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Abstract

The Weighted Safe Set Problem aims to determine in an undirected graph a subset of vertices such that the

weights of the connected components they induce exceed the weights of the adjacent components induced by the

complementary subset. We tackle the problem with various approaches based on randomised constructive and

destructive procedures, comparing them with each other and with the only other existing heuristic approach,

that is a randomised destructive heuristic. The experiments concern all the available benchmark instances

(random graphs up to 60 vertices), but also new benchmark instances with larger size and different topologies,

namely random, small-world, regular, planar, grid and real-world graphs up to 300 vertices. Dense random

graphs, in fact, appear to become progressively easier to solve as their size grows. On the other instances, the

best performance is obtained by combining a randomised constructive procedure, a deterministic destructive

procedure, and delayed termination conditions that allow a deeper exploration of the feasible region.

Keywords: Graph partitioning, Safe Set Problem, Greedy Randomized Adaptive Search Procedure, Large

Neighbourhood Search

1. Introduction

The problems posed by the safety of networks and by the interplay between the subnetworks that compose

them has recently been the object of a strong interest, with a specific focus on communities in social networks.

This has given impulse to the proposal of graph optimisation models that could capture the basic features

of such problems. One of these models is the Weighted Safe Set Problem (Bapat et al., 2016), that can

be roughly defined as the search for a minimal collection of subnetworks whose control allows to indirectly

dominate the whole network. More formally, a connected undirected graph G = (V,E) has a positive weight
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function w : V → Q+ defined on its vertices. Any subset of vertices S ⊆ V induces on G a collection CG(S) of

maximal connected components, while its complement V \S induces a second collection CG(V \S) of components

that form the remaining part of the graph. We denote as safe set a nonempty subset S ⊆ V such that each

connected component Si ∈ CG(S) has a weight not smaller than the weight of any adjacent connected component

Uj ∈ CG(V \ S). The weight of a subset is trivially the sum of the weights of its elements (w(T ) =
∑

v∈T wv).

The adjacency relation between disjoint subsets extends the corresponding relation between vertices: Si and Uj

are adjacent (Si ▷◁ Uj) when there exists an edge between a vertex of Si and a vertex of Uj . The Weighted Safe

Set Problem (WSSP) is the search for a safe set of minimum weight and it can be expressed with the following

combinatorial formulation:

minw(S) (1)

s.t. S ⊆ V (2)

|S| ≥ 1 (3)

w(Si) ≥ w(Uj) Si ∈ CG(S), Uj ∈ CG(V \ S), Si ▷◁ Uj (4)

where Constraint (2) states that the solution is a subset of vertices, Constraint (3) that it is nonempty and

Constraints (4) impose the safety conditions.

The literature proposes several possible real-world applications for the WSSP. Bapat et al. (2016) use it to

model the search for a leading subset of a physical or virtual community represented by a network, where the

weights of the nodes measure their capacity to influence other nodes. Fujita et al. (2016) apply the same model

to the location of emergency refuges inside a building, where the nodes correspond to rooms and the aim is to

offer shelter for the people in the whole building using the minimum possible space.

Motivated by the fact that in the literature there exists only a single heuristic approach to this problem

(Macambira et al., 2019), this paper introduces a number of new metaheuristic approaches to the WSSP. The

first two approaches follow the framework of the Greedy Randomised Adaptive Search Procedure (GRASP) (Feo

and Resende, 1989). They are based on a randomised constructive mechanism that allows multiple restarts,

followed by a destructive post-processing phase to improve the result. Other three approaches improve the

exploration of the solution space by extending the constructive process after the first feasible solution has

been found, to visit several other ones in its surroundings. As they alternate between generating redundant

solutions and reducing them by removing suitable vertices, these approaches show strong similarities to the Large

Neighbourhood Search (LNS ) framework (Shaw, 1998). Two of the latter algorithms prove particularly effective

and outperform the randomised destructive metaheuristic proposed in the literature (Macambira et al., 2019).

They also improve the best known results provided by the state-of-the-art exact algorithm on the available

benchmark instances for which the optimal solution is currently unknown.

The available benchmark instances of the WSSP are random graphs of small size, up to 60 vertices, that

have been proposed to test exact algorithms. We introduce new much larger instances, up to 300 vertices, with
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the same structure. Our experience, however, shows that random graphs become uninteresting for larger sizes,

as most of their feasible solutions tend to assume a specific structure that is easy to optimise. We provide

a conjecture on a possible reason for this phenomenon, based on the theoretical properties of connectivity

in random graphs. Finally, in order to stimulate the development and testing of future approaches, we also

introduce harder instances, given by small-world, regular, planar, grid and real-world graphs from the clustering

literature. For all benchmark instances, we provide in the supplementary material the best results obtained by

the proposed algorithms. The empirical analysis of these results suggests that in most cases good solutions for

the WSSP tend to be connected.

Section 2 provides the survey on the relevant literature. Section 3 describes the two GRASP metaheuristics,

while the approaches with delayed termination are discussed in Section 4. Section 5 reports the computational

results.

2. Survey of the literature

From the theoretical point of view, the problem has been deeply investigated since its first appearance in

Fujita et al. (2016), which proved its strong NP-hardness, even in the unweighted case (wv = 1 for all v ∈ V ).

In the following years, a stream of theoretical papers have characterised the complexity of the problem for

special graph topologies and weight functions. The WSSP is polynomial on paths (Bapat et al., 2016). It is

pseudopolynomial on bounded-treewidth graphs and interval graphs, polynomial on unweighted trees, NP-hard

on unweighted planar graphs and split graphs (Àgueda et al., 2018). Finally, it is fixed-parameter tractable

on general unweighted graphs, with a parameter depending on the size of the solution or the neighbourhood

diversity (Belmonte et al., 2020).

From the computational point of view, a number of exact algorithms have been proposed to solve instances

with few dozens of vertices. Two branch-and-cut approaches, based on Integer Linear Programming (ILP)

formulations, respectively require a cubic (Macambira et al., 2019) or a linear (Malaguti and Pedrotti, 2023)

number of binary variables and an exponential number of constraints, with respect to the number of vertices of

the graph. A compact Mixed Integer Linear Programming (MILP) formulation (Hosteins, 2020) uses a quadratic

number of binary and real variables and a cubic number of constraints. Finally, the combinatorial branch-and-

bound algorithm of Boggio Tomasaz et al. (2022) solves most of the available benchmark instances. To the

best of our knowledge, the only heuristic approach in the literature is the randomised destructive metaheuristic

that is used to provide upper bounds for the first branch-and-cut approach (Macambira et al., 2019) and later

exploited also by Malaguti and Pedrotti (2023). This heuristic starts from the whole vertex set, that is trivially

feasible, and iteratively removes one vertex at a time. It chooses the removed vertex at random, favouring those

which minimise a combination of the degree of the vertex and the sum of the weights of the adjacent vertices

previously removed from the solution. The intuition behind this choice is that such vertices reduce the risk to

leave large and heavy connected components outside the solution.
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3. Two GRASP metaheuristics

GRASP is a general constructive metaheuristic proposed by Feo and Resende (1989). It is based on the idea

that, if a solution is built by subsequently adding elements to an initially empty set, it can be myopic to take

deterministic choices according to a greedy criterion. In fact, selecting wrong elements in the early steps can

force bad selections in the later ones and ultimately fail to generate good solutions. However, the information

provided by the greedy criterion is often not fully misleading, as the elements of the optimal solution are not far

behind the first suggested one. The correction proposed is, therefore, to randomly select one of the best elements

at each step, instead of systematically the first. This also allows to apply the constructive scheme iteratively

and obtain several different solutions. Suitable numerical parameters can be used to tune the randomisation

mechanism, so as to make it more greedy or more random, and correspondingly intensify or diversify the search.

In general, an auxiliary exchange heuristic is applied to improve the solutions thus generated.

This constructive approach is somehow complementary to the destructive one proposed for the WSSP in

Macambira et al. (2019). The latter is based on randomised choices, too, but iteratively removes vertices

from a subset that initially coincides with the whole vertex set V . Our choice to move in the constructive

direction is partly motivated by mere curiosity and partly by the idea that optimal solutions are in general of

small cardinality (see also the theoretical limit on the size of solutions for the unweighted case proved in Fujita

et al. (2016)). A constructive mechanism obtains such solutions in a smaller number of iterations, potentially

in shorter time and with fewer possibilities of committing mistakes with respect to a destructive one. The

drawback is that it requires to move through the infeasible region until a feasible solution is found, and then

remove vertices to make it minimal.

