
Doctoral Dissertation

Doctoral Program in Pure and Applied Mathematics (30th cycle)

Data assimilation for

neurobiology modelling

Nicola Politi

Supervisors:

Prof. Claudio Canuto, Politecnico di Torino

Prof. Wenlian Lu, Fudan University 复旦大学

Doctoral Examination Committee:

Prof. Davide Carlo Ambrosi, Politecnico di Torino

Prof. Susanne Ditlevsen, Referee, University of Copenhagen

Prof. Giovanni Naldi, Referee, Università degli studi di Milano

Prof. Sandra Pieraccini, Politecnico di Torino

Prof. Gianluigi Rozza, SISSA

Politecnico di Torino
10 September 2018

ii

Acknowledgements

First, I wish to thank my supervisors Claudio Canuto and Wenlian Lu as well
as Jianfeng Feng for guiding me through my research work and the referees
Susanne Ditlevsen and Giovanni Naldi for their stimulating advice. Then,
my special acknowledgement go to Silvia Jimenez, Samuel Kerrien, Christian
Rössert, and Werner Van Geit for the invaluable help in providing me and
answer my questions on the BBP experimental dataset, to Henry Abarbanel,
Paul Rozdeba, and Jingxin Ye for their support on the use of minAone, and
to Enrico Bibbona, Stephen Coombes, Angelo Di Garbo, Mauro Gasparini,
Pedro Machado, Gianluca Mastrantonio, and Wenbo Sheng for the suggestions
and the precious counsel. Finally, I want to show my great appreciation to
Alessandro, Annachiara, Caterina, Davide, Filippo, Giulia, Deng, Lorenzo,
Stefano, Wei, Yunyi, and everyone who shared and bore with me during the
last four years.

iii

iv

Contents

Acknowledgements iii

Introduction 1

I Data assimilation methods 7

Introduction to Part I 9

1 Generalities on state-space models 13

1.1 The state-space model framework 13

2 Off-line smoothing methods 21

2.1 The Markov chain Monte Carlo methodology 26

2.1.1 The Metropolis-Hastings framework 29

2.2 Variational methods . 33

2.2.1 The path integral framework 36

2.2.2 minAone . 38

3 On-line filtering methods 43

3.1 Approximate Gaussian filters 45

3.1.1 The Kalman filter . 45

3.1.2 The extended and the unscented Kalman filter 47

3.1.3 The ensemble Kalman filter 48

3.2 The particle filter . 50

3.2.1 The bootstrap filter . 51

3.2.2 The optimal sequential importance resampling 52

3.2.3 Gaussian particle filters 54

3.2.4 Well-posedness and consistency of particle filters 54

v

4 Practical issues arising in data assimilation 57

4.1 Handling parameters . 58

4.1.1 Data assimilation for parameter estimation 58

4.1.2 State-space model for hyperparameters estimation 62

4.2 Twin experiments from continuous-time models 66

4.3 Dealing with bounded variables 70

4.3.1 Single inequality constraint 73

4.3.2 Bounded-interval constraint 74

4.4 Evaluating data assimilation methods 76

4.4.1 Performance score for algorithm evaluation 79

II Neurobiology modelling 83

Introduction to Part II 85

5 Modelling of single neurons 87

5.1 Generalities on single neuron models 87

5.1.1 Ionic currents and state variables 89

5.2 Toy model for a single neuron 96

5.2.1 Sample toy model trajectory 98

5.3 Realistic model from the Blue Brain Project 100

5.3.1 Mathematical model for L23 PC cADpyr229 1 101

5.3.2 Model parameters . 104

5.3.3 Sample dynamics and artificial dataset 104

5.4 Mathematical properties of single-neuron models 107

5.4.1 Well-posedness of ODE single-neuron models with con-
stant input current . 110

5.4.2 Qualitative analysis and numerical aspects in neuronal
modelling . 111

5.4.3 More on well-posedness of single-neuron models 114

6 Neural network models 119

6.1 Neocortical microcircuit composition 119

6.2 Network model of leaky integrate and fire neurons 120

6.2.1 Synaptic current modelling 124

6.2.2 Network parameters . 126

6.2.3 Neural population activity measure 127

6.2.4 Sample network time course 127

vi

7 Spike train metrics 131
7.1 Cost-based spike metrics . 132

7.1.1 Victor-Purpura SPIKE distance 132
7.1.2 Victor-Purpura ISI distance 133

7.2 Embedding-based spike metrics 134
7.2.1 Van Rossum distance . 134
7.2.2 Similarity measures . 135

7.3 Parameter-free spike metrics . 136
7.3.1 ISI- and SPIKE-distance 136
7.3.2 SPIKE synchronization 139

7.4 Population extensions . 140

III Results on data assimilation experiments 141

Introduction to Part III 143

8 Twin experiment on the single-neuron toy model 147
8.1 Twin experiment design . 148
8.2 Signal and parameters estimation 149
8.3 Signal prediction results . 154
8.4 Discussion and conclusions . 157

9 Twin experiments on the BBP single-neuron model 159
9.1 First experiment: fine tuning of EnKF parameters 161

9.1.1 Setting parameters for EnKF 162
9.1.2 Sample EnKF output . 163
9.1.3 ANOVA tests results . 166

9.2 Second experiment: biased initial condition for parameters . . . 169
9.2.1 Signal estimation results 172
9.2.2 Parameter estimation results 176
9.2.3 Improvement rate of the parameter estimation 180
9.2.4 Validation in the first out-of-sample time window 181

9.3 Discussion and conclusions . 182

10 Assimilating experimental data in a realistic BBP model 187
10.1 Blue Brain Project experimental dataset 188

10.1.1 Experimental traces selected for data assimilation 190
10.2 Choosing the parameter search space 192

10.2.1 Likelihood profiles . 192
10.2.2 Reducing the parameter search space size 197

vii

10.3 Selecting an effective assimilation method 200
10.4 Results analysis . 202

10.4.1 Selection by validation in a forecast-skill sense 206
10.5 Discussion and conclusions . 212

List of Figures 217

List of Tables 221

List of Algorithms 223

List of Abbreviations 225

Index 227

Bibliography 229

viii

Introduction

In the last years, recent technological advances and concerted research efforts
allowed the international scientific community to address one of the biggest
unsolved questions of humanity: how does the human brain work? This was
possible thanks to large governmental investments that channelled resources
not only towards the theoretical implications of this question (how are mem-
ories stored? what are the biological basis of consciousness? what is the role
of brain waves?), but also towards the medical and technological applications
(e.g. identification of the causes of mental disorders, mind-machine inter-
faces, brain-inspired computing, etc.). Among other contributors, some of the
biggest governmental projects include the European-Union funded Blue Brain
Project (BBP) and Human Brain Project (HBP), and the US-based Brain Re-
search through Advancing Innovative Neurotechnologies (BRAIN) initiative.
At the end of 2017, representative of these and other Korean, Japanese and
Australian brain research projects signed a declaration of intents with the
objective of forming a collaborative International Brain Initiative (IBI). The
aim is to join their forces in order to “measure, map, image, model, simulate,
understand, imitate, diagnose and heal the brain” [1]. In general, the interdis-
ciplinary set of expertise that is required to tackle these extremely challenging
and mostly still unsolved questions, which span from biology and neurophys-
iology to mathematics, statistics and computer science, are the core of the
relatively new research area of computational neuroscience.

At the same time, the incredibly large amount of digital data available
nowadays has fuelled the research area of machine learning and statistical
learning to unprecedented levels of potentiality. However, many of the most
popular machine-learning methods only fit deterministic black-box models to
specific tasks, without allowing incertitude in either the model or the data,
nor providing detailed insights into the phenomenon in exam. In particular,
although employed in specific computer-science applications with incredibly
results (e.g. face-recognition, data classification, targeted advertising, self-
driving cars, etc.), the fashionable deep-learning technique for artificial neural
networks (ANNs) often does not add any human-interpretable information to

1

the world’s scientific knowledge. Nonetheless, it is sometimes the case that
some mathematical model is deemed suitable to effectively account for some
system relevant features, but the experimental data do not match its trajec-
tories.

In such cases, it is possible to resort to Bayesian inference to fit the time
course of experimental data in a probabilistic way, while preserving all model
characteristics and structure. In fact, the class of Bayesian methods allows
one to adjust its prior knowledge on the parameters of a stochastic model
in order to make its trajectories fit the experimental data in a probabilistic
manner. By doing so, both model errors and measurement errors are taken
into account while all original model features are preserved, so that interpre-
tation is still possible. Note that, despite the birth of Bayesian inference dates
back to the eighteenth century (Thomas Bayes 1702–1761), its massive appli-
cation in non-exact form to real-life problems is relatively recent. Nevertheless,
data assimilation (DA) (how nowadays Bayesian inference is often referred to)
has historically proved to be an indispensable device in the geosciences (e.g.
weather forecasting [22, 69, 92, 108, 144], air quality forecasting [26, 130, 222,
223], hydrology [94, 95, 158, 176, 212], oceanography [39, 75, 91, 166, 200],
fossil fuels reservoir managing [11, 74, 165, 191, 221, 112] etc.), and has now
become a well-established and fully-fledged tool in the hands of practitioners.
On the contrary, its use in computational neuroscience is much more recent,
and only in the last decades DA has started to show its power to the fast-
evolving research area of computational neurobiology. In particular, the last
decades witnessed many different works which address the task of parameter
estimation in single-neuron models [12, 56, 97, 206, 218], and recent studies
suggest it could become a powerful tool for parameter tuning for neuronal
assemblies and neural populations as well [161, 40, 137, 188, 141, 213].

The research work I carried out during my PhD course in Pure and Ap-
plied Mathematics at Politecnico di Torino places itself at the intersection of
these two fast-advancing domains. In fact, under the supervision of Professor
Claudio Canuto, it was proposed to me by Professor Wenlian Lu and Professor
Jianfeng Feng from Fudan University of Shanghai (China) to jointly work on
data assimilation problems in neurobiology modelling. The broad aim of the
project was to take advantage of the information contained in experimental
data of neurobiological activity at different levels in order to fine-tune math-
ematical models by applying parameter inference methods. In particular, the
focus was on detailed microscopic single-neuron models and on mesoscopic
models of neural activity which include the description of the microscopic
scale. Now, before overviewing its content, let me highlight that the peculiar-
ity and the motivation behind this thesis work are two-fold, regarding on the

2

one hand the type of neuronal model we consider, and on the other hand the
class of inference methods we apply to estimate both model parameters and
state variables dynamics.

First, focusing on the type of models, we select physiologically-detailed
conductance-based single-neuron models which explicitly describe the dynam-
ics of ionic currents and voltage-dependent gating variables. This is because
neuromodelling has made huge steps forward from the time the original Hodgkin-
Huxley (HH) model was proposed in 1952 [89], and nowadays many specific
characteristics of a neuron’s electrophysiology (e.g. the presence of depolariza-
tion blocks [23], changes in excitability patterns [148], the back-propagation
of action-potentials [73, 57], resonance [48], bursting [48, 193] etc.) can be
reproduced in the flexible conductance-based framework. If the tuning of such
detailed neuronal model gives good parameter accuracy, one can in principle
obtain hints about the underlying biological processes (e.g. the presence or ab-
sence of some specific ionic current as in [12, Section 5.2.10]) which low-order
models such as leaky integrate-and-fire or less detailed HH-type models would
not give. In addition, such rich and detailed neuronal models can produce
accurate neural networks models when coupled together through synaptic cur-
rents [149, 47, 157], and this makes the development of estimation procedures
for this type of models worth to be investigated.

However, complex models result in a large number of model parameters
(typically, the maximal ionic conductances but also reversal potentials or pa-
rameters involved in the activation variables’ dynamics). As a consequence,
the search space is large-dimensional and parameter identification is poten-
tially difficult. To address this challenging task various approaches, spanning
from linear regression to direct minimization of specific cost functions [96,
195, 85, 151, 132, 80], have been employed over the years. For instance, to
fine-tune their multicompartmental neuronal models, the BBP and the HBP
currently apply a multi-objective optimization achieved through genetic algo-
rithms [60, 61]. Such procedure aims at fitting the model response to stimuli
of different amplitude to the statistics of some electrophysiological features
that characherise the neuron’s electrophysiology. To obtain these statistics,
the features are automatically extracted and aggregated from various exper-
imental data recorded by different cells (see the Supplementary material of
[149]). In our case, we aimed at testing a general inference methodology that
easily generalizes to different neurobiological activities and allows a model to
be fine-tuned only relying on a given experimental trace, in order to reproduce
and predict point-wisely trajectories out-of-sample recordings.

In particular, guided by the experience of previous works which success-
fully applied Bayesian methods to complex Hodgkin-Huxley-type neuron mod-

3

els [206, 97, 164, 106], many aspects made us opt for the class of Bayesian DA
methods. First, the Bayesian nature of these methods allows one to explicitly
include the prior probability distributions for the parameters value and/or for
the state variables’ initial condition. This is an appealing option which is of-
ten not possible with other non-Bayesian parameter estimation methods. In
particular, such prior distributions also explicitly include a model for the dy-
namical and/or data noise. Such characteristic can be particularly suitable to
neurobiological application, as it is generally recognized that noise is ubiqui-
tous and plays a major role in the nervous system [70, 186, 194]. In our works,
we modelled the dynamical and measurement noise for voltage and activation
variables as being Gaussian and white, as typically assumed in single-neurons
voltage dynamics [150, 147, 31, 34]. This is a common assumption in DA
literature (see for instance [206, 55, 218]) which corresponds to central-limit-
theorem like hypothesis on the stochastic process underlying the random noise.
Note, however, that pink noise exhibiting 1/fα power spectrum has been pro-
posed to arise from Poisson-like processes (examples include in channel noise,
MEG and EEG signals: see [216] and references therein) and that the channel
noise would be more realistic if added at the conductance level rather than
the activation-variable one [77]. Although we do not consider such cases, the
versatile state-space model framework allows one to consider any type of noise
deemed realistic.

With this motivation, the first work we completed is a study of the ap-
plicability and efficiency of data assimilation methods to a two-dimensional
Hodgkin-Huxley-type single neuron [169]. The twin experiment – an assimila-
tion experiment where the dataset is artificially generated by the same model
that is subsequently employed to assimilate the data – was chosen to begin
with, so that it is granted that the model is able to reproduce the data, and
all sort of performance metrics can be assessed. Indeed, in twin experiments
the true parameter values that generated the data are known, which is not
normally the case in the truly experimental case. In this preliminary work, we
tested and compare the estimation results obtained by three different on-line
filters – namely the bootstrap filter (BF), its optimal version, i.e. the optimal
sequential importance resampling (OPT-SIRS), and the ensemble Kalman fil-
ter (EnKF). In particular, we checked not only the accuracy in estimating ten
model parameters (which include maximal conductances, reversal potentials
and parameters involved in the ionic currents dynamics) but also the ability
of the resulting model to predict the neuron response to new stimuli.

Once we observed that the methods under investigation could indeed ad-
dress the task of parameter tuning and signal prediction in a well-known math-
ematical model of single neurons, we moved to a more realistic model. In par-

4

ticular, we considered the morphologically- and electrophysiologically-detailed
models proposed by the BBP in their in silico reconstruction and simulation
of a juvenile Wistar rat neocortical microcircuit [149]. Of all the models they
proposed, we focused on the somatic compartment of the model for the pyra-
midal cells of the second and third cortical layer. On such model, we first ran
two preliminary twin experiments applying EnKF.

In the first one, we look for the EnKF setting parameters that produce the
best signal predictions and the best estimation of the seven parameters (five
maximal conductances and two parameters involved in the internal calcium
dynamics). In the second twin experiment we make a step towards assimilat-
ing real data by investigating whether or not a biased initial parameter guess
still allows good estimations and predictions. Indeed, when dealing with ex-
perimental data, not knowing the “true” modelling parameters means that it
is likely to initialise the algorithm away from a good set of parameters.

In these two twin experiments, we also propose and use an EnKF extension
(which technically only applies to unbounded state variables and parameters)
to the bounded and half-bounded case. This is possible by resorting to change
of variables between the physical bounded set and the real line and applying
the EnKF to the unbounded transformed variables. Of course, this distorts
the noise distribution, but we show that the distortion effect in the bounded
case (i.e. in case of logit-normal noise) is only significant at the edges of the
bounded set, at least when the variance is small.

At last, we considered some truly experimental single-neuron recordings
and proceeded in assimilating them in the above-mentioned BBP realistic neu-
ron model. Disappointingly, we failed in successfully applying the EnKF to the
data. Nonetheless, by analysing the likelihood profiles we were able to shrink
the parameter search space to the region where the model exhibits meaning-
ful neuron-like responses to the experimental input. Relying on such reduced
search spaces, we were finally able to apply swarm optimization techniques
which allowed us to find some parameter estimates that make the model fit
the experimental spike trains, and reproduce out-of-sample experimental data
to some extent. However, we do not consider the results we found completely
satisfactory, and we then propose some possible explanations in the very last
section.

Finally, we here report that we also started the data assimilation project
on a mesoscopic neurobiological model which include a microscopic detail.
Namely, we began investigating the possibility of using measurements of the
collective activity of a neural network – either invasive, such as local field poten-
tial (LFP), or non-invasive such as electroencephalography (EEG), magnetic
resonance imaging (MRI), or functional MRI (fMRI) – in order to estimate the

5

microscopic parameters which are relative to the network units. In particu-
lar, the model of neural tissue we consider is formed by leaky integrate-and-fire
(LIF) neuron models which interact through chemical synapses. Because of the
large number of computational units in biological neural networks, we assume
that all parameters in a given region follow the same probability distribution,
and what we aim at estimating are the hyperparameters of such distribution.
Although this project is still at a preliminary phase, we envision that such
an inference framework could be employed to deduce the microscopic features
of in-vivo neural tissues by only using non-invasive recordings of the brain
activity, which would represent a powerful tool in clinical studies.

This thesis is composed of three main parts: in Part I we introduce in some
detail the data assimilation methods which were employed in our numerical ex-
periments; Part II illustrates all the mathematical models of neuroactivity that
have been considered in the whole project; finally, in Part III we present the
results of all inference experiments we carried out. For a detailed presentation
and thorough breakdown of each part, we refer to the relative introductions.

6

Part I

Data assimilation methods

7

Introduction to Part I

The first part of this thesis is devoted to the mathematical description of the
algorithms which are employed in Part III to perform parameter fine-tuning in
the single-neuron models we introduce in Chapter 5. The methods we present
go under the non-specific name of data assimilation algorithms (DA), but a
number of other names have been used in different scientific communities.
For instance, in the statisticians community hidden Markov models, Monte
Carlo methods, and self-organizing state-space models are terms widely used
to denote either the data assimilation model framework, or particular families
of methods. On the other hand, the control engineers and mathematicians
community often refers to data assimilation problems with the term inverse
problems. This is to stress that in inverse problems the aim is to identify
the parameters of a given model from its output, whereas in direct problems
the output is generated by a model once its initial conditions and its param-
eters are set. However, independently on how one refers to such methods,
data assimilation designates a family of algorithms which has been employed
in the last decades to carry out the task of hidden-variables estimation and
parameters assessment in a number of different domains. Examples include me-
teorology [109], geochemistry [63], systems biology [138], econometrics [140],
petroleum industry applications [165], oceanography [92], and financial math-
ematics [154].

As far as we are concerned, in this part we present DA by overviewing dif-
ferent class of methodologies and specific instances of such algorithms. There
are two key concepts underpinnings such methods: the Bayesian framework
and the dynamical structure underpinning the state-space methodology. First,
we can synthetically describe the Bayesian framework of DA methods as as-
suming that all unknown quantities which are to be estimated are subsumed
in some signal random variable Z which follows a prior distribution p(z). This
prior distribution represents the knowledge on has a priori on the system in
exam. Then, it is supposed that the system can be observed through another
random variable Y , which is typically lower dimensional and is linked to the
signal random variable through the likelihood distribution (p(y|z)), so that the

9

Bayes’ theorem (p(z|y) ∝ p(z)p(y|z)) can be applied to compute or approxi-
mate the posterior distribution with some specific DA method. On the other
hand, the dynamical nature of data assimilation means that the signal variable
is a stochastic process, either discrete or continuous in time: Z = (Zj ; j ∈ N0)
or Z =

(
Zt ; t ∈ R+

)
, respectively. As a consequence, the aim of Bayesian

DA is to point-wisely estimate the hidden states underlying the realisation of
the corresponding data trajectory. In our case, we only address Bayesian data
assimilation in discrete-time (i.e., the assimilated data consist in a observed
time series (Yj = yj ; j ∈ N0)) applied to dynamical systems describing neuro-
biology processes. Nevertheless, the data assimilation methodology applies to
more general stochastic processes.

Overall, Part I is organised as follows. In Chapter 1, we present the state-
space model framework used to represent the dynamic phenomenon from a
probabilistic point of view. Then, we move to a survey of the most popular
examples of data assimilation methods, going into the details of some no-
table algorithms. Following [134], such overview is subdivided into the two
main families of algorithms: the family of off-line smoothing methods and the
family of filtering algorithms. The former is addressed in Chapter 2, which
opens up by formally defining the smoothing distribution and illustrating such
definition in the nonlinear Gaussian case. To be more specific, we describe
some instances of the Markov chain Monte Carlo methodology whose objec-
tive it to approximate the smoothing distribution and is effectively applicable
to non-Gaussian models (Section 2.1) as well as variational methods which aim
at directly maximizing the posterior distribution to identify its modes (Sec-
tion 2.2). On the other hand, in Chapter 3 we present the on-line approach
characterizing filtering methods, which are the algorithms we test the most in
the numerical experiments described in PartIII. We firstly focus on the well-
performing family of Gaussian-like filters (Section 3.1) and then on the more
theoretically justified particle filters which can be considered the sequential
version of Monte Carlo Markov chain methods (Section 3.2).

Finally, Chapter 4 addresses a series of issues which may arise when ap-
plying data assimilation methods to real-life problems. The first issue we
discuss is how to include static parameter and hyperparameter estimation
into the state-space model framework introduced in the first chapter (Sec-
tion 4.1). In particular, Section 4.1.1 lists different approaches which can
be used for parameter estimation (e.g., augmenting the state-space, exploit-
ing expectation-maximization, and many more), and Section 4.1.2 shows how
to extend the augmented state-space approach whenever it suffice to esti-
mate the hyperparameters which characterise the probability density of many
identically-distributed parameters. Then, in Section 4.2 we show how to build

10

the discrete-time state-space model step by step in case the proposed model is
given in continuous-time form (i.e. in form of ordinary differential equation).
Afterwards, in Section 4.3 we propose a way to adapt the Gaussian state-space
model formalism to cover the case of a “prior” model with hard constraints
and also investigate what biases such adaptation introduces. In conclusion, in
Section 4.4 we report a brief overview based on [134, Section 2.7] regarding
the different approaches one can adopt to evaluate the quality of data as-
similation methods, and then propose a performance score which can be used
whenever one adopts a forecast-skill approach in a twin-experiment framework
(Section 4.4.1).

11

12

Chapter 1

Generalities on state-space
models

In the current chapter, we simply give the exact definition of state-space model,
and illustrate such definition with a couple of examples which are paradigmatic
and frequently recur in the rest of this work.

The first base concept to introduce in order to define data assimilation
methods is the notion of state-space model. The state-space model formalism
has been extensively used in the DA literature since thanks to its generality
it is possible to cover the description of many different dynamical phenomena.
Indeed, the fundamental idea which SSMs formalise is that whenever we can
observe some data concerning a given system (e.g. atmospheric, biological,
economic, etc.), it is often the case that what we observe does not provide a
complete characterization of the physical quantities describing the system. In
such circumstances, considering the data as a simple projection of the more
complex dynamics on a easily observable space can give a significant insight on
the complete phenomenon. Let us now define such intuitive idea in a precise
mathematical manner.

1.1 The state-space model framework

A discrete-time state-space model (SSM) is a couple of two stochastic pro-

cesses: a hidden signal process
(
Zj ; j ∈ N0

)
and a measurable observation

process
(
Yj ; j ∈ N0

)
. Notice that we denote the strictly positive integers

N = {1, 2, 3, . . .}, whereas we write N0 = N∪ {0} to indicate the non-negative
integers {0, 1, 2, . . .}.

In particular, the signal process is a dz-dimensional non-stationary Markov

13

chain
(
Zj ; j ∈ N0

)
with state space Z ⊂ Rdz . We denote f0(z0) its initial den-

sity and, for j > 0, fj−1(zj|zj−1) the non-homogeneous (i.e. time-dependent)
transition density. This is to say that the signal process is given byZ0 ∼ f0,

Zj

∣∣∣ (Z0:j−1 = z0:j−1

)
∼ fj−1(· | zj−1), j > 0.

(1.1)

Remark 1.1 (Essential summary on probability notation).
Throughout this text, for any given random variable X, the notation X ∼

L is used to indicate that the random variable X is distributed according to the
probability distribution L . On the other hand, in the following we sometimes
write X = Y + Z for three arbitrary random variables X, Y , and Z. In such
cases the equal sign means that, given the realizations of the random variables
in the right-hand side, one can uniquely determine the realization of the random
left-hand side.

Also, we adopt the convention that capital letters denote random variables,
whereas lowercase letters indicate their realisations (e.g., X = x means that
the specific value x is the realisation of the random variable X) or else, purely
deterministic variables. The only exception to such rule are random variables
denoted by Greek letters, such as the noise random variables ε and ε we intro-
duce in Example 1.2 and Example 1.3 or the parameter random vector θ we
first mention in Chapter 4. Note that it is a standard convention that random
variables denoted by Greek letters are not capitalised, and the same symbol is
often used to indicate their realizations if explicitly stated. Nevertheless, if the
context is not clear and ambiguity is possible we introduce a different symbol to
indicate the realization of Greek-letter-denoted r.v.’s, the main instance being
θ = θ̌ in Section 4.1 which means, in such specific context, that the value θ̌ ∈ Θ
is the realization of the random variable θ.

In addition, remark that we use the same symbol for probability distribu-
tions and the respective density functions, so that L (x) (with the function
argument explicitly stated) denotes the p.d.f. of a random variable X which is
distributed according to the probability law L (where no argument is present
as the symbol denotes a distribution rather than a function). An example of
such non-standard notation is the following. Suppose X is a (scalar) Gaus-
sian random variable of mean µ and variance σ2. Then X ∼ L , where the
probability distribution is L = N (µ, σ2), and the respective density function
is denoted

L (x) =
1

σ
√

2π
exp

(
(x− µ)2

2σ2

)
.

Finally, Xi:j is a compact notation for (Xi, Xi+1, . . . , Xj−1, Xj), for any integer
time indeces i and j and for any stochastic or deterministic variable. ♠

14

ZjZj−1 Zj+1.Z0

f0(·) fj−1(·|zj−1)

Y0 YjYj−1 Yj+1

h(· | zj)

Figure 1.1: Diagram of the general state-space model defined by (1.1)-(1.2).

On the other hand, the observation process is a stochastic process(
Yj ; j ∈ N0

)
with state space Y ⊂ Rdy , where typically dy < dz. The

conditional density of the observation process is defined by

Yj

∣∣∣ (Z0:j = z0:j, Y0:j−1 = y0:j−1

)
∼ h(· | zj), j ≥ 0, (1.2)

and a given realization of the observation process Y0:j = y0:j is called data.
Note that the second equation of (1.1), we implicitly make use of the for-

getting property of Markovian processes. In fact, it is implied that the random

variable Zj

∣∣∣ (Z0:j−1 = z0:j−1

)
only depends on the chain state at the previ-

ous time step Zj−1 = zj−1, and it does not depend on the preceding states
Z0:j−2 = z0:j−2.

In addition, we can rewrite (1.1) in the following alternative form{
p(z0) = f0(z0)

p(zj|z0:j−1) = fj−1(zj|zj−1),
(1.3)

where the Markov property consists in stating that p(zj|z0:j−1) = p(zj|zj−1).
Note that we just introduced a further notation which is used throughout
this text. Namely, whenever we write p(x) we intend the probability density
function of some random variable X (or, occasionally, its distribution), and
specifying p(x) = f(x) gives the exact functional form of the density function.
For conditional random variables, writing p(x|y) = f(x|y) means that the
two-arguments function f(x|y) is the density of the r.v. X | (Y = y).

Using the same notation, (1.2) can be rewritten as

p(yj|z0:j, y0:j−1) = h(yj|zj), (1.4)

where h(yj|zj) = p(yj|zj).
In Figure 1.1, we give a graphical representation of a general state-space

model. Such representation is given in the form of a directed acyclic graph

15

(DAG). For a formal definition and an introduction to DAGs see, for instance,
[102, Chapter 2]. The first row of nodes in the figure represents the signal

process
(
Zj ; j ∈ N0

)
, which we cannot observe directly. On the other hand,

the sequence of nodes at the bottom represents the observable data process(
Yj ; j ∈ N0

)
. The arrows pointing downward are labelled with the obser-

vation conditional density h(· | zj), which links the signal variable Zj to the
corresponding observation Yj. Finally, the horizontal arrows represent the

Markovian transitions of the signal process
(
Zj ; j ∈ N0

)
.

In general, the aim of data assimilation is to use the information contained

in a given realization of the observation process
(
Yj = yj ; j ∈ N0

)
– which is

to say, to make use of the data – in order to infer information on the latent

signal process
(
Zj ; j ∈ N0

)
, which is not directly observable. Such layered

structure is what motivates the alternative name hidden Markov model for
state-space models.

Let us now consider some notable example of state-space models to which
we systematically refer to throughout this text.

Example 1.2 (Gaussian linear model).
A rather simple example of state-space model is the Gaussian linear model.

In such model, the signal space is the whole dz-dimensional hyperspace Z =
Rdz , and the signal model is given byZ0 ∼ N (µ0, C0)

Zj

∣∣∣ (Z0:j−1 = z0:j−1

)
∼ N (Mzj−1,Σz),

where M is a dz × dz matrix (i.e., a linear operator).
The observation model is defined by

Yj

∣∣∣ (Zj = zj

)
∼ N (Hzj,Γ),

where H is a dy × dz matrix mapping the signal space Z into the observation
space Y = Rdy .

We can reformulate such state-space model in the following way. Given a
Gaussian initial condition Z0 ∼ N (µ0, C0,), we define the stochastic dynamical
system

Zj = MZj−1 + εj, j > 0,

iteratively in time. The dynamical noise process
(
εj
)
j>0

is an independent

identically-distributed (i.i.d.) sequence with the first element distributed as

16

ε1 ∼ N (0,Σz) which is independent on the initial condition Z0. With such
alternative definition, conditioning on Zj−1 = zj−1, the Markovian dynam-
ics is given by the perturbation of the deterministic discrete-time map
gj−1(zj−1) = Mzj−1 plus the additive random noise εj.

In a similar fashion, the conditional density for an observation Yj can be
interpreted as the sum of the linear deterministic observation operator
H : Z −→ Y and a Gaussian measurement noise εj, i.e.

Yj = HZj + εj.

The measurement noise process
(
εj
)
j≥0

is an i.i.d. random sequence with

ε0 ∼ N (0,Γ), which is independent on both the initial condition Z0 and the
stochastic process

(
εj
)
j>0

.

In case of a Gaussian linear state-space model, both signal and observation
models are linear (i.e. gj−1 : Z −→ Z and H : Z −→ Y are linear operators).
In addition, the initial condition Z0, and the noise processes

(
εj
)
j>0

and
(
εj
)
j≥0

are all Gaussian random variables. Because of its analytical tractability, this
is a remarkable example which returns in the description of some DA methods
in the forthcoming chapters. ♣

The linear Gaussian model discussed above can be rather easily generalised
to its nonlinear counterpart, which is much more useful in practical applica-
tions.

Example 1.3 (Gaussian nonlinear model).
The Gaussian nonlinear state-space model has the same signal space Z =

Rdz as the previous linear SSM, but the deterministic discrete time map
gj−1(zj−1) and the deterministic observation operator H(zj) are now allowed
to be nonlinear functions.

A recursive definition for the signal dynamics isZ0 ∼ N (µ0, C0)

Zj

∣∣∣ (Zj−1 = zj−1

)
∼ N

(
gj−1(zj−1),Σz

)
,

(1.5)

where – as before – the dynamical noise process
(
εj
)
j>0

is an i.i.d. sequence

with ε1 ∼ N (0,Σz) independent on the initial condition Z0.
Also, the observation model is

Yj = H(Zj) + εj, (1.6)

where the measurement noise process
(
εj
)
j≥0

is an i.i.d. random sequence with

ε1 ∼ N (0,Γ), which is independent on both the initial condition Z0 and the
stochastic process

(
εj
)
j>0

.

17

ZjZj−1 Zj+1.Z0

µ0

C0

gj−1(zj−1)

Σz

Y0 YjYj−1 Yj+1

H(zj) Γ

Figure 1.2: DAG of the Gaussian nonlinear state-space model described in Exam-
ple 1.3

To be completely explicit, the analytical expression for the initial condition
probability density function (p.d.f.) is given by

f0(z0) =
1(

(2π)dz |C0|
)1/2

exp

(
− 1

2

∣∣z0 − µ0

∣∣2
C0

)
,

and, conditional on Z0:j−1 = z0:j−1, the signal model transition density has the
form of a Gaussian density with mean gj−1(zj−1) and covariance matrix Σz,
i.e.

fj−1(zj|zj−1) =
1(

(2π)dz |Σz|
)1/2

exp

(
− 1

2

∣∣zj − gj−1(zj−1)
∣∣2
Σz

)
.

Finally, conditional on Z0:j = z0:j, the observation model density is Gaussian
with mean H(zj) and covariance matrix Γ, namely

h(yj|zj) =
1(

(2π)dy |Γ|
)1/2

exp

(
− 1

2

∣∣yj −H(zj)
∣∣2
Γ

)
.

Note that in general, given a `× ` non-singular matrix A, throughout this text
we adopt the notation | · |A to indicate the A-induced norm on R`. Such norm
is defined by

|z|A =
√
zTA−1z,

for all z ∈ R`. ♣

Figure 1.2 illustrates the state-space model described in the last Gaussian
nonlinear case. As in Figure 1.1, the top row of nodes represents the hidden
signal process and the bottom sequence the observation process. Since this is
a Gaussian state-space model, only the mean and the covariance matrix of the

18

probability distributions are marked. In fact, the symbols at the top left corner
of the figure mean that the random initial condition is distributed according to
Z0 ∼ N (µ0, C0). The conditional transition distribution is Zj

∣∣(Zj−1 = zj−1

)
∼

N (gj−1(zj−1),Σz), and the conditional observation distribution is Yj
∣∣ (Zj =

zj
)
∼ N (H(zj),Γ). This concludes preliminary introduction to state-space

models.
In the next two chapters, we present in detail a series of data assimilation

algorithms which in Part III are applied to different models of neurobiological
activity. Note that the family of DA methods can be subdivided into two
main classes: the class of off-line smoothing algorithms, which we address in
Chapter 2, and the class of on-line filtering algorithms, discussed in Chapter 3.
We now proceed presenting the main features of each of these two groups, and
we introduce some notable examples for each class of algorithms. Note that
in both cases, we consider a fixed time horizon J ∈ N and the resulting finite
time window

{
0, . . . , J

}
. We hereafter refer to such discrete time interval as

the data assimilation time window.

19

20

Chapter 2

Off-line smoothing methods

In this chapter, first we introduce the smoothing problem, and then we present
its negative-log formulation which applies to Gaussian state-space models.
Then, we present in detail two different methodologies which belong to the
class of smoothing methods: the Markov chain Monte Carlo (Section 2.1),
and the class of variational algorithms (Section 2.2). The latter is exempli-
fied in Section 2.2.2 by presenting the freely-available implementation of the
four-dimensional variational algorithm.

Considering a Bayesian framework, we present the smoothing problem
as follows. First, let us introduce the prior density p(z0:J). Such quantity
represents the prior knowledge that one can deduce from the signal model (1.1)
about the signal variable Z0:J . Taking advantage of the signal model definition
given in (1.3), the prior p(z0:J) can be explicitly computed as

p(z0:J) = p(zJ |z0:J−1)p(z0:J−1)

= p(zJ |zJ−1)p(z0:J−1)

= . . .

= p(z0)
J∏
j=1

p(zj|zj−1)

= f0(z0)
J∏
j=1

fj−1(zj|zj−1),

(2.1)

where we solely applied the Markov property while resorting to recursion.

It is somewhat customary to write the prior as

p(z0:J) = exp
(
− P(z0:J)

)
,

21

where the negative-log prior P : ZJ −→ R is tautologically defined by

P(z0:J) := − log
(
p(z0:J)

)
. (2.2)

Hence, taking advantage of the homomorphy property1 of the logarithm func-
tion, (2.1) yields

P(z0:J) = − log
(
f0(z0)

)
−

J∑
j=1

log
(
fj−1(zj|zj−1)

)
.

Note that the above expressions are actually meaningful only when the prior
distribution is strictly positive on the whole signal state space, i.e. p(z0:J) > 0
for all z0:J ∈ ZJ+1.

Now, suppose we are given a set of data in the data assimilation time

window
{

0, . . . , J
}

, namely
(
Yj = yj ; j = 0, . . . , J

)
, a given realization of

the observation process. Then, the conditional density p(y0:J |z0:J) is called
the likelihood function (or simply the likelihood) and, using the observation
model definition (1.4), it can be computed as

p(y0:J |z0:J) = p(yJ |z0:J , y0:J−1)p(y0:J−1|z0:J)

= p(yJ |zJ)p(y0:J−1|z0:J)

= . . .

=
J∏
j=0

p(yj|zj)

=
J∏
j=0

h(yj|zj).

(2.3)

As for the prior, introducing the negative-log likelihood

L(z0:J ; y0:J) :=− log
(
p(yj|z0:J)

)
=−

J∑
j=0

log
(
h(yj|zj

)
,

(2.4)

the likelihood function is given by

p(y0:J |z0:J) = exp
(
− L(z0:J ; y0:J)

)
,

1If a, b > 0, then log(ab) = log(a) + log(b).

22

where p(y0:J |z0:J) > 0, for all z0:J ∈ ZJ+1 and y0:J ∈ YJ+1.
Taking advantage of the likelihood function, the posterior smoothing den-

sity p(z0:J |y0:J) can be computed applying the Bayes’ formula

p(z0:J |y0:J) =
p(y0:J |z0:J)p(z0:J)

p(y0:J)
. (2.5)

Remark 2.1. Thinking of the smoothing density as a function of the signal
z0:J 7−→ p(z0:J |y0:J), the denominator p(y0:J) of the right hand side (r.h.s.)
of (2.5) can be thought as a normalizing constant which can be easily com-
puted integrating z0:J out of numerator. In fact, since the smoothing density
p(z0:J |y0:J) has unitary mass, p(y0:J) =

∫
ZJ+1 p(y0:J |z0:J)p(z0:J) dz0:J . Because

of such observation, Bayes’ formula is often written in the alternative form

p(z0:J |y0:J) ∝ p(y0:J |z0:J)p(z0:J), (2.6)

which reads: “the posterior distribution is proportional to the prior distribution
times the likelihood”.

However, the computation of the normalizing constant in (2.6) can be
computationally expensive in practice, especially when the state space is high-
dimensional. This is the case, for instance, whenever the signal is high dimen-
sional (large dz) or for long temporal windows (large J). In such situations, it
can be inefficient to compute or sample directly the exact smoothing distribu-
tion. Precisely this reason motivates the need of smoothing algorithms capable
of approximating the smoothing distribution. ♠

In conclusion, the posterior density for the smoothing problem set by (1.1)
and (1.2) is given by

p(z0:J |y0:J) ∝

prior︷ ︸︸ ︷
f0(z0)

J∏
j=1

fj−1(zj|zj−1)

likelihood︷ ︸︸ ︷
J∏
j=0

h(yj|zj) . (2.7)

In addition, defining the negative-log smoothing density as

S(z0:J ; y0:J) :=− log
(
p(z0:J ; y0:J)

)
= P(z0:J) + L(z0:J ; y0:J) + const.

(2.8)

the smoothing density can be written as

p(z0:J |y0:J) = exp
(
− S(z0:J ; y0:J)

)
. (2.9)

23

Since – as mentioned in Remark 2.1 – normalizing constants are often not
relevant in our discussion, in the rest of this text the we will omit the additive
constant appearing in (2.8). Furthermore, it will be always implied that the
definitions for the neg-log prior (2.2) and the neg-log likelihood (2.4) hold up
to additive constants.

Such expressions for the prior, the likelihood, and smoothing distribution
in negative-log form are mostly useful in case of Gaussian probability densities,
as we show in the following example.

Example 2.2 (Smoothing distribution in the Gaussian case).

In the Gaussian nonlinear state-space model presented in Example 1.3, the
prior density is given by

p(z0:J) = f0(z0)
J∏
j=1

fj−1(zj|zj−1)

∝ exp

(
− 1

2

∣∣z0 − µ0

∣∣2
C0

) J∏
j=1

exp

(
− 1

2

∣∣zj − gj−1(zj−1)
∣∣2
Σz

)

∝ exp

(
− 1

2

∣∣z0 − µ0

∣∣2
C0

)
exp

(
− 1

2

J∑
j=1

∣∣zj − gj−1(zj−1)
∣∣2
Σz

)

∝ exp

(
− 1

2

∣∣z0 − µ0

∣∣2
C0
− 1

2

J∑
j=1

∣∣zj − gj−1(zj−1)
∣∣2
Σz

)
.

