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Abstract
We establish some C0,α and C1,α regularity estimates for a class of weighted parabolic
problems in divergence form. The main novelty is that the weights may vanish or explode
on a characteristic hyperplane � as a power a > −1 of the distance to �. The estimates
we obtain are sharp with respect to the assumptions on coefficients and data. Our methods
rely on a regularization of the equation and some uniform regularity estimates combined
with a Liouville theorem and an approximation argument. As a corollary of our main result,
we obtain similar C1,α estimates when the degeneracy/singularity of the weight occurs on a
regular hypersurface of cylindrical type.

Mathematics Subject Classification 35B65 · 58J35 · 35B44 · 35B53

1 Introduction

In this paperweprove someHölder andSchauder regularity estimates for solutions to a special
class of weighted parabolic equations: the weights appearing in the equations degenerate or
explode on a characteristic hyperplane � as dist(·, �)a , where a > −1 is a fixed parameter.
More precisely, we establish some local regularity estimates “up to” � for weak solutions to

Communicated by L. Szekelyhidi.

B Alessandro Audrito
alessandro.audrito@polito.it

Gabriele Fioravanti
gabriele.fioravanti@unito.it

Stefano Vita
stefano.vita@unipv.it

1 Dipartimento di Scienze Matematiche “Giuseppe Luigi Lagrange”, Politecnico di Torino, Corso
Duca degli Abruzzi 24, 10129 Torino, Italy

2 Dipartimento di Matematica “Giuseppe Peano”, Università degli Studi di Torino, Via Carlo Alberto
10, 10124 Torino, Italy

3 Dipartimento di Matematica “Felice Casorati”, Universitá di Pavia, Via Ferrata 5, 27100 Pavia, Italy

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00526-024-02809-2&domain=pdf
http://orcid.org/0000-0003-4327-9673
http://orcid.org/0000-0002-0751-1917


  204 Page 2 of 46 A. Audrito et al.

the problem
⎧
⎨

⎩

ya∂t u − div(ya A∇u) = ya f + div(ya F) in Q+
1 ,

lim
y→0+y

a(A∇u + F) · eN+1 = 0 on ∂0Q+
1 .

(1.1)

Here N ≥ 1, (z, t) = (x, y, t) ∈ R
N × R × R, � = {y = 0} and dist(P, �)a = ya

is locally integrable whenever a > −1. B1 ⊂ R
N+1 denotes the unit ball with center

at 0 and B+
1 := B1 ∩ {y > 0} the unit upper-half ball. Similar, if I1 := (−1, 1), then

Q1 := B1 × I1 is the unit parabolic cylinder, Q+
1 := B+

1 × I1 is the unit upper-half
cylinder, while ∂0Q+

1 = Q1 ∩ {y = 0}. The operators ∇ and div denote the gradient and the
divergence w.r.t. the spatial variable z, respectively. Furthermore, A : Q+

1 → R
N+1,N+1 is

a symmetric (N + 1)-dimensional matrix satisfying the following ellipticity condition: there
exist 0 < λ ≤ � < +∞ such that

λ|ξ |2 ≤ A(z, t)ξ · ξ ≤ �|ξ |2, (1.2)

for all ξ ∈ R
N+1 and a.e. (z, t) ∈ Q+

1 , while the forcing terms in the r.h.s. f : Q+
1 → R and

F : Q+
1 → R

N+1 are given functions belonging to some suitable functional spaces.
In the simplest case where A = I and f = |F | = 0, problem (1.1) (posed in the whole

space) is nothing more than the gradient flow of the energy
∫

R
N+1+

ya |∇v|2dz, v ∈ H1(RN+1+ , ya).

So, as one may imagine, the natural functional setting involves the weighted Sobolev
spaces involving time. Precisely, we say that u is a weak solution to (1.1) if u ∈
L2(I1; H1(B+

1 , ya)) ∩ L∞(I1; L2(B+
1 , ya)) and satisfies

∫

Q+
1

ya
( − u∂tφ + A∇u · ∇φ

)
dzdt =

∫

Q+
1

ya
(
f φ − F · ∇φ

)
dzdt,

for every test functionφ ∈ C∞
c (Q1) (cf. Definition 2.15). Notice that weak solutions formally

satisfy the conormal boundary condition

lim
y→0+ ya(A∇u + F) · eN+1 = 0 on �, (1.3)

appearing in (1.1): as standard in Neumann-type problems, one can easily check this inte-
grating by parts and use the fact that the test functions φ need not to vanish on�. Actually, as
a consequence of our main theorem (see (1.8)), we will obtain that, under suitable regularity
assumptions on the data, weak solutions satisfy

(A∇u + F) · eN+1 = 0 on �,

which is stronger than (1.3) (at least when a > 0) and, when A = I and |F | = 0, reduces to
the classical Neumann boundary condition.

The regularity theory for uniformly parabolic equations is nowadays classical, see for
instance [24, 25]. By uniformly parabolic we mean that the second order leading term of the
equation possesses uniformly elliptic coefficients in the sense of (1.2). Then, many efforts
have been made to prove regularity results for non-uniformly parabolic equations; that is,
whenever at least one of the two bounds in (1.2) fails. Among all the papers on this topic,
we quote the pioneering works [16] for the elliptic case and then [12] for the parabolic
counterpart. In these papers the authors established some Harnack inequalities and Hölder
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estimates for weak solutions to a family of second order equations with degenerate or singular
weights, in which the uniform ellipticity condition fails: the weights may vanish or explode
somewhere. Such results cover the case of weights ω, either coming from quasiconformal
mapping or belonging to the A2-Muckenhoupt class, that is,

sup
B

(
1

|B|
∫

B
ω

) (
1

|B|
∫

B
ω−1

)

≤ C, (1.4)

where the supremum is taken over every ball B ⊂ R
N+1 (see also [19] and themore recent [2,

4, 6]). The weight term |y|a we are considering here is A2-Muckenhoupt when a ∈ (−1, 1)
only and thus, in this range, part of our theory falls into [12, 16]: in particular, the Hölder
continuity of solutions is already available at least for some implicit Hölder exponent.

However, the peculiar geometry of the degeneracy/singularity set of our weight - the
characteristic hyperplane � - allows us to get more information compared to the general
theory quoted above. In fact, as already done in [33, 36] in the elliptic setting, the approach
we follow in this paper allows us to cover the full range a > −1 and eventually will allow us
to show Schauder Ck,α

p estimates for any k ∈ N (we treat the case k ≥ 2 in the subsequent
paper [3]). It is important to remark here that the regularity we obtain strongly relies on the
natural conormal boundary condition (1.3) we impose on the characteristic hyperplane �.
As one may imagine, different boundary conditions lead to different regularity estimates:
for instance, v = y1−a weakly solves div(ya∇v) = 0 in B+

1 with homogeneous Dirichlet
boundary condition at � whenever a < 1, but it is no more than C
1−a�,1−a−
1−a� regular.

On the other hand, the study of weighted problems like (1.1) is strongly related to the
theory of edge operators [27, 28], nonlocal operators and nonlocal diffusion. The latter is the
major motivation for the parabolic theory we develop here: it relies in the connection between

a class of fractional heat operators like (∂t −
)
1−a
2 - possibly with variable coefficients - and

their extension theories [6, 30, 35], which represent the parabolic counterpart of [10]. Such
kind of operators have been widely investigated in the last years, in many different contexts:
we quote [8] for reaction-diffusion equations with nonlocal diffusion, [1, 5, 13] for obstacle
type problems, [4] for the nodal set analysis of sign-changing solutions, and [21] where a new
nonlocal harmonic maps flow was recently introduced. A special mention goes to [7], where
the authors proved some Schauder estimates for solutions to fractional parabolic equations

involving (∂t − divx (A(x)∇x ))
1−a
2 : respect to our notation, this corresponds to estimates in

the (x, t)-variables on � and a ∈ (−1, 1).
We also mention [14, 15] where the authors deal with parabolic weighted equations in

divergence form as in (1.1) (and in non divergence form as well). They require weaker
assumptions on coefficients, and obtain estimates for solutions in weighted Sobolev W 1,q

spaces. This kind of result is comparable to ourC0,α
p regularity theory when q is large but not

with the higherC1,α
p regularity we obtain. However, as we will explain in a moment, we need

to establish some Hölder regularity estimates which are stable with respect to a perturbation
of the weight term, and this does not follow from [15]. The stability is crucial in order to
establish the higher order estimates with blow-up techniques.

Main results

The main goal of the paper is to prove some local C0,α
p and C1,α

p regularity estimates - up to
the characteristic hyperplane � - for weak solutions to (1.1) (see Sect. 2.2 for the definitions
of the Hölder space of parabolic type), under suitable assumptions on the matrix A and the
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right hand sides. As already mentioned, the higher regularity of solutions, which is quite
different from its elliptic counterpart [33, 36], is treated in the subsequent paper [3].

The main idea is to extend to the parabolic framework the regularization argument used
in [33, 34] in the elliptic one: for ε ∈ (0, 1), we introduce the family of smooth weights

ρa
ε (y) := (ε2 + y2)a/2,

and we consider weak solutions to
⎧
⎨

⎩

ρa
ε ∂t u − div(ρa

ε A∇u) = ρa
ε f + div(ρa

ε F) in Q+
1

lim
y→0+ρa

ε (A∇u + F) · eN+1 = 0 on ∂0Q+
1 ,

(1.5)

which corresponds to the problem associated to the regularized weight (notice that by con-
struction ρa

ε (y) → ya almost everywhere as ε → 0+). Since ρa
ε is (locally) bounded and

bounded away from zero, problem (1.5) is uniformly parabolic. Consequently, the classical
Schauder regularity theory applies (see for instance [24, 25]) and one obtains C0,α

p and C1,α
p

regularity estimates with constants possibly depending on ε. The main result of the paper
shows that such estimates are uniform in ε ∈ (0, 1) and pass to the limit as ε → 0+. We refer
to this property as ε-stability of the estimates. The latter, together with a fine approximation
procedure (see Sect. 4) yields our main result:

Theorem 1.1 Let a > −1 and u be a weak solution to (1.1), in the sense of Definition 2.15.
Then

(i) If A is a continuous matrix satisfying (1.2), f ∈ L p(Q+
1 , ya) with p > N+3+a+

2 , F ∈
Lq(Q+

1 , ya)N+1 with q > N +3+a+, α ∈ (0, 1)∩ (0, 2− N+3+a+
p ]∩ (0, 1− N+3+a+

q ],
then there exists a constant C > 0, depending on N, a, λ, �, p, q and α such that

‖u‖C0,α
p (Q+

1/2)
≤ C

(
‖u‖L2(Q+

1 ,ya) + ‖ f ‖L p(Q+
1 ,ya) + ‖F‖Lq (Q+

1 ,ya)

)
. (1.6)

(ii) If A, F ∈ C0,α
p (Q+

1 ), with A satisfying (1.2), f ∈ L p(Q+
1 , ya) with p > N + 3 + a+,

α ∈ (0, 1) ∩ (0, 1 − N+3+a+
p ], then there exists a constant C > 0, depending on N, a,

λ, �, p, α and ‖A‖C0,α
p (Q+

1 )
such that

‖u‖C1,α
p (Q+

1/2)
≤ C

(
‖u‖L2(Q+

1 ,ya) + ‖ f ‖L p(Q+
1 ,ya) + ‖F‖C0,α

p (Q+
1 )

)
. (1.7)

In addition, u satisfies the conormal boundary condition

(A∇u + F) · eN+1 = 0 on ∂0Q+
1/2. (1.8)

Moreover, the estimates (1.6) and (1.7) are ε-stable in the sense of Theorems 6.1 and 7.1.

As a first comment, we would like to remark that the ε-stability of the Ck,α
p estimates with

respect to the regularization described above cannot be valid when k ≥ 2, see [33, Remark
5.4].

Secondly, the integrability and regularity conditions required on the data A, f , F are the
standard ones (see [33, 34] in the elliptic setting), in terms of the natural scaling of the
problem (one can also recover the regularity results for uniformly parabolic equations, that is
without weight terms, by taking a = 0). Actually, the C0,α

p estimate could also be obtained
by extending the De Giorgi-Nash-Moser theory in [12] (range a ∈ (−1, 1)) to any power
a > −1 with a non-explicit Hölder exponent. Moreover, let us stress again the fact that the
C0,α

p regularity above is comparable to the regularity theory in [15] but, respect to this, our
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approach for the C1,α
p regularity requires the ε-stability of the C0,α

p estimate: to the best of

our knowledge, this is completely new in the parabolic setting. Regarding theC1,α
p regularity,

other approaches, such as the Campanato method, may also work, see for instance [7] (range
a ∈ (−1, 1), trace regularity) and [22] (elliptic setting). In contrast, we opt for a different
strategy: the proof of our main theorem is based on a contradiction argument combined with
a blow-up procedure (in the spirit of the classic paper by Simon [32]), which crucially exploit
the following Liouville-type theorem for entire solutions having a certain growth-control at
infinity.

Theorem 1.2 Let a > −1, ε ∈ [0, 1), γ ∈ [0, 2) and let u be an entire solution to
{

ρa
ε ∂t u − div(ρa

ε ∇u) = 0 in R
N+1+ × R

ρa
ε ∂yu = 0 on ∂RN+1+ × R.

(1.9)

Assume that

|u(z, t)| ≤ C(1 + (|z|2 + |t |)γ )1/2 for a.e. (z, t) ∈ R
N+1+ × R. (1.10)

Then u is a linear function depending only on x. Moreover, if γ ∈ [0, 1), then u is constant.

The proof of the Liouville theorem above is obtained with an iteration of a (parabolic)
Caccioppoli-type inequality (3.2), in the spirit of [36] and by a duality principle between u
and its weighted derivative ρa

ε ∂yu which solve respectively equations with weights ρa
ε and

ρ−a
ε as in [9].
Finally, as a consequence of our main theorem, we can treat more general equations with

weights behaving as distance functions to a C1,α hypersurface � ⊂ R
N+1 (curved charac-

teristic manifolds) that we introduce below. Such equations are set in cylindrical domains
�+×(−1, 1)ofRN+2 which “live” onone side of�×(−1, 1). Specifically, up to rotations and
dilations, 0 ∈ � and there exist a spacial direction y and a function ϕ ∈ C1,α(B1 ∩ {y = 0})
with ϕ(0) = 0 and ∇xϕ(0) = 0 such that

�+ ∩ B1 = {y > ϕ(x)} ∩ B1, � ∩ B1 = {y = ϕ(x)} ∩ B1. (1.11)

Then, the family of weights δ = δ(z) we consider behave as a distance function to � in the
sense that δ ∈ C1,α(�+ ∩ B1), and

⎧
⎪⎨

⎪⎩

δ > 0 in �+ ∩ B1

|∇δ| ≥ c0 > 0 in �+ ∩ B1

δ = 0 on � ∩ B1,

(1.12)

and we consider weighted equations of the form
{

δa∂t u − div(δa A∇u) = δa f + div(δa F) in (�+ ∩ B1) × (−1, 1),

δa(A∇u + F) · ν = 0 on (� ∩ B1) × (−1, 1),
(1.13)

where ν is the unit outward normal vector to �+ on �. The precise definition of solutions to
(1.13) will be given later in Sect. 7.1, see Definition 7.2.

Corollary 1.3 Let a > −1 and u be a weak solution to (1.13), in the sense of Definition 7.2.
Let ϕ ∈ C1,α(B1∩{y = 0}) be the parametrization defined in (1.11) and δ ∈ C1,α(�+ ∩ B1)

satisfying (1.12).
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Let A, F ∈ C0,α
p ((�+ ∩ B1) × (−1, 1)), with A satisfying (1.2), f ∈ L p((�+ ∩ B1) ×

(−1, 1), δa) with p > N + 3 + a+, α ∈ (0, 1) ∩ (0, 1− N+3+a+
p ]. Then, there exists a con-

stant C > 0, depending on N, a, λ, �, p, α, c0, ‖A‖C0,α
p ((�+∩B1)×(−1,1)), ‖ϕ‖C1,α(B1∩{y=0})

and ‖δ‖C1,α(�+∩B1) such that

‖u‖C1,α
p ((�+∩B1/2)×(−1/2,1/2)) ≤ C

(
‖u‖L2((�+∩B1)×(−1,1),δa)

+ ‖ f ‖L p((�+∩B1)×(−1,1),δa) + ‖F‖C0,α
p ((�+∩B1)×(−1,1))

)
.

(1.14)

In addition, u satisfies the conormal boundary condition

(A∇u + F) · ν = 0 on (� ∩ B1) × (−1, 1), (1.15)

where ν is the unit outward normal vector to �+ on �.

Structure of the paper

The paper is organized as follows: in Sect. 2 we set up the problem introducing the energy
spaces and the definition of weak solutions to (1.1). In Sect. 3 we prove some uniform esti-
mates, namely the Caccioppoli’s inequality and the L∞ bounds, by using the De Giorgi’s
iterative technique. Section4 is devoted to the proof of the approximation results, that is,
the convergence (in suitable energy spaces) of the regularized solutions to weak solutions to
(1.1). In Sect. 5, we prove the Liouville Theorem 1.2. Finally, in Sects. 6 and 7, we show the
ε-stability of C0,α

p and C1,α
p regularity estimates mentioned above. This, together with the

approximation argument in Sect. 4, will prove our main Theorem 1.1 and Corollary 1.3.

2 Functional setting

The present section is mostly devoted to the functional setting of the problem.

2.1 Functional spaces

2.1.1 Ck spaces

Let k ∈ N and r > 0. We set

Ck(Br \ �) := {u ∈ Ck(Br \ �) : Dαu is uniformly continuous on every U ⊂ Br

with dist(U , �) > 0, for every multiindex |α| ≤ k},
Ck
c (Br \ �) := {u ∈ Ck(Br \ �) : spt u ⊂⊂ Br \ �},

C∞
c (Br \ �) :=

∞⋂

k=1

Ck
c (Br \ �).
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2.1.2 Sobolev spaces

Let a ∈ R, ε ∈ [0, 1) and r > 0. For p > 1, we set

L p(Br , ρ
a
ε ) := {u : Br → R measurable:

∫

Br
ρa

ε |u|pdz < +∞},

equipped with the norm

‖u‖L p(Br ,ρa
ε ) :=

(∫

Br
ρa

ε |u|pdz
)1/p

.