Algorithm 1 provides the pseudocode of the GRASP metaheuristics we propose for the WSSP. They start

from the empty set and progressively extend it: each iteration of the loop in lines 3− 6 adds an unsafe vertex

vnew, until all safety constraints are satisfied. Procedure Extraction() randomly chooses the new vertex with

a selection criterium discussed in the following, that favours vertices of large degree. Since the final solution

can include redundant vertices, the auxiliary function Destructive() turns it into a minimal one, testing the

removal of each vertex in nonincreasing weight order, and performing it when the result is feasible (lines 10−16).

Vertices of equal weight are considered by nondecreasing degree, following the same intuition of the construction

phase.

3.1. Selection criterium

The choice of the new vertex to extend the current subset S during the constructive phase of the algorithm

is not trivial. The vertex weight seems a natural selection criterium, but it affects feasibility and optimality in

opposite ways: on the one hand, vertices with a high weight allow to satisfy the safety constraints as soon as

possible; on the other hand, vertices with a low weight allow to minimise the value of the objective function.

Therefore, it is very hard to predict in advance the most advantageous direction to pursue at each single step.

4



input : G = (V,E): connected undirected graph

w : V → Q+: weight function on the vertices

µ ∈ [0, 1] , α ∈ [0,+∞), type ∈ {RCL,HBSS}: randomisation parameters

output: S: solution returned by the algorithm

1 Algorithm GRASP(G, w, µ, α, type):

2 S := ∅

3 while S is not a safe set do

4 vnew := Extraction(G, S, V \ S, µ, α, type)

5 S := S ∪ {vnew}

6 end

7 return Destructive(G,w, S)

8 Function Destructive(G, w, S):

9 Q := S

10 while Q ̸= ∅ do

11 vmax := argmax
v∈Q

w(v) // minimise the degree to break ties

12 Q := Q \ {vmax}

13 if S \ {vmax} is a safe set then

14 S := S \ {vmax}

15 end

16 end

17 return S

Algorithm 1: The Greedy Randomised Adaptive Search Procedures
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The vertex degree plays a less obvious, but clearer role. By convention, let us denote as safe components

the elements of CG(S) and as unsafe components those of CG(V \ S), even if S is not yet a feasible solution.

Adding to S vertices of large degree is likely to split the unsafe components, and therefore to help satisfy the

safety constraints. The randomised destructive heuristic of Macambira et al. (2019) removes vertices of small

degree that are adjacent to unsafe vertices of small weight, to avoid building unsafe components of large weight.

Our algorithm focuses on the aim to fragment the unsafe components: it neglects the weights of the adjacent

vertices and replaces the overall degree with the number of adjacent unsafe vertices.

Definition 1. Given a connected undirected graph G = (V,E) and a subset S ⊆ V , let the unsafe degree of

a vertex v ∈ V be the number of adjacent vertices belonging to V \ S.

δV \S(v) = |{u ∈ V \ S | (u, v) ∈ E}|

Notice that at the beginning, when S = ∅, the unsafe degree of any vertex coincides with its degree.

3.2. Randomisation schemes

Algorithm 2 reports the pseudocode of the Extraction() procedure, that selects the new vertex to add to

S applying one of two alternative randomisation mechanisms. Notice that the candidate set C from which the

vertex is extracted coincides with V \ S in the GRASP metaheuristics, but it will be reduced in the following

algorithms.

The Restricted Candidate List (RCL) mechanism (lines 4− 9) determines the minimum and the maximum

unsafe degree of the unsafe vertices, respectively denoted as δmin and δmax. Then, it computes a convex

combination δµ of these values with a suitable parameter µ ∈ [0, 1]. Such a combination is used as a threshold,

to build a set C ′ of candidate vertices with large unsafe degree. Then, a candidate vertex is selected at random

with a uniform probability. Large values of µ correspond to more random choices, small values to more greedy

choices. Even when µ = 0, however, the mechanism is not deterministic, because several vertices can have the

maximum unsafe degree.

The Heuristic Biased Stochastic Sampling (HBSS ) mechanism (lines 11−12) considers all candidate vertices,

but assigns them different probabilities, so as to bias the selection in favour of those with larger unsafe degree.

In particular, the probability of each candidate vertex v is proportional to (δV \S(v))α + 1, where the unsafe

degree is raised to a suitable power α ≥ 0 and increased by 1 to guarantee a nonzero probability of being selected

also to vertices with no unsafe adjacent vertices. The smaller is α, the more random the choice; the larger it is,

the greedier.

In summary, the two GRASP metaheuristics combine a randomised constructive phase, based on the vertex

unsafe degree and focused on feasibility, and a deterministic destructive phase, based on the weight of the

vertices and focused on optimality. The latter can be interpreted also as a local search improvement method.
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input : G = (V,E): connected undirected graph

S: current set of safe vertices

C: candidate set of unsafe vertices

µ ∈ [0, 1] , α ∈ [0,+∞), type ∈ {RCL,HBSS}: randomisation parameters

output: vnew: vertex selected to be added to S

1 Function Extraction(G, S, C, µ, α, type):

2 forall v ∈ C do δV \S(v) = |{u ∈ V \ S | (u, v) ∈ E}|

3 if type = RCL then

4 δmin := min
v∈C

δV \S(v)

5 δmax := max
v∈C

δV \S(v)

6 δµ := µ · δmin + (1− µ) · δmax

7 C ′ :=
{
v ∈ C | δV \S(v) ≥ δµ

}
8 forall v ∈ C ′ do π(v) := 1/ |C ′|

9 forall v ∈ C \ C ′ do π(v) := 0

10 else if type = HBSS then

11 forall v ∈ C do φ(v) := (δV \S(v))α + 1

12 forall v ∈ C do π(v) := φ(v)/
∑
x∈C

φ(x)

13 end

14 vnew ← random extraction from C with probability π(·)

15 return vnew
Algorithm 2: The randomised selection procedure
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In fact, consider the neighbourhood that includes the feasible solutions obtained adding or removing a single

vertex. A steepest descent algorithm based on it would behave as the destructive procedure: it would always

select the vertex of maximum weight that can be feasibly removed from the solution. Larger neighbourhoods

could be more effective, but the combination of weight and connectivity aspects of the safety constraints would

probably make their exploration quite inefficient.

The complexity of the GRASP metaheuristics can be easily computed based on the pseudocode of Algorithms

1 and 2. The constructive phase calls for at most |V | times the Extraction() procedure, whose complexity

is TExtr ∈ O(|E| + |V |), because it scans the |E| edges of the graph to compute δV \S and the |V | vertices to

determine their probabilities and select one. The destructive phase has complexity TDestr ∈ O(|V |(|E|+ |V |)),

because it determines which of the O(|V |) vertices of S can be feasibly removed by visiting the induced subgraph

in O(|E|+ |V |) time. Overall, the computational time is TGRASP ∈ O(|V |(|E|+ |V |)).

4. A heuristic with delayed termination

Our computational experience suggests that halting the constructive phase right after the achievement of

feasibility tends to bind too much the following destructive phase. Introducing redundant vertices creates more

expensive solutions, but these often contain better minimal solutions, that the destructive procedure is able

to identify. In other words, starting from the whole vertex set is probably excessively loose, but starting from

the first feasible solution found can be too restrictive. We investigate two complementary ways of delaying

the termination of the algorithm introducing additional vertices. The former, denoted as Simple Delayed

Termination (SDT ), moves from a feasible solution further into the feasible region. The latter, denoted as

Avoidant Delayed Termination (ADT ) prefers the insertion of vertices that are promising, but keep the solution

infeasible, in order to explore the border of the feasible region. As will be clear from the analysis of their

computational complexity, both approaches take more time per iteration than the GRASP approaches described

above. However, they both generate several feasible solutions, instead of a single one, and therefore possibly

provide better results.

4.1. Simple delayed termination

The pseudocode of the SDT heuristic is reported in Algorithm 3. It starts from the feasible solution generated

by the GRASP metaheuristic (lines 2 − 7). Then, it further enlarges the solution, performing a number γ|V |

(with γ ∈ [0, 1]) of extra iterations proportional to the number of vertices. When γ = 0, the SDT heuristic

reduces to the GRASP algorithm.

Differently from the first constructive phase, the additional one (lines 8− 14) starts from a feasible solution

and extracts the new vertex only from a restricted candidate set C composed by the unsafe vertices adjacent

to S, so that feasibility is strictly preserved:

C := {v ∈ V \ S | ∃u ∈ S : (u, v) ∈ E}
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Since splitting the unsafe components to pursue feasibility is no longer necessary, the selection mechanism is not

mainly based on the degree: it simply chooses the candidate vertex of minimum weight (using the maximum

degree as a tie breaker), in order to worsen the objective function as little as possible.