Thus, the negative-log prior defined in (2.2) in the Gaussian case is

P(z0:J) =
1

2

∣∣z0 − µ0

∣∣2
C0

+
1

2

J∑
j=1

∣∣zj − gj−1(zj−1)
∣∣2
Σz
. (2.10)

On the other hand, the likelihood function writes

p(y0:J |z0:J) =
J∏
j=0

h(yj|zj)

∝
J∏
j=0

exp

(
− 1

2

∣∣yj −H(zj)
∣∣2
Γ

)

∝ exp

(
− 1

2

J∑
j=0

∣∣yj −H(zj)
∣∣2
Γ

)
,

24

or, equivalently, it is given by p(y0:J |z0:J) = exp
(
− L(z0:J ; y0:J)

)
, where

L(z0:J ; y0:J) =
1

2

J∑
j=0

∣∣yj −H(zj)
∣∣2
Γ
. (2.11)

In conclusion, the smoothing density is given by (2.9), where

S(z0:J ; y0:J) =
1

2

∣∣z0 − µ0

∣∣2
C0

+
1

2

J∑
j=1

∣∣zj − gj−1(zj−1)
∣∣2
Σz

+
1

2

J∑
j=0

∣∣yj −H(zj)
∣∣2
Γ

(2.12)
♣

Smoothing algorithms are off-line inference methods, which is to say that
we need to condition over the whole dataset in order to infer information on the
signal Zj at any time step j. In fact, once the smoothing density p(z0:J |y0:J)
is known, its marginal distribution can also be computed by integration with
respect to all other variables

p(zj|y0:J) =

∫
ZJ
p(z0:J |y0:J) dz0:j−1 dzj+1:J . (2.13)

The above expression contains the whole information on Zj which can be drawn
from the dataset Y0:J = y0:J . However, it should be emphasised that in (2.13),
in order to obtain information on the signal at time j, we also condition on
“future” data yj+1, yj+2, . . . , yJ .

Being an off-line method is not normally a flaw. On the contrary, since even
future point of the trajectory are used, using a smoothing algorithm is usually
very effective in most cases. However, conditioning on the whole dataset at
each time step is often computationally expensive and results in large CPU
time even for relatively small problems, as we show in [169].

In addition, the off-line approach may be problematic whenever the esti-
mation procedure should be performed “on the fly”, as data arrive. This is the
case, for instance, in weather forecast applications: at the present day, when a
new atmospheric measurement is recorded, one wishes to run a new inference
step while preserving the estimation made the day before. In such situations,
whenever a new datum is available, off-line methods need to run the algorithm
with a new augmented dataset from scratch. On the contrary, it is possible to
tackle the estimation of the posterior distribution p(z0:J |y0:J) one time-step at
the time, by taking advantage of on-line algorithms constructed in a sequen-
tial manner. Such algorithms are commonly called filtering methods and they
are discussed in detail in the next chapter.

25

But first, we continue our presentation of smoothing methods by intro-
ducing some classical algorithms. In particular, we focus on two families of
methods: the Markov chain Monte Carlo methodology, introduced in the fol-
lowing section, and the variational methodology, discussed in the subsequent
Section 2.2. For each one of these two approaches, we illustrate some specific
examples and give the complete algorithm in the case of Gaussian nonlinear
model.

2.1 The Markov chain Monte Carlo method-

ology

We now present the Markov chain Monte Carlo (MCMC) methodology, which
can be applied to approximate any given probability distribution π on a given
state space X ⊂ R`. As a consequence, in the current section we drop the
terminology established for the smoothing problem and only refer to a general
probability density π, so to stress the generality of such methodology. Its
application to the smoothing problem is easily recovered by taking π to be the
smoothing density p(z0:J |y0:J).

The core idea of Markov chain Monte Carlo methods is to consider a
discrete-time Markov chain

(
X(n)

)
n≥0

, with state-space X ⊂ R` and transi-

tion kernel2 K(x, dx̂), which admits the target distribution π as an invariant
distribution3. Such a Markov chain is particularly useful, as it can be proved
that under standard ergodic assumptions on

(
X(n)

)
n≥0

, the chain distribution

converges to the (unique) invariant distribution, independently of the initial
configuration.

In the general setting of a discrete-time Markov chain with uncountable
state space, the typical standard ergodic assumptions are related to the
following properties:

i) irreducibility (from any state there is a positive probability to reach
any other state);

ii) being recurrent (in average, the chain visits any possible state an infi-
nite number of times);

iii) being aperiodic (there is no cyclic structure in the chain trajectories).

2See [179, Definition 4.2.1] for a formal definition of transition kernel for Markov chains.
3See [179, Definition 4.5.1].

26

We do not provide a precise mathematical definition of such three properties,
but the reader may refer to [179, Definition 4.3.1], [179, Definition 4.4.5, Defi-
nition 4.4.8], and [179, definitions at page 150], respectively. In addition, refer
to [179, Theorem 4.6.5] for a rigorous list of the hypothesis guaranteeing con-
vergence to the invariant distribution in case of countable state space, and to
[156, Chapter 13] for a rigorous proof in case of general state space.

Note that the name ergodic for (i)-(iii) is due to the fact that, under
such hypotheses, not only the Markov chain is asymptotically distributed as
the invariant distribution, but it also satisfies the following ergodic property.
Let

(
X(n)

)
n≥0

be a discrete-time X -valued Markov chain with π as invariant

distribution. Then,
(
X(n)

)
n≥0

is said to be ergodic if for all π-integrable

functions4 ϕ : X −→ R, the limit

1

N

N−1∑
n=0

ϕ(X(n))
N→∞−−−→

∫
X
ϕ(x)π(dx), (2.14)

holds for π-almost every (a.e.) initial condition X(0) = x(0).

Such property can be summarised saying that, for ergodic Markov chains
time averages – left hand side (l.h.s.) of (2.14) – and space averages – the
r.h.s. – are exchangeable for large N .

Remark 2.3. The ergodic theorem is the result stating the sufficient con-
ditions (usually, irreducibility and being recurrent) which guarantee that a
Markov chain is ergodic. First, it has been proved by in the context of dif-
ferential dynamical systems on closed manifolds by G. Birkhoff [24]. However,
in modern literature it is usually justified invoking the Law of large numbers,
with the Central limit theorem providing the convergence rate.

We do not explicitly state such result nor we specify its hypotheses as a
complete dissertation on the mathematical foundations of MCMC methods goes
beyond the scope of this thesis. In particular, note that we did not even in-
dicate the type of convergence in (2.14). For further details on the ergodic
theorem and details on its proof see, for instance, [179, Theorem 4.7.4, Propo-
sition 4.7.5]. ♠

Along with the result of convergence to the invariant distribution, the er-
godic property is the fundamental theoretical tool for MCMC methods. In-
deed, suppose you built a Markov chain

(
X(n)

)
n≥0

admitting π as invariant
distribution. Then, under the ergodic theorem hypotheses, if we approximate

4That is for all ϕ ∈ L1(π).

27

the target distribution π with the corresponding finite-N time average,∫
X
ϕ(x)π(dx) ≈ 1

N

N−1∑
n=0

ϕ(X(n)), (2.15)

we make an error of order O(N−1/2) (cfr. the Central limit theorem).

Remark 2.4. Note that the l.h.s. of (2.15) is nothing but the expected value
of a random variable ϕ(X), where X ∼ π. Since ϕ is a general function, such
Monte Carlo approximation enables the computation of any relevant quan-
tity concerning the target distribution π. For instance, for all events A, set-
ting ϕ(X) = 1A(X) returns the probability of the event π(A); considering
ϕ(X) = X, we obtain the expected value of a random variable (r.v.) dis-
tributed according to π; taking ϕ(X) = |X − E[X]|2 gives its variance, and so
on and so forth. ♠

In general, given a probability distribution π, one can build a Monte Carlo
approximation by drawing N i.i.d. samples from X(n) ∼ π. Once this ensemble
of particles {x(n)}Nn=1 has been drawn, the Monte Carlo approximation of
the distribution π

π̂N =
1

N

N∑
n=1

δx(n) (2.16)

is available as well. Such approximation is basically an equally weighted sum of
Dirac masses centred on the samples, with the convenient property of having
a discrete support. In addition, it is a notion of paramount importance for
state-of-the-art DA methods. In particular, in the next chapter we will see
that particle filtering methods (Section 3.2) extensively exploit the discrete-
support property of Monte Carlo approximations.

However, whenever the target distribution π is unknown, it is not possible
to directly draw its samples. Markov chain Monte Carlo methods overcome
such difficulty by building a Markov chain (from which, the “Markov chain”
in MCMC) which is asymptotically distributed as the target distribution, in
order to obtain a Monte Carlo approximation π̂N of π (hence, the “Monte
Carlo” in MCMC).

There are many different MCMC methods which can be employed in order
to approximate a given target distribution. A notable example is the Gibbs
sampler which can be used, for instance, to approximate the joint posterior
distribution of the unknown mean and the unknown covariance matrix of a
multivariate normal r.v. (see [90, Section 7.4]). However, in the data assimi-
lation community, the most popular MCMC methods are those belonging to
the family of Metropolis-Hastings methods.

28

2.1.1 The Metropolis-Hastings framework

In Metropolis-Hastings (MH) algorithms, the Markov Chain Monte Carlo(
X(n)

)
n≥0

which approximates the target distribution π is built according to
the following procedure.

Suppose that at time n − 1, the chain is in the state X(n−1) = x. First, a
conditional transition density q(x̂|x) has to be selected. Such density is called
the proposal density and it characterises the distribution of X̂ ∼ q(· |x), the
proposed new state of the chain at time n. Now, suppose the Markov chain
identified by the transition kernel K(x, dx̂) = q(dx̂|x) satisfies the detailed
balance equation with respect to the target distribution π, i.e.

π(x)K(x, x̂) = π(x̂)K(x̂, x). (2.17)

Then, since the detailed balance guarantees that the Markov chain with tran-
sition kernel K(x, dx̂) = q(dx̂|x) admits π as unique invariant distribution5 we
constructed our desired MCMC.

Unfortunately, without specific assumptions on the proposal density, q and
π are not in detailed balance, and there exist x and x̂ in X such that

π(x)q(x̂|x) < π(x̂)q(x|x̂). (2.18)

As a consequence, the proposal distribution has to be adjusted in order for
(2.17) to hold. In practice, the possibility for a proposed move to be rejected
should be included.

To this end, the transition kernel K can be built by introducing the function
m(x, x̂). For x 6= x̂, m(x, x̂) is defined as the multiplication of the proposal
density q(x̂|x) by the acceptance density a(x, x̂), the probability of accepting
a given proposed move from x to x̂ when updating the Markov chain. On the
other hand, m(x, x̂) is arbitrarily set to zero if x = x̂. Then, we consider a
transition kernel K of the form

K(x, dx̂) = m(x, x̂) dx̂+

(
1−

∫
m(x, x̂′)dx̂′

)
δx(dx̂), (2.19)

where δx(dx̂) is the Dirac measure defined by δx(dx̂) = 1 if x ∈ dx̂ and zero
otherwise and, as a consequence, the probability of remaining in state x is
1−

∫
X m(x, x̂′)dx̂′.

Now, let us fix x and x̂ with x 6= x̂. If (2.18) holds, it means that the
detailed balance is broken because the sampling from q results in too many

5In fact, integrating (2.17) with respect to x̂ yields π(x) =
∫
π(x̂)K(x̂, x) dx̂, that is to

say, the distribution π is invariant under the transition kernel K.

29

moves from x̂ to x. Hence, all moves in the opposite direction should be
accepted (i.e. a(x, x̂) = 1). On the other hand, enforcing (2.17) yields

π(x̂)q(x|x̂)a(x̂, x) = π(x)q(x̂|x)a(x, x̂)

= π(x)q(x̂|x),

from which one obtains a(x̂, x) = π(x)q(x̂|x)
π(x̂)q(x|x̂)

in case π(x̂)q(x|x̂) > 0. On the

contrary, if π(x̂)q(x|x̂) = 0, (2.18) implies π(x)q(x̂|x) = 0, which means that
q is already in detailed balance with π and a(x̂, x) can be set to one. If (2.18)
holds with opposite sign, we essentially get the same expression for a(x̂, x).

In conclusion, the resulting probability of accepting a given move from state
x to state x̂ is6

a(x, x̂) = 1 ∧ π(x̂)q(x|x̂)

π(x)q(x̂|x)
,

where we assume a(x, x̂) = 1 if the denominator π(x)q(x̂|x) is zero.

To sum up, MH methdos work as follows. We choose a proposal distribution
q(dx̂|x) and initialise the Markov chain Monte Carlo

(
X(n)

)
n≥0

by drawing the

initial state X(0) = x(0) from a given initial distribution p(dx(0)). Then, at
step n > 0, draw a proposed new state X̂ = x̂ from the proposal distribution
q(· |x(n−1)). Finally, set the new state of the chain according to the acceptance
probability, namely

X(n) =

{
x̂ with probability a(x, x̂)

x(n−1) with probability 1− a(x, x̂),
(2.20)

and then iterate over n.

Of course, there are assumptions on the target distribution π and the pro-
posal distribution q(dx̂|x) that one should check in order to guarantee that the
Markov chain Monte Carlo defined above actually converges to π. In brief, the
main assumption is that the support of π is contained in the support of the
proposal kernel q

suppπ ⊂
⋃

x∈suppπ

q(· | x). (2.21)

For further details we refer to [179, Theorem 6.2.3]

Clearly, each choice of proposal distribution q(x̂|x) results in different algo-
rithms. We now briefly present two subclasses of these algorithms and specify
two examples in the case of smoothing distribution estimation.

6We adopt the notation ∧ for the minimum operator, namely x ∧ y := min{x, y}

30

Independent samplers

A notable subclass of MH methods is the family of independent samplers,
whose name stems from the choice of a proposal distribution that is indepen-
dent on the current state of the chain, i.e. q(x̂|x) = q(x̂). In this case the
acceptance probability has the form

a(x, x̂) = 1 ∧ π(x̂)q(x|x̂)

π(x)q(x̂|x)

= 1 ∧ π(x̂)q(x)

π(x)q(x̂)
.

Let us return to the original smoothing problem for the state-space model
defined by (1.1)-(1.2) for a moment. Recall that in this case the target distri-
bution π is the smoothing density p(z0:J |y0:J). For the sake of readability, in
this description we drop the subscript notation, i.e. we write z = (z0, . . . , zJ)
and y = (y0, . . . , yJ) instead of z0:J and y0:J , respectively.

If we choose the prior computed in (2.1) as symmetric proposal distribution,
it follows from (2.7) that

a(z, ẑ) = 1 ∧ p(ẑ|y)p(z)

p(z|y)p(ẑ)

= 1 ∧ p(ẑ|y)

p(ẑ)

p(z)

p(z|y)

= 1 ∧ p(y|ẑ)

p(y|z)

= 1 ∧
∏J

j=0 h(yj|ẑj)∏J
j=0 h(yj|zj)

.

(2.22)

The quotient in the last line is the ratio between the likelihood of the two
points. Note that, since the proposal only takes information from the prior,
the accept/reject step is only based on the likelihood: if the likelihood of the
proposed move p(y|ẑ) is larger than the likelihood at the current state p(y|z)
the move is accepted with probability one; if the likelihood decreases, the move
is accepted with probability smaller than one.

Finally, in the sub-case of Gaussian nonlinear model (Example 1.3), the

proposal distribution is given by q(ẑ|z) = q(ẑ) ∝ exp
(
− P(ẑ)

)
, where P is

defined in (2.10). The expression for the acceptance probability is then

a(z, ẑ) = 1 ∧ exp
(
L(z)− L(ẑ)

)
,

31

with L defined in (2.11). In such Gaussian case, when the proposed likelihood
decreases i.e. L(ẑ) < L(z), we also have that the acceptance probability decays
exponentially with the difference of the log-likelihoods.

Random walk Metropolis methods

Another subclass of MH methods is the family of Metropolis algorithms
[155] which results from choosing a symmetric proposal distribution q(x̂|x) =
q(x|x̂). As a consequence, the acceptance probability is given by

a(x, x̂) = 1 ∧ π(x̂)q(x|x̂)

π(x)q(x̂|x)

= 1 ∧ π(x̂)

π(x)
.

Example 2.5. In case the state space of the Markov chain is X = R`, an
example of symmetric proposal is q(· | x) = N (x,C), where C is a posi-
tive definite covariance matrix. Such choice results in a proposal X̂ that is
a Gaussian deviation from the state of the chain at the preceding time step,
i.e. X̂ = X(n−1) + D, where D ∼ N (0, C). Because of this form, Metropolis
algorithms are also called random-walk Metropolis methods.

A possible alternative is to choose a deviation variable D that is uniformly
distributed on a neighbourhood of the origin, such as D ∼ U

(
[−c, c]`

)
, for

some c > 0. ♣

Once again, let us specify the acceptance probability in the case of the
smoothing problem for the nonlinear state-space model defined in Example 1.3.
In such case we have

a(z, ẑ) = 1 ∧ exp
(
S(z; y)− S(ẑ; y)

)
,

where S – the neg-log smoothing density – is defined in (2.8). Such expression
signifies that, whenever a proposed move increases S(· ; y) the move is accepted
with an acceptance probability which decays exponentially with the size of the
decrease; on the other hand, it is accepted with probability one any move which
decreases the negative-logarithm of the smoothing distribution, i.e. such that
S(ẑ; y) < S(z; y).

Unlike the case of the independence sampler, in case of Metropolis sampler
the acceptance probability is influenced by both the prior and the likelihood.
On the other hand the proposal step in Metropolis algorithms is nothing but
a random walk in the state space. As a consequence, the accept/reject step
bears the whole burden of biasing the moves towards maxima of the smoothing
density.

32

More on MCMCs

There are, of course, a number of MCMC methods which can be used in
practice, both within and outside the MH class. In addition, there are many
technical issues that should be addressed in order to successfully apply MCMC
methods to real-life problems, such as the common practice of burn-in –
throwing the first states of the Markov chain in order to have a Monte Carlo
approximation that is independent of its initial distribution p(x(0)) – or the

thinning procedure (extracting a sub-chain
(
X(kp)

)K
k=1

for p ∈ N fixed, so
that the resulting particles are uncorrelated). However, going through the
details of practical implementation of MCMC goes beyond the scope of this
work. We refer to [90] and [179] for further details on this topic.

We now move to introducing the philosophy motivating variational meth-
ods, and to illustrate a specific implementation of such approach.

2.2 Variational methods

The MCMC methodology we just introduced extensively resort to Monte Carlo
sampling. Unfortunately, whenever the target random variable is defined over
a large-dimensional space, sampling a sufficient number of particles can be
very demanding from a computational point of view. This is precisely the
case for the smoothing problem relative to general state-space model ((1.1)
and(1.2)), where the target distribution is the smoothing density p(z0:J |y0:J).
Here, resorting to MCMC methods means sampling (J + 1)dz-dimensional,
ZJ+1-valued random variables. Whenever there are many observation (i.e. J
is large), such space is very large indeed, and Monte Carlo sampling can incur
in the so-called curse of dimensionality [21, Section 5.16]. For the sake of
readability, in this section we drop the subscript notation: whenever it is not
differently specified, x stands for x0:J for any variable x = z, y.

For such reason, an appealing alternative is to focus on locating a few
highly-representative samples of the target distribution, and characterise the
target distribution only via these few samples. Typically, the standard ap-
proach is to locate the peaks of the target probability density, namely to solving
the optimisation problem

z∗ = argmax
z∈ZJ+1

{
p(z|y)

}
. (2.23)

Since this is a problem of locating stationary points of a given function, such
techniques are called variational methods.

Note that, from a probabilistic point of view, the corresponding maximum
points identify the modes of the target distribution, i.e. the states with highest

33

probability. Besides, in the statistics literature the estimator z∗ of the random
variable Z | (Y = y) defined in (2.23) is called a maximum a posteriori
(MAP) estimate. Indeed, it is the maximum point of the posterior distribution
p(z|y) ∝ p(y|z)p(z). As a comparison, consider that other notable statistical
estimators include the conditional mean z∗ = E[Z|Y] =

∫
ZJ+1 zp(z|y) dz,

and the maximum likelihood (ML) estimate

z∗ = argmax
z∈ZJ+1

p(y|z).

Note that, technically speaking the latter is not a Bayesian estimator be-
cause it uses no prior distribution in the estimation procedure. Instead, it just
maximises the likelihood function z 7−→ L(z; y) = p(y|z), for a fixed dataset
y. Finally, in the weather forecasting literature, this method is referred to
as 4DVAR, where VAR stands for variational [196, 197]. In fact, models
of atmospheric dynamics usually involve three spatial dimensions evolving in
time. Hence, solving (2.23) means maximizing a function defined in the four-
dimensional spatio-temporal space, from which the 4D in 4DVAR.

Remark 2.6. Notice that, the argmax function is invariant for positive scal-
ing7. As a convenient corollary, such invariance allows one to neglect any
normalizing constant in the smoothing distribution. For instance, the Bayes’
theorem (2.6) can be invoked and the optimisation problem argmax{p(y|z)p(z)}
can be solved instead of argmax{p(z|y)}, completely disregarding the normal-
ization constant. ♠

Recall from (2.8) that the negative-log smoothing density is defined as

S(z; y) := − log
(
p(z|y)

)
. In light of the last remark, the maximization prob-

lem (2.23) can be turned into the equivalent minimization problem

z∗ = argmin
z∈ZJ+1

{
S(z; y)

}
. (2.24)

Indeed, by definition of S(z; y) we have that p(z|y) = exp
(
− S(z; y)

)
, and

the function x 7→ exp(−x) is strictly decreasing.
As an example, we now show that in case of linear Gaussian state-space

model, the negative-log smoothing density has a single minimum point which
can be computed analytically.

7i.e. argmax{f(z)} = argmax{cf(z)}, for all c > 0

34

Example 2.7 (The Kalman smoother).
Consider the case of a Gaussian linear state-space model as the one defined

in Example 1.2. Since in the linear case the deterministic discrete-time map is
gj−1(zj−1) = Mzj−1, and the deterministic observation operator H(zj) = Hzj,
the negative-log smoothing distribution (2.12) writes

S(z; y) =
1

2

∣∣z0 − µ0

∣∣2
C0

+
1

2

J∑
j=1

∣∣zj −Mzj−1

∣∣2
Σz

+
1

2

J∑
j=0

∣∣yj −Hzj∣∣2Γ.
We observe that this is a convex quadratic form in the signal variable z =
(z0, . . . , zJ) ∈ R(J+1)dz . In particular, it can be written as

S(z; y) = |z − µ|2Σ + c,

where µ ∈ R(J+1)dz , Σ is a
(

(J + 1)dz

)
×
(

(J + 1)dz

)
matrix, and c is a scalar.

As a consequence, the unique solution of the minimization problem (2.24) in
the linear-Gaussian case is z = µ.

Specifically, the form of the covariance tridiagonal block matrix is

Σ =

Σ1,1 Σ1,2

Σ2,1 Σ2,2 Σ2,3

.
. ΣJ,J+1

ΣJ+1,J ΣJ+1,J+1

 ,

where the dz × dz diagonal blocks are given by Σ1,1 = C−1
0 +MTΣ−1

z M , Σjj =
HTΓ−1H+MTΣ−1

z M +Σ−1
z , for j = 2, . . . , J , and ΣJ+1,J+1 = HTΓ−1H+Σ−1

z .
For j = 1, . . . , J , the upper diagonal blocks have the form Σj,j+1 = −MTΣ−1

z ,
whereas the lower diagonal blocks are Σj+1,j = −Σ−1

z M . On the other hand,
the mean µ ∈ R(J+1)dz is given by Σµ = b, where b = (b1, . . . , bJ+1) with b1 =
C−1

0 µ0 and, for j = 2, . . . , J + 1, bj = HTΓ−1yj−1. Consult [134, Theorem 3.1],
for a justification of such expressions.

The method described in this example goes under the name of Kalman
smoother (KS), and it provides the exact solution of the minimization prob-
lem (2.24) in case of Gaussian linear SSM. ♣

We highlight that without specific assumption on the signal and observation
model, uniqueness of the solution of (2.23) cannot be guaranteed. Then, the
smoothing density has in general multiple maxima and, in principle, one should
locate all these maxima to have a good estimator.

35

In addition, a remarkable property of the Gaussian linear problem discussed
in the above example is that the solution of (2.23) can be expressed in closed-
form. This is no longer true as soon as the signal model (or the observation
model) is nonlinear. In practice, in case of a general state-space model, (2.23)
has to be maximised numerically.

Remark 2.8. There is a vast and mature literature on numerical optimisation,
and the choice of a suitable algorithm for a given optimisation problem depends
on the properties of the objective function which is being minimised/maximised.
For instance, convexity of the objective function is usually a desirable prop-
erty for which a well-established family of classic methods is available [28]. In
case of non-convex objective function, further classic optimisation algorithms
include derivative-based algorithms (e.g., gradient descent/ascent meth-
ods, conjugate gradient methods, Newton methods, etc. [163]). In addition,
metaheuristic methods which are becoming more and more popular in the last
decades include evolutionary and genetic algorithms (consult [64] and
the bibliographical survey [16] for further information), as well as the family
of particle swarm optimisation methods [62, 168] ♠

Here, we do not delve further into the details of numerical optimisation
methods that can be used to implement 4DVAR. Instead, we just introduce
the related path-integral formalism for the nonlinear Gaussian model (Exam-
ple 1.3) as presented by H. Abarbanel in [12]. As a practical application, we
present and discuss the theoretical properties of minAone, the 4DVAR imple-
mentation proposed by Abarbanel and collaborators.

2.2.1 The path integral framework

As discussed in Remark 2.4, for a given class of functions ϕ, integrals of the
form ∫

ϕ(z)π(dz),

fully characterise a given probability distribution π(dz). In particular, setting
the target distribution to be the posterior smoothing distribution p(z|y) of
the Gaussian nonlinear problem defined in Example 1.3 , the characterizing
integral writes

E[ϕ(Z)|Y = y] =

∫
ϕ(z) exp

(
− S(z; y)

)
dz∫

exp
(
− S(z; y)

)
dz

. (2.25)

36

We recall that such integrals are over the signal process path space ZJ+1, as
we are employing the notation z = z0:J , so that dz = dz0 · · · dzJ . This is the
reason why [12] refers to integral (2.25) as the path integral. In addition,
S(z; y) is called the action, in analogy to the quantum-physics terminology.

As we discussed in the previous section, the aim is to approximate the
action S(z; y) in order to obtain an approximation of the smoothing distribu-
tion p(z|y) ∝ exp

(
− S(z; y)

)
. In Example 2.2, we showed that S(z; y), the

negative-log smoothing density, has the form

S(z0:J ; y0:J) =
1

2

∣∣z0 − µ0

∣∣2
C0

+
1

2

J∑
j=1

∣∣zj − gj−1(zj−1)
∣∣2
Σz

+
1

2

J∑
j=0

∣∣yj −H(zj)
∣∣2
Γ
.

In what follows, we also assume that the covariance matrices are all diagonal,
i.e. Σz = σ2Idz , and Γ = γ2Idy . In addition, we consider that the observation
operator is the linear projection on the first dy components of the signal zj ∈ Z
(it could actually be any projection on dy components, not necessarily the first
ones). In practice, H is assumed to be linear, i.e. H(zj) = Hzj where in the
r.h.s H is a block dy × dz matrix H = [Idz , 0]. Hence, we obtain

S(z; y) =

P(z)︷ ︸︸ ︷
1

2σ2

J∑
j=0

∣∣zj − gj−1(zj−1)
∣∣2 +

L(z;y)︷ ︸︸ ︷
1

2γ2

J∑
j=0

∣∣yj −Hzj∣∣2, (2.26)

where we set g0(z−1) ≡ µ0 and C0 = Σz in order to simplify the problem. In
such way, the negative-log prior P(z) has both the initial condition and the
time-evolution term pooled in a single sum.

Equation 2.26 highlights that the process of minimizing S(z; y) involves
a trade-off between minimizing the negative-log prior density P(z) (respon-
sible for the dynamical evolution) and the minimization of the negative-log
likelihood L(z) (responsible for the data-fitting). In fact, we a have a sort of
a weighted sum, in which the two weights 1

σ2 and 1
γ2

determine the relative
importance of the prior, and the likelihood term, respectively. To further sim-
plify the notation, in what follows we omit the dependence of the negative-log
smoothing distribution on the data y, i.e. we write S(z) instead of S(z; y).

We now introduce the algorithm minAone, which was first presented in [12]
and then improved and discussed in [219, 220]. We do so in a formal manner,
in the sense that we do not state explicitly the hypothesis one should make on
S(z) in order to justify all the computation we perform.

37

2.2.2 minAone

As in 4DVAR, the core idea of minAone is to locate the global minimum of the
action S(z). However, as a consequence of possibly high nonlinearity in the
discrete-time map gj−1(zj−1), the action S(z) may have many local minimums(
z(0), z(1), z(2), . . .

)
. This implies that a direct minimization of the action might

be very sensitive to the initial guess in the optimisation algorithm.
We here assume that the minimizing paths

(
z(i)
)
i

are sorted increasingly
with respect to the action values, i.e.

S(z(0)) < S(z(1)) < (2.27)

With this specification, z(0) is the global minimum point of the action, z(1) is
the second smallest local minimum etc.

In minAone, the problem of having many local minimums is overcome by
considering the dynamical model error σ2 as a scalable parameter. In general,
a large σ2 value would reflect the belief that the signal model is inaccurate.
On the other hand, a small σ2 value represents a small dynamical noise, and
it shows a good confidence in the signal model.

In fact, if we set 1
σ2 = 0 (corresponding to a infinitely inaccurate signal

model, σ2 →∞), there is no influence of P(z) on the action, which is only given

by the likelihood term, i.e. S(z) = 1
2

∑J
j=0

(
|yj−Hzj |

γ

)2

. Hence, in case 1
σ2 = 0,

all the minimum points of the action z(i) = (z
(i)
0 , . . . , z

(i)
J) have the first dy

components equal to those of y, while the remaining dz−dy components are free
parameters. As 1

σ2 increases (or equivalently σ2 decreases), the relative weight
of the prior signal-model part of the action increases too. As a consequence
the nonlinearity of the problem manifests, and many local minimums arise.

The proposal of minAone is to consider

1

σ2
= Rf0α

β,

for α > 1, β ≥ 0 and small Rf0 < 1, and then, solve the minimization problem

argmin
z∈R(J+1)dz

{
Rf0α

β

2

J∑
j=0

∣∣zj − gj−1(zj−1)
∣∣2 +

1

2γ2

J∑
j=0

∣∣yj −Hzj∣∣2}, (β-prob)

in an iterative manner, for β = 0, 1, 2, . . . , βmax.
In practice, suppose that we solved (β-prob) for β = β1 with N independent

runs of a suitable iterative numerical optimisation algorithm, obtaining a series
of solutions z

(i)
β1

, for i = 1, . . . , N . Then, the i-th instance of (β-prob) for

38

Figure 2.1: Courtesy of Jingxin Ye. Evolution of N = 100 minimums of the action
of the Lorenz96 Gaussian problem for α = 2 β = 0, . . . , βmax = 29. The red dashed
lines represent the confidence interval of the χ2 distribution. Source: minAone build
pack, available at the web page [2].

β = β1 + 1 is initialised with z
(i)
β1

. In this way we track the evolution of the

action minimums found for 1
σ2 ≈ 0, by gradually increasing 1

σ2 and using at
each step a consistent initial guess. Eventually, when the precision 1

σ2 is very
large, the signal model is essentially deterministic.

In [219], it was empirically shown that, in many examples, the cloud of N
minimal action values in the β − S plane often presents a bifurcation in the
large-β region. As shown in Figure 2.1, a large number of local minimums
gradually moves away from a single absolute minimum. This means that the

prior part of the action 1
2

∑J
j=0

(
|zj−gj−1(zj−1)|

σ

)2

is zero independently of σ,

which can only be explained if the minimizing path – corresponding to the
absolute minimum – fundamentally matches the model dynamics.

Such observation also allows one to give an estimate of the action abso-
lute minimum. Indeed, P(z) ≈ 0 means that the action value is only given

by the remaining likelihood part, i.e. S(z) ≈ 1
2

∑J
j=0

(
|yj−Hzj |

γ

)2

. Since the

normalised random variable
yj−Hzj

γ
follows a standard dy-dimensional nor-

mal distribution N (0, Idy), then
(
|yj−Hzj |

γ

)2

follows a χ2(dy)-distribution, and∑J
j=0

(
|yj−Hzj |

γ

)2

∼ 1
2
χ2
(

(J + 1)dy

)
, a scaled chi squared distribution with

(J + 1)dy degrees of freedom. The latter r.v. has mean (J+1)dy
2

and stan-

39

dard deviation
√

(J + 1)dy, so that the absolute minimum lays in the interval[
(J+1)dy

2
−
√

(J + 1)dy,
(J+1)dy

2
+
√

(J + 1)dy

]
with high probability8.

On the contrary, if in the large-β regime one finds an absolute minimum
which is far from the confidence interval, then it is a hint that the signal model
does not capture the data dynamics.

The actual Python source code for minAone is available at Jingxin Ye’s
github web page [2]. Such implementation makes use of the interior point
optimiser IPOPT [211], which is publicly available at the web page [3]. Also,
a series of Python scripts implemented by Bryan Toth are employed in order
to automatically build the action function of a given differential model of the
signal, along with its partial derivatives [198].

An overview of the methods introduced in this chapter is illustrated in the
r.h.s. branch of the mind map in Figure 2.2. In the next chapter, we introduce
the sequential methodology characterizing filtering algorithms and detail the
methods mentioned in the leaves of the l.h.s. branch.

8Actually, a more reliable interval can be given by considering the 95%-confidence interval
of the χ2-distribution with (J + 1)dy degrees of freedom. To compute it, one can resort to
the cumulative distribution function of the χ2 distribution and the corresponding tables.

40

D
A

O
F

F
L

IN
E M
C

M
C

M
A

IS

V
A

R

4D V
A

R

K
S

O
N

L
IN

E

G
au

ss
ia

n

fil
te

rs
E

n
K

F

U
K

F

K
F

P
ar

ti
cl

e

fil
te

rs

O
P

T
S

IR
S

B
F

F
ig
u
re

2
.2
:
M

in
d
m
a
p

o
f
d
a
ta

a
ss
im

il
a
ti
o
n

a
lg
o
ri
th

m
s.

L
eg

en
d

:
D

A
=

d
at

a
as

si
m

il
at

io
n

,
B

F
=

b
o
ot

st
ra

p
fi

lt
er

,
O

P
T

-
S

IR
S

=
op

ti
m

a
l

im
p

o
rt

a
n
ce

re
sa

m
p

li
n

g,
K

F
=

K
al

m
an

fi
lt

er
,

U
K

F
=

u
n

sc
en

te
d

K
al

m
an

fi
lt

er
,

E
n

K
F

=
en

se
m

b
le

K
al

m
an

fi
lt

er
,

V
A

R
=

va
ri

a
ti

o
n

al
,

K
S

=
K

al
m

an
sm

o
o
th

er
,

M
C

M
C

=
M

ar
ko

v
ch

ai
n

M
on

te
C

ar
lo

,
IS

=
in

d
ep

en
d

en
ce

sa
m

p
le

r,
M

A
=

M
et

ro
p

ol
is

a
lg

or
it

h
m

s.

41

42

Chapter 3

On-line filtering methods

In the previous chapter, we presented and discussed smoothing algorithms,
which we recall are methods that aim at computing or (more often) approx-
imating the smoothing distribution p(z0:J |y0:J). In such discussion, we noted
that these are off-line methods in the following sense. Suppose a smoothing al-
gorithm has already been run in the data assimilation time window

{
0, . . . , J

}
,

and it returned the approximated smoothing distribution p̂(z0:J |y0:J). Then,
suppose a new measurement yJ+1 becomes available, and we thus want to esti-
mate the smoothing distribution in the extended time window {0, . . . , J + 1}.
The issue here is that it is not possible to estimate the “extended” smoothing
distribution p(z0:J+1|y0:J+1) by simply incorporating the previous estimation of
p(z0:J |y0:J) in a further step of the smoothing algorithm. Fortunately, another
class of sequential methods comes in handy in case an on-line version of DA is
desired: the family of filtering methods.

Indeed, filtering algorithms aim at approximating the filtering distribu-
tion (

p(zj|y0:j)

)J
j=0

=

(
p(z0|y0), p(z1|y0:1), . . . , p(zJ |y0:J)

)
in a sequential fashion. Namely, at each time j the filtering distribution
p(zj|y0:j) is updated only using the information contained in p(zj−1|y0:j−1),
the filtering distribution at the preceding time step j − 1.

The filtering update is typically performed applying a two-step procedure,
which is graphically outlined in Figure 3.1. First, in the prediction step,
the filtering distribution is pushed forward in time only relying on the signal
model, i.e. applying the functional mapping

p(zj|y0:j−1) =

∫
Z
p(zj|zj−1)p(zj−1|y0:j−1) dzj−1. (3.1)

43

Zj | Y0:j−1

Zj−1 |Y0:j−1Zj−2 | Y0:j−2

Zj | Y0:j Zj+1 | Y0:j+1

ANALYSIS
STEP

· p(yj|zj)
/∫
Z · p(yj|zj) dzj

PREDICTION
STEP

∫
· p(zj|zj−1) dzj−1

j − 2
↓

j − 1

j
↓

j + 1

Figure 3.1: Graphical representation of the prediction-analysis procedure for the
filtering update from time step j − 1 to time j. On the right hand side of the
downward arrows, the functional mapping of the density of the r.v. in the circle
above into the density of the r.v. in the circle below is reported.

The resulting predicted distribution p(zj|y0:j−1) is a sort of prior distri-
bution for the state of the system at time j, and it does not take the j-th
observation yj into account. In the subsequent analysis step, the filtering
distribution p(zj|y0:j) is computed multiplying the predicted distribution by
the likelihood

p(zj|y0:j) ∝ p(yj|zj)p(zj|y0:j−1). (3.2)

according to Bayes’ theorem. These two steps run iteratively.

Note that the prediction step is a linear operator over the space of filtering
densities at time j − 1, i.e. the space of p(zj−1|y0:j−1)’s. On the contrary,
the analysis step maps p(zj|y0:j−1) to p(zj|y0:j) in a nonlinear way. In fact,
the normalization constant omitted in (3.2) is given by an integral sum which
involves the predicted density – specifically, c =

∫
Z p(zj|y0:j−1)p(yj|zj) dzj –

44

causing the nonlinearity.
In what follows we describe in detail three filtering algorithms: the ensem-

ble Kalman filter (EnKF), the bootstrap filter (BF), and the optimal impor-
tance resampling (OPT-SIRS). Note that both BF and OPT-SIRS fall into the
broader family of particle filters (presented in Section 3.2), whereas the EnKF
is one of those methods which strongly rely on the Gaussianity of the state-
space model, and which we refer to as “approximate Gaussian filters” (see the
following Section 3.1). As a consequence, for each of these two methodolo-
gies we first give a brief overview of the method, and then we instantiate the
general case with the above mentioned (and more) algorithms.

Unless specified otherwise, we refer to [134, Chapter 4] and references
therein for rigorous proofs all mathematical statements of this chapter.

3.1 Approximate Gaussian filters

Loosely speaking, approximate Gaussian filters can be identified as those meth-
ods that generalise the Kalman filter (KF) [107]. This is an exact algorithm
which results from sequentially solving the filtering problem in a analytical
manner, in case the state-space model is both linear and Gaussian, as in Ex-
ample 1.2. However, Kalman-like filters can be applied to nonlinear state-space
model if the predicted distribution is assumed to be Gaussian whose predicted
mean and covariance matrix are approximated in some consistent way. Nev-
ertheless, Note that the state space model should still be the whole real space
Z = Rdz and, in particular, it still needs to be Gaussian as in Example 1.3.

Now, before introducing the EnKF (Section 3.1.3), we first present the
complete KF algorithm and some first generalizations.

3.1.1 The Kalman filter

Consider a signal model defined for j ∈
{

0, . . . , J
}

of the form{
Z0 ∼ N (µ0, C0)

Zj = MZj−1 + εj,

which is coupled to the observation model

Yj = HZj + εj.

The mutually independent noise processes
(
εj
)
j>0

and
(
εj
)
j≥0

are i.i.d. se-

quences with εj ∼ N (0,Σz) and εj ∼ N (0,Γ).

