1.1) is supplemented with initial condition

f (t = 0, v) = fin(v), v ∈Rd . (1.3)

Results regarding a priori energy estimates involving Lp-norms, mainly in the moderately soft 
potential case −2 � γ < 0, are revisited.

The spirit of this paper combines techniques of [23] and [16] bringing a more direct proof 
and improved estimates of those of [23] which include generation of norms with specific rates 
and better long time behavior. It also includes the pointwise estimation, the case p = ∞, of 
solutions for both norm creation and propagation using a De Giorgi’s type of approach, see 
[9] for an original implementation in the classical parabolic context. In the kinetic context of the 
spatially homogeneous Boltzmann equation refer to [3] and for the homogeneous Landau-Fermi-
Dirac to [4]. The main tools used are the ε-Poincaré inequality and an interesting interpolation 
in Lorentz spaces that deal with the critical case of γ = −2. Lorentz interpolation is used to 
circumvent the problematic application of the HLS inequality in L1 − Lp case. As noticed in 
[23], entropy propagation can be added to the argument to properly control the size of the most 
singular term. In addition, we present an alternative proof to the aforementioned approach using 
Hardy-Littlewood-Sobolev inequality in a way that avoids the L1 −Lp case. This later approach 
involves fewer interpolation steps giving explicit constants in the control of the most singular 
term. Entropy is also needed to control the size of such term.

We mention that an alternative approach to obtain pointwise bounds is developed in [21]
using techniques for parabolic equations in non-divergence form. The technique is used in the 
context of classical solutions of the equation using a quantitative maximum principle approach 
in the spirit of Aleksandrov-Bakelman-Pucci. The estimates obtained using this method are quite 
sharp, yet solutions are assumed in the classical sense. This is an important difference with the 
spirit of the techniques brought here that work in the realm of weak solutions which presumably 
simplify the rigorous implementation of an approximation scheme for the equation.

1.1. Notations

Define the Lebesgue space Lp
s (Rd), with s ∈R and p ∈ [1, ∞), through the norm
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‖f ‖L
p
s

:=
⎛⎜⎝ ∫

Rd

∣∣f (v)
∣∣p 〈v〉s dv

⎞⎟⎠
1
p

, L
p
s (Rd) :=

{
f : Rd → R ; ‖f ‖L

p
s

< ∞
}

,

where 〈v〉 :=√
1 + |v|2.

Definition 1.1. We say that f ∈ Y0(fin) if f ∈ L1
2(R

d) and

∫
Rd

f (v)

⎛⎝ 1
v

|v|2

⎞⎠dv =
∫
Rd

fin(v)

⎛⎝ 1
v

|v|2

⎞⎠dv =:
⎛⎝ �

�u

d�θ + �|u|2

⎞⎠ , (1.4)

and H(f ) � H(fin) where

H(f ) =
∫
Rd

f (v) logf (v)dv .

By a simple scaling argument, there is no loss in generality to assume that

� = θ = 1, u = 0 . (1.5)

We introduce for i, j ∈ {1, · · · , d}⎧⎪⎪⎪⎨⎪⎪⎪⎩
a(z) = (

ai,j (z)
)
i,j

with ai,j (z) = |z|γ+2
(
δi,j − zizj

|z|2
)

,

bi(z) = ∑
k ∂kai,k(z) = −(d − 1) zi |z|γ ,

c(z) = ∑
k,l ∂

2
klak,l(z) = −(d − 1) (γ + d) |z|γ .

For any f ∈ L1
2+γ (Rd), we define the matrix-valued mapping A[f ] by

A[f ] = (
Aij [f ])

ij
:= (

aij ∗ f
)
ij

.

In the same way, define the vector-valued mapping b[f ] and the scalar mapping cγ [f ] given by

b[f ] = (
bi[f ])

i
= (

bi ∗ f
)
i
, and cγ [f ](v) = (

c ∗ f
)
(v) .

The dependency with respect to the parameter γ in cγ [f ] is stressed since, in several places, we 
apply the same definition with γ + 1 replacing γ .

With these notations, the Landau equation can then be written alternatively under the form{
∂tf = ∇ · (A[f ]∇f − b[f ]f )= Tr

(
A[f ]D2f

)− cγ [f ]f,

f (t = 0) = fin ,
(1.6)

where D2f is the Hessian matrix of f (for two matrices A = (Ai,j ), B = (Bi,j ), Tr(AB) =∑
Ai,jBj,i ).
i,j
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Let us make precise the notion of weak solution we consider in this paper.

Definition 1.2. Consider −2 � γ < 0. Let fin ∈ L1
2(R

d) ∩ L logL(Rd). We say that f is a weak 
solution to the Cauchy problem (1.6) if the following conditions are fullfilled:

(1) f � 0 with f ∈ C ([0, ∞); D′(Rd)) ∩ L∞([0, ∞); L1
2 ∩ L logL(Rd)).

(2) For any t � 0∫
Rd

f (t, v)ϕ(v)dv =
∫
Rd

fin(v)ϕ(v)dv for ϕ(v) = {
1, v, |v|2}

and ∫
Rd

f (t, v) logf (t, v)dv �
∫
Rd

fin(v) logfin(v)dv .

(3) For any ϕ ∈ C 1([0, ∞); C ∞
c (Rd)) and t � 0,

∫
Rd

f (t, v)ϕ(t, v)dv =
∫
Rd

fin(v)ϕ(0, v)dv +
t∫

0

∫
Rd

f (τ, v)∂tϕ(τ, v) dv dτ

+ 1

2

d∑
i,j=1

t∫
0

dτ

∫
Rd×Rd

f (τ, v)f (τ, v∗) ai,j (v − v∗)
[
∂2
i,j ϕ(τ, v) + ∂2

i,j ϕ(τ, v∗)
]

dv dv∗

+
d∑

i=1

t∫
0

dτ

∫
Rd×Rd

f (τ, v)f (τ, v∗) bi(v − v∗)
[
∂iϕ(τ, v) − ∂iϕ(τ, v∗)

]
dv dv∗ .

In the case of moderately soft potentials γ ∈ [−2, 0), C. Villani proved in [22] the existence 
of global weak solutions to (1.6). Some useful properties of these solutions are gathered in Ap-
pendix A.

1.2. The role of the ε-Poincaré inequality

In the work [16], the role played in showing Lp a priori bounds by a variant of the so-called 
Poincaré inequality has been emphasized. It is common, to derive energy estimates for solution 
to (1.6), to investigate for smooth functions f = f (v) the properties of the inner product

−〈f,Q(f )〉 = −
∫
Rd

fQ(f )dv =
∫
Rd

A[f ]∇f · ∇f dv + 1

2

∫
Rd

cγ [f ]f 2dv .

The function −cγ [f ] � 0 acts as a potential interacting with the diffusive part involving A[f ]. 
In particular, the coercivity of −Q(f ) amounts to
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∫
Rd

A[f ]∇f · ∇f dv � −1

2

∫
Rd

cγ [f ]f 2dv.

A weaker inequality would be enough to deduce a control of the growth of solutions to (1.6), say∫
Rd

A[f ]∇f · ∇f dv + C

∫
Rd

f 2dv � −1

2

∫
Rd

cγ [f ]f 2dv.

A refined version of such inequality has been obtained for −2 < γ < 0 in [16] showing that, for 
smooth φ and f ∈ Y0(fin), for any ε ∈ (0, 1) there exist �(ε) > 0 such that

−
∫
Rd

cγ [f ]φ2dv � ε

∫
Rd

A[f ]∇φ · ∇φdv + �(ε)

∫
Rd

φ2dv. (1.7)

The proof of (1.7) in [16] uses tools from harmonic analysis, namely Muckenhoupt Ap-weights. 
We present here a path to show inequality (1.7) using classical estimates of the Riesz potential in 
Lorentz spaces deriving a version that holds up to the critical case γ = −2, see Proposition 2.2. In 
fact, we actually provide an alternative proof of the inequality using Hardy-Littlewood-Sobolev 
inequality. In both procedures the key is to find a way around the problematic L1 − Lp case to 
the HLS inequality and use entropy to control the size of the most singular term.

1.3. Main results

The following version of the ε-Poincaré inequality holds for weak solutions to (1.6).

Theorem 1.3. Let −2 � γ < 0 and T > 0 and a nonnegative initial datum fin ∈ L1
2(R

d) ∩
L logL(Rd) be given satisfying (1.5) and consider any global weak solution f (t, v) to (1.6) with 
initial datum fin. Then, for any ε > 0, there exists C > 0 such that for any smooth function φ,

−
∫
Rd

φ2 cγ

[
f (t)

]
dv � ε

∫
Rd

∣∣∣∇ (〈v〉 γ
2 φ(v)

)∣∣∣2 dv + C

∫
Rd

φ2〈v〉γ dv, ∀t ∈ [0, T ] , (1.8)

where C depends on ε, γ , fin and T . Moreover, if γ ∈ (−2, 0), one has C = C0

(
1 + ε

γ
2+γ

)
where C0 only depends on ‖fin‖L1

2
.

Let us note that, in the above theorem, the initial datum is only assumed to satisfy natural 
(physical) bounds. In the case γ = −2, the de la Vallée Poussin Theorem [19] is used in order 
to avoid extra assumptions on moments of the initial datum. The ε-Poincaré inequality result 
is stated on a finite time interval. For −2 < γ < 0, it actually holds on [0, ∞). For γ = −2, it 
can be extended to [0, ∞) by assuming some additional finite moments for the initial condition. 
Indeed, combining the linear growth of moments and the large time behavior enables then to 
control additional moments uniformly in time. This is what we need in order to extend this result 
to [0, ∞).
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We subsequently use the above ε-Poincaré inequality in combination with a De Giorgi argu-
ment to show the derivation of pointwise bounds for solutions to (1.6). Such bound was the scope 
of the work [16] for the case −2 < γ < 0 providing an estimate of the form

f (v, t) � C0

(
1 + 1

t

) d
2

(1 + |v|) d
2 |γ | .

The estimates presented here include γ = −2 and will not deteriorate as the velocity increases. 
This allows us to recover results obtained in [21] which, by methods borrowed from the nonlin-
ear parabolic equations theory, L. Silvestre derived for −2 � γ < 0 the appearance of pointwise 
bounds for strong solutions to (1.6). We provide here a different approach which seems more 
direct and does not require any knowledge about parabolic equations. We mention that for 
the homogeneous Landau-Fermi-Dirac equation, a quantum correction of the Landau equation, 
pointwise estimates have been obtained in [4] using similar techniques (for γ > −2). Typically 
our main pointwise estimates can be stated as follows;

Theorem 1.4. Let −2 � γ < 0 and T > 0. Let a nonnegative initial datum fin ∈ L1
2(R

d) ∩
L logL(Rd) satisfying (1.5) be given. Let f (t, ·) be a weak-solution to (1.6). Let us assume that 
fin ∈ L1

s (R
d) for some s > d

2 |γ |. Then, for any T > t∗ > 0, there exists CT > 0 depending on 
T > 0 and fin such that

sup
t∈[t∗,T )

‖f (t)‖L∞ � CT max
(

1, t
−β∗
)

, (1.9)

for some explicit β > 0 depending on s, d, γ .