On each enlarged solution S the algorithm applies the destructive procedure to obtain an improved one, S′,

and possibly update the best known one, S∗. Notice that the following extra iterations will add new vertices to

the redundant solution S, not to the minimal solution S′. The rationale of the algorithm, in fact, is that the

redundant vertices introduced could help the destructive procedure get rid of vertices misleadingly added by

the first randomised constructive phase. Of course, the destructive phase could remove the extra vertices, and

possibly regenerate already known solutions, but the extra vertices have been chosen minimising the weight.

So, the destructive phase will consider them later, and remove them only if necessary.

The extra constructive phase and the final destructive phase of the SDT heuristic can be interpreted also

as a LNS procedure (Shaw, 1998) that augments a feasible solution and makes it minimal again, adding and

removing redundant elements with a heuristic criterium.

The complexity of the SDT heuristic is given by the starting GRASP procedure of lines 2− 7, followed by

γ|V | iterations of the loop at lines 9 − 13, whose most expensive subroutine is the Destructive() procedure.

The resulting complexity is TSDT ∈ O(TGRASP + |V | · TDestr) = O(|V |2(|E|+ |V |)).

4.2. Avoidant delayed termination

The ADT heuristic is complementary to the SDT heuristic. Its basic idea is to replace the simple random

choice of a new vertex with a full exploration of all available choices, possibly finding several feasible solutions

and improving each one with the destructive procedure. The termination of the algorithm is delayed after

finding the first feasible solution with the aim to remain in the infeasible region, but still include promising

vertices (with large unsafe degree), so that . The purpose of this choice is to try and obtain that the current

infeasible subset is close (in terms of Hamming distance) to many feasible solutions that provide good starting

points for the destructive procedure. Another possible interpretation of the ADT heuristic is that it combines

the GRASP constructive mechanism with an exploration of the neighbourhood obtained replacing the last

added vertex with another one. This is clearly an intensification mechanism, to better investigate the region of

the solution space chosen by the randomised constructive mechanism.

Algorithm 4 provides a detailed pseudocode. The ADT heuristic starts from the empty set and initialises the

best known solution as the whole vertex set. At each iteration, it performs an exploration phase that considers

all unsafe vertices as candidates and tests for each of them whether adding it to S yields a feasible solution. If

it does, the solution is improved by the destructive procedure and compared with the best known one, in order

to keep it updated, and the vertex is removed from the candidates. After the exploration, one of the remaining

candidate vertices is extracted at random, with the randomisation schemes already described in Section 3.2,

and added to the current solution. If all extensions of the current set are feasible, the candidate set is empty

9



input : G = (V,E): connected undirected graph

w : V → Q+: weight function on the vertices

µ ∈ [0, 1] , α ∈ [0,+∞), type ∈ {RCL,HBSS}: randomisation parameters

γ ∈ [0, 1]: delay factor

output: S∗: solution returned by the algorithm

1 Algorithm SDT(G, w, µ, α, type, γ):

2 S := ∅

3 while S is not a safe set do

4 vnew := Extraction(G, S, V \ S, µ, α, type)

5 S := S ∪ {vnew}

6 end

7 S∗ := Destructive(G,w, S)

8 for l = 1, . . . , γ |V | do

9 C := {v ∈ V \ S | ∃u ∈ S : (u, v) ∈ E}

10 vnew := argmin
v∈C

wv // maximise the degree to break ties

11 S := S ∪ {vnew}

12 S′ := Destructive(G, w, S)

13 if w(S′) < w(S∗) then S∗ := S′

14 end

15 return S∗

Algorithm 3: The Simple Delayed Termination heuristic
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and the algorithm terminates. Otherwise, the termination is delayed, as in the SDT heuristic, until the number

of extra vertices added after finding the first feasible solution exceeds γ|V |. Notice that, even when γ = 0, the

algorithm does not reduce to the GRASP metaheuristic, because the additional exploration phase in general

finds several feasible solutions, instead of a single one.

The single steps of the ADT heuristic are also much slower. In fact, each of the O(|V |) iterations in the

loop of lines 6 − 22 applies the loop of lines 8 − 15 to the O(|V |) candidate vertices of set C. Each iteration

of this inner loop tests the feasibility of the current solution at line 9 with a visit in O(|V | + |E|) time. In

the positive case, it applies the Destructive() procedure, that takes TDestr. Out of the inner loop (lines

17− 18), a new vertex is selected in time TExtr and added to the current solution. In summary, the complexity

is TADT ∈ O(|V |[|V |(|V |+ |E|+TDestr)+TExtr]) = O(|V |3(|E|+ |V |)). This is clearly larger than SDT, though

it should be remarked that the Destructive() procedure is not applied at every iteration and on the whole

graph.

4.3. Truncated avoidant delayed termination

The exploration phase that evaluates all candidate vertices yields potential improvements, but also implies

a significant increase in complexity. The Truncated Avoidant Delayed Termination (TADT ) heuristic reduces

the exploration effort to achieve a compromise between efficiency and effectiveness. The idea is to randomly

extract the candidate vertices and stop as soon as one generates an infeasible solution, instead of considering

all of them. Notice that the random extraction favours the candidates that are more likely to yield feasible

solutions, if possible.

Algorithm 5 provides the pseudocode. The TADT heuristic starts from an empty set, initialises the best

known solution with the whole vertex set and considers all unsafe vertices as candidates. Instead of scanning

them systematically, it extracts one candidate at random with the already described randomisation schemes,

and checks whether adding it to the current solution makes it feasible. If it does, the algorithm improves

the solution, possibly updates the best known one and proceeds to another extraction, removing the used

vertex from the candidate set (and, of course, not adding it to the solution), as in the regular ADT. If the

solution obtained is not feasible, however, the algorithm straightly proceeds with the next iteration, ignoring all

candidates left. This reduces the computational effort, while possibly missing feasible solutions. The rationale is

that, since the extraction is biased in favour of the more promising vertices, the unexplored solutions are likely

to be also infeasible, or at least less interesting than the explored ones. This approach is similar in principle to

the so called first-best exploration strategy of large neighbourhoods, that accepts the first improving neighbour

solution found, as opposed to the global-best strategy, that selects the best one (Hansen and Mladenović, 2006).

When γ = 0, the TADT heuristic explores the same infeasible solutions as GRASP (if the pseudorandom

numbers are the same), which form a subset of those explored by ADT. The difference between GRASP and

TADT, with γ = 0, is that the former terminates as soon as it finds a feasible solution, whereas the latter
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input : G = (V,E): connected undirected graph

w : V → Q+: weight function on the vertices

µ ∈ [0, 1] , α ∈ [0,+∞), type ∈ {RCL,HBSS}: randomisation parameters

γ ∈ [0, 1]: delay factor

output: S∗: solution returned by the algorithm

1 Algorithm ADT(G, w, µ, α, type, γ):

2 S := ∅

3 S∗ := V

4 l := 0

5 found := false

6 repeat

7 C := V \ S

8 for c ∈ V \ S do

9 if S ∪ {c} is a safe set then

10 found := true

11 S′ := Destructive(G,w, S ∪ {c})

12 if w(S′) < w(S∗) then S∗ := S′

13 C := C \ {c}

14 end

15 end

16 if C = ∅ then break

17 vnew := Extraction(G, S, C, µ, α, type)

18 S := S ∪ {vnew}

19 if found then

20 l := l + 1

21 end

22 until l > γ |V |

23 return S∗

Algorithm 4: The Avoidant Delayed Termination heuristic
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explores other feasible solutions, terminating only at the first infeasible one.

The complexity of the TADT heuristic is the same as ADT in the worst case, that corresponds to finding

all feasible solutions at each iteration of the loop in lines 9 − 23, and therefore entering the block in lines

13 − 15, before the unfeasible solution that terminates the loop. The resulting complexity is, consequently,

TTADT ∈ O(|V |3(|E|+ |V |)), but the worst case is likely to be less frequent than in ADT.

5. Computational experiments

This section describes the computational results obtained by the algorithms presented above on a large

collection of benchmark instances with different sizes, topologies and weight functions. All algorithms have

been coded in C99, and compiled with GNU GCC 8.3.0. They have been run on a Linux server, with processor

Intel Xeon E5-2620 2.1GHz server with 16GB of RAM.