45

Algorithm 3.2 Kalman filter (KF)

1: function KF([µ0, C0], [M,Σz], [H,Γ], y0:J)
2: for j = 1 : J do
3: µ̂j ←Mµj−1

4: Ĉj ←MCjM
T + Σz

5: Sj ← HĈjH
T + Γ

6: Kj ← ĈjH
TS−1

j

7: δj ← yj −Hµ̂j
8: µj ← µ̂j +Kjδj
9: Cj = (I −KjH)Ĉj

return µ0:J , C0:J

Prediction

Analysis

Since both the signal and data models are Gaussian and linear, we obtain
a state-space model which is identical to the one defined in Example 1.2.
Under such assumptions, it can be proved that the solution to the associated
filtering problem is a sequence of Gaussian probability distributions p(zj|y0:j) =
N (µj, Cj), for j ∈

{
0, . . . , J

}
. The main justification is that linear mappings

of normal random variables preserve Gaussianity.
As a consequence, solving the filtering problem boils down to computing

the mean µj and the covariance Cj of all p(zj|y0:j)’s. The exact scheme to so
is reported in Algorithm 3.2, where we observe that in the prediction step, the
mean in pushed forward in time solely relying on the signal model (line 3). On
the other hand, the analysis update of the filtering mean and covariance for
the Kalman filter relies on both the Kalman gain Kj and the innovation
δj. The former subsumes the data model (notice the presence of Γ and H at
lines 5-6), whereas the latter measures how distant the predicted mean µ̂j is
to the j-th observation yj (line 7), and then adjusts the predicted mean and
covariance accordingly (lines 8-9). Finally, the algorithm returns the filtering
mean and covariance which fully characterise the exact filtering distribution
in case of a linear SSM. See Figure 3.3 for a graphical representation of the
prediction-analysis procedure in case of Kalman filter.

Remark 3.1. Note that the main assumption needed to guarantee that the KF
provides the exact filtering distribution, is that the covariance matrices C0, Σz,
and Γ are positive definite. In case of diagonal covariance matrices, this means
that all components of the initial condition, of the signal variable, and of the
data variable should have non-zero variance. ♠

Unfortunately, in real life very few phenomenon can be described by linear
models. As a consequence the Kalman filter, although exact, is often of little

46

zj−1 Mzj−1 Mzj−1 + εj

=

ẑj

PREDICTION
STEP

zj

=

ẑj + Kjδj

ANALYSIS
STEP

Figure 3.3: Graphical representation of the Kalman filter. The innovation δj
stands for yj −Hẑj .

practical use. Thus, the question of how to generalise the Kalman filter to
nonlinear (but still Gaussian) signal and data models arises. We address this
topic in the subsequent two sections.

3.1.2 The extended and the unscented Kalman filter

The simple remark that the Kalman mean update (line 8 in Algorithm 3.2)
essentially stems from a minimization principle, allows one to generalise the
Kalman update to the nonlinear case. In fact, in case of Gaussian nonlinear
SSM (refer to (1.5)-(1.6) in Example 1.3) we can define an equivalent of the
Kalman mean update through

µj = argmin
zj∈Z

Fj(zj; yj), (3.3)

with

Fj(zj; yj) =
1

2

∣∣z − µ̂j∣∣2Ĉj +
1

2

∣∣yj −H(zj)
∣∣2
Γ
.

Note that, with such definition (3.3) returns the exact Kalman filter mean and
covariance update in the linear case.

On the other hand, in case of nonlinear SSM, the definition of the predicted
mean can be straightforwardly set to the equivalent of the linear case, namely
µ̂j = gj−1(zj−1) or in some variants µ̂j = gj−1(zj−1) + εj for some sample of
the noise random variable εj. On the contrary, there is no direct analogous of
the KF predicted covariance matrix in the nonlinear case. Thus, the choice of
Ĉj is somewhat arbitrary and is what differentiates the different approximate
Gaussian filters.

For instance, if the deterministic signal update function gj−1 is differ-

entiable, setting Mj−1 =
dgj−1

dz
(µj−1) (i.e., Mj−1 is the Jacobian matrix of

gj−1) and Ĉj = Mj−1Cj−1M
T
j−1 + Σz results in the extended Kalman filter

(ExKF). This choice is essentially equivalent to linearizing the signal model in
the vicinity of the current estimate in the prediction step.

47

Also, an even simpler choice stems from setting Ĉj ≡ Ĉ, which generates
the so-called 3DVAR algorithm [143, 142]. Note the analogy with the smooth-
ing algorithm 4DVAR, which simply applies the same variational principle to
the batch signal variable z0:J (cfr. Section 2.2).

Remark 3.2. Note, that the variational formulation (3.3) essentially corre-
sponds to postulate that the predicted distribution p(zj|y0:j−1) is Gaussian with

mean µ̂j and covariance matrix Ĉj, which is in general not true for nonlinear
state-space models. ♠

An alternative which relies on the concept of unscented transformation
[103], is to deterministically locate a minimal set of weighted sigma points
around the mean µj−1 which are specifically designed to match the first and
second moments of the filtering p.d.f at time (j − 1). This results in the so-
called unscented Kalman filter (UKF) which was proposed by J. Uhlmann
and S. Julier in 1997 [104]. The UKF is reported to yield better estimation
performances than the ExKF in many applications where the SSM is highly
nonlinear in the observations time scale. Note that strictly speaking, the UKF
does not apply the above-stated variational principle, but it still generalises
the KF to nonlinear problems using a Kalman-like analysis update. We rec-
ommend [190, Section 14.3] for a clear description of the UKF algorithm in
the additive-noise case which adopts a notation compatible to the one used in
this text. Also, consult [153] for a recent review and classification of the vast
plethora of UKF variants.

We now move to a further approximate Gaussian filter which relies on the
variational principle (3.3) by introducing a different form of Ĉj.

3.1.3 The ensemble Kalman filter

The EnKF is an approximate Gaussian filter, which generalises the linear
Kalman filter by introducing a Monte Carlo approximation for the filtering
random variable Zj|Y0:j. It was proposed by G. Evensen in [67, 68] and then
refined in [32]. Since then, it has been successfully applied in many practical
domains (see for instance [115, 175, 205] and references therein) and used as
a benchmark to test different Bayesian DA methods [41, 84].

In the prediction step, the EnKF draws N ∈ N independent samples of the
signal model and uses them to build the predicted ensemble {ẑ(n)

j }Nn=1. Then,

the empirical mean µ̂j = 1
N

∑N
n=1 ẑ

(n)
j and the empirical covariance matrix

Ĉj =
1

N − 1

N∑
n=1

(ẑ
(n)
j − µ̂j)(ẑ

(n)
j − µ̂j)T (3.4)

48

Algorithm 3.4 Ensemble Kalman filter (EnKF)

1: function EnKF(N, [µ0, C0], [g0:J(·),Σz], [H,Γ], y0:J)

2: draw z
(n)
0 ∼ N (µ0, C0), ∀n = 1 : N # Initialization

3: for j = 1 : J do
4: draw ẑ

(n)
j ∼ N (gj−1(z

(n)
j−1),Σz), ∀n = 1 : N

5: µ̂j ← 1
N

∑N
n=1 ẑ

(n)
j

6: Ĉj ← 1
N−1

∑N
n=1(ẑ

(n)
j − µ̂j)(ẑ

(n)
j − µ̂j)T

7: Sj ← HĈjH
T + Γ

8: Kj ← ĈjH
TS−1

j

9: draw y
(n)
j ∼ N (yj,Γ), ∀n = 1 : N

10: δ
(n)
j ← y

(n)
j −Hẑ

(n)
j , ∀n

11: z
(n)
j ← ẑ

(n)
j +Kjδ

(n)
j , ∀n

return
{
z

(n)
0:J

}N
n=1

Prediction

Analysis

are used to update the filtering ensemble {z(n)
j }Nn=1 by implementing a KF-like

analysis step.

The complete EnKF procedure is as follows.

Initialise Draw the initial ensemble by independently sampling N particles
from the initial distribution N (µ0, C0).

Then, for time steps j = 1, . . . , J apply:

Prediction Build the predicted ensemble by drawing N independent sam-
ples from the signal model (1.5). Then, compute the empirical covariance
matrix of the resulting ensemble according to (3.4).

Analysis Compute the Kalman-gain matrix Kj. Then, update the filter-

ing ensemble by correcting the predicted ensemble according to Kjδ
(n)
j , where

δ
(n)
j = yj −Hẑ(n)

j is the n-th innovation.

The details of such procedure are given in Algorithm 3.4, where the pseudo-
code for the ensemble Kalman filter is given. Note that the expressions for Sj
(line 7), for the Kalman gain Kj (line 8), and for the innovation δj (line 10) are
only valid for linear observation model, i.e. such that deterministic observation
operator H is a dy × dz matrix i.e. H(z) = Hz.

After it was proposed, many efforts have been done in order to theoretically
justify the EnKF. Unfortunately, to the best of our knowledge, most of the
work has been done only to prove the convergence of the EnKF in the large

49

ensemble limit (i.e., for N →∞) [136], recovering the Kalman filter in case of
linear models. However, more recent works also focus on the EnKF stability in
the more practical conditions where the ensemble size N is fixed and possibly
small [114, 184].

Note that in practical applications, method-parameter fine-tuning is a key
(and time-consuming) issue necessary for the success of EnKF application. See
Section 9.1.3 for an example in the context of single-neuron model parameter
estimation. In addition, both covariance inflation and localization [69, 109]
can be effective to prevent filter divergence [17, 79].

In the next section, we introduce and instantiate a different ensemble-based
methodology which is becoming more and more popular in the last decades
due to its flexibility and its good theoretical properties.

3.2 The particle filter

Dating back to at least [78], particle filters (PF) are algorithms which intro-

duce an ensemble of particles
{
z

(n)
j

}N
n=1

in order to approximate the filtering
distribution p(zj|y0:j). Analogously to the Monte Carlo sampling strategy de-

scribed in Section 2.1, the ensemble
{
z

(n)
j

}N
n=1

is a set of i.i.d. realizations

of the random variable Zj

∣∣∣ (Y0:j = y0:j

)
which allows one to approximate the

filtering distribution p(zj|y0:j) with its Monte Carlo approximation

p̂N(zj|y0:j) :=
N∑
n=1

w
(n)
j δ

z
(n)
j

(zj). (3.5)

In the above equation N ∈ N is the ensemble size, whereas δ
z
(n)
j

(·) stands for

the Dirac delta function centred on the n-th sample z
(n)
j . Besides, w

(n)
j is the

importance weight which quantifies the probability that the random variable

Zj

∣∣∣(Y0:j = y0:j

)
assumes the value z

(n)
j . Note that particle filters are also called

sequential Monte Carlo (SMC) methods. In fact, (3.5) is a nothing but a
non-uniformly weighted version of the Monte Carlo approximation introduced
in (2.16) when presenting the MCMC methodology.

In general, all sequential Monte Carlo methods are structured as follows.
In the prediction step, the ensemble particles z

(n)
j−1 are pushed forward in time

by sampling the importance sampling distribution q(zj|z(n)
j−1, y0:j) (also

known as proposal distribution). This generates the proposed ensemble

{ẑ(n)
j }Nn=1, which is also referred to as predicted ensemble. In the analysis

step, the importance weights are then updated according to their likeliness by

50

Algorithm 3.5 Bootstrap filter (BF)

1: function BF(N, f0(·), f0:J(· | ·), h(· | ·), y0:J)

2: draw z
(n)
0 ∼ f0, ∀n = 1 : N # Initialization

3: for j = 1 : J do
4: draw ẑ

(n)
j ∼ fj−1(· | z(n)

j−1), ∀n = 1 : N # Prediction

5: ŵ
(n)
j ← h(yj|ẑ(n)

j)

6: normalize {ŵ(n)
j }

7: draw z
(n)
j ∼

∑N
n=1 ŵ

(n)
j δ

ẑ
(n)
j
, ∀n = 1 : N # Resampling

return
{
z

(n)
0:J

}N
n=1

Analysis

applying the Bayes’ theorem (3.2). Note the analogies with the Metropolis-
Hastings methodology described in Section 2.1.1.

This simple procedure generates a wide class of methods whose only dif-
ference is the choice of the proposal distribution q. It should be emphasised
that, unlike the EnKF, particle filters apply to the general state-space model
defined in (1.1) and (1.2), with no need for Gaussianity assumptions. This is
one of the reasons of their recent and growing popularity.

In the rest of this section, we present in detail the algorithms for two
instances of particle filters: the bootstrap filter and the optimal sequential
importance resampling. Then, we mention some other sequential Monte Carlo
method based on Gaussian-like proposal distributions in Section 3.2.3, and
finally conclude the chapter by reporting some results concerning the well-
posedness and consistency of particle filter methods (Section 3.2.4).

3.2.1 The bootstrap filter

The bootstrap filter is a particular version of the particle filter, which results
from choosing the signal model density (1.3) as proposal distribution, namely

q(zj|z(n)
j−1, y0:j) = p(zj|z(n)

j−1).

Such choice generates the following algorithm.

Initialise Initialise the BF filtering distribution, i.e. for n = 1, . . . , N , draw
the initial particles z

(n)
0 ∼ p(z0). Then, set the initial approximate distribution

to be p̂N(z0) =
∑N

n=1
1
N
δ
z
(n)
0

(z0).

Then, for j = 1, . . . , J apply:

51

Prediction Build the predicted ensemble by sampling the proposal distri-
bution which, for the bootstrap filter, is the signal model distribution (1.3)

ẑ
(n)
j ∼ p(zj|z(n)

j−1)

Analysis Compute the ensemble weights according to the likelihood

ŵ
(n)
j = p(yj|ẑ(n)

j)

/ N∑
n=1

p(yj|ẑ(n)
j)

Then, set the predicted filtering density at time j to be
∑N

n=1 ŵ
(n)
j δ

ẑ
(n)
j

(ẑj)

Resample Resample the predicted filtering distribution in order to obtain

the filtering ensemble
{
z

(n)
j

}N
n=1
∼
∑N

n=1 ŵ
(n)
j δ

ẑ
(n)
j

. As a consequence, the fil-

tering distribution approximation at time j has uniform weights, i.e.

p̂N(zj|y0:j) =
1

N

N∑
n=1

δ
z
(n)
j

(zj).

Algorithm 3.5 summarises the BF algorithm in case of general state-space
model as defined by (1.1) and (1.2).

3.2.2 The optimal sequential importance resampling

Different particle filters are obtained if a different importance sampling distri-
bution is chosen. Here we present the case

q(zj|z(n)
j−1, y0:j) = p(zj|z(n)

j−1, yj), (3.6)

which results in the optimal sequential importance resampling. Its name
is due to the fact that the proposal (3.6) minimises the variance of the en-

semble weights w
(n)
j conditional upon sample z

(n)
j−1 and the data y0:j (see [59,

Proposition 2] for further details). With such optimal definition of importance
sampling distribution, the importance weights can be updated according to

ŵ
(n)
j = w

(n)
j−1 p(yj|z

(n)
j−1). (3.7)

The complete OPT-SIRS algorithm in case of nonlinear Gaussian signal
model and Gaussian linear observation model is given by the following.

Initialise Initialise the OPT-SIRS filtering distribution, i.e. for n = 1, . . . , N ,
draw z

(n)
0 ∼ N (µ0, C0) and set p̂N(z0) =

∑N
n=1

1
N
δ
z
(n)
0

(z0).

Then, for j = 1, . . . , J apply:

52

Algorithm 3.6 Optimal importance resampling (OPT-SIRS)

1: function OPT-SIRS(N, [µ0, C0], [g0:J(·),Σz], [H,Γ], y0:J)

2: draw z
(n)
0 ∼ N (µ0, C0), ∀n = 1 : N # Initialization

3: for j = 1 : J do
4: Σ̂z ← (Σ−1

z +HTΓ−1H)−1

5: µ̂(n) ← Σ̂z

(
HTΓ−1yj + Σ−1

z gj−1(z
(n)
j−1)

)
, ∀n

6: draw ẑ
(n)
j ∼ N (µ̂(n), Σ̂z), ∀n = 1 : N

7: ŵ
(n)
j ← exp

(
− 1

2
|yj −Hgj−1(z

(n)
j−1)|2Γ+HΣzHT

)
,∀n

8: normalise {ŵ(n)
j }

9: draw z
(n)
j ∼

∑N
n=1 ŵ

(n)
j δ

ẑ
(n)
j
, ∀n = 1 : N # Resampling

return
{
z

(n)
0:J

}N
n=1

Prediction

Analysis

Prediction Update the ensemble particles according to the optimal impor-
tance distribution (3.6). Since we assume the observation model is Gaussian
and linear, for each n = 1, . . . , N the OPT-SIRS proposal distribution turns
out to be Gaussian with mean µ̂(n) and covariance matrix Σ̂z which can be
easily computed through matrix multiplications and inversions.

Analysis Update the ensemble weights according to (3.7). Note that the
linearity of the observation model guarantees a closed form for the updated
weights. Then, set the proposed filtering distribution at time j to be

∑N
n=1 ŵ

(n)
j δ

ẑ
(n)
j

(ẑj).

Resample Resample the predicted filtering distribution at time j in order
to have an empirical distribution with uniform weights

p̂N(zj|y0:j) =
1

N

N∑
n=1

δ
z
(n)
j

(zj)

Consult Algorithm 3.6 for a more compact summary of the OPT-SIRS
algorithm.

Remark 3.3. It should be emphasised that, although from a theoretical point
of view the OPT-SIRS works for the general state-space model, it is of practical
use only in case of (nonlinear) Gaussian signal model with linear observation
operator. In fact, the proposal density defined by (3.6) can be easily sampled
only if the signal model is Gaussian and H is a linear operator. Indeed, these
are the hypotheses guaranteeing the normality of p(· | z(n)

j−1, yj). ♠

53

In the following section, we mention a last notable family of particle filters,
but further instances of sequential Monte Carlo methods can be found in [58].
Alternatively, for more recent overviews of the last advances in sequential
Monte Carlo filtering we refer to [36], [215], and references therein. Also, the
webpage of Signal Processing and Communications Group at the University of
Cambridge [4] collects recent contributions on the topic of particle filters.

3.2.3 Gaussian particle filters

Here, we very briefly report that the combination of a Gaussian-like filter and
the sequential Monte Carlo methodology produces interesting novel instances
of methods: the Gaussian particle filters (GPFs) [123].

Indeed, by choosing a proposal distribution based on some nonlinear Gaus-
sian filter, one can obtain very good estimation results while preserving the
good theoretical properties of sequential Monte Carlo methods. Examples in-
clude the unscented particle filter (UPF) [202] whose proposal distribution
is based on the unscented Kalman filter (see Section 3.1.2), but proposal dis-
tributions built on the extended Kalman [201], or on the ensemble Kalman
filter [180] have been introduced as well.

In the following concluding section, we first spend a few words by men-
tioning the well-posedness of both smoothing and filtering problems, and then
state some consistency result for particle filters.

3.2.4 Well-posedness and consistency of particle filters

Both smoothing and filtering problems are well-posed in the Hadamard sense
[105, Definition 4.1]. In particular, we already established the existence of the
filtering problem solution. Indeed, the prediction-analysis procedure pictured
in Figure 3.1 illustrates how to define the filtering distribution iteratively in
time through the functional representation of the prediction step (3.1) and the
analysis step (3.2). In addition, under hypothesis which are guaranteed if the
observation operator H introduced in (1.6) is a L2(Z) function, stability (i.e.
weak continuity of the posterior distribution with respect to small variations
in the dataset y0:J) can be proved. See [134, Theorem 2.15, Corollary 2.16,
Section 2.5]) in this respect.

However, Sequential Monte Carlo methods also guarantee that the approx-
imation introduced by these approximated algorithms is consistent (see [171,
Section 2.2] for a definition of consistency of numerical methods in a general
context). Indeed, it can be proved that under suitable hypotheses particle
filters retrieve the exact filtering distribution in the large ensemble limit.

54

For instance, a preliminary result with a relatively simple proof guarantees
that, if the observation operator H is bounded (i.e. ∃κ ∈ (0, 1) such that
κ < H(z) < κ−1 for all z ∈ Z), then the bootstrap filter approximation tends
to the exact filtering distribution for N →∞. For the sake of brevity, we here
omit all details on the type of the convergence. However, we report that the
convergence rate is C(κ, J) =

∑J
j=1(2

κ2)j which on the one hand is remarkably
independent on the signal model dimension dz (i.e., particle filters can, in
principle, “beat the curse of dimensionality” [174]), but on the other hand it
explodes in both limits κ→ 0 (observation operator assuming values arbitrary
close to zero) and J →∞ (large time window). This means that the ensemble
size should be extremely large in most applications, resulting in an essentially
impracticable condition for real problems.

Remark 3.4. The proof of such result is essentially based on three lemmas:

i) the Monte Carlo sampling operator defined in (3.5) introduces a O(N−1/2)-
error between p and p̂N ;

ii) the transition kernel associated to the signal model (i.e. the functional
operator corresponding to (3.1)) is Lipschitz continuous1 with L = 1;

iii) the likelihood operator resulting from the analysis step (3.2) is Lipschitz
continuous with Lipschitz constant L = 2κ−1. ♠

Refer to [134, Theorem 4.5] and Lemma 4.7, Lemma 4.8, and Lemma 4.9
therein for further details on the theorem statement (such as the specific con-
vergence metric) and the exact proof.

Some stronger results guaranteeing convergence of the approximated filter-
ing distribution, along with bounds on the mean square errors under similar
hypotheses are proved in [45]. Note the latter results apply to the general
particle filters (i.e., not only to BF as Theorem 4.5 in [134], but also to OPT-
SIRS and GPFs). In addition, all above-mentioned references only consider
an autonomous signal state space (i.e., a transition density fj−1(zj|zj−1) which
is independent of the time variable j), whereas in our applications the signal
variable is always time-dependent (cfr. Part III). Refer to [50] for a consistency
result in case of time-dependent signal and observation models.

1A function f : X −→ Y between two metric spaces (X, d(x)) and (Y, d(y)) is Lipschitz
continuous with Lipschitz constant L if and only if

x1, x2 ∈ X =⇒ d(y)
(
f(x1)− f(x2)

)
≤ L · d(x)(x1 − x2).

55

However, let us stress once again that in most practical applications (and
the ones we present in Part III make no exception) it is not possible to meet the
request of an observation operator which is bounded from below. Such remark
highlights the need for more application-oriented convergence results, whose
hypotheses on the transition and observation distributions are more realistic.

56

Chapter 4

Practical issues arising in data
assimilation

In this last chapter of Part I, we address some issues which arise when the
DA algorithms illustrated in the previous chapters are applied to solve some
real-world problems.

First, in Section 4.1 we introduce the possibility for a state-space model
to be parameter-dependent. Then, some strategies which can be employed
to estimate such time-independent parameters are mentioned in Section 4.1.1.
In addition, Section 4.1.2 illustrate how the state-space model can be rede-
fined in order to allow several static parameters to be i.i.d. samples of some
hyperparameter-dependent random variable.

Then, since in many applications the prior signal model is often expressed
in form of ordinary differential equations (ODEs), Section 4.2 shows how the
continuous-time ODE model can be turned into a discrete-time stochastic sig-
nal model. In particular, a detailed application of such procedure to a single-
neuron model is included in the concluding Example 4.3.

Section 4.3 is devoted to show how approximate Gaussian filters – i.e., fil-
tering methods which strongly rely on the unboundedness and the Gaussianity
of the state-space model – can be applied to a bounded state-space by taking
advantage of a suitable change of variables. The distortion introduced on the
filtering distributions by such change of variables are investigated as well. We
conclude Part I by introducing two approaches to evaluate the performances
of a DA algorithm in Section 4.4. Refer [98] for a (non-exhaustive) overview
of some other relevant issues arising when applying DA methods to practical
problems.

57

4.1 Handling parameters

In the whole discussion we made in the preceding chapters, we focused on
estimating the posterior distribution of the signal z, given the observation y.
The actual target distribution was either the smoothing distribution p(z0:J |y0:J)

or the filtering distribution
(
p(z0:j|y0:j)

)J
j=0

in case of off- or on-line setting,

respectively.
However, an important application of data assimilation addresses the pa-

rameter assessment of the proposed model. In fact, in real life, there is often
some degree of uncertainty about the mathematical model that should be
chosen to represent a given physical dynamics. In our framework, a typical
approach consists in selecting a family of models indexed by some parameter
θ, and then try to infer a set of good parameter values using the information
contained in the data.

4.1.1 Data assimilation for parameter estimation

In order to stress the distinction between the signal and the model parameter,
in this section we denote x the “dynamical” signal variable, and θ the “static”
model parameter. Now, suppose that the initial distribution p(x0), the tran-
sition distribution of the signal model (1.3) p(xj|x0:j−1), and the conditional
density of the observation model (1.4) p(yj|x0:j, y0:j−1) depend on some pa-
rameter vector θ ∈ Θ ⊂ Rdθ which is not known exactly (i.e., θ is a random
variable). This means that all probability densities are actually θ-dependent,
namely

p(x0) −→ pθ(x0)

p(xj|xj−1) −→ pθ(xj|xj−1)

p(yj|xj) −→ pθ(yj|xj),

where the subscript notation actually stands for a further conditioning on
the knowledge of the parameter value θ. Namely, pθ(x0) stands for p(x0|θ),
pθ(xj|x0:j−1) stands for p(xj|x0:j−1, θ), etc. Moreover, keep in mind that in the
parameter-dependent state-space model analogous to model (1.3)-(1.4), the
transition density for the non-homogeneous signal process not only depends
on the discrete time j, but it also depends on the dθ-dimensional parameter θ,
i.e. fj−1(xj|xj−1) −→ fθj−1

(xj|xj−1).

58

Bayesian approach Maximum likelihood approach

Off-line smoothing methods
Particle marginal MH Expectation maximization

Augmented state space Gradient approach
Likelihood function evaluation

Iterated filtering

On-line filtering methods
Practical filtering Expectation maximization

Augmented state space Gradient approach
MCMC + SMC

SMC2

Table 4.1: Summary of DA methods for parameter estimation mentioned in [111].
Legend: MH=Metropolis Hastings, MCMC = Markov chain Monte Carlo, SMC =
sequential Monte Carlo.

Example 4.1 (Parameter-dependent state-space model).
Suppose that the mean µ0 and the covariance matrix C0 of the stochastic

initial condition in the Gaussian linear model defined in Example 1.2 are un-
known. Then, the initial condition distribution is parameter-dependent, with
parameter θ = (µ0, C0). Indeed, the initial condition is pθ(x0) = fθ(x0), where
fθ = N (θ). ♣

In such situation of parameter-dependent signal model, it is meaningful
to estimate not only the dynamical signal x0:J underlying the observations
y0:J , but also the parameter value θ. There exist many different approaches
which embed such new task to the signal estimation problem described in the
previous chapters. The one we adopt in the experiments presented in Part III
is the so-called augmented state-space model approach (see below). However,
to give a hint of possible alternative strategies, in what follows we give a brief
overview of the other possible approaches addressing the task of parameter
estimation.

Following the two reviews [111, 110], we broadly classify DA methods for
parameter estimation in Bayesian methods (BMs) and maximum likelihood
methods. In addition, we also consider the distinction that we made in the
previous chapters, i.e. between off-line and on-line algorithms.

In Bayesian methods, the parameter θ is considered as a random vari-
able and, as such, it is endowed of a prior distribution p(θ). Then, a given
BM is applied in order to approximate p(θ|y0:j), typically consisting in some
kind of MCMC or SMC step. On the other hand, maximum likelihood
methods provide a non-Bayesian estimator θ̂ that is given by the solution of

59

an optimisation problem. In the off-line case, such problem is given by

θ̂ = argmax
θ∈Θ

L(θ), (4.1)

where L(θ) := log
(
pθ(y0:J)

)
, and we recall that pθ(y0:J) = p(y0:J |θ).

Now, we schematically describe the methods listed in [111, 110], while we
refer to the original papers and references therein for further details on specific
methods. Note that a comprehensive overview of such approaches is presented
in Table 4.1.

Bayesian approach

Particle MCMC (off-line) In general, there are several MCMC meth-
ods relying on sequential Monte Carlo methods to build efficient proposal dis-
tribution. In particular, the reviews focus on a particle marginal Metropolis-
Hastings (PMMH) which has a proposal density of the form q

(
(x̂0:J , θ̂)|(x0:J , θ)

)
=

q(θ̂|θ)pθ̂(x̂0:J |y0:J). Since it is impossible to sample directly such distribution1,
and it also yields an acceptance probability that is not available analytically,
SMC methods are used at each iteration of the MCMC method in order to
approximate the unknown terms.

Augmented state-space model (off-/on-line) In the augmented
state-space model approach [116], the signal variable Z is augmented in
order to include the new components corresponding to the parameter θ. In
practice, one takes the signal variable to be the augmented signal variable
Zj = (Xj, θj)

T ∈ Z, where Z = X ×Θ ⊂ Rdx ×Rdθ . The signal model for the
dynamical signal variable X remains the same as in (1.3), whereas the static
θ-component is endowed of an artificial dynamics. In particular, the dynamics
for θj is typically a random walk, e.g.

θj+1 ∼ N (θj,Σθj). (4.2)

This means that θj+1 = θj + εθj where the noise random variable εθj in gen-
eral has a time-dependent covariance matrix Σθj whose size (e.g. the largest
eigenvalue) often decreases as a function of j.

Practical filtering (on-line) These are methods which rely on the
fixed-lag approximation p(x0:j−L, θ|y0:j−1) ≈ p(x0:j−L, θ|y0:j) and then run sev-
eral MCMC in parallel in order to sample from a fixed-lag approximated fil-
tering distribution.

1In fact, pθ̂(x̂0:J |y0:J) is unknown

60

Using MCMC steps within SMC algorithms (on-line) Here, the
introduction of the artificial parameter dynamics is avoided by reintroducing
particle diversity via MCMC methods (adding, for instance, a Gibbs-sampler
step on the parameter component at each SMC iteration).

SMC2 (on-line) Such method was proposed in [42] and it is based on
the superposition of two sequential Monte Carlo methods (hence, the name
SMC2). The first SMC relies on Nθ particles in the θ space, and then, for each
θ-particle, another SMC is run in the x-space. Note that, according to the
authors, this is a sequential method but not a truly on-line one.

Maximum likelihood

Likelihood function evaluation (off-line) In order to evaluate the
log-likelihood function L(θ), we need to approximate it using some SMC meth-
ods. Indeed, in the optimisation problem (4.1) some unknown terms appear in
the log-likelihood term. However, a straightforward problem is that the SMC
approximation of pθ(y0:J) is unbiased, but the corresponding approximation
of L(θ) = log

(
pθ(y0:J)

)
is biased indeed. Thus, likelihood-function-evaluation

methods indicate a series of expedients which can be employed in order to
correct the source of bias (an example being correcting the resampling step of
the SMC sub-algorithm).

Gradient approach (off-line) Whenever information on the gradient
of the likelihood function L(θ) is available, iterative steepest ascent methods
of the form

θk+1 = θk + δk+1 ∇θL(θ)|θ=θk ,
can be used to identify the maximum point of the likelihood function. Here,
δk+1 is the step-size sequence of the steepest ascent method.

Expectation-maximization (off-line) The expectation-maximization
(EM) framework consists in an iterative maximization problem which is artic-
ulated in two steps. First, the objective cost function

Q(θk, θ) =

∫
XJ+1

log
(
pθ(x0:J , y0:J)

)
pθk(x0:J |y0:J) dx0:J

is computed, usually resorting to some trick in order to approximate the inte-
gral. Note that this is called the expectation step (E-step) because the integral
can be interpreted as the expectation of the function log

(
pθ(x0:J , y0:J)

)
with

respect to the probability distribution pθk(x0:J |y0:J) dx0:J .

61

Then, the optimisation update is computed in the maximization step (M-
step) by solving the maximization problem θk+1 = argmaxθ∈ΘQ(θk, θ).

Iterated filtering (off-line) The iterated filtering approach, relies on
an approximation of ∇θL(θ)|θ=θj , the gradient likelihood evaluated in θj,
the approximated parameter value at iteration j. Such approximation is
based on the posterior moments of an artificial augmented state-space model
Zj =

(
Xj, θ̃j

)
. Such approximation is then used to apply a gradient ascent

method, even when information on the gradient of the likelihood function is
not available.

Gradient approach (on-line) As in the off-line case, if the gradient
of the likelihood is available, such information can be used to implement a
steepest ascent algorithm. However, in the on-line case we consider a sequential
version of the log-likelihood, namely

θj+1 = θj + δj+1∇θ log
(
pθ0:j

(
yj|y0:j−1

))
.

Expectation-maximization (on-line) In case pθ
(
x0:j, y0:j

)
is in the

exponential family2 , one can implement an expectation maximization algo-
rithm similar to the one described in the off-line case. However, the definition
of the function Q should be adjusted to reflect the on-line methodology.

We now concluded our overview of available approaches to deal with parameter-
dependent transition densities. In the following section we introduce the con-
cept of hyperparameter within the context of data assimilation.

4.1.2 State-space model for hyperparameters estima-
tion

In Chapter 1, it was showed that a general state-space model can be schemat-
ically represented as the directed acyclic graph pictured in Figure 1.1. When

2 A parameter-dependent state-space model is in the exponential family if, for all x0, x̃0 ∈
X , for all j and all observations y0:j ∈ Yj+1, there exist C > 0 and λ ∈ [0, 1) such that∫

X

∣∣∣pθ(xj |y0:j , x0)− pθ(xj |y0:j , x̃0)
∣∣∣ dxj ≤ Cλj .

62

focusing on parameter estimation and adopting an augmented state-space ap-
proach as described in the preceding section at page 60, the signal model (1.1)
writes in the following way. First, the initialization step becomes{

θ0 ∼ p(θ0)

X0 ∼ p(x0 | θ0)
,

Then, the j-th update step can be easily adapted to{
θj ∼ p(θj | θj−1)

Xj ∼ p(xj | xj−1, θj−1)
, j > 0.

This produces the following DAG

θj−1

""

// θj

xj−1

��

// xj

��
yj−1 yj,

which corresponds to a state-space model where the Markov property is pre-
served. Indeed, the conditional distribution of the augmented state variable

Zj =
(
Xj, θj

)T
still only depends on

(
Xj−1, θj−1

)
, the state of the system at

time j − 1.
We now ask ourselves, how does the DAG changes if we consider a situation

where multiple parameter components θ(1), θ(2), . . . are actually i.i.d. samples
of the same λ-indexed distribution pλ(θ

(i)) = p(θ(i) | λ)? Note that such a λ
is called hyperparameter, as it is the parameter characterising the distribu-
tion of a whole collection of model parameters θ(i) for i = 1, 2, In what
follows, we show that considering hyperparameters introduces a further level
in the DAG representation, and that we need to specify both parameter and
hyperparameters dynamics for such a SSM. In addition, let us anticipate that
the corresponding dynamics on the parameters should preserve the parame-
ter/hyperparameter relationship in some sense.

For the sake of readability, we present the framework which allows one
to define an augmented state-space model only in case of one single hyper-
parameter λ ∈ Λ ⊂ R which characterises the distribution of dθ parameters
θ(1), . . . , θ(dθ). The case of multiple hyperparameters, each one with a different
number of corresponding parameters is trivial to generalise intuitively, but in-
troducing a consistent notation entails a significantly cumbersome adaptation.

63

Moreover, in the current section the probability density function for the i.i.d.

sequence
(
θ(i)
)dθ
i=1

is denoted ϕ(θ |λ), whereas we write F (θ |λ) to indicate the
cumulative distribution function (c.d.f.). Namely,

P
[
θ(i) ∈ [θ, θ + dθ]

∣∣∣ λ] = ϕ(θ | λ) dθ,

P
[
θ(i) ≤ θ

∣∣∣ λ] = F (θ | λ),

for all i = 1, . . . , dθ. The inverse of the cumulative distribution function (also
known as quantile function) is denoted F−1(q | λ), for q ∈ [0, 1].

In this work, we propose an arbitrary initialization for the hyperparameter
and the induced random initialization for the corresponding parameters, i.e.

λ0 ∼ p(λ0)

θ
(i)
0 ∼ ϕ(θ | λ0), i = 1, . . . , dθ.

As for the dynamics iteration, we consider a stochastic Gaussian random-
walk dynamics for the hyperparameter λ, i.e. for j > 0

λj ∼ N (λj−1,Σλj−1
).

However, the induced parameter dynamics is not random at all. On the con-
trary, it can univocally determined if the previous parameter value and both
current and previous hyperparameter values are given. Indeed, by simply ap-
plying the λj−1-c.d.f. and the inverse λj-c.d.f. the following update rule is
obtained

θ
(i)
j = F−1

(
F (θ

(i)
j−1 | λj−1)

∣∣∣ λj).
Using the shorthand notation Fλ(θ) = F (θ | λ) and F−1

λ (q) = F−1(q | λ),the
above update rule can be written in the concise form

θ
(i)
j = F−1

λj
◦ Fλj−1

(θ
(i)
j−1). (4.3)

Such update rules consists in projecting the previous parameter values in the
quantile space according to the previous hyperparameter value (i.e. Fλj−1

(θ
(i)
j−1))

and then converting such quantile into a new parameter value according to the
new hyperparameter value (the F−1

λj
-term).

As a result, the DAG for the augmented state-space model with hyperpa-

64

rameters and parameter dynamics given by (4.3) is

λj−1

�� !!

// λj

��
θj−1

""

// θj

xj−1

��

// xj

��
yj−1 yj.

We observe that such DAG structure apparently breaks the Markovian assump-
tion for the augmented state variable Z =

(
X, θ, λ

)
. In fact, the conditional

distribution of θj depends on λj and not only on λj−1 and θj−1. However, since
the value of θj is not needed until the following xj → xj+1 update, we can by-
pass the problem (even though this is only from an implementation point of
view) by computing such value only when it is actually needed.

Also, we note that if we record the quantiles corresponding to the initial
parameter realizations, the update rule is only dependent on such values and
the new hyperparameter value. In fact, conditional on the event{

θ
(i)
0 = θ̌

(i)
0 : i = 1, . . . , dθ

}
,

if we set q̌
(i)
0 = Fλ0(θ̌

(i)
0) for i = 1, . . . , dθ, then for all j > 0

θ
(i)
j = F−1

λj
(q̌

(i)
0).

This can be easily proved by an induction argument.
Let us conclude the current section with an example.

Example 4.2 (LIF network).
Consider the LIF network model (6.4) defined and detailed in Part II as a

demonstrative example. Focusing on the leakage constants of excitatory cells,
we assumed that they follow an exponential distribution of parameter L†E, i.e.
L1, . . . , LnE

∼ Exp(L†E). Hence, in this case we have that the hyperparameter
is λ = L†E, the corresponding parameters θ(i) = LE,i, dθ = nE, the probability
density function is given by

ϕ(LE | L†E) =

{
1

L†E
e−LE/L

†
E LE ≥ 0

0 LE < 0
,

65

the cumulative distribution function by

F (LE | L†E) =

{
1− e−LE/L

†
E LE ≥ 0

0 LE < 0
,

and the inverse cumulative distribution function, defined for q ∈ [0, 1), by

F−1(q | L†E) = −L†E ln
(
1− q

)
♣

We now move to showing how to build a discrete-time state-space model
starting from a parameter-dependent ODE model.

4.2 Twin experiments from continuous-time mod-

els

In this section we describe how to retrieve a discrete-time Gaussian nonlinear
state-space model of the form (1.5) from a continuous-time ODE model. We do
so in the situation where we are interested in the estimating the parameters
of the ODE model, and where we adopt an augmented state-space model
approach as described in Section 4.1.1 at page 60.

In what follows, we first present the procedure which can be applied to
a general ODE model. Then, in Example 4.3, we instantiate such procedure
by providing the discrete-time random state-space model for a single neuron
model.

ODE model declaration First of all, we write the ODE model we wish to
“discretise” and “randomise” in the form

ẋ = F (t, x; θ), t ∈ [0, Tf], (4.4)

where F is the non-autonomous θ-dependent vector field of the ODE model
(4.4), t is the independent time variable, x is the vector of the state variables,
and θ is the vector of the modelling parameters. Note that the ODE model
is supposed to be coupled to a data model y(t) = Hx ◦ x(t) for some operator
Hx.

Augmentation Then, we put parameter vector θ into the same footing as a
state variable according to the augmented state-space approach described at
page 60. This means that we first augment system (4.4) with the extra dynamic

66

equation θ̇ = 0, so that θ = θ(t). As a consequence, the ODE equation (4.4)
becomes the augmented ODE system{

ẋ = F (t, x; θ)

θ̇ = 0
.

Note that the new augmented state variable is z(t) =
(
x(t), θ(t)

)T
.