A precise statement is given in Theorem 3.6 for −2 < γ < 0 and Theorem 3.8 for γ = −2
where the precise expression of the constant C0 and the parameter β > 0 can be found. As said, 
the method of proof is based upon the implementation of a De Giorgi type argument [9]. The 
method relies into two main steps:

• First, we use the ε-Poincaré inequality to show the appearance of suitable Lp-bound, p < ∞
(see Theorem 3.2 for a precise statement).

• Second, a modification of the original De Giorgi argument proposed in [3] for the study of 
the Boltzmann equation without cut-off and implemented in [4] for the Landau-Fermi-Dirac 
equation, allows to show that the Lp-bounds derived in the previous steps can be upgraded 
into L∞-bounds. Such a typical Lp −L∞ argument in the spirit of [9] has already proved to 
be useful, even in the context of spatially inhomogeneous kinetic equations [18,6].

1.4. Related literature

The study of the spatially homogeneous Landau equation has a long history and the case 
of hard potentials, corresponding to γ � 0 has been thoroughly investigated in [12] showing 
existence, uniqueness, appearance of smoothness and of moments. The convergence towards 
equilibrium is also known to hold at some exponential rate and similar results hold true for the 
case of Maxwell molecules corresponding to γ = 0.
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Regarding the case of moderately soft potentials γ ∈ [−2, 0), the situation is not too different 
as far as the Cauchy theory is concerned and the main differences are related to:

(i) moments which are no longer created but are only propagated with a growth which is at 
most linear in time.

(ii) Convergence to equilibrium which is not exponential anymore but only algebraic. Notice 
that “stretched exponential” convergence rate can be proven under some restrictive assump-
tions on the initial datum [7,4].

We refer to [23,10,13] for a precise description of the existing results as well as the work [1] for 
a complete review of the Landau equation with moderately soft potentials which are the main 
object of the present paper.

The situation changes drastically in the case of very soft potentials for which −d � γ < −2
(including the Coulomb case γ = −d) for which the Cauchy theory is much more involved. 
Indeed, only weak solutions (including H-solutions) are known to exist whereas uniqueness is 
an open problem [10]. Notice that stretched exponential convergence to equilibrium still holds 
[8]. As far as regularity of solutions is concerned, it is possible to get a bound on the Hausdorff 
dimension of the times in which the solution might be singular [14,15]. Various perturbative 
results are also available in the literature and in particular local-in-time solutions for large data 
and global-in-time solutions for data close to equilibrium have been recently obtained in [11]. In 
the case −d � γ < −2, the global well-posedness of (1.6) for general initial data is still an open 
question and, in the most recent years, several important conditional results have been derived. 
We refer the reader to [5] for a more complete description of the literature in this case as well as 
with new conditional results under some Prodi-Serrin like criterion.

1.5. Organization of the paper

The proof of Theorem 1.3 is given in Section 2 where the two different cases −2 < γ < 0
and γ = −2 are treated separately. The consequences of the above ε-Poincaré inequality are then 
given in Section 3. The appearance of Lp-norm for 1 < p < ∞ are given in Section 3.1 resulting 
in Theorem 3.2. The Lp − L∞ argument of De Giorgi is then given in Section 3.2 with a full 
proof of Theorem 1.4 where again we distinguish the two cases −2 < γ < 0 and γ = −2. In 
Appendix A we recall some known results about weak solutions to the Landau equation whereas 
Appendix B recalls some results about Lorentz spaces used in the core of the text.
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2. The ε-Poincaré inequality extended

We recall here inequality (1.7) in the known case −2 < γ < 0 and provide the extended proof 
valid for the critical case γ = −2. The proof uses elementary knowledge of Lorentz spaces whose 
main properties are given in Appendix B.
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2.1. Case −2 < γ < 0

We first show the ε-Poincaré inequality in the case −2 < γ < 0.

Proposition 2.1. Assume that −2 < γ < 0 and let a nonnegative mapping fin ∈ L1
2(R

d) ∩
L logL(Rd) satisfying (1.5) be given. There exists C0 > 0 depending only on ‖fin‖L1

2
such that 

for any ε > 0, any f ∈ Y0(fin) and any smooth function φ,

−
∫
Rd

φ2cγ [f ]dv � ε

∫
Rd

∣∣∣∇ (〈v〉 γ
2 φ(v)

)∣∣∣2 dv + C0(1 + ε
γ

2+γ )

∫
Rd

φ2〈v〉γ dv. (2.1)

Proof. Let f ∈ Y0(fin) be fixed. For a given nonnegative φ set

I [φ] := −
∫
Rd

φ2cγ [f ]dv = (d − 1) (γ + d)

∫
Rd×Rd

|v − v∗|γ φ2(v)f (v∗)dvdv∗ .

For any v, v∗ ∈ Rd , if |v − v∗| < 1
2 〈v〉, then 〈v〉 � 2〈v∗〉, and we deduce from this, see [2, 

Eq. (2.5)], that

|v − v∗|γ � 2−γ 〈v〉γ
(

1{|v−v∗|� 〈v〉
2

} + 〈v∗〉−γ |v − v∗|γ 1{|v−v∗|< 〈v〉
2

}) .

Therefore,

I [φ] � 2−γ (d − 1) (γ + d) (I1 + I2) (2.2)

with

I1 :=
∫
Rd

〈v〉γ φ2(v)dv

∫
|v−v∗|� 〈v〉

2

f (v∗)dv∗ ,

and I2 :=
∫
Rd

〈v∗〉−γ f (v∗)dv∗
∫

|v−v∗|< 1
2 〈v〉

|v − v∗|γ 〈v〉γ φ2(v)dv.

Setting ψ(v) = 〈v〉 γ
2 φ(v) and F(v) = 〈v〉−γ f (v) one has that

I1 � ‖fin‖L1‖ψ‖2
L2 , (2.3)

and

I2 �
∫

d d

|v − v∗|γ F (v∗)ψ2(v)dvdv∗ =: J .
R ×R
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We observe that

J =
∫
Rd

Id+γ [F ]ψ2(v)dv,

where, for any α ∈ (0, d), Iα[g] denotes the Riesz operator

Iα[g](v) =
∫
Rd

g(v∗)
|v − v∗|d−α

dv∗, α ∈ (0, d) .

Then, using the Hölder inequality in Lorentz spaces it holds that

J �
∥∥Id+γ [F ]∥∥

q,∞
∥∥∥ψ2

∥∥∥
p,1

,
1

q
+ 1

p
= 1 .

Recall that Iα is a bounded operator from L1 to Lq,∞ if 1 = α
d

+ 1
q

which means that, choosing 

q = d
|γ | , p = d

d+γ
, there exists C1 = C1(d, γ ) such that∥∥Id+γ [F ]∥∥ d

|γ | ,∞ � C1(d, γ )‖F‖L1

and

J � C1(d, γ )‖F‖L1 ‖ψ2‖p,1 = C1(d, γ )‖F‖L1 ‖ψ‖2
2p,2, p = d

d + γ
.

Since −2 < γ < 0, note that 2 < 2p < 2d
d−2 . Then, using Young’s inequality together with (B.3)

shows that for any δ > 0,

C1(d, γ )‖ψ‖2
2p,2 � C2(d, γ )δ− 1−θ

θ ‖ψ‖2
2,2 + δ ‖ψ‖2

2d
d−2 ,2

where 1
p

= θ + (1 − θ) d−2
d

, that is θ = 2+γ
2 . Since L2,2 = L2, this means that

J � C2(d, γ )δ
γ

2+γ ‖F‖L1‖ψ‖2
L2 + δ ‖F‖L1 ‖ψ‖2

2d
d−2 ,2

.

Furthermore, Sobolev inequality in Lorentz spaces, see Theorem B.5, gives that

‖ψ‖ 2d
d−2 ,2 � Cd ‖∇ψ‖L2 . (2.4)

Consequently, it follows that

J � C2(d, γ )δ
γ

2+γ ‖F‖L1‖ψ‖2
L2 + δ Cd ‖F‖L1 ‖∇ψ‖2

L2, ∀δ > 0 . (2.5)

Notice that ‖fin‖L1 � ‖F‖L1 � ‖fin‖L1
2

since −γ < 2. Putting together with (2.2) and (2.3), 

after choosing ε = 2−γ (d − 1) (γ + d)Cd‖F‖L1δ, there exists C = C(d, γ, ‖fin‖L1
2
) > 0 such 

that
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I [φ] � C ε
γ

γ+2 ‖ψ‖2
L2 + ε ‖∇ψ‖2

L2 + 2−γ (d − 1) (γ + d)‖fin‖L1
2
‖ψ‖2

L2, ∀ε > 0 ,

which is the desired result recalling that ψ = 〈·〉 γ
2 φ. �

2.2. Case γ = −2

This is a critical case for which the aforementioned Sobolev inequality does not leave a nec-
essary room to introduce a small parameter ε. To overcome this issue, we resort to Lorentz space 
and fully exploits the fact that entropy is bounded.

Proposition 2.2. Let γ = −2 and let a nonnegative mapping fin ∈ L1
2(R

d) ∩ L logL(Rd) satis-
fying (1.5) be given. We assume that there exists � ∈ C ([0, ∞)) such that

m�(f ) :=
∫
Rd

f (v)�
(
|v|2

)
dv < +∞ (2.6)

and

lim
r→∞

�(r)

r
= +∞. (2.7)

Then, for any ε > 0, there exists C > 0 depending only on ε, ‖f ‖L1
2
, an upper bound of m�(f )

and an upper bound of H(f ) such that for any smooth function φ,

−
∫
Rd

φ2cγ [f ]dv � ε

∫
Rd

∣∣∣∇ (〈v〉 γ
2 φ(v)

)∣∣∣2 dv + C

∫
Rd

φ2〈v〉γ dv . (2.8)

Proof. The proof is quite similar to the aforementioned for γ ∈ (−2, 0). In particular, estimates 
(2.2) and (2.3) hold. Moreover, still with the notations

F(v) = 〈v〉−γ f (v) = 〈v〉2f (v), ψ(v) = 〈v〉 γ
2 φ(v) = 〈v〉−1φ(v) ,

and

J =
∫

Rd×Rd

|v − v∗|−2ψ(v)2F(v∗)dv∗dv ,

the computations previously performed show that

J � Cd‖F‖L1 ‖ψ‖2
L2p,2, p = d

d+γ
= d

d−2 .