After discussing the features of the benchmark instances employed (Section 5.1), we will present the tuning

of the parameters for the GRASP metaheuristics (Section 5.2) and for the delayed termination algorithms

(Section 5.3). The performance of all algorithms on random graphs will show unexpected results, suggesting

that these instances are particularly easy to solve. We will also propose a conjecture for the motivations of this

behaviour. Then, we will compare the performance of these algorithms with each other (Section 5.4) and the

performance of the best one with the only existing heuristic in the literature and with the known optimal values

(Section 5.5). Finally, we will discuss the structure of the solutions, focusing in particular on the number of

safe and unsafe components (Section 5.6).

Unfortunately, optimal results are known only for instances up to 60 vertices, while for larger instances

the quality of the lower bound is bad. Consequently, the results will be evaluated computing the percent gap

(z − z∗)/z∗, where z is the value obtained by each specific algorithm and z∗ the best known value for the same

instance. This underestimates the actual optimality gap and the dissimilarities between different parameter

tunings and algorithms, but is the best possible measure with the available information.

5.1. Instances

The benchmarks considered in our computational experiments are available at https://homes.di.unimi.

it/cordone/research/wssp.html, together with the detailed results. They can be grouped into several classes

based on their topology, size and weight function. The first two classes derive from the literature: they consist of

small instances, and will be only used in Section 5.5 to compare the proposed algorithms with the only existing

heuristic approach in the literature, and to assess its capability to attain the optimal solution in short time.

Benchmark M. (Macambira et al., 2019) This benchmark consists of Erdős-Renyi graphs with a number of

vertices covering all values from 10 to 30. For each size, three different graphs are obtained setting the number

of edges to ⌊δn(n− 1)/2⌋, with density δ ∈ {0.3, 0.5, 0.7}. Each graph corresponds to a weighted instance,
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input : G = (V,E): connected undirected graph

w : V → Q+: weight function on the vertices

µ ∈ [0, 1] , α ∈ [0,+∞), type ∈ {RCL,HBSS}: randomisation parameters

γ ∈ [0, 1]: delay factor

output: S∗: solution returned by the algorithm

1 Algorithm TADT(G, w, µ, α, type, γ):

2 S := ∅

3 S∗ := V

4 l := 0

5 found := false

6 repeat

7 C := V \ S

8 stop := false

9 while not stop and C ̸= ∅ do

10 vnew := Extraction(G, S, C, µ, α, type)

11 C := C \ {vnew}

12 if S ∪ {vnew} is a safe set then

13 found := true

14 S′ := Destructive(G,w, S ∪ {vnew})

15 if w(S′) < w(S∗) then S∗ := S′

16 else

17 S := S ∪ {vnew}

18 if found then

19 l := l + 1

20 end

21 stop := true

22 end

23 end

24 until l > γ |V | or C = ∅

25 return S∗

Algorithm 5: The Truncated Avoidant Delayed Termination heuristic
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with weights randomly extracted from a uniform distribution in {1, . . . , 100}, and an unweighted one, where

all weights are unitary. Overall, therefore, this benchmark consists of 21 · 3 · 2 = 126 instances. It is publicly

available at http://www.cos.ufrj.br/~luidi/papers/safeset.html. The optimal values of these instances

are known.

Benchmark H. (Hosteins, 2020; Boggio Tomasaz et al., 2022) This benchmark has a similar structure, as it also

includes Erdős-Renyi graphs, but the number of vertices is n ∈ {20, 25, 30, 35, 40, 50, 60}, there are four classes

of densities (δ ∈ {0.1, 0.2, 0.3, 0.4}) and 5 instances for each size and density. Also in this case, weighted and

unweighted versions of the same graphs are considered, but in the former the weights are randomly extracted

from a uniform distribution in {1, . . . 10}. Overall, this benchmark consists of 7 · 4 · 5 · 2 = 280 instances. The

optimal values are known for most of these instances.

The new classes consist of larger instances, and will be used to investigate the performance of the algorithms,

and its dependence on topological features. The number of vertices is n ∈ {100, 150, 200, 250, 300} for all graphs,

except for the real-world ones. As in benchmark H, each graph corresponds to a weighted instance, with random

weights extracted from {1, . . . , 10}, and an unweighted one.

Benchmark H+. This is an extension of benchmark H with instances of bigger size. The density δ ranges in

{0.1, 0.2, 0.3, 0.4}, each size and density corresponds to 5 instances. Given the five possible sizes and the two

weight functions, this yields 5 · 4 · 5 · 2 = 200 instances.

Benchmark GC. This consists of 9 graphs used in the 10th DIMACS challenge on Graph Clustering with a

number of vertices and edges ranging from n = 34 and m = 78 to n = 453 and m = 2025. Given the two weight

functions, this yields 9 · 2 = 18 instances.

Benchmark SW. The small-world instances are generated with the Watts–Strogatz model (Watts and Strogatz,

1998), setting the initial degree of the vertices to d ∈ {6, 10} and the randomisation parameter to p = 0.05.

Generating 5 instances for each class yields 5 · 2 · 5 · 2 = 100 instances.

Benchmark Reg. The regular instances have fixed degree d ∈ {5, 10} with edges pairing vertices extracted at

random, excluding those that already have reached the required degree. Since there are 5 graphs for each size

and degree, there are 5 · 2 · 5 · 2 = 100 regular instances.

Benchmark Pla. The planar instances are obtained distributing n points in a square with uniform random

integer coordinates in {1, . . . , 100} and computing a greedy triangulation. As there are 5 graphs for each

dimension, the planar instances are 5 · 5 · 2 = 50.
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Name Type # n δ̄ ϕ

M random 126 [10,30] 9.5 2.5

H random 240 [20,60] 8.1 4.6

H+ random 200 [100,300] 50.1 2.5

GC real-world 18 [34,453] 10.5 5.8

SW smallworld 100 [100,300] 8.0 8.9

Reg regular 100 [100,300] 7.5 4.7

Pla planar 50 [100,300] 5.7 11.3

Grid grid 20 [100,300] 5 11.1

Table 1: Main features of the benchmark instances: acronym, type, number of instances (#), range of the number of vertices (n),

average degree (δ̄) and average diameter (ϕ). The upper two benchmarks derive from the literature, the other ones are new.

Benchmark Grid. The grid instances are 2D and 3D grid graphs with a toroidal structure (the vertices in the

first and the last path for each dimension are linked with each other). In order to obtain the required number

of vertices, we consider the following sizes for 2D graphs: 10 × 10, 10 × 15, 10 × 20, 10 × 25, 15 × 20, and the

following ones for 3D graphs: 4× 5× 5, 5× 5× 6, 5× 5× 8, 5× 5× 10, 5× 6× 10. Overall, there are 10 · 2 = 20

grid instances.

Overall the number of instances considered is 126 + 280 + 200 + 18 + 100 + 100 + 50 + 20 = 894. Table 1

summarises their basic features, reporting for each benchmark the name, the type and number of the instances,

the range of the number of vertices n, the average degree δ̄ and the average diameter ϕ.

5.2. Parameter tuning for the GRASP metaheuristics

Both GRASP metaheuristics have a single parameter that tunes the balance between a greedy and a random

behaviour. The RCL-based heuristic depends on a real parameter µ ∈ [0, 1], for which we consider seven possible

values (µ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}) that progressively enlarge the restricted candidate set, making more

random choices. The HBSS -based heuristic depends on parameter α ≥ 0, for which we consider four possible

values: α ∈ {0, 1, 2, 3}, that progressively bias the choice in favour of the vertices with a high unsafe degree,

making it less random.

We have first applied the 11 resulting heuristics (one for each parameter value considered: 7 for RCL and

4 for HBSS ) with a time limit of 10 seconds on the large random graphs of benchmark H+. The outcome

was completely unexpected: on a large majority of instances (140 out of 200) all heuristics returned the same

result. What is more, this result is the best one found by all algorithms, including also the large number of

SDT, ADT and TADT variants discussed in the following. The phenomenon shows a clear trend with respect

to the size, density and weight distribution of the instances. Table 2 reports for each weight function (on the
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weighted unweighted

|V | 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

100 26.2% 5.8% 2.0% 1.2% 14.3% 2.0% - -

150 6.6% 1.2% - - 2.8% - - -

200 2.9% - - - 1.0% - - -

250 1.2% - - - - - - -

300 0.6% - - - - - - -

Table 2: Maximum gap of the solutions returned by the 11 different parameter settings of the GRASP metaheuristics on each

group of 5 instances of benchmark H+ with the same number of vertices, density and weight distribution

left the weighted instances, on the right the unweighted ones), size (on the rows) and density (on the columns)

the maximum gap obtained by any of the 11 GRASP heuristics on any of the 5 instances with the given

features. Label “-” marks the classes in which all settings obtained the best result for all instances: they are all

characterised by a large size |V | and density δ. The convergence of these values to zero is sharp, and quicker

for the unweighted instances than for the weighted ones.