For fields, we define

L p(Br , ρ
a
ε )N+1 := {U : Br → R

N+1 measurable:
∫

Br
ρa

ε |U |pdz < +∞},

normed by ‖U‖L p(Br ,ρa
ε )N+1 := ‖|U |‖L p(Br ,ρa

ε ).

The space H1(Br , ρa
ε ) is defined as the completion of C∞(Br ) w.r.t. the norm

‖v‖H1(Br ,ρa
ε ) =

(∫

Br
ρa

ε v2dz +
∫

Br
ρa

ε |∇v|2dz
)1/2

, (2.1)

while the space H1
0 (Br , ρa

ε ) is the completion of C∞
c (Br ) w.r.t. the seminorm

‖v‖H1
0 (Br ,ρa

ε ) =
(∫

Br
ρa

ε |∇v|2dz
)1/2

. (2.2)

When ε = 0, we write H1(Br , |y|a) and H1
0 (Br , |y|a), instead of H1(Br , ρa

0 ) and
H1
0 (Br , ρa

0 ), respectively. The symbol H−1(Br , ρa
ε ) denotes the topological dual space of

H1
0 (Br , ρa

ε ).
As observed in [33], when ε = 0, the nature of such spaces is intrinsically related to the

degeneracy/singularity of the weight |y|a . Heuristically, when a ≤ −1 the weight |y|a is not
locally integrable and thus the functions in H1(Br , |y|a) are forced to have zero trace on �.
Conversely, when a ≥ 1, the weight has a strong degeneracy and the traces on� of functions
in H1(Br , |y|a) have no sense in general (this is due to the zero H1(Br , |y|a)-capacity of
�).

These observations suggest to introduce the space H̃1(Br , ρa
ε ), defined as the completion

of C∞
c (Br \�) w.r.t. (2.1) and similarly H̃1

0 (Br , ρa
ε ) as the completion of C∞

c (Br \�) w.r.t.
(2.2). As above, when ε = 0, we set H̃1(Br , |y|a) := H̃1(Br , ρa

0 ) and H̃1
0 (Br , |y|a) :=

H̃1
0 (Br , ρa

0 ).
When a ∈ (−1, 1), as we have previously remarked in the introduction, the weight |y|a

belongs to the A2 Muckenhoupt class; that is, (1.4) holds true.
The following proposition characterizes the space H1(Br , |y|a).

Proposition 2.1 ([23, Theorem 2.5] and [33, Proposition 2.2]) If a ∈ (−1, 1), then:

H1(Br , |y|a) = W 1,2(Br , |y|a),
where

W 1,2(Br , |y|a) := {u ∈ L2(Br , |y|a) : ∇u ∈ L2(Br , |y|a)N+1},
and ∇u denotes the weak gradient of u.
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If a ∈ (−∞,−1] ∪ [1,+∞), then:

H1(Br , |y|a) = H̃1(Br , |y|a),
H1
0 (Br , |y|a) = H̃1

0 (Br , |y|a);
in particular, C∞

c (Br \�) is dense in H1(Br , |y|a) and C∞
c (Br\�) is dense in H1

0 (Br , |y|a).
The spaces introduced above enjoy interesting Sobolev embedding properties, depending

on the value of the parameter a.

Theorem 2.2 ([20, Theorem 6] and [33, Theorem 2.4]) Let ε ∈ [0, 1) and r ∈ [1/2, 1].
Assume either a > −1 and N ≥ 2, or a > 0 and N = 1. Then there exists C > 0 depending
only on N and a such that

(∫

Br
ρa

ε |u|2∗
a dz

)2/2∗
a

≤ C

(∫

Br
ρa

ε u
2dz +

∫

Br
ρa

ε |∇u|2dz
)

,

for every u ∈ H1(Br , ρa
ε ), where

2∗
a := 2(N + 1 + a+)

N + a+ − 1
.

Further, if N = 1 and a ∈ (−1, 0], the above inequality holds with 2∗
a replaced with any

p ∈ [1,+∞) and a constant C > 0 depending only on N, a and p.

Theorem 2.3 ([33, Theorem 2.5] and [34, Lemma B.5]) Let a ≤ −1, N ≥ 2, ε ∈ [0, 1) and
r ∈ [1/2, 1]. Then there exists a constant C > 0 depending only on N and a such that

(∫

Br
(ρa

ε )2
∗/2|u|2∗

dz

)2/2∗

≤ C

(∫

Br
ρa

ε u
2dz +

∫

Br
ρa

ε |∇u|2dz
)

, (2.3)

for every u ∈ H̃1(Br , ρa
ε ), where

2∗ := 2(N + 1)

N − 1
.

Moreover, the inequality (2.3) implies that
(∫

Br
ρa

ε |u|2∗
dz

)2/2∗

≤ C

(∫

Br
ρa

ε u
2dz +

∫

Br
ρa

ε |∇u|2dz
)

.

Further, when N = 1, the above inequalities hold with 2∗ replaced by any p ∈ [1,+∞) and
a constant C > 0 depending only on N , a, p.

Remark 2.4 It is worth mentioning that the theorem above (range a ≤ −1) follows as a
consequence of a fine analysis of the isometry

T a
ε : H̃1(Br , ρ

a
ε ) → H̃1(Br ) u → v := √

ρa
ε u, (2.4)

where H̃1(Br ) is the completion of C∞
c (Br \ �) w.r.t. the norm

Qε(v) =
∫

Br
|∇v|2 +

∫

Br

[(
∂yρ

a
ε

2ρa
ε

)2

+ ∂y

(
∂yρ

a
ε

2ρa
ε

)]

v2 −
∫

∂Br

∂yρ
a
ε

2ρa
ε

yv2,

which turns out to be equivalent to the classical H1(Br )-norm, uniformly in ε ∈ [0, 1) (see
[34, Lemma B.4]). This fact allows to apply the classical Sobolev inequality to v = T a

ε u and
recover (2.3) in terms of u.
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Remark 2.5 Notice that the definitions and theorems above hold true replacing the ball with
any open bounded domain �, including the case of the half balls B+

r .

Remark 2.6 Let � ⊂ R
N+1 be an open bounded set such that � ⊂⊂ R

N+1 \ � and, for
every ε ∈ [0, 1), let H1

0 (�, ρa
ε ) be the completion of C∞

c (�) w.r.t. the seminorm

‖u‖H1
0 (�,ρa

ε ) :=
(∫

�

ρa
ε |∇u|2dz

)1/2

.

Then, for every ε ∈ [0, 1),
H1
0 (�, ρa

ε ) = H1
0 (�). (2.5)

Indeed, dist(�,�) ≥ δ for some δ > 0 depending only on �, and thus δ ≤ ρa
ε ≤ δ−1 in

R
N+1 uniformly in ε, up to taking δ smaller. This shows that ‖ · ‖H1

0 (�,ρa
ε ) ∼ ‖ · ‖H1

0 (�)

which, in turn, readily implies (2.5) by the definition of H1
0 (�) and H1

0 (�, ρa
ε ).

2.1.3 Sobolev spaces involving time

Let a ∈ R, ε ∈ [0, 1), r > 0, Ir := (−r2, r2) and p, q ∈ (1,+∞). We define

Lq(Ir ; L p(Br , ρ
a
ε ))

:= {u : Ir → L p(Br , ρ
a
ε ) strongly measurable:

∫

Ir
‖u(t)‖qL p(Br ,ρa

ε )dt < +∞},

equipped with the norm

‖u‖Lq (Ir ;L p(Br ,ρa
ε )) :=

(∫

Ir
‖u(t)‖qL p(Br ,ρa

ε )dt

)1/q

.

The special case p = q is the most relevant for the paper. In such case, we set L p(Qr , ρ
a
ε ) :=

L p(Ir ; L p(Br , ρa
ε )) and

‖u‖L p(Qr ,ρa
ε ) := ‖u‖L p(Ir ;L p(Br ,ρa

ε )) =
(∫

Qr

ρa
ε |u|pdzdt

)1/p

.

Similarly, for fields we define

Lq(Ir ; L p(Br , ρ
a
ε )N+1)

:= {U : Ir → L p(Br , ρ
a
ε )N+1 strongly measurable:

∫

Ir
‖U (t)‖q

L p(Br ,ρa
ε )N+1dt < +∞},

normed by

‖U‖Lq (Ir ;L p(Br ,ρa
ε )N+1) :=

(∫

Ir
‖U (t)‖q

L p(Br ,ρa
ε )N+1dt

)1/q

.

As above, when p = q , we set L p(Qr , ρ
a
ε )N+1 := L p(Ir ; L p(Br , ρa

ε )N+1) and

‖U‖L p(Qr ,ρa
ε )N+1 := ‖U‖L p(Ir ;L p(Br ,ρa

ε )N+1) =
(∫

Qr

ρa
ε |U |pdzdt

)1/p

.

We set

L∞(Ir ; L p(Br , ρ
a
ε ))
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:= {u : Ir → L p(Br , ρ
a
ε ) strongly measurable: ess sup

t∈Ir
‖u(t)‖L p(Br ,ρa

ε ) < +∞},

equipped with the norm

‖u‖L∞(Ir ;L p(Br ,ρa
ε )) := ess sup

t∈Ir
‖u(t)‖L p(Br ,ρa

ε ),

and

C(I r ; L p(Br , ρ
a
ε )) := {u : I r → L p(Br , ρ

a
ε ) continuous: max

t∈I r
‖u(t)‖L p(Br ,ρa

ε ) < +∞},

normed by

‖u‖C(I r ;L p(Br ,ρa
ε )) := max

t∈I r
‖u(t)‖L p(Br ,ρa

ε ).

The space L2(Ir ; H1(Br , ρa
ε )) is defined as the completion of C∞(Qr ) w.r.t. the norm

‖u‖L2(Ir ;H1(Br ,ρa
ε )) :=

(∫

Ir
‖u(t)‖2H1(Br ,ρa

ε )
dt

)1/2

=
(∫

Qr

ρa
ε u

2dzdt +
∫

Qr

ρa
ε |∇u|2dzdt

)1/2

, (2.6)

while L2(Ir ; H1
0 (Br , ρa

ε )) is the completion of C∞
c (Qr ) w.r.t. the seminorm

‖u‖L2(Ir ;H1
0 (Br ,ρa

ε )) :=
(∫

Ir
‖u(t)‖2

H1
0 (Br ,ρa

ε )
dt

)1/2

=
(∫

Qr

ρa
ε |∇u|2dzdt

)1/2

.

Notice that by the Riesz’s representation theorem, the topological dual space of L2(Ir ; H1
0

(Br , ρa
ε )) satisfies

L2(Ir ; H1
0 (Br , ρ

a
ε ))� = L2(Ir ; H−1(Br , ρ

a
ε )).

Remark 2.7 Later on in the paper wewill use the following classical fact, see [26, Proposition
2.1, Theorem 3.1]: there exists C > 0 depending only on r , such that

‖u‖C( Īr ;L2(Br ,ρa
ε )) ≤ C

(‖u‖L2(I r ;H1
0 (Br ,ρa

ε )) + ‖∂t u‖L2(Ir ;H−1(Br ,ρa
ε ))

)
,

where ∂t u denotes the weak time derivative of u. That is, if u ∈ L2(Ir ; H1
0 (Br , ρa

ε )) and
∂t u ∈ L2(Ir ; H−1(Br , ρa

ε )), then u ∈ C(I r ; L2(Br , ρa
ε )).

Exploiting the Sobolev inequalities above, one can prove their “parabolic versions” (see
for instance [12], or the more recent [2]).

Theorem 2.8 Let ε ∈ [0, 1) and r ∈ [1/2, 1]. Assume either a > −1 and N ≥ 2, or a > 0
and N = 1. Then there exists C > 0 depending only on N and a such that

∫

Qr

ρaε |u|2γ dzdt ≤ C

(∫

Qr

ρaε

(
u2 + |∇u|2

)
dzdt

)

ess sup
t∈Ir

(∫

Qr

ρaε u
2dzdt

)γ−1
, (2.7)

for every u ∈ L2(Ir ; H1(Br , ρa
ε )), where

γ := 2 · 2
∗
a − 1

2∗
a

.

Further, if N = 1 and a ∈ (−1, 0], the above inequality holds with γ replaced with any
p ∈ [1, 2) and a constant C > 0 depending only on N, a and p.
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The same isometry in (2.4) can be easily extended to the parabolic setting as a map

T
a
ε : L2(Ir ; H̃1(Br , ρε)) → L2(Ir ; H̃1(Br )) u → v := √

ρa
ε u. (2.8)

Notice that T
a
ε is still an isometry if L2(Ir ; H̃1(Br )) is normed by

‖v‖L2(Ir ;H̃1(Br ))
=

(∫

Ir
Qε(v(t))dt

)1/2

,

and L2(Ir ; H̃1(Br , ρε)) stands for the completion of C∞
c (Qr \ �) w.r.t. (2.6). Working as

in the stationary (time-independent) framework, one can see that such a norm is equivalent
to the standard L2(Ir ; H1(Br ))-norm, uniformly in ε ∈ [0, 1). As a consequence, we obtain
the following Sobolev embeddings when a ≤ −1.

Theorem 2.9 Let a ≤ −1, N ≥ 2, ε ∈ [0, 1), r ∈ [1/2, 1]. Then there exists C > 0
depending only on N and a such that

∫

Qr

ρa
ε |u|2γ dzdt ≤ C

(∫

Qr

ρa
ε

(
u2 + |∇u|2) dzdt

)

ess sup
t∈Ir

(∫

Qr

ρa
ε u

2dzdt

)γ−1

,

for every u ∈ L2(Ir ; H̃1(Br , ρa
ε )), where

γ := 2 · 2
∗ − 1

2∗ .

Further, if N = 1, the above inequality holds with γ replaced with any p ∈ [1, 2) and a
constant C > 0 depending only on N, a and p.

Remark 2.10 As explained in Remark 2.5, one can define the spaces Lq(Ir ; L p(B+
r , ρa

ε )),
Lq(Ir ; L p(B+

r , ρa
ε )N+1) and C(I r ; L p(B+

r , ρa
ε )), and the Sobolev spaces L2(Ir ; H1

(B+
r , ρa

ε )) and L2(Ir ; H̃1(B+
r , ρa

ε )).

2.2 Parabolic Hölder spaces

In this section we recall the definitions of the Hölder spaces of parabolic type we use later
on in the paper. We follow [25, Chapter 4] (see also [24, Chapter 1]).

Let � ⊂ R
N+1 × R be an open subset and u : � → R. The parabolic distance dp :

� × � → R is defined by

dp((z, t), (ζ, τ )) := (|z − ζ |2 + |t − τ |)1/2, (2.9)

for all (z, t), (ζ, τ ) ∈ �, where z, ζ ∈ R
N+1, t, τ ∈ R. Notice that dp is parabolically

1-homogeneous, in the sense that

dp((r z, r
2t), (rζ, r2τ)) = rdp((z, t), (ζ, τ )), ∀r ∈ R.

For α ∈ (0, 1], we define the seminorms

[u]
C0,α
p (�)

:= sup
(z,t),(ζ,τ )∈�
(z,t) �=(ζ,τ )

|u(z, t) − u(ζ, τ )|
(|z − ζ |2 + |t − τ |)α/2 ,

[u]Cα
t (�) := sup

(z,t),(z,τ )∈�
t �=τ

|u(z, t) − u(z, τ )|
|t − τ |α ,
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and

[u]C1,α
p (�)

:=
N+1∑

i=1

[∂i u]C0,α
p (�)

+ [u]
C

1+α
2

t (�)
.

We also define the norms

‖u‖C0,α
p (�)

:= ‖u‖L∞(�) + [u]C0,α
p (�)

,

‖u‖C1,α
p (�)

:= ‖u‖L∞(�) + ‖∇u‖L∞(�) + [u]C1,α
p (�)

,

and the spaces

C0,α
p (�) := {u : � → R : ‖u‖C0,α

p (�)
< +∞},

C1,α
p (�) := {u : � → R : ‖u‖C1,α

p (�)
< +∞}.

More generally, if β ∈ N
N+1 is a multi-index, α ∈ (0, 1] and k ≥ 2, we define the seminorm

[u]Ck,α
p (�)

:=
∑

|β|+2 j=k

[∂β
x ∂

j
t u]C0,α

p (�)
+

∑

|β|+2 j=k−1

[∂β
x ∂

j
t u]

C
1+α
2

t (�)
,

the norm

‖u‖Ck,α
p (�)

=
∑

|β|+2 j≤k

sup
�

|∂β
x ∂

j
t u| + [u]Ck,α

p (�)
,

and the space

Ck,α
p (�) := {u : � → R : ‖u‖Ck,α

p (�)
< +∞}.

2.3 Weak solutions

The energy spaces introduced above allow us to give the notion of weak solutions for our
class of problems. Before that, we introduce the space of test functions we will use in the
definitions below: such space takes into account the integrability/non-integrability of the
weight |y|a when ε = 0.

Definition 2.11 Let a ∈ R, N ≥ 1, r > 0 and ε ∈ [0, 1). We define

D∞
c (Qr ) :=

{
C∞
c (Qr ) if either ε ∈ (0, 1), or ε = 0 and a ∈ (−1, 1)

C∞
c (Qr \ �) if ε = 0 and a ∈ (−∞,−1] ∪ [1,+∞).

Notice that, in light of Proposition 2.1, D∞
c (Qr ) is dense in L2(Ir ; H1

0 (Br , ρa
ε )) for every

ε ∈ [0, 1).
Definition 2.12 Let a ∈ R, N ≥ 1, r > 0, ε ∈ [0, 1) and f ∈ L2(Qr , ρ

a
ε ), F ∈

L2(Qr , ρ
a
ε )N+1. We say that u is a weak solution to

ρa
ε ∂t u − div(ρa

ε A∇u) = ρa
ε f + div(ρa

ε F) in Qr , (2.10)

if u ∈ L2(Ir ; H1(Br , ρa
ε )) ∩ L∞(Ir ; L2(Br , ρa

ε )) and satisfies

−
∫

Qr

ρa
ε u∂tφdzdt +

∫

Qr

ρa
ε A∇u · ∇φdzdt =

∫

Qr

ρa
ε ( f φ − F · ∇φ)dzdt, (2.11)
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for every φ ∈ D∞
c (Qr ). We say that u is an entire solution to

ρa
ε ∂t u − div(ρa

ε A∇u) = ρa
ε f + div(ρa

ε F) in R
N+1 × R,

if, for every r > 0, u is a weak solution to (2.10).