Discretization Now, we fix a numerical step ∆t, a time mesh t0:J =
(
tj
)J
j=0

such that tj = j∆t and tJ = Tf . Also, we choose a numerical approxi-
mation scheme for ODEs systems (such as the forward or backward Euler
method or a more accurate Runge-Kutta method). This allows us to map the
continuous-time solution

(
x(t), θ(t)

)
t∈[0,Tf]

into the discrete-time approxima-

tion
(
x̃j, θ̃j

)J
j=0

, where x̃j and θ̃j are the numerical approximation of x(tj) and

θ(tj), respectively.
Then, the augmented ODE system becomes the (deterministic) discrete-

time dynamical system{
x̃j = gj−1(x̃j−1; θ̃j−1)

θ̃j = θ̃j−1

, j = 1, . . . , J ;

where gj−1(x̃j−1; θ̃j−1) is the discrete-time version of the continuous-time vector
field F (t, x; θ). Note that j is the discrete-time variable corresponding to the
continuous-time variable t. Moreover, let us stress the fact that the exact
analytical form of map gj−1 depends on

(i) the original vector field F ;

(ii) the numerical method chosen.

Loosely speaking, we occasionally refer to either the discrete map gj−1 or the
original continuous-time vector field F as the prior model in what follows.
The discretised augmented state variable is now zj = (xj, θj)

T .

Randomization Finally, we turn both parameter and state variable into
random processes by considering the presence of an additive random noise in
the model dynamics.

Namely, if the signal space is unbounded (i.e. Z = Rdz , where Z = X ×
Θ ⊂ Rdx ×Rdθ), the parameter-dependent transition rule for the discrete-time
stochastic process (Xj, θj)j≥0 writes

Xj

∣∣∣ (X0:j−1 = x̌0:j−1, θ0:j−1 = θ̌0:j−1

)
= gj−1(x̌j−1; θ̌j−1) + εxj , (4.5)

67

where
(
εxj
)
j>0

is an i.i.d. sequence independent on X0, with εxj ∼ N (0,Σx).

In the same way, the signal model for the parameter component θ is a Gaussian
random walk, with transition equation

θj

∣∣∣ (X0:j−1 = x̌0:j−1, θ0:j−1 = θ̌0:j−1

)
= θ̌j−1 + εθj ,

where
(
εθj
)
j>0

is an i.i.d. sequence independent on X0, on θ0 and on
(
εxj
)
j>0

,

with εθj ∼ N (0,Σθ).
At the end of such randomization procedure, the stochastic discretised

augmented state variable is Zj = (Xj, θj)
T , whereas the update rule (4.5) is

Gaussian and, in general, nonlinear.
In conclusion, we can as well introduce the observation model

Yj

∣∣∣ (X0:j = x̌0:j, θ0:j = θ̌0:j, Y0:j = y0:j

)
= Hx(x̌j) + εj,

which is defined over the observation space Y = Rdy . In addition, in the above
equation Hx : X −→ Y denotes the original nonlinear observation operator,(
εj
)
j>0

is an i.i.d. sequence independent on
(
εxj
)
j>0

, on X0, and on θ0, with

εj ∼ N (0,Γ).
Let us now illustrate an example of such procedure on a given ODE system.

Example 4.3 (Discrete SSM for the single-neuron model (5.8)).
As an example, keep in mind the single-neuron toy model V̇ =

[
− ḡKa(V − EK)− ḡNab∞(V)(V − ENa)
−ḡL(V − EL) + Iext(t)

]
/C

ȧ =
[
a∞(V)− a

]
/τa,

, ∀t ∈ [0, Tf]. (4.6)

Details about such model, its state variables, its modelling parameters and
what they represent are given in Section 5.2. At this point, it suffice to say
that the continuous-time state variable is x = (V, a)T , whereas the vector of
parameters we wish to estimate is given by the following list of ionic param-

eters θ =
(
ḡNa, ENa, ḡK, EK, ḡL, EL, K

(b), V
(b)

1/2, K
(a), V

(a)
1/2

)T
. Note that the scale

parameters C and τa are considered known and fixed.
(Augmentation and discretization) Then, we choose the fourth order

Runge-Kutta solver for ODEs over the time mesh t0:J =
(
tj
)J
j=0

, where tj =

j∆t, ∆t = 0.01 ms, and Tf = tJ = 500 ms. As a consequence, the exact
analytical form of the (deterministic) augmented discretised version of (4.6) isx̃j = x̃j−1 +

∆t

6

[
k1 + 2k2 + 2k3 + k4

]
=: gj−1(x̃j−1, θ̃j−1)

θ̃j = θ̃j−1

68

where

k1 = F (tj−1, x̃j−1; θ̃j−1);

k2 = F (tj−1 +
∆t

2
, x̃j−1 +

∆t

2
k1; θ̃j−1);

k3 = F (tj−1 +
∆t

2
, x̃j−1 +

∆t

2
k2; θ̃j−1);

k4 = F (tj−1 + ∆t, x̃j−1 + ∆tk3; θ̃j−1);

and
F : (0,+∞)×X ×Θ // X

(t, x; θ) // F (t, x; θ)

denotes the r.h.s. of model (4.6) written in vectorial form.
(Randomization) Finally, randomization implies the following model dy-

namics for the stochastic vector zj = (xj, θj)
T{

xj = gj−1(xj−1, θj−1) + εxj
θj = θj−1 + εθj ,

, j ∈ {1, . . . , J}; (4.7)

where we recall that

• xj and θj are the discrete-time approximate (and noisy) values corre-
sponding to x(tj) and θ(tj) respectively;

• gj−1 : Rdx × Rdθ −→ Rdx represents the discrete version of vector field
(4.6) obtained by applying the fourth order Runge-Kutta method for
ODEs. Because of the time-dependent term Iext(t) in the neuron model,
the vector field is non-autonomous and g is indeed j-dependent.

• the dimension of variables component xj is dx = 2 and the dimension of
parameter the component θj is dθ = 10;

• {εxj}Jj=1 and {εθj}Jj=1 are two mutually independent sequences of i.i.d.
random variables with εx1 ∼ N (0,Σx) and εθ1 ∼ N (0,Σθ).

(Random initial condition) In conclusion, in order to match the general
form of the nonlinear Gaussian signal model (1.5), the initial condition can be
set to be a Gaussian random variable{

x0 ∼ N (µx0 , Cx0)

θ0 ∼ N (µθ0 , Cθ0),
(4.8)

69

where µx0 and µθ0 are the variables and parameter component of the initial
mean, respectively; whereas Cx0 and Cθ0 are the corresponding covariance
matrices.

Moreover, we can complete the signal state-space model (4.7) with a set of
noisy observations {yj}Jj=1 linked to the state variable through the data model

yj = Hxxj +Hθθj + εj. (4.9)

Here, Hx : Rdx −→ Rdy and Hθ : Rdθ −→ Rdy are linear operators (i.e.

a dy × dx and dy × dθ matrices, respectively) with dy = 1, and
(
εj
)J
j=1

is

an i.i.d. sequence with ε1 ∼ N (0,Γ). Since parameters cannot be directly
observed, Hθ is set to be a dy × dθ matrix with zero-entries. Also, as we
exemplify in Section 5.2.1, a typical choice for Hx is the projection on the first
component, which corresponds to the measurement of the membrane potential,
i.e. Hx = (1, 0). Note that what was obtained is a data model of the form
(1.6), with a linear observation operator. ♣

We here conclude the description of how to convert a deterministic and
continuous-time model into a discrete-time stochastic SSM.

In the following section we address a different but related matter. Indeed,
we propose a naive methodology to transform a bounded state-space model into
an unbounded one. The motivation is that, however simple, the machinery we
introduce allows one to employ Gaussian DA methods also for models which
include bounded variables or bounded parameters.

4.3 Dealing with bounded variables

As we we exemplify in Part II and Part III, in many applications some of
the variables of a model are physically constrained to lie in some interval. For
instance, this is the case for all the conductance-based single-neuron models we
present in Chapter 5. In fact, the activation variables mion’s need to lie in the
interval (0, 1) as they represent the opening probabilities of the corresponding
ionic channels. In addition, another common case is when some variable is
subject to a positivity constraint. As an example, consider the internal calcium
concentration [Ca2+]in, which has a dynamics described by (5.5) and it is
involved in the morphological model (5.11)-(5.14). As a consequence, the state
space Z ⊂ Rdz for such neural models is a bounded subset of the real space.
This poses the problem of designing signal processes which enforce such bonds
within a stochastic framework.

In what follows we discuss some noise-design options in the case where the

70

signal process follows a Gaussian nonlinear model as in Example 1.3 so that

zj = gj−1(zj−1) + εj,

where
(
εj
)
j>0

is the i.i.d. dynamical noise process. Also, for the sake of

simplicity, we assume that the signal state space is unidimensional (dz = 1)
and that the signal itself satisfies

i) a single inequality constraint z > a so that Z = (a,∞); or

ii) two inequalities z > a and z < b, so that z lives in the bounded open
interval Z = (a, b).

Of course, we assume that a, b ∈ R are finite real numbers with a < b. It
is straightforward to generalise what we state to the multi-dimensional case
where

Z =

dz1∏
i=1

(ai, bi)×
dz2∏
i=1

(ai,∞)× Rdz3

is the direct product of an dz1-dimensional hyper-cube, dz2 half lines, and a
dz3-dimensional hyper-spaces, with dz1 + dz2 + dz3 = dz > 1.

There are several approaches which can enforce boundedness of some spe-
cific variable. One option is to select a distribution for the dynamical noise
εj that does not drive the model out of its physical bounds. For instance, in
[56, 55] the authors propose a particle filter for a Morris-Lecar neuron model
where the noise acting on the bounded activation variable has a standard
deviation that approaches zero when the activation variable approaches the
boundaries of the state space. Another possibility proposed in [20, 170] is
to assume that the signal process follows a truncated normal distribution3

p(zj | zj−1) = N(a,b)

(
gj−1(zj−1), σ2

z

)
, where b can be either finite or infinite.

However, the first solution is possible only due to the specific form of the
activation variable dynamics and when considering a stochastic differential
equation framework [54], which should be possible to apply to the models we

3A random variable X is said to follow a normal distribution with parameters µ
and σ2 truncated on the interval (a, b), if its probability density function is p(x) =

σ−1f
(
x−µ
σ

)
[F
(
b−µ
σ

)
−F

(
a−µ
σ

)
]−1 for x ∈ (a, b) and zero otherwise, where f(x) = 1√

2π
e−x

2/2

is the p.d.f. of a standard unit normal r.v. and F (q) =
∫ q
−∞ f(x) dx is its cumulative den-

sity function. In such a case we write X ∼ N(a,b)(µ, σ
2). These definitions required finite

a, b ∈ R, but it suffice to take the suitable limits of the c.d.f. and the definition is valid also
for a = −∞ or b = +∞. Note that, loosely speaking, truncating only entails multiplying by
the characteristic function 1(a,b) and renormalizing the resulting p.d.f.

For a more detailed introduction to truncated normal distributions we refer to [101]. See
[27] for the discussion of some numerical issues related to the simulation of such distributions.

71

zj−1 gj−1(zj−1)

Z⊂R

∈
gj−1(zj−1) + εj zj

T−1(sj)

=

T [gj−1(zj−1)]

∈

R

T : Z → R

T [gj−1(zj−1)] + εj

=

ŝj

PREDICTION
STEP

ŝj+Kjδj

=

sj

ANALYSIS
STEP

T−1 : R→ Z

Figure 4.2: Graphical representation of the Kalman filter in case of bounded vari-
ables. Compare with the equivalent figure in case of unbounded variables Figure 3.3.

consider in theory but of cumbersome implementation when using the Neuron
simulation environment (see Section 5.1). On the other hand, the truncated-
Gaussian approach is somewhat arbitrarily artificial, and should break, in prin-
ciple, the theoretical results available for Gaussian and approximate Gaussian
methods.

As a consequence, we propose a different approach which is just as much ar-
tificial, but at least preserves the Gaussian structure of the state-space model
in its integrity. The key idea is very simple and consists in mapping the
bounded state space Z ⊂ R onto the whole real line through a suitable invert-
ible transformation T : Z → R before considering the dynamical noise. Then,
applying the prediction step on the transformed variable sj (instead of the
original variable zj) and return to the “physical” variable zj = T−1(sj) only
after applying the analysis step guarantees that original variable z never exit
its physical bounds. Such procedure is schematically represented in Figure 4.2.

Note that this approach is equivalent to substituting the original bounded
variable z with its real-valued counterpart s (by applying to the change of
variable s = T (z)), and then adjusting the time map accordingly, i.e. taking
g̃j−1(s) = gj−1◦T−1(s). However, from the point of view of the original physical
variable zj, applying the noise εj ∼ N (0, σ2,) on its real-valued counterpart
sj modifies the state-space model and introduces some distortion in the noise
acting on the physical variable.

We now investigate what noise distortions are introduced in two examples:
in the first one we can compute analytically the moments and the distribution
of the noise acting on the physical variable z; in the second example, where

72

Z T (z) T−1(s)
(0,∞) log(z) exp(s)
(a,∞) log(z−a) a+ es

(0, 1) logit(z) `(s)
(a, b) log

(
z−a
b−z

)
a+bes

1+es

(a) Transformations considered
in this chapter to deal with
bounded variables. Note that,
logit(z) = log

(
z

1−z
)

and `(s) =
1

1+e−s .

p(zj | zj−1) log -N (log(µ), σ2)
E
[
Zj|zj−1

]
µ exp(σ2/2)

Var
[
Zj
∣∣ zj−1

]
µ2(eσ

2 − 1)eσ
2

Skew
[
Zj
∣∣ zj−1

]
µ3/2(eσ

2
+ 2)
√
eσ2 − 1

Kurt
[
Zj
∣∣ zj−1

]
e4σ2

+ 2e3σ2
+ 3e2σ2 − 3

(b) Moments of a log-normal r.v. Note that
µ = gj−1(zj−1), the deterministically predicted
state at time j, enters the transition distribu-
tion as a scaling factor. Consequently, the mean
scales linearly with µ and the variance scales
quadratically.

Table 4.3: Change of variables for bounded state spaces and moments of a log-
normal random variable.

analytical computation are not possible, we illustrate the dependence of various
moments of the noise distribution via numerical integration.

4.3.1 Single inequality constraint

Let us start off by the simple case of a single unidimensional positive vari-
able z ∈ Z = (0,+∞). A possible choice is to resort to the logarithmic
function T (z) = log(z) with inverse T−1(s) = exp(s). Because of the group-
homomorphism property of T (z) = log(z), this translates in a log-normal noise
acting on the physical variable zj. Indeed,

zj = T−1
[
T [gj−1(zj−1)] + εj

]
= exp

(
log(gj−1(zj−1)) + εj

)
= gj−1(zj−1) · exp(εj).

(4.10)

We observe that, as in the regular nonlinear Gaussian state-space model, the
signal model can be divided in the deterministic part gj−1(zj−1) and a stochas-
tic multiplicative noise ε′j = exp(εj).

The log-normal is a well-known distribution, and its moments4 can be com-
puted in closed form (see Table 4.3b). In fact, we know for instance that the

4A r.v. X with expected value E[X] = µ and variance Var[X] = σ2 has skewness defined

by Skew[X] = E
[(
X−µ
σ

)3]
= E[(X−µ)3]

σ3 . The skewness represents the degree of asymmetry of
a distribution: a negative (positive) skew indicates that the distribution has a right-leaning
p.d.f (resp. left-leaning) i.e. the distribution mass is concentrated on the right (resp. left).

The kurtosis is defined as Kurt[X] = E[(X−µ)4]
Var[X]2 and it measures the size of the distribution

73

multiplicative log-normal noise ε′j has mean E
[
ε′j
]

= eσ
2/2 which is greater that

one for σ > 0. This means that the physical variable will tend to have slightly
larger values than the ones the deterministic model zj−1 7→ gj−1(zj−1) would
predict.

The more general case where z has to satisfy the bond z > a (with a ∈ R)
can be dealt with in a completely analogous way by considering the shifted
transformation T (z) = log(z − a).

4.3.2 Bounded-interval constraint

Let us move to the case of signal variable which is bounded from both below
and above, starting off by the case where (a, b) = (0, 1). A suitable change of
variable mapping (0, 1) onto R is the logit transformation defined by

logit(z) = log
(z

1− z

)
.

Note that this is the overlap of two logarithms: one centred on z = 0 and one
centred on z = 1 with inverted sign (+ log(z) and − log(1− z), respectively).
The inverse of the logit function is given by the S-shaped (i.e. sigmoid) logistic
function

`(s) =
exp(s)

1 + exp(s)
.

For a graphical inspection of such functions, refer to Figure 4.4. The left panel
pictures the graph of the logit function, whereas the sigmoid function `(s) is
represented in the right panel.

Now, let us denote µ = gj−1(zj−1) and Sj = logit(µ) + εj. Then, the
r.v. Zj = `

(
Sj
)

follows a logit-normal distribution5 with location parame-
ter logit(µ) and scale parameter σ2. Unfortunately, in this case no group-
homomorphism property is available, and the deterministic and stochastic
parts of the signal model are hopelessly entangled. What is more, no closed
form for the moments of the logit-normal distribution exists.

In order to visualise the shape of the logit-normal distribution, we com-
pute numerically its probability density function for different values of the
untransformed location parameter µ (and fixed scale σ2 = 0.01). The results
illustrated in Figure 4.5a show that the location parameter has a strong influ-
ence on the shape of the p.d.f. In particular, the most conspicuous effect is

tails: a kurtosis smaller (greater) than three denotes tails that are thinner (resp. fatter) than
those of a Gaussian r.v., resulting in less extreme (resp. more extreme) and less frequent
(resp. more frequent) outliers.

5In fact, a random variable X is said to be logit-normal distributed if logit(X) ∼
N (m,σ2). In this case we write X ∼ logit -N (m,σ2).

74

0 0.5 1

-10

-5

0

5

10

-10 0 10

0

0.2

0.4

0.6

0.8

1

Figure 4.4: Graph of the logit function (left panel) and its inverse, the sigmoid
logistic function (right panel)

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

60

70

80

90

(a) Probability density function of a
logit-normal distribution for different
values of µ.

0 0.5 1

0

0.5

1

0 0.5 1

0

0.01

0.02

0.03

0 0.5 1

-4

-2

0

2

4
10

-4

0 0.5 1

0

0.5

1

1.5

2
10

-3

(b) Expected value, variance, skewness,
and kurtosis of a logit-normal r.v. as a
function of µ.

Figure 4.5: Graphical representation of the logit-normally distributed random vari-
able Zj

∣∣ (Zj−1 = zj−1

)
∼ logit -N (logit(µ), σ2) for σ2 = 0.01, where µ = gj−1(zj−1)

denotes the (untransformed) location parameter.

that the distribution shrinks significantly when µ approaches the boundaries
of (0, 1).

In order to quantify such shrinkage and explore the qualitative dependence
of the other important moments of the distribution on the location parame-
ter, we also computed numerically the mean, the variance, the skewness and

75

the kurtosis as a function of µ. First, we notice that the expected value ap-
pears to be exactly the untransformed location parameter (top left panel in
Figure 4.5b, the deviations from the identity transformation are of the order
of the machine accuracy). This suggests that, unlike the log-normal case, the
logit transformation generates unbiased random variations of the value pre-
dicted by the deterministic signal model (at least for small σ). In addition,
the variance approaches zero at the boundaries of (0, 1) and it is maximal at
the interval midpoint. As for higher order moments, the fact that the skewness
is positive in the left half interval and negative in the right one means that the
distribution is skewed “to the boundaries”. In fact, the mode appears to be
slightly closer to the boundaries with respect to the mean (not shown here).
Finally, the kurtosis is maximal at the midpoint and approaches zero at the
boundaries, denoting heavier tails at the center of the interval than at the
boundaries (but always thinner than a normal r.v.). Note however, the small
magnitude of both skewness and kurtosis indicate that these effects are very
subtle, at least for the value of σ we considered.

4.4 Evaluating data assimilation methods

In this current Part I, we introduced a number of DA methods and, in this last
chapter, we presented a series of technical issues which arise when applying
some of those methods to real-life problems. However, we still did not say
much about how one can evaluate whether a DA estimation is successful or
not in practice. In the current section we address precisely such matter.

First, let us establish the notation for the current section. We here assume
to be dealing with the neuron model introduced in Example 4.3. In particular,
suppose we are given a set of observations y0:J satisfying the signal model
(4.9), whose underlying true trajectory is denoted x†0:J . Such true trajectory
is assumed to be generated from the ODE model (4.6) with model parameters
θ = θ† (the true model parameters) and external input current Iext(t) = I†ext(t).
Note, however, that the following discussion is not restricted to such example
of single-neuron model, but it applies to any time-dependent ODE-based state-
space model (see Section 4.2).

Then, suppose we applied a given DA algorithm which provided an approx-
imation p̂(z|y) of the true posterior distribution p(z|y). Note that in case of
smoothing problem the posterior distribution is intended to be the smoothing
distribution p(z0:J |y0:J), whereas in case of filtering problem “posterior” stands

for the filtering distribution
(
p(zj|y0:j)

)J
j=0

. However, for the sake of clarity, in

what follows we assume to be dealing with a smoothing problem, but the case
of filtering problem is completely analogous. Recall that in case of augmented

76

state space, the augmented variable is z = (x, θ)T (see Section 4.1.1). Finally,
suppose that along with the approximated smoothing distribution p̂(z0:J |y0:J),
the DA algorithm also provides a point estimator6 of the underlying dynamical
signal (x̂0:J) and a static estimator of the model parameter (θ̂).

We can now detail how one can evaluate the performances of DA algo-
rithms. Following [134, Section 2.7], we can broadly distinguish between two
approaches to perform quality evaluation of a DA method. In case of Bayesian
quality assessment, the focus is on probability distributions. In particular,
to perform a Bayesian quality assessment of a DA algorithm, a comparison
between the approximated posterior distribution p̂(z0:J |y0:J) and the true pos-
terior distribution p(z0:J |y0:J) is considered. To do so, a notion of metrics on
the space of probability measures should be introduced. Alternatively, at least
some relevant moments of the two distribution (e.g., the mean, the covariance,
etc.) need to be compared. Although rather recent and not very frequntly
adopted in applied DA papers, Bayesian quality assessment is adopted in eval-
uating 4DVAR, ExKF, EnKF and other filters in [135]. On the other hand, in
the more commonly adopted case of signal estimation quality assessment
we completely disregard the overall posterior distribution and solely compare
the point estimator of the dynamical variable x̂0:J to the true trajectory un-
derlying the data x†0:J . In practice, we ask the question: how close is x̂0:J to
x†0:J?

Note that, although Bayesian quality assessment can be performed even
when the true underlying trajectory is not available, x†0:J must be available in
order to carry out signal estimation quality assessment. However, normally
only the observations y0:J are available in real-life applications, whereas the
underlying trajectory is typically available only in twin experiments (i.e., data
assimilation experiments in which the data are artificially generated by the
same model used to build the prior model).

Both the Bayesian and the signal-estimation approaches are typically ap-
plied in the data assimilation time window

{
0, . . . , J

}
by comparing either

the approximated posterior or the approximated estimator to their true coun-
terparts. This allows one to quantify how well the unobserved trajectory can
be tracked down in the data assimilation time window by the DA algorithm.
However, another relevant test which is often performed in papers focused on
applications is to check whether the estimated model provides reliable predic-
tions of the “future” behaviour of the system. This is what is called checking

6A typical example of point estimator of a dynamical state variable x results from taking
the mean of the approximated smoothing distribution as a point estimator of the hidden
signal, namely x̂0:J =

∫
(X×Θ)J+1 x0:J · p̂(x0:J , θ0:J |y0:J) dx0:J dθ0:J ; a notable alternative is

the distribution mode x̂0:J = argmaxx0:J∈XJ+1

∫
ΘJ+1 p̂(x0:J , θ0:J |y0:J) dθ0:J .

77

the forecast skill of a DA algorithm. Forecast skill quality assessment can
be performed in both a Bayesian way and in a signal-estimation framework.
However, we only illustrate the case of signal-estimation forecast skill because
it is the only one we actually employ in our applications (see Part III).

In practice, using the endpoint of the estimated trajectory x̂J as initial
condition, we can continue x̂0:J by running the model “in the future”, using
the estimated parameter θ̂. However, what continuation we obtain, in fact,
depends on the stimulus which is presented to the system. In particular, in
case of model (4.6) the stimulus is the externally applied current Iext(t). This

means that, besides from setting the model parameter to its estimated value θ̂
and imposing x̂J as initial condition, the continuation is obtained by running
the original deterministic model with some external current I

(window)
ext (t) as time-

dependent input.
Here, we introduce three different continuations: window=in, out1, out2.

First we consider the continuation in the in-sample time window x̂
(in)
J :2J ,

which corresponds to the case of injecting a stimulus identical to the one pre-
sented during the data assimilation time window, i.e. I

(in)
ext (t) ≡ I†ext(t). Then,

two different out-of sample continuations are introduced: x̂
(out1)
J :2J corresponds to

a new stimulus I
(out1)
ext (t) (first out-of-sample time window), and x̂

(out2)
J :2J to

a further different stimulus I
(out2)
ext (t) (second out-of-sample time window).

Such “predictions” are tested against the continuation of the true solu-
tion x

†(window)
J :2J which corresponds to the suitable stimulus. To be exact, x

†(in)
J :2J ,

x
†(out1)
J :2J , and x

†(out2)
J :2J are solutions of (4.6) with θ† as model parameter, x†J

as initial condition, and input current I
(window)
ext = I

(in)
ext , I

(out1)
ext , I

(out2)
ext , respec-

tively. Alternatively, when the underlying true trajectory is not available, it
is possible to compare the estimated continuations x̂

(in)
J :2J , x̂

(out1)
J :2J , x̂

(out2)
J :2J to the

“observations continuation” y
(window)
J :2J (which equals x

†(window)
J :2J +εJ :2J , if x

†(window)
J :2J

is known) thanks to the measurement absolute error introduced in following
section.

Note that, whereas the Bayesian quality assessment is independent of the
quality of the data, the signal-estimation approach entangles a measurement of
the issue of data quality and of the actual algorithm performance. Indeed, if a
DA method does not give good performances in a signal-estimation framework,
it might still be that the data do not contain enough information to fully
characterise the unobserved signal, whereas the DA algorithm itself would
have worked if the data were more informative.

In the remaining part of this chapter we illustrate a definition of perfor-
mance score for DA algorithms which assesses the assimilation quality based
on signal estimation. Such performance score is applied in one of the twin ex-
periments we present in Part III, both in the data assimilation window and in a

78

forecast-skill evaluation setting. In addition, note that we adopt a forecast-skill
approach (within the signal estimation framework) even in those applications
where the performance score is not employed (see for instance Section 9.2 and
Chapter 10 in Part III).

4.4.1 Performance score for algorithm evaluation

For all time windows window = in , out1 , out2 , we consider the signal abso-
lute error given by the `p

(
R(J+1)dx

)
-distance between the estimated trajectory

and the true one

dp

(
x̂

(window)
J :2J , x

†(window)
J :2J

)
=

(2J∑
j=J

∣∣x̂(window)
j − x†(window)

j

∣∣p
p

)1/p

. (4.11)

Note that the norm | · |p is the standard `p-norm on the signal space Rdx , so
that for p = 2 we obtain the square root of the usual sum of squared errors
(SSE).

Let us once again stress that such formula can only be applied in case
of twin experiments. Indeed, a twin experiment is the only case where the
true trajectory x

†(window)
J :2J is actually known. In the general case, only the

dataset y
(window)
J :2J is available, and the only computable quantity is the anal-

ogous `p(R(J+1)dy)-distance in the measurement space, which we name the
measurement absolute error

dp

(
H
(
x̂

(window)
J :2J

)
, y

(window)
J :2J

)
=

(2J∑
j=J

∣∣H(x̂(window)
j

)
− y(window)

j

∣∣p)1/p

.

Note that the norm | · |p appearing in the r.h.s. is still the usual `p-norm, but
this time over the observation space Rdy .

However, both `p-distances we just mentioned are [0,∞)-valued, so that
no upper bound quantifying the worst possible performance is available. This
is not desirable because no upper bound means that we cannot assess the
performance of a single run without a comparison to other results and/or a
graphical inspection of the estimation. In addition, the error size is highly
dependent on the size of the time window J and the model characteristics
(such as the typical range of the x-components).

Nonetheless, in case of twin experiments it is still possible to normalise the
distance dp in order to obtain a sort of relative error. Indeed, given the data

y
(window)
J :2J and the true trajectory underlying the data x

†(window)
J :2J , we define the

79

relative measurement error of estimate x̂
(window)
J :2J as the ratio

d(rel)
p

(
x̂

(window)
J :2J , x

†(window)
J :2J

)
:=

=
dp

(
H
(
x̂

(window)
J :2J

)
, H
(
x
†(window)
J :2J

))
dp

(
H
(
x̂

(window)
J :2J

)
, H
(
x
†(window)
J :2J

))
+ dp

(
H
(
x
†(window)
J :2J

)
, y

(window)
J :2J

) . (4.12)

Remark that in the l.h.s. we omitted the dependence on both the dataset
y

(window)
J :2J and the observation operator H for the sake of notation compactness.

In case of possible ambiguity, the complete notation should be adopted.

Remark 4.4. The relative-error distance (4.12) essentially compares the abso-

lute error defined in (4.11) to dp
(
H
(
x
†(window)
J :2J

)
, y

(window)
J :2J

)
, the mismatch between

the true signal x
†(window)
J :2J and the resulting observations y

(window)
J :2J . If d

(rel)
p ≈ 1,

the estimation error is much larger than the inherent mismatch between the ob-
servations y

(window)
J :2J and the very same trajectory x

†(window)
J :2J that produced those

data. If, on the contrary, d
(rel)
p ≈ 0.5 those two quantities are approximately

of the same order of magnitude. Of course, d
(rel)
p ≈ 0 would mean that the

estimation error is much smaller than the signal-observation mismatch, but
this seldom occurs in our experience whereas the d

(rel)
p ≈ 0.5 is an attainable

and favourable case. ♠

In conclusion, the performance score we employ for signal estimation in
some of the twin experiments we describe in Part III is defined as the average
(p = 1)-relative measurement error among the three predicted trajectories
considered, i.e.

s =
1

3

∑
window=

in ,out1 ,out2

d
(rel)
1

(
x̂

(window)
J :2J , x

†(window)
J :2J

)
, (4.13)

where d
(rel)
1 is defined in (4.12). The closer this quantity is to s = 1, the worse

the quality of the signal estimation is. On the other hand, if the performance
score approaches s = 0.5, then the estimation quality gets better and better
for all time windows. Note that we select p = 1 because the canonical choice
p = 2 results in a distance dp that penalises medium-sized deviations too much
(the same for p > 2). In fact, for all simulation that we ran for the twin
experiment illustrated in Chapter 8, the (p = 2)-relative errors resulted to be

constantly d
(rel)
2 ≈ 1 , which means that the corresponding performance score

does not recognise modest performance improvements.
As for parameters estimation, the performance evaluation is straightfor-

ward. It suffice to define the absolute and relative error in the canonical way,

80

namely d(abs)
(
θ̂, θ†

)
= |θ̂−θ†| and d(rel)

(
θ̂, θ†

)
= |θ̂−θ†|

|θ†| (where the quotient is as-
sumed to be computed component-wise in case of multidimensional parameter
θ).

81

82

Part II

Neurobiology modelling

83

Introduction to Part II

The second part of this thesis contains the detailed description of all models of
neurobiological activity which have been considered in this work. In particular,
in Chapter 5 we start off by illustrating the physiology of neurons, which are the
fundamental units of the nervous system characterizing essentially all animals.
However, although understanding neurobiological mechanisms is essential to
deal with neuron models in an meaningful application-oriented manner, driven
by E. Izhikevich’s work [99] we are only interested in how one can model neu-
ronal activity with mathematical dynamical systems. For such reason, in the
first Section 5.1 we solely mention the fundamental biological notions behind
neuron models, so that we manage to identify the essential elements (i.e. state
variables and modelling parameters) of those neural models which belong to
the renowned family of Hodgkin-Huxley-type models [89]. Then, in the two re-
maining sections of the chapter, we describe in detail two increasingly realistic
single-neuron models. Specifically, the first one is a single-compartment model
with a sodium, a potassium, and a leakage ionic current (Section 5.2), whereas
the one described in Section 5.3 has a plethora of ionic currents (several cal-
cium, potassium, and sodium currents) and a complex multi-compartmental
morphology [173]. For these and all models in this thesis, we first detail the
mathematical model, and then give a synthetic description of its dynamics by
presenting a sample trajectory for some notable values of the modelling param-
eters. In the last Section ?? of this chapter, we review the mathematical prop-
erties of single-neuron models, addressing in particular the well-posedness of
autonomous conductance-based ODE neuron models, the techniques that allow
their qualitative analysis, mention of the numerical issues involved the simula-
tion of neural models, mention of results proving the existence and uniqueness
of the solution of conductance-based neuron models given in PDE form, as
well as references to the existence and analysis of travelling wave solutions.

However, the essential functional task of the central nervous system (mem-
ory, knowledge, consciousness, to mention some well-known ones) are not car-
ried out by single neurons, but rather by groups of interconnected neurons.
Indeed, without going too much into the details of these concepts, neuronal

85

ensembles are deemed to be the functional building blocks of the central ner-
vous system. Therefore, in Chapter 6 we broaden our point of view in order to
focus the attention on the bigger picture: i.e. on biological neural networks.
We specify that the networks under consideration are biological, to stress the
difference with the artificial neural networks which are nowadays heavily used
in the machine learning community. First, we briefly review the digital recon-
struction of the rat’s neocortex portion proposed by the Blue Brain Project
(Section 6.2), from which we took the above-mentioned multi-compartment
neuron model. Then, in Section 6.2 we introduce a mathematical model of
collective neuronal activity at a mesoscopic scale, namely a model of neural
network composed of simple leaky-integrate-and-fire neurons whose dynamics
is coupled via both excitatory and inhibitory synapses.

Finally, in Chapter 7 we describe different notions of distance which can be
defined on the space of action potentials trains. Such distances are specifically
tailored to be applied in neurobiology, and we take advantage of them in the
last two numerical experiments illustrated in Part III. Such metrics are used
in practice to detect spike synchrony in both couples of spike trains and larger
neural populations [124].

86

Chapter 5

Modelling of single neurons

In this chapter we describe the main features of single-neuron modelling.

Specifically, Section 5.1 focuses on describing the building blocks of all neu-
ron models belonging to the conductance-based family, namely the modelling
of ionic currents. In this section, after a general introduction on Hodgkin–
Huxley-type single-neuron models, we exemplify the notion of ionic currents
by listing those ones included by the Blue Brain Project (BBP) in order
to digitally reconstruct the second and third layer of the juvenile Wistar rats
neocortex as described in [149].

Then, the following sections provide two examples of single-neuron mod-
els: Section 5.2 presents a two-dimensional neuron point model which is for-
mally similar to the Morris–Lecar model [159], and Section 5.3 the multi-
compartment single neuron model L23 PC cADpyr229 1 which is the most
frequent in the second and third layer of the Blue Brain Project microcircuit.
Note that a very brief overview of the overall microcircuit composition is given
in Section 6.1. In both cases, the models state variables as well as the mod-
elling parameters are clearly listed in order to facilitate the application of the
data assimilation methods described in Part I, to the neurobiological models
described here.

Finally, the concluding Section 5.4 gives some reference for those theorems
one invoke to establish the existence and uniqueness of the solution of single-
neuron ODE models which include terms discontinuous in time.

5.1 Generalities on single neuron models

According to the seminal work of Alan L. Hodgkin and Andrew F. Huxley [89],
the basic equation governing the time evolution of the membrane potential V

87

of a given neuron is

CmV̇ = Iext −
∑
ion

Iion.

In such equation, Cm is the capacitance of the neuron membrane, whereas
the external current Iext is typically a time-dependent function representing
an input current which is experimentally injected in the neuron through a
micro-electrode. In addition, the quantities {Iion} represent the set of ionic
currents which pass through the neural membrane according to the opening
and closing of specific ionic channels. In fact, the different electrophysiological
properties observable in neural populations is due to the fact that this set
of ionic species varies from neuron to neuron. Note that, by convention, the
membrane potential V is assumed to be given by the electrical potential inside
the cell Vin minus the electrical potential outside the cell Vout, namely V =
Vin − Vout.

A comprehensive presentation of neural modelling is available in the text-
books [66, 113], but in what follows we only focus on the Hodgkin-Huxley-type
neuron models. As we show in Section 5.1.1, in Hodgkin-Huxley’s formalism
ionic currents are modelled as quantities proportional to the membrane poten-
tial minus the equilibrium potential Iion = gion(V −E), where the conductance
gion is a function of some opening and closing probabilities. This motivates
why Hodgkin-Huxley-type models are also called conductance-based. How-
ever, some simpler models exist, such as the leaky integrate-and-fire (LIF)
neuron model, or even coarser phase-oscillator models of the form ϕ̇ = 1 [100].
As for LIF models, we refer to the concise description given in Section 6.2.
On the other hand, although the conductance-based form is now commonly
accepted to account for neurons electrophysiology, more complex neuron mod-
els exist. In particular, including a description of their morphology is deemed
to fundamental to describe some important effects such as action potentials
back-propagation.

In fact, even though the above equation represents a single-neuron model
which can accurately reproduce electrical properties of real neural cells, it
certainly lacks any morphological information concerning the neuron. Never-
theless, it is rather simple to extend the model to include the spatial structure
of a neuron. Indeed, a morphological conductance-based neuron model is given
by the multi-compartmental ODEs system

CmV̇i = Iext −
∑
ion

Iion + Icable, ∀i = 1, . . . , Ncomp;

where Vi denotes the membrane potential of the i-th compartment and Ncomp

is the total number of compartments. Here, the term in Icable is the one

88

coupling different compartments. Indeed, the transport current that results
from discretizing the cable equation ∂tV + I(V, t) = ∂xxV is given by

Icable =
di

4Ri

∑
k

Vk − Vi
L2
ik

, (5.1)

where the sum is over all compartments k that are adjacent to the i-th one.
The modelling parameters involved in such diffusive current are: the diameter
of the i-th compartment di, its axial resistivity Ri, and the distance between
the i-th and the k-th compartment Lik (i.e. the length of the compartment).
Note that parameters di and Lik are all set once the morphology of the cell is
fixed.

Finally, it is possible to include synaptic interactions by simply adding a
synaptic current Isyn which subsumes all synaptic currents coming from neu-
rons with a post-synaptic button on the modelled neuron.

Summing all up, the most general equation that describes the time course
of the membrane potential in the i-th compartment of a conductance-based
model is

CmV̇i = Iext −
∑
ion

Iion + Icable − Isyn, ∀i = 1, . . . , Ncomp.

Note that a powerful tool to numerically reproduce the activity of multi-
compartmental neuron models is the Neuron simulation environment [37] avail-
able at the web page [5]. As far as we are concerned, we took advantage of such
software to simulate the model described in Section 5.3 using, in particular,
release 7.4 of the Neuron+Python interface (neuron Python module).

In remaining part of the current section, we delve into some details of the
prototypical model we just introduced. Then, in the following sections two
complete models of single neurons are presented: a relatively simple point
model of single neuron in Section 5.2, and a detailed morphological model in
Section 5.3. In conclusion, in Section 5.4 we give some pointers to the mathe-
matical literature suitable to investigate the well-posedness of such models.

5.1.1 Ionic currents and state variables

As we said, what makes any neuron model specific is the set of ionic currents
that one endow it of. Here, we describe the precise modelling of several different
ionic currents, with a particular focus on those used in the BBP neuron models
in the 2015 paper “Reconstruction and simulation of cortical microcircuitry”
[149]. However, many other currents have been proposed over the years to
reproduce in extreme detail neurons from different cerebral regions. Examples

89

include hippocampal pyramidal cells [148, 167] and cerebellar granule cells [48,
57]

In the BBP paper, a number of ionic currents was taken into account
in order to model the different neurons electrophysiology, and we now list
all those models of ionic currents Iion that appear in the second and third
layer of the BBP microcircuit. Next, we focus on what state variables are
necessary to simulate each specific ionic current and how their dynamics is
specified. All remarks are valid for the modelling of any ionic current in any
Hodgkin–Huxley-type neuron model. After the complete list of currents and
state variables, we also point out in detail what parameters are involved in the
modelling of each ionic current considered in the BBP paper.

 Sodium currents:

I Transient sodium current [44]

INat

(
V,mNat, hNat

)
= ḡNat ·m3

Nat · hNat · (V − ENa)

INat2

(
V,mNat2, hNat2

)
= ḡNat2 ·m3

Nat2 · hNat2 · (V − ENa)

I Persistent sodium current [146]

INap

(
V,mNap, hNap

)
= ḡNap ·m3

Nap · hNap · (V − ENa)

• The modelling parameters for such sodium currents include: the
equilibrium potential ENa and the maximal conductances ḡNat, ḡNat2,
ḡNap.