Our conjecture is that these results are optimal, but we have no formal proof for this statement. Hypothetically,

an unknown flaw could affect all algorithms and induce them to generate the same result, but only if the in-

stance is sufficiently large and dense. What makes this explanation unlikely is that the solution systematically

returned has nearly always the same structure: the safe set forms a single component with a value equal to half

the total weight of the graph. Notice that the constructive phase of all the approaches considered adopts as a

selection criterion the unsafe degree of the vertices, that neglects the edges between each vertex and the current

partial solution. Such a criterion favours the choice of vertices that are nonadjacent. In fact, the heuristics

typically start with a disconnected subset of vertices, that only gradually merge as new ones are added. So, the

algorithms are actually biased against building a single safe component. Moreover, there is a second reason in

favour of assuming that such solutions are indeed optimal. In fact, it is a known property of random graphs of

fixed density that their connectivity progressively increases with size, making it harder to keep a large number

of vertices disconnected from each other (Frieze and Karoński, 2015). Consequently, any safe set with a weight

smaller than half the weight of the graph tends to be infeasible, because it faces a complementary set of unsafe

vertices that has a larger total weight and tends to be connected.

Table 3 reports the average gaps achieved by the GRASP metaheuristics with their 11 different tunings on

the large benchmarks. The upper half refers to the weighted instances and the lower half to the unweighted

ones. Each row concerns a class of instances (plus a row with the overall average), each column a different

tuning of the randomisation parameter, with the RCL mechanism on the left and the HBSS one on the right.

We provide aggregate results because no interesting dependency appears with respect to the size or density of
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µ α

class 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 1 2 3

w
ei
gh

te
d

H+ 1.12% 0.99% 0.93% 0.93% 1.01% 1.18% 1.31% 1.68% 1.68% 1.62% 1.66%

SW 34.86% 33.99% 28.09% 29.17% 27.83% 30.90% 31.29% 29.01% 29.09% 30.22% 30.37%

Reg 7.22% 7.36% 8.21% 8.90% 8.88% 9.14% 11.02% 11.54% 11.54% 11.60% 12.27%

Pla 12.53% 12.36% 10.12% 9.23% 10.26% 9.70% 13.26% 14.71% 14.76% 16.30% 16.76%

Grid 7.30% 6.97% 5.71% 7.05% 6.98% 6.99% 8.69% 9.58% 9.58% 8.54% 7.78%

all 11.07% 10.83% 9.44% 9.78% 9.63% 10.35% 11.34% 11.32% 11.34% 11.68% 11.89%

u
n
w
ei
g
h
te
d

H+ 0.46% 0.38% 0.25% 0.39% 0.31% 0.45% 0.67% 0.74% 0.74% 0.74% 0.75%

SW 18.70% 18.76% 16.65% 16.82% 17.28% 18.07% 21.54% 23.41% 23.41% 22.48% 21.88%

Reg 2.82% 2.82% 3.01% 3.17% 3.66% 3.71% 4.11% 5.27% 5.29% 5.11% 5.03%

Pla 9.48% 8.35% 7.03% 6.14% 6.34% 6.73% 7.60% 8.15% 8.15% 7.08% 7.41%

Grid 51.09% 50.67% 36.18% 26.53% 17.97% 18.91% 10.62% 12.39% 12.39% 12.55% 13.27%

all 7.96% 7.80% 6.58% 6.20% 6.03% 6.34% 7.00% 7.81% 7.82% 7.47% 7.40%

Table 3: Average gaps produced by the different versions of the GRASP metaheuristic for each class of instances

the instances.

As already observed, the random instances of benchmark H+ are easy, in particular in the unweighted case.

On the contrary, the other benchmarks exhibit larger gaps, that vary strongly depending on the instance class

and on the parameter tuning. Unfortunately, no tuning is consistently superior for all classes. For the weighted

instances, the RCL mechanism with µ = 0.2 is the best on average and reasonably good for all classes. The

Wilcoxon’s signed rank test (Wilcoxon, 1945) provides significant p-values for the better performance of this

tuning over all HBSS variants (p < 10−6) and over the RCL variants with µ = 0.0, 0.5 and 0.6 (p < 1%), but

not for the other values. For the unweighted instances, the RCL mechanism with µ = 0.4 is the best on average

and reasonably good for all classes except for the grid instances. Wilcoxon’s test, however, supports this choice

with significant p-values only with respect to the HBSS variants (p < 10−6) and the RCL variants with µ = 0.6

(p < 0.0002), while the other comparisons are nonsignificant. Notice that, when making a series of hypothesis

tests, the probability of coming to at least one false conclusion by chance, known as family-wise error rate,

should be kept under control. This can be done, in a conservative way, by applying the Bonferroni correction

(Dunn, 1961), that amounts to dividing the required threshold by the number of tests performed. Once this

correction is applied, the only statistical results that remain significant are that the chosen variants (µ = 0.2

for the weighted instances and µ = 0.4 for the unweighted ones) perform better than all the HBSS variants.
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5.3. Parameter tuning of the delayed termination approaches

The delayed termination heuristics depend on two parameters: one rules the randomisation mechanism also

used in the GRASP approaches, the other is the delay factor γ that determines how many additional vertices

to introduce in the solution after finding the first feasible solution.

Even if the RCL mechanism dominates the HBSS heuristic, we decided to keep both of them, and all of

the parameter tunings previously considered. This is partly due to the limited statistical significance of the

results obtained on GRASP, and partly on the idea that the delayed termination could interact in hardly pre-

dictable ways with the randomisation scheme. The best tuning of randomisation with the standard termination

could easily be very different from the best tuning with a delayed termination. Randomisation, in fact, is a

classical diversification mechanism, whereas the delayed termination is an intensification mechanism: they play

complementary roles.

We therefore consider the same values of µ and α used above, while γ is set in {0.0, 0.1, 0.2, 0.3, 0.4}. Tables

4, 5 and 6 report the overall average gaps with respect to the best known result on the large benchmarks H+,

SW, Reg, Pla and Grid, respectively for the SDT, ADT and TADT heuristics. The upper half of the tables is

dedicated to the weighted instances, the lower half to the unweighted ones. The left part considers the 7 possible

values of parameter µ for the RCL mechanism, the right part the 4 values of α for the HBSS mechanism. Each

row refers to one of the 5 values of the delayed termination parameter γ.

Concerning SDT, the best average gap for the weighted instances is 2.84% (marked in bold), and is obtained

by µ = 0.3 and γ = 0.2, with a maximum gap equal to 21.55% on the whole benchmark. Wilcoxon’s test

suggests that there is a subset of parameter settings for which the difference in performance with respect to the

best one is not statistically significant. We have shaded in dark grey the settings for which the p-value of these

tests is ≥ 0.05 and in light grey those for which 0.05 > p ≥ 10−4. This reduction of the p-value by a factor of

500 aims to account for the family-wise error rate induced by the large number of tests performed, applying the

(rather conservative) Bonferroni correction.

For the unweighted instances, unexpectedly, the HBSS mechanism with α = 0 or 1 and γ = 0.1 obtains a

4.01% average gap, with a maximum of 27.91%. The two tunings have very similar results, probably due to

the fact that the weights of all vertices and the degrees of many are the same, which makes the selection of

promising elements a hard task for the algorithm. The RCL mechanism tends to perform worse than the HBSS

one on average, contrary to what happened in the GRASP algorithms. However, in this case, Wilcoxon’s test

suggests a wide subset of settings that are not statistically dominated, and most of these settings adopt the

RCL mechanism, including the ones that performed well on the weighted instances.

Concerning ADT (Table 5), the best average gap, that is 9.29%, is obtained by µ = 0.2 and γ = 0.4,

and the maximum one is equal to 49.11%. The unweighted instances behave in a similar way, with the best

tuning in µ = 0.3 and γ = 0.4, yielding an average gap equal to 7.82% and a maximum one equal to 52.94%.