Definition 2.13 Let a ∈ R, N ≥ 1, r > 0, ε ∈ [0, 1) and f ∈ L2(Qr , ρ
a
ε ), F ∈

L2(Qr , ρ
a
ε )N+1, u0 ∈ L2(Br , ρa

ε ). We say that u is a weak solution to
⎧
⎪⎨

⎪⎩

ρa
ε ∂t u − div(ρa

ε A∇u) = ρa
ε f + div(ρa

ε F) in Qr

u = 0 in ∂Br × Ir
u = u0 in Br × {−r2},

(2.12)

if u ∈ L2(Ir ; H1
0 (Br , ρa

ε )) ∩ L∞(Ir ; L2(Br , ρa
ε )), satisfies (2.11) for every φ ∈ D∞

c (Qr )

and u(−r2) = u0 in L2(Br , ρa
ε ).

Remark 2.14 Let ε ∈ [0, 1) and let u be a weak solution to (2.12). Then, by the Hölder
inequality, (1.2) and the Poincaré inequality (for the degenerate/singular case we refer to [22,
Lemma 3.2], [34, Lemma B.5] and [16, Theorem 1.3]), we have

−
∫

Qr

ρa
ε u∂tφdzdt ≤ C

(
�‖u‖L2(Ir ;H1

0 (Br ,ρa
ε )) + ‖ f ‖L2(Qr ,ρa

ε )

+‖F‖L2(Qr ,ρa
ε )N+1

)‖φ‖L2(Ir ;H1
0 (Br ,ρa

ε ))

for every φ ∈ D∞
c (Qr ), for some C > 0 depending on N , a and ε. Consequently, a standard

density argument, shows that the distribution

〈∂t u, φ〉 := −
∫

Qr

ρa
ε u∂tφdzdt, φ ∈ L2(Ir ; H1

0 (Br , ρ
a
ε ))

is well-defined and ∂t u ∈ L2(Ir ; H−1(Br , ρa
ε )). In particular, u ∈ C(I r ; L2(Br , ρa

ε )) by
Remark 2.7 and thus the equation u(−r2) = u0 in L2(Br , ρa

ε ) makes sense.

Definition 2.15 Let a > −1, N ≥ 1, r > 0, ε ∈ [0, 1) and f ∈ L2(Q+
r , ρa

ε ), F ∈
L2(Q+

r , ρa
ε )N+1. We say that u is a weak solution to

{
ρa

ε ∂t u − div(ρa
ε A∇u) = ρa

ε f + div(ρa
ε F) in Q+

r

ρa
ε (A∇u + F) · eN+1 = 0 in ∂0Q+

r ,
(2.13)

if u ∈ L2(Ir ; H1(B+
r , ρa

ε )) ∩ L∞(Ir ; L2(B+
r , ρa

ε )) and satisfies

−
∫

Q+
r

ρa
ε u∂tφdzdt +

∫

Q+
r

ρa
ε A∇u · ∇φdzdt =

∫

Q+
r

ρa
ε ( f φ − F · ∇φ)dzdt,

for every φ ∈ C∞
c (Qr ). We say that u is an entire solution to

{
ρa

ε ∂t u − div(ρa
ε A∇u) = ρa

ε f + div(ρa
ε F) in R

N+1+ × R

ρa
ε (A∇u + F) · eN+1 = 0 in ∂RN+1+ × R,

if, for every r > 0, u is a weak solution to (2.13).
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Remark 2.16 A key tool in the study of weak solutions are the Steklov averages, defined as

uh(z, t) := 1

h

∫ t+h

t
u(z, s)ds, u−h(z, t) := 1

h

∫ t

t−h
u(z, s)ds,

where h > 0 and u is a given function. It is well-known that if ε ∈ (0, 1), u ∈
L2(Ir ; H1(Br , ρa

ε )) and δ > 0, then

uh → u, ∇uh → ∇u in L2(Br × (−r2, r2 − δ), ρa
ε ),

as h → 0 (see for instance [25, Lemma 3.2 and Lemma 3.3]). Furthermore, if u is a weak
solution to (2.10), then uh satisfies

∫

Qr

ρa
ε (∂t uhφ + (A∇u)h · ∇φ)dzdt =

∫

Qr

ρa
ε ( fhφ − Fh · ∇φ)dzdt, (2.14)

for every φ ∈ C∞
c (Br × (−r2, r2 − h)): the proof is a standard adaptation of the classical

framework (see for instance [25, Theorem 6.1]). Similar for the case ε = 0 and for weak
solutions to (2.12) or (2.13). We quote [24, 25] and the more recent [11] for further properties
of Steklov averages.

3 Local boundedness of weak solutions

In this section we prove a local L2 → L∞ estimate for weak solutions to (2.10) using a De
Giorgi-Nash-Moser iteration. Analogous statements have been previously obtained in [2, 6,
12, 29, 37]. However, our setting is slightly more general and, even though the proof is quite
standard, we present it for completeness.

Proposition 3.1 Let a ∈ R, N ≥ 1, ε ∈ [0, 1), p > N+a++3
2 , q > N + a+ + 3 and A

satisfying (1.2). Let f ∈ L p(Q1, ρ
a
ε ) and F ∈ Lq(Q1, ρ

a
ε )N+1 and let u be a weak solution

to (2.10). Then there exists C > 0 depending only on N, a, λ, �, p and q such that

‖u‖L∞(Q1/2) ≤ C
(
‖u‖L2(Q1,ρa

ε ) + ‖ f ‖L p(Q1,ρa
ε ) + ‖F‖Lq (Q1,ρa

ε )

)
.

The proof of Proposition 3.1 will be obtained in a couple of steps. The first one is a
Cacciopoli-type inequality.

Lemma 3.2 Let a ∈ R, N ≥ 1, ε ∈ [0, 1), p, q ≥ 2 and A satisfying (1.2). Let f ∈
L p(Q1, ρ

a
ε ) and F ∈ Lq(Q1, ρ

a
ε )N+1 and let u be a weak solution to (2.10). Then there

exists C > 0 depending only on N, a, λ and � such that for every 1
2 ≤ r ′ < r ≤ 1 there

holds

ess sup
t∈(−r ′2,r ′2)

∫

Br ′
ρa

ε u
2 +

∫

Qr ′
ρa

ε |∇u|2

≤ C

[
1

(r − r ′)2

∫

Qr

ρa
ε u

2 + ‖ f ‖L p(Qr ,ρa
ε )‖u‖L p′ (Qr ,ρa

ε )
+

∫

Qr

ρa
ε |F |2χ {|u|>0}

]

.

(3.1)
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Moreover, for every k ∈ R and for functions of the form v := (u − k)+ = max{u − k, 0} and
v := (u − k)− = max{−u + k, 0}, the following inequality holds

ess sup
t∈(−r ′2,r ′2)

∫

Br ′
ρa

ε v2 +
∫

Qr ′
ρa

ε |∇v|2

≤ C

[
1

(r − r ′)2

∫

Qr

ρa
ε v2 + ‖ f ‖L p(Qr ,ρa

ε )‖v‖L p′ (Qr ,ρa
ε )

+
∫

Qr

ρa
ε |F |2χ {v>0}

]

.

(3.2)

Proof To simplify the notation, let ρ = ρa
ε . As in [6], we may work with the Steklov average

uh of u and later take the limit as h → 0: equivalently, we may assume that ∂t u ∈ L2(Q1, ρ)

and directly work with u which is what we do next.
Fix 1

2 ≤ r ′ < r < 1. We test the equation of u with η2u, where η is a smooth cut-off
function we will define later. Then:

∫

Q1

ρ
(1

2
∂t (u

2η2) + η2A∇u · ∇u
)

=
∫

Q1

ρ
(1

2
u2∂t (η

2) − 2ηuA∇u · ∇η + f η2u − η2F · ∇u − 2ηuF · ∇η
)
.

By (1.2), the Hölder’s and the Young’s inequalities, we get

1

2

∫

Q1

ρ∂t (u
2η2) + λ

∫

Q1

ρη2|∇u|2

≤ 1

2

∫

Q1

ρu2∂t (η
2) + 2�

( ∫

Q1

ρη2|∇u|2
)1/2(

∫

Q1

ρu2|∇η|2
)1/2

+ ‖η f ‖L p(Q1,ρ)‖ηu‖L p′ (Q1,ρ)

+
( ∫

Q1

ρη2|F |2χ {|u|>0}
)1/2(

∫

Q1

ρη2|∇u|2
)1/2

+ 2
( ∫

Q1

ρη2|F |2χ {|u|>0}
)1/2(

∫

Q1

ρu2|∇η|2
)1/2

≤ 1

2

∫

Q1

ρu2∂t (η
2) + λ

3

∫

Q1

ρη2|∇u|2

+ 3�2

λ

∫

Q1

ρu2|∇η|2 + ‖η f ‖L p(Q1,ρ)‖ηu‖L p′ (Q1,ρ)

+ 1

2λ

∫

Q1

ρη2|F |2χ {|u|>0}

+ λ

2

∫

Q1

ρη2|∇u|2 +
∫

Q1

ρη2|F |2χ {|u|>0} +
∫

Q1

ρu2|∇η|2.

Hence, we have

1

2

∫

Q1

ρ∂t (u
2η2) + 1

6
λ

∫

Q1

ρη2|∇u|2

≤ 1

2

∫

Q1

ρu2∂t (η
2) +

(3�2

λ
+ 1

) ∫

Q1

ρu2|∇η|2 + ‖η f ‖L p(Q1,ρ)‖ηu‖L p′ (Q1,ρ)

+
(
1 + 1

2λ

) ∫

Q1

ρη2|F |2χ {|u|>0}.

(3.3)
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A standard approximation technique (see [29], [6, Theorem 5.1]) allows us to integrate over
a cylinder of the form B1 × (−1, t̂), for any t̂ ∈ (−1, 1). Now, let t∗ ∈ (−r ′, r ′) such that

1

2
ess sup

t∈(−r ′2,r ′2)

∫

Br ′
ρu2 ≤

∫

B′
r

ρu2(t∗), (3.4)

and take the test function η = ψ1(|z|)ψ2(t), where

ψ1 ≡ 1 in Br ′ , 0 ≤ ψ1 ≤ 1 in B1, spt(ψ1) = Br , |∇ψ1| ≤ C

r − r ′ , (3.5)

ψ2 ≡ 1 in (−r ′2, t∗), 0 ≤ ψ2 ≤ 1 in (−1, t∗),

spt(ψ2) = (−r2, t∗), |∂tψ2| ≤ C

(r − r ′)2
.

(3.6)

By (3.5) and (3.6) we have

∂t (η
2) + |∇η|2 ≤ C

(r − r ′)2
,

and thus by (3.3), (3.4) and the last inequality we obtain

ess sup
t∈(−r ′2,r ′2)

∫

Br ′
ρu2 ≤ C

[
1

(r − r ′)2

∫

Qr

ρa
ε u

2 + ‖ f ‖L p(Qr ,ρa
ε )‖u‖L p′ (Qr ,ρa

ε )

+
∫

Qr

ρ|F |2χ {|u|>0}
]

.

Combining this inequality with (3.3), then (3.1) follows.
To prove (3.2), let v = (u − k)+ and test the equation of u with η2v. Since ∂t u = ∂tv and

∇u = ∇v on {v > 0}, we obtain
∫

Q1

ρ
(
∂t u(η2v) + ∇u · ∇(η2v) − f (η2v) + F · ∇(η2v)

)

=
∫

Q1

ρ
(
∂tv(η2v) + ∇v · ∇(η2v) − f (η2v) + F · ∇(η2v)

)
,

and thus, (3.2) follows from the same argument above. The case v = (u − k)− is analogue,
noticing that ∂t u = −∂tv and ∇u = −∇v. ��

The second step is to establish a “no-spikes” estimate type.

Lemma 3.3 Let N ≥ 1, ε ∈ [0, 1), a ∈ R, p > N+a++3
2 , q > N + a+ + 3 and A satisfying

(1.2). Then there exists a constant δ ∈ (0, 1), which dependens on N, a, λ, �, p and q, such
that if

‖ f ‖L p(Q1,ρa
ε ) + ‖F‖Lq (Q1,ρa

ε ) ≤ 1,

and u is a weak solution to (2.10) with
∫

Q1

ρa
ε (u+)2dzdt ≤ δ,

then

u ≤ 1 in Q1/2.
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Proof Fix ε ∈ [0, 1), set ρ = ρa
ε , and assume either N ≥ 2 and a > −1, or N = 1 and

a > 0 (the other cases are analogous). For every integer j ≥ 0 define

C j := 1 − 2− j , r j := 1

2
+ 2− j−1, Bj := Br j , Q j := Qr j .

Notice that C j ↑ 1, r j ↓ 1
2 as j → +∞, and r j − r j+1 = 2− j−2. Define

Vj := (u − C j )+, E j :=
∫

Q j

ρV 2
j dzdt,

and observe that, for every j ≥ 0, E j ≤ E0 ≤ δ by assumption. Applying the Caccioppoli
inequality (3.2) to Vj+1, with r ′ = r j+1 and r = r j we have

ess sup
t∈(−r2j+1,r

2
j+1)

∫

Bj+1

ρV 2
j+1 +

∫

Q j+1

ρ|∇Vj+1|2

≤ C

[

22 j
∫

Q j

ρV 2
j+1 + ‖Vj+1‖L p′ (Q j ,ρ)

+
∫

Qr

ρ|F |2χ {Vj+1>0}

]

.

Consequently, by the Sobolev embedding (2.7) (with γ = 1 + 2
N+1+a+ ),

(∫

Q j+1

ρ|Vj+1|2γ
)1/γ

≤ C

(∫

Q j+1

ρV 2
j+1 +

∫

Q j+1

ρ|∇Vj+1|2)
)1/γ

ess sup
t∈(−r2j+1,r

2
j+1)

(∫

Bj+1

ρV 2
j+1

)(γ−1)/γ

≤ C

[

22 j
∫

Q j

ρV 2
j+1 + ‖Vj+1‖L p′ (Q j ,ρ)

+
∫

Qr

ρ|F |2χ {Vj+1>0}

]

.

(3.7)

Now, by the Hölder inequality

E j+1 =
∫

Q j+1

ρV 2
j+1 ≤

(∫

Q j+1

ρ|Vj+1|2γ
)1/γ (∫

Q j+1

ρχ {Vj+1>0}

)1/γ ′

, (3.8)

where γ ′ = N+3+a+
2 is the conjugate exponent of γ and, using the Hölder inequality again,

we obtain

‖Vj+1‖L p′ (Q j , ρ) ≤
(∫

Q j+1

ρV 2
j+1

)1/2 (∫

Q j+1

ρχ {Vj+1>0}

)(p−2)/2p

≤ E1/2
j

(∫

Q j+1

ρχ {Vj+1>0}

)(p−2)/2p
(3.9)
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and

∫

Q j+1

ρ|F |2χ {Vj+1>0} ≤
(∫

Q j+1

ρ|F |q
)2/q (∫

Q j+1

ρχ {Vj+1>0}

)(q−2)/q

≤
(∫

Q j+1

ρχ {Vj+1>0}

)(q−2)/q

.

(3.10)

Further, using the definition of Vj , it is easy to see that Vj+1 > 0 if and only if Vj > 2− j−1,
for every j and thus

∫

Q j+1

ρχ {Vj+1>0} =
∫

Q j+1

ρχ {V 2
j >2−2 j−2} ≤ 22 j+2

∫

Q j

ρV 2
j = E j . (3.11)

Combining (3.7), (3.8), (3.9), (3.10) and (3.11), we obtain

E j+1 ≤ C1+ j
(

E
1+ 1

γ ′
j + E

1− 1
p + 1

γ ′
j + E

1− 2
q + 1

γ ′
j

)

,

whereC depends only on N and a. By the assumptions on p and q it follows that 1
γ ′ − 1

p > 0

and 1
γ ′ − 2

q > 0. Let us denote by γ̄ the minimum of such two positive numbers. Taking into
account that E j ≤ δ for every j , we have

{
E j+1 ≤ C1+ j E1+γ̄

j ,

E0 ≤ δ,

which implies

E j ≤ C
∑ j

i=0 i(1+γ̄ ) j−i
E (1+γ̄ ) j

0 ≤ C
(1+γ̄ ) j

∑ j
i=0

i
(1+γ̄ )i δ(1+γ̄ ) j ≤ (Cδ)(1+γ̄ ) j ,

since
∑ j

i=0
i

(1+γ̄ )i
< +∞. Now, take δ such that Cδ < 1. Then E j → 0, as j → +∞

and thus, by definition of Vj , E j → ∫

Q1/2
ρ(u − 1)2+ = 0, which yields u ≤ 1 in Q1/2, as

claimed in the statement. ��
Proof of Proposition 3.1 Define

V+ := θ+u+, θ+ :=
√

δ

‖u+‖L2(Q1,ρa
ε ) + ‖ f ‖L p(Q1,ρa

ε ) + ‖F‖Lq (Q1,ρa
ε )

,

where δ > 0 is as Lemma 3.3. The hypothesis of the Lemma 3.3 are satisfied, so

‖u+‖L∞(Q1/2) ≤ 1√
δ

(
‖u+‖L2(Q1,ρa

ε ) + ‖ f ‖L p(Q1,ρa
ε ) + ‖F‖Lq (Q1,ρa

ε )

)
.

Repeating the same reasoning with V− and taking into account that both the estimate (3.2)
and Lemma 3.3 hold also for the negative part of solutions, it follows

‖u−‖L∞(Q1/2) ≤ 1√
δ

(
‖u−‖L2(Q1,ρa

ε ) + ‖ f ‖L p(Q1,ρa
ε ) + ‖F‖Lq (Q1,ρa

ε )

)
.