Now we are in the situation in which the exponent 2p = 2d
d−2 is precisely the Sobolev exponent 

that, using again (2.4)

J � Cd‖F‖L1 ‖∇ψ‖2
2 ,
L
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which gives

I−2[φ] = −
∫
Rd

φ2c−2[f ]dv � Cd

(
‖F‖L1 ‖∇ψ‖2

L2 + ‖f ‖L1‖ψ‖2
L2

)
.

To create room here and make the coefficient in front of ‖∇ψ‖2
L2 small we use the entropy. 

Indeed, split the integral defining J according to |v −v∗| > 1 and |v −v∗| � 1 to get J = J1 +J2
with

J1 :=
∫

|v−v∗|>1

|v − v∗|−2F(v∗)ψ2(v)dvdv∗ � ‖F‖L1‖ψ2‖L1 � ‖f ‖L1
2
‖ψ‖2

L2 ,

and

J2 :=
∫

|v−v∗|�1

|v − v∗|−2F(v∗)ψ2(v)dvdv∗ .

For any R1 > 0, one further splits

F = F+
R1

+ F−
R1

, F+
R1

= F1F>R1, F−
R1

= F1F�R1 ,

therefore,

J2 � J+
2,R1

+ J−
2,R1

,

with

J±
2,R1

:=
∫

|v−v∗|�1

F±
R1

(v∗)|v − v∗|−2ψ2(v)dvdv∗ .

Observe that

J−
2,R1

� R1

∫
|v−v∗|�1

ψ2(v)|v − v∗|−2dvdv∗ � R1‖ψ‖2
L2 sup

v

∫
|v−v∗|�1

|v − v∗|−2dv∗ ,

where this last integral is independent of v and given by

∫
|v−v∗|�1

|v − v∗|−2dv∗ = |Sd−1|
1∫

0

rd−3dr = |Sd−1|
d − 2

.

Thus,

J− � Cd R1 ‖ψ‖2
2 .
2,R1 L
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We estimate now the most singular term J+
2,R1

. To do so, we use the estimate in Lorentz spaces 
as

J+
2,R1

�
∫
Rd

Id−2[F+
R1

]ψ2dv � Cd‖Rd−2[F+
R1

]‖
L

d
2 ,∞ ‖ψ2‖

L
d

d−2 ,1 ,

so that,

J+
2,R1

� Cd‖F+
R1

‖L1 ‖ψ‖
L

2d
d−2 ,2 � C̃d‖F+

R1
‖L1 ‖∇ψ‖2

L2 .

Combining all this estimates, we end up now with

I−2[φ] � Cd‖f ‖L1
2
‖ψ‖2

L2 + CdR1‖ψ‖2
L2 + C̃d‖F+

R1
‖L1 ‖∇ψ‖2

L2, ∀R1 > 0 . (2.9)

Using m�(f ) and the entropy estimate the term C̃d‖F+
R1

‖L1 is small as R1 is sufficiently large. 
Indeed, for any R2 > 0, we have

‖F+
R1

‖L1 =
∫

{F>R1,f �√
R1}

f (v)〈v〉2dv +
∫

{F>R1,f <
√

R1}
f (v)〈v〉2dv

� (1 + R2)

∫
{F>R1,f �√

R1,|v|2�R2}
f (v)dv +

∫
{|v|2>R2}

f (v)(1 + |v|2)dv

+
∫

{〈v〉2>
√

R1}
f (v)〈v〉2dv .

Since f satisfies (2.6) with a bounded energy and a bounded entropy, we obtain

‖F+
R1

‖L1 � 2
1 + R2

log(R1)
H(f ) + 1

R2

∫
Rd

f (v)|v|2dv

+ m�(f ) sup
r�R2

r

�(r)
+ m�(f ) sup

r�√
R1−1

1 + r

�(r)
. (2.10)

We then deduce from (2.7) the existence of R2 > 0 such that

C̃d

⎛⎜⎝ 1

R2

∫
Rd

f (v)|v|2dv + m�(f ) sup
r�R2

r

�(r)

⎞⎟⎠� ε

2
,

and then the existence of R1 > 0 such that

C̃d

(
2

1 + R2

log(R1)
H(f ) + m�(f ) sup

r�√
R1−1

1 + r

�(r)

)
� ε

2
.

It thus follows from (2.9) and (2.10) that (2.8) holds with C = Cd‖f ‖ 1 + CdR1. �
L2
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Remark 2.3. If f ∈ L1
s (R

d) with s > 2, one can of course choose �(r) = r
s
2 in Proposition 2.2. 

In such a case, one checks that

sup
r�R2

r

�(r)
= R

2−s
2

2 and sup
r�√

R1−1

1 + r

�(r)
� sup

r�√
R1−1

2r

�(r)
= 2(

√
R1 − 1)

2−s
2

for any R1 � 4. Therefore, in the above proof, one can take

R2 = max

⎛⎜⎝4C̃d

ε

∫
Rd

f (v)|v|2dv,

(
4C̃d

ε
m�(f )

) 2
s−2

⎞⎟⎠ ,

and

R1 = max

⎛⎜⎝4, exp

(
8C̃d(1 + R2)

ε
H(f )

)
,

⎛⎝(8C̃d

ε
m�(f )

) 2
s−2

+ 1

⎞⎠2
⎞⎟⎠ .

One deduce then the following version of the ε-Poincaré inequality valid for solutions to the 
Landau equation (1.6).

Corollary 2.4. Let γ = −2, T > 0 and let a nonnegative initial datum fin ∈ L1
2(R

d) ∩
L logL(Rd) satisfying (1.5) be given. Let f (t, ·) be a weak solution to (1.6). Then, for any ε > 0, 
there exists C > 0 depending only on ε, fin and T such that, for any smooth function φ and any 
t ∈ [0, T ]

−
∫
Rd

φ2(v)cγ [f ](t, v)dv � ε

∫
Rd

∣∣∣∇ (〈v〉 γ
2 φ(v)

)∣∣∣2 dv + C

∫
Rd

φ2(v)〈v〉γ dv . (2.11)

Proof. Since | · |2 ∈ L1(Rd , fin(v)dv), we deduce from the de la Vallée Poussin Theorem (see 
[19, Theorem 8]) that there exists a convex function � ∈ C ∞([0, +∞)) such that �(0) =
�′(0) = 0, �′ is a concave function, �′(r) > 0 for r > 0,

lim
r→+∞

�(r)

r
= lim

r→+∞�(r) = +∞,

and ∫
Rd

fin(v)�(|v|2)dv < ∞. (2.12)

Let us show that the bound (2.12) propagates over time for the associated solution f (t, ·) to (1.6). 
Multiplying (1.6) with �(|v|2) and integrating over Rd , we get, after some integrations by parts,

d

dt

∫
d

f (t, v)�(|v|2)dv = 4
∫
d

∫
d

f f∗|v − v∗|−2 ��(v, v∗)dv∗dv, (2.13)
R R R
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where

��(v, v∗) = d − 1

2

[
|v∗|2 − |v|2

]
�′(|v|2) +

[
|v|2|v∗|2 − (v · v∗)2

]
�′′(|v|2).

First, a symmetry argument combined with the convexity of � enables to obtain that∫
Rd

∫
Rd

f f∗|v − v∗|−2
[
|v∗|2 − |v|2

]
�′(|v|2)dv∗dv

=
∫
Rd

∫
Rd

f f∗|v − v∗|−2
[
|v|2 − |v∗|2

]
�′(|v∗|2)dvdv∗

= −1

2

∫
Rd

∫
Rd

f f∗|v − v∗|−2
(
|v|2 − |v∗|2

)[
�′(|v|2) − �′(|v∗|2)

]
dvdv∗ � 0.

Thus, (2.13) becomes

d

dt

∫
Rd

f (t, v)�(|v|2)dv � 4
∫
Rd

∫
Rd

f f∗|v − v∗|−2
[
|v|2|v∗|2 − (v · v∗)2

]
�′′(|v|2)dv∗dv.

Now, since �′ is concave, �′′ is nonincreasing. This implies, with the convexity of �, that

0 � �′′(r) � �′′(0) for r � 0.

The above inequality with the estimate 0 � |v|2|v∗|2 − (v · v∗)2 � |v|2 |v − v∗|2 leads to

d

dt

∫
Rd

f (t, v)�(|v|2)dv � 4�′′(0)

∫
Rd

∫
Rd

f f∗ |v|2 dv∗ dv � 4�′′(0)‖fin‖L1‖fin‖L1
2
. (2.14)

Consequently, for any t ∈ [0, T ],∫
Rd

f (t, v)�(|v|2)dv �
∫
Rd

fin(v)�(|v|2)dv + 4T �′′(0)‖fin‖L1‖fin‖L1
2
.

Applying Proposition 2.2 to f (t, ·) with t ∈ [0, T ] then completes the proof. �
Remark 2.5. If we assume that fin ∈ L1

s (R
d) ∩ L logL(Rd) for some s > 2, then, denoting by 

f a global weak solution to (1.6) associated to fin, we deduce from Theorem A.2 that

sup
t∈[0,T ]

∫
Rd

f (t, v)|v|sdv < ∞.

In this case, Proposition 2.2 immediately implies that (2.11) holds.
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The above results allow to prove the main result in the Introduction:

Proof of Theorem 1.3. The proof of Theorem 1.3 is a simple consequence of the ε-Poincaré in 
the various cases. The case γ = −2 corresponds to Corollary 2.4. If −2 < γ < 0, the result just 
comes from Proposition 2.1 and the fact that solution f (t) ∈ Y0(fin) for any t ∈ [0, T ]. �

We end this Section dedicated to the ε-Poincaré inequality by a simpler proof of Proposi-
tion 2.2 in the case d = 3. We state the result in the simplified case in which f ∈ L1

s (R
d) with 

s > 2. The alternative proof is based upon the Hardy-Littlewood-Sobolev inequality in dimension 
d = 3.

Proposition 2.6. Assume that γ = −2, d = 3 and let a nonnegative mapping fin ∈ L1
2(R

d) ∩
L logL(Rd) satisfying (1.5) be given. There exist C0 > 0 depending only on ‖fin‖L1 and C1 > 0
depending only on ‖fin‖L1

2
and H(fin) such that, for any s > 2, any ε > 0 and any f ∈ Y0(fin),

−
∫
R3

f 2cγ [f ]dv � ε

∫
R3

∣∣∣∇ (〈v〉 γ
2 f (v)

)∣∣∣2 dv

+ C0

(
1 + exp

(
C1 ε− 2

s−2 ms(f )
2

s−2

))∫
R3

f 2〈v〉γ dv ,

where, for any s � 0, the statistical moment ms(f ) is defined as

ms(f ) :=
∫
R3

〈v〉sf (v)dv .