These gaps are much larger than those obtained by SDT. This could suggest that keeping on the border of the
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SDT µ α

γ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 1 2 3

w
ei
gh

te
d

0.0 11.15% 10.88% 9.46% 9.86% 9.76% 10.45% 11.38% 11.38% 11.37% 11.70% 11.98%

0.1 4.50% 4.21% 3.85% 3.72% 3.93% 4.47% 5.20% 6.05% 6.03% 5.90% 5.39%

0.2 3.62% 3.55% 3.17% 2.84% 3.03% 3.46% 3.84% 4.38% 4.39% 4.30% 4.49%

0.3 4.06% 3.86% 3.26% 3.35% 3.39% 3.75% 4.41% 4.65% 4.66% 4.54% 4.55%

0.4 4.55% 4.37% 4.03% 3.77% 4.07% 4.35% 4.88% 5.19% 5.14% 5.07% 5.00%

u
n
w
ei
gh

te
d

0.0 8.03% 7.85% 6.56% 6.26% 6.09% 6.43% 6.89% 7.82% 7.82% 7.57% 7.55%

0.1 6.05% 6.00% 4.57% 4.37% 4.27% 4.22% 4.14% 4.01% 4.01% 4.17% 4.61%

0.2 5.62% 5.85% 5.32% 4.71% 4.71% 4.69% 4.78% 4.65% 4.65% 5.16% 5.16%

0.3 6.13% 6.15% 5.47% 5.39% 5.49% 5.18% 5.24% 5.41% 5.40% 5.83% 5.84%

0.4 6.51% 6.58% 5.86% 5.94% 6.01% 5.62% 5.70% 5.97% 5.97% 6.16% 6.12%

Table 4: Average gaps produced by the different versions of the SDT heuristic on the large instances of benchmarks H+, SW, Reg, Pla

and Grid. In dark grey the settings for which the p-value of these tests is ≥ 0.05 and in light grey those for which 0.05 > p ≥ 10−4.

feasible region is a less effective strategy than diving into it, but it could also simply be due to the stronger

computational cost of ADT. The RCL mechanism tends to be better than HBSS : nearly all good parameter

settings adopt the former.

TADT (Table 6) applies the same rationale as ADT while limiting the computational time and, indeed, it

obtains better gaps. For the weighed instances, the best average gap, that is 6.90%, is obtained by µ = 0.3

and γ = 0.2, while the maximum one is 41.38%. For the unweighted instances, the best tuning is µ = 0.3 and

γ = 0.1 or 0.2, with an average gap equal to 5.06% and a maximum one of 52.94%. These settings are not only

similar to each other, but also to those used by SDT. Moreover, as for SDT, the RCL mechanism dominates

the HBSS one.

In summary, none of the considered tunings clearly dominates the other ones on all benchmarks, but the best

performing algorithms (SDT and TADT ) behave in a similar way, with the RCL variants performing better than

the HBSS ones and the intermediate values of µ and γ better than the extreme ones. In particular, delaying the

termination of the constructive phase is always profitable. One could also wonder whether the results obtained

on the random graphs of benchmark H+, with their peculiar structure (a single large safe component opposed to

a single large unsafe one), could have an excessive impact on the parameter tuning. In practice, this is not the

case: while the average gap on the other instances tends to be much larger, its dependence on the values of the

parameters remains pretty much the same. In fact, most of the instances in benchmark H+ contribute with a

zero gap: they reduce the overall average, but do not influence the comparisons. Wilcoxon’s test, in particular,

automatically neglects such instances.
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ADT µ α

γ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 1 2 3

w
ei
gh

te
d

0.0 19.91% 19.99% 18.78% 18.77% 19.47% 19.70% 22.17% 22.38% 22.36% 23.25% 22.38%

0.1 12.84% 12.95% 12.76% 12.84% 13.41% 14.28% 17.06% 17.02% 17.00% 17.45% 16.55%

0.2 11.21% 11.04% 11.44% 10.95% 11.95% 12.35% 13.77% 14.95% 15.00% 15.28% 14.78%

0.3 10.36% 10.02% 9.94% 9.89% 10.13% 11.14% 12.30% 12.67% 12.69% 13.17% 12.22%

0.4 9.35% 9.36% 9.29% 9.79% 10.20% 10.47% 11.74% 11.70% 11.67% 11.79% 10.92%

u
n
w
ei
g
h
te
d

0.0 13.19% 13.64% 11.27% 11.37% 11.54% 12.56% 13.36% 14.18% 14.17% 13.63% 13.85%

0.1 8.81% 8.82% 8.65% 7.90% 8.81% 10.09% 11.72% 11.22% 11.22% 11.79% 11.64%

0.2 8.28% 8.47% 8.33% 8.02% 8.41% 9.26% 10.23% 10.89% 10.93% 11.15% 10.63%

0.3 7.93% 7.98% 8.07% 8.13% 8.32% 8.96% 9.76% 9.69% 9.67% 10.16% 10.31%

0.4 8.10% 8.39% 8.54% 7.82% 8.50% 9.45% 9.78% 9.97% 9.94% 9.84% 10.37%

Table 5: Average gaps produced by the different versions of the ADT heuristic on the large instances of benchmarks H+, SW, Reg, Pla

and Grid. In dark grey the settings for which the p-value of these tests is ≥ 0.05 and in light grey those for which 0.05 > p ≥ 10−4.

TADT µ α

γ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 1 2 3

w
ei
gh

te
d

0.0 10.62% 10.53% 9.76% 9.33% 9.79% 10.03% 11.02% 10.85% 10.85% 11.46% 11.20%

0.1 8.54% 8.65% 7.74% 6.97% 7.87% 8.40% 9.13% 9.47% 9.49% 9.58% 9.29%

0.2 8.58% 8.88% 7.54% 6.90% 7.25% 7.35% 7.98% 8.38% 8.33% 8.38% 8.39%

0.3 8.59% 8.87% 7.77% 6.98% 7.22% 7.16% 7.31% 7.96% 7.92% 7.60% 7.74%

0.4 8.82% 8.94% 7.82% 7.04% 7.22% 7.13% 7.34% 7.68% 7.68% 7.63% 7.83%

u
n
w
ei
gh

te
d

0.0 7.97% 7.94% 6.38% 5.85% 5.95% 5.92% 6.60% 6.40% 6.42% 6.98% 6.58%

0.1 7.17% 7.13% 5.99% 5.06% 5.49% 5.56% 6.07% 6.72% 6.74% 6.46% 6.59%

0.2 6.99% 7.01% 6.08% 5.06% 5.32% 5.56% 5.97% 6.27% 6.25% 6.39% 6.48%

0.3 6.99% 6.97% 6.06% 5.24% 5.40% 5.62% 6.00% 6.56% 6.60% 6.43% 6.32%

0.4 7.00% 6.98% 6.03% 5.24% 5.45% 5.48% 5.75% 6.91% 6.88% 6.73% 6.48%

Table 6: Average gaps produced by the different versions of the TADT heuristic on the large instances of benchmarks H+, SW,

Reg, Pla and Grid. In dark grey the settings for which the p-value of these tests is ≥ 0.05 and in light grey those for which

0.05 > p ≥ 10−4.
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5.4. Comparison of the competing approaches

After analysing the influence of the parameter tuning on the performance of all the considered algorithms,

we proceed to compare the best versions of the alternative approaches, investigating the distribution of the

gap values and distinguishing not only the weighted and unweighted instances, but also the single specific

benchmarks.

In particular, for the weighted instances we compare GRASP with µ = 0.2, SDT with µ = 0.3 and γ = 0.2,

ADT with µ = 0.2 and γ = 0.4 and TADT with µ = 0.3 and γ = 0.2, once again with a running time of 10

seconds on each instance. The average gaps reported in Table 4 suggest that SDT should outperform TADT,

whereas the other approaches should be worse than the previous ones, but more or less comparable with each

other. A more detailed comparison can be performed with the SQD diagram (Hoos and Stützle, 2004), that

reports the fraction of instances for which the gap achieved does not exceed each possible value. Figure 1

provides the diagram of the four algorithms on the weighted large instances. It shows a clear dominance of

SDT over TADT, and of the latter over the other two algorithms. GRASP and ADT seem comparable, even if

GRASP has worse results. Wilcoxon’s test fully confirms these feelings: while the difference between GRASP

and ADT is not statistically significant (p ≤ 0.083 in favour of GRASP), all other relations have a p-value

smaller than 10−11. The number of best known results found is consistent with these results: 76 for SDT, 62

for TADT, 59 for GRASP and ADT.

As for the unweighted instances, we compare GRASP with µ = 0.4, SDT with α = 1 and γ = 0.1, ADT with

µ = 0.3 and γ = 0.4 and TADT with µ = 0.3 and γ = 0.2. Figure 2 shows the corresponding SQD diagram.

In this case, GRASP dominates ADT and both are outperformed by SDT and TADT, which, however, do

not clearly dominate each other. SDT seems more conservative, having less solutions with a large gap, but

TADT finds a larger fraction of solutions with a small gap (less than 5%). According to Wilcoxon’s test,

ADT is significantly dominated by the other three algorithms (p < 10−4) and GRASP is dominated by TADT

(p ≤ 3.55 · 10−5). The comparison of SDT with GRASP is weakly in favour of the former (p = 0.06), whereas

we cannot say anything about SDT and TADT. As for the number of best know results found, this is slightly in

favour of TADT (106) over SDT (96), while GRASP and ADT are worse, and nearly equivalent to each other

(respectively, 87 and 86).

