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Abstract. LetF(z) =a(z— 1) - (z— apn) be a polynomial with complex coefficients and define rfoe N,
Im(F) = inf{|FG||, G € C[z], degG = m, G monid},
where| P|| is the euclidean norm of the polynomigl By a theorem of Szegy”

Jim1n(F) = M(F),

whereM (F) := |a| ]‘[’j‘:l max{|«;j|, 1} is the Mahler measure &. Recently, J. Bgot proved an effective version
of this result. In this paper we sharperddt’s result, under the additional hypotheses thas a square-free
polynomial with integer coefficients and without reciprocal factors.
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1. Introduction

Let f (9) be a non-negative function integrable ear, ) and assumgff” f(©) do > 0.
Let

fim( ) :mf:i/” f(9)|G(e‘9>|2d9}
2 J_;

where the infimum is taken over the set of monic polynom@isith complex coefficients
and degreen. This infimum is actually a minimum, and the minimizing polynomial is
the mth orthonormal polynomial with respect to the weigh{(see [5], Theorem 11.1.2).
Assume further that log is integrable. Then a well-known theorem of Sadgée [5]
Section 12.3) asserts that

Um(f) — exp!%/n log f (©) d@}

asm — +oo. A special case of this theorem is remarkable. Let
F@=az—a1): - (Z—an)

be a polynomial of degree and choosef () = |F(€?)|%. Let alsolm(F) = «/im(1).
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Then
Im(F) =inf{|FG|, degG =m, G monig

where|| P| is the euclidean norm of the polynomR| i.e., the quadratic mean of the moduli
of the coefficients oP. Moreover, by Jensen’s formula,

exp{%/n |og|F(e‘9)|d9}

is the Mahler measure @, i.e.,

M(F) = |a| [ [ maxle; |, 1).
j=1

i
Therefore, the above result of Sregjves

Im(F) > M(F) (1.1)

asm — 4-o0.

It is worth remarking that the inequality,(F) > M(F) easily follows by Landau’s
theoremM(FG) < ||[FG| and by the fact thaM () is a multiplicative function on the
ring of polynomials. Some years ago, Mignotte (see [2]) asked for an effective version of
(1.1). The problem is to find a functid®g (m) of the variablem such thalCr(m) — 1 as
m — +o0 andly(F) < CE(m)M(F). Of course, the dependence®@ (m) on F is very
important for the applications.

Recently, Egot (see [3]) solved this problem. He found the upper bound

Im(F) = Ce(MM(F), 1.2)

where

Ce(m) =

1/2
J/mi2n + m)! 0 n 2
— 1 < @ /(Zm)_
(n+my! Dl + m + k =€
Moreover, BEgot showed that this bound is sharp, since for the polynomial
F@=@z-D"

the inequality (1.2) becomes an equality (see also [4], Section 14).
Assume thatF (z) is an irreducible polynomial with integer coefficients of degree
Then Siegel’'s lemma (see [1]) shows that

inf{H(FG), G € Z[x]\{0}degG <m, } < Ke(mM(F), (1.3)

whereH (P) is the usual height oP, i.e., the maximum of the moduli of the coefficients
of P, and

KF(m) — 41/(m+1)(n Im4+ 1)n/(m+l) M(F)(nfl)/(erl).

We remark thaKg(m) — 1 asm — +oo. The inequality (1.2) looks like (1.3), except
that the euclidean norm is replaced by the height, and the normalization of the problem is



A REMARK ON A THEOREM OF SZE® 359

different. However, it is usual to translate a minimum problenmGdg] into a minimum
problem onZ[x] by replacing the requirement thét is a monic polynomial of degrem
with the condition thaG # 0 and deds < m. We also remark that the constdf (m) is
much smaller tha€: (m) whenM (F) is not too large. This suggests thaédwt's bound
might be improved whelr satisfies some extra-assumptions.

We recall that the reciprocal polynomial Bfis F*(z) = z"F (1/z) and that the discrimi-
nant of a polynomiaP(z) = b(z— B1) - - (z— Bq) IS

disa(P) = b* 2] J(h — B>

i<j

In this paper we deal with polynomials such thaFF* is square-free and its discriminant
is not too small. Our main result is the following:

Theorem 1.1. Let F(z2) = ap+ a12+ -+ + a,2" € C[z] and assumega, # 0 and FF
square-free. Then

lo(F) -+ Im(F) < 2n)Y2M(F)*™™MA(F)~%4
whereA(F) = |disa(FF*)]|.
Let
CF(m) — (Zn)n/(Z(erl)) M(F)(anl)/(erl)A(F)fl/(4(m+l))_

Sincem — | (m) is non increasingTheorem 1.1 implies the following effective version
of Sze@'s theorem.

Corollary 1.1. With the above notatign,,(F) < Cr(MM(F).

We remark tha€g(m) — 1 asm — +oo. Moreover Ce(m) < Cg(m) if A(F) is not
too small andM (F) is not too large.