 Potassium currents:

I Transient potassium current [121]

IKt

(
V,mKt, hKt

)
= ḡKt ·m4

Kt · hKt · (V − EK)

I Persistent potassium current [121]

IKp

(
V,mKp, hKp

)
= ḡKp ·mKp · hKp · (V − EK)

I m-type potassium current [14]

IM

(
V,mM

)
= ḡM ·mM · (V − EK)

I Shaw-related channel-Kv3.1 potassium current [177]

IKv3.1

(
V,mKv3.1

)
= ḡKv3.1 ·mKv3.1 · (V − EK)

90

I d-type potassium current [189]

IKd

(
V,mKd, hKd

)
= ḡKd ·mKd · hKd · (V − EK)

I Stochastic potassium current [53]

IKstoch

(
V,N1

)
= 10−4 · [N1]+ · γstoch

Area
· q(T−23◦C)/10◦K

10 · (V − EK)

I Small conductance calcium-activated potassium current [118]

ISK

(
V, zSK

)
= ḡSK · zSK · (V − EK)

• The modelling parameters for the potassium currents include: the
reversal potential EK and the maximal conductances ḡKt, ḡKp, ḡM,
ḡKv3.1, ḡKd, ḡKstoch, ḡSK, but also the parameters of the stochastic
current γstoch, Area, q10, and the temperature T (expressed in degree
Celsius).

 Calcium currents:

I High voltage-activated calcium current [178]

ICaHVA

(
V,mCaHVA, hCaHVA

)
= ḡCaHVA ·m2

CaHVA · hCaHVA · (V − ECa)

I Low voltage-activated calcium current [19]

ICaLVA

(
V,mCaLVA, hCaLVA

)
= ḡCaLVA ·m2

CaLVA · hCaLVA · (V − ECa)

• The modelling parameters for the calcium currents include: the
maximal conductances ḡCaHVA, ḡCaLVA. As described below, he equi-
librium potential ECa is computed as a function of the internal
calcium concentration through the Nerst equation (5.7). The mod-
elling parameter entering this expression are the external calcium
concentration [Ca2+]out and the temperature T .

 Non-specific ionic currents:

I Hyperpolarization-activated current [120]

IH

(
V,mH

)
= ḡH ·mH · (V − EH)

I Leakage current IL

(
V
)
IL

(
V
)

= ḡL · (V − EL)

91

• The modelling parameters for such non-specific currents include:
the equilibrium potentials EL and EH and the maximal conduc-
tances gL and gH.

From the above list, we can notice that in the conductance-based models,
all ionic currents (except the non-specific leakage current IL) require the in-
troduction of an activation variable mion. Also, for ion ∈ {Na,t; Na,t2; Na,p;
K,t; K,p; Kd; Ca,HVA; Ca,LVA} an inactivation variable hion is present too.
The dynamics for such activation and inactivation variables depends on the
respective membrane potential V and is given by

ṁion =
(mion,∞(V)−m)

τmion
(V)

,

ḣion =
(hion,∞(V)− h)

τhion(V)
;

(5.2)

where the asymptotic value functions mion,∞(V) is typically sigmoid-shaped
(see the dark blue and cyan trace in Figure 5.1). In practice, it is usually a
function of the transition rate functions

mion,∞(V) =
αmion

(V)

αmion
(V) + βmion

(V)
,

where αmion
(V) and βmion

(V) are given by one of the following three functions1:

f (a)(V) = k1
k2 − V

exp
(
(k2 − V)/k3

)
− 1

, (5.3a)

f (b)(V) = k1 exp
(
(k2 − V)/k3

)
, (5.3b)

f (c)(V) = k1
1

1 + exp
(
(k2 − V)/k3

) . (5.3c)

On the other hand, the characteristic-time functions τmion
(V) and τhion(V) typ-

ically have a Gaussian-like profiles (see the dark red and red trace in Figure 5.1)
which can be obtained from the transition rate functions as

τmion
(V) =

1

αmion
(V) + βmion

(V)
.

The discussion for hion,∞(V) and τhion(V) is analogous.

1Note that we assume that f (a) defined in (5.3a) is extended by continuity, i.e. f (a)(V =
k2) = k1

92

-150 -100 -50 0 50 100 150

V (mV)

0

1

2

3

4

5

6

7

8

9

10

t
(m

s
)

h (V)

n (V)

n
(V)

h
(V)

1

Figure 5.1: Graphs of the sigmoid-shaped asymptotic value functions for the
inactivation variable of the transient sodium current h∞(V) (dark blue line) and
for the activation variable of the delayed rectifier potassium current n∞(V) (cyan
trace) appearing in the interneuron model presented in [214] and employed in a
neural network model in [83]. Note that n∞(V) is increasing because variable
n is an activation variable, while h∞(V) is decreasing since h is an inactivation
variable. The red and dark red lines denote the graph of the Gaussian-shaped
characteristic-time functions for the potassium current τn(V) and the sodium cur-
rent τh(V), respectively. Note that their analytical expression results from the tran-
sition rate functions αh(V) = 0.07 exp(−V+58

20), βh(V) = 1/(exp(−0.1(V +28))+1),
αn(V) = −0.01(V + 34)/(exp(−0.1(V + 34))− 1), and βn(V) = 0.125 exp(V+44

80).

Besides, for some of the ionic currents2 the temperature adjustment factor

q(T) = q
(T−23◦C)/10◦K
10

enters the expression for the characteristic time function as a multiplicative
constant. In practice, for such ionic currents the characteristic time is scaled
according to the following equation

τmion
(V) = q(T)

1

αmion
(V) + βmion

(V)
.

As a consequence, the dynamics of their activation and the inactivation vari-
ables requires the specification of the further modelling parameters q10 and the

2Namely, for currents ICaLVA, IM, IKd, IKt, IKp, IKstoch, INap, INat, and INat2.

93

experimental temperature T in degrees Celsius.

Remark 5.1. Note however, that the asymptotic value and the characteristic
time functions are not always given via the transition rate functions α and β.
In fact, there are examples where the expression for mion,∞(V) and τmion

(V)
are given directly in one of the functional forms in (5.3). See for instance
files SKv3 1.mod or K pst.mod available at the neocortical microcircuit
collaboration (NMC) portal [6].

We refer to [99, Section 2.3] for a general discussion regarding the shape
and the analytical form of activation and inactivation functions (on the other
hand, [89] is the original reference for the original Hodgkin–Huxley neuron
model). Also, consult the neuron models source codes available on the NMC
portal [6] for the exact analytical form of all functions involved in the dynamics
of activation and inactivation variables. ♠

Before moving to describing some actual example of single neuron models, a
separate discussion should be done for the small-conductance calcium-activated
potassium current ISK and the stochastic potassium current IKstoch.

In fact, in the former the activation variable zSK has a dynamics that
depends on the internal calcium concentration [Ca2+]in. So, the presence of a
ISK current requires the introduction of two new state variable, whose dynamics
is given by

żSK =
z∞([Ca2+]in)− zSK

τz
, (5.4)

and

˙[Ca2+]in = −104 γ

2F · depth
ICa −

[Ca2+]in − [Ca2+](min)

decay
. (5.5)

The asymptotic value function for the SK current activation variable is a
sigmoid-shaped Hill function [217]

zSK,∞([Ca2+]in) =
1

1 +
(
k1/[Ca2+]in

)k2 , (5.6)

and the characteristic time τz is a constant. On the other hand, the internal
calcium concentration depends on the total calcium current ICa (given by the
sum of all calcium currents included in the model), the percentage of free
calcium γ (not buffered, [sic]), the Faraday constant F, the “depth of an
imaginary sub-membrane cell” [51] depth > 0, the minimum internal calcium
concentration [Ca2+](min) and the reciprocal of the removal rate of calcium ions
decay > 0.

94

Figure 5.2: Ionic currents dynamics for different values of the membrane potential.
Source: [149]

.

Since the internal calcium concentration is explicitly modelled, the reversal
potential of calcium currents ECa is consequently adapted according to the
Nernst equation

ECa = k′
Tkelv ·R

2F
log

(
[Ca2+]out

[Ca2+]in

)
, (5.7)

where R is the universal gas constant, Tkelv = T + 273.15◦ is the temperature
in degree Kelvin, [Ca2+]out is the calcium concentration outside the cell, and
k′ = 1000 for ECa measured in millivolts [52].

Finally, the stochastic potassium current IKstoch depends on the random
process N1(t), which represents the number of opened ionic channels and acts
as a further state variable. The law governing the dynamics of the stochastic
potassium state variable N1 is given by

N0(t+ ∆t) = [N0(t)− n01(t) + n10(t)]+

N1(t+ ∆t) = Ntot −N0(t)
n01(t) ∼ Binomial(Pα, N0(t))

Pα = [αKstoch(V) ·∆t]+
n10(t) ∼ Binomial(Pβ, N1(t))

Pβ = [βKstoch(V) ·∆t]+
Ntot = bḡKstoch

Area
γstoch

+ 0.5c.

The random variable N0 represents the number of ionic channels that are
closed, n01(t) and n10(t) are stochastic integer-valued processes representing
the number of channels moving from the closed state to the opened state at
time t, and vice-versa. Terms Pα and Pβ represent the probability that one
channel opens or closes, respectively. In fact, Pα and Pβ are functions of the

95

transition rate functions αKstoch(V) and βKstoch(V). Finally, ∆t is the numerical
time step and Ntot is the total number of ion channels, which can be computed
from the maximal conductance ḡKstoch and the parameters Area and γstoch.

In conclusion, we refer to Figure 5.2 for a sample time course of all ionic
currents described in this section. In particular, note the difference between
the profile of transient and persistent currents: persistent currents maintain
an approximately constant flow of ions if the membrane potential V is kept at
a constant value, whereas transient currents decay to zero after an initial spike
of ion flow. Finally, Table 5.3 summarises all state variables and modelling
parameters involved in the mathematical representation of each ionic current
we mentioned so far.

In the remaining part of this chapter, we illustrate in detail two different
models of single neuron.

5.2 Toy model for a single neuron

First, let us start off by presenting a single-compartment two-dimensional neu-
ronal model which is somewhat similar to the Morris–Lecar model [159]. In-
deed, it has the same number of ionic currents, the same number of state
variables, similar dynamics, and similar bifurcation diagrams [99, Chapter 4].
The ODEs system representing such neuron is CV̇ = −ḡKa(V − EK)− ḡNab∞(V)(V − ENa)

−ḡL(V − EL) + Iext(t)
τaȧ = a∞(V)− a,

, t ∈ [0, Tf]; (5.8)

where V is the membrane potential and the ionic-channel activation variable a
represents the opening probability of the transmembrane potassium channels.
Parameters of the model include the membrane capacity C and the time scale
constant τa, the maximal conductance of the potassium, the sodium, and the
leakage ionic currents (ḡK, ḡNa and ḡL respectively), and the corresponding
equilibrium potentials (EK, ENa and EL). Furthermore, the asymptotic value
function for such model is a particular instance of (5.3c), namely

a∞(V) = 1/
[
1 + exp

(
(V

(a)
1/2 − V)/K(a)

)]
, (5.9)

where K(a) is a steepness parameter and V
(a)

1/2 is such that a∞(V
(a)

1/2) = 0.5.

The function b∞(V) satisfies a relation analogous to (5.9) with corresponding

parameters V
(b)

1/2 and K(b). The input Iext(t) represents a preassigned time-
dependent externally-applied current, which we assume to be a piecewise con-

96

Ion current State variables Parameters

Sodium currents
INat mNat hNat ḡNat, ENa, q10, T
INat2 mNat2 hNat2 ḡNat2, ENa, q10, T
INap mNap hNap ḡNap, ENa, q10, T

Potassium currents
IKt mKt hKt ḡKt, EK, q10, T
IKp mKp hKp ḡKp, EK, q10, T
IM mM ḡM, EK, q10, T
IKv3.1 mKv3.1 ḡKv3.1, EK

IKd mKd hKd ḡKd, EK, q10, T
IKstoch N1 ḡKstoch, EK, q10, T

Calcium and calcium-activated currents
ICaHVA mCaHVA hCaHVA ḡCaHVA, [Ca

2+]out

ICaLVA mCaLVA hCaLVA ḡCaLVA, [Ca
2+]out, q10, T

ISK zSK ḡSK, EK

[Ca2+]in γ, decay, depth, [Ca2+](min)

Aspecific currents
IH mH ḡH, EH

IL ḡL, EL

Table 5.3: Table listing all state variables and parameters involved in the modelling
of a each ionic current (mechanism) considered in [149]. State variable [Ca2+]in and
the relative parameters are present for all calcium-related currents. Parameters
with the same name across different currents assume the same value in a given
compartment.

stant function given by

Iext(t) =

I1 t ∈ [0, T (1))

Ii t ∈ [T (i−1), T (i)), i = 2, ..., imax

Iimax t ∈ [T (imax), Tf],

(5.10)

where Tf is the time horizon of model (5.8) and the set of the jump times{
T (i)
}imax

i=1
constitutes a Poisson process of rate λ (i.e. the expected interspike

interval is E[T (i+1)−T (i)] = 1/λ for all i = 1, . . . , imax−1). The corresponding

step-current values
{
Ii
}imax

i=1
are modelled as an i.i.d. random sequence with

uniform distribution over the current range [Ilow, Iupp].

97

θ† True value Unit

ḡNa 20 mS cm−2

ENa 60 mV
ḡK 10 mS cm−2

EK -90 mV
ḡL 8 mS cm−2

EL -78 mV

V
(b)

1/2 -20 mV

K(b) 15 mV

V
(a)

1/2 -45 mV

K(a) 5 mV

τa 1 ms
C 1 µF cm−2

Table 5.4: Model L23 PC cADpyr229 1: true parameter values and unit measure

5.2.1 Sample toy model trajectory

In order to investigate what kind of responses such model produces, it is nec-
essary to fix all model parameters. We firstly fix the external current Iext(t)

by drawing a single instance of
{
T (i)
}imax

i=1
and

{
Ii
}imax

i=1
with λ = 1 ms−1,

Ilow = −5 µA cm−2, and Iupp = 40 µA cm−2. Then, we also set the true
parameter values to be the values listed in Table 5.4. Finally, we use a
fourth-order Runge-Kutta method to solve the system of ordinary differen-

tial equations (5.8) over the time mesh t0:J =
{
tj
}J
j=0

, where tj = j∆t,

∆t = 0.01 ms, and Tf = tJ = 500 ms. The initial condition is set to be(
V (0), a(0)

)T
=
(
V †0 , a

†
0

)T
where V †0 = −64 mV, and a†0 = a∞(V †0). For future

references, we call true trajectory the resulting approximate solution and

write x†0:J =
{

(V †j , a
†
j)
T
}J
j=0

.

To produce a dataset usable for twin experiments (such as the twin experi-
ment we describe in Chapter 8), we also need to generate some measurements
associated to the true trajectory x†0:J . In this case, we assume no measurement
occurs at j = 0. Hence, the dataset y1:J = {yj+1}J−1

j=0 is produced by drawing

a single realization of the measurement noise ε1:J = {εj+1}J−1
j=0 with standard

deviation Γ1/2 = 1 mV, and setting

yj+1 = V †j+1 + εj+1, j = 0, . . . , J − 1.

The first 200 ms of the simulated dataset y1:J are represented in Figure 5.5,
along with the underlying true trajectory x†0:J and the stimulus Iext which

98

0 20 40 60 80 100 120 140 160 180 200

-100

-80

-60

-40

-20

0

0 20 40 60 80 100 120 140 160 180 200

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200

0

10

20

30

40

Figure 5.5: Sample response of model (5.8) with parameter values as in Ta-
ble 5.4 to an input current of the form (5.10) with λ = 1 ms−1 and [Ilow, Iupp] =

[−5 µA cm−2, 40 µA cm−2]. The true trajectory x†0:J (black plain line) is obtained
by solving the model with a Runge-Kutta method of the fourth order with compu-
tational step of ∆t = 0.01 ms. The grey dots in the top panel denote the artificial
dataset y1:J obtained by adding a Gaussian noise with 1 mV-wide standard deviation
to the V -component of the true solution.

produces such neural response.

Remark 5.2. Note that what we just described implies the mathematically-
detailed discretization procedure introduced in Section 4.2. In particular, such
procedure (which serves to define the discrete signal and data state-space mod-

99

els) is instantiated in Example 4.3 where it is applied to the very same model
(5.8) defined in the current section. ♠

In the following section, we describe a realistic model of morphologically-
accurate single neuron.

5.3 Realistic model from the Blue Brain Project

In this section, we describe in detail the model for pyramidal cells with soma ly-
ing in the second and third neorcortical layer L23 PC cADpyr229 1 developed
and used in the neocortical microcircuit depicted in [149]. In particular, in Sec-
tion 5.3.1 the ODEs for each compartment class is stated, in Section 5.3.2 all
model parameters are listed, and in Section 5.3.3 we present a sample response
of the model to a step depolarizing current.

First, let us start off by some generalities on multi-compartment models
and on the Neuron simulation environment [86]. The mathematical model
for any neuron model considered in the BBP neocortical microcircuit consists
in a multi-compartment conductance-based model. The morphology for such
models (i.e. the compartmental structure of the model) is derived from ex-
perimental data obtained by the Markram Lab, with the addition of some
data-based variability. Such variability reflects the jittering branch angle and
section length statistics obtained by comparing the morphology of different
neurons belonging to the same neuron class. Also, all models from the Blue
Brain project are implemented in the Neuron simulation environment [37, 86].
We highlight that, for the ease of use for experimental modellers, Neuron
introduces a top-layer compartment class called section. A section is a com-
partment with homogeneous geometrical and electrical properties. However,
it is sometimes desirable to split a given section in shorter segments, in order
to improve computational accuracy. From a mathematical point of view, each
segment is a compartment, whereas a section is nothing but a collection of seg-
ments with homogeneous morphological properties. In what follows, whenever
we talk of compartments, we refer to the segments of the model.

In the twin experiment setting described in Chapter 9, we consider the
model proposed in [149] for the layer 2 and layer 3 (L23) continuous-adapting
(cAD) pyramidal cells (PC). This model was selected because it is the most
common in the layer two and three of the microcircuit (which are regarded as
one in the neural network modelling), as showed in Table 6.4. For further de-
tails on the models nomenclature and on the modelling process see Section 6.1.

In order to fix once for all the model in exam, we consider the morphology
of clone L23 PC cADpyr229 1 depicted in Figure 5.6a. Such morphology can

100

(a) Neuron mor-
phology for clone
L23 PC cADpyr229 1.

(b) Neuron graphical user interface (GUI) screenshot
showing a sample somatic potential time course with both
depolarizing step input current and some synaptic inputs.

Figure 5.6: Representation of model L23 PC cADpyr229 1 for layer 2 and 3 pyra-
midal cells. Produced with Neuron using the source code for this model available at
the NMC portal.

be downloaded from the neocortical microcircuit collaboration portal (NMC
portal) [6]. We refer to [173] for a detailed description of the content of the
portal and its use. Figure 5.6b presents a sample somatic potential time course
of model L23 PC cADpyr229 1, plotted in the Neuron graphical user interface
(GUI). The input producing that trace are: a depolarizing step input cur-
rent, inhibitory synaptic inputs coming from layer 2-3 Martinotti cells, and
excitatory synaptic inputs originated from layer 4 pyramidal cells.

We now examine in detail the mathematical model for layer 2 and 3 pyra-
midal cells.

5.3.1 Mathematical model for L23 PC cADpyr229 1

Model L23 PC cADpyr229 1 consists in a set of ODEs for each compartment
considered in the morphology. In all models considered in [149], the form of the
equations depends on the type of compartment. In particular, for pyramidal
cell models the authors considered a single somatic compartment, two axonal
compartments, and several basal and apical dendritic compartments.

Here, we write down the differential equation for the membrane potential
of each of these four classes.

101

I 1 somatic section, for a total of 1 segment

(soma)

CmV̇

(soma) = + Iext(t)− Isyn + Icable

− INat2 − IKv3.1 − ISK

− ICaLVA − ICaHVA

− IH − IL

; (5.11)

I 2 axonal sections, for a total of 2 segments

(axonal)

CmV̇
(axon)
i =− Isyn + Icable

− INat − INap

− IKt − IKp − IKv3.1 − ISK

− ICaLVA − ICaHVA

− IH − IL

, ∀i = 1, 2; (5.12)

I 23 apical sections, for a total of 109 segments

(apical)

CmV̇

(apic)
i =− Isyn + Icable

− INat2 − IM − IKv3.1

− IH − IL

, ∀i = 1, . . . , 109; (5.13)

I 66 basal dendritic sections, for a total of 200 segments

(dendritic)

{
CmV̇

(dend)
i =− Isyn + Icable

− IH − IL

, ∀i = 1, . . . , 200. (5.14)

Note that the exact form of all ionic currents is the one given in Sec-
tion 5.1.1. In practice, all ionic currents in each compartment (except for IL)
have some further state variable whose dynamics is given in (5.2), (5.4) or (5.5).
As a consequence, in the right hand side of (5.12), (5.13), and (5.14), all ionic
currents depend on the state variables of the respective compartment. For
instance, the complete membrane potential ODE for apical dendrites writes

C(apic)
m V̇

(apic)
i =− Isyn + Icable

− I(apic)
Nat2

(
V

(apic)
i ,m

(apic)
Nat2,i, h

(apic)
Nat2,i

)
− I(apic)

M

(
V

(apic)
i ,m

(apic)
M,i

)
− I(apic)

Kv3.1

(
V

(apic)
i ,m

(apic)
Kv3.1,i

),
for i = 1, . . . , 109. Notice the i subscript that identifies all compartment-
specific state variables appearing in the right hand side of such equation. Also,

102

note that C
(apic)
m is the value of the membrane capacitance for apical dendrites,

and that we added the “(apic)” superscript to all ionic currents (I
(apic)
ion) to

stress the fact that modelling parameters appearing in their expression (such
as maximal conductances) are section-dependent. Details regarding modelling
parameters are given in the following section.

Writing down the differential equations for the activation/inactivation vari-
ables, the complete model for apical compartments turns out to be

C(apic)
m V̇

(apic)
i =− Isyn + Icable

− I(apic)
Nat2

(
V

(apic)
i ,m

(apic)
Nat2,i, h

(apic)
Nat2,i

)
− I(apic)

M

(
V

(apic)
i ,m

(apic)
M,i

)
− I(apic)

Kv3.1

(
V

(apic)
i ,m

(apic)
Kv3.1,i

)
− I(apic)

H

(
V

(apic)
i ,m

(soma)
H,i

)
− I(apic)

L

(
V

(apic)
i

)
ṁ

(apic)
Nat2,i =

(
mNat2,∞

(
V

(apic)
i

)
−m(apic)

Nat2,i

)
/τmNat2

(
V

(apic)
i

)
ḣ

(apic)
Nat2,i =

(
hNat2,∞

(
V

(apic)
i

)
− h(apic)

Nat2,i

)
/τhNat2

(
V

(apic)
i

)
ṁ

(apic)
M,i =

(
mM,∞

(
V

(apic)
i

)
−m(apic)

M,i

)
/τmM

(
V

(apic)
i

)
ṁ

(apic)
Kv3.1,i =

(
mKv3.1,∞

(
V

(apic)
i

)
−m(apic)

Kv3.1,i

)
/τmKv3.1

(
V

(apic)
i

)
ṁ

(soma)
H,i =

(
mH,∞

(
V

(apic)
i

)
−m(soma)

H,i

)
/τmH

(
V

(apic)
i

)

,

for i = 1, . . . , 109. Moreover, the model for the i-th segment (i.e. compart-
ment) is coupled to the adjacent segments of the model trough the cable cur-
rents Icable. In fact, the membrane potential of the segments that are connected
to the i-th segment appears in the r.h.s. of (5.1). Finally, the synaptic current
Isyn links a given segment to other cells in the microcircuit model.

In conclusion, considering all compartments the mathematical model for
L23 PC cADpyr229 1 has 92 sections (1 somatic section, 2 axonal sections,
23 apical sections, 66 dendritic sections) corresponding to 312 segments or
compartments (1 somatic segment, 2 axonal segments, 109 apical segments,
and 200 dendritic segments), for a total of 1097 state variables (11 state vari-
ables per somatic compartment, 16 state variables per axonal compartment,
6 state variables per apical compartment, and 2 state variables per dendritic
compartment), and many model parameters.

We now discuss exactly which modelling parameters enter such model equa-
tions.

103

5.3.2 Model parameters

Let us investigate the details about the parameters involved in the modelling
of pyramidal cells of the second and third cortical layer. Once we assign the
neuron model morphology (i.e., the spatial position, dimension and orientation
of all neuron sections), we fix at once all parameters di and Lik appearing in
the expression for Icable (5.1) in all compartments. Besides, we assume that all
the functions and parameters involved in the dynamics of the activation and
inactivation variables are fixed (namely, all ki appearing in (5.3) and (5.6),
and τz in (5.4)).

Then, we are left with all parameters Cm and R, the reversal potentials
Eion, the maximal conductances of all ionic currents ḡion, the temperature ad-
justment factor parameters q10 and T (the temperature in degree Celsius),
along with all parameters involved in the internal calcium concentration dy-
namics (5.5). Note that the external calcium concentration [Ca2+]out (which,
according to (5.7), is required to compute the calcium equilibrium potential
ECa) is considered constant and then it is a further modelling parameter.

All the parameters that appear in the neuron model L23 PC cADpyr229 1
are listed in Table 5.7. The parameter values used in [149] appear in the second,
third, fourth or fifth column, according to the compartment class. Note, in fact,
that modelling parameters assume the same value in the segments belonging to
a given class (i.e. somatic, axonal, apical, and basal segments), but may differ
from one class to the other. Blank spaces indicate the absence of a parameter
for a specific section class (e.g. there is no ENa in the Basal column because
no sodium mechanism is included in the basal dendrites model). Also, the last
column indicates whether a parameter was manually fixed by the modellers
(7) or if it was set as a free parameter (X), and then computed by the
multi-objective optimisation procedure proposed in [60, 61] and refined into a
open-source tool for the community of neurobiology modellers in [203].

5.3.3 Sample dynamics and artificial dataset

Let us consider the model given by (5.11), (5.12), (5.13), and (5.14) with values
of the modelling parameters to be those listed in Table 5.7. What is a sample
trajectory of the resulting model? How can we generate an artificial dataset
in order to perform twin experiments on such model?

First of all, we need to fix the input external current Iext(t) that appears
in (5.11). Our choice of input current reflects the Neuron code for model
L23 PC cADpyr229 1 available on the NMC portal, where three input cur-
rents with different depolarizing amplitude are considered. Namely, three am-
plitudes window=in,out1,out2, which correspond to 1.5, 2, and 2.5 times the

104

Parameter Somatic Axonal Apical Basal Unit Free

Passive electrical properties
Cm 1 1 2 2 µF/cm2 7

R 100 100 100 100 Ω cm 7

Equilibrium potentials
ENa 50 50 50 mV 7

EK −85 −85 −85 mV 7

EH −45 −45 −45 −45 mV 7

EL −75 −75 −75 −75 mV 7

Maximal ionic conductances
ḡNat 3429.725 mS/cm2 X
ḡNat2 926.705 12.009 mS/cm2 X
ḡNap 9.803 mS/cm2 X
ḡKt 1.035 mS/cm2 X
ḡKp 959.296 mS/cm2 X
ḡM 0.74 mS/cm2 X
ḡKv3.1 102.517 94.971 0.513 mS/cm2 X
ḡSK 99.433 8.085 mS/cm2 X

ḡCaHVA 0.374 0.306 mS/cm2 X
ḡCaLVA 0.778 0.05 mS/cm2 X
ḡH 0.08 0.08 0.08g(y) 0.08 mS/cm2 7

ḡL 0.03 0.03 0.03 0.03 mS/cm2 7

[Ca2+]in dynamics
γ 0.000533 0.016713 1 X

decay 342.544232 384.114655 ms X
depth 0.1 0.1 µm 7

[Ca2+](min) 0.0001 0.0001 mM 7

Parameters for ECa and temperature adjustment factor
q10 2.3 2.3 2.3 1 7

T 34 34 34 ◦C 7

[Ca2+]out 2 2 mM 7

Table 5.7: Parameters of model L23 PC cADpyr229 1 as set in [149]. Parameter
values in somatic, axonal, apical and basal compartments are listed in the 2nd, 3rd,
4th and 5th column, respectively. The value of ḡH is exponentially distributed in the
apical sections (i.e. g(y) = −0.8696 + 2.087 · exp

(
y/0.0031

)
where y is the distance

of the section from the soma. The sixth column shows the unit of measure for each
parameter. Finally, a 7 sign in the last column means that the value was manually
set by the modellers, whereas a Xsign indicates that the value was numerically
evaluated by the multi-objective evolutionary algorithm discussed in [60].

105

rheobase3, respectively. All three inputs are given by the superimposition of
a hyperpolarizing step current (necessary to hold the cell around the resting
potential of approximately V = −85 mV), and a depolarizing step current.
The hyperpolarizing current lasts 3000 ms (the entire duration of the experi-
ment), while the depolarizing current triggers after 700 ms and lasts 2000 ms.
In formulas

I
(window)
ext (t) =

Ihyp t ∈ [0, 700ms)

Ihyp + I
(window)
dep t ∈ [700ms, 2700ms)

Ihyp t ∈ [2700ms, 3000ms]

, (5.15)

where Ihyp = −0.071777 nA for all three step currents. The three inputs only
differ for the depolarizing current amplitude: for window= in the depolar-
izing current amplitude is I

(in)
dep = 0.1626792 nA; for window=out1 I

(out1)
dep =

0.1762358 nA; and for window=out2 I
(out2)
dep = 0.1897924 nA. At this point,

the time-dependent input current is fixed.
Now, the artificial dataset is generated in the following way. First, the

Neuron+Python implementation of model L23 PC cADpyr229 1 is numeri-
cally solved using the backward-Euler solver in a 3000 ms time window with
input current I

(in)
ext . The non-adaptive time step is ∆t = 0.25 ms and the initial

condition is V (t0 = 0 ms) = −65 mV, [Ca2+]in(t0) = 5e-5 mM, whereas the ac-
tivation and inactivation variables are initialised to their asymptotic value, i.e.
mion(t0) = mion,∞(−65mV), and analogously for hion(t0). We take the resulting

trajectory4 x†0:J =
{
x†j
}J
j=0

as the true discrete trajectory underlying the

observations in the data assimilation time window [0 ms, 3000 ms]. Note
that according to such notation, x†j denotes the value of the true solution of
the neuron model at time tj = j∆t.

Then, the observable dataset is generated by simply adding a Gaussian
measurement noise with standard deviation Γ1/2 = 1 mV to the membrane
potential. Mimicking the notation established in Section 4.2, we write that
the observation operator H : Z −→ Y is the projection on the first component
(the membrane potential), so that Yj = H(x†j) + εj = V (tj) + εj, where the
noise process is an i.i.d sequence with εj ∼ N (0,Γ). A graphical represen-
tation of the resulting trajectory and the simulated observations is given in
Figure 5.8. In particular, the membrane potential time course (black dashed
line) and the resulting dataset (grey dots) are presented in Figure 5.8a, while

3The rheobase of a neuron is the minimal value of input current which elicits an action
potential.

4Here J = 12 000. Also, the entries of the vector variable x include all somatic state

variables such as V (soma), m
(soma)
Nat2 , etc.

106

the corresponding trajectories of some relevant state variables of the somatic
compartment are shown in Figure 5.8b. Note that the latter are plotted in the
transformed scale (log-scale for variable [Ca2+]in and logit-scale for the remain-
ing variables) according to the discussion about bounded variable presented in
Section 4.3.

In order to test the performance of the data assimilation algorithms (see
Section 4.4.1), we also generate some further datasets. First, the external

input I
(in)
ext is presented again but with a different initial condition: the end

point of the preceding true trajectory x†J is set to be the initial point of the
new in-sample trajectory. We take such precaution because filter algorithms
do not provide reliable estimate for hidden variables components of the ini-
tial condition. We denote this trace x

†(in)
J :2J and name it in-sample trajectory

because it is the response to the same stimulus I
(in)
ext (t) used to generate the

true signal x†0:J . In addition, taking x(t0) = x†J as initial condition means that

the resulting in-sample trajectory x
†(in)
J :2J is a continuation of the true signal

trajectory x†0:J .

The in-sample trajectory x
†(in)
J :2J is pictured in Figure 5.9a (note the different

initial condition with respect to Figure 5.8a). In order to provide a meaning-
ful measure of performance of the DA methods employed in Chapter 9, we
also consider the corresponding dataset y

(in)
J :2J resulting from the usual additive

Gaussian noise (grey dots). Let us stress the fact that these last observations
are not used in the data assimilation process, but only serve as a yardstick to
compute the performance score (4.13) defined in Section 4.4.1.

Using the same initial condition x(t0) = x†J , we apply inputs I
(out1)
ext (t) and

I
(out2)
ext (t) in order to generate two distinct out-of-sample trajectories: x

†(out1)
J :2J

(whose V -component is pictured in Figure 5.9b) and x
†(out2)
J :2J (Figure 5.9c). The

corresponding observations are denoted y
(out1)
J :2J and y

(out2)
J :2J , respectively.

5.4 Mathematical properties of single-neuron

models

The concluding section of Chapter 5 contains an overview of the main results
concerning the mathematical properties of single-neuron models. Since neuron
models are mostly given in form of system of ODEs here, we mainly focus on
the properties of this type of models. In particular, in Section 5.4.1 mention
some basic well-posedness results for Hodgkin-Huxley-type models, and Sec-
tion 5.4.2 in a brief discussion of bifurcation theory applied to mathematical
models of single neurons is given, as well as some numerical aspects which are

107

0 500 1000 1500 2000 2500 3000

time (ms)
100

80

60

40

20

0

20

40

so
m

a
_V

(a) True trajectory for the somatic membrane potential (black
dashed line) and the simulated observations (grey dots) obtained
by adding a Gaussian noise with a standard deviation of 1 mV.

0 500 1000 1500 2000 2500 3000
16
14
12
10

8
6
4
2
0
2

m
_C

a
_H

V
A

0 500 1000 1500 2000 2500 3000
0.2

0.4

0.6

0.8

1.0

h
_C

a
_H

V
A

0 500 1000 1500 2000 2500 3000
11
10

9
8
7
6
5
4
3
2

m
_S

K
v
3
_1

0 500 1000 1500 2000 2500 3000
11
10

9
8
7
6
5

z_
S
K

_E
2

0 500 1000 1500 2000 2500 3000
8
7
6
5
4
3
2
1
0
1

m
_C

a
_L

V
A

st

0 500 1000 1500 2000 2500 3000
6
5
4
3
2
1
0

h
_C

a
_L

V
A

st

0 500 1000 1500 2000 2500 3000
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5

m
_I

h

0 500 1000 1500 2000 2500 3000
10

5
0
5

10
15

m
_N

a
T
s2

_t

0 500 1000 1500 2000 2500 3000
6
4
2
0
2
4
6

h
_N

a
T
s2

_t

0 500 1000 1500 2000 2500 3000
10.0

9.8
9.6
9.4
9.2
9.0
8.8

ca
i

(b) Somatic state variables. From left to right, from top to
bottom: logit(mCaHVA), logit(hCaHVA), logit(mKv3.1), logit(zSK),
logit(mCaHVA), logit(mCaLVA), logit(hCaLVA), logit(mH), and
logit(mNat2), logit(hNat2), and log([Ca2+]in).

Figure 5.8: Plot of the simulated dataset y0:J (grey dots in (a)) and the underlying

true trajectory x†0:J (black dashed lines) in the data assimilation time window [0ms,

3000ms] with input current I
(in)
ext (t).

108

0 500 1000 1500 2000 2500 3000

time (ms)

100

80

60

40

20

0

20

40

so
m

a
_V

(a) x
†(in)
J :2J (back dashed line) and y

(in)
J :2J

(grey dots)

0 500 1000 1500 2000 2500 3000
time (ms)

100

80

60

40

20

0

20

40

so
m

a
_V

(b) x
†(out1)
J :2J (back dashed line) and

y
(out1)
J :2J (grey dots).

0 500 1000 1500 2000 2500 3000
time (ms)

100

80

60

40

20

0

20

40

so
m

a
_V

(c) x
†(out2)
J :2J (back dashed line) and y

(out2)
J :2J (grey dots).

Figure 5.9: Somatic potential traces and corresponding observations for perfor-
mance evaluation of DA methods. The initial membrane potential is approximately

V = −85 mV for all traces. The external input current is I
(in)
ext (t) for (a), I

(out1)
ext (t)

for (b), and I
(out2)
ext (t) for (c). Note that increasing Idep results in an increasing num-

ber of action potentials (four action potentials in the in-sample time window and
five in the second out-of-sample time window).

109

important when simulating neuron models. Finally, in Section 5.4.3, we return
to discussing well-posedness in less standard cases.

5.4.1 Well-posedness of ODE single-neuron models with
constant input current

Let us start off by considering the autonomous version of the toy model (5.8)
introduced in Section 5.2. The fact that the ODEs system is autonomous
means, in such neuron model, that the input-current term is constant (Iext(t) ≡
Iext), and the neuron’s dynamics is completely determined by the value of the
applied current Iext, the intrinsic ionic currents IK, INa e IL, and the initial
condition

V̇ = 1
C

[
Iext − ḡKa(V − EK)

−ḡNab∞(V)(V − ENa)− ḡL(V − EL)
]

ȧ =
(
a∞(V)− a

)
/τa,

V (0) = V0

a(0) = a0

, t ∈ [0, Tf]. (5.16)

We remark that it is possible to establish the well-posedness of such Cauchy
problem by invoking the classical Existence and uniqueness theorem (for the
precise statement of such theorem see, for instance, [35, Theorem 10.14]).
Indeed, since both a∞(V) and b∞(V) are C∞(R) functions (recall their sigmoid-
shaped definition given in (5.9)), the autonomous vector-field (r.h.s. of the first
two equations in (5.16)) is (at least) continuously differentiable. This argument
alone is enough to guarantee the local Lipschitz continuity of the vector field,
so that the Existence and uniqueness theorem can be applied and the Cauchy
problem is well-posed.

In addition, it is also very simple to show that any solution having a
biologically-meaningful initial condition is bounded, at least in the case where
Iext = 0 [46]: since a = 0 ⇒ ȧ > 0 and a = 1 ⇒ ȧ < 0, it follows
that for all t we have a(t) ∈ [0, 1] whenever the initial condition is in the
same interval (a0 ∈ [0, 1]); in addition, defining V = max{EK, ENa, EL} and
V = min{EK, ENa, EL}, we have that V > V ⇒ V̇ < 0, and V < V ⇒ V̇ > 0.
As a consequence, if r > 0, any solution of (5.16) with initial condition (V0, a0)
in Z =

[
V − r, V + r

]
× [0, 1] always lives in such a Z.

Note that the considerations made here about the toy model hold for any
single-compartment conductance-based neuron model which includes any of
the deterministic ionic currents mentioned in Section 5.1.1 (even the calcium,
and calcium-dependent ionic currents).

110

5.4.2 Qualitative analysis and numerical aspects in neu-
ronal modelling

Now that we briefly discussed the existence and uniqueness of the solution for
the autonomous ODEs dynamical system (5.16), we can ask ourselves: how
does such neuron model behave qualitatively speaking? Does the system’s
solutions endlessly oscillate producing a continuous train of action potentials
or they eventually converge to some attracting point in the state space?

As exemplified in Figure 5.10 (blue trace), when no input current is present
(Iext = 0 µA cm−2) the membrane potential quickly reaches the neuron’s rest-
ing potential Vrest ≈ −60 mV. In the language of dynamical systems, one says
that the model’s solutions converge to a stable equilibrium point5. For sim-
ple reduced-order models, it is possible to explicitly compute the equilibrium
point(s) by intersecting the nullclines {(V, a)T | ȧ = 0} and {(V, a)T | V̇ = 0},
the most notable example being the FitzHugh-Nagumo model [72, 162]. In
addition, when an equilibrium point is available in closed form, it is possible
to evaluate its stability by checking the spectrum of the vector field’s Jacobian
evaluated at the equilibrium. However, such exact calculations are not possible
for more complex models such as the Hodgkin-Huxley model.

If the input current intensity is increased, the attracting equilibrium do not
appear to be present as the system’s solutions are attracted by a limit cycle
which corresponds, in electro-physiological terms, to a tonic spiking activity of
the neuron. In addition, further increasing the input current results in a larger
limit cycle amplitude, as shown by the orange and green trace in Figure 5.10.
Note that limit cycle are hardly tractable by analytical methods. Nevertheless,
for any neuron model it is possible to perform qualitative analysis through
numerical bifurcation theory. To this end, the MatCont continuation toolbox
[81] can be used as well as other software (e.g. XXPaut [65]).

What occurs in model (5.16) is that for I∗ext = 14.66 µA cm−2 the sta-
ble equilibrium undergoes a supercritical Andronov-Hopf bifurcation
(first Lyapunov coefficient l1 = -1.19e-2): for Iext < I∗ext the system has a
unique globally attracting equilibrium; such equilibrium becomes unstable for
Iext ≥ I∗ext when a stable limit cycle appears. The corresponding bifurcation
diagram is pictured in Figure 5.11, where the stable equilibrium present for
Iext = 0 µA cm−2 is marked by a blue cross. Varying Iext, a globally attracting

5In what follows, the knowledge of several notions of dynamical systems and bifurcation
theory is required. We omit them here for the sake of brevity, but we refer to Chapter 1 [131]
(or any other textbook dealing with ODEs systems) for all the necessary definitions concern-
ing dynamical systems (e.g. stable/unstable/asymptotically stable equilibrium point/limit
cycle) and to Chapter 2, 3, 7 of the same book for an exhaustive presentation of one-
parameter bifurcations.