So, putting together these two inequalities, the thesis follows choosing C = 4√
δ
. ��
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4 Approximation results

The purpose of this section is to establish some approximation results, in the spirit of [33]
(elliptic framework). The main fact is that any weak solution u to (2.10) with ε = 0 can be
locally approximated with a family of classical solutions {uε}ε∈(0,1) to (2.10) (with ε > 0),
that is uε → u as ε → 0, in a suitable sense (see Lemma 4.2 and Lemma 4.3). This is a key
step of our work that will play an important role in the proofs of the Hölder and Schauder
estimates.

We begin with the following lemma, in the spirit of [25, Theorem 6.1].

Lemma 4.1 Let a ∈ R, N ≥ 1, ε ∈ [0, 1) and f ∈ L2(Q1, ρε), F ∈ L2(Q1, ρ
a
ε )N+1,

u0 ∈ L2(B1, ρ
a
ε ). Let uε be a weak solution to (2.12) in Q1. Then there exists C > 0

depending only on N, a and λ such that

‖uε‖L∞(−1,1;L2(B1,ρa
ε )) + ‖uε‖L2(−1,1;H1

0 (B1,ρa
ε ))

≤ C(‖ f ‖L2(Q1,ρa
ε ) + ‖F‖L2(Q1,ρa

ε ) + ‖u0‖L2(B1,ρa
ε )). (4.1)

Proof Let us set u := uε and notice that u ∈ C([−1, 1], L2(B1, ρ
a
ε )) by Remark 2.14. In

what follows, we prove the existence of C > 0 depending only on a, N and λ such that
∫

B1
ρa

ε u
2(τ )dz +

∫ τ

−1

∫

B1
ρa

ε |∇u|2dzdt ≤ C

(∫

Q1

ρa
ε ( f 2 + |F |2)dzdt +

∫

B1
ρa

ε u
2
0dz

)

,

(4.2)

for every τ ∈ (−1, 1). The bound in (4.1) easily follows by the arbitrariness of τ .
So, let us fix τ ∈ (−1, 1), h ∈ (0, 1−τ) and consider the Steklov average uh (see Remark

2.16). Using a standard approximation procedure (see [25, Theorem 6.1]) and recalling that
D∞
c (Qr ) is dense in L2(Ir ; H1

0 (Br , ρa
ε )), we may test (2.14) with φ := uhχ [−1,τ ] to deduce

∫ τ

−1

∫

B1
ρa

ε (∂t uhuh + (A∇u)h · ∇uh)dzdt =
∫ τ

−1

∫

B1
ρa

ε ( fhuh − Fh · ∇uh)dzdt .

Now, using Fubini-Tonelli theorem and integrating w.r.t. t , we obtain
∫ τ

−1

∫

B1
ρa

ε ∂t uhuhdzdt = 1

2

∫

B1
ρa

ε

∫ τ

−1
∂t (u

2
h)dtdz

= 1

2

∫

B1
ρa

ε u
2
h(τ )dz − 1

2

∫

B1
ρa

ε u
2
h(−1)dz,

and thus, passing to the limit as h → 0 and recalling that u ∈ C([−1, 1], L2(B1, ρ
a
ε )), it

follows

1

2

∫

B1
ρa

ε u
2(τ )dz +

∫ τ

−1

∫

B1
ρa

ε A∇u · ∇udzdt =
∫ τ

−1

∫

B1
ρa

ε ( f u − F · ∇u)dzdt

+ 1

2

∫

B1
ρa

ε u
2
0dz.

Recalling that A is uniformly parabolic and applying both Hölder’s inequality and Young’s
inequality, it turns out

1

2

∫

B1
ρa

ε u
2(τ )dz + λ

∫ τ

−1

∫

B1
ρa

ε |∇u|2dzdt
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≤ ‖ f ‖L2(Q1,ρa
ε )

(∫ τ

−1

∫

B1
ρa

ε u
2dzdt

)1/2

+ ‖F‖L2(Q1,ρa
ε )

(∫ τ

−1

∫

B1
ρa

ε |∇u|2dzdt
)1/2

+ 1

2
‖u0‖2L2(B1,ρa

ε )

≤ 1

2
‖ f ‖2L2(Q1,ρa

ε )
+ 1

2

∫ τ

−1

∫

B1
ρa

ε u
2 + 1

2λ
‖F‖2L2(Q1,ρa

ε )
+ λ

2

∫ τ

−1

∫

B1
ρa

ε |∇u|2

+ 1

2
‖u0‖2L2(B1,ρa

ε )
,

that is

H(τ ) + λ

∫ τ

−1

∫

B1
ρa

ε |∇u|2dzdt ≤
∫ τ

−1
H(t)dt + K ,

where H(τ ) := ∫

B1
ρa

ε u
2(τ ) and K := ‖ f ‖2

L2(Q1,ρa
ε )

+ 1
λ
‖F‖2

L2(Q1,ρa
ε )

+ ‖u0‖2L2(B1,ρa
ε )
.

Finally, since the second term in the r.h.s. is nonnegative, the Gronwall’s inequality yields∫ τ

−1 H(t)dt ≤ K (1 + eτ ) ≤ K (1 + e) which, in turn, proves (4.2). ��
Now, we proceed with the approximation results. In what follows, we will repeatedly use

the following elementar fact:

ρa
ε → |y|a in L1

loc(R
N+1 \ �),

as ε → 0.

Lemma 4.2 Let a ∈ R, p, q ≥ 2, A satisfying (1.2), R > 0 and IR := (−R2, R2). Let
{ fε}ε∈(0,1) ⊂ L p(QR, ρa

ε ), {Fε}ε∈(0,1) ⊂ Lq(QR, ρa
ε )N+1 and let {uε}ε∈(0,1) be a family of

weak solutions to

ρa
ε ∂t uε − div(ρa

ε A∇uε) = ρa
ε fε + div(ρa

ε Fε) in QR . (4.3)

Assume that there exist C > 0 independent of ε, f ∈ L p
loc(QR\�) and F ∈ Lq

loc(QR\�)

such that

‖uε‖L2(IR ;H1(BR ,ρa
ε )) + ‖uε‖L∞(IR ;L2(BR ,ρa

ε )) ≤ C, (4.4)

‖ fε‖L p(QR ,ρa
ε ) + ‖Fε‖Lq (BR ,ρa

ε )N+1 ≤ C, (4.5)

fε → f in L p
loc(QR \ �) and Fε → F in Lq

loc(QR \ �)N+1 (4.6)

as ε → 0. Then, f ∈ L p(QR, |y|a), F ∈ Lq(QR, |y|a)N+1, and there exist a weak solution u
to (2.10) in QR (with ε = 0) and a sequence εk → 0 such that uεk → u in L2

loc(IR; H1
loc(BR\

�)) as k → +∞. Moreover, if we assume that {uε} ⊂ L2(IR; H1
0 (BR, ρa

ε )), then u ∈
L2(IR; H1

0 (BR, |y|a)).
Proof By scaling, we may assume R = 1 and set I := (−1, 1).

Step 1.We have f ∈ L p(Q1, |y|a) and F ∈ Lq(Q1, |y|a). This easily follows by Fatou’s
lemma, (4.6) and ρa

ε → |y|a a.e. in Q1.
Step 2. In this step we show the existence of u ∈ L2(I ; H1

loc(B1\�)) and a sequence
εk → 0 such that

uεk → u in L2(I ; L2
loc(B1 \ �)), (4.7)

as k → +∞. Further, for every open setω ⊂⊂ B1\�, u is a weak solution to (2.10) inω× I .
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Let �, �̃ ⊂ R
N+1 be open sets such that �̃ ⊂⊂ � ⊂⊂ B1\� and let ξ ∈ C∞

c (�) with
0 ≤ ξ ≤ 1, ξ = 1 in �̃ and |∇ξ | ≤ C0, where C0 > 0 depends on N , � and �̃.

Define vε := ξuε. By (4.4), we have vε ∈ L2(I ; H1
0 (�; ρa

ε )) ∩ L∞(I ; L2(�; ρa
ε )) with

‖vε‖L2(I ;H1
0 (�,ρa

ε )) + ‖vε‖L∞(I ;L2(�,ρa
ε )) ≤ C, (4.8)

for a new C > 0 independent of ε. Setting Q := � × I and fixing φ ∈ C∞
c (Q), we compute

−
∫

Q
ρa

ε vε∂tφdzdt +
∫

Q
ρa

ε A∇vε · ∇φdzdt

= −
∫

Q
ρa

ε uε∂t (ξφ)dzdt +
∫

Q
ρa

ε ξ A∇uε · ∇φdzdt +
∫

Q
ρa

ε uεA∇ξ · ∇φdzdt

= −
∫

Q
ρa

ε uε∂t (ξφ)dzdt +
∫

Q
ρa

ε A∇uε · ∇(ξφ)dzdt −
∫

Q
ρa

ε φA∇uε · ∇ξdzdt

+
∫

Q
ρa

ε uεA∇ξ · ∇φdzdt

=
∫

Q
ρa

ε ( fεξφ − Fε · ∇(ξφ) − φA∇uε · ∇ξ + uεA∇ξ · ∇φ) dzdt

=
∫

Q
ρa

ε ( fεξφ − ξFε · ∇φ − φFε · ∇ξ − φA∇uε · ∇ξ + uεA∇ξ · ∇φ) dzdt,

that is,

ρa
ε ∂tvε − div(ρa

ε A∇vε) = ρa
ε f̃ε + div(ρa

ε F̃ε) in Q,

in the weak sense, where we have set

f̃ε := fεξ − Fε · ∇ξ − A∇uε · ∇ξ, F̃ε := Fεξ − uεA∇ξ.

Proceeding as in Remark 2.14, one combines the uniform estimates (4.4), (4.5) and (4.8)
with the Hölder’s and Young’s inequalities, to deduce

−
∫

Q
ρa

ε vε∂tφdzdt ≤ C‖φ‖L2(I ;H1
0 (�,ρa

ε )),

for some new C > 0 depending only on N , �, �̃, a and �. Notice that, respect to Remark
2.14, C is independent of ε: this is because H1

0 (�, ρa
ε ) = H1

0 (�) and we can make use of
the Poincaré inequality with constant independent of ε, see Remark 2.6. As a consequence of
the above inequality, it follows ∂tvε ∈ L2(I ; H−1(�, ρa

ε )) with ‖∂tvε‖L2(I ;H−1(�,ρa
ε )) ≤ C

and so, since H−1(�, ρa
ε ) = H−1(�) by Remark 2.6, we obtain

‖∂tvε‖L2(I ;H−1(�)) ≤ C . (4.9)

At this point, combining (4.8), (4.9) and Remark 2.6 again, it follows

‖vε‖L2(I ;H1
0 (�)) + ‖∂tvε‖L2(I ;H−1(�)) ≤ 2C,

and thus the Aubin-Lion lemma (see for instance [31, Corollary 8]) yields the existence of
v ∈ L2(I ; H1

0 (�)) such that vε → v in L2(Q), along a suitable sequence. Further, since
by (4.4) there is u ∈ L2(I ; H1(�)) such that uε⇀u in L2(I ; H1(�)) (along a suitable
sequence) and ξ = 1 in �̃, we deduce v = u in L2(�̃ × I ). A standard diagonal argument
yields both u ∈ L2(I ; H1

loc(B1\�)) and (4.7) (take for instance� = � j := B1\{|y| < 1
j+3 }

and �̃ = �̃ j := B j+1
j+2

\{|y| < 1
j+2 }, j ∈ N).

123



  204 Page 22 of 46 A. Audrito et al.

Now, fix ω ⊂⊂ B1 \ �. Combining (4.7) and uεk⇀u in L2(I ; H1(ω)) and recalling that
ρa

εk
→ |y|a in L2(ω), and testing (4.3) with φ ∈ C∞

c (ω × I ), we may pass to the limit as
k → +∞ into (the weak formulation of) (4.3) and deduce that u is a weak solution to (2.10)
in ω × I .

Step 3. Now we prove that

∇uεk → ∇u in L2
loc((B1 \ �) × I ), (4.10)

as k → +∞, up to passing to a suitable subsequence.
Let � ⊂⊂ B1\�, η ∈ C∞

c (�), −1 < t1 < t2 < 1 and h ∈ (0, 1 − t2) and let (uεk )h and
uh be the Steklov averages of uεk and u, respectively (see Remark 2.16). Similar to the proof
of Lemma 4.1, we test the equation of (uεk )h with η2χ[t1,t2](uεk )h to obtain

∫ t2

t1

∫

�

ρa
εk

(
∂t (uεk )hη

2(uεk )h + (A∇uεk )h · ∇(η2(uεk )h)
)

=
∫ t2

t1

∫

�

ρa
εk

(
1
2 ∂t (η

2(uεk )
2
h) + η2(A∇uεk )h · ∇(uεk )h + 2η(uεk )h(A∇uεk )h · ∇η

)

= 1

2

∫

�

ρa
εk

η2(uεk )
2
h

∣
∣
∣
∣

t=t2

t=t1

+
∫ t2

t1

∫

�

ρa
εk

(
η2(A∇uεk )h · ∇(uεk )h + 2η(uεk )h(A∇uεk )h · ∇η

)

=
∫ t2

t1

∫

�

ρa
εk

(
( fεk )hη

2(uεk )h + (Fεk )h · ∇(η2(uεk )h)
)
,

(4.11)

which, rearranging terms, becomes

∫ t2

t1

∫

�
ρaεkη

2(A∇uεk )h · ∇(uεk )h = −1

2

∫

�
ρaεkη

2(uεk )
2
h

∣
∣
∣
∣

t=t2

t=t1

− 2
∫ t2

t1

∫

�
ρaεkη(uεk )h(A∇uεk )h · ∇η

+
∫ t2

t1

∫

�
ρaεk

(
( fεk )hη

2(uεk )h + (Fεk )h · ∇(η2(uεk )h)
)

(4.12)

Using the properties of the Steklov averages (see Remark 2.16), we can take the limit as
h → 0 in (4.12) to obtain

∫ t2

t1

∫

�

ρa
εk

η2A∇uεk · ∇uεk = −1

2

∫

�

ρa
εk

η2u2εk

∣
∣
∣
∣

t2

t=t1

− 2
∫ t2

t1

∫

�

ρa
εk

ηuεk A∇uεk · ∇η

+
∫ t2

t1

∫

�

ρa
εk

(
fεkη

2uεk + Fεk · ∇(η2uεk )
)
,

(4.13)

for every k ∈ N. Now, by testing the equation of uh with η2χ[t1,t2]uh and repeating the very
same argument, one shows that

∫ t2

t1

∫

�

|y|aη2A∇u · ∇u = −1

2

∫

�

|y|aη2u2
∣
∣
∣
∣

t=t2

t=t1

− 2
∫ t2

t1

∫

�

|y|aηuA∇u · ∇η

+
∫ t2

t1

∫

�

|y|a
(

f η2u + F · ∇(η2u)

)

,

(4.14)
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for a.e. t1 and t2 as above. Recalling that ∇uεk⇀∇u in L2(� × I ) and using both (4.7) and
ρa

εk
→ |y|a in L2(�), we find

−1

2

∫

�

ρa
εk

η2u2εk

∣
∣
∣
∣

t2

t=t1

− 2
∫ t2

t1

∫

�

ρa
εk

ηuεk A∇uεk · ∇η

→ −1

2

∫

�

|y|aη2u2
∣
∣
∣
∣

t=t2

t=t1

− 2
∫ t2

t1

∫

�

|y|aηuA∇u · ∇η,

as k → +∞, for a.e. t1 and t2 as above. On the other hand, since in addition fεk → f in
L2(� × I ) and Fεk → F in L2(� × I )N+1, it follows

∫ t2

t1

∫

�

ρa
εk

(
fεkη

2uεk + Fεk · ∇(η2uεk )
)

→
∫ t2

t1

∫

�

|y|a
(
f η2u + F · ∇(η2u)

)
,

as k → +∞, for a.e. t1 and t2 as above. Consequently,

lim
k→+∞

∫ t2

t1

∫

�

ρa
εk

η2A∇uεk · ∇uεk =
∫ t2

t1

∫

�

|y|aη2A∇u · ∇u.

Since ρa
ε is bounded and bounded away from 0 in � uniformly in ε and uεk⇀u in

L2(I ; H1(�)), and A satisfies (1.2), we may let η → χ� and use the triangular inequality
to deduce ∇uεk → ∇u in L2(� × (t1, t2)) as k → +∞. A diagonal argument as above then
shows (4.10).

Step 4. Next, we prove that u ∈ L2(I ; H1(B1, |y|a)) ∩ L∞(I ; L2(B1, |y|a)).
By (4.4), (4.7) and Fatou’s lemma, we have that u ∈ L∞(I ; L2(B1, |y|a)). Indeed, for

a.e. t ∈ I , one has
∫

B1
|y|au2(z, t)dz ≤ lim inf

k

∫

B1
ρεk u

2
εk

(z, t)dz ≤ ‖uεk‖L∞(I ;L2(B1,ρa
εk

)) ≤ C .

To show that u ∈ L2(I ; H1(B1, |y|a)) we distinguish three cases, depending on the value of
a.

Assume first a ≥ 0. Since |y|a ≤ ρa
ε (y) for every ε ∈ (0, 1), one has

‖uε‖L2(I ;H1(B1,|y|a)) ≤ ‖uε‖L2(I ;H1(B1,ρa
ε )) ≤ C,

by (4.4). Then, the family {uε}ε∈(0,1) is uniformly bounded in L2(I ; H1(B1, |y|a))
and thus u ∈ L2(I ; H1(B1, |y|a)) by weak convergence. Moreover, if {uε}ε∈(0,1) ⊂
L2(I ; H1

0 (B1, ρ
a
ε )) ⊂ L2(I ; H1

0 (B1, |y|a)), then {uε}ε∈(0,1) ⊂ L2(I ; H1
0 (B1, |y|a)) and

u ∈ L2(I ; H1
0 (B1, |y|a)) by weak convergence.

Second, fix −1 < a < 0. In this case |y|a belongs to the Muckenhoupt class A2 and,
since a < 0, one has |y|a ≥ 1. Therefore,

‖uε‖L2(I ;H1(B1)) ≤ ‖uε‖L2(I ;H1(B1,ρa
ε )) ≤ C,

and so uεk⇀u L2(I ; H1(B1)) and that u possesses weak gradient. Now, since uεk → u and
∇uεk → ∇u a.e. in Q1 by (4.7) and (4.10), we may invoke Fatou’s lemma again to conclude
u and |∇u| belong to L2(Q1, |y|a). This shows our claim thanks to Proposition 2.1.