Proof. Being the proof quite similar to that of Proposition 2.2, let us describe only how HLS 
inequality provides an alternative way to estimate the most singular term. Define, for any function 
φ,

JR :=
∫

|v−v∗|�1

f 1f >R(v∗)|v − v∗|−2φ2(v)dvdv∗, R � 1 .

Applying then Hardy-Littlewood-Sobolev [20, Theorem 4.3] with 1 < p, r < ∞, it holds

JR � CHLS‖f 1f >R‖Lp‖φ‖2
L2r ,

1

p
+ 2

3
= 2 − 1

r
.

We choose then p = 2r which amounts to p = 9
4 (notice that, for d > 3, the choice of p = 2r

would amount to r = 3d
4d−4 � 1 which is not admissible). Using then Lebesgue’s interpolation,

‖f 1f >R‖
L

9
4

� ‖〈·〉2f 1f >R‖
1
3
L1‖〈·〉−1f ‖

2
3
L6, ‖φ‖

L
9
4

� ‖〈·〉2φ‖
1
3
L1‖〈·〉−1φ‖

2
3
L6 .

In addition, for θs = 1 − 2 , for s > 2, it holds that

s
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‖〈·〉2f 1f >R‖L1 � ‖〈·〉sf 1f >R‖1−θs

L1 ‖f 1f >R‖θs

L1 � ‖〈·〉sf ‖1−θs

L1

(‖f logf ‖L1

log(R)

)θs

.

Overall,

JR � C

log(R)
θs
3

‖〈·〉sf ‖
1−θs

3
L1 ‖f logf ‖

θs
3

L1‖〈·〉2φ‖
2
3
L1‖〈·〉−1f ‖

2
3
L6‖〈·〉−1φ‖

4
3
L6 .

When considering f ∈ Y0(fin) with moment s > 2 (and entropy bounded), this implies for φ = f

that

JR � C(fin, s)

log(R)
θs
3

‖〈·〉−1f ‖2
L6 � C̃(fin, s)

log(R)
θs
3

‖∇(〈·〉−1f
)‖2

L2

where we used Sobolev inequality and C̃(fin, s) depends on ‖f ‖L1
s
, H(fin) and energy. Then, 

for any ε > 0, one obtains

JR � ε‖∇(〈·〉−1f
)‖2

L2 , ε > 0 ,

by taking R > 1 sufficiently large so that R � exp
(
(C̃(fin, t)/ε)

3
θs

)
. �

3. Appearances of Lp-norms in the soft potential case

We investigate here the regularizing effects induced by the ε-Poincaré inequality and in par-
ticular the appearance of Lp-norms (p > 1).

3.1. Lp-estimates for 1 < p < ∞

More precisely, for any weak solution f (t, ·) to (1.1), we introduce the notation

Ms,p(t) =
∫
Rd

f (t, v)p〈v〉sdv , Ds,p(t) =
∫
Rd

∣∣∣∇ (〈v〉 s
2 f

p
2 (t, v)

)∣∣∣2 dv (3.1)

where p ∈ (1, ∞) is fixed in all the sequel and s ∈ R. We also set

ms(t) =
∫
Rd

f (t, v)〈v〉sdv, t � 0, s ∈ R.

One has the following evolution of Ms,p(t).

Proposition 3.1. Let −2 � γ < 0 and T > 0. Let a nonnegative initial datum fin ∈ L1
2(R

d) ∩
L logL(Rd) satisfying (1.5) be given. Let f (t, ·) be a weak-solution to (1.6). Given s � 0 and 
1 < p < ∞, there exists some positive constant C̄p,γ,s(fin) depending on p, γ , s, T and fin, 
such that
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d

dt
Ms,p(t) + K0(p − 1)

2p
Ds+γ,p(t) � C̄p,γ,s(fin)m s+γ

p
(t)p (3.2)

holds for any t ∈ [0, T ].

Proof. One checks easily that, for any s � 0,

1

p

d

dt

∫
Rd

f p(t, v)〈v〉sdv =
∫
Rd

〈v〉sf p−1(t, v)∇ · (A[f ]∇f − b[f ]f )dv

= −(p − 1)

∫
Rd

〈v〉sf p−2A[f ]∇f · ∇f dv + (p − 1)

∫
Rd

〈v〉sf p−1b[f ] · ∇f dv

− s

∫
Rd

〈v〉s−2 f p−1 (A[f ]∇f ) · vdv + s

∫
Rd

〈v〉s−2f pb[f ] · vdv

where we used that ∇f p−1 = (p − 1)f p−2∇f , ∇〈v〉s = s〈v〉s−2v. Then, noticing that

A[f ]∇f
p
2 · ∇f

p
2 = p2

4
f p−2A[f ]∇f · ∇f

and using the uniform ellipticity of the diffusion matrix A[f ] (recall Proposition A.1), we deduce 
that

(p − 1)

∫
Rd

〈v〉sf p−2A[f ]∇f · ∇f dv � 4K0(p − 1)

p2

∫
Rd

〈v〉s+γ
∣∣∣∇f

p
2

∣∣∣2 dv .

Moreover, writing

∇
(
〈v〉 s+γ

2 f
p
2

)
= 〈v〉 s+γ

2 ∇f
p
2 + s + γ

2
v 〈v〉 s+γ

2 −2f
p
2 ,

from which

〈v〉s+γ
∣∣∣∇f

p
2

∣∣∣2 � 1

2

∣∣∣∇ (〈v〉 s+γ
2 f

p
2

)∣∣∣2 − 1

4
(s + γ )2〈v〉s+γ−2f p(t, v), (3.3)

and

(p − 1)

∫
Rd

〈v〉sf p−2A[f ]∇f · ∇f dv � 2K0(p − 1)

p2

∫
Rd

∣∣∣∇ (〈v〉 s+γ
2 f

p
2

)∣∣∣2 dv

− K0(p − 1)(s + γ )2

p2

∫
Rd

〈v〉s+γ−2f p(t, v)dv .

We also have
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∫
Rd

〈v〉sf p−1b[f ] · ∇f dv = − 1

p

∫
Rd

f p∇ ·
(
b[f ]〈v〉s

)
dv

= − s

p

∫
Rd

〈v〉s−2f p(t, v)b[f ] · v dv − 1

p

∫
Rd

〈v〉sf p(t, v)cγ [f ]dv.

Therefore, we get

d

dt
Ms,p(t) + 2K0(p − 1)

p
Ds+γ,p(t)

� −(p − 1)

∫
Rd

〈v〉sf p(t, v) cγ [f ]dv + s

∫
Rd

〈v〉s−2f p(t, v) (b[f ] · v)dv

+ K0(p − 1)(s + γ )2

p

∫
Rd

〈v〉s+γ−2f p(t, v)dv − sp

∫
Rd

〈v〉s−2f p−1 (A[f ]∇f · v)dv.

Let us investigate more carefully the last term. Integration by parts shows that

−sp

∫
Rd

〈v〉s−2f p−1 (A[f ]∇f · v)dv = −s

∫
Rd

∇f p ·
(
A[f ] 〈v〉s−2v

)
dv

= s

∫
Rd

f p ∇ ·
(
A[f ] 〈v〉s−2v

)
dv .

Using the product rule

∇ ·
(
A[f ] 〈v〉s−2v

)
= 〈v〉s−2 b[f ] · v + Trace

(
A[f ] · Dv

(
〈v〉s−2v

))
,

where Dv

(〈v〉s−2v
)

is the matrix with entries ∂vi

(〈v〉s−2vj

)
, i, j = 1, . . . , d , or more compactly,

Dv

(〈v〉s−2v
)= 〈v〉s−4A(v) ,

where A(v) = 〈v〉2Id + (s − 2) v ⊗ v, v ∈Rd . We obtain

d

dt
Ms,p(t) + 2K0(p − 1)

p
Ds+γ,p(t) � −(p − 1)

∫
Rd

〈v〉scγ [f (t)](v)f p(t, v)dv

+ s

∫
Rd

〈v〉s−2 f p(t, v) (b[f ] · v)dv + K0(p − 1)(s + γ )2

p

∫
Rd

〈v〉s+γ−2f p(t, v)dv

+ s

∫
Rd

〈v〉s−4f p Trace (A[f ] · A(v))dv . (3.4)
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We denote by I1, I2, I3, I4 the various terms on the right-hand-side of (3.4) and we control each 
term separately. Applying Theorem 1.3 with φ = 〈·〉 s

2 f
p
2 (t, v), we deduce that, for any δ ∈ (0, 1),

|I1| � (p − 1)
(
δDs+γ,p(t) + C1Ms+γ,p(t)

)
,

where C1 is defined in Theorem 1.3. For the term I2, it holds that

|I2| � s

∫
Rd

〈v〉s−1f p(t, v) |b[f (t)](v)|dv

� s(d − 1)

∫
R2d

〈v〉s−1f p(t, v)|v − v∗|γ+1f (t, v∗)dv∗dv .

Therefore, if γ + 1 < 0, applying Theorem 1.3 with cγ+1[f (t)] instead of cγ [f (t)] and φ2 =
〈·〉s−1f p(t), we get

|I2| � s

d + γ + 1

(
δDs+γ,p(t) + C1 Ms+γ,p(t)

)
,

whereas, if γ +1 > 0, one has obviously |I2| � s(d −1)‖〈·〉γ+1f (t)‖L1Ms+γ,p(t). In both cases, 
for any δ > 0,

|I2| � s C(d, γ )
(
δDs+γ,p(t) + C1 Ms+γ,p(t)

)
.

Clearly,

|I3| � K0(p − 1)(s + γ )2

p
Ms+γ,p(t).

For the term I4, one checks easily that, for any i, j ∈ {1, . . . , d},∣∣Ai,j [f ]∣∣� | · |γ+2 ∗ f,
∣∣Ai,j (v)

∣∣� s〈v〉2,

and

|I4| � d2s2
∫
R2d

〈v〉s−2f p(t, v)|v − v∗|γ+2f (t, v∗)dvdv∗.

One has, since γ + 2 � 0,

|I4| � s2 d2‖〈·〉γ+2f (t)‖L1 ‖〈·〉γ+sf p(t)‖L1 = s2 d2‖〈·〉γ+2f (t)‖L1 Ms+γ,p(t).

Overall, recalling mass and energy conservation to estimate all the weighted L1-terms, one sees 
that, for any δ ∈ (0,1), there is some positive constant Cp,δ,γ (fin) depending on fin, γ , δ and p
such that
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d

dt
Ms,p(t) + 2K0(p − 1)

p
Ds+γ,p(t)

� Cp,δ,γ (fin)(1 + s2)Ms+γ,p(t) + (sC(d, γ ) + p)δDs+γ,p(t) .