111

t (ms)

-80

-60

-40

-20

0
V

 (
m

V
)

Iext=0 Iext=20 Iext=40

0 10 20 30 8050 60 70

Figure 5.10: Sample solution of model (5.16) for different values of constant input
current Iext all with the same initial condition (V0, a0)T = (60 mV, 0.5)T .

equilibrium point continue to exist (plain cyan line) until it undergoes the Hopf
bifurcation (red dot) and becomes unstable (dotted cyan line). Then, a stable
limit cycle whose size in the (V, a) plane increases with Iext appears (plain black
lines). The attracting limit cycles present for Iext = 20, 40 µA cm−2 pictured in
Figure 5.10 are highlighted in Figure 5.11 with the corresponding orange and
green color. Such bifurcation diagram allows one to completely characterize
the qualitative behaviour of the solutions of neuronal model (5.16).

Although much more complicated bifurcation diagram can arise in other
single-neuron model (typical examples include bistable systems and different
bifurcations such as saddle-node and saddle-node on invariant cycle bifur-
cations, not to mention bifurcations with higher codimension), it is worth
mentioning that bifurcation theory is one essential tool for the mathematical
analysis of neuronal models. In fact, other than characterizing the activity
of the modelled neurons, the qualitative analysis resulting from bifurcation-
theory concepts directly translates into electrophysiologically relevant notions
such as excitable systems, Hodgkin’s Class I/Class II IF diagrams, integra-
tor/resonator neurons, threshold, subthreshold oscillations, post-inhibitory ac-
tion potentials etc. We skip this matters because their discussion goes far
beyond the scope of this work, but we refer to [99] for a more comprehensive
presentation of dynamical system theory applied to single-neuron models.

112

Hopf

Iext

0

-20

-40

-60

-80

-10
0

10
20

30
40 0

0.2

0.4

0.6

V

a

Figure 5.11: Bifurcation diagram of the two-dimensional model (5.16) with respect
to parameter Iext ∈ [−10 µA cm−2, 45 µA cm−2].

Note that, except for a few trivial cases, conductance-based single-neuron
models are not explicitly solvable, and numerically approximated solutions are
usually the only available possibility. As a consequence, numerical stability
and approximation issues can arise, and one need to be aware of these not to
invalid the simulation’s outcomes. Notably, the membrane potential and the
activation variables of Hodgkin-Huxley-type neuron models often exhibit very
different time scales, causing the resulting ODEs system to be stiff. Then, stiff
solvers should be used to solve them. In order to use an accurate fixed-step
solver, in our simulations of the toy model we employ a fourth-order Runge-
Kutta method with small time step (∆t = 0.01 ms). On the other hand, as far
as the multi-compartment BBP model is concerned, several other numerical
aspects need to be taken into account. In fact, its simulation require to dis-
cretize both in time and space of a unidimensional cable PDE (see page116).
However, most of these issues are already accounted for by the NEURON
simulation environment implementation, and we refer to [37, Chapter 4] and
reference therein for a complete overview of this matter. Let us just report the
matter of the numerical stability of the multi-compartmental model solver: to

113

guarantee unconditional stability, the NEURON simulation environment only
allows the backward-Euler method and the Crank-Nicolson method as fixed-
step solvers. Note however, that although the latter is more accurate (o(∆t2)
versus o(∆t)) it is also oscillation-prone (see also [86, Section 3.3.5]) so that
we opted for the backward-Euler solver in our simulations.

5.4.3 More on well-posedness of single-neuron models

In this section, we briefly return on the well-posedness of single-neuron models.
In fact, in the previous sections we only mentioned neuron models with con-
stant input current Iext(t) ≡ Iext. Actually, classical Existence and uniqueness
theorem in principle apply to time-dependent input currents too, as long as
t 7→ Iext(t) is a continuous function. Unfortunately, the models we presented in
this chapter6 and which are used for data-assimilation experiments in Part III
all involve an input current Iext(t) which is discontinuous in time (see Sec-
tion 5.2.1 and Section 5.3.3). For such reason, in this section we present some
results concerning the existence and uniqueness of the solution of ordinary
differential equations systems of the form{

ż = F (t, z)

z(t0) = z0,
z ∈ Z ⊂ Rdz , t ∈ [t0, Tf]; (5.17)

where the vector field F is discontinuous in the time variable t. Then, in
order to give a more comprehensive overview of the mathematical properties of
existing single-neuron models, we also mention some results concerning neural
models given in partial differential equation (PDE) form.

ODEs systems with time-discontinuous vector field

To begin with, consider that the following Carathéodory conditions are the
most widely known hypotheses which ensure the existence of a solution for an
ODE system with time-discontinuous vector field:

i) the function z → F (t, z) is continuous for almost all t ∈ [0, Tf];

ii) the function t→ F (t, z) is measurable for all z ∈ Z;

iii) it exists an integrable scalar function m(t) (i.e., ∃m ∈ L1([t0, Tf])) such
that |F (t, z)| ≤ m(t) for all z ∈ Z.

6Namely, the Morris-Lecar-like single-compartment single-neuron model (5.8) and the
BBP multi-compartment single-neuron model L23 PC cADpyr229 1 identified by equations
(5.11), (5.12), (5.13), and (5.14).

114

Under these three conditions, the Carathéodory existence theorem [71,
Theorem 1] guarantees the existence of an extended7 solution of the initial
value problem (5.17).

Example 5.3 (Existence of the solution for the neuron toy model).
As an example, consider a function of the time variable t and the state

variable z = (z1, z2)T defined by

F (t, z) =

(
F1(t, z)
F2(t, z)

)
=

(
1
C

[
− ḡKz2(z1 − EK)− ḡNaf

(c)(z1)(z1 − ENa)− ḡL(z1 − EL) + Iext(t)
](

f (c)(z1)− z2

)
/τa

)
,

where f (c) is given by (5.3c). If we rename z1 = V and z2 = a, with such
definition the ODE system ż = F (t, z) corresponds to the toy model for a single
neuron with time-dependent input current (5.8). In practice, we assume that
the state variable z lies in a bounded state space of the form Z = [Vmin, Vmax]×
[0, 1], and that the input current Iext(t) is a piecewise constant function as
defined in (5.10) with parameter values fixed as those sampled in Section 5.2.1.

Then, it is elementary to verify that the vector field F satisfies the a.e.-
continuity and measurability Carathéodory conditions i) and ii). Moreover,
defining

m(t) :=
1

C

[
ḡK max

z∈Z

∣∣z1 − EK

∣∣+ ḡNa max
z∈Z

∣∣z1 − ENa

∣∣+
+ ḡL max

z∈Z

∣∣z1 − EL

∣∣+ |Iext(t)|
]

+
2

τa

the third Carathéodory condition iii) is fulfilled as well, guaranteeing the ex-
istence of at least one solution of neuron model (5.8) even when the input
current Iext(t) is discontinuous. ♣

In order to ensure uniqueness of such solution, a further condition is needed
[71, Theorem 2]:

iv) it exists an integrable scalar function k(t) (i.e., ∃k ∈ L1([t0, Tf])) such
that for all t and for all z1, z2 ∈ Z, the vector fields F satisfies

|F (t, z1)− F (t, z2)| ≤ k(t)|z1 − z2|,
7Informally speaking, an extended solution of (5.17) is a local, absolutely continuous,

almost everywhere differentiable function which satisfies a.e. the ODE system conditions.
See [15, pag 135] and definitions therein for a more precise definition of extended solution
for discontinuous ODE systems.

115

which is a sort of time-dependent Lipschitz condition, related to Giuliano’s
uniqueness theorem8 [15, Theorem 3.5.1].

Note that, for the moment, we completely disregarded vector fields which
are also discontinuous in the space variable. An example of such models in
the neurobiology context is the deterministic leaky integrate-and-fire neuron
model [33], whose stochastic counterpart is briefly described in the following
chapter. We redirect the interested reader to [71, Chapter 2], which presents
an overview of classical sufficient conditions for the well-posedness of ODE
initial value problems with vector field which is discontinuous in space.

PDE single-neuron models

Even though in this work we treat the realistic BBP model described in Sec-
tion 5.3 as a ODEs system, it is worth mentioning that multi-compartment
single-neuron models originate from a reaction-diffusion PDEs system of the
form of infinite unidimensional cable equations

C∂tV =
1

r
∂xxV + f (5.18)

where V (t, x) is the membrane potential of the neuron at position x ∈ R at
time t, and r is a diffusion coefficient proportional to the axial resistivity R (cfr.
(5.1)). The non-linear function f is what characterizes the neuron model, and
for conductance-based models it is of form f(V, {aion}ion) = −

∑
ion Iion(V, aion),

where the dynamics of the (in)activation variable is governed by

∂taion = caion∂xxaion +
(
aion,∞(V)− aion

)
/τaion(V) (5.19)

with caion ≥ 0 being the corresponding diffusion coefficient. To give an ex-
ample, in the original Hodgkin-Huxley model aion = m,n, h. However, for
other reduced-order neuron models f may show a different form (e.g., in the
FitzHugh-Nagumo model, f is a cubic polynomial in the V variable).

For the sake of compactness, we henceforth adopt the notation V(t, x) to
denote the vector-valued unknown of the PDEs system (5.18)-(5.19) indepen-

dently of the precise form they assume (i.e. V(t, x) =
(
V (t, x), . . .

)T
including

8Giuliano’s uniqueness theorem states that, if F (t, z) satisfies the Carathéodory condi-
tions i)-iii) in (t0, t0 + a)×

{
|z|2 < +∞

}
, and for (t, z), (t, z′) ∈ (t0, t0 + a)×

{
|z|2 < +∞

}
(
F (t, z)− F (t, z′)

)
· (z − z′) ≤ k(t)g

(
|z − z′|22

)
for some k(t) ≥ 0 integrable (according to Lebesgue’s definition) in [t′0, t

′
1] for all t0 < t′0 <

t′1 < t0 +a, and some continuous function g(x) > 0 defined for x > 0 and such that g(0) = 0

and limε→0+

∫ ε+a′
ε

dx
g(x) = +∞, then the ODE system (5.17) has at most one extended

solution in (t0, t0 + a). Taking g(x) = x results in the above condition iv).

116

all (in)activation variables considered in the model). For unbounded domains,
the PDEs system is normally coupled to the initial condition V(0, x) = V0(x)
whereas boundary conditions are needed too if the spatial domain is a bounded
interval. In what follows, we mention two type of results concerning the solu-
tion’s existence and uniqueness that can be applied to this type of models.

First, as far as well-posedness is concerned, in [43] the existence and unicity
for all t > 0 of the solution of the PDE four-dimensional Hodgkin-Huxley model
is proved for bounded and uniformly continuous initial conditions that tend
to zero9 for |x| → 0 (see Example 1 at page 208). The proof is based on
the existence of invariant rectangles in the state space which are mapped into
themselves by the differential operator defined by (5.18)-(5.19). Note that the
same argument holds for the PDE version of the two-dimensional FiztHugh-
Nagumo model (see page 209 of the same reference). Consult [192, Chapter 14]
for a more extensive discussion of the invariant-region method.

Then, what one usually looks for are solutions of the PDE problem in form
of travelling waves. By travelling wave we mean a solution of (5.18) such
that

V (t, x) = U(x+ ct),

where, defining ξ = x+ ct, U(ξ) is called the shape of the travelling wave,
and c ∈ R is the (constant) speed of the travelling wave. In 1977, G.
Carpenter proved the existence of such type of solutions for the Hodgkin-
Huxley PDE model [38]. Note that travelling wave solutions are extremely
important in neuronal modelling as they describe the propagation of action
potentials in the axon and the dendritic tree.

Applying the above-mentioned change of variable to (5.18) leads to a ODE
problem that has U as unknown, and proving the existence (and unicity) of a
c∗ that guarantees the existence of a physiologically meaningful U is one of the
main aims of the analytical study of (5.18). For neuron models for which f(V)
is cubic-shaped, it is possible to perform analytic considerations to prove the
existence and unicity of c∗ through shooting arguments and, in some specific
cases even exactly compute it (see [113, Section 6.2.1, Section 6.3.1]). However,
the shooting argument can only be applied numerically in the Hodgkin-Huxley
model, as the authors did in their original paper to estimate the propagation
speed of action potential across the squid axon. To conclude, consider that
another useful reference to delve into the existence, uniqueness and stability
of travelling wave solutions in unidimensional cable-equation-like PDE models
is [66, Chapter 6].

9i.e., V0(x) such that lim|x|→0 V0(x) = 0.

117

118

Chapter 6

Neural network models

In this chapter, we address the concept of biological neural networks. In par-
ticular, in Section 6.2 we present a network model of leaky integrate-and-fire
(LIF) neurons which is then used in Part III to test a novel methodology for
parameter estimation in systems that involve a large number of parameters.

But first, in Section 6.1 we give a very brief overview of the composition
of the neocortical microcircuit studied by the BBP and document the reason
behind the choice of model L23 PC cADpyr229 1 in Section 5.3 as an instance
of neuron model from the BBP neural network.

6.1 Neocortical microcircuit composition

The in silico reconstruction presented in [149] represents a 0.29 mm3 portion of
Winstar rat neocortex constituted of about 31 000 neuron models. The neuron
models are subdivided in six layers and the quantity of neurons per layer is
the following:

Layer 1 338 neurons
Layer 2 and 3 7 524 neurons
Layer 4 4 656 neurons
Layer 5 6 114 neurons
Layer 6 12 651 neurons.

All neuron models are classified first according to their morphological type
(m-type), and then according to the electrophysiology they exhibit, i.e. their
electrical type (e-type). There is a total of 55 m-types (see Figure 6.1), such

119

as the model of interneuron1 morphology of bipolar cells (BP), of bitufted
cells (BTC), chandelier cells (ChC), double bouquet cells (DBC), large basket
cells (LBC), Martinotti cells (MC), nest basket cells (NBC), small basket cells
(SBC), and neurogliaform cells (NGC). Also, examples of principal (excitatory)
cell morphology include the one of pyramidal cells (PC), but also of the star
pyramidal cells (SP) and the thick-tufted pyramidal cells with a late bifurcating
apical tuft (TTPC1). On the other hand, the electrophysiological types are
eleven in total (see Figure 6.2) and, combined with the possible morphological
types, they generate a total of 208 morpho-electrical types (me-type), since
not all combination are present in the microcircuit).

Let us now focus on layer two and three. A summary of the in-layer and
in-microcircuit me-type frequency for neuron models of the second and third
layer is given in Table 6.4. While the interneuron model with highest in-
layer incidence is the continuous accommodating (cAC) layer 2 and 3 (L23)
Martinotti cell (MC) model (3.59% of the neuron models for layer 2 and 3),
the model with highest frequency is the model of continuous adaptive (cAD)
pyramidal cell L23 PC cAD (78.11% of the neuron models across layers two
and three are of this me-type) which we described in detail in the previous
chapter.

Now, we move to a complete model of biological neural networks whose
units are modelled as leaky integrate-and-fire neurons.

6.2 Network model of leaky integrate and fire

neurons

In this section we present a simple model of neural network constituted by
a total of nE + nI neurons: the first nE neurons are excitatory cells, and
the second nI are inhibitory neurons. In what follows we assume that the
excitatory neurons are labelled by the integer index i = 1, . . . , nE, whereas the
inhibitory neurons are labelled by i = nE + 1, . . . , nE + nI . Simplifying the
underlying biology, one can think of the neurons connectivity as an adjacency
matrix A = (aij)

nE+nI
i,j=1 , where aij = 1 if neuron i and j are connected through

chemical synapses, whereas aij = 0 if no synapse between neuron i and neuron
j exists.

One can consider different models both for the neurons and for the synapses,
obtaining different network models. In our case, we consider that each neuron
activity is described by a leaky integrate-and-fire (LIF) neuron model [33,
13] (model adapted from the original 1907 proposal [133], translated in English

1An interneuron is a inhibitory neural cell

120

F
ig
u
re

6
.1
:

S
u

m
m

ar
y

o
f

th
e

m
or

p
h

ol
og

ic
al

ty
p

es
(m

-t
y
p

es
)

co
n

si
d

er
ed

in
th

e
n

eo
co

rt
ic

al
m

ic
ro

ci
rc

u
it

.
S

ou
rc

e:
[1

49
].

121

F
ig
u
re

6
.2
:

(A
)

S
u

m
m

ary
o
f

th
e

electrica
l

ty
p

es
(e-ty

p
es)

con
sid

ered
in

th
e

n
eo

cortical
m

icro
circu

it,
alon

g
w

ith
(B

)
an

ex
a
m

p
le

of
th

e
ex

istin
g

m
orp

h
o-electrical

ty
p

es
(m

e-ty
p

e)
for

th
e

m
-ty

p
e

of
th

e
n

est
b

asket
cells

(N
B

C
)

of
lay

er
2

an
d

3,
an

d
(C

)
th

e
d

istrib
u
tion

of
m

e-ty
p

es
for

a
given

m
-ty

p
e.

S
ou

rce:
[149].

122

Layer m-type e-type #neurons in-layer% circuit%
L23 BP bAC 3 0.04% 0.01%

bIR 4 0.05% 0.01%
bNAC 7 0.09% 0.02%
cAC 7 0.09% 0.02%

cNAC 4 0.05% 0.01%
dSTUT 3 0.04% 0.01%

BTC bAC 15 0.19% 0.05%
bIR 7 0.09% 0.02%

bNAC 23 0.31% 0.07%
cAC 41 0.54% 0.13%

cNAC 18 0.24% 0.06%
ChC cAC 23 0.31% 0.07%

cNAC 23 0.31% 0.07%
dNAC 15 0.19% 0.05%

DBC bAC 12 0.16% 0.04%
bIR 32 0.43% 0.10%

bNAC 70 0.93% 0.22%
cAC 61 0.81% 0.19%

LBC bAC 35 0.74% 0.11%
bNAC 27 0.36% 0.09%
cAC 108 1.44% 0.34%

cNAC 74 0.98% 0.24%
cSTUT 22 0.29% 0.07%
dNAC 188 2.50% 0.60%

MC bAC 10 0.13% 0.03%
bNAC 10 0.13% 0.03%
cAC 270 3.59% 0.86%

cNAC 33 0.44% 0.11%
dNAC 10 0.13% 0.03%

NBC bAC 14 0.19% 0.04%
bNAC 6 0.08% 0.02%
cAC 65 0.86% 0.21%
cIR 6 0.08% 0.02%

cNAC 80 1.06% 0.26%
dNAC 97 1.29% 0.31%

NGC bNAC 5 0.07% 0.02%
cAC 5 0.07% 0.02%

cNAC 41 0.54% 0.13%
cSTUT 5 0.07% 0.02%

PC cAD 5 877 78.11% 18.75%
SBC bNAC 60 0.80% 0.19%

cAC 60 0.80% 0.19%
dNAC 46 0.61% 0.15%

Table 6.4: Frequency of layer 2 and 3 me-types in both the in-layer and in-
microcircuit composition. The blue-highlighted L23 MC cAC model is the interneu-
ron model with highest in-layer incidence, whereas the red-highlighted L23 PC cAD
model is the model with highest in-microcircuit incidence.

123

in [29]), which is a popular choice for simulating the large neural network
dynamics while including a microscopic detail [49, 30].

In particular, we consider LIF models in stochastic differential equation
(SDE) form, with resting potential Vrest, leakage constant Li, and incoming
input given by the sum of a constant applied current Iext and synaptic inputs
from both inhibitory and excitatory neurons. In formulae this writes,

dVi =

(
− Vi − Vrest

Li
− IEsyn − IIsyn + Iext

)
dt+ σV dW, (6.1)

for i = 1, . . . , nE +nI , where W denotes a standard Weiner process (also called
white Brownian motion). The above equation describes the membrane poten-
tial dynamic in the sub-threshold regime. On the other hand, in a LIF model
when the membrane potential Vi reaches the threshold Vth, the i-th neuron
emits a spike and its potential is reset to the resting value Vrest. Furthermore,
we set a lower bound Vlow such that, if the membrane potential Vi goes below
such value Vi < Vlow, then it is automatically restored to the lower bound,
Vi = Vlow. For a thorough discussion of both the concept of solution of an SDE
and the numerical methods that can be employed to produce approximate so-
lutions, we refer to [117]. Consult [183] for a synthetic tutorial on the same
topic.

Now, to complete the description of the LIF model (6.1), we need to specify
the form of the synaptic currents IEsyn and IIsyn.

6.2.1 Synaptic current modelling

Both excitatory and inhibitory synaptic currents are assumed to be ohmic, i.e.
Isyn(V, g) = g(V − Esyn), with a simple model for the synaptic conductance g
which involves an instantaneous jump of amplitude ḡsyn (the maximal synaptic
conductance) in each moment tpre when a pre-synaptic spike is evoked, followed
by an exponential decay with rate τsyn

g(t) =

{
ḡsyn exp

(
− t−tpre

τsyn

)
t ≥ tpre

0 t < tpre

.

In case of multiple pre-synaptic spikes, a linear post-synaptic summation is
assumed, so that the synaptic conductance dynamics can be described by the
following ODE equation

ġ = − g

τsyn

+

#spikes∑
j=1

ḡsyn,jδ(t = tj). (6.2)

124

0 50 100 150 200 250 300 350 400 450 500

time (ms)

0

0.5

1

1.5

2

2.5

3
s
y
n
a
p
ti
c
 c

o
n
d
u
c
ta

n
c
e
 (

S
)

Figure 6.5: Sample time course of a single-exponential synapse s(t) as given in
(6.2). Parameter values are τsyn = 10ms and ḡsyn = 1S. The spike time sequence

{tj}#spikesj=1 is such that the corresponding inter-spike intervals are independent draws
from an exponential distribution of mean µ = 50ms, i.e. tj − tj−1 ∼ Exp(µ) where
t0 = 0ms.

Here {tj}#spikes
j=1 is the sequence of pre-synaptic spikes, δ(t = tj) is the Dirac

mass centred at t = tj, and ḡsyn,j is the maximal synaptic conductance relative
to the j-th spike. Indeed, maximal conductances are usually different whenever
the pre-synaptic source is different. Nonetheless, for the sake of simplicity in
this model it is assumed that the maximal conductance for synapses of a given
type only depend on the post-synaptic target, i.e. ḡsyn,j = ḡsyn for all j. Such
assumption also allows the use of a fast exponential solver for equation (6.2).
We refer to [145] for more details on this specific matter, and to [182] for a
review of more realistic models of synaptic current. A sample time course of
the synaptic ODE model (6.2) is given in Figure 6.5.

As for the original LIF neuron (6.1), the excitatory synaptic current acting
on the i-th neuron is given by

IEsyn(Vi, gE,i) = gE,i(Vi − Vth),

where the choice of Vth as reversal potential guarantees that IEsyn(Vi, gE,i)
is always negative2. The corresponding synaptic state variable dynamic is
governed by

ġE,i = − gE,i

τEsyn,i

+ ḡEsyn,i

nE∑
j=1

aijδ(Vj = Vth), (6.3)

where Vj denotes the membrane potential of the j-th neuron in the network.
The model for the inhibitory synaptic current is analogous to (6.3), except for

2Note that the general convention requires a minus sign in front of all synaptic currents.
As a consequence −IEsyn(Vi, gE,i) ≥ 0 guarantees an excitatory effect.

125

the reversal potential which is given by Vlow in order to enforce the correct sign
to the inhibitory current.

In conclusion, the complete model for the i-th LIF neuron in the neural
network is given by the system of stochastic differential equations

dVi =

[
− Vi − Vrest

Li
− gE,i(Vi − Vth)− gI,i(Vi − Vlow) + Iext

]
dt

+ σV dW

dgE,i =

[
− gE,i

τEsyn,i

+ ḡEsyn,i

nE∑
j=1

aijδ(Vj = Vth)

]
dt

dgI,i =

[
− gI,i

τIsyn,i

+ ḡIsyn,i

nE+nI∑
j=nE+1

aijδ(Vj = Vth)

]
dt

, (6.4)

where i = 1, . . . , nE + nI . The first equation in (6.4) is intended to hold for
Vi ∈ [Vlow, Vth), whereas if Vi(t) ≥ Vth then Vi(t+ dt) = Vrest and if Vi(t) < Vlow

then Vi(t+ dt) = Vlow.

6.2.2 Network parameters

For the sake of simplicity, we assume that in model (6.4) both decay constants
for inhibitory synapses τIsyn,i and their maximal conductances ḡIsyn,i are equal,
i.e. τIsyn,i = τIsyn and ḡIsyn,i = ḡIsyn for all i. In the same fashion, the leakage
decay constants for inhibitory neurons are assumed to be all identical, i.e.
Li = LI for i = nE + 1, . . . , nE + nI .

On the other hand, we assume that the remaining parameters are differ-
ent for each neuron. However, it is assumed that the different values across
the neural population are homogeneous, in the sense that they are indepen-
dent draws of a given probability distribution which is parametroptimisd by
a single hyperparameter. In practice, we assume that the leakage constant
for excitatory neurons are independent draws of an exponential distribution of
parameter L†E, i.e. Li ∼ Exp(L†E), for i = 1, . . . , nE. Analogously, the maximal
conductances for excitatory synapses are i.i.d random variables of parameter
ḡ†Esyn, i.e. ḡEsyn ∼ Exp(ḡ†Esyn). In the data assimilation process we presented
in Section 4.1.2 the target object to be estimated is indeed this couple of
hyperparameters. Such methodology – estimating the hyperparameter which
parametroptimiss the probability distribution of a very large number of param-
eters – is, to the best of our knowledge, new to the domain of computational
neurobiology.

In the following section we describe what type of collective network dy-
namics can be recorded and how these can be mathematically modelled.

126

6.2.3 Neural population activity measure

There is a number of experimental recordings which can be used to measure the
population activity of a neural network. These can be rather direct but invasive
measurements, such a (multi-)electrode LFP or not invasive but indirect, such
as EEG, positron emission tomography (PET), magnetic resonance imagining
(MRI), blood oxygenation level dependent (BOLD) fMRI, etc.

To start off, we consider a very simple model for LFP as a quantity repre-
senting the population activity. This is

hLFP

(
V1, . . . , VnE+nI

)
=

1

nE + nI

nE+nI∑
i=1

Vi, (6.5)

i.e. a representation of local field potential as average population membrane
potential. We stress that such choice is an extremely naive proxy for LFP
which is not intended to be realistic. It can be improved by considering other
simple models based on LIF network (see for instance the synaptic-activity
based LFP proxy used in [152]) or even considering sophisticated models based
on multi-compartment single-neuron models which take spatial effects into
account [139]. However, more realistic LFP data models go beyond the scope
of the preliminary work we intend to carry out on the LIF network model
presented in this section.

In the following chapter we illustrate the notion of spike train metrics
and present some examples of such measures of spike train synchrony. Many
of these distances can also be generalised to measures of neural population
synchrony, so that they can be used on neural network models too. But first,
we illustrate the neural network model introduced in this chapter by picturing
its sample dynamics.

6.2.4 Sample network time course

In order to illustrate the neural network model (6.4), in Figure 6.6 we plot a
sample time course for a network of nE = 800 excitatory neurons and nI = 200
inhibitory neurons. The corresponding SDEs system is solved with the Euler-
Murayama scheme with computational time step ∆t = 0.1 ms. The remaining
network parameters are given by σV = 0.1, Vrest = 0 mV, Vth = 20 mV, Vlow =
−20 mV, Iext = 0.1, L†i = 3, g†Isyn = 4, τ †Isyn = τ †Esyn = 1. The initial condition
for all neurons is distributed as a Gaussian random variable Vi(0) ∼ N (0, σV)
whereas the initial synaptic conductances are all deterministically initialised
at zero.

The above panel in Figure 6.6 plots the spike times of all neurons in the
network. Indeed, the y-axis lists the label i for each neuron in the network (i.e.,

127

i spans from 1 to nE +nI = 1 000), whereas the horizontal axis represents time
in the millisecond scale. In conclusion, the raster plot in Figure 6.6a contains
a black dot with coordinates (t, i) if the i-th neuron emits a spike at time t.
On the other hand, in Figure 6.6b shows the profile of the corresponding LFP
proxy (6.5).

128

0 20 40 60 80 100 120 140 160 180 200

1

100

200

300

400

500

600

700

800

900

1000

t (ms)

(a) Raster plot for model (6.4). The y-axis denotes the
index labelling an individual neuron in the network.

0 20 40 60 80 100 120 140 160 180 200

t (ms)

-20

-15

-10

-5

0

5

10

15

20

(b) Mean activity (6.5) (proxy for local field potential)
with Gaussian measurement noise with σy = 0.1 mV.

Figure 6.6: Graphical representation of a sample trajectory of model (6.4) with
nE = 800 excitatory neurons and nI = 200 inhibitory cells. The other network
parameter values which produced such trajectory are stated in Section 6.2.4.

129

130

Chapter 7

Spike train metrics

In this chapter, we introduce the concept of spike-train distance. In fact, the
absolute p-metric (4.11) defined in Section 4.4.1 is a distance on the space of
vector-valued discrete-time trajectories {0, . . . , J} × R` which, as a particu-
lar case, can be applied to membrane potential traces. Using this canonical
mathematical notion of distance, we have a metric which compares membrane
potential profiles and also quantifies possible dissimilarities in the shape of
the action potentials. However, small differences in two voltage traces which
potentially have little impact on the respective neurobiological properties, are
prone to be excessively penaloptimisd by such non-specific metrics. Fortu-
nately, other notions of distances exist which can be defined on the space of
spike trains and which are conceived precisely to be applied in neurobiology.

Indeed, from a given membrane potential trace, the corresponding spike
train can be extracted. A spike train is the sequence of time points t = {ti}
at which the membrane potential trace exhibits a spike. By definition, such
sequence disregards any information related to the action potentials shape (e.g.
action potential amplitude, length of the refractory period, resting potential
value etc.) and only retains the spike timing. We remark that there exist a
number of spike train metrics, but describing them completely goes beyond the
scope of this chapter. Nevertheless, we now present a general but sufficiently
comprehensive introduction to the main groups of such metrics, and specify
only some notable examples in detail.

Note that in the current section we denote a spike train A as

tA = {tA1 , tA2 , . . . , tA#A} =
{
tAi
}#A

i=1
⊂ [0, Tf],

where #A denotes the number of spikes in the spike train and Tf denotes the
end of the recording time window (assumed to be the same for all spike trains
which are to be compared).

131

As synthetically reviewed in [208], we can broadly distinguish between
spike-train metrics which are

i) based on cost-dependent transformations of one spike train into the other
one (Section 7.1);

ii) based on embeddings of the spike trains onto a normed space (Sec-
tion 7.2);

iii) time-adaptive distances (Section 7.3).

Note that an alternative overview of different spike metrics is available at [124].
First, let us consider the cost-based metrics.

7.1 Cost-based spike metrics

In such approach, a limited set of elementary transformations are established,
and a cost is associated to each of these transformations. Then, in order to
well-define the distance between two spike trains, the least expensive set of
transformations needed to turn the first spike train into the second one is
selected.

Among cost-based spike metrics, the family of Victor-Purpura distances
[209, 210] is probably most commonly known. This includes DSPIKE and DISI,
which are both dependent on a scale parameter q, i.e. DSPIKE = DSPIKE

q and
DISI = DISI

q .

7.1.1 Victor-Purpura SPIKE distance

If we consider the first Victor-Purpura SPIKE metric, the set of legitimate
transformations include: removing a spike (cost of deleting a single spike set
to be 1), adding a spike (cost 1), and moving a single spike time of ∆t (cost
q∆t). See Figure 7.1 for a graphical example of how to convert a spike train
tX into another spike train tY only via these three transformations.

Here, the free parameter q is measured in the reciprocal of the unit of
time (e.g. s−1) and it represents the cost of moving a single spike of one unit
of time. The larger q, the more sensitive DSPIKE

q is to exact spike timing.
Indeed, it can be easily shown that it is convenient to compare two spikes
by shifting their spike times only when these occur within an interval of 2/q.
Otherwise, deleting and adding a new spike is preferable in such metric. On
the other hand, for the limit value q = 0, changing spike times is free, and the
corresponding metric only compares the number of spikes in the two trains.

132

Figure 7.1: Courtesy of Thomas Kreuz. Original caption: “Victor-Purpura spike
train distance. Two spike trains X and Y and a path of basic operations (spike
deletion, spike insertion, spike shift) transforming the one spike train into the other.
Modified from [209]”. Source: [124] c

Indeed DSPIKE
q=0 (tA, tB) = |#A − #B|, which is an integer quantity directly

proportional to the difference of spiking rates.
Note that for all spike trains tA and tB, and independently of q, we have

that DSPIKE
q (tA, tB) ∈

[
|#A − #B|,#A + #B

]
. In fact, the lower bound

corresponds to the case in which no time shifting or deletion of spike is needed
because all spikes already match. Only the adding transformation is required
to append possible extra spikes in one of the sequences. The upper bound on
the other hand, corresponds to the case where no couple of spikes occur closer
than 2/q. Thus, the matching procedure can only be enforced by removing all
spikes from a sequence and adding new ones in correspondence of the other
train spikes.

7.1.2 Victor-Purpura ISI distance

Instead of comparing spike times, the second Victor-Purpura inter-spike
interval distance DISI compares inter-spike intervals (ISI). In this case, the
transformations allowed are the exact analogue of the SPIKE case, except that

133

they act on ISIs: adding or removing a inter-spike interval costs 1; shortening
or extending a ISI of a ∆t-wide time interval costs q∆t.

Note that, if the time resolution of the spiking activity exhibited by the
spike trains is not known in advance, assessing a reasonable value of q can be
rather cumbersome for both DSPIKE and DISI. Many other cost-based distances
can be introduced, but we refer to more specific literature for a more complete
presentation (e.g. [207]).

We now turn to the second family of metrics, the one characteroptimisd by
an embedding of the spike train onto a normed space

(
X, ‖ · ‖

)
.

7.2 Embedding-based spike metrics

First, let us introduce the representation of a spike train tA =
{
tAi
}#A

i=1
⊂ [0, Tf]

as a sum of Dirac delta functions

δA(t) :=

#A∑
i=1

δ(t− tAi).

Such a distribution can then be projected onto a normed space using, for
instance, a kernel-based transformation T

T A(t) := (K ∗ δA)(t) =

∫ ∞
−∞

K(t− s)δA(s) ds. (7.1)

In most cases, the normed space is chosen to be Lp
(
R
)
, the space of real

functions endowed of the Lp norm, for some p ≥ 1.

7.2.1 Van Rossum distance

As an example, consider the popular van Rossum distance which stems
from taking an exponential kernel1 K(t) = q exp(−qt) in equation (7.1) and
setting the distance to be the L2-norm of the transformed spike trains, i.e.

DRoss(tA, tB) =

(∫ ∞
0

[
T A(t)− T B(t)

]2
dt

)1/2

.

Note that, exactly as in the Victor-Purpura family, the parameter q sets the
time scale for the comparison of the two spike trains2.

1Defined for t ≥ 0
2We report that in the original reference [181] the inverse parameter tc = 1/q is employed.

134

Figure 7.2: Courtesy of Thomas Kreuz. Original caption: “Van Rossum spike
train distance and Schreiber et al. similarity measure. From top to bottom: Two
spike trains X and Y, exponential convolutions, Euclidian difference [181], Gaussian
convolution and normaloptimisd point-wise multiplication [185]”. Source: [124] c

7.2.2 Similarity measures

In addition, when the projection is performed onto a normed space which is
also endowed of a scalar product (which is the case for L2(R)), the correlation
coefficient

ρ(A,B) =
〈T A, T B〉
‖T A‖‖T B‖

can be considered as a similarity measure, i.e. a measure which increases when
the similarity between two trains augments and attains the zero value when
the dissimilarity is maximal. The measures proposed by Haas-White [82] and
by Schreiber et al. [185] are two examples of such similarity measures. The
former results from considering a exponential kernel in the projection operator
(7.1), while the latter corresponds to a Gaussian kernel. Note that any simi-
larity measure ρ(·, ·) can be turned into a proper metric by a composition with

135

the arccosine function, D(tA, tB) = cos−1
(
ρ(A,B)

)
, or with the decreasing

linear function f(x) = 1− x, D(tA, tB) = 1− ρ(A,B).
As a conclusion, we observe that the convolution of a spike train with an

exponential kernel approximately matches the post-synaptic potential gener-
ated by such train (cfr. (6.2)). As a consequence, both van Rossum and
Haas-White distances are metrics which compare the post-synaptic effect of
two spike trains. See Figure 7.2 for a graphical representation of the embed-
ding framework in case of the exponential-kernel-based van Rossum distance,
and the Gaussian-kernel-based Schreiber et al. similarity measure.

We now conclude our presentation by discussing the rather new class of
time-adaptive distances.

7.3 Parameter-free spike metrics

In the last decade, a novel family of time-scale adaptive metrics has been
proposed by several authors, among which Thomas Kreuz stands out for the
mole and consistency of his work. Such family includes the ISI-distance [126],
the SPIKE-distance [128, 129], and the SPIKE synchronization [125]. From
our perspective, what is more appealing is that such metrics have the desirable
property of being parameter-free. Indeed, they introduce a local firing-rate
adaptation which allows one to consider multiple time scales at once.

7.3.1 ISI- and SPIKE-distance

Given a time point t ∈ [0, Tf] and two spike trains tA and tB, both the ISI-
distance DI and the SPIKE-distance DS require the definition of the spike
time preceding t

tXP (t) := max
tXi ≤t
{tXi }, t ∈

[
tX1 , t

X
#X

]
,

and the spike time following t

tXF (t) := min
tXi >t
{tXi }, t ∈

[
tX1 , t

X
#X

]
,

as well as the local inter-spike interval

xXISI(t) = tXF (t)− tXP (t).

The last three definitions read for X = A,B. To avoid ambiguity, two extra
spike are inserted at t = 0 and t = Tf to any spike train. A schematic
representation of the quantities we just defined is given in Figure 7.3.

136

Figure 7.3: Courtesy of Thomas Kreuz. Original caption: “Illustration of the
local quantities (relative to time instant t) needed to calculate the instantaneous
dissimilarity values on which the ISI- and the SPIKE-distance (and its real-time
variant) are based. Modified from [129]”. Note that in the figure, the superscripts

identify the spike train, i.e. x
(1)
ISI corresponds to what in the main text is referred to

as xAISI. Analogously x
(2)
ISI corresponds to xBISI(t) and equivalently for the remaining

quantities. Source: [124] c

Then the dissimilarity profile for the ISI-distance I(t) is defined as the ratio
between the difference of the two instantaneous inter-spike intervals and the
largest of the two. Namely,

I(t) =
|xAISI(t)− xBISI(t)|

max
{
xAISI(t), x

B
ISI(t)

} ,
which is a piecewise constant function with discontinuities at the spike times
contained in both tA and tB. Notice that the quantity I(t) we just introduced
ranges from zero (identical ISIs in tA and tB) to approximately one (one ISI
much larger than the other one). As a consequence, the ISI-distance defined
by

DI(t
A, tB) =

1

Tf

∫ Tf

0

I(t)dt

is a [0, 1]-valued metric which attains the value zero for two spike trains with

137

the same profile but with a possible time-lag.
As for Kreuz et al.’s SPIKE-distance, it was first proposed in [128] and

then refined in [129] to allow a more flexible framework in which a spike time
is compared against its closest counterpart in the other spike train. For the
latter refined version, new definitions are required. Given t ∈ [0, T], we already
defined the preceding and following spike times in both spike trains, i.e. tAP (t),
tAF (t), tBP (t), and tBF (t). These four spike times are named the corners of time
t. For each corner, the distance to the nearest spike in the other train is
considered, i.e.

∆tAP (t) = min
tBi ∈tB

{|tAP (t)− tBi |},

and analogously for tAF (t), tBP (t), and tBF (t). Then, for X = A,B, each inter-
spike interval xXISI(t) is split in the two t-punctuated subintervals of amplitudes

xXP (t) = t− tXP (t), xXF (t) = t− tXF (t),

respectively, so that xXISI(t) = xXF (t) + xXP (t). Such subinterval amplitudes are
then used to compute the following weighted sum for spike train tA (for the
sake of readability we drop the time dependence in the quantities appearing
in the r.h.s.)

SA(t) =

(
∆tAP
xAP

+
∆tAF
xAF

)/(
1

xAP
+

1

xAF

)
=

∆tAP x
A
F + ∆tAF x

A
P

xAISI

.