Furthermore, if {uε}ε∈(0,1) ⊂ L2(I ; H1
0 (B1, ρ

a
ε )), then {uε}ε∈(0,1) ⊂ L2(I ; H1

0 (B1))

and thus there exists a sequence satisfying uεk → u weakly in L2(I ; H1
0 (B1)). So, u ∈

L2(I ; H1(B1, |y|a)) ∩ L2(I ; H1
0 (B1)).
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Now, fix δ > 0 and consider ψ ∈ C∞
c (Q1) such that ‖u − ψ‖L2(I ;H1

0 (B1))
≤ δ̄, where

δ̄ ∈ (0, 1) will be chosen in a moment. Let ŷ ∈ (0, 1) small. Then
∫

Q1

|y|a |∇u − ∇ψ |2 =
∫

{|y|≥ŷ}
|y|a |∇u − ∇ψ |2 +

∫

{|y|<ŷ}
|y|a |∇u − ∇ψ |2

≤ ŷa
∫

Q1

|∇u − ∇ψ |2 + δ′(ŷ) ≤ ŷa δ̄ + δ′(ŷ),

where δ′(ŷ) → 0 as ŷ → 0, since the function |y|a |∇u − ∇ψ |2 ∈ L1(Q1). Choosing
δ̄ < δ′(ŷ)/ŷa and ŷ such that δ′(ŷ) < δ/2, we finally obtain ‖u − ψ‖L2(I ;H1

0 (B1,|y|a)) ≤ δ,

that is, u ∈ L2(I ; H1
0 (B1, |y|a)) thanks to the arbitrariness of δ.

Finally, let a ≤ −1. In this case, we consider the isometry T̄ a
ε defined in (2.8) and we

set vε := √
ρa

ε uε. By Remark 2.4 and (4.4), the family {vε}ε∈(0,1) is uniformly bounded in
L2(I ; H1(B1)) and so vεk⇀v weakly in L2(I ; H1(B1)). Further, by (4.7), we have

∫

Q1

vφ ←
∫

Q1

vεkφ =
∫

Q1

√
ρa

εk
uεkφ →

∫

Q1

|y|a/2uφ,

for every φ ∈ C∞
c (Q1), which implies v = |y|a/2u a.e. in Q1. So, noticing that u = (T̄ a

0 )−1v

and applying Remark 2.4 again, we conclude that u ∈ L2(I ; H1(B1, |y|a)).
Moreover, if {uε}ε∈(0,1) ⊂ L2(I ; H1

0 (B1, ρ
a
ε )) then {vε}ε∈(0,1) ⊂ L2(I ; H1

0 (B1)). So,
vεk → v weakly in such space, which implies that u ∈ L2(I ; H1

0 (B1, |y|a)).
Step 5. In this last step we show that u satisfies (2.10) (with ε = 0) in the weak sense. Let

us fix a test function φ ∈ D∞
c (Q1), see Definition 2.11 with ε = 0. By (4.7) and (4.10), we

have both

ρa
εk

(−uεk ∂tφ + A∇uεk · ∇φ) → |y|a(−u∂tφ + A∇u · ∇φ) a.e. in Q1

and

ρa
εk

( fεkφ − Fεk · ∇φ) → |y|a( f φ − F · ∇φ) a.e. in Q1,

as k → +∞. Now, let E ⊂ Q1 be measurable. By (1.2), (4.4) and the Hölder inequality, we
get
∫

E
ρa

εk

∣
∣ − uεk ∂tφ + A∇uεk · ∇φ

∣
∣ ≤ C‖uε‖L2(I ;H1(B1,ρa

εk
))‖∇x,tφ‖L∞(Q1)

( ∫

E∩spt(φ)

ρa
εk

)1/2

≤ δ(E),

where δ(E) ≥ 0 satisfies δ(E) → 0 as |E | → 0. Indeed, when a ≤ −1, we have ρa
εk

≤
|y|a ∈ L∞(E ∩ spt(φ)), by the definition ofD∞

c (Q1). Instead, when a > −1, one has ρa
εk

≤
C |y|min(0,a) ∈ L1(B1). In particular, it follows that the family −ρa

εk
uεk ∂tφ +ρa

εk
A∇uεk · ∇φ

is uniformly integrable and the Vitali’s theorem yields
∫

Q1

ρa
εk

(−uεk ∂tφ + A∇uεk · ∇φ
) →

∫

Q1

|y|a (−u∂tφ + A∇u · ∇φ) ,

as k → +∞. With a very similar argument, we obtain
∫

Q1

ρa
εk

(
fεkφ − Fεk · ∇φ

) →
∫

Q1

|y|a ( f φ − F · ∇φ) ,

as k → +∞, and our statement follows. ��

123



Schauder estimates for parabolic equations... Page 25 of 46   204 

Lemma 4.3 Let a ∈ R, p, q ≥ 2, A satisfying (1.2), R > 0 and IR := (−R2, R2). Let
f ∈ L p(QR, |y|a), F ∈ Lq(QR, |y|a)N+1 and let u be a weak solution to

|y|a∂t u − div(|y|a A∇u) = |y|a f + div(|y|a F) in QR . (4.15)

Then, for every r ∈ (0, R), there exist {uε}ε∈(0,1), { fε}ε∈(0,1) and {Fε}ε∈(0,1) satisfying the
assumptions of Lemma 4.2 in Qr . Moreover, there exists εk → 0 such that uεk → u in
L2
loc(Ir ; H1

loc(Br\�)) as k → +∞.

Proof By scaling, we may assume R = 1 and set I := (−1, 1).
Step 1. Let us fix r ∈ (0, 1) and set B̃ := Br , Q̃ := B̃ × I , B := B 1+r

2
and Q := B × I .

Consider a cut-off function ξ ∈ C∞
c (B1) such that

spt(ξ) ⊂ B, ξ ≡ 1 in B̃, 0 ≤ ξ ≤ 1 in B1, |∇ξ | ≤ C0,

for some C0 > 0 depending on N and r , and define ũ := ξu. Now, given φ ∈ D∞
c (Q), the

same computations of Lemma 4.2 show that
∫

Q
|y|a

(
− ũ∂tφ + A∇ũ · ∇φ

)

=
∫

Q
|y|a

(
f ξφ − ξF · ∇φ − φF · ∇ξ − φA∇u · ∇ξ + uA∇ξ · ∇φ

)
,

and thus, setting

f̃ := f ξ, F̃ := Fξ, g̃ := −F · ∇ξ − A∇u · ∇ξ, G̃ := −uA∇ξ,

we obtain that ũ is a weak solution to

|y|a∂t ũ − div(|y|a A∇ũ) = |y|a( f̃ + g̃) + div(|y|a(F̃ + G̃)) in Q,

where we have used that ũ ∈ L2(I ; H1
0 (B, |y|a)) ∩ L∞(I ; L2(B, |y|a)) by construction.

Moreover, since u ∈ L2(I ; H1(B1, |y|a)) by definition and p, q ≥ 2, then f̃ ∈ L p(Q, |y|a),
F̃ ∈ Lq(Q, |y|a)N+1, g̃ ∈ L2(Q, |y|a) and G̃ ∈ L2(Q, |y|a)N+1. Therefore, by Remark
2.14, it follows that ũ ∈ C( Ī ; L2(B, |y|a)). In particular, ũ0 := ũ|t=−1 = ξu|t=−1 ∈
L2(B, |y|a) is well-defined and ũ is a weak solution to

⎧
⎪⎨

⎪⎩

|y|a∂t ũ − div(|y|a A∇ũ) = |y|a( f̃ + g̃) + div(|y|a(F̃ + G̃)) in Q,

ũ = 0 on ∂B×I ,

ũ|t=−1 = ũ0 on B.

(4.16)

Step 2. In this step, we construct a family of smooth approximations uε of ũ, as in the
statement. We distinguish between two cases, depending on the value of a.

First, let a > 0. We define

fε :=
( |y|a

ρa
ε

)1/p

f̃ , Fε :=
( |y|a

ρa
ε

)1/q

F̃, gε :=
( |y|a

ρa
ε

)1/2

g̃,

Gε :=
( |y|a

ρa
ε

)1/2

G̃, u0,ε :=
( |y|a

ρa
ε

)1/2

ũ0,

and consider the family of weak solutions {uε}ε∈(0,1) to
⎧
⎪⎨

⎪⎩

ρa
ε ∂t uε − div(ρa

ε A∇uε) = ρa
ε ( fε + gε) + div(ρa

ε (Fε + Gε)) in Q

uε = 0 on ∂B×I ,

uε|t=−1 = u0,ε on B.

(4.17)
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By construction, we have

‖ fε‖L p(Q,ρa
ε ) + ‖gε‖L2(Q,ρa

ε ) + ‖Fε‖Lq (Q,ρa
ε ) + ‖Gε‖L2(Q,ρa

ε ) + ‖u0,ε‖L2(B,ρa
ε ) ≤ C,

(4.18)

for some C > 0 independent of ε and fε → f̃ , Fε → F̃ , gε → g̃, Gε → G̃ a.e. in Q and
u0,ε → ũ0 a.e. in B. Furthermore, since a > 0, we may apply the Lebesgue’s dominated
convergence theorem to deduce that

fε → f̃ in L p
loc((B \ �) × I ), Fε → F̃ in Lq

loc((B \ �) × I )N+1,

gε → g̃ in L2
loc((B \ �) × I ), Gε → G̃ in L2

loc((B \ �) × I )N+1,
(4.19)

and u0,ε → ũ0 in L2
loc(B\�) as ε → 0.

The case a ≤ 0 is easier: we set

fε := f̃ , Fε := F̃, gε := g̃, Gε := G̃, u0,ε := ũ0.

Since ρa
ε ≤ |y|a , we immediately deduce (4.18), while (4.19) is obvious by definition.

Step 3. Combining Lemma 4.1 and (4.18), we deduce that the family {uε}ε∈(0,1) is uni-
formly bounded in L2(I ; H1

0 (B, ρa
ε )) ∩ L∞(I ; L2(B, ρa

ε )). Consequently, by (4.18) again
and (4.19), {uε}ε∈(0,1), { fε+gε}ε∈(0,1) and {Fε+Gε}ε∈(0,1) satisfy the assumptions of Lemma
4.2 in Q and so there exist εk → 0 and ū ∈ L2(I ; H1

0 (B, |y|a)) ∩ C( Ī ; L2(B, |y|a)) (see
Remark 2.14) such that uεk → ū in L2

loc(I ; H1
loc(B\�)). Since u0,ε → ũ0 in L2

loc(B\�),
ū|t=−1 = ũ0 in L2(B, |y|a) and therefore ū is a weak solution to (4.16).

As consequence, we obtain ū = ũ a.e. in Q by uniqueness of ũ (uniqueness of weak
solutions to (4.16) follows by the classical theory of the Cauchy-Dirichlet problem in abstract
Hilbert spaces, see [26]) and our statement follows since ũ = u a.e. in Q̃ by definition. ��
Remark 4.4 Let a > −1 and R > r > 0. Then, Lemmas 4.2 and 4.3 hold for weak solutions
to (2.13) in Q+

R . That is, if {uε}ε∈(0,1) is a family of weak solutions to (2.13), such that
uε, fε, Fε and A satisfy the same assumptions of Lemma 4.2 in Q+

R , then uε → u in the
sense of Lemma 4.2 and u is a weak solution to (2.13) in Q+

R with ε = 0. Further, if u is a
weak solution (2.13) in Q+

R with ε = 0, we can construct families {uε}ε∈(0,1), { fε}ε∈(0,1),
{Fε}ε∈(0,1) such that the assumptions of Lemma 4.2 in Q+

r and uε → u in the sense of
Lemma 4.3.

Indeed, given ε ∈ [0, 1), let us consider a solution uε to (2.13) in Q+
R and let φ ∈ C∞

c (Q1)

be a test function. Let us define

J :=
(
In 0
0 −1

)

, Ã(x, y, t) := J A(x,−y, t)J , ũε(x, y, t) := uε(x,−y, t),

f̃ε(x, y, t) := fε(x,−y, t), F̃ε(x, y, t) := −Fε(x,−y, t), φ̃(x, y, t) := φ(x,−y, t),

for (x, y, t) ∈ Q−
R . By changing variables,

∫

Q+
R

ρa
ε

( − uεφt + A∇uε · ∇φ − fεφ + Fε · ∇φ
)

=
∫

Q−
R

ρa
ε

( − ũεφ̃t + Ã∇ũε · ∇φ̃ − f̃εφ̃ + F̃ε · ∇φ̃
)
, (4.20)

where Q−
R := QR ∩ {y < 0}. Hence, if we define

ūε :=
{
uε, in Q+

R
ũε, in Q−

R

, Ā :=
{
A in Q+

R
Ã in Q−

R

, f̄ε :=
{
fε in Q+

R
f̃ε in Q−

R

, F̄ε :=
{
Fε in Q+

R
F̃ε in Q−

R

,
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we have that Ā is a simmetricmatrix satisfying (1.2) and, by the conormal boundary condition
in (2.13), ūε is a weak solution to

ρa
ε ∂t ūε − div(ρa

ε Ā∇ūε) = ρa
ε f̄ε + div(ρa

ε F̄ε), in QR .

Then, Lemmas 4.2 and 4.3 apply to ūε in QR and, by definition of ūε, are valid for weak
solutions to (2.13) in Q+

R .

5 Liouville theorems

The goal of this section is to prove the Liouville type Theorem 1.2, for entire solutions to
(1.9). These results will be obtained using Caccioppoli inequality and the characterization
of the entire even solutions of the associated elliptic problem satisfying certain growth con-
ditions, extending the Liouville theorems established in [4] (see [33, 34, 36] for the elliptic
counterpart).

We begin with the following standard lemma.

Lemma 5.1 Let a ∈ R, ε ∈ [0, 1) and let u be an entire solution to

ρa
ε ∂t u − div(ρa

ε ∇u) = 0 in R
N+1 × R.

Then, for every i = 1, . . . , N, the function ∂xi u is an entire solution to the same problem.

The proof combines difference quotients in x and energy estimates, similar to the elliptic
setting, see [36, Corollary 4.2]. The next lemma was established in [6, 35] for a ∈ (−1, 1)
and ε = 0. We extend it for all values of a ∈ R and ε ∈ (0, 1), with an independent proof.

Lemma 5.2 Let a ∈ R, ε ∈ [0, 1) and let u be an entire solution to

ρa
ε ∂t u − div(ρa

ε ∇u) = 0 in R
N+1 × R. (5.1)

Then the function v = ρa
ε ∂yu is an entire solution to

ρ−a
ε ∂tv − div(ρ−a

ε ∇v) = 0 in R
N+1 × R. (5.2)

Proof The case ε ∈ (0, 1) follows by explicit computations, since weak solutions are smooth.
When ε = 0, we proceed by approximation as follows. Fix R > 0 and let IR :=

(−R2, R2). By Lemma 4.3, there exist a family of solutions {uε}ε∈(0,1) to (4.3) in Q3R

(with fε = 0 and Fε = 0), uniformly bounded in L2(I2R; H1(B2R, ρa
ε )), and a sequence

εk → 0 such that

uεk → u in L2
loc(I2R; H1

loc(B2R \ �)), (5.3)

as k → +∞. Now, since εk > 0, the function vk := ρa
εk

∂yuεk is a solution to (4.3) in Q2R

(with fε = 0 and Fε = 0), with weight ρ−a
εk

. Further, since {uε}ε∈(0,1) is uniformly bounded
in L2(I2R; H1(B2R, ρa

ε )), we have
∫

Q2R

ρ−a
εk

v2k =
∫

Q2R

ρa
εk

(∂yuεk )
2 ≤

∫

Q2R

ρa
εk

|∇uεk |2 ≤ C,

for some C > 0 independent of ε and thus, using the Caccioppoli inequality (3.1), it follows

‖vk‖L∞(IR ;L2(BR ,ρ−a
εk )) + ‖∇vk‖L2(QR ,ρ−a

εk ) ≤ C,
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for some new C > 0 independent of ε. As a consequence, the family {vk}k∈N satisfies the
assumptions of Lemma 4.2 which, in turn, allows us to conclude that, up to a subsequence,
vk → v in L2

loc(IR; H1
loc(BR \ �)), for some weak solution v to (2.10) in QR (with ε = 0,

f = 0 and F = 0). By (5.3), we deduce v = |y|a∂yu and, since R > 0 is arbitrary, our
statement follows. ��
Proof of Theorem 1.2 First, we point out that it is enough to prove that u is linear and depends
only on x . Then the second part of the statement automatically follows combining (1.10)
with the extra-assumption γ ∈ [0, 1).

Step 1. By Remark 4.4, we notice that the even extension w.r.t. y of u is an entire solution
to (5.1). Therefore, it is enough to establish our statement for an entire solution u to (5.1)
which is even in y and satisfy (1.10) a.e. in RN+1 × R. Choosing r ′ = R and r = 2R in the
Caccioppoli inequality (3.1), we get

∫

QR

ρa
ε |∇u|2dzdt ≤ C

R2

∫

Q2R

ρa
ε u

2dzdt, (5.4)

for some C > 0 independent of ε and R. We will repeatedly use the above inequality in the
next steps.