(3.5)

Picking then δ ∈ (0, 1) such that (sC(d, γ ) + p)δ � K0(p−1)
p

one deduces that

d

dt
Ms,p(t) + K0

q
Ds+γ,p(t) � C̃p,γ,s(fin)Ms+γ,p(t), s � 0,

1

p
+ 1

q
= 1 , (3.6)

for some positive constant C̃p,γ,s(fin) depending only on p, γ , s and fin. We now estimate the 
right-hand-side Ms+γ,p(t) by suitable interpolation between L1-moment of f and Ds+γ,p(t). 
First, observe that Sobolev inequality reads∥∥∥〈·〉 s+γ

p f

∥∥∥p

Lq
=
∥∥∥〈·〉 s+γ

2 f
p
2

∥∥∥2

L
2d

d−2
� CSobDs+γ,p(t), q = p d

d − 2
. (3.7)

Now, recall the interpolation inequality

‖〈·〉ag‖Lr � ‖〈·〉a1g‖θ
Lr1 ‖〈·〉a2g‖1−θ

Lr2 , (3.8)

with

1

r
= θ

r1
+ 1 − θ

r2
, a = θ a1 + (1 − θ)a2, θ ∈ (0,1).

Applying this with r = p, r1 = 1, r2 = q = pd
d−2 > p (so that θ = 2

d(p−1)+2 ) and a = a1 = a2 =
s+γ
p

we deduce

Ms+γ,p(t) � m s+γ
p

(t)
2p

d(p−1)+2

∥∥∥〈·〉 s+γ
p f

∥∥∥ d(p−1)p
d(p−1)+2

Lq

� C

d(p−1)
d(p−1)+2
Sob m s+γ

p
(t)

2p
d(p−1)+2 Ds+γ,p(t)

d(p−1)
d(p−1)+2

(3.9)

where we used (3.7) in that last estimate. Now, Young’s inequality implies that there is C > 0
such that, for any α > 0,

Ms+γ,p(t) � Cα− d(p−1)
2 m s+γ

p
(t)p + αDs+γ,p(t).

Choosing now α > 0 such that C̃p,γ,s(fin)α = K0(p−1)
2p

, we end up with

d

dt
Ms,p(t) + K0

2q
Ds+γ,p(t) � C̄p,γ,s(fin)m s+γ

p
(t)p .

This shows (3.2). �
The above result provides the following appearance for Ms,p(·).
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Theorem 3.2. Let −2 � γ < 0, s � 0, p > 1 and T > 0. Let a nonnegative initial datum fin ∈
L1

2(R
d) ∩ L logL(Rd) satisfying (1.5) be given. Assume additionally that

fin ∈ L1
μ(s,p)(R

d), μ(s,p) := 2s − γ d(p − 1)

2p
, (3.10)

and let f (t, ·) be a weak-solution to (1.6). Then, there exists a constant cs,γ,p(fin) such that

Ms,p(t) � cs,γ,p(fin)max
(

1, t−
d(p−1)

2

)
, t ∈ (0, T ) . (3.11)

Proof. Let us pick s � 0. Recall estimate (3.2)

d

dt
Ms,p(t) + K0(p − 1)

2p
Ds+γ,p(t) � C̄p,γ,s(fin)m s+γ

p
(t)p , t > 0 .

We resort again to the interpolation inequality (3.8) to estimate now Ms,p(t) in terms of moments 
of f and Ds+γ,p(t). Namely, applying (3.8) with r = p, r1 = 1, r2 = q = pd

d−2 , i.e. θ = 2
d(p−1)+2 , 

a = s
p

and a2 = s+γ
p

, we see that

a1 = 2s − γ d(p − 1)

2p

and, as in (3.9), we obtain

Ms,p(t) � C

d(p−1)
d(p−1)+2
Sob ma1(t)

2p
d(p−1)+2 Ds+γ,p(t)

d(p−1)
d(p−1)+2 .

Thus,

Ds+γ,p(t) � Cd,p m 2s−γ d(p−1)
2p

(t)
− 2p

d(p−1) Ms,p(t)
d(p−1)+2
d(p−1) (3.12)

which, with (3.2), results in the inequality valid for any t > 0

d

dt
Ms,p(t) + Cd,pK0m 2s−γ d(p−1)

2p

(t)
− 2p

d(p−1) Ms,p(t)
d(p−1)+2
d(p−1) � C̄p,γ,s(fin)m s+γ

p
(t)p . (3.13)

Now, let us note that 2s−γ d(p−1)
2p

>
s+γ
p

. If 2s−γ d(p−1)
2p

� 2, we clearly have

sup
t∈[0,T ]

max

(
m 2s−γ d(p−1)

2p

(t),m s+γ
p

(t)

)
� ‖fin‖L1

2
.

Otherwise, we deduce from the assumption (3.10) and Theorem A.2 that there exists Cs,γ (p)

depending on s, γ , p and fin such that

sup max

(
m 2s−γ d(p−1)

2p

(t),m s+γ
p

(t)

)
� Cs,γ (p).
t∈[0,T ]

89



R. Alonso, V. Bagland and B. Lods Journal of Differential Equations 395 (2024) 69–105
Therefore, there exist as(fin) and ks(fin) depending on γ, p, s, T and fin such that

d

dt
Ms,p(t) + as(fin)Ms,p(t)

d(p−1)+2
d(p−1) � ks(fin) , t ∈ [0, T ] . (3.14)

The conclusion then follows by a comparison argument. Namely, one shows that (3.11) holds 
true with

cs,γ,p(fin) = max

⎧⎨⎩
(

d(p − 1)

as(fin)

) d(p−1)
2

, 2
d(p−1)

d(p−1)+2

(
ks(fin)

as(fin)

) d(p−1)
d(p−1)+2

⎫⎬⎭
by simply resuming the arguments of [4, proof of Proposition 3.12]. �
3.2. De Giorgi’s approach to pointwise bounds

We now show how the above appearance of Lp-norms implies the appearance of L∞ bounds. 
For parabolic equations, the passage from L2 to L∞ is made through the so-called De Giorgi-
Moser iteration procedure [9] and such an approach has been introduced in [3] for spatially 
homogeneous kinetic equations. We introduce, as in [3], for any fixed � > 0,

f�(t, v) := (f (t, v) − �), f +
� (t, v) := f�(t, v)1{f ��}.

To prove an L∞ bound for f (t, v), one looks for an L2-bound for f�. We start with the following 
estimate.

Proposition 3.3. Let −2 � γ < 0 and T > 0. Let a nonnegative initial datum fin ∈ L1
2(R

d) ∩
L logL(Rd) satisfying (1.5) be given. Let f (t, ·) be a weak-solution to (1.6). There exist c0, κ0 >

0 depending only on γ , T and fin such that, for any � > 0, any t ∈ [0, T ],
1

2

d

dt
‖f +

� (t)‖2
L2 + c0

∫
Rd

∣∣∣∇ (〈v〉 γ
2 f +

� (t, v)
)∣∣∣2 dv

� κ0‖〈·〉
γ
2 f +

� (t)‖2
L2 − �

∫
Rd

cγ [f ](t, v)f +
� (t, v)dv.

(3.15)

Proof. Given � > 0, one has ∂t

(
f +

�

)2 = 2f +
� ∂tf

+
� = 2f +

� ∂tf and ∇f +
� = 1{f ��}∇f , so that

1

2

d

dt
‖f +

� (t)‖2
L2 = −

∫
Rd

A∇f · ∇f +
� dv +

∫
Rd

f b[f ] · ∇f +
� dv

= −
∫
Rd

A∇f +
� · ∇f +

� dv +
∫
Rd

f b[f ] · ∇f +
� dv.

Now, one easily checks that
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f ∇f +
� = 1

2∇(f +
� )2 + �∇f +

� .

Therefore

1

2

d

dt
‖f +

� (t)‖2
L2 +

∫
Rd

A∇f +
� · ∇f +

� dv = − 1
2

∫
Rd

cγ [f ](f +
� )2dv − �

∫
Rd

cγ [f ]f +
� dv.

It then follows from Proposition A.1 that∫
Rd

A∇f +
� · ∇f +

� dv � K0

∫
Rd

〈v〉γ |∇f +
� (t, v)|2dv

� K0

2

∫
Rd

∣∣∣∇ (〈v〉 γ
2 f +

� (t, v)
)∣∣∣2 dv − K0

∫
Rd

(
f +

� (t, v)
)2 ∣∣∣∇ (〈v〉 γ

2

)∣∣∣2 dv

� K0

2

∫
Rd

∣∣∣∇ (〈v〉 γ
2 f +

� (t, v)
)∣∣∣2 dv − C̃K0‖〈·〉

γ
2 f +

� (t)‖2
L2 .

We finally deduce from (1.8) with φ = f +
� and ε = K0

2 that (3.15) holds with c0 := K0
4 and 

κ0 := 1
2C + C̃K0, where C is defined in Theorem 1.3. �

Inspired by De Giorgi’s iteration method introduced for elliptic equations, the crucial point 
in the level set approach of [3] is to compare some suitable energy functional associated to f +

�

with the same energy functional at some different level f +
k . The key observation being that, if 

0 � k < �, then

0 � f +
� � f +

k , and 1{f��0} �
f +

k

� − k
.

This implies in particular that (see [3,4] for details)

f +
� � (� − k)−α

(
f +

k

)1+α ∀α � 0, 0 � k < �. (3.16)

On this basis, we need the following interpolation inequalities which are independent of the 
equation (1.6).

Lemma 3.4. There exists C > 0 such that, for any 0 � k < �, one has (for all nonnegative f for 
which the terms are defined),

‖〈·〉 γ
2 f +

� ‖2
L2 � C (� − k)−

4
d

∥∥∥∇ (〈·〉 γ
2 f +

k

)∥∥∥2

L2

∥∥f +
k

∥∥ 4
d

L2 . (3.17)

For p ∈
[
1, d

d−2

)
, there is Cp > 0 such that, for any 0 � k < � (and all nonnegative f for which 

the terms are defined),
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‖〈·〉γ f +
� ‖Lp � Cp(� − k)

−( 2
p

− d−4
d

)
∥∥∥∇ (〈·〉 γ

2 f +
k

)∥∥∥2

L2
‖f +

k ‖
2
p

+ 4−2d
d

L2 . (3.18)

Moreover, for any q ∈ ( 2d+2
d

, 2d+4
d

)
, there is cq > 0 such that, for any 0 � k < � (and all non-

negative f for which the terms are defined),

‖f +
� ‖2

L2 � cq

(� − k)q−2

∥∥〈·〉sf +
k

∥∥ 2d+4
d

−q

L1 ‖f +
k ‖2(q− 2d+2

d
)

L2

∥∥∥∇ (〈·〉 γ
2 f +

k

)∥∥∥2

L2
, (3.19)

with s = − γ d
2d+4−qd

> − d
2 γ . Finally, for s > 2, there exists cs > 0 such that, for any 0 � k < �

(and all nonnegative f for which the terms are defined),

‖f +
� ‖2

L
d

d−1
� cs(� − k)−2 s−1

s

∥∥〈·〉sf +
k

∥∥ 2
s

L1 ‖f +
k ‖

2(s−2)
s

L2

∥∥∥∇ (〈·〉−1 f +
k

)∥∥∥2

L2
. (3.20)

Proof. The proof of this result follows the paths of the analogous one [4, Lemma 4.2]. However, 
since the latter was restricted to the case d = 3 and −2 < γ < 0, we give a full proof here to agree 
on the various exponents. The basic argument is the interpolation inequality (3.8). Moreover, for 
the special case r1 = 2d

d−2 , r2 = 2, a1 = γ
2 and r ∈ (2, r1), thanks to Sobolev embedding, the 

identity will become

‖〈·〉ag‖Lr � Cθ

∥∥∥∇ (〈·〉 γ
2 g
)∥∥∥θ

L2
‖〈·〉a2g‖1−θ

L2 ,

1

r
= d − 2θ

2d
, a = θ

γ

2
+ (1 − θ)a2, θ ∈ (0,1), r ∈ (2, r1).