The tB-counterpart, SB(t), is defined analogously. Finally, the dissimilarity
profile for the SPIKE-distance S(t) is defined as a weighted and normalopti-
misd sum of the contribution from the two spike trains

S(t) =
SA(t)xAISI(t) + SB(t)xBISI(t)

2〈xISI(t)〉2
,

where 〈xISI(t)〉 = (xAISI(t) + xBISI(t))/2 is the mean inter-spike interval. Note
that such a dissimilarity profile is a piecewise linear function bounded in [0, 1].
Analogously to the ISI-distance, the SPIKE-distance is given by the tempo-
ral average of the dissimilarity profile

DS(tA, tB) =
1

Tf

∫ Tf

t=0

S(t)dt, (7.2)

and it is consequently bounded in [0, 1] as well. Note that the complex adapta-
tion introduced in the definition of DSPIKE makes it particularly appealing for

138

practitioners who deal with spike trains which exhibit multiple time patterns
(a fast activity within an overall slower rhythm, for instance) or whose main
time scale is not known in advance. In this latter case, the computational
load is considerably lightened by avoiding the assessment of the time-scale
parameter beforehand.

As for the ambiguity regarding the very first and last spikes, in the case of
SPIKE-distance inserting two fictitious action potentials at t = 0 and t = Tf
introduces an undesired spurious synchronization. For such reason, the authors
later proposed a different strategy to deal with such edge issue. We refer to
[125] for details in this respect and for further information about variants of
the SPIKE-distance.

To conclude this section, we present the SPIKE synchronization, the last
metric proposed by Kreuz et al. in [125].

7.3.2 SPIKE synchronization

Such measure shadows the event synchronization coincidence measure de-
scribed in [172] and, as such, it requires the introduction of a coincidence
time window. Such time window is a local maximal distance τABij such that,
if two spikes tAi ∈ tA and tBj ∈ tB occur in a time interval smaller than τABij
(i.e. if |tAi − tBj | < τABij), then the two spikes are considered coincident. In the
SPIKE synchronization, the coincidence interval is adaptively set to be

τABij =
1

2
min{tAi+1 − tAi , tAi − tAi−1, t

B
j+1 − tBj , tBj − tBj−1},

so that no parameter is introduced and the time scale is automatically adapted
to local firing rate of both spike trains. Then, the coincidence indicator CA

i

defined by

CA
i =

{
1 if ∃j : |tAi − tBj | < τABij
0 otherwise

,

flags whether the spike tAi is in the coincidence interval of some spike tBj ∈ tB.
The coincidence indicator CB

j can be defined analogously. Using these two
indicators, the SPIKE synchronization can be defined as

SC(tA, tB) =

(#A∑
i=1

CA
i +

#B∑
j=1

CB
j

)/(
#A+ #B

)
.

It is easy to verify that such quantity sums to one if all spikes have a coincident
counterpart in the other train, whereas it is zero when no spike has. As
a consequence, just as Haas-White and the Schreiber measures, the SPIKE

139

Name Notation Bounds

Cost-based metrics

Victor-Purpura SPIKE distance DSPIKE
q

[
|#A−#B|,#A+ #B

]
Victor-Purpura ISI distance DISI

q R+

Embedding-based metrics
van Rossum distance DRoss

q R+

Parameter-free metrics
ISI-distance DI [0, 1]

SPIKE-distance DS [0, 1]
SPIKE synchronization DSYNC [0, 1]

Table 7.4: Summary of the main spike-train metrics described in this section, along
with the bounds of each distance. Legend: ISI=inter spike interval, R+ = [0,+∞),
and #A and #B denote the number of action potentials in spike trains A and B,
respectively.

synchronization SC(·, ·) is a similarity measure which can be turned into a
proper [0, 1]-valued distance by considering its reciprocal

DSYNC(tA, tB) = 1− SC(tA, tB).

Note that in Part III, whenever parameter-free spike metrics are employed,
we take advantage of the implementation included in the pyspike Python
module (version 0.5.1) [160], available at [7]. On the other hand, cost-based
and embedding-based metrics are computed employing the elephant (acronym
for electrophysiology analysis toolkit) Python module (version 0.3.0) available
at [8].

7.4 Population extensions

We conclude the chapter by highlighting that some of the above mentioned
metrics can be generalised to populations of neurons. In particular in [18]
a generalization of Victor-Purpura distance is proposed, whereas [93] gives a
generalization of the van Rossum distance and [208] a generalization of the
embedding-based metrics. As for time-scale adaptive metrics, the neural-
ensemble ISI-distance is defined in [127], whereas in [125] a population version
for both the SPIKE-distance and the SPIKE synchronization is provided.

140

Part III

Results on data assimilation
experiments

141

Introduction to Part III

In the third and concluding part of this thesis, we present the results obtained
by applying some of the data assimilation methods described in Part I to
the single-neuron models illustrated in Part II. Most of the experiments we
performed are synthetic, meaning that we tested the methods with the sure
knowledge that the prior model is able to reproduce the observations, since it
is the one which produced the artificial dataset. However, in the last chapter
we also try to assimilate experimental data into a realistic neural model.

Let us start off with the general introduction about the philosophy behind
the design of each experiment. We conceived the twin experiments sequen-
tially, moving to next one only when the preceding one was implemented and
satisfactorily concluded. The idea was to start with a simple estimation job
in a twin-experiment setting to familiarize with some of the studied DA meth-
ods. In particular, we wanted to assess and compare some filters effectiveness
in tracking down the hidden state variables dynamics, but more importantly
to estimate the model parameters and predicting the “future” behaviour of the
model. In addition, we were also interested in evaluating the algorithms’ effi-
ciency in order to assess the applicability in large-dimensional models. Keeping
in mind our final goal (assimilating real experimental data in a given realistic
single-neuron model), we then moved to increasingly challenging assimilation
tasks by introducing some obstacles to parameter estimation one after the
other. Morally, we wanted to perform parameter assessment with the aim
of predicting the out-of-sample model behaviour in more and more realistic
conditions, while remaining in a controlled environment. Only after these pro-
gressively difficult preliminary tests, we moved to assimilating experimental
data into a realistic neuron model, taking advantage of the insight each twin
experiment gave us.

In practice, we started from the single-neuron toy model presented in Sec-
tion 5.2, and on such model we tested three filtering algorithms: two sequential
Monte Carlo methods (the bootstrap filter and the optimal sequential impor-
tance resampling) and the ensemble Kalman filter. The experiment settings
and its results are presented in Chapter 8. In particular, the experiment ob-

143

jectives were: i) estimating the hidden variables dynamics when presenting
the same stimulus which generated the data, as well as the model parameters,
with high accuracy (see Section 8.2); ii) using the estimated parameter values
to predict the neuron response to new stimuli the DA algorithm is not aware
of (Section 8.3). We report here that we found the ensemble Kalman filter
to be the most accurate among the filters in all tasks we were interested in.
Specifically, we found it is able to yield to a parameter estimation accuracy
which is almost as good as the state-of-the-art variational method minAone,
while requiring a significantly smaller computational load.

Then, in the following twin experiments we describe in Chapter 9, we
took a more detailed model into account, namely the morphological neuron
model described in Section 5.3. Thisbu has been considered in the Blue Brain
Project to simulate all pyramidal cells of cortical layer two and three (see the
supplementary material of [149] and the NMC portal [173]). One of the main
motivation was that, thanks to the collaborative philosophy of the Blue Brain
Project and direct contacts with the Neuroinformatics division, we had wide
access to its sophisticated models and, partially, to its experimental datasets.
However, many technical issues arose when using the BBP model. In fact,
Neuron is a relatively closed simulation environment which is conceived to
be easily usable by neurobiologists rather than to be toggled with for specific
mathematical analyses. For instance, we incurred very soon in some possible
bugs which occur when some of the activation variables became negative or
larger than one. Due to the relatively complex structure of Neuron, which
integrates different old-fashioned programming languages, it was difficult to
locate the origins of such issues, and we had to enforce the physical bounds
on state variables in order to implement a Gaussian state-space model. In
particular, we adopted the transformation approach described in Section 4.3,
which allows to also impose the positivity of the maximal conductances.

Apart from considering real-valued transformed variables and parameters
rather than physical ones, in the first experiment (Section 9.1) we essen-
tially tested the same settings as in the toy-model twin experiment (see Sec-
tion 9.1.1), but only applied the filter we previously identified to be the most
effective in that case. What we wanted was to select and then justify the set-
ting values of the EnKF that in the toy-model case were informally identified
as the ones that allowed the three filters to obtain reasonable estimates. In
particular, since multi-compartmental models require large computational load
to be executed, we wished to reduce the EnKF ensemble size if possible. Then,
focusing exclusively on the signal prediction quality, we ran several ANOVA
tests (Section 9.1.3) which highlighted that N = 100 particles are enough to
obtain the best possible outcomes in the conditions we put ourselves in.

144

Then, we also noted that we always used initial parameter guesses cen-
tred on the true parameter values. This means that the resulting parameter
estimates are good, but actually worse than the initial guesses. As a conse-
quence, in the second twin experiment (Section 9.2) we considered a biased
initial conditions for the parameters, i.e. random initial means for the pa-
rameter values 35 times larger than the true ones, in average. Our results
showed that it is still possible to obtain good out-of-sample predictions with
the EnKF, but there are tolls to pay. The first one is that the mean estimation
results are not particularly precise, and only a bunch of good solutions give
satisfactory predictions (Section 9.2.1). The second one is that the parame-
ter estimates become less accurate, and that good predictions not necessarily
come from accurate parameter estimations (see Section 9.2.2). Nonetheless,
we were still confident the EnKF would have allowed us to predict some exact
potential profiles with higher accuracy than the parameter values selected by
the Blue Brain Project. Indeed, rather than reproducing specific single traces,
the BBP estimation procedure aims at fitting the statistics of several electro-
physiological features aggregated from different cells. As we discuss in the final
Chapter 10, our optimistic perspective was not confirmed by the outcomes of
our subsequent investigation.

In fact, we then proceeded with the objective of assimilating the BBP
experimental data into the same model used in the twin experiments. Thanks
to the direct help and support by S. Jimenez, S. Kerrien, C. Rössert, and
W. Van Geit from the project’s Neuroinformatics division, we received and
previewed the dataset that was used in the BBP estimation procedure for all
pyramidal cells in the microcircuit (i.e., the same step-current recordings as
described in Section 10.1)3. After selecting some suitable potential traces, we
then proceeded in applying the EnKF using similar settings to those applied
in the last twin experiment. As we mention in Section 10.2, these conditions
did not allow the EnKF to obtain any estimate of the assimilated true signal,
not to mention predicting out-of-sample behaviours. In addition, subsequent
consecutive attempts to make the EnKF conditions more favourable were vain.
In particular, we first made the parameter search space bounded, and then also
further reduced its size (see Section 10.2.2), but this was not enough to obtain
good estimates from the EnKF. However, this work was not useless. Indeed,
we employed such reduction in the last partly-successful data assimilation we
performed.

In fact, since the filtering method we tested appeared not to be usable, we
decided to resort to a brute-force minimization method. In particular, thanks

3At the present date, it appears these data are still not publicly available on the NMC
portal.

145

to an efficient Python library developed by researchers at the European Space
Agency, we were able to exploit the notion of spike trains distance in order to
fit both in-sample and out-of-sample experimental traces (see Section 10.4). In
the concluding Section 10.5, we propose some possible explanation of why the
EnKF failed and analyse the consequences on the applicability of Bayesian DA
methods on neuronal models in relation to the available experimental data.

146

Chapter 8

Twin experiment on the
single-neuron toy model

In this chapter we describe the results of a twin experiment we carried out on
the Morris-Lecar-like single-neuron single-compartment model (5.8) introduced
in Section 5.2. Recall that in twin experiments, instead of using experimental
recording, noisy data are generated from the same mathematical model which
is then used to perform data assimilation. This guarantees a controlled en-
vironment where only DA method performance is tested rather than specific
model-dynamics suitability for a given dataset.

For the sake of readability, we report the model formulation as an ODEs
system, namely

V̇ =
[
− ḡKa(V − EK)− ḡNab∞(V)(V − ENa)
−ḡL(V − EL) + Iext(t)

]
/C

ȧ = a∞(V)−a
τa

,

, ∀t ∈ [0, Tf].

Since we are interested in estimating not only the state variables V (t) and
a(t) but also some relevant modelling parameters, for such model we adopt
the augmented state-space model (4.7)-(4.8) discussed in Example 4.3. In
particular, the dataset for the twin experiment is the quantity y1:J = {yj}Jj=1

defined in Section 5.2.1 (recall that for this model we assume no measurement
is taken at j = 0), and whose first 200 ms are pictured in Figure 5.5. In

addition, the true solution underlying the data y1:J is x†0:J =
(
V †0:J , a

†
0:J

)T
,

where the length of the discretized data assimilation time window is J =
50 000. This implies that the true set of parameters θ† is the one given in

Table 5.4, where θ =
(
ḡNa, ENa, ḡK, EK, ḡL, EL, K

(a), V
(a)

1/2 , K
(b), V

(b)
1/2

)T
, whereas

parameters C and τa are assumed to be fixed and known.
This chapter is structured in the following way. First, in Section 8.1 we de-

scribe the twin experiment setting, consisting in the list of applied assimilation

147

algorithms, the values of their parameters, and the software and the hardware
used to implement and then run the methods. Then, Section 8.2 illustrates
the filters estimation output both graphically and quantitatively. The ability
of the resulting parameter estimates to reproduce an out-of-sample trajectory
is tested in Section 8.3, while the final Section 8.4 presents the conclusion of
the first twin experiment we performed.

8.1 Twin experiment design

Since we want to test and compare the results of different data assimilation
methods, we consider the following Bayesian filtering methods:

i) the ensemble Kalman filter (EnKF) summarised in Algorithm 3.4,

ii) the bootstrap particle filter (BF) presented in Algorithm 3.5,

iii) and the variant optimal importance resampling (OPT-SIRS) given in
Algorithm 3.6.

For these three filters we employ an ensemble size N = 2 000 and unbiased
initial condition mean, i.e. µx0 = (V †0 , a

†
0)T and µθ0 = θ†. Moreover, the initial

covariance matrices is set to be Cx0 = diag(25 mV2, 0.1) and Cθ0 = 25 Idθ (units
of measure as in Table 5.4), where in general Id stands for the d × d identity
matrix. Random dynamical noises of the BF and the OPT-SIRS is designed
to have the same covariance matrix Σx = 10−4 Idx , and Σθ = 10−5 Idθ . On the
other hand, for the EnKF Σx = 10−6 Idx , and Σθ = 10−6 Idθ .

In what follows, we address the analysis of the results these data assimi-
lation methods yielded. Note that the ensemble Kalman filter, the bootstrap
filter and the optimal sequential importance resampling were implemented in
MATLAB® (version 2015b, The MathWorks Inc., Natick, Massachusetts). In
particular, the results described in the following sections are obtained by run-
ning 100 instances of every filtering algorithm. Clearly, in each run all random
variables involved in the method are sampled independently. The hardware
used is a Dell® PowerEdge T630 Tower Server with two ten-core Intel® Xeon®

E52650 v3 CPUs and 128GB RAM running Ubuntu Server 14.04.
In addition, we also compare the parameter estimates of the three filters to

a state-of-the-art variational method. Specifically, 25 independent runs of mi-
nAone (which is implemented in a series of Python scripts invoking the IPOPT
optimiser, as described in Section 2.2.2) are launched with the constraint that
the parameter vector has to lie inside the hypercube centered at θ† and having
edge length 10 (independently of the unit of measure of the component).

148

0 20 40 60 80 100

V

-80

-40

0

time (ms)
0 20 40 60 80 100

a

-0.5

0

0.5

1

Figure 8.1: True trajectory x†j (black line) and variables component of filtering
mean µxj for the ensemble Kalman filter (red line), the bootstrap filter (blue line)
and the optimal sequential importance resampling (green line). Membrane potential
V is measured in millivolt (mV).

8.2 Signal and parameters estimation

Figure 8.1 illustrates each filter’s performance by plotting the variables com-
ponent of the filtering mean in a representative run. Note that the plot is
restricted to the first 100 ms of [0, Tf].

As shown in the top panel, in a typical run the true membrane potential
V † substantially overlaps the mean values of all DA methods, which implies
that the three filters can recover the true membrane potential values with
good accuracy. However, in the lower panel of Figure 8.1, the true unobserved
state variable a† is well estimated by the OPT-SIRS (green line) from the very
beginning of the time window [0, Tf], but precisely estimated by the EnKF only
after the first 60 ms (red line), and by the BF only after 200 ms in the time
window (not visible here). This suggests that the time window length J plays
an important role, affecting the estimation quality of unobserved variables.

An equivalent plot representing the filtering mean of the parameter compo-
nents in the data assimilation time window is given in Figure 8.2. However, in

149

g N
a

15

20

25

E
N

a

56

58

60

62

64
g K

8

10

12

E
K

-100

-95

-90

-85

g L

4

6

8

10

12

14

E
L

-85

-80

-75

V
(b

)
1=

2

-24

-22

-20

-18

-16

-14

-12

K
(b

)

5

10

15

time (ms)
0 100 200 300 400 500

V
(a

)
1
=2

-45

-40

-35

time (ms)
0 100 200 300 400 500

K
(a

)

0

2

4

6

8

Figure 8.2: True parameter values θ† (black dashed lines) and parameter com-
ponent of the filtering mean µθ0:J for the ensemble Kalman filter (red line), the
bootstrap filter (blue line) and the optimal sequential importance resampling (green
line).

our perspective it is more informative to investigate the parameter component
of the corresponding filtering error |µθj − θ†|. Such quantity is represented in
Figure 8.3 across the whole data assimilation window [0, Tf]. The picture shows

150

0 200 400
g N

a
0

5

0 200 400

E
N
a

0

2

4

0 200 400

g K

0

2

0 200 400

E
K

0

5

10

0 200 400

g L

0

5

0 200 400

E
L

0

5

0 200 400

V
(b
)

1/
2

0

5

0 200 400

K
(b
)

0

5

10

time (ms)
0 200 400

V
(a
)

1/
2

0

5

10

time (ms)
0 200 400

K
(a
)

0

5

Figure 8.3: Parameter component of the filtering error |µθj − θ†| for the ensemble
Kalman filter (red line), the bootstrap filter (blue line), and the optimal sequential
importance resampling (green line).

that the errors of almost all parameters estimated by the EnKF are relatively
large at the beginning (essentially in the first 100 ms), but they do approach
zero by the end of the data assimilation window. For neural parameters ḡL,
EL, V

(b)
1/2, K(b), and K(a), the OPT-SIRS produces parameter errors comparable

to the EnKF, but the errors for the other parameters are larger. However, in
this run the BF gives the lowest performance with only few parameter errors
tending to zero.

In addition, it can be remarked that filtering parameter errors usually pass
through some initial transient states, and then eventually stabilize on some
asymptotic value. This fact is exploited in order to get a scalar estimate of
every parameter by an average estimator

θ̂ =
1

J − J1 + 1

J∑
j=J1

µθj . (8.1)

We take J1 = 35 000 iterations in practice, i.e. the average is performed over
the last three tenths of [0, Tf], which allows one to discard the initial transient

151

0 100 200 300 400 500

Truth EnKF BF OPT-SIRS
g L

J1t
(a)

100 200 300 400 5000

J1

4

5

6

7

8

9

10

11

12

13

14

Truth EnKF BF OPT-SIRS

t
(b)

Figure 8.4: Graphical representation of (8.1) (the definition of θ̂) for component ḡL.
(a) posterior distribution mean µθ0:J for component ḡL (detail from Figure 8.2); and
(b) posterior distribution mean µθj for j ∈ {J1, . . . , J} with corresponding empirical

histograms 1
J−J1+1

∑J
j=J1

δµθj (right panel).

states. Such averaging procedure is illustrated in Figure 8.4a, which represents
the filtering mean for parameter ḡL along with a vertical dashed grey line
placed at time tJ1 = J1∆t. Then, the empirical distribution 1

J−J1+1

∑J
j=J1

δµθj
resulting from the values of the filtering mean in the interval {J1, . . . , J} is
plotted in the right panel of Figure 8.4b. We highlight that (8.1) is exactly
the mean of such empirical distribution.

A more comprehensive analysis of the estimation results is available in
Table 8.5, where the estimated parameters means and standard deviations are
listed. In the first three columns, such values are computed by evaluating
the sample mean and standard deviation from the 100 independent runs we
launched for every filtering method. In addition, the last column displays the
estimated parameter vector provided by minAone.

For every parameter value, we performed a one-sample t-test to check
whether the difference between the mean estimate and the corresponding true
value is statistically significant. Our results proved that for EnKF this is in-
deed the case (for all parameters p < 5%). On the other hand, the same tests
for both the BF and the OPT-SIRS showed that this difference is statistically
significant only for the four (out of ten) parameters ḡK, ḡL, K(b), K(a).

152

θ̂ EnKF BF OPT-SIRS minAone

ḡNa
mean 18.56 20.74 19.86 20.77
SD 1.41 4.40 3.80

ENa
mean 61.43 60.23 59.99 58.86
SD 2.11 4.76 5.00

ḡK
mean 9.99 12.97 12.41 9.99
SD 0.06 3.55 3.89

EK
mean −89.90 −90.62 −90.17 −90.00
SD 0.25 4.73 4.72

ḡL
mean 7.65 7.14 6.50 8.10
SD 0.35 3.72 3.10

EL
mean −77.27 −78.58 −77.31 −78.25
SD 0.63 4.41 4.83

V
(b)

1/2

mean −20.77 −20.89 −19.96 −19.58
SD 0.75 5.02 4.83

K(b) mean 14.61 16.84 16.24 15.14
SD 0.35 2.53 2.72

V
(a)

1/2

mean −45.01 −44.65 −44.34 −45.00
SD 0.05 5.02 4.87

K(a) mean 4.92 5.92 6.77 5.00
SD 0.05 4.20 4.07

Table 8.5: Mean and standard deviation of estimated parameters, with respect
to the 100 independent runs of each filter. The last column shows the parameter
estimates for the best solution provided by minAone in its 25 independent runs (i.e.,
the one with minimal cost-function value)

As for the variability, the standard deviations of EnKF estimates are sig-
nificantly smaller than those of BF or OPT-SIRS. This is further confirmed by
observing that the average coefficient of variation1 of the EnKF (CV EnKF =
0.024) is one order of magnitude smaller than both the BF (CV BF = 0.240)
and the OPT-SIRS coefficient of variation (CV OPT = 0.230). In fact, the large
difference in standard deviations could explain the result of the t-tests.

Table 8.6 further investigates the matter of parameter estimation accuracy
by presenting, for every parameter, the average relative errors for each method.
Overall, the EnKF performs substantially better than both particle filters. In
fact, the average mean relative error of the EnKF is about 8 times smaller
than both BF’s and OPT-SIRS’s average error. Using a non-parametric Fried-

1 The coefficient of variation (CV) of a random variable with mean µ and standard
deviation σ is defined as CV = σ

|µ|

153

|θ̂ − θ†|/|θ†| EnKF BF OPT-SIRS minAone

ḡNa 8.28 · 10−2 1.79 · 10−1 1.43 · 10−1 3.83 · 10−2

ENa 3.34 · 10−2 6.10 · 10−2 6.98 · 10−2 1.90 · 10−2

ḡK 3.90 · 10−3 3.62 · 10−1 3.65 · 10−1 8.51 · 10−4

EK 1.99 · 10−3 4.38 · 10−2 4.29 · 10−2 6.56 · 10−6

ḡL 5.12 · 10−2 3.82 · 10−1 3.47 · 10−1 1.30 · 10−2

EL 1.04 · 10−2 4.46 · 10−2 5.19 · 10−2 3.26 · 10−3

V
(b)

1/2 4.36 · 10−2 2.05 · 10−1 1.89 · 10−1 2.11 · 10−2

K(b) 2.94 · 10−2 1.72 · 10−1 1.54 · 10−1 9.39 · 10−3

V
(a)

1/2 8.81 · 10−4 8.92 · 10−2 9.09 · 10−2 1.07 · 10−4

K(a) 1.71 · 10−2 6.70 · 10−1 6.94 · 10−1 4.41 · 10−4

Average 2.75 · 10−2 2.21 · 10−1 2.15 · 10−1 1.06 · 10−2

Table 8.6: Mean of parameter estimation relative error, with respect to the 100
independent runs of each filter. The last column shows the relative error for the best
solution provided by minAone in its 25 independent runs (i.e., the one with minimal
cost-function value).

man test with the method as column effect and the parameter as row effect,
it was proved that the difference between the EnKF’s relative error and both
particle filters is indeed statistically significant (p < 5%), whereas the differ-
ence between the BF and the OPT-SIRS is not. In addition, the EnKF mean
errors are at most one order of magnitude larger than those resulting from
the minAone run which produced the minimal cost-function error, the only
exceptions being EK and K(a).

8.3 Signal prediction results

Now that the parameter estimator θ̂ has been defined and its distribution
explored, we want to validate the estimates we obtained by checking whether
they can provide good predictions of the model dynamics beyond the original
time window [0, Tf].

In practice, we first partition the whole data assimilation time window
into two equal intervals, set Ti :=

Tf
2

= Ji ∆t, and then name the resulting
second half interval [Ti, Tf] the generalization time window. Equivalently,
we can call [Ti, Tf] the in-sample time window, referring to the fact that
we are presenting (part of) the same stimulus which was presented in the data
assimilation process. System (5.8) is then solved numerically in such interval

using the estimated parameter values θ̂ as modelling parameters and with

154

250 260 270 280 290 300 310 320 330 340 350

V

-100

-80

-60

-40

-20

0

250 260 270 280 290 300 310 320 330 340 350

a

0

0.2

0.4

0.6

0.8

1

time (ms)
250 260 270 280 290 300 310 320 330 340 350

I
e
x
t

0

20

40

Figure 8.7: Forecast skill in the first 100 ms of the generalization time window
[Ti, Tf] of the ensemble Kalman filter (red line), the bootstrap filter (blue line),
and the optimal sequential importance resampling (green line) along with the true
trajectory (black line in upper panels) and the time-dependent input current Iext(t)
(black line in lower panel).

initial data (V (Ti), a(Ti))
T = µxJi . We write x̂

(in)
j for j ∈ {Ji, . . . , J} to denote

the resulting estimated trajectory.
Figure 8.7 shows that the EnKF estimate overlaps the true trajectory al-

most perfectly (x̂
(in)
Ji:J
≈ x†Ji:J), whereas both the BF and the OPT-SIRS have

rather similar profiles which are close to the true trajectory, but not as close
as the EnKF.

After verifying that the parameter estimator θ̂ produces a good estimate
of the system dynamics within the data assimilation window, its prediction
capability was further investigated. Estimates over the generalization time
window were continued “in the future” over the out-of-sample time window
[Tf , 3Tf] (also called prediction time window), producing the out-of-sample

estimate x̂
(out1)
J :3J .2 Then, such estimate was tested against the continuation of

the true solution x
†(out1)
J :3J .

2Notice that the prediction time window is twice as long as [0, Tf].

155

∑
j |x̂j − x

†
j|∆t EnKF BF OPT-SIRS

in-sample V (mean) 223.3 4783.4 4576.1
window a (mean) 2.2 59.2 54.6

out-of-sample V (mean) 807.3 19075.2 18133.0
window a (mean) 7.8 236.8 217.7

∑
j |V̂j − V

†
j |
/∑

j

(
|V̂j − V †j |+ |V

†
j − yj|

)
EnKF BF OPT-SIRS

in-sample mean 52.21% 95.38% 95.13%
window st. dev. 8.62% 1.69% 1.80%

out-of-sample mean 48.97% 95.35% 95.10%
window st. dev. 8.33% 1.73% 1.82%

Table 8.8: Mean L1-error in generalization and prediction time windows (top panel)
and relative estimation error (lower panel)

Quantitative measures of how close estimated trajectories are to the true
one are presented in Table 8.8. These include the mean L1-error3 for each
variable in the in-sample window (upper panel, first row), in the out-of-sample

window (second row), and the mean and standard deviation of the d
(rel)
1 -error

defined in (4.12) in both in-sample and out-of-sample time windows (lower

panel). Recall that the d
(rel)
1 -distance is a [0, 1)-valued function which tends

to one if d1(V̂ , V †)� d1(V †, y), and approaches zero if the estimation error is
much smaller than the model-intrinsic measurement error. Note that in order
to compute the d

(rel)
1 -error in the out-of-sample time window, a new dummy

dataset y
(out1)
J :3J is generated from the continuation of the true solution x

†(out1)
J :3J

by adding a Gaussian noise N (0,Γ).

The top panel in Table 8.8 shows that the EnKF presents a cumulative
mean L1([Ti, 3Tf])-error of variable V which is 1/22 of the OPT-SIRS and 1/23
of the BF. In addition, the OPT-SIRS presents a mean L1-error of variable
a which is smaller than the BF in both generalization and prediction time
window, but still one order of magnitude larger than the EnKF. Nonetheless,
no statistically significant difference between the BF and the OPT-SIRS was
detected applying the Friedman test.

3 The L1([Ti, Tf])-error of the membrane potential component over the in-sample time

window is defined as d1(Ṽ , V †) =
∫ Tf
Ti
|V (t) − V †(t)|dt ≈

∑J
j=Ji
|Ṽj − V †j |∆t. The last

discrete sum shows the way this error is actually computed and it represents the value of
the integral approximated by the Euler integration method. Note that it is equal to the
d1-distance (4.11) scaled by ∆t. L1([Ti, Tf])-errors for variable a and L1([Tf , 3Tf])-errors
in the out-of-sample time window are defined analogously.

156

Remarkably, in the lower panel, the first column shows that the EnKF
mean relative error is approximately 0.5. This means that the L1-error is as
large as the truth-data error in average, so that the EnKF produces such a
good estimate that the mean L1-error is comparable to the measurement error.
In addition, not only this is true in the in-sample window, but also in the out-
of-sample time window, even though the dummy dataset in the out-of-sample
time window was not used in the DA methods application. The relatively small
standard deviations prove the robustness of this result. Again, the BF and the
OPT-SIRS are hardly distinguishable, with a much larger relative error than
the EnKF and a small standard deviation.

8.4 Discussion and conclusions

In this chapter, we compared three filtering data assimilation methods in a
problem of simultaneous parameters and unmeasured variables estimation of
a neuronal model. This study was performed in a twin experiment setting in
which data were artificially generated by numerical simulation of the neural
model. Our results demonstrate that the ensemble Kalman filter, the boot-
strap filter and the optimal sequential importance resampling are all suitable
methods for parameter estimation and they all possess the capability to predict
the future activity of a single neuron.

As we saw, t-tests showed the mean EnKF estimate is significantly different
from the true value. On the other hand, the known fact that particle filters can
recover the true filtering distribution in the limit as N →∞ is consistent with
the BF and the OPT-SIRS being unbiased. Nonetheless, there is no guarantee
that a particle filter can provide a better performance in any single realization.

In fact, the EnKF is by far the best of these methods in the more telling
task of signal estimation prediction. Both particle filters provide similar re-
sults, with the OPT-SIRS performing slightly better than the BF but with
no statistically significant difference between them. Besides, further analysis
of the parameter estimation performance demonstrated that the EnKF has a
much smaller relative error that the two particle filters.

In addition, in Section 8.2 we found hints that the data-assimilation-window
length J can be an important factor for estimation accuracy. However, it
should be highlighted that in all simulations we ran the performance of the
EnKF is robust with respect to J and other preassigned quantities such as µx0 ,
µθ0 , Cx0 and Cθ0 .

The computation loads were also compared. It was shown that all filtering
methods require a similar computing wall time for each run (2 min 47 s ± 12 s
for the EnKF, 2 min 14 s ± 7 s for the BF, and 2 min 17 s ± 5 s for the OPT-

157

SIRS). Note that we took advantage of the automatic parallelization of Matlab
2015b.

It is not surprising that the smoothing method minAone can estimate pa-
rameters with very good accuracy, since the whole dataset is used in this vari-
ational method. However, the computational time consumption of minAone
is much larger than the filtering methods. As we found, a single run took
on average 3 h 46 min 20s. Therefore, seeking a trade-off between accuracy of
estimates and the computing time efficiency, we conclude that the EnKF is
the best choice in this example.

In the following chapters, we further develop the application of Bayesian DA
methods in computational neuroscience by investigating the more biologically
accurate neuron models presented in Section 5.3.

158

Chapter 9

Twin experiments on the BBP
single-neuron model

In this chapter, we present the results of two numerical experiments we carry
out on the multi-compartment neuron model proposed by the Blue Brain
Project described in Section 5.3. The aim of such synthetic experiments is
to test the ensemble Kalman filter (which in the preceding chapter was found
to be the most effective method for parameter estimation in a augmented
state-space model framework) on a realistic single-neuron model.

In particular, in Section 9.1 we describe a twin experiment aimed at iden-
tifying a good set of the filter parameters. Indeed, selecting suitable setting
parameters of the EnKF is of paramount importance to make the method ef-
fective while preserving computational efficiency. Consider, in fact, that simu-
lating a neuron behaviour for a few seconds through the complex BBP model
takes a non-negligible execution time, so that reducing the ensemble size to
its minimal effective size may lead to a considerable speed-up. On the other
hand, in the subsequent Section 9.2 we make twin-experiment conditions less
favourable by introducing a bias in the parameter initial conditions. This is to
inspect whether or not the EnKF is able to estimate parameters even when the
initial guess is not centred on the right values, which can give hints about its
applicability on more practical problems. In fact, in the following chapter, we
take an experimental dataset into account (i.e., true parameters are not known
in advance) and we try to assimilate such data in the same BBP neuron model
considered in these twin experiments.

Entering in the details, in the following two sections we present the results
obtained by assimilating the free parameters of model L23 PC cADpyr229 1
(namely, those marked with a Xsign in Table 5.7) plus the maximal conduc-
tance of the leakage current IL and the hyperpolarization-activated current IH.
In this case, the target model is the model for the continuous accommodating

159

pyramidal cell of layer 2 and 3 identified by equations (5.11), (5.12), (5.13),
and (5.14). Note that, in this and the following chapter we only address the
estimation of state variables and modelling parameters of the somatic compart-
ment. As in the previous chapter, the state-space model adopted is augmented
(see page 60), Gaussian, and nonlinear.

Let us now specify which state variables and parameters enter the dynamic
component of the signal variable x and the parameter (i.e., static) component
θ. Focusing on the soma means that parameter θ has entries given by the
modelling parameters listed in the somatic column of Table 5.7, i.e. ḡ

(soma)
Nat2 ,

ḡ
(soma)
Kv3.1 , ḡ

(soma)
SK , ḡ

(soma)
CaHVA, ḡ

(soma)
CaLVA, ḡ

(soma)
L , ḡ

(soma)
H , γ(soma), decay(soma). All remaining

parameters are considered to be fixed to the values listed in the table. In the
same fashion, the random vector Xj has entries given by the noisy version

of all somatic variables, i.e. V (soma),m
(soma)
Nat2 , h

(soma)
Nat2 ,m

(soma)
Kv3.1 ,m

(soma)
CaHVA, h

(soma)
CaHVA,

m
(soma)
CaLVA, h

(soma)
CaLVA,m

(soma)
H , z

(soma)
SK , [Ca2+]

(soma)
in . All state variables for other com-

partments are kept out in this analysis and their dynamics is assumed to be
deterministic.

Note that we employ the transformation-based approach described in Sec-
tion 4.3. This is to deal with the boundedness of the activation variables, of
the maximal conductances, as well as the internal calcium concentration and
the parameters involved in its dynamics. We first introduced such precaution
because we found that the Neuron implementation of the BBP models crashes
when the state variables exit their natural bounds. In addition, enforcing
bounds on the model parameters allows the algorithm to explore the search
space only in the biologically-meaningful regions. Moreover, when the assimi-
lation task becomes difficult (as we encountered in some preparatory tests on
the experimental-data case), we expect that restricting the parameters search
space could in principle yield better prediction results.

As a consequence, in the experimental setting described in the current sec-

tion, the signal variable is given by the stochastic counterpart of x =
(
V (soma),

logit
(
m

(soma)
Nat2

)
, logit

(
h

(soma)
Nat2

)
, logit

(
m

(soma)
Kv3.1

)
, logit

(
m

(soma)
CaHVA

)
, logit

(
h

(soma)
CaHVA

)
,

logit
(
m

(soma)
CaLVA

)
, logit

(
h

(soma)
CaLVA

)
, logit

(
m

(soma)
H

)
, logit

(
z

(soma)
SK

)
, log

(
[Ca2+]

(soma)
in

))T
.

On the other hand the parameter is given by θ =
(

log
(
ḡ

(soma)
Nat2

)
, log

(
ḡ

(soma)
Kv3.1

)
,

log
(
ḡ

(soma)
SK

)
, log

(
ḡ

(soma)
CaHVA

)
, log

(
ḡ

(soma)
CaLVA

)
, log

(
ḡ

(soma)
L

)
, log

(
ḡ

(soma)
H

)
, log

(
γ(soma)

)
,

log
(
decay(soma)

))T
. Note that in the remaining part of this section we quit

denoting variable with the “(soma)” superscript, for the sake of readability.

Considering that in Section 4.2 we described how the discrete time map
gj−1(xj−1, θj−1) and its stochastic counterpart fj−1(xj|xj−1, θj−1) are constructed

160

from a given vector flow F (t, x; θ), now that we explained what are the entries
of the augmented state variable z = (x, θ), we can proceed describing the first
twin experiment.

9.1 First experiment: fine tuning of EnKF pa-

rameters

In this twin experiment, we focus on identifying the most effective value for
some setting parameters of the EnKF algorithm, namely the size of the en-
semble N , the dynamical noise for the state variable components Σx and for
the parameter components Σθ. Note that, to the best of our knowledge, there
is no straightforward way to select a suitable value for the diffusion constants
entering matrices Σx and Σθ in a given application. The choice of a value for
Σv is part of the selection of the stochastic model, but in many cases there
is no quantitative measure of the noise level. On the other hand, the entries
of Σθ determine the exploration rate in the parameter space: a large value
for Σθ may lead to large variability in the parameter estimates or even diver-
gence, while a small value implies slow convergence. As a consequence, it is a
common practice to consider them as a further parameter to be estimated [55,
206]. Our experiment aims at avoiding such further extention of the parame-
ter space to only focus on the estimation of the model parameters. In order
to do this, we launch a series of independent runs of the EnKF algorithm we
implemented in the Neuron simulation environment using its Python interface
in a full factorial design.

All programs are launched requesting 8 computing nodes on a cluster with
one head node and 14 computing nodes. Each node of the cluster consists in a
Dell® PowerEdge R730 with two sockets, each mounting E5-2660V3 ten-core
Intel® Xeon® E5-2660v3 CPUs. All nodes mount a 128GB RAM, except for
the head node which mounts a 64GB RAM.

The experiment description is structured as follows. In Section 9.1.1 we
illustrate the design choices for the above-mentioned setting parameters. Then,
Section 9.1.2 describes a sample output of the ensemble Kalman filter, so that
in Section 9.1.3 we have some reference results in mind when illustrating the
application of a series of ANOVA tests aimed at identifying the best list of
setting parameters.

161

9.1.1 Setting parameters for EnKF

First, we considered dynamical noise covariance matrices of the block-diagonal
form

Σx =

σ2
v 0 0 0

0 σ2
mI8 0 0

0 0 σz 0
0 0 0 σ2

[Ca2+]in

 =

σ2
v 0 0 . . . 0 0 0

0 σ2
m 0 . . . 0 0 0

0 0 σ2
m . . . 0 0 0

...
...

...
. . . 0 0 0

0 0 0 0 σ2
m 0 0

0 0 0 0 0 σz 0
0 0 0 0 0 0 σ2

[Ca2+]in

,

and Σθ = diag(σ2
gI7, σ

2
γ, σ

2
decay), which expanded writes

Σθ =

σ2
gI7 0 0
0 σ2

γ 0
0 0 σ2

decay

 =

σ2
g 0 . . . 0 0 0

0 σ2
g . . . 0 0 0

...
...

. . . 0 0 0
0 0 0 σ2

g 0 0
0 0 0 0 σ2

γ 0
0 0 0 0 0 σ2

decay

.

Such covariance matrices allow us to consider a noise amplitude which is the
same among all activation and inactivation variables (σm) and among all max-
imal conductances (σg), but differs from the noise amplitude for the membrane
potential (σv), for the internal calcium concentration variable (σ[Ca2+]in), and
for its modelling parameters γ and decay (σγ and σdecay, respectively). In what
follows we fix σm = σz = σγ = 1e-2 and σdecay = σ[Ca2+]in = 1e-3 and then
explore different values of the remaining setting parameters (namely σv, σg)
and the ensemble size N .

The remaining EnKF parameters include those involved in the stochastic
initial condition Z0. In this particular experimental setting, we start off by
considering a Gaussian initial condition centred in the true1 initial conditions,
i.e. µx0 = x†0 and µθ0 = θ†. The variance matrices for the initial conditions are
set to be Cx0 = diag(c2

v0
, c2
m0
I8, c

2
z0
, c2

[Ca2+]in0
) and Cθ0 = diag(c2

g0
I7, c

2
γ0
, c2

decay0
),

where cv0 = 10, cm0 = cz0 = cg,0 = cγ0 = 0.7, c[Ca2+]in0
= cdecay0

= 0.1 which
are relatively large values.

1Meaning those which produced the artificial datasets y
(in)
J:2J , y

(out1)
J:2J and y

(out2)
J:2J illustrated

in Section 5.3.3.