Step 2. In this step, we show that u is linear in x . By Lemma 5.1, for every multi-index
β ∈ N

N , the function ∂
β
x u solves (1.9). Fixed R > 1, by (5.4) and (1.10), it follows

∫

QR

ρa
ε (∂xi u)2 ≤

∫

QR

ρa
ε |∇u|2 ≤ C

R2

∫

Q2R

ρa
ε u

2 ≤ C

R2 R
a++2γ+N+3,

for every i = 1, . . . , N . So, setting

γ̃ := a+ + 2γ + N + 3, (5.5)

and iterating, it follows
∫

QR

ρa
ε (∂β

x u)2 ≤ CRγ̃−2|β|,

for every multi-index β ∈ N
N . Consequently, taking β such that 2|β| > γ̃ and passing to

the limit as R → +∞, we get ∂β
x u = 0, and therefore we easily obtain that u is polynomial

in the variable x . By (1.10), it follows that u must be linear in x .
Step 3. In this step we show that u is independent of y. By Lemma 5.2, v := ρa

ε ∂yu is an
entire solution to (5.2) while, by Lemma 5.2 again,

w1 = ρ−a
ε ∂yv = ρ−a

ε ∂y(ρ
a
ε ∂yu) = ∂yyu + (ρa

ε )′

ρa
ε

∂yu (5.6)

is an entire solution to (5.1). So, using (5.4) twice, we deduce that
∫

QR

ρa
ε w2

1 ≤
∫

QR

ρ−a
ε |∇v|2 ≤ C

R2

∫

Q2R

ρ−a
ε v2 ≤ C

R2

∫

Q2R

ρa
ε |∇u|2

≤ C

R4

∫

Q4R

ρa
ε u

2 ≤ CRγ̃−4. (5.7)

Setting

w j+1 := ∂yyw j + (ρa
ε )′

ρa
ε

∂yw j , (5.8)
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and noticing thatw j+1 is an entire solution to (5.1) for j ∈ N≥1, we may iterate the argument
above to show the existence of k ∈ N such that γ̃ − 4k < 0 and

∫

QR

ρa
ε wk ≤ CRγ̃−4k .

Hence, taking the limit as R → +∞, we obtain wk = 0, that is

∂yywk−1 + (ρa
ε )′

ρa
ε

∂ywk−1 = 0.

This ODE can be explicitly solved:

wk−1 = c2k−1(x, t)
∫ y

0
ρ−a

ε (s)ds + c2k−2(x, t), (5.9)

where c2k−1(x, t) and c2k−2(x, t) are unknown functions, linear in x . Now, let us define
⎧
⎪⎨

⎪⎩

g1(y) = ∫ y
0 ρ−a

ε (s)ds,

g2(y) = ∫ y
0ρ

−a
ε (s)

∫ s
0 ρa

ε (τ )dτ

gi (y) = ∫ y
0 ρ−a

ε (s)
∫ s
0 ρa

ε (τ )gi−2(τ )dτ, for i ∈ N≥3,

(5.10)

which are linked by the relationship

ρ−a
ε ∂y(ρ

a
ε ∂ygi ) = gi−2, for i ∈ N≥3.

An iterative argument combined with (5.9) and (5.8) shows that

w j = c2 j (x, t) +
2(k− j)−1∑

i=1

gi (y)c2 j+i (x, t),

for every j = 1, . . . , k − 1, and thus, by (5.6),

u = c0(x, t) +
2k−1∑

i=1

gi (y)ci (x, t),

where ci (x, t) are unknown functions, linear in x .
We claim that ci ≡ 0 for any i = 1, . . . , 2k − 1, which implies that u doesn’t depends on

y.
First, since gi (y) are odd functions for odd i , one has that ci (x, t) ≡ 0 for odd i , being

u an even function in y. Moreover, for every i ≥ 1 the functions g2i are asymptotically
equivalent to bi y2i for y → +∞, where bi ∈ R. Indeed, by using twice de l’Hôpital rule
and by observing that

lim
y→+∞

ρε(y)

y
= 1,

we have that

lim
y→+∞

g2(y)

y2
= lim

y→+∞
ρ−a

ε (y)g1(y)

2y
= lim

y→+∞
ρ−a

ε (y)

y−a

∫ y
0 ρa

ε (s)ds

2y1+a

= lim
y→+∞

1

2(1 + a)

ρa
ε (y)

ya
= 1

2(1 + a)
.
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By using an inductive argument and (5.10), we can prove that

lim|y|→+∞
g2i (y)

y2i
= bi , where bi =

i∏

m=1

1

2m(2m − 1 + a)
.

Hence, g2i is asymptotically equivalent to bi y2i for y → +∞. This immediately implies
that c2i ≡ 0 for every i ≥ 1, by the parabolic sub-quadratic growth condition (1.10). Then,
u does not depend on y and it is linear in x . Using the equation satisfied by u, we have that
∂t u = 0, hence the thesis is proved, that is, u = u(x) is a linear function. ��
Remark 5.3 Let us highlight that when a = 0 (and therefore ρa

ε = 1), Theorem 1.2 remains
valid for entire solutions to the heat equation ∂t u − 
u = 0 in R

N+2 and the proof above
works in this setting as well, with minor changes. Furthermore, Theorem 1.2 still holds for
entire solutions u to

{
ρa

ε ∂t u − div(ρa
ε A∇u) = 0 in R

N+1+ × R,

ρa
ε (A∇u) · eN+1 = 0 on ∂RN+1+ × R,

where A is a constant symmetric positive definite matrix (and u satisfies (1.10)). Under such
assumptions, u must to be a linear function depending only on z. This is a standard result,
which immediately follows by a change of coordinates: since A is a symmetric positive
definite matrix, we can consider the change of variables z′ = A1/2z, which allows us to
reduce to the case A = I .

6 Hölder estimates

In this section we prove the following uniform Hölder bounds.

Theorem 6.1 Let N ≥ 1, a > −1, p > N+3+a+
2 , q > N + 3 + a+, α ∈ (0, 1) ∩ (0, 2 −

N+3+a+
p ] ∩ (0, 1 − N+3+a+

q ]. Let A be a continuous matrix satisfying (1.2). As ε → 0+ let
{uε} be a family of solutions to

{
ρa

ε ∂t uε − div(ρa
ε A∇uε) = ρa

ε fε + div(ρa
ε Fε) in Q+

1 ,

ρa
ε (A∇uε + Fε) · eN+1 = 0 on ∂0Q+

1 .
(6.1)

Then, there exists a constant C > 0, depending on N, a, λ, �, p, q and α such that

‖uε‖C0,α
p (Q+

1/2)
≤ C

(
‖uε‖L2(Q+

1 ,ρa
ε ) + ‖ fε‖L p(Q+

1 ,ρa
ε ) + ‖Fε‖Lq (Q+

1 ,ρa
ε )

)
. (6.2)

Proof Without loss of generality we can assume that there exists a constant C > 0, which is
uniform in ε → 0+, such that

‖uε‖L2(Q+
1 ,ρa

ε ) + ‖ fε‖L p(Q+
1 ,ρa

ε ) + ‖Fε‖Lq (Q+
1 ,ρa

ε ) ≤ C .

Otherwise (6.2) is trivially verified.
Step 1: Contradiction argument and blow-up sequences. Consider a cut-off function η ∈

C∞
c (Q+

1 ) such that

η ≡ 1 in Q+
1/2, 0 ≤ η ≤ 1, spt(η) = Q+

3/4.
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By smoothness of η, it immediately follows that η ∈ C0,1
p (Q+

1 ); that is, there exists a constant
M > 0, which depends only on N , such that

|η(P) − η(Q)| ≤ Mdp(P, Q), for every P = (z, t), Q = (ξ, τ ) ∈ Q+
1 ,

where dp(·, ·) is the parabolic distance, which is defined in (2.9).

We argue by contradiction. Let us suppose that there exist p > N+3+a+
2 , q > N +3+a+,

α ∈ (0, 1)∩ (0, 2− N+3+a+
p ]∩ (0, 1− N+3+a+

q ] and a sequence of solutions {uk}k := {uεk }k
as εk → 0+ to (6.1), such that

Lk := [ηuk]C0,α
p (Q+

1 )
= sup

P,Q∈Q+
1

P �=Q

|(ηuk)(P) − (ηuk)(Q)|
dp(P, Q)α

→ +∞.

Now, by the definition of the parabolic Hölder seminorm of uk , we can take two sequences
of points Pk = (zk, tk), P̄k = (ξk, τk) ∈ Q+

3/4 such that

|(ηuk)(Pk) − (ηuk)(P̄k)|
dp(Pk, P̄k)α

≥ 1

2
Lk → +∞.

Defining rk := dp(Pk, P̄k), one has that rk → 0 as k → +∞. Indeed, by the local uniform
boundedness of solutions, see Proposition 3.1, one has

∞ ← Lk ≤
4‖ηuk‖L∞(Q+

1 )

rα
k

≤ Cr−α
k .

Let r̄ := 4/5. For k large let us define the blow-up domains

Q(k) := B+
r̄ − zk
rk

× (−r̄2 − tk, r̄2 − tk)

r2k .
,

and set Q∞ := limk→+∞ Q(k) along an appropriate subsequence. We define two blow-up
sequences as

vk(z, t) := η(rk z + zk, r2k t + tk)

Lkrα
k

(uk(rk z + zk, r
2
k t + tk) − uk(zk, tk)),

wk(z, t) := η(zk, tk)

Lkrα
k

(uk(rk z + zk, r
2
k t + tk) − uk(zk, tk)),

(6.3)

for (z, t) ∈ Q(k). Then, we distinguish two cases:
Case 1:

yk
rk

= dp(Pk, �)

rk
→ +∞,

as k → +∞. In this case we have Q∞ = R
N+2.

Case 2:

yk
rk

= dp(Pk, �)

rk
≤ C,

uniformly in k. In this case, one has yk
rk

→ l, up to pass to a subsequence and so Q∞ =
R

N × {y ≥ l} × R.
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Step 2: Estimate of the parabolic Hölder seminorm of vk . Let us fix a compact set K ⊂
Q∞. Then, K ⊂ Q(k) for any k large. For every P = (z, t), Q = (ξ, τ ) ∈ K , P �= Q, we
have

|vk(z, t) − vk(ξ, τ )| ≤ |(ηuk)(rk z + zk, r2k t + tk) − (ηuk)(rkξ + zk, r2k τ + tk)|
Lkrα

k

+ |uk(zk, tk)||η(rk z + zk, r2k t + tk) − η(rkξ + zk, r2k τ + tk)|
Lkrα

k

≤ dp(P, Q)α +
‖uk‖L∞(Q+

3/4)
Mdp((rk z, r2k t), (rkξ, r2k τ))

Lkrα
k

≤ dp(P, Q)α + CMr1−α
k dp(P, Q)

Lk
.

Then, as k → +∞
|vk(P) − vk(Q)|

dp(P, Q)α
≤ 1 + o(1). (6.4)

Step 3: The sequences vk and wk converge to the same limit w. Notice that vk(0) =
0 for every k. Then, by (6.4), we have that ‖vk‖C0,α

p (K )
is uniformly bounded for every

compact subset K ⊂ Q∞. By the Arzelà-Ascoli theorem, we can pass to a subsequence vk
satisfying vk → w uniformly in K and, taking the limit in (6.4), one has w ∈ C0,α

p (K ) with
‖w‖C0,α

p (K )
≤ 1. Moreover, by a countable compact exhaustion of Q∞, we have that w is

globally C0,α
p -continuous in Q∞, that is

[w]C0,α
p (Q∞)

≤ 1. (6.5)

Furthermore, fixed K ⊂ Q∞ compact, for every P = (z, t) ∈ K one has

|vk(P) − wk(P)| = |(uk(rk z + zk , r
2
k t + tk) − uk(zk , tk))(ηk(rk z + zk , r

2
k t + tk) − ηk(zk , tk))|

Lkr
α
k

≤
2‖uk‖L∞(Q+

4/5)
rkMdp(P, 0)

Lkr
α
k

→ 0.

In other words, the sequences vk and wk have the same asymptotic behavior as k → +∞ on
K ⊂ Q∞ and this implies that wk → w uniformly in K .

Step 4: w is not constant. First, w(0) = 0, since vk(0) = 0 for every k. Let us consider
the sequence of points

Sk :=
(

ξk − zk
rk

,
τk − tk
r2k

)

∈ Q(k).

Since dp(Sk, 0) = 1 for any k, we have Sk → S̄, up to consider a subsequence. Then, as
k → +∞

|vk(Sk)| =
∣
∣
∣
∣
η(P̄k)(uk(P̄k) − uk(Pk))

Lkrα
k

∣
∣
∣
∣

=
∣
∣
∣
∣
(ηuk)(P̄k) − (ηuk)(Pk) + (ηuk)(Pk) − η(P̄k)uk(Pk)

Lkrα
k

∣
∣
∣
∣
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≥
∣
∣
∣
∣
(ηuk)(P̄k) − (ηuk)(Pk)

Lkrα
k

∣
∣
∣
∣ −

∣
∣
∣
∣
uk(Pk)(η(P̄k) − η(Pk))

Lkrα
k

∣
∣
∣
∣

≥ 1

2
−

‖uk‖L∞(Q+
3/4)

Mrk

Lkrα
k

= 1

2
+ o(1).

Then, as k → +∞, we obtain that w(S̄) ≥ 1
2 ; that is, w is not constant.

Step 5:w is an entire solution to a homogeneous equation with constant coefficients. First,
we observe that, defining Ak(z, t) := A(rk z+zk, r2k t+tk) and (z̄, t̄) := limk→+∞(zk, tk), by
continuity we can define Ā := limk→+∞ Ak(z, t) = A(z̄, t̄), which is a constant coefficients
simmetric matrix satisfying (1.2).

Let us consider φ ∈ C∞
c (Q∞), such that spt(φ) ⊂ Q(k) for any k large, and define

φ̃(z, t) := φ(
z−zk
rk

,
t−tk
r2k

) ∈ C∞
c (Q+

1 ). Since uk is a solution to (6.1), by explicit computa-

tions, we have

−
∫

Q(k)
ρa

εk
(rk y + yk)wk∂tφ +

∫

Q(k)
ρa

εk
(rk y + yk)Ak∇wk · ∇φ

= (ηuk)(zk, tk)

Lkrα
k

∫

Q(k)
ρa

εk
(rk y + yk)∂tφ

+ η(zk, tk)

Lkrα
k

(
−

∫

Q+
1

ρa
εk

(y)uk∂t φ̃ +
∫

Q+
1

ρa
εk

(y)A∇uk · ∇φ̃
)
r−N−1
k

= η(zk, tk)r
−N−1−α
k

Lk

∫

Q+
1

ρa
εk

(y)( fεk φ̃ − Fεk · ∇φ̃)

= η(zk, tk)r
2−α
k

Lk

∫

Q(k)
ρa

εk
(rk y + yk) fεk (rk z + zk, r

2
k t + tk)φ

+ η(zk, tk)r
1−α
k

Lk

∫

Q(k)
ρa

εk
(rk y + yk)Fεk (rk z + zk, r

2
k t + tk) · ∇φ.

So, wk is a solution in Q(k) to

ρa
εk

(rk · +yk)∂twk − div(ρa
εk

(rk · +yk)Ak∇wk)

= ρa
εk

(rk · +yk)
η(zk, tk)r

2−α
k

Lk
fεk (rk · +zk, r

2
k · +tk)

+ η(zk, tk)r
1−α
k

Lk
div(ρa

εk
(rk · +yk)Fεk (rk · +zk, r

2
k · +tk)).

(6.6)

Notice that in Case 2 the function wk satisfies a conormal boundary condition on the hyper-
plane {y = yk

rk
} too.

Next, we normalize the Eq. (6.6) in the following way: let us define �k := (εk, yk, rk) and
νk := |�k |, which is bounded from above, since rk → 0, εk → 0 and yk → ȳ ∈ [0, 1). Let

�̃k := �k

νk
=

(
εk

νk
,
yk
νk

,
rk
νk

)

= (ε̃k, ỹk, r̃k).

Since �̃k = 1 for every k, up to consider a subsequence, �̃k → �̃ = (ε̃, ỹ, r̃). Denoting

ρ̃a
k (y) := ρa

εk
(rk y + yk)

νak
= (ε̃2k + (r̃k y + ỹk)

2)a/2,
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and

ρ̃a(y) := (ε̃2 + (r̃ y + ỹ)2)a/2,

we have that ρ̃a
k → ρ̃a a.e. in Q∞. By multiplying the equation (6.6) by ν−a

k we get that wk

solves

ρ̃a
k ∂twk − div(ρ̃a

k Ak∇wk) = ρ̃a
k
η(zk, tk)r

2−α
k

Lk
fεk (rk · +zk, r

2
k · +tk)

+ η(zk, tk)r
1−α
k

Lk
div(ρ̃a

k Fεk (rk · +zk, r
2
k · +tk)).

(6.7)

We claim that the r.h.s. of (6.7) vanishes in a distributional sense as k → +∞. Indeed, fixed
φ ∈ C∞

c (Q∞) with spt(φ) ⊂ Q(k) for any k large, we have the following estimate
∣
∣
∣

∫

spt(φ)

ρa
εk

(rk y + yk) fεk (rk z + zk, r
2
k t + tk)φ(z, t)dzdt

∣
∣
∣

≤ ‖φ‖L∞(RN+2)

( ∫

spt(φ)

ρa
εk

(rk y + yk)| fεk (rk z + zk, r
2
k t + tk)|pdzdt

)1/p

·
( ∫

spt(φ)

ρa
εk

(rk y + yk)dzdt
)1/p′

≤ C‖φ‖L∞(RN+2)

( ∫

Q+
1

(ε2k + ξ2N+1)
a/2| fεk (ξ, τ )|pr−(N+3)

k dξdτ
)1/p

ν
a/p′
k

≤ C‖ fεk‖L p(Q+
1 ,ρa

ε )r
− N+3

p
k ν

a
p′
k ≤ Cr

− N+3
p

k ν

a
p′
k .

So, we can estimate the first member of the r.h.s. of (6.7) as follows

η(zk, tk)r
2−α
k ν−a

k

Lk

∣
∣
∣

∫

spt(φ)

ρa
εk

(rk y + yk) fεk (rk z + zk, r
2
k t + tk)φ(z, t)dzdt

∣
∣
∣

≤ Cν−a
k

η(zk, tk)r
2−α
k

Lk
r
− N+3

p
k ν

a
p′
k ≤ Cr

2−α− N+3+a+
p

k

(
ra

+
k

νak

)1/p

→ 0,

since rk ≤ νk and α < 2− N+3+a+
p . Similarly, the second term of the r.h.s. of (6.7) vanishes

as well.
Finally, we prove that the l.h.s. of (6.7) converges in the following sense

∫

Q∞
ρ̃a
k (−wk∂tφ + Ak∇wk · ∇φ) →

∫

Q∞
ρ̃a(−w∂tφ + Ā∇w · ∇φ). (6.8)

Let us fix R > 0 such that spt(φ) ⊂ QR ∩ Q∞ and observe that Q∞ = B∞ × R. Since
{wk} is uniformly bounded in L∞(Q2R ∩ Q∞) one has that {wk} is uniformly bounded in
L2(Q2R ∩ Q∞, ρ̃a

k ). Then, by using the Caccioppoli inequality (3.1), we get that {wk} is
uniformly bounded in L2(−R2, R2; H1(BR∩B∞, ρ̃a

k ))∩L∞(−R2, R2; L2(BR∩B∞, ρ̃a
k )).