(3.21)

With these tools at hands, one has for 0 � k < � and r > 2, writing r = 2 + 2α with (3.16),

‖〈·〉 γ
2 f +

� ‖2
L2 =

∫
Rd

〈v〉γ (f +
� (t, v))2dv

� (� − k)−2α

∫
Rd

〈v〉γ (f +
k (t, v))2+2αdv = (� − k)−(r−2)

∥∥∥〈·〉 γ
r f +

k (t)

∥∥∥r

Lr
,

so that (3.21) gives, with a = γ
r

,

‖〈·〉 γ
2 f +

� ‖2
L2 � C(� − k)−(r−2)

∥∥∥∇ (〈·〉 γ
2 f +

k (t)
)∥∥∥rθ

L2

∥∥〈·〉a2f +
k

∥∥r(1−θ)

L2 ,

with θ = d(r−2)
2r

and a2 = γ
2

4+2d−dr
2d+2r−dr

. One picks then r = 4+2d
d

so that a2 = 0 and rθ = 2, to 
obtain (3.17). One proceeds in the same way to estimate ‖〈·〉γ f +

� ‖p
Lp . Namely, for r > p,

‖〈·〉γ f +
� ‖p

Lp � (� − k)−(r−p)
∥∥∥〈·〉 γ p

r f +
k

∥∥∥r

Lr

and, with r > 2p, imposing in (3.21) a2 = 0 and a = γ p , we get θ = 2p and

r r
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‖〈·〉γ f +
� ‖p

Lp � C(� − k)−(r−p)
∥∥∥∇ (〈·〉 γ

2 f +
k

)∥∥∥2p

L2

∥∥f +
k

∥∥r−2p

L2 ,

which gives (3.18) when r = 2 + 4p
d

(notice that r > 2p since p < d
d−2 ).

Let us now prove (3.19). Let us consider first q > 2 and use (3.8). One has

‖g‖Lq � ‖〈·〉s g‖θ1
L1 ‖g‖θ2

L2 ‖〈·〉 γ
2 g‖θ3

L
2d

d−2
, (3.22)

with θi � 0 (i = 1, 2, 3) such that

θ1 + θ2 + θ3 = 1, s θ1 + 0 · θ2 + γ

2
θ3 = 0,

θ1

1
+ θ2

2
+ θ3(d − 2)

2d
= 1

q
.

Imposing qθ3 = 2, this easily yields

qθ1 = 2d + 4

d
− q, qθ2 = 2

(
q − 2d + 2

d

)
,

s = − γ d

2d + 4 − qd
, q ∈

(
2d + 2

d
,

2d + 4

d

)
.

Using Sobolev inequality, this gives, for any q ∈ ( 2d+2
d

, 2d+4
d

)
, the existence of a positive con-

stant C > 0 such that

‖g‖q
Lq � C ‖〈·〉sg‖

2d+4
d

−q

L1 ‖g‖2
(
q− 2d+2

d

)
L2

∥∥∥∇ (〈·〉 γ
2 g
)∥∥∥2

L2
, s = − γ d

2d + 4 − qd
.

Using then (3.16), for any q > 2, one has ‖f +
� ‖2

L2 � (� − k)2−q ‖f +
k ‖q

Lq for 0 � k < �, and the 
above inequality gives the result.

It remains to prove (3.20). We deduce from (3.16) with α � 0 that,

‖f +
� ‖2

L
d

d−1
� (� − k)−2α‖f +

k ‖2(1+α)

L
d(1+α)

d−1
.

Then, imposing α ∈ (0, 1
2

)
, one may apply (3.22) with γ = −2, q = d(1+α)

d−1 , θ1 = 1−α
1+α

, θ2 =
2α−1
1+α

, θ3 = 1
1+α

, s = 1
1−α

and obtain

‖f +
� ‖2

L
d

d−1
� (� − k)−2α

∥∥〈·〉sf +
k

∥∥2(1−α)

L1 ‖f +
k ‖2(2α−1)

L2

∥∥∥〈·〉−1 f +
k

∥∥∥2

L
2d

d−2
.

Since α = 1 − 1
s
, (3.20) follows directly from the above inequality and the Poincaré inequal-

ity. �
Let us now introduce, for any measurable f := f (t, v) � 0 and � � 0, the energy functional

E�(T1, T2) = sup
t∈[T1,T2)

⎛⎜⎝1

2

∥∥f +
� (t)

∥∥2
L2 + c0

t∫ ∥∥∥∇ (〈·〉 γ
2 f +

� (τ )
)∥∥∥2

L2
dτ

⎞⎟⎠ , 0 � T1 � T2
T1
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where c0 is defined here above. From now on, we distinguish between the two cases −2 < γ < 0
and γ = −2 since they lead to different kinds of estimates for the integral involving cγ in (3.15).

3.2.1. Case −2 < γ < 0
We then have the fundamental result for the implementation of the level set analysis.

Proposition 3.5. Let −2 < γ < 0 and T > 0. Let a nonnegative initial datum fin ∈ L1
2(R

d) ∩
L logL(Rd) satisfying (1.5) be given. Let f (t, ·) be a weak-solution to (1.6). Then, for any

pγ ∈
(

d

d + γ
,3

)
, s >

d

2
|γ |,

there exist some positive constants C1, C2 depending only on s, ‖fin‖L1
2

and H(fin) such that, 
for any times 0 � T1 < T2 � T and 0 � k < �,

E�(T2, T ) � C2

T2 − T1
(� − k)−

4s+dγ
ds

[
sup

τ∈[T1,T ]
ms(f (τ ))

] |γ |
s

Ek(T1, T )
(d+2)s+dγ

ds

+ C1Ek(T1, T )
1

pγ
+ 2

d (� − k)
−
(

2
pγ

− d−4
d

)
sup

τ∈[T1,T ]
m|γ |(f (τ ))

×
(

� +
[
(� − k)

2
pγ

−1 + �(� − k)
2

pγ
−2
]

Ek(T1, T )
1− 1

pγ

)
. (3.23)

Proof. Let us fix 0 � T1 < T2 � T . Integrating inequality (3.15) over (t1, t2), we obtain that

1

2
‖f +

� (t2)‖2
L2 + c0

t2∫
t1

∥∥∇(〈·〉 γ
2 f +

� (τ )
)∥∥2

L2dτ � 1

2
‖f +

� (t1)‖2
L2

+ κ0

t2∫
t1

‖〈·〉 γ
2 f +

� (τ )‖2
L2 dτ − �

t2∫
t1

dτ

∫
Rd

cγ [f ](τ, v)f +
� (τ, v)dv.

Thus, if T1 � t1 � T2 � t2 � T , one first notices that the above inequality implies that

1

2
‖f +

� (t2)‖2
L2 + c0

t2∫
T2

∥∥∇(〈·〉 γ
2 f +

� (τ )
)∥∥2

L2dτ � 1

2
‖f +

� (t1)‖2
L2

+ κ0

t2∫
T1

‖〈·〉 γ
2 f +

� (τ )‖2
L2 dτ − �

t2∫
T1

dτ

∫
Rd

cγ [f ](τ, v)f +
� (τ, v)dv,

and, taking the supremum over t2 ∈ [T2, T ], one gets
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E�(T2, T ) � 1

2
‖f +

� (t1)‖2
L2 + κ0

T∫
T1

‖〈·〉 γ
2 f +

� (τ )‖2
L2 dτ

− �

T∫
T1

dτ

∫
Rd

cγ [f ](τ, v)f +
� (τ, v)dv, ∀t1 ∈ [T1, T2].

Integrating now this inequality with respect to t1 ∈ [T1, T2], one obtains

E�(T2, T ) � 1

2(T2 − T1)

T2∫
T1

‖f +
� (t1)‖2

L2 dt1 + κ0

T∫
T1

‖〈·〉 γ
2 f +

� (τ )‖2
L2 dτ

− �

T∫
T1

dτ

∫
Rd

cγ [f ](τ, v)f +
� (τ, v)dv.

Therefore, applying [4, Proposition 2.4] with λ = γ < 0, g = f and ϕ = f +
� , we see that

E�(T2, T ) � 1

2(T2 − T1)

T∫
T1

‖f +
� (τ )‖2

L2 dτ + κ0

T∫
T1

‖〈·〉 γ
2 f +

� (τ )‖2
L2 dτ

+ �Cγ,pγ sup
τ∈[T1,T ]

m|γ |(f (τ ))

⎛⎜⎝ T∫
T1

‖〈·〉γ f +
� (τ )‖L1 dτ +

T∫
T1

‖〈·〉γ f +
� (τ )‖Lpγ dτ

⎞⎟⎠ , (3.24)

for pγ > 1 such that −γ qγ < d , where 1
pγ

+ 1
qγ

= 1. We resort now to Lemma 3.4 to estimate 
the last three terms on the right-hand side of (3.24). Applying (3.17), one first has

T∫
T1

‖〈·〉 γ
2 f +

� (τ )‖2
L2 dτ � C (� − k)−

4
d

T∫
T1

∥∥∥∇ (〈·〉 γ
2 f +

k (τ )
)∥∥∥2

L2

∥∥f +
k (τ )

∥∥ 4
d

L2 dτ

� C

(� − k)
4
d

sup
t∈[T1,T ]

‖f +
k (t)‖

4
d

L2

T∫
T1

∥∥∥∇ (〈·〉 γ
2 f +

k (τ )
)∥∥∥2

L2
dτ.