The wide range of gaps observed reflects the very different performance that the algorithms exhibit on

different classes of instances. This phenomenon is more pronounced in the GRASP metaheuristic than in the

delayed termination algorithms, but clear in all cases. Table 7 describes in more detail the average gaps with

respect to the best known results obtained by each algorithm on specific classes of instances. The left part of

the table refers to the weighted instances, and the right part to the unweighted ones. In each part, four columns

correspond to the four competing algorithms. A group of rows is associated with each benchmark, and further

disaggregated with respect to a relevant structural parameter: benchmark H+ is divided according to the density

of the graph, benchmarks SW and Reg according to the (respectively, initial or exact) vertex degree, benchmark
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Figure 1: Solution Quality Distribution diagram over the large weighted instances of the presented heuristics (each using its best

parameters). The diagram reports on the y-axis the fraction of instances such that each algorithm returns a solution whose gap

(with respect to the best solution) is not worse than the value reported on the x-axis.
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Figure 2: Solution Quality Distribution diagram over the large unweighted instances of the presented heuristics (each using its best

parameters). The diagram reports on the y-axis the fraction of instances such that each algorithm returns a solution whose gap

(with respect to the best solution) is not worse than the value reported on the x-axis.
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Grid is divided into 2D and 3D grids. We can see that SDT finds the best average gaps for most instance classes,

but is less effective on the weighted grids and the unweighted regular graphs. Conversely, TADT has a good

performance on these two classes. ADT and GRASP are less effective, apart from some classes of unweighted

random graphs. This is consistent with the plots of Figures 1 and 2.

weighted unweighted

class GRASP SDT ADT TADT GRASP SDT ADT TADT

H+

0.1 2.63% 0.67% 3.00% 2.00% 1.08% 2.13% 1.41% 0.30%

0.2 0.80% 0.37% 0.86% 0.65% 0.16% 0.41% 0.41% 0.24%

0.3 0.26% 0.25% 0.34% 0.26% 0.00% 0.00% 0.00% 0.00%

0.4 0.05% 0.00% 0.05% 0.05% 0.00% 0.00% 0.00% 0.00%

all 0.93% 0.32% 1.06% 0.74% 0.31% 0.63% 0.46% 0.14%

SW

6 30.46% 5.56% 15.92% 19.49% 14.80% 7.97% 18.97% 12.51%

10 25.71% 5.34% 29.38% 20.51% 19.76% 6.28% 18.78% 12.55%

all 28.09% 5.45% 22.65% 20.00% 17.28% 7.13% 18.88% 12.53%

Reg

5 10.98% 3.53% 12.73% 6.70% 2.92% 5.69% 4.49% 2.63%

10 5.45% 2.74% 6.50% 4.55% 4.39% 5.38% 4.21% 1.62%

all 8.21% 3.13% 9.62% 5.63% 3.66% 5.54% 4.35% 2.12%

Pla all 10.12% 6.29% 14.47% 9.08% 6.34% 7.39% 18.15% 8.37%

Grid

2D 7.03% 5.22% 8.52% 4.43% 23.24% 7.28% 17.64% 31.27%

3D 4.39% 4.64% 11.88% 3.29% 12.70% 4.72% 17.80% 15.38%

all 5.71% 4.93% 10.20% 3.86% 17.97% 6.00% 17.72% 23.32%

all 9.44% 2.84% 9.29% 6.90% 6.03% 4.01% 7.82% 5.06%

Table 7: Average gaps produced by each heuristic (using its best parameters) on specific subsets of the large benchmark instances.

Since the real-world graphs of benchmark GC are rather heterogeneous, we analyse them individually. The

first three columns of Table 8 provide the name of each instance, its number of vertices |V | and of edges |E|.

The following two blocks of four columns report, respectively, for the weighted and the unweighted instance,

the value of the objective function for the solution returned by each of the four competing algorithms. The best

result for each instance is bolded. The last row of the table provides the average percent gap with respect to

the best known result. While the smaller instances are solved with the same value by all algorithms, the larger

ones show significant differences. The TADT heuristic hits the largest number of best known results (11 out

of 18) and has the smallest average gap (0.92%), but in this benchmark GRASP comes second (with 10 best

results and a gap equal to 2.17%) and the other two heuristics are worse, in particular in the unweighted case.
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This is in contrast with the better performance of SDT, observed on average for the other benchmarks, but

consistent with the good performance of TADT.

weighted unweighted

Instance |V | |E| GRASP SDT ADT TADT GRASP SDT ADT TADT

adjnoun 112 425 155 151 156 153 31 31 31 31

celegans metabolic 453 2025 242 254 264 239 49 53 47 48

celegansneural 297 2148 545 560 572 528 90 93 97 89

dolphins 62 159 83 83 83 83 14 15 14 14

football 115 613 243 212 225 215 44 52 51 40

jazz 198 2742 380 418 431 388 85 91 94 87

karate 34 78 27 27 27 27 6 6 6 6

lesmis 77 254 57 57 57 57 11 11 11 11

polbooks 105 441 119 127 119 127 24 24 24 24

Avg. gap 2.42% 3.23% 4.63% 1.29% 1.92% 7.68% 5.88% 0.56%

Table 8: Results obtained by the presented heuristics (with their best parameter tuning) in 10 seconds on the real-world graphs of

benchmark GC

5.5. Comparison with the state of the art

In this section we apply the SDT algorithm, with its best tuning, to all instances available in the literature,

that is to benchmarks M and H.

Considering the former, we compare SDT with the randomised destructive heuristic introduced in Macambira

et al. (2019), that is denoted as RD in the following. The two algorithms run on different machines (the

destructive heuristic is evaluated on an Intel Core TM i7-6700 with a 3.40 GHz CPU and 15.6 GB of RAM

memory) and the computational times are quite short, which makes them easily subject to random fluctuations.

We attempt a very approximate comparison through the conversion coefficient provided by PassMark Software

(2022), according to which our machine should be 9224/8094 = 1.14 times faster than that employed by RD.

In order to try and perform a fair comparison, we have adopted the same approach of Macambira et al.

(2019), fixing the number of restarts, instead of the computational time. Hence, both approaches run 1 000

iterations of their respective procedures. At each iteration, RD starts from the whole vertex set and removes

one vertex at a time, generating a single minimal solution. Each iteration of SDT generates γ|V | redundant

solutions and reduces each of them to a minimal one.

Table 9 reports the results aggregated for instances with the same weight function and graph density δ,

as specified in the first two columns. The third column provides the number of instances for each class.
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Domination Optima Average gap Maximum gap
tRD

tSDT

δ # RD SDT RD SDT RD SDT RD SDT Avg. Min.
w
ei
gh

te
d

0.3 21 0 12 9 21 5.37% 0.00% 20.24% 0.00% 3.22 1.74

0.5 21 0 15 6 15 4.88% 0.45% 12.96% 4.62% 3.30 1.98

0.7 21 0 8 10 17 1.80% 0.58% 11.71% 5.29% 3.41 2.34

all 63 0 35 25 53 4.02% 0.34% 20.24% 5.29% 3.31 1.74

u
n
w
ei
gh

te
d 0.3 21 0 0 21 21 0.00% 0.00% 0.00% 0.00% 4.48 1.74

0.5 21 0 2 16 18 2.30% 1.48% 14.29% 14.29% 4.18 2.18

0.7 21 0 1 17 18 1.73% 1.20% 11.11% 9.09% 4.09 2.28

all 63 0 3 54 57 1.34% 0.89% 14.29% 14.29% 4.25 1.74

all 126 0 38 79 110 2.68% 0.62% 20.24% 14.29% 3.78 1.74

Table 9: Results obtained by 1000 iterations of RD and SDT on benchmark M. We display the number of instances for which one

of the two algorithms outperforms the other, the number of optimal values found, the average and maximum gap with respect to

the optimum and the (average and minimum) ratio of the computational times.

The following block of two columns (labelled “Domination”) displays the number of instances for which each

algorithm yields a result strictly better than its competitor. Then, the table provides the number of optima

found by the two algorithms (all instances are solved exactly). The average and maximum gaps follow (with

the better one in bold). The last block of two columns reports the average and the minimum value of the ratio

between the computational times of RD and SDT.