Using the a.e. convergences Ak(z, t) → Ā and ρ̃a
k → ρ̃a , we are able to apply Lemma 4.2,

with minor changes, and the convergence (6.8) holds.
This convergence, combined with the previous ones, tells us that w is an entire solution

to

ρ̃a∂tw − div(ρ̃a Ā∇w) = 0, in R
N+2, (6.9)
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in Case 1 while, in Case 2, w is an entire solution to
{

ρ̃a∂tw − div(ρ̃a Ā∇w) = 0, in R
N+1+ × R,

ρ̃a Ā∇w · eN+1 = 0 on R
N × {y = l} × R.

(6.10)

Step 6: Liouville theorems. Summarizing, we have thatw solves (6.9) or (6.10), is globally
C0,α

p -continuous in Q∞ and is not constant. By the global C0,α
p -continuity (6.5), it follows

that

|w(z, t)| ≤ |w(z, t) − w(0, 0)| + |w(0, 0)| ≤ (|z|2 + |t |)α/2.

In Case 1, since yk
rk

→ +∞, we have

ρ̃a
k (y)=

(
1

ν2k

(

ε2k + y2k

(
rk
yk

y + 1

)2
))a/2

=
(

ε̃2k + ỹk
2
(
rk
yk

y + 1

)2
)a/2

→ (ε̃2 + ỹ2)a/2,

which is a positive constant. Then, by the classical Liouville theorem for the heat equation,
see Remark 5.3, and the above growth condition, the solution w must be constant and this is
a contradiction.

In Case 2, yk
rk

≤ C , uniformly in k and ỹk
r̃k

= yk
rk

→ ỹ
r̃ = l. Up to consider a translation of

ỹ
r̃ = l, we can assume ỹ = 0 and then ρ̃a(y) = (ε̃2 + r̃2y2)a/2. There are three possibilities:

• ε̃ = 0, r̃ �= 0, ρ̃a(y) = |y|a .
• ε̃ �= 0, r̃ = 0, ρ̃a(y) = 1.
• ε̃ �= 0, r̃ �= 0, ρ̃a(y) = (1 + y2)a/2, up to a dilation of ε̃

r̃ .

In any case, we can invoke Liouville Theorem 1.2 inRN+1+ ×R and by Remark 5.3 we obtain
again a contradiction. ��

7 Hölder estimates for the gradient

Theorem 7.1 Let N ≥ 1, a > −1, p > N+3+a+,α ∈ (0, 1− N+3+a+
p ). Let A ∈ C0,α

p (Q+
1 )

be a matrix satisfying (1.2). As ε → 0 let {uε} be a family of solutions to
{

ρa
ε ∂t uε − div(ρa

ε A∇uε) = ρa
ε fε + div(ρa

ε Fε) in Q+
1 ,

ρa
ε (A∇uε + F) · eN+1 = 0 on ∂0Q+

1 .
(7.1)

Then, there exists a constant C > 0 depending on N, a, λ, �, p, α and ‖A‖C0,α
p (Q+

1 )
such

that

‖uε‖C1,α
p (Q+

1/2)
≤ C

(
‖uε‖L2(Q+

1 ,ρa
ε ) + ‖ fε‖L p(Q+

1 ,ρa
ε ) + ‖Fε‖C0,α

p (Q+
1 )

)
.

Proof To simplify the notation, let ∂i := ∂xi for i = 1, . . . , N and ∂N+1 := ∂y . As in
Theorem 6.1, without loss of generality, we can assume that there exists C > 0, which is
uniform in ε → 0+, such that

‖uε‖L2(Q+
1 ,ρa

ε ) + ‖ fε‖L p(Q+
1 ,ρa

ε ) + ‖Fε‖C0,α
p (Q+

1 )
≤ C .

Step 1: Contradiction argument and blow-up sequences. Consider a cut-off function η ∈
C∞
c (Q+

1 ) such that

η ≡ 1 in Q+
1/2, 0 ≤ η ≤ 1, spt(η) = Q+

3/4.
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By smoothness of η, it immediately follows that η ∈ C1,1
p (Q+

1 ); that is, there exists a constant
M > 0, which depends only on N , such that ‖η‖C1,1

p (Q+
1 )

≤ M .

By contradiction, let us suppose that there exist p > N + 3 + a+, α ∈ (0, 1 − N+3+a+
p )

and a sequence of solutions {uk} := {uεk } as εk → 0+ to (7.1), such that

‖ηuk‖C1,α
p (Q+

1 )
→ +∞.

Define

Lk := max
{
{[∂i (ηuk)]C0,α

p (Q+
1 )

: i = 1, . . . , N + 1, [ηuk]
C
0, 1+α

2
t (Q+

1 )

}
,

and distinguish two cases: first, let us suppose that there exists i ∈ {1, . . . , N + 1}
such that Lk = [∂i (ηuk)]C0,α

p (Q+
1 )

(later we will deal with the second case, when Lk =
[ηuk]

C
0, 1+α

2
t (Q+

1 )
). Notice that it cannot be ‖∇(ηuk)‖L∞(Q+

1 ) → +∞ and [ηuk]C1,α
p (Q+

1 )

remains bounded, since the functions ηuk are identically zero outside Q+
3/4, for every k.

Next, we take two sequences of points Pk = (zk, tk), P̄k = (ξk, τk) ∈ Q+
3/4 such that

|∂i (ηuk)(Pk) − ∂i (ηuk)(P̄k)|
dp(Pk, P̄k)α

≥ 1

2
Lk → +∞.

Let rk := dp(Pk, P̄k), ẑk := (x̂k, ŷk) ∈ B+
3/4 be a sequence of points which will specify

below. Let r̄ := 4/5. For k large let us define

Q(k) := B+
r̄ − ẑk
rk

× (−r̄2 − tk, r̄2 − tk)

r2k .
,

and set Q∞ := limk→+∞ Q(k). We define two blow-up sequences as follows

vk(z, t) := η(rk z + ẑk, r2k t + tk)

Lkr
1+α
k

(uk(rk z + ẑk, r
2
k t + tk) − uk(ẑk, tk)),

wk(z, t) := η(ẑk, tk)

Lkr
1+α
k

(uk(rk z + ẑk, r
2
k t + tk) − uk(ẑk, tk)),

(7.2)

for (z, t) ∈ Q(k). Then, we distinguish two cases:
Case 1:

yk
rk

= dp(Pk, �)

rk
→ +∞,

as k → +∞. Since yk is uniformly bounded, we have that rk → 0 and Q∞ = R
N+2. In this

case we set ẑk = zk .
Case 2:

yk
rk

= dp(Pk, �)

rk
≤ C,

uniformly in k. We set ẑk = (xk, 0) and we will show later that also in this case rk → 0,
which implies that Q∞ = R

N+1+ × R.
Step 2: Parabolic Hölder estimates. Let us fix a compact set K ⊂ Q∞. Then, K ⊂ Q(k)

for any k large. For every P = (z, t), Q = (ξ, τ ) ∈ K , P �= Q and for every j =
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1, . . . , N + 1, we have

|∂ jvk(P) − ∂ jvk(Q)| ≤ |∂ j (ηuk)(rk z + ẑk, r2k t + tk) − ∂ j (ηuk)(rkξ + ẑk, r2k τ + tk)|
Lkrα

k

+ |uk(ẑk, tk)||∂ jη(rk z + ẑk, r2k t + tk) − ∂ jη(rkξ + ẑk, r2k τ + tk)|
Lkrα

k

≤
[∂ j (ηuk)]C0,α

p (Q+
1 )
dp(P, Q)α

Lk
+

‖uk‖L∞(Q+
3/4)

r1−α
k Mdp(P, Q)

Lk

≤ dp(P, Q)α + CM

Lk
,

since [∂ j (ηuk)]C0,α
p (Q+

1 )
≤ Lk , rk ≤ C , ‖uk‖L∞(Q+

3/4)
≤ C and dp(P, Q)1−α ≤ C in K . By

dividing the previous inequality by dp(P, Q)α and using Lk → +∞, we get

sup
P,Q∈K
P �=Q

|∂ jvk(P) − ∂ jvk(Q)|
dp(P, Q)α

≤ 1 + o(1). (7.3)

as k → +∞. On the other hand, for every P = (z, t), Q = (z, τ ) ∈ K , t �= τ , we have that

|vk(P) − vk(Q)| ≤ |(ηuk)(rk z + ẑk, r2k t + tk) − (ηuk)(rk z + ẑk, r2k τ + tk)|
Lkr

1+α
k

+ |uk(ẑk, tk)||η(rk z + ẑk, r2k t + tk) − η(rk z + xk, r2k τ + tk)|
Lkr

1+α
k

≤ |t − τ | 1+α
2 +

‖uk‖L∞(Q+
3/4)

r1−α
k M |t − τ |

Lk
,

so

sup
(z,t),(z,τ )∈K

t �=τ

|vk(z, t) − vk(z, τ )|
|t − τ | 1+α

2

≤ 1 + o(1). (7.4)

Putting together this inequality with (7.3), we obtain the uniform boundedness of [vk]C1,α
p (K )

,

noticing that these considerations are valid in both Case 1 and Case 2.
Step 3: Convergence of blow-ups. For P = (z, t) ∈ Q(k), let us define

v̄k(P) := vk(P) − ∇vk(0) · z, w̄k(P) := wk(P) − ∇wk(0) · z. (7.5)

Notice that v̄k(0) = 0 = w̄k(0) and |∇v̄k(0)| = 0 = |∇w̄k(0)|. For every K ⊂ Q∞ compact,
since [v̄k]C1,α

p (K )
= [vk]C1,α

p (K )
, we have that ‖v̄k‖C1,α

p (K )
is uniformly bounded. Then, we

can apply the Arzelá-Ascoli theorem and infer that v̄k → v̄ inC1,γ
p (K ), for any γ < α. Now,

passing to the limit in (7.3) and in (7.4) and by a countable compact exhaustion of Q∞, we
obtain that the limit function v̄ satisfies

[v̄]C1,α
p (Q∞)

≤ C,

that is, v̄ is globally C1,α
p -continuous in Q∞.

123



  204 Page 38 of 46 A. Audrito et al.

Next, we want to show that the sequence {w̄k} converges uniformly to v̄ on compact sets.
Let us fix K ⊂ Q∞, such that K ⊂ Q(k) for any k large. Since∇v̄k(0) = ∇w̄k(0), for every
P = (z, t) ∈ K , we have

|v̄k(P) − w̄k(P)| = |vk(P) − wk(P)|

≤ |η(rk z + ẑk , r
2
k t + tk) − η(ẑk , tk)| · |uk(rk z + ẑk , r

2
k t + tk) − uk(ẑk , tk)|

Lkr
1+α
k

≤ Crkdp(P, 0) · Mrα
k dp(P, 0)α

Lkr
1+α
k

= CMdp(P, 0)1+α

Lk
→ 0,

as k → +∞, by the properties of η and the Theorem 6.1, which ensures local uniform bound
of uk in C

0,α
p -space. This implies that w̄k → v̄ uniformly in K .

Step 4: ∇v̄ is not constant. Let us define two sequences of points as

Sk :=
(

ξk − ẑk
rk

,
τk − tk
r2k

)

, S̄k :=
(
zk − ẑk

rk
, 0

)

∈ Q(k).

In Case 1, one has ẑk = zk , then Sk → S ∈ Q∞, up to consider a subsequence, and S̄k = 0.
Let i ∈ {1, . . . , N + 1} be the one that realizes the maximum of Lk . We can compute, as
k → +∞

|∂i v̄k(Sk) − ∂i v̄k(S̄k)| = |∂ivk(Sk) − ∂ivk(0)|

= |∂i (ηuk)(P̄k) − ∂i (ηuk)(Pk) − uk(Pk)(∂iη(P̄k) − ∂iη(Pk))|
Lkrα

k

≥ 1

2
−

‖uk‖L∞(Q+
3/4)

Mr1−α
k

Lk
= 1

2
+ o(1).

Then, as k → +∞, we obtain that |∂i v̄(S) − ∂i v̄(0)| ≥ 1
2 , which implies that ∇v̄ is not

constant.
Instead, in Case 2, we have S̄k = yk

rk
en+1, which converge to a point S̄, up to consider a

subsequence, by the fact that yk
rk

≤ C uniformly in k. The sequence Sk can be written as

Sk =
(

ξk − zk
rk

,
τk − tk
r2k

)

+ yk
rk

eN+1,

and still converges, up to a subsequence, to a point S ∈ Q∞. So, also in this case, we have

|∂i v̄k(Sk) − ∂i v̄k(S̄k)| = |∂ivk(Sk) − ∂ivk(0)| ≥ 1

2
+ o(1),

which allows us to conclude that v̄ has non constant gradient exactly as in Case 1.
Step 5: rk → 0 in Case 2. By contradiction, let us suppose that, up to consider a subse-

quence, rk → r̃ > 0 in Case 2. Then, if K ⊂ Q∞ is a fixed compact set, we have

sup
P∈K

|vk(P)| ≤ 2
‖η‖L∞(Q+

1 )‖uk‖L∞(Q+
3/4)

Lkr
1+α
k

→ 0,

as k → +∞, which means that vk → 0 uniformly on compact sets of Q∞. For every
P = (z, t) ∈ K , by using the convergence v̄k → v̄ obtained in Step 3, one has

v̄(P) = lim
k→+∞ ∇vk(0) · z.
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We claim that the sequence {∇vk(0)}k is bounded. Indeed, assume by contradiction that there
exists j ∈ {1, . . . , N + 1} such that {∂ jvk(0)} is unbounded. Fix R > 0 sufficiently small
such that Q+

R is contained in Q∞. Then

|v̄(Re j )| = R lim
k→+∞ |∇vk(0) · e j | = R|∂ jvk(0)| → +∞,

which is in contradiction to the fact v̄ ∈ C1,α
p (Q+

R ) and hence bounded in Q+
R . Hence, up to

consider a subsequence, we have that ∇vk(0) → ν ∈ R
N+1 and v̄(z, t) = ν · z, which is in

contradiction to the fact that v̄ has non constant gradient. So, we have shown that rk → 0
also in Case 2, which implies thatQ∞ = R

N+1+ × R.
Step 6: v̄ is an entire solution to a homogeneous equation with constant coefficients. First,

we look at the equation satisfied by w̄k in Q(k). As in Theorem 6.1, let us define νk =
|(εk, ŷk, rk)| and (ε̃k, ˜̂yk, r̃k) = (

εk
νk

,
ŷk
νk

,
rk
νk

), which converges, up to consider a subsequence,
to (ε̃, ỹ, r̃). Defining

ρ̃a
k (y) = ρa

εk
(rk y + ỹk)

νak
= (ε̃2k + (r̃k y + ˜̂yk)2)a/2,

and

ρ̃a(y) := (ε̃2 + (r̃ y + ỹ)2)a/2,

we have that ρ̃a
k → ρ̃a a.e. in Q∞.

Let us fix φ ∈ C∞
c (Q∞), with spt(φ) ⊂ Q(k) for any k large. Then,

∫

spt(φ)
ρ̃ak (y)

(
− w̄k∂tφ + A(rk z + ẑk , r

2
k t + tk)∇w̄k · ∇φ

)

= η(ẑk , tk)r
1−α
k ν−a

k
Lk

∫

spt(φ)
ρaεk (rk y + ŷk) fεk (rk z + ẑk , r

2
k t + tk)φ

− η(ẑk , tk)ν
−a
k

Lkr
α
k

∫

spt(φ)
ρaεk (rk y + ŷk)

(
Fεk (rk z + ẑk , r

2
k t + tk) − Fεk (ẑk , tk)

)
· ∇φ

− η(ẑk , tk)ν
−a
k

Lkr
α
k

∫

spt(φ)
ρaεk (rk y + ŷk)

(
A(rk z + ẑk , r

2
k t + tk) − A(ẑk , tk)

)
∇uk(ẑk , tk) · ∇φ

+ η(ẑk , tk)ν
−a
k

Lkr
α
k

∫

spt(φ)
ρaεk (rk y + ŷk)

(
A(ẑk , tk)∇uk(ẑk , tk) + Fεk (ẑk , tk)

)
· ∇φ.

(7.6)

Next, we show that the r.h.s. of (7.6) vanishes in a distributional sense as k → +∞. The
first member can be estimate exactly as in Theorem 6.1, and by the hypothesis on p and α,
we obtain the desired convergence to zero. The second can be bounded as follows

∣
∣
∣
η(ẑk, tk)ν

−a
k

Lkrα
k

∫

spt(φ)

ρa
εk

(rk y + ŷk)
(
Fεk (rk z + ẑk, r

2
k t + tk) − Fεk (ẑk, tk)

)
· ∇φ

∣
∣
∣

≤ ν−a
k ‖∇φ‖L∞(Q∞)

Lkrak

∫

spt(φ)

ρa
εk

(rk y + ŷk)Cr
α
k (|z| + |t |1/2)α ≤ C

Lk
→ 0,

as k → +∞. In the previous inequalities, we have used the uniform boundedness of Fεk in
C0,a

p -space and the estimate
∫

spt(φ)
ρ̃a
k ≤ C .
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Next, we show that the fourth member vanishes. First, we can rewrite it as

η(ẑk, tk)ν
−a
k

Lkrα
k

∫

spt(φ)

ρa
εk

(rk y + ŷk)
(
A(ẑk, tk)∇uk(ẑk, tk) + Fεk (ẑk, tk)

)
· ∇φ

= η(ẑk, tk)ν
−a
k

Lkrα
k

∫

spt(φ)

div
(
ρa

εk
(rk y + ŷk)(A(ẑk, tk)∇uk(ẑk, tk) + Fεk (ẑk, tk))φ

)

+ η(ẑk, tk)ν
−a
k

Lkrα
k

∫

spt(φ)

∂y
(
ρa

εk
(rk y + ŷk)

)
(A(ẑk, tk)∇uk(ẑk, tk) + Fεk (ẑk, tk)) · eN+1φ.