Since

sup
t∈[T1,T ]

‖f +
k (t)‖

4
d

L2 � (2Ek(T1, T ))
2
d and

T∫
T1

∥∥∥∇ (〈·〉 γ
2 f +

k (τ )
)∥∥∥2

L2
dτ � c−1

0 Ek(T1, T ),

by definition of the energy functional, we get
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T∫
T1

‖〈·〉 γ
2 f +

� (τ )‖2
L2 dτ � C̄0 (� − k)−

4
d Ek(T1, T )

d+2
d , (3.25)

for some positive constant C̄0 depending only on ‖fin‖L1
2

and H(fin). Similarly, using (3.18)
first with p = 1 and then with p = pγ > 1, one deduces that

Cγ,pγ (fin)

T∫
T1

‖〈·〉γ f +
� (τ )‖L1 dτ � C̄0(� − k)−

d+4
d Ek(T1, T )

d+2
d ,

Cγ,pγ (fin)

T∫
T1

‖〈·〉γ f +
� (τ )‖Lpγ dτ � C̄0(� − k)

−( 2
pγ

− d−4
d

)
Ek(T1, T )

1
pγ

+ 2
d .

(3.26)

Regarding the first term in the right-hand side of (3.24), one uses (3.19) with q = 2d+4
d

+ γ
s

observing that q ∈ ( 2d+2
d

, 2d+4
d

)
, to get

T∫
T1

‖f +
� (τ )‖2

L2 dτ � cq

(� − k)q−2 sup
τ∈[T1,T ]

‖〈·〉s f +
k (τ )‖

2d+4
d

−q

L1 ×

×
T∫

T1

‖f +
k (τ )‖2(q− 2d+2

d
)

L2

∥∥∥∇ (〈·〉 γ
2 f +

k (τ )
)∥∥∥2

L2
dτ

� cq

(� − k)q−2 sup
τ∈[T1,T ]

‖〈·〉s f +
k (τ )‖

2d+4
d

−q

L1 Ek(T1, T )q− d+2
d ,

for some positive constant cq > 0. Thus

T∫
T1

‖f +
� (τ )‖2

L2 dτ � cq

(� − k)q−2

(
sup

τ∈[T1,T ]
ms(f (τ ))

) 2d+4
d

−q

Ek(T1, T )q− d+2
d . (3.27)

Gathering (3.24)–(3.26)–(3.25)–(3.27) gives the result recalling that q = 2d+4
d

+ γ
s

. �
One deduces from this the following theorem.

Theorem 3.6. Under the assumptions of Proposition 3.5, let f (t, ·) be a weak-solution to (1.6). 
Let us assume that fin ∈ L1

s (R
d) for some s > d

2 |γ |. Then, for any T > t∗ > 0,

sup
t∈[t∗,T )

‖f (t)‖L∞ � C E0

(
t∗
2

, T

)α1
(

sup
t∈[0,T ]

ms(f (t))

)α2

max

(
1, t

− ds
4s+dγ∗

)
, (3.28)

for some explicit C > 0, α1, α2.
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Proof. Let us first prove the appearance of the L∞-norm. In all the proof, for notations simplic-
ity, we will denote by C any positive constant depending on fin which will change from line 
to line. Let us fix T > t∗ > 0 and let K > 0 (to be chosen sufficiently large). We consider the 
sequence of levels and times

�n = K

(
1 − 1

2n

)
, tn := t∗

(
1 − 1

2n+1

)
, n ∈ N.

We apply Proposition 3.5 with the choices

k = �n < �n+1 = � , T1 = tn < tn+1 = T2 , En := E�n(tn, T ),

so that � − k = K2−n−1, T2 − T1 = t∗2−n−2 and we conclude that

En+1 � Ct−1∗ 2n+2K− 4s+dγ
ds 2(n+1)

4s+dγ
ds y

|γ |
s

s E
1+ 2s+dγ

ds
n

+ CK
1−
(

2
pγ

− d−4
d

)
y

|γ |
s

s 2
(n+1)

(
2

pγ
− d−4

d

)
E

1
pγ

+ 2
d

n + CK− 4
d y

|γ |
s

s 2
(n+1)

(
1+ 4

d

)
E

1+ 2
d

n

where we set ys = supt∈[0,T ] ms(f (t)) and used that �n � K for any n and m|γ |(t) � y
|γ |
s

s , by 
Hölder’s inequality since s > d

2 |γ | � |γ | and ‖f (t)‖L1 = 1 for any t � 0. Let us note that the 
assumption fin ∈ L1

s (R
d) together with Theorem A.2 ensure that ys < ∞. Then, rearranging the 

terms, we deduce that

En+1 � Cy
|γ |
s

s t−1∗ K− 4s+dγ
ds 2

n
(

1+ 4s+dγ
ds

)
E

1+ 2s+dγ
ds

n

+ Cy
|γ |
s

s K
1− 2

pγ
+ d−4

d 2
n
(

2
pγ

− d−4
d

)
E

1
pγ

+ 2
d

n + Cy
|γ |
s

s K− 4
d 2

n
(

1+ 4
d

)
E

1+ 2
d

n . (3.29)

Notice that

E0 = E0

(
t∗
2

, T

)
� 1

2
sup

t∈[ t∗
2 ,T )

‖f (t)‖2
L2 + c0

T∫
t∗
2

∥∥∥∇ (〈·〉 γ
2 f (τ)

)∥∥∥2

L2
dτ.

We may apply Theorem 3.2 with s = 0 and p = 2 since, in this case, μ(0, 2) = |γ |d
4 <

|γ |d
2 . 

Thereby, we deduce that

sup
t∈[ t∗

2 ,T )

‖f (t)‖2
L2 < ∞.

Moreover, integrating (3.2) over 
(

t∗
2 , T

)
, still for s = 0 and p = 2, we obtain that

T∫
t∗

∥∥∥∇ (〈·〉 γ
2 f (τ)

)∥∥∥2

L2
dτ < ∞.
2
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Hence, E0 is finite. We now look for a choice of the parameters K and Q > 0 ensuring that the 
sequence (E�

n)n defined by

E�
n := E0 Q−n, n ∈ N ,

satisfies (3.29) with the reversed inequality. Notice that

E�
n+1 � Cy

|γ |
s

s t−1∗ K− 4s+dγ
ds 2

n
(

1+ 4s+dγ
ds

) (
E�

n

)1+ 2s+dγ
ds

+ Cy
|γ |
s

s K
1− 2

pγ
+ d−4

d 2
n
(

2
pγ

− d−4
d

) (
E�

n

) 1
pγ

+ 2
d + Cy

|γ |
s

s K− 4
d 2

n
(

1+ 4
d

) (
E�

n

)1+ 2
d , (3.30)

is equivalent to

1 � Cy
|γ |
s

s t−1∗ K− 4s+dγ
ds 2

n
(

1+ 4s+dγ
ds

)
E

2s+dγ
ds

0 Q1−n
2s+dγ

ds

+ Cy
|γ |
s

s K
1− 2

pγ
+ d−4

d 2
n
(

2
pγ

− d−4
d

)
E

1
pγ

+ 2
d
−1

0 Q
1−n

(
1

pγ
+ 2

d
−1
)

+ Cy
|γ |
s

s K− 4
d 2

n
(

1+ 4
d

)
E

2
d

0 Q1−n 2
d ,

which we can rewrite as

1 � Cy
|γ |
s

s t−1∗ K− 4s+dγ
ds E

2s+dγ
ds

0

[
21+ 4s+dγ

ds Q− 2s+dγ
ds

]n
+ Cy

|γ |
s

s K
2− 2

pγ
− 4

d E

1
pγ

+ 2
d
−1

0

[
2

2
pγ

− d−4
d Q

−
(

1
pγ

+ 2
d
−1
)]n

+ Cy
|γ |
s

s K− 4
d E

2
d

0

[
21+ 4

d Q− 2
d

]n
.

We first choose Q in such a way that all the terms [· · · ]n are smaller than one, i.e.

Q = max

(
2

d+4
2 ,2

4s+d(γ+s)
2s+dγ ,2

2d−(d−4)pγ
d−(d−2)pγ

)
, s >

d

2
|γ | .

With such a choice, (3.30) would hold as soon as

1 � Cy
|γ |
s

s t−1∗ K− 4s+dγ
ds E

2s+dγ
ds

0 + Cy
|γ |
s

s K
2− 2

pγ
− 4

d E

1
pγ

+ 2
d
−1

0 + Cy
|γ |
s

s K− 4
d E

2
d

0 . (3.31)

This would hold for instance if each term of the sum is smaller than 1
3 , and a direct computation 

shows that this amounts to choose

K � K(t∗, T ) = max {K1(t∗, T ),K2(t∗, T ),K3(t∗, T )} ,

with ⎧⎪⎨⎪⎩K1(t∗, T ) = C E

2s+dγ
4s+dγ

0 y
d|γ |

4s+dγ
s t

− ds
4s+dγ∗ ,

K (t , T ) = C E
1
2 y

|γ |pγ d

2s(d−pγ (d−2))
, K (t , T ) = C y

d|γ |
4s E

1
2 .

(3.32)
2 ∗ 0 s 3 ∗ s 0
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By a comparison principle (because E0 = E�
0), one concludes that En � E�

n for all n ∈ N and in 
particular, since Q > 1, limn En = 0. Since limn tn = t∗ and limn �n = K , this implies that

sup
t∈[t∗,T )

‖f +
K (t)‖L2 = 0 ,

for K � K(t∗, T ) and, in particular,

‖f (t)‖L∞ � K(t∗, T ) , 0 < t∗ � t < T .

Recall that K(t∗, T ) = max{Ki(t∗, T ), i = 1, 2, 3} as defined in (3.32). We estimate it roughly 
by the sum of these terms, i.e. K(t∗, T ) �

∑3
i=1 Ki(t∗, T ), and notice that the dependence with 

respect to T and t∗ is encapsulated in the terms E0, t−1∗ and ys . �
3.2.2. Case γ = −2

In that case, the fundamental result for the implementation of the level set analysis reads.

Proposition 3.7. Let γ = −2 and T > 0. Let a nonnegative initial datum fin ∈ L1
2(R

d) ∩
L logL(Rd) satisfying (1.5) be given. Let f (t, ·) be a weak-solution to (1.6). Then, for any s > d

and any α ∈ ( 1
2 ,1

)
, there exist some positive constants C1, C2, C3 depending only on s, T and 

fin such that, for any times 0 � T1 < T2 � T and 0 � k < �,

E�(T2, T ) � C1

T2 − T1
(� − k)−

4s−2d
ds

[
sup

τ∈[T1,T ]
ms(f (τ ))

] 2
s

Ek(T1, T )
(d+2)s−2d

ds

+ C2 (� − k)−
4
d Ek(T1, T )

d+2
d

+ C3� (� − k)−2α

(
sup

t∈[T1,T ]
m 1

1−α
(f (t))

)2(1−α)

Ek(T1, T )2α . (3.33)

Proof. Proceeding as in the proof of Proposition 3.5, we still have

E�(T2, T ) � 1

2(T2 − T1)

T2∫
T1

‖f +
� (t1)‖2

L2 dt1 + κ0

T∫
T1

‖〈·〉−1f +
� (τ )‖2

L2 dτ

− �

T∫
T1

dτ

∫
Rd

c−2[f ](τ, v)f +
� (τ, v)dv,

and it follows from (3.25) and (3.27) that

E�(T2, T ) � C1

T2 − T1
(� − k)−

4s−2d
ds

[
sup

τ∈[T ,T ]
ms(f (τ ))

] 2
s

Ek(T1, T )
(d+2)s−2d

ds
1
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+ C2 (� − k)−
4
d Ek(T1, T )

d+2
d − �

T∫
T1

dτ

∫
Rd

c−2[f ](τ, v)f +
� (τ, v)dv.