In the direct comparison, the SDT algorithm is always better (38 times) or at least as good (88 times) as

RD. This is especially true for the weighted instances, where the strictly better results are 35 over 63 (in the

unweighted ones, RD already found a large majority of the optimal results). Overall, SDT finds 110 optima

versus 79, out of 126 instances. The average gap of SDT is better than that of RD over both the weighted and

unweighted instances. As for the computational time, SDT is 3 to 4 times faster than RD. Even considering

the 1.14 ratio suggested by PassMark Software (2022), the computational times are at least comparable.

Since benchmark H has been solved only with exact algorithms, and the performance of a heuristic cannot

be meaningfully compared with them, we evaluate the ability of SDT to find in short time the optimal or

best known results. In particular, the branch-and-bound algorithm of Boggio Tomasaz et al. (2022) solves to

optimality 254 out of the 280 instances, but requires one hour of computation on the same machine. Table 10

reports the results of SDT with a time limit of 60 seconds: each row corresponds to one of the possible sizes and

each column to one of the four classes of density. The left part of the table concerns the weighted instances, and

the right part the unweighted ones. Each cell contains the average gap with respect to the optimal, or the best
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weighted unweighted

|V | 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

20 18.59% - - - - - - -

25 3.70% - - - 2.50% - - -

30 - - - - - - - -

35 - - 0.24% 0.84% - - - 2.50%

40 - 0.83% - 2.31% - 1.25% 4.44% 4.21%

50 1.37% - 1.94% 3.05% -24.77% 1.90% 2.61% 4.17%

60 -0.74% -1.73% 2.93% 2.68% -36.26% -7.17% 0.69% 2.76%

avg. 3.28% -0.13% 0.73% 1.27% -8.36% -0.57% 1.11% 1.95%

Table 10: Results obtained by SDT in 60 seconds on the small random instances of benchmark H.

known, solution. Overall, the heuristic equals 193 results out of 280, concentrated in the smaller sizes (with the

exception of the sparsest instances, whose optimal solutions seem hard to find). It worsens 68 results, mainly

for denser instances of medium size. The gap tends to decrease for larger sizes, and finally becomes negative

as 19 results on the sparser and larger instances are improved. The unweighted instances show remarkable gap

reductions. While the heuristic is unable to find all the best results in short time, it gives however a useful

contribution to reduce the optimality gap of the exact algorithm; in particular, 2 of the 26 open instances can

now be solved running the branch-and-bound with the improved starting solution.

5.6. Structure of the solutions and relation with the Connected Safe Set Problem

The literature on the SSP often discusses a variant, known as Connected Safe Set Problem (CSSP), in which

the solution is required to consist of a single safe component (Fujita et al., 2014). We have already remarked in

Section 5.2 that most of the best known solutions for random graphs consist of a single safe component opposed

to a single unsafe one. We here extend the analysis of the structure of the best solutions to all large benchmarks.

Table 11 considers the same classes of instances addressed by Table 7. The first two columns specify the

benchmark and class. The following two blocks of four columns refer, respectively, to the weighted and the

unweighted instances. In each block, two columns, labelled |CG(S)|, provide the average and the overall range

of values (minimum and maximum between square brackets) that the number of safe components assumes in

the best known solution. The other two columns, labelled |CG(V \ S)|, provide the same information for the

unsafe components. We refer to the best known solutions because they are the only possible approximation of

the unknown optimal ones.

The clearest observation is that a large majority of solutions have a single safe component (445 out of 470),

while 24 have 2 components and only one has 3. In short, the CSSP has very frequently the same solution as the
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basic SSP. Considering the unsafe components, the random instances exhibit the behaviour already described

in Section 5.2: the best known solution is often complemented by a single unsafe component, and this becomes

more and more frequent as the size and density of the instances increases. The sparse instances show a wider

range of values, but still the number of unsafe components is often equal to 1 (in 140 instances out of 470) and

most of the time less than 10 (in more than 400 instances). The larger values seem to occur in the regular

instances, but it is presently impossible to determine whether this actually reflects the structure of the optimal

solutions for such instances, or the fact that the best known results are actually far from optimal. The same

results are illustrated in Figure 3 which displays the number of safe components (in blue) and unsafe components

(in red) for each of the 235 large instances. In order to improve readability, the instances have been sorted in

ascending order of the number of safe components (in the first case) or of the number of unsafe components (in

the second case) in the best known solution. The figure can also be understood as the cumulative number of

instances for which the best known solution has a number of safe (or unsafe) components lower than a threshold

given on the vertical axis.
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Figure 3: Number of safe and unsafe components in each instance, for both weighted (left) and unweighted instances (right).

6. Conclusions

This paper tackles the WSSP, an NP-hard graph optimisation problem with applications to social network

analysis and emergency facility design. We have developed GRASP metaheuristics, based on a randomised

constructive procedure and a deterministic destructive procedure that, respectively, take into account the feasi-

bility and the optimality of the solutions obtained. These metaheuristics apply the two common randomisation
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weighted unweighted

|CG(S)| |CG(V \ S)| |CG(S)| |CG(V \ S)|

class Avg. Range Avg. Range Avg. Range Avg. Range

H+

0.1 1 [1,1] 3 [2,6] 1 [1,1] 2.2 [1,5]

0.2 1 [1,1] 1.52 [1,3] 1 [1,1] 1.32 [1,3]

0.3 1 [1,1] 1.2 [1,2] 1 [1,1] 1 [1,1]

0.4 1 [1,1] 1.04 [1,2] 1 [1,1] 1 [1,1]

all 1 [1,1] 1.69 [1,6] 1 [1,1] 1.38 [1,5]

SW

6 1 [1,1] 5.36 [4,7] 1.12 [1,2] 4.44 [3,8]

10 1 [1,1] 3.68 [3,5] 1 [1,1] 3.08 [3,4]

all 1 [1,1] 4.52 [3,7] 1.06 [1,2] 3.76 [3,8]

Reg

5 1 [1,1] 7.04 [3,16] 1.48 [1,3] 9.76 [2,19]

10 1.08 [1,2] 7.08 [2,18] 1.36 [1,2] 7.56 [2,18]

all 1.04 [1,2] 7.06 [2,18] 1.42 [1,3] 8.66 [2,19]

Pla all 1 [1,1] 7.92 [5,13] 1 [1,1] 6.36 [4,10]

Grid

2D 1 [1,1] 4.8 [4,7] 1 [1,1] 3.4 [3,4]

3D 1 [1,1] 4.8 [3,8] 1 [1,1] 3 [2,6]

all 1 [1,1] 4.8 [3,8] 1 [1,1] 3.2 [2,6]

all 1.01 [1,2] 4.23 [1,18] 1.10 [1,3] 4.04 [1,19]

Table 11: Average and range ([minimum,maximum]) of the number of safe and unsafe components (|CG(S)| and |CG(V \ S)|) in

the best known solutions for different classes of instances.
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schemes (that is, a uniform sampling from a restricted candidate list or a biased one from all possibilities).

We have then extended these algorithms with two mechanisms to delay their termination after finding the first

feasible solution, one that dives into the feasible region (SDT ), and one that keeps on its border (ADT ). A

truncated variant of the latter (TADT ) has also been implemented and investigated. The computational ex-

periments on a new benchmark of dense and sparse instances ranging from 100 to 300 vertices suggest that the

SDT heuristic has the best performance, but the TADT heuristic performs better on some classes of instances.

A comparison with the destructive approach drawn from the literature shows that SDT is more effective, while

taking a comparable time. When applied to the publicly available smaller instances, it finds in a few seconds

most of the best known results, and improves some of those for which the optimal value is still unknown. Finally,

the experimental results suggest that in a large majority of instances, good solutions for the WSSP tend to be

connected, even when this requirement is not enforced, in particular for large and dense graphs.

As possible future research directions on the Safe Set Problem, one may consider alternative metaheuristic

approaches that could exploit the structure of the problem. Due to the non-trivial feasibility conditions of

this problem, that impose connectivity and weight dominance constraints, local search and path relinking seem

unpromising directions to pursue. In fact, they would generate a large proportion of unfeasible or very expensive

solutions. On the contrary, a very large scale neighbourhood search seems more promising, since it allows to

jump from the current solution to the next one not simply by basic exchanges or small steps. Indeed, the delayed

termination heuristics presented in this article can be interpreted as an application of similar ideas. Population-

based recombination heuristics, such as a genetic algorithm or scatter search, could exploit the property that

the union of two feasible solutions is also feasible: it is trivially non-minimal, but it could be improved through

a destructive procedure. Finally, matheuristics could also be investigated, though they usually rely on some

good (meaning tight) ILP/MILP formulation, which is currently not available for the problem.
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