(7.7)

By using the divergence theorem, we can rewrite the first member in (7.7) as
∫

spt(φ)

div

(

ρa
εk

(rk y + ŷk)(A(ẑk, tk)∇uk(ẑk, tk) + Fεk (ẑk, tk))φ

)

dzdt

=
∫

∂{spt(φ)}

(

ρa
εk

(rk y + ŷk)(A(ẑk, tk)∇uk(ẑk, tk) + Fεk (ẑk, tk))φ

)

dσ,

and observe that this is equal to zero. In fact, in Case 1 we have Q∞ = R
N+2 and φ has

compact support. Instead, in Case 2, since ẑk lies on the flat boundary, the term vanishes by
the conormal boundary condition satisfied by uk .

The second term in the r.h.s. of (7.7) vanishes too. In Case 2 it is identically zero since
(A∇uk + Fεk )(ẑk, tk) = 0 by the conormal boundary condition. Let us consider Case 1 and
recall that ŷk = yk and

rk
yk

→ 0 as k → +∞. Then, on compact subsets of RN+2, one has
the following estimate

∣
∣ν−a

k ∂y[ρa
εk

(rk y + yk)]
∣
∣ =

∣
∣
∣ν

−a
k arkρ

a
εk

(rk y + yk)
rk y + yk

ε2k + (rk y + yk)2

∣
∣
∣

≤ aρ̃a
k (y)

rk
yk

∣
∣
∣
∣
∣
∣
∣

rk
yk
y + 1

ε2k
y2k

+
(
rk
yk
y + 1

)2

∣
∣
∣
∣
∣
∣
∣

≤ C
rk
yk

.

Next, let (ζk, tk) = (xk, 0, tk) be the projection of (ẑk, tk) = (zk, tk) on the hyperplane {y =
0}. By the conormal boundary condition, we have that [η(A∇uk + Fεk )](ζk, tk) · eN+1 = 0,
so

η(ẑk, tk)ν
−a
k

Lkrα
k

∫

spt(φ)

∂y
(
ρa

εk
(rk y + ŷk)

)
(A∇uk + Fεk )(ẑk, tk) · eN+1φ(z, t)dzdt

= ν−a
k

Lkrα
k

∫

spt(φ)

∂y
(
ρa

εk
(rk y + ŷk)

)[
η(A∇uk + Fεk )

]
(ẑk, tk) · eN+1φ(z, t)dzdt

− ν−a
k

Lkrα
k

∫

spt(φ)

∂y
(
ρa

εk
(rk y + ŷk)

)[
η(A∇uk + Fεk )

]
(ζk, tk) · eN+1φ(z, t)dzdt .

We can estimate
∣
∣
∣
[
η(A∇uk + Fεk )

]
(ẑk, tk) − [

η(A∇uk + Fεk )
]
(ζk, tk)

∣
∣
∣

≤
∣
∣
∣A∇(ηuk)(ẑk, tk) − A∇(ηuk)(ζk, tk)

∣
∣
∣ +

∣
∣
∣uk A∇η(ẑk, tk) − uk A∇η(ζk, tk)

∣
∣
∣

+
∣
∣
∣ηFεk (ẑk, tk) − ηFεk (ζk, tk)

∣
∣
∣
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≤ CLk y
α
k .

We remark here that in order to estimate the second term above we have used the uniform
C0,γ

p regularity of uks for some chosen γ ≥ α. Finally, we obtain that

η(ẑk, tk)ν
−a
k

Lkrα
k

∫

spt(φ)

∂y
(
ρa

εk
(rk y + ŷk)

)
(A∇uk + Fεk )(ẑk, tk) · eN+1φ(z, t)dzdt

≤ C

(
rk
yk

)1−α

→ 0.

So, also in Case 1 we obtain that the fourth member of the r.h.s. of (7.6) vanishes.
To conclude, we prove that the third member of (7.6) goes to zero as k → +∞. Notice

that
∣
∣
∣η(ẑk, tk)

(
A(rk z + ẑk, r

2
k t + tk) − A(ẑk, tk)

)
∇uk(ẑk, tk)

∣
∣
∣

=
∣
∣
∣

(
A(rk z + ẑk, r

2
k t + tk) − A(ẑk, tk)

)
∇(ηuk)(ẑk, tk)

− (
A(rk z + ẑk, r

2
k t + tk) − A(ẑk, tk)

)∇η(ẑk, tk)uk(ẑk, tk)
∣
∣
∣

≤ rα
k ‖∇(ηuk)‖L∞(Q+

3/4)
+ rα

k ‖∇η‖L∞(Q+
3/4)

‖uk‖L∞(Q+
3/4)

≤ Crα
k Lk,

where we have used the following parabolic Hölder interpolation inequality, see [25, Propo-
sition 4.2]

‖∇(ηuk)‖L∞(Q+
3/4)

≤ C
(
‖ηuk‖L∞(Q+

3/4)
+ [ηuk]C1,α

p (Q+
3/4)

)
≤ C(1 + Lk).

Then, in order to make vanish the full term we need to reason in two steps: first, one proves
a uniform C1,β estimate with a given suboptimal β ∈ (0, α). In fact, in this case the third
term vanishes as follows

∣
∣
∣
∣

η(ẑk , tk )ν
−a
k

Lkr
β
k

∫

spt(φ)
ρaεk (rk y + ŷk )

(
A(rk z + ẑk , r

2
k t + tk ) − A(ẑk , tk )

)
∇uk (ẑk , tk ) · ∇φ(z, t)dzdt

∣
∣
∣
∣

≤ rα−β
k

∫

spt(φ)
ρ̃ak (y)‖∇φ‖L∞(Q∞)dzdt ≤ Crα−β

k → 0,

as k → +∞. Then one can procede with the suboptimal exponent β up to the end of the
present proof. This provides uniform boundedness of the sequence ∇uk . Then, restarting the
proof with the optimal α and the additional information above, in the previous computation
we get

∣
∣
∣
η(ẑk , tk )ν

−a
k

Lkr
α
k

∫

spt(φ)
ρaεk (rk y + ŷk )

(
A(rk z + ẑk , r

2
k t + tk ) − A(ẑk , tk )

)
∇uk (ẑk , tk ) · ∇φ(z, t)dzdt

∣
∣
∣

≤ C

Lk
‖∇uk‖L∞(Q+

3/4)
,

which converges to zero. Putting together all previous information, we have proved that the
r.h.s. in (7.6) vanishes as k → +∞.

Let (z̄, t̄) = limk→+∞(ẑk, tk) and Ā := limk→+∞ A(rk z + ẑk, r2k t + tk). Arguing as in
Theorem 6.1, we can prove the convergence of the l.h.s. of (7.6) in the following sense

∫

spt(φ)

ρ̃a
k

( − wk∂tφ + A(rk z + ẑk, r
2
k t + tk)∇wk · ∇φ

)
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→
∫

spt(φ)

ρ̃a( − v̄∂tφ + Ā∇v̄ · ∇φ
)
,

and obtain that v̄ is an entire solution to

∂t v̄ − div( Ā∇v̄) = 0 in R
N+2, (7.8)

in Case 1 and v̄ is an entire solution to
{

ρ̃a∂t v̄ − div(ρ̃a Ā∇v̄) = 0 in R
N+1+ × R,

ρ̃a Ā∇v̄ · eN+1 = 0 on R
N × {0} × R,

(7.9)

in Case 2.
Step 7: Liouville theorems. Since v̄ is globally C1,α

p -continuous in Q∞, it follows that

|2v̄(z, t)| ≤ |2v̄(z, t) − v̄(0, t) − ∇v̄(0, t) · z − v̄(z, 0)| + |v̄(0, t)| + |∇v̄(0, t) · z| + |v̄(z, 0)|
≤ |v̄(z, t) − v̄(0, t) − ∇v̄(0, t) · z| + |v̄(z, t) − v̄(z, 0)| + C + C |z| + C

≤ C |z|1+α + C |t | 1+α
2 + C(1 + |z|)

≤ C(1 + (|z|2 + |t |)) 1+α
2 ,

The estimate above exploit a first-order expansion in the spacial variable z for t fixed. How-
ever, the constant C > 0 can be chosen independently from the point (z, t).

Hence, as in Theorem 6.1, by the growth condition above, we can apply the Liouville
Theorem 1.2 in both Case 1 and Case 2, keeping in mind Remark 5.3, and obtain that v̄ is a
linear function, independent of t , in contradiction with the fact that ∇v̄ is not constant.

Step 8: The case Lk = [ηuk]
C
0, 1+α

2
t (Q+

1 )
. In this case, the argument is similar with minor

differences. As above, we take two sequences of points Pk = (zk, tk), P̄k = (zk, τk) ∈ Q+
3/4,

such that

|(ηuk)(zk, tk) − (ηuk)(zk, τk)|
|tk − sk | 1+α

2

≥ 1

2
Lk → +∞. (7.10)

Defining rk := dp(Pk, P̄k) = |tk − τk |1/2, by (7.10) and the local uniform boundedness of
solutions, see Proposition 3.1, we get rk → 0.

We define two blow-up sequences vk and wk as in (7.2), centered in the new blow-up
sequence Pk , defined on the domains Q(k), which are the same as above and set Q∞ :=
limk→+∞ Q(k).

Since [∂ j (ηuk)]C0,α
p (Q+

1 )
≤ Lk , for every j = 1, . . . , N + 1, we obtain that the estimates

(7.3) and (7.4) holds; that is, [vk]C1,α
p (K )

≤ C , uniformly in k, for every compact set K ⊂ Q∞.

Defining v̄k and w̄k as in (7.5), we can use the Arzelá-Ascoli theorem to obtain that v̄k → v̄ in
C1,γ

p (K ), for any γ ∈ (0, α), w̄k → v̄ uniformly on K and that v̄ is globallyC1,α
p -continuous

in Q∞.
The crucial difference between this case and the previous one is in Step 4: in this case we

claim that v̄ is non constant in the variable t . Indeed, we have that

∣
∣
∣v̄k

(

0,
tk − τk

r2k

)

− v̄k(0, 0)
∣
∣
∣ =

∣
∣
∣vk

(

0,
tk − τk

r2k

)
∣
∣
∣ = |η(zk, τk)(uk(zk, τk) − uk(zk, tk))|

Lkr
1+α
k

≥ |(ηuk)(zk, τk) − (ηuk)(zk, tk)|
Lkr

1+α
k

− |(η(zk, τk) − η(zk, tk))uk(zk, tk)|
Lkr

1+α
k
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≥ 1

2
−

Mr1−α
k ‖uk‖L∞(Q+

3/4)

Lk
= 1

2
+ o(1),

as k → +∞. Observing that tk−τk
r2k

→ t̄ �= 0, up to consider a subsequence, we can take the

limit as k → +∞ in the previous computation to obtain |v̄(0, t̄) − v̄(0, 0)| ≥ 1
2 ; that is, v̄ is

non constant in t .
With the same argument of Step 6 we can prove that v̄ is an entire solution to (7.8) or

(7.9). Moreover, since v̄ is globally C1,α
p -continuous in Q∞, then it satisfies a parabolic

sub-quadratic growth condition. Hence by the Liouville theorem (Theorem 1.2), we get that
v̄ should be a linear function not depending on t and this is a contradiction. ��

Combining the uniform estimates obtained for the regularized problems and Lemma 4.3
in the half cylinder (see Remark 4.4), we obtain our main Theorem 1.1 as a byproduct.

Proof of Theorem 1.1 Let u be a weak solution to (1.1) in Q+
1 in the sense of Definition 2.15.

By Lemma 4.3 and Remark 4.4, we can find sequences {uεk }k , { fεk }k , {Fεk }k as εk → 0+,
such that every uεk is a solution to

{
ρa

εk
∂t uεk − div(ρa

εk
A∇uεk ) = ρa

εk
fεk + div(ρa

εk
Fεk ) in Q+

3/4

ρa
εk

(
A∇uεk + Fεk

) · eN+1 = 0 in ∂0Q+
3/4,

and uεk → u in L2
loc(I3/4; H1

loc(B3/4\�)) as εk → 0+. Furthermore, fεk and Fεk satisfy the
assumptions of Theorem6.1 (respectively of Theorem7.1): this implies uniformboundedness
of the C0,α

p (Q+
1/2)-norm of uεk (respectively of the C

1,α
p (Q+

1/2)-norm). Then, by the Arzelà-
Ascoli Theorem and by the a.e. convergences uεk → u and ∇uεk → ∇u, we obtain that the
estimates (1.6) and (1.7) hold true.

Finally, in the C1,α
p case, the boundary condition (1.8) follows by the C1(Q+

1/2)-
convergence uεk → u. ��

7.1 Weights degenerating on curved characteristic manifolds

In this last section, we show how to extend theC1,α regularity estimates toweak solutions of a
class of equations having weights vanishing or exploding on curved characteristic manifolds
�, as in (1.13). Let us begin with the notion of weak solutions to (1.13).

Definition 7.2 Let a > −1 and N ≥ 1. Let ϕ ∈ C1,α(B1 ∩ {y = 0}) be the parametrization
defined in (1.11), δ ∈ C1,α(�+ ∩ B1) satisfying (1.12), f ∈ L2((�+ ∩ B1) × (−1, 1), δa)
and F ∈ L2((�+ ∩ B1) × (−1, 1), δa)N+1. We say that u is a weak solution to (1.13)

if u ∈ L2(I1; H1(�+ ∩ B1, δ
a)) ∩ L∞(I1; L2(�+ ∩ B1, δ

a)) and satisfies

−
∫

(�+∩B1)×(−1,1)
δau∂tφ dzdt +

∫

(�+∩B1)×(−1,1)
δa A∇u · ∇φ dzdt

=
∫

(�+∩B1)×(−1,1)
δa( f φ − F · ∇φ) dzdt,

for every φ ∈ C∞
c (Q1).

Proof of Corollary 1.3 Since the proof is very similar to the one of Theorem 1.1, we just sketch
it highlighting the main differences.
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Step 1. Reducing to flat characteristicmanifolds by a local diffeomorphism.Let us consider
a classical diffeomorphism which straighten the hypersurface �,

�(x, y) = (x, y + ϕ(x)),

which is of classC1,α and thenC1,α
p extending constantly in the time variable. Actually,�−1

locally flattens � to �. In fact, there exists a small radius R > 0 such that �(BR ∩ {y >

0}) ⊆ B1 ∩ {y > ϕ(x)}, �(0) = �−1(0) = 0 and �(BR ∩ {y = 0}) ⊆ B1 ∩ {y = ϕ(x)}.
The Jacobian associated to � is

J�(x) =
(

IN 0
(∇ϕ(x))T 1

)

, with | det J�| ≡ 1.

Up to a dilation, one has that ũ := u ◦ (�(x), t) is a weak solution to
⎧
⎨

⎩

δ̃a∂t ũ − div(δ̃a Ã∇ũ) = δ̃a f̃ + div(δ̃a F̃), in Q+
1 ,

lim
y→0+δ̃a( Ã∇ũ + F̃) · eN+1 = 0 on ∂0Q+

1 .

where δ̃ = δ ◦ �, f̃ = f ◦ (�(x), t) and F̃ = J−1
� F ◦ (�(x), t) and Ã = (J−1

� )(A ◦
(�(x), t))(J−1

� )T .
By [36, Lemma 2.3], δ̃ ∈ C1,α(B+

1 ) and satisfies

δ̃ > 0 in B+
1 , δ̃ = 0 on ∂0B+

1 , ∂y δ̃ > 0 on ∂0B+
1 ,

δ̃

y
∈ C0,α(B+

1 ),

δ̃

y
≥ μ > 0 in B+

1 ,

where the last nondegeneracy condition is a consequence of the assumption |∇δ| ≥ c0 > 0.
Now, noticing that ũ is a weak solution to

⎧
⎨

⎩

ya
(

δ̃
y

)a
∂t ũ − div(ya Ā∇ũ) = ya f̄ + div(ya F̄), in Q+

1 ,

lim
y→0+y

a( Ā∇ũ + F̄) · eN+1 = 0 on ∂0Q+
1 .

(7.11)

where Ā = Ã(δ̃/y)a ∈ C0,α
p (Q+

1 ), f̄ = f̃ (δ̃/y)a ∈ L p(Q+
1 , ya) and F̄ = F̃(δ̃/y)a ∈

C0,α
p (Q+

1 ), we are taken back to an equation with the standard degenerate or singular weight
ya as in (1.1), but with a new nondegenerate term (δ̃/y)a in front of the time derivative.

Step 2. Regularity for flat characteristic manifolds with an extra term in front of the time
derivative. In what follows we show that our regularity theory applies with minor changes to
weak solutions to (7.11); that is, where an extra term b appears in front of the time derivative
in the parabolic equation. The term needs to be uniformly continuous in B+

1 and bounded
away from zero b ≥ μ > 0. In the present case b(z) := (δ̃(z)/y)a , which is even Hölder
continuous.

First, the energy results obtained in Sects. 2, 3, 4 can be easily extended just using the
fact that the positive term b is bounded and bounded away from zero. These bounds ensure
invariance of the norms involved in the functional setting.

Let us focus on the only difference, respect to the proof of Theorem 7.1; that is, the C1,α
p

ε-stable regularity of solutions with regularized weights ρa
ε (the proof of Theorem 6.1, the

ε-stability for the C0,α
p estimate, is analogous): in order to prove that the blow-up sequence

{w̄k} (see (7.5)) converges to an entire solution with constant coefficients, one considers the
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limit in the equation (7.6) satisfied by w̄k with the necessary modifications for the present
case. The l.h.s. converges in the following sense: by using the same considerations of Lemma
4.2 we have that

∫

spt(φ)

ρ̃a
k (y)

(
− b(rk z + ẑk)w̄k∂tφ + A(rk z + ẑk, r

2
k t + tk)∇w̄k · ∇φ

)

→
∫

spt(φ)

ρ̃a( − b̄v̄∂tφ + Ā∇v̄ · ∇φ
)
,

where b̄ = limk→+∞ b(rk z+ ẑk) is a positive constant and Ā = limk→+∞ A(rk z+ ẑk, r2k t +
tk) is a constant coefficient matrix. Therefore, the contradiction argument ends up again with
the use of the Liouville Theorem 1.2. Finally, by Lemma 4.2, with the same considerations
done in the proof of Theorem 1.1, the statement follows. ��
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