As we have already pointed out, Siegel's lemma for polynomials can be viewed as the
arithmetic analogue of Szeg theorem. We shall deduce from Theorem 1.1 the following
theorem:

Theorem 1.2. Let F(z) = ap+ a12+ - - - + a,2" € R[z] and assumega, # 0 and FF*
square-free. Then there exist linearly independent polynomigls. P, Py, with integer
coefficients and degreem such that

IFPo]l - - - [IFPm]l < 2™ ety (2m)Y2M (F)?MMA(F) 4,

m+1

ok/2

- i i iRX
= ki 1S the volume of the unit ball iRX.

where ¢

We finally remark that all our results can be generalized to polynomials with complex
coefficients such that the maximum of the multiplicity of the rootSIef is small compared
with the degree of-. For the sake of simplicity, we state our results only for polynomials
F such thaFF* is square-free.
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2. Proof of the main results

Let F be a polynomial with complex coefficients and degnesnd let as before

Im(F) = inf{||FG||, degG = m, G monid.

Proposition 2.1 (See [3] and [5], Theorem 11.1.2).1,(F) is a minimum and the mini-
mizing polynomial G, is a polynomial characterized by the following condition. Let

F@QG@F*(2) =do+ hz+ - + tonmz?™™

Then g = gnye1 = -+ - = Onam—1 = Oif and only if G= G,,. Moreover the coefficient of
"M in FGmF* is Im(F)2.

Proof: LetV be the vector space of polynomials with complex coefficients and degree
< m, and consider the hermitian form

(G1, Gy) = 1 / ’ G1(€")Ga(eh) [F(eM)|2dt.

2 J_;
We have(G, G) = |[FG||?. LetalsoL: V — C be the linear form defined by

[0 ifj=0...m-1
LQU:{l )= m

By the orthogonal projection theorem,

In(F) = inf (G, G) = V/(Gm. Gm)
L(G€)=l

whereG, is characterized bl (G,) = 1 andG, L KerL, i.e.,

1 T . . .
> Gm(EHe M F@EH2dt=0, k=0,...,m—1 (2.1)

Moreover, sincés,, is monic andG, — z™ € KerlL,

1 [~ ) ) )
IFGnll* = (G, Gm) = o— | Gm(€")e™™ |F(eH/%dt. (2.2)
T J_x
Let Q(z2) = F(2)Gm(2)F*(2). We remark thaQ(e!) = Gn(eHe"t |F(@hH)|? (t € R).
Hence (2.1) and (2.2) can be rewritten as
1 [ ,
%w=5;_nqwm4%mmza k=0,...,m—1,

and

1 [~ . )
||FGm||2=E Q(ehHe ™MMitdt = gpym. 0

—TT
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Using this result and a theorem of Mahlee@wt found the upper bound (1.2).

Assume now that / F and thatP = FF* is a square-free polynomial. Denote the roots
of P by B, ..., Ban and letb its leading coefficient. Let als@(z) = Gn(2)P(2). By
Proposition 2.1.

Q2 =G+ qz+ -+ 412" + GmZM + -+ G122 4 oy,

Moreover,gonim = b andgnym = Im(F)2. Since the rootgs, . . ., Ba, are distinct and
Q(Bj) =0(j =1,...,2n), the only non-zero solution of then2« 2n Cramer’s system

Xp+ BiXo+ - A B X+ BT Mg 4+ BT Xy =—bg™, j=1,...,2n.
is
(X1, ..., Xn) = (o, - - - » Gn—1, Ontms - - - » O2nm—1)-

By Cramer’s rule,

detAm+1
Im(F)? = =b———
m(F) On+m detA,
whereA¢ (k=0,1,...)isthe 2 x 2n matrix
l /31 . ;-1—1 :T-H( . ﬁ12n+k—1
1 /32 . ,85_1 ﬁé‘H‘k . ﬂ§n+k_l
Ac = . .
1 Bon - BoL otk L. g2kl

Using the Hadamard inequality we easily obtain
|detAk| < (Zn)n|b|—2n—k+1M (P)2n+k—l.
On the other hangtletAq| = |b|=2"1|disc(P)|Y2. Therefore,

11detAm |

2. 2 _ m+1 == Ll
lo(F)*- -+ Im(F)* = |b] detA|

< (2)"M(P)*™M|diso(P)| /2
which proves Theorem 1.1.

Proof of Theorem 1.2: SinceF is a real polynomial, the functiof(9) = |F (€!)| (6 €
R) is an even function. Consider the vector spdaaf real polynomials of degreem with
the scalar product

(P,Q) = L[ PE"H)Q(e™) |F (") 2dt.

2 J_,
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Let Gy, be the monic polynomial of degree such that|FG|| = Im(F). Itis easy to see
thatGn, € R[x]. By Proposition 2.1, the polynomiaiS, . .., G, are an orthogonal basis
of V. Hence the volume of the convex boly= {G € V, ||[FG| < 1}is

Cmitlo(F) ™ Im(F) ™ > Cmyr - (20)2M(F) ™A (F) Y2,

Now apply the second theorem of Minkowski. |
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