Therefore, it only remains to estimate the last term. First, by [5, Lemma 2.2], we have

−c−2[f ] � −c−2[f +
� ] .

Then, we deduce from the Hardy-Littlewood-Sobolev inequality that

−�

∫
Rd

c−2[f ](τ, v)f +
� (τ, v)dv � C�‖f +

� ‖Lq ‖f +
� ‖Lr ,

1

q
+ 1

r
= 2 − 2

d
.

With q = r = d
d−1 and (3.16), it becomes, for any 0 � k < l and α � 0,

−�

∫
Rd

c−2[f ](τ, v)f +
� (τ, v)dv � C�(� − k)−2α ‖f +

k ‖2(1+α)

L
d(1+α)

d−1
.

Applying now (3.22) with

q = d(1 + α)

d − 1
, θ1 = 1 − α

1 + α
, θ2 = 2α − 1

1 + α
, θ3 = 1

1 + α
, s = 1

1 − α

and the Sobolev inequality, we obtain for any α ∈ ( 1
2 ,1

)
,

−�

∫
Rd

c−2[f ](τ, v)f +
� (τ, v)dv � C�(� − k)−2α‖〈·〉 1

1−α f +
k ‖2(1−α)

L1 ‖f +
k ‖2(2α−1)

L2 ‖〈·〉−1f +
k ‖2

L
2d

d−2

� C�(� − k)−2α‖〈·〉 1
1−α f +

k ‖2(1−α)

L1 ‖f +
k ‖2(2α−1)

L2 ‖∇
(
〈·〉−1f +

k

)
‖2
L2 .

As in the proof of Proposition 3.5, it follows from the definition of the energy functional that

− �

T∫
T1

∫
Rd

c−2[f ](τ, v)f +
� (τ, v)dv dτ

� C3� (� − k)−2α

(
sup

t∈[T1,T ]
m 1

1−α
(f (t))

)2(1−α)

Ek(T1, T )2α,

for some positive constant C3. This completes the proof of (3.33). �
Theorem 3.8. Under the assumptions of Proposition 3.7, let f (t, ·) be a weak-solution to (1.6). 
Let us assume that fin ∈ L1(Rd) for some s > d . Then, for any T > t∗ > 0,
s
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sup
t∈[t∗,T )

‖f (t)‖L∞ � C E0

(
t∗
2

, T

)α1
(

sup
t∈[T1,T ]

ms(f (t))

)α2

max

(
1, t

− ds
4s−2d∗

)
, (3.34)

for some explicit C > 0, α1, α2.

Proof. We proceed here as in the proof of Theorem 3.6. Therefore, we only give the main steps. 
Let us fix T > t∗ > 0 and let K > 0 (to be chosen sufficiently large). We consider the sequence 
of levels and times as in Theorem 3.6 and get

En+1 � Cy
2
s
s t−1∗ K− 4s−2d

ds 2
n
(

1+ 4s−2d
ds

)
E

1+ 2s−2d
ds

n

+ CK− 4
d 2

4n
d E

1+ 2
d

n + Cy
2(1−α)

1
1−α

K1−2α 22αn E2α
n , (3.35)

where notations are those of Theorem 3.6 and α to be chosen later on. As before, E0 = E0
(

t∗
2 , T

)
is finite. We now look for a choice of the parameters K and Q > 0 ensuring that the sequence 
(E�

n)n defined by

E�
n := E0 Q−n, n ∈ N ,

satisfies (3.35) with the reversed inequality. This amounts to satisfying

1 � Cy
2
s
s t−1∗ K− 4s−2d

ds E
2s−2d

ds

0

[
21+ 4s−2d

ds Q− 2s−2d
ds

]n
+ CK− 4

d E
2
d

0

[
2

4
d Q− 2

d

]n + Cy
2(1−α)

1
1−α

K1−2αE2α−1
0

[
22αQ−(2α−1)

]n
. (3.36)

We first choose Q in such a way that all the terms [· · · ]n are smaller than one, i.e.

Q = max
(

22,2
4s+d(s−2)

2s−2d ,2
2α

2α−1

)
, s > d , α ∈

(
1

2
,1

)
.

With such a choice, (3.36) would hold as soon as

1 � Cy
2
s
s t−1∗ K− 4s−2d

ds E
2s−2d

ds

0 + CK− 4
d E

2
d

0 + Cy
2(1−α)

1
1−α

K1−2αE2α−1
0 .

This would hold for instance if each term of the sum is smaller than 1
3 . Therefore, we choose

K � K(t∗, T ) = max {K1(t∗, T ),K2(t∗, T ),K3(t∗, T )}

with

K1(t∗, T ) = C E
s−d
2s−d y

d
2s−d
s t

− ds
4s−2d∗ , K2(t∗, T ) = C

√
E0, K3(t∗, T ) = C y

2(1−α)
2α−1

s E0.
0
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Here above, since s > d > 2, one may choose α ∈ ( 1
2 ,1

)
such that 1

1−α
= s. As in the proof of 

Theorem 3.6, we then conclude that (3.34) holds, where K(t∗, T ) can be roughly estimated as 
K(t∗, T ) �

∑3
i=1 Ki(t∗, T ). �
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Appendix A. Known results about solutions to the Landau equation

We collect here several mathematical known results about the solutions to the Landau equation 
in the range of parameters we are dealing with here, i.e.

−2 � γ < 0.

The results in this Appendix are meant to serve as a mathematical tool-box for the core of the 
paper. One begins with the following coercivity estimate for the matrix A[f ].

Proposition A.1. Let 0 � fin ∈ L1
2(R

d) ∩ L logL(Rd) be fixed and satisfying (1.5). Then, there 
exists a constant K0 > 0, depending on H(fin) and ‖fin‖L1

2
such that

∑
i,j

Ai,j [f ](v) ξi ξj � K0〈v〉γ |ξ |2, ∀v, ξ ∈Rd,

holds for any f ∈ Y0(fin).

We next recall the main result from [8] concerning the propagation of polynomial moments 
of solutions to (1.6).

Theorem A.2 (Lemma 7 of [8]). Assume that −2 � γ < 0. Let a nonnegative initial datum fin ∈
L1

s∩L logL(Rd) (s > 2) be given satisfying (1.5) and consider any global weak solution f (t, v)

to (1.6) with initial datum fin. Then there exists Cs,γ > 0 depending on s, γ , and ‖fin‖L1
2

such 
that

ms(t) � ms(0) + Cs,γ t, t � 0 .

Appendix B. Elements of Lorentz spaces

We collect here elementary properties of Lorentz spaces that are used in the core of the paper. 
A main reference for the results is [17]. Let (X, F , μ) be a given measure space. In practice, we 
consider the case X = Rd endowed with the Borel σ -algebra and the Lebesgue measure. For a 
measurable mapping

f : X → R

define the distribution
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df (s) := μ
({

x ∈ Rd ; |f (x)| > s
})

, s ∈R+.

We introduce then the decreasing rearrangement of f as the function

f ∗ : R+ → R+

defined as

f ∗(t) := inf
{
s > 0 ; df (s) � t

}
, t � 0.

One has f ∗ is nonincreasing and supported in [0, μ(X)). Moreover,(|f |p)∗ = (
f ∗)p , 0 < p < ∞

and

‖f ‖p
Lp =

∞∫
0

(
f ∗)p (t)dt, ‖f ‖L∞ = f ∗(0).

Definition B.1. Let f : X →R be measurable and 1 � p, q � ∞. One defines

‖f ‖p,q :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎝ ∞∫

0

(
t

1
p f ∗(t)

)q dt

t

⎞⎠
1
q

, q < ∞ ,

supt>0 t
1
p f ∗(t), q = ∞.

(B.1)

The Lorentz space Lp,q(X, μ) is the space of all measurable f : X → R for which ‖f ‖p,q < ∞.

Remark B.2. One has ∥∥ |f |r∥∥
p,q

= ‖f ‖r
pr,qr , r > 0.

Moreover, ‖f ‖p,q = 0 if and only if f = 0 μ-a.e. on X and it can be shown that

‖f ‖q
p,q = p

∞∫
0

[
s df (s)

1
p

]q ds

s
. (B.2)

If X = Rd is endowed with the Borel σ -algebra and the Lebesgue measure, we simply denote 
the corresponding Lp,q(X, μ) space as Lp,q(Rd).

Remark B.3. Notice that, for 1 � p � ∞ and 1 � q < ∞, the space 
(
Lp,q(X,μ),‖ · ‖p,q

)
is 

then a quasi-Banach space, i.e. it is complete for the quasi-norm ‖ · ‖p,q . Moreover,

Lp,p(X,μ) = Lp(X,μ), ‖f ‖Lp = ‖f ‖p,p, ∀f ∈ Lp(X,μ).
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A version of Hölder inequality is known to hold in Lorentz spaces.

Proposition B.4. Let 1 < p < ∞ and 1 � q � ∞. We define p′, q ′ by 1
q

+ 1
q ′ = 1, 1

p
+ 1

p′ = 1. If 

f ∈ Lp,q(X, μ) and g ∈ Lp′,q ′
(X, μ) then fg ∈ L1(X, μ) and∣∣∣∣∣∣
∫
X

fg dμ

∣∣∣∣∣∣� ‖f ‖p,q‖g‖p′,q ′ .

Moreover, if 1 � p1 < p < p2 < ∞,

‖f ‖p,q � p
1
q

pθ
1p1−θ

2

‖f ‖θ
p1,q

‖f ‖1−θ
p2,q

, 1
p

= θ
p1

+ 1−θ
p2

. (B.3)

We also recall the following refined version of Sobolev inequality.

Theorem B.5. For d � 3 and 1 � q < d , there exists Cd,q > 0 such that

‖f ‖q∗,q � Cd,q ‖∇f ‖Lq , q∗ = qd

d − q
,

for any compactly supported function f :Rd → R and where ‖ · ‖q∗,q denotes the (quasi)-norm 
on Lq∗,q (Rd).
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