162

9.1.2 Sample EnKF output

In this section we present the result of a sample run of the EnKF in the
setting just discussed, where the ensemble size is N = 100 and the remaining
dynamical noise parameters are set to be σv = 1e-2, σg = 1e-2.

In Figure 9.1 we picture a graphical representation of the filtering distribu-
tion p(x0:j, θ0:j|y0:j), for j = 0, . . . , J . Let us first focus on Figure 9.1a, where
the dashed black line denotes the hCaHVA-component of the true trajectory
x†0:J . The other lines are meant to illustrate the approximated posterior distri-
bution computed by the EnKF: the blue solid line is the (empirical) filtering
mean and the cyan solid bands denote the corresponding standard-deviation
confidence intervals (i.e. mean ± standard deviation).

As one can notice, the filtering mean is consistently close to the true trajec-
tory which, in return, always lies in the confidence interval. This suggests that
the filtering mean is a reasonable point-wise estimator for the time-evolving
true trajectory. In order to verify whether other standard estimators track
the true signal down better than the mean, we also inspected the filtering
mode (not shown here). However, it was conspicuously visible that the empir-
ical mode is too discontinuous on such a small ensemble, and, what is more,
it moves away from the true trajectory more than the mean. This supports
the choice of the filtering mean as estimator for the true trajectory over the
filtering mode.

Let us move to the other x-components (i.e. state variables). Unsurpris-
ingly, Figure 9.1b shows that the membrane potential is indeed well recovered.
In fact, the only measured variable is exactly the noisy voltage of the mod-
elled neuron. The remaining variables plotted in Figure 9.1c are also properly
tracked down, as one can deduce from the narrow cyan bands. It looks like
the less accurate estimation is the one for the hCaHVA variable in the top-right
corner of Figure 9.1c (magnified in 9.1a), but this due to the different range
of variable hCaHVA. In fact, while its variation in the logit-scale is of the order
1e-1, the other variables’ ranges are in the unit order.

A separate discussion should be done for the static θ-component of the aug-
mented signal variable. In Figure 9.2a we present the filtering distribution for
parameter ḡNat2. Although the true value (dashed black line) always remains
in the confidence interval (cyan bands) and the filtering mean (plain blue line)
generally hovers around it, we notice some large excursion from the correct
value in correspondence of the somatic spikes (compare with Figure 9.1b).
This likely to be due to the EnKF-update step (line 11 in Algorithm 3.4).
Indeed, a large innovation δj = yj −Hẑj caused by a wrongly predicted state
in correspondence of an action potential can result in a large correction in
the unmeasured variables at the analysis step. In case of parameter ḡNat2,

163

0 500 1000 2000 2500 3000time (ms)
1.0

0.5

0.0

0.5

1.0

1.5

h
_C

a
_H

V
A

(a) Filtering distribution for variable hCaHVA

in a logit scale. Detail from the top right panel
in (c).

0 500 1000 1500 2000 2500 3000
time (ms)

100

80

60

40

20

0

20

40

so
m

a
_V

(b) Somatic membrane potential
V .

0 500 1000 1500 2000 2500 3000
16
14
12
10

8
6
4
2
0
2

0 500 1000 1500 2000 2500 3000
1.0
0.5
0.0
0.5
1.0
1.5

0 500 1000 1500 2000 2500 3000
11
10

9
8
7
6
5
4
3
2

0 500 1000 1500 2000 2500 3000
11
10

9
8
7
6
5
4
3

0 500 1000 1500 2000 2500 3000
8
7
6
5
4
3
2
1
0
1

0 500 1000 1500 2000 2500 3000
6
5
4
3
2
1
0

0 500 1000 1500 2000 2500 3000
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0

0 500 1000 1500 2000 2500 3000
10

5
0
5

10
15

0 500 1000 1500 2000 2500 3000
6
4
2
0
2
4
6

0 500 1000 1500 2000 2500 3000

10.0

9.5

9.0

8.5

(c) logit(mCaHVA), logit(hCaHVA),
logit(mKv3.1), logit(zSK),
logit(mCaLVA), logit(hCaLVA),
logit(mH), logit(mNat2), logit(hNat2),
and log([Ca2+]in).

0 500 1000 1500 2000 2500 3000
9.0
8.5
8.0
7.5
7.0
6.5
6.0

0 500 1000 1500 2000 2500 3000
4.0
3.5
3.0
2.5
2.0
1.5
1.0

0 500 1000 1500 2000 2500 3000
4.0
3.5
3.0
2.5
2.0
1.5
1.0

0 500 1000 1500 2000 2500 3000
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0

0 500 1000 1500 2000 2500 3000
12.0
11.5
11.0
10.5
10.0

9.5
9.0
8.5

0 500 1000 1500 2000 2500 3000
1.5
1.0
0.5
0.0
0.5
1.0
1.5

0 500 1000 1500 2000 2500 3000
12.0
11.5
11.0
10.5
10.0

9.5
9.0

0 500 1000 1500 2000 2500 3000
9.5
9.0
8.5
8.0
7.5
7.0
6.5

0 500 1000 1500 2000 2500 3000
5.60
5.65
5.70
5.75
5.80
5.85
5.90
5.95
6.00

(d) log(ḡCaHVA), log(ḡKv3.1),
log(ḡSK), log(ḡCaLVA), log(ḡH),
log(ḡNat2), log(ḡL), log(γ), log(decay).

Figure 9.1: Approximated filtering distribution computed by a single run of the

EnKF. The dashed black lines mark the true trajectory x
†,(step)
0:J and the blue solid

lines the filtering mean. The cyan bands represent the amplitude of the SD-
confidence interval. In the caption of (c) and (d) the variable names are listed
row-wise (from the left to the right), and then column-wise (from the top to the
bottom).

the correct region is eventually recovered after the spike, but this is not the
case for all parameters. For instance, the posterior distribution for parameter
ḡSK (depicted in Figure 9.2b) shows that such excursion occasionally drive the
filtering distribution away from the correct region.

This could be an issue related to a bad choice of the setting parameters N ,
σv, σg. Alternatively, it could even be a consequence of a bad choice of state-
space model (σg decreasing in time could be a solution) or a bad bad choice
of the parameter-estimation approach (a maximum likelihood estimator for
parameters could be employed). In the following explore the former of these
possible solutions.

164

0 500 1000 2000 2500 3000time (ms)
1.5

1.0

0.5

0.0

0.5

1.0

1.5

g
N

a
T
s2

_t

(a)

0 500 1000 2000 2500 3000time (ms)
4.0

3.5

3.0

2.5

2.0

1.5

1.0

g
S
K

(b)

Figure 9.2: Focus on two parameters (magnified from Figure 9.1d): posterior
distribution for parameter component ḡNat2 (a) and ḡSK (b), both in a log-scale.
The dashed black lines mark the true parameter values, the blue solid lines the
filtering mean, and the cyan bands represent the amplitude of the SD-confidence
interval for the filtering distribution.

Now, when we execute a single run of the EnKF, we have a time-dependent
filtering distribution for both the variable component x and the parameter com-
ponent θ of the augmented signal variable. For the dynamic component x, this
provides a point estimator of the signal at each time step (hidden unobservable
variables mion and hion included). Note that if the initial condition is badly
initialised (unreliable choice for µ0 and C0), this estimation is only credible
after several filtering steps.

On the other hand, a time-dependent filtering estimation is not desirable
for the modelling parameters, since these are static by definition. Then, some
trick to get a static estimator θ̂ from the time-evolving filtering distribution
is needed. Denoting (µxj , µθj)

T = E[(Xj, θj)|y0:j] the approximated filtering

165

mean at time j, a possible choice is to consider µθJ – the mean of the filtering
distribution at the end of the data assimilation time window – as an estimator
for θ†. However, Figure 9.2 shows that the filtering distribution can be driven
away from a good region right at the end of the data assimilation window.
Thus, a more robust approach consists in considering a time-average over a
final portion of the data assimilation window, as we do in the twin experiment
presented in the previous chapter. In practice, in this experiment we take the
average of the filtering θ-mean over the second half of the data assimilation
window2

θ̂ =
1

J − (J/2 + 1)

J∑
j=J/2+1

µθj , (9.1)

which provides a point estimator for the modelling parameter θ†.
In order to test the estimates we obtain for both hidden variables and

modelling parameters, we run a forecast-skill analysis. In particular, for each
of the stimuli I

(in)
ext , I

(out1)
ext , and I

(out2)
ext defined in Section 5.3.3, a new simulation

is launched (same solver and same numerical step) using the filtering mean at
time j = J as initial condition (i.e., x(t0) = µxJ), and parameters given by

the θ̂ defined in (9.1). We denote the resulting trajectories x̂
(in)
J :2J , x̂

(out1)
J :2J , and

x̂
(out2)
J :2J , respectively.

An example of estimated trajectory for the particular run described in
this section is given in Figure 9.3. We remark that all estimated trajectories
(plain red lines) anticipate the true spike train (dashed black lines) of some

millisecond, with a lag which increases in time. For input current I
†(out1)
ext , there

is even an extra spike in the estimated trajectory (Figure 9.3c).
Although the estimation is, all in all, good, the presence of both asyn-

chronous and extra spikes is a clear sign that this run did not produce a
satisfactory estimation considering that we are in a twin experiment setting.
As a consequence, in the following section we investigate if adjusting the EnKF
parameters N , σv, and σm can be enough to ameliorate the prediction perfor-
mances. However, we need a metric on the space of estimated trajectories to
compare the outcome of different possible adjustments to the DA algorithm.
To this aim, we adopt the performance score s defined in (4.13).

9.1.3 ANOVA tests results

Since the estimation result we obtained for N = 100, σv = 1e-2, and σg =
1e-2 is not satisfactory, we look for a better collection of setting parameters.
In particular, we consider two levels of dynamical noise for the membrane

2 i.e. over j ∈ {J/2 + 1, . . . , J} corresponding to the interval tj ∈ [1500.25ms, 3000ms]

166

0 500 1000 1500 2000 2500 3000
time (ms)

100

80

60

40

20

0

20

40

so
m

a
_V

(a) x̂
(in)
J :2J (plain red line) versus x

†(in)
J :2J

(dashed black line).

0 500 1000 1500 2000 2500 3000
time (ms)

100

80

60

40

20

0

20

40

so
m

a
_V

(b) x̂
(out2)
J :2J (plain red line) versus

x
†(out2)
J :2J (dashed black line).

0 500 1000 1500 2000 2500 3000
time (ms)

100

80

60

40

20

0

20

40

so
m

a
_V

(c) x̂
(out1)
J :2J (plain red line) versus x

†(out1)
J :2J (dashed black line).

Figure 9.3: Signal estimation in the in-sample time window (a), the first out-of-
sample time window (b) and the second out-of-sample time window (c).

potential variable V and for the maximal conductances ḡion (σv = 1e-2, 1e-3
and σg = 1e-2, 1e-3) and five ensemble sizes (N = 50, 100, 200, 500, 1000). For

167

each set of parameters, ten independent runs were executed in order to have a
minimal representative statistics for each set of parameters. Then, an analysis
of variance (ANOVA) test is performed in order to rank the results obtained
from a full-factorial design (i.e. all possible combination of parameters are
tested).

First, let us inspect the results of the new setting parameters in a graphical
way. Figure 9.4 shows all results obtained, by representing the box-and-whisker
plot for the performance score statistics as defined in (4.13). The box plots are
grouped for level of the three factors we considered, namely the ensemble size
N , the standard deviation for the dynamical noise acting on the membrane
potential σv, and the standard deviation for the dynamical noise acting on the
ḡion components σg.

In particular, Figure 9.4a shows that the best median score of approxi-
mately s = 0.65 is attained for N = 100. The first-third quartile region is
similar for both ensemble sizes N = 100 and N = 200, but the latter appears
to be more skewed towards larger values of the performance score (worse es-
timation). The largest dispersion is obtained for the smallest ensemble size
N = 50, whereas the distribution dispersion appears to decrease substantially
for the largest ensemble sizes N = 500, 1000. However, the performance score
statistics for these large-ensemble sizes is consistently larger than for smaller
ensemble sizes. A few outliers, representing extremely good estimation scores,
appear for N = 50, 100 and 200. In conclusion, in accordance to previous
findings [76], an ensemble of one hundred particles seems to be the best choice
in this example.

As for Figure 9.4b and Figure 9.4c, both graphs show that a larger standard
deviation (σv = 1e-2 and σg = 1e-2) produces less variability in the perfor-
mance scores. However, for both σv = 1e-3 and σg = 1e-3, the distribution
appears to be more skewed towards the small performance score region (corre-
sponding to a very good estimation). Nevertheless, in both graphs the median
scores appears to be the same for both levels of dynamical noise, suggesting
that these parameters do not play a crucial role.

Then, we look for a quantitative confirmation of these results. To this end,
we performed a series of ANOVA tests, considering many different statistical
models, with and without interactions. Although none of the statistical models
we considered turned out to be explanatory enough (very small adjusted R2

value), in all cases the p-value for the N -effect was smaller than the significance
threshold α = 5%, whereas neither the σg-effect or the σv-effect was significant.
This suggests that the effect of the ensemble size N is indeed relevant while, on
the contrary, the effect of σg or σv does not affect the estimation performance
with any statistical significance. Also, applying a Tukey’s honest significant

168

difference (HSD) test for the N factor, we verified what groups are actually
significantly different. In fact, Figure 9.5 shows that the ensemble size of 100
particles produces estimation performances which are significantly different
from the results obtained with an ensemble of either 50, 500, or 1000 particles,
respectively. No other differences were detected with this set of results.

Although we verified the difference is not statistically significant for all
factors, we tried to identify the triple (N, σv, σg) which produces the best
performances. To this end, we further investigated the results obtained by
plotting the factor plots for all performance scores. In accordance with what
noted in the previous figure, Figure 9.6 shows that the smallest performance
scores are obtained for N = 100, but also that for such ensemble size σg = 1e-3
(left panel) produces substantially smaller confidence intervals.

Besides, both values of σv produce similar profiles (especially for σg = 1e-3),
even though σv = 1e-3 appears to produce slightly smaller mean performance
scores. In conclusion, in this experimental setting, the best triple of setting
parameters appears to be (N, σv, σg) = (100, 1e-3, 1e-3), even though both
graphical inspection and statistical tests suggest that σv does not play a crucial
role.

As a concluding remark, note that a larger ensemble size N corresponds
to a larger computational load. In fact, increasing tenfold the ensemble size
results in a computational load that is over 8 times larger in our experiment,
as reported in Table 9.7 and graphically represented in Figure 9.8.

9.2 Second experiment: biased initial condi-

tion for parameters

We remark that in the experimental setting described in the previous section,
the stochastic initial conditionN (µ0, C0) is centred on the true initial condition
and the true parameter, i.e. (µx0 , µθ0) = (x†0, θ

†), where µ0 = (µx0 , µθ0)
T . Since

we take the filtering mean as point-estimator of the signal, this means that the
method always starts from an initial guess which is very close to the true

value. In fact, the i.i.d. ensemble
{
Z

(n)
0

}N
n=1
∼ N (µ0, C0) will always have

an ensemble mean
∑N

n=1 Z
(n)
0 which is very close to the initial mean µ0. This

is a very simple case which is not realistic in real-world application. In fact
in an experimental-data setting, the true initial condition is not known at
all, especially the one of the modelling parameters. Also, this means that the
parameter approximation is very likely to worsen from such a good initial guess,
even when the overall signal estimation is good enough. For instance, compare
the distance between the filtering mean (blue line) and the true parameter value

169

50 100 200 500 1000N
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

pe
rf

or
m

an
ce

(a) Performance score versus ensemble size N : N = 50 (blue),
N = 100 (green), N = 200 (red), N = 500 (violet), and N = 1000
(ochre).

0.001 0.01Sigma_std_v
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

pe
rf

or
m

an
ce

(b) Performance score versus σv,
the standard deviation of dynam-
ical noise for the V -component:
σv = 1e-3 (dark blue), and σv =
1e-2 (light blue).

0.001 0.01Sigma_std_g
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

pe
rf

or
m

an
ce

(c) Performance score versus σg,
the standard deviation of the dy-
namical noise for the maximal
conductances (ḡion’s): σg = 1e-3
(dark red), and σg = 1e-2 (light
red).

Figure 9.4: Box-and-whisker plots of the performance scores (defined in (4.13))
obtained among all 100 simulations, grouped by ensemble size N (a), by σv (b),
and by σg (c). The bottom (respectively top) of the coloured boxes mark the first
quartile (respectively third). The bar inside the coloured boxes mark the median
(i.e. the second quartile), whereas the whiskers extension is of 1.5 times the in-
terquartile range. Individual points outside the whisker region identify the outliers
of the distribution.

170

[50,100] [50,200] [50,500] [50,1000] [100,200] [100,500] [100,1000] [200,500] [200,1000] [500,1000]

Comparison of ensemble size groups N

0.15

0.10

0.05

0.00

0.05

0.10

0.15

R
an

ge
 o

f m
ea

n
pe

rf
or

m
an

ce
di

ffe
re

nc
e

be
tw

ee
n

gr
ou

ps
Multiple comparison of means Tukey HSD

Figure 9.5: Tukey’s honest significance difference (HSD) test for the ensemble
size. The dark green points represent the mean difference in the performance score
between two groups, whereas the vertical bars represent the confidence interval for
the mean. Whenever the confidence interval does not cross the horizontal line s = 0,
the difference between the two groups is statistically significant.

(black dotted line) at the beginning of the data assimilation time window to
the same distance at its end (t = 3000 ms) in Figure 9.2b. Hence, we need
to address the case of a biased initial condition in order to make steps further
in the direction of applying the DA methods described in Chapter 1 to real
experimental data.

In what follows we show the result of applying the ensemble Kalman filter
as described in the previous section, but assuming the initial parameter mean
µθ0 is a random vector not centred on the true parameter set (i.e. E[µθ0] 6= θ†).

In practice, we assume the initial variables to be still centred around the
true initial condition (µx0 = x†0). but the parameter component of the initial
mean is assumed to be a r.v. which takes values in a neighbourhood of the
true parameter set. In particular, we set

µθ0 ∼ U
(
0, 2r · θ†

)
, (9.2)

for the untransformed (i.e. positive) parameters, so that its expected value is
E[µθ0] = rθ†. Since we chose a unbounded confidence interval for all parame-
ters, we decided to limit the support of the initial mean to a bounded interval
of size proportional to the true value. Other distributions on R+ could have
been employed, but the r introduced in (9.2) allows one to deal with the dif-

171

50 100 200 500 1000N

pe
rf

or
m

an
ce

Sigma_std_g = 0.001

50 100 200 500 1000N

Sigma_std_g = 0.01

Sigma_std_v
0.001
0.01

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

Figure 9.6: Mean performance score and error bars as a function ofN , for σg = 1e-3
(left panel) and σg = 1e-2 (right panel). The dark blue lines correspond to σv = 1e-3
and the light blue lines to σv = 1e-2.

ferent scales of the single modelling parameters (the components of θ) while
parametrizing the expected value of the initial relative error from the true
value.

As a test study, we run 40 instances of the EnKF with r = 35, dynamical
noise parameters σv = σg = 5e-3, σm = σγ = 1e-2, σz = σ[Ca2+]in = 1e-4,
σdecay = 1e-3 and initial condition as described in Section 9.1.1. In addition, the
measurement noise standard deviation is reduced to Γ1/2 = 0.3 mV. Finally,
note that in this section, we employ the base-performance score given by the
SPIKE-distance DS (see Chapter 7) instead of the d(rel)-distance proposed in
Section 9.1.

9.2.1 Signal estimation results

A brief summary of the signal estimation performance statistics is given in
Table 9.9, which lists the mean, the standard deviation and the coefficient
of variation3 across the 40 runs of the DS-distance between the estimated
membrane potential trace and the true spike train in:

• in – the in-sample time window (first row);

• out1 – the first out-of-sample time window (second row);

3The coefficient of variation of a random variable with expected value µ and standard
deviation σ is defined as cv = σ/|µ|

172

wall time mean sd
N = 50 0.13 0.01
N = 100 0.43 0.03
N = 200 0.51 0.11
N = 500 1.81 0.33
N = 1000 3.61 0.62

Table 9.7: Mean and standard devi-
ation of the computational wall time
(in hours) for different ensemble sizes.

N=50 N=100 N=200 N=500 N=1000
0

1

2

3

4

5

w
a

ll
ti
m

e
 (

h
o

u
rs

)

parabolic fitting

wall time

Figure 9.8: Graphical representa-
tion of the computational wall time
as a function of the ensemble size N .

• out2 – the second out-of-sample time window (third row).

We note that these three average values are consistent in all three windows,
with a mean DS-error approximately valued 0.210, an average standard devia-
tion of about 0.120, and a coefficient of variation 0.570. As a consequence, we
expect the signal estimation quality to be similar in both the in-sample and
the out-of-sample time windows.

The last two columns shows the DS-score for two notable runs which we
later use as a benchmark to assess the actual estimation quality:

1) the best run, which we define as the run for which the sum of the
DS-distance in the three time-windows is minimal;

2) the run which produced the in-sample performance score closest to the
mean value. We name such run the mean-DS run.

We also present a more explanatory representation of the performance dis-
tribution in Figure 9.10. The figure shows a scatter plot of the bivariate
dataset formed by the performance score in the in-sample time window (hor-
izontal axis) and the average out-of-sample performance score 1

2

[
DS(out1) +

DS(out2)
]
, along with the contour plot of the estimated joint p.d.f.. First,

we note that the high positive correlation (ρ = 0.93) suggests that a good
in-sample performance is a reasonable predictor for obtaining a good out-of-
sample estimation: if the in-sample potential trace is tracked down accurately,
it is likely that the out-of-sample prediction will be accurate too. Note that this
is not the case for the DS-performance score of the filtering mean, which is typ-
ically very good independently of the actual estimation quality. In fact, Pear-
son’s correlation coefficient between the DS-performance of the filtering mean
and the average out-of-sample performance is significantly lower (ρ = 0.42).

173

DS mean sd cv best mean-DS

in 0.211 0.119 0.567 0.049 0.202
out1 0.209 0.128 0.610 0.016 0.141
out2 0.209 0.112 0.534 0.009 0.261

Table 9.9: Mean, standard deviation, and coefficient of variation for the voltage-
estimation performance across 40 runs of the twin-experiment with biased initial
parameter distribution (9.2) for r = 35 in all time windows. The last two columns
list the performance score for the best run and the run which produced the in-sample
performance score closest to the mean.

In addition, we note that the estimated joint p.d.f. has two peaks. The
first one is an absolute maximum located around the point of planar coor-
dinates DS(in) = 1

2

[
DS(out1) + DS(out2)

]
≈ 0.27 (i.e. performance scores

slightly larger than the mean). On the other hand, the second maximum
corresponds to much better performance scores (the peak in the lower-left cor-
ner of Figure 9.10). Note that the value corresponding to the best run lies
in the neighbourhood of the second peak (red dot in the figure). Also, the
value for the run which produced an in-sample performance in the mean range
(DS(in) ≈ 0.211 as listed in Table 9.9) is highlighted in orange.

Now, in order to better understand what these values correspond to in
estimation performance terms, we present in Figure 9.11 the raster plot of the
filtering mean, the in-sample, and the two out-of-sample estimates for both the
best and the mean-DS runs. Although estimation resulting from runs in the
higher-peak region essentially does not fit the data (in the best case scenario,
only the first spike is predicted in every time window in these runs – not shown
in the picture), the raster plot in Figure 9.11a shows that the performance for
the best run is essentially perfect. In addition, the raster plot for all other runs
with performance score in the lower-peak region (the second-best runs) are
very close to the one of the best result. In fact, eight out of ten second-best
runs have the correct number of spikes – although their timing is not as precise
as the almost perfect match of the best run (see Figure 9.16). As for the run
in the mean range, the estimation output is reasonable but far from providing
a sufficient matching of the assimilated data (see Figure 9.11b).

In conclusion, we remark that the overall performance distribution is cen-
tred around values that do not predict out-of-sample response appropriately.
Nonetheless, the presence of a peak in the performance distribution and a
whole bunch of good runs in the best-run vicinity suggests that the EnKF can
be effective in the biased initial parameter regime too, but only if focusing on
those few runs which produce the smallest prediction errors. Note that this

174

0.1 0.0 0.1 0.2 0.3 0.4
insample

0.1

0.0

0.1

0.2

0.3

0.4
(o

ut
1+

ou
t2

)/
2

Figure 9.10: Scatter plot and estimated joint p.d.f. of the DS-performance score in
the in-sample time window (x-axis) and the average performance in the two out-of-
sample time windows (y-axis), along with marginal histograms and corresponding
univariate kernel density estimates. The value corresponding to the best run is
marked in red (see the raster plot in Figure 9.11a) and the mean-DS run in orange
(Figure 9.11b).

0 0.5 1 1.5 2 2.5 3 3.5
t (sec)

filter

in

out1

out2

(a) Raster plot corresponding to the
best run.

0 0.5 1 1.5 2 2.5 3 3.5
t (sec)

filter

in

out1

out2

(b) Raster plot for the mean-DS run.

Figure 9.11: Raster plot of the filtering mean [filter], the estimated trajectory
in the in-sample [in], the first out-of-sample [out1], and the second out-of-sample
time window [out2] for: (a) the best run; (b) the mean-DS run.

175

procedure is similar to the common practice, in the machine-learning com-
munity, to select the successful runs if the training procedure by testing the
prediction on some validation data, which are different from both the training
set and the test set, as we detail in Section 9.2.4.

9.2.2 Parameter estimation results

Up to now we only analysed the signal estimation performances in terms of
the predicted voltage trace. But what about the parameter estimation per-
formance? Before proceeding in this direction, we remember that in case of
parameters we are entitled to consider errors computed on both the logarith-
mically transformed parameters or on the untransformed physical parameters.
(In the case of signal estimation performances no transformed variable had to
be taken into account because only the estimation of the unbounded membrane
potential is considered).

Only looking at the mean and standard deviation of the log-transformed
parameter relative error in Table 9.12a it looks like the average parameter esti-
mation output do not provide reliable results. In fact, some mean errors appear
significantly large (for instance, | log(ĝNat2) − log(g†Nat2)|/| log(g†Nat2)| ≈ 9). In
addition, some of those parameters that do not have a very large relative error,
have a relatively large variability (see ḡKv3.1 for instance). Overall, Table 9.12a
seems to suggest that the typical output of the EnKF will not be of much use
in terms of parameters estimation.

However, what about the relative error for the physical counterpart of
the parameters? Does the situation change when these are turned into their
physical version? Well, the situation does change but not in a positive sense.
Indeed, turning to the real scale unveils the true amplitude of the typical
relative errors. Table 9.12b shows that such errors inflate of several orders of
magnitude in the physical scale, even for those parameter that have a small
relative error in their log-version. In addition, we remark that the error range
is very variable across different parameters. For instance, ḡKv3.1, ḡSK, and
decay have mean relative errors larger than 108 in the physical scale, whereas
ḡCaHVA and ḡNat2 have mean errors smaller than 101. As a consequence, the
average value presented in the last row of the table does not really capture
the overall performance across different parameters, because it is dominated
by the large ones. Only the coefficient of variation keeps having similar orders
of magnitude for all parameters also in the physical scale. However, the fact
that all the coefficients of variation are larger than two demonstrates a very
large variability in the parameter estimation performances.

In conclusion, we can draw three messages from Table 9.12:

176

∣∣ log θ̂−log θ†

log θ†

∣∣ mean sd cv

ḡNat2 9.29 3.62e1 3.90
ḡKv3.1 5.80e-1 2.12 3.68
ḡSK 1.37 2.02 1.48

ḡCaHVA 2.40e-1 4.70e-1 1.95
ḡCaLVA 5.80e-1 4.40e-1 0.77
γ 3.20e-1 3.30e-1 1.02

decay 1.03 1.25 1.22

Average 1.91 6.12 2.00

(a) Transformed case (logarithmic scale).

∣∣ θ̂−θ†
θ†

∣∣ mean sd cv

ḡNat2 8.78 5.39e1 6.14
ḡKv3.1 5.15e8 3.22e9 6.24
ḡSK 4.06e9 2.53e10 6.24

ḡCaHVA 2.53 7.77 3.07
ḡCaLVA 8.18e1 2.16e2 2.64
γ 3.64e2 1.58e3 4.34

decay 2.07e12 1.27e13 6.14

Average 2.96e11 4.86e12 4.98

(b) Untransformed case (physical pa-
rameters).

Table 9.12: Mean, standard deviation (sd) and coefficient of variation (cv) of
parameter estimation relative error of the log-scaled parameters (a) and the un-
transformed physical parameters (b).

i) looking at the parameter estimation errors in the transformed version (in
this case logarithmic) is misleading, especially in evaluating the relative
estimation performance across different parameters;

ii) the mean performance of the EnKF in the physical scale is not good
in terms of parameter estimation (and actually extremely bad for many
parameters)

iii) the parameter estimation variability is significantly large, not only in
absolute sense but also when compared to the mean value.

As for the prediction results, what we found is that the typical outputs of
the EnKF (i.e. those in the (mean ± SD)-range) are not reliable in terms of
parameter estimation. Does this also mean that the parameter estimation is
always unreliable? In order to answer this question we need to identify and
explore the output of some relevant runs.

Instead of identifying the best runs relying on the parameter errors statis-
tics (e.g. inspecting the run with the minimum average parameter error), we
decide to base our investigation on the DS-performance score for the signal
estimation, as presented in the previous section. Such choice is motivated by
the fact that in an experimental setting we are not aware of the true parame-
ters set. Hence, any kind of parameter error is incalculable when dealing with
experimental data. On the other hand, exploring the in-sample (or out-of-
sample) signal prediction distribution is possible even when no information on
the true parameters is available. As a consequence, we decide to check the

177

parameter estimation performance for the two runs identified in the preceding
section: the best run (marked in red in Figure 9.10) and the run which pro-
duced a signal estimation error in the mean DS-range (orange raster plot in
Figure 9.11a).

As shown in Figure 9.13, in both runs the filtering mean does approach the
true value (dashed black line) despite the initial mean is much larger. This
is true in the logarithmic scale (left column), but even more in the physical
scale, i.e. the one that actually matters. Indeed, even those parameters whose
final values do not exactly match the true value in the logarithmic scale (e.g.
ḡSK, ḡCaLVA and γ) actually get very close to the true value in the physical
scale (right column). The only exceptions are parameters γ and decay (not
shown) in the mean-DS run. We report that the other second-best runs (i.e.
the other runs with DS-score located in the region of the lower-left corner
peak of Figure 9.10) produce qualitatively similar filtering profiles. In such
runs parameters ḡCaLVA and γ are the only ones that occasionally do not track
down the true parameter value (not shown here).

In order to quantify what Figure 9.13 shows only qualitatively, the param-
eter relative errors for the best run and for the mean-DS run are presented
in Table 9.14. First, we note that the best run has parameter relative errors
significantly smaller than the corresponding mean values (compare Table 9.14
and Table 9.12). Indeed, in the mean relative error is at least twice as large as
the best run log-transformed parameter error. But the difference is even more
clear in the physical scale, where the ratio is of at least one order of magnitude
(and up to twelve orders for parameter decay!). However, this is likely to be
due to the extremely large errors of some few bad runs which move the mean
error towards very large values.

The situation is partially similar for the mean-DS run, which has relative
errors in the physical scale slightly larger than the best run for most param-
eters. However, the presence of a few very badly estimated parameters (note
the large errors in the rows corresponding to ḡCaLVA, γ, and decay in Ta-
ble 9.14b) is likely to be the cause the significantly different signal-estimation
performances illustrated in Figure 9.11. Once again, we remark that the cor-
responding values in the log-scale table do not give any insight in this sense.
As a consequence, we argue that it should not be taken into account in future
references: only the physical scale is meaningful and it is hence the only one
that should be employed to evaluate parameter estimation quality.

In conclusion, as for the signal-estimation performance distribution, al-
though the typical parameter estimation performance is not good at all, focus-
ing on the best results allows one to obtain reasonable parameter estimates.
However, since not all parameter errors are small even in the best run, we argue

178

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

42024

h_NaTs2_t

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

1
1

.0

1
0

.5

1
0

.0

9
.5

9
.0

8
.5

8
.0

cai

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

987654

gCa_HVAbar

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

2101

gSKv3_1bar

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

32101

gSK_E2bar

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

7654

gCa_LVAstbar

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

ti
m

e
 (

m
s)

012345 gNaTs2_tbar

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

ti
m

e
 (

m
s)

87654

gamma_CaDyn

(a
)

F
il

te
ri

n
g

d
is

tr
ib

u
ti

o
n

in
th

e
lo

g
-s

ca
le

fo
r

th
e

b
es

t
ru

n
.

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

h_NaTs2_t

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

0
.0

0
0

0
4

0
.0

0
0

0
6

0
.0

0
0

0
8

0
.0

0
0

1
0

0
.0

0
0

1
2

0
.0

0
0

1
4

0
.0

0
0

1
6

cai

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

gCa_HVAbar

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

01234 gSKv3_1bar

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

gSK_E2bar

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

gCa_LVAstbar

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

ti
m

e
 (

m
s)

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

gNaTs2_tbar

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

ti
m

e
 (

m
s)

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

gamma_CaDyn

(b
)

F
il

te
ri

n
g

d
is

tr
ib

u
ti

on
in

th
e

p
h
y
si

ca
l

sc
al

e
fo

r
th

e
b

es
t

ru
n

.
0

5
0

0
1

0
0

0
1

5
0

0
2

0
0

0
2

5
0

0
3

0
0

0
642024

h_NaTs2_t

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

1
08642

cai

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

98765432

gCa_HVAbar

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

5432101

gSKv3_1bar

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

1
0864202

gSK_E2bar

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

64202

gCa_LVAstbar

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

ti
m

e
 (

m
s)

012345 gNaTs2_tbar

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

ti
m

e
 (

m
s)

98765432

gamma_CaDyn

(c
)

F
il

te
ri

n
g

d
is

tr
ib

u
ti

o
n

in
th

e
lo

g
-s

ca
le

fo
r

th
e

m
ea

n
-

D
S

ru
n

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

h_NaTs2_t

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

0
.0

0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0

cai

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

0
.0

0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0

0
.1

2

gCa_HVAbar

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

gSKv3_1bar

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

012345 gSK_E2bar

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

0123456 gCa_LVAstbar

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

ti
m

e
 (

m
s)

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

gNaTs2_tbar

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

ti
m

e
 (

m
s)

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

0
.0

6

gamma_CaDyn

(d
)

F
il

te
ri

n
g

d
is

tr
ib

u
ti

on
in

th
e

p
h
y
si

ca
l

sc
al

e
fo

r
th

e
m

ea
n

-D
S

ru
n

F
ig
u
re

9
.1
3
:

P
ar

am
et

er
co

m
p

on
en

ts
of

th
e

p
os

te
ri

or
co

n
fi

d
en

ce
in

te
rv

al
(m

ea
n
±

S
D

,
p

lo
tt

ed
in

cy
an

)
an

d
of

th
e

fi
lt

er
in

g
m

ea
n

fo
r:

(a
)-

(b
)

th
e

b
es

t
ru

n
(fi

lt
er

in
g

m
ea

n
p

lo
tt

ed
in

re
d

),
an

d
(c

)-
(d

)
th

e
m

ea
n

-D
S

ru
n

(m
ea

n
p

lo
tt

ed
in

or
an

ge
).

T
h

e
b

la
ck

d
a
sh

ed
li

n
es

m
a
rk

s
th

e
va

lu
e

of
th

e
tr

u
e

p
ar

am
et

er
s.

T
h

e
le

ft
co

lu
m

n
co

rr
es

p
on

d
s

to
th

e
lo

ga
ri

th
m

of
th

e
es

ti
m

at
ed

/t
ru

e
p

a
ra

m
et

er
s,

w
h

er
ea

s
th

e
ri

gh
t

co
lu

m
n

is
in

th
e

ac
tu

al
p

h
y
si

ca
l

sc
al

e.
N

ot
e

th
at

th
e

co
m

p
on

en
t

co
rr

es
p

on
d

in
g

to
m

o
d

el
li

n
g

p
a
ra

m
et

er
d

ec
ay

is
n

o
t

p
re

se
n
te

d
h

er
e.

179

∣∣ log θ̂−log θ†

log θ†

∣∣ best mean-DS

ḡNat2 1.03 2.25
ḡKv3.1 7.29e-2 1.69e-1
ḡSK 3.37e-1 2.69

ḡCaHVA 1.09e-1 1.16e-1
ḡCaLVA 2.15e-1 7.62e-1
γ 1.02e-1 5.68e-1

decay 7.38e-2 1.36

Average 2.77e-1 1.13

(a) log-transformed parameters

∣∣ θ̂−θ†
θ†

∣∣ best mean-DS

ḡNat2 7.55e-2 1.57e-1
ḡKv3.1 1.53e-1 3.20e-1
ḡSK 5.41e-1 9.98e-1

ḡCaHVA 5.77e-1 5.97e-1
ḡCaLVA 3.67 2.33e2
γ 1.16 7.11e1

decay 5.38e-1 2.76e3

Average 9.59e-1 4.39e2

(b) Untransformed case (physical pa-
rameters)

Table 9.14: Relative errors for both the best run and the mean-DS run (marked in
red and orange, respectively, in Figure 9.10) for all estimated parameters computed
on: (a) the logarithmically transformed parameters, and (b) the untransformed
physical parameters.

that one should take with care the parameter estimates the EnKF provides.

9.2.3 Improvement rate of the parameter estimation

Lastly, let us discuss the parameter estimation improvement rate: is the pa-
rameter estimate θ̂ defined in (9.1) better than the initial guess µθ0? In case
it is, can we quantify how much the estimation improve? To answer these
questions we consider the improvement rate defined as∣∣∣µθ0 − θ†

θ̂ − θ†

∣∣∣,
i.e. the absolute error of the initial mean divided by the final estimate error
(no log-transformed scale is considered in this case). When this value is larger
than one it means that the estimation is indeed better than the initial guess.
On the other hand, an improvement rate smaller than one corresponds to an
estimate worse than the initial guess.

Starting from such observation, we remark that in Table 9.15 all entries
of the best run are larger than one, and that the average improvement factor
in this case is approximately of two order of magnitudes. The improvement
factor for the mean-DS run is often larger than one too, but the estimates for
ḡCaHVA, γ, and decay are worse than the initial guesses. This means that not
only the parameter estimate improves in the best run, but often also in the
run falling the expected-value range as well. However, we note that for the

180

∣∣∣µθ0−θ†
θ̂−θ†

∣∣∣ best mean-DS

ḡNat2 3.08e2 1.42e2
ḡKv3.1 1.87e2 8.10e1
ḡSK 4.44e1 2.78e1

ḡCaHVA 4.84e1 4.26e1
ḡCaLVA 5.60 1.16e-1
γ 2.41e1 3.01e-1

decay 4.02e1 9.21e-3

Average 9.40e1 4.20e1

Table 9.15: Improvement rate for all estimated parameters in the best run and in
the mean-DS-range run.

mean-DS run even a few wrong parameter estimates can impair any accurate
prediction.

9.2.4 Validation in the first out-of-sample time window

In the previous sections, we remarked how a generic run of the EnKF does not
provide reliable estimates of the model parameters nor allows the model to pre-
dict out-of-sample response to new stimuli. However, we also remarked how
selecting those runs producing a small insample and prediction error (those
we called second-best runs) allows a reasonable tuning of the model. Such
an approach can be related to the common practice, in the machine-learning
community, to assess the ability of a given predictive model which has been
trained on a training set by first checking its performance on a validation
set which is not part of the training set to avoid overfitting, so to select the
best-performing predictive model. Only in a second moment, the selected
model is tested on the test set and the resulting error is considered as an
estimator of the true error (see, for instance, [187, Chapter 11]). Following
up on this parallell, in our dataset we may consider out1 as the validation
set used to identify the good runs, and out2 as the test set. In particular,
if we select the good runs to be those for which DS(out1) < 0.05, we ob-
tain a total of 8 successful runs (essentially those in the lower-peak region in
Figure 9.10) for which there is a high-quality prediction in the testing time
window (DS(out2) ≈ 0.04± 0.03). The out2-response is also reported graphi-
cally in Figure 9.16. Again, note that since we select the good runs only using
potential traces and no parameter values, such selection is possible not only in
a twin experiment setting, but also when using real-world data.

However, as far as the model parameters are concerned, we have that the

181

0 500 1000 1500 2000 2500 3000

t (ms)

-100

-80

-60

-40

-20

0

20

40

V
 (

m
V

)

Figure 9.16: Response of the fitted model in the second out-of-sample time win-
dow out2 for the “good runs” selected in the validation step, namely those EnKF
runs that produce a small validation error in the first out-of-sample time window
(DS(out1) < 0.05).

estimation quality is rather poor even if we only consider these “good runs”
(in a forecast-skill sense). In particular, analysing the mean relative errors
reported in Table 9.17a, it appears that only ḡNat2 and ḡKv3.1 are estimated
with sufficient quality, whereas all other parameters have relative error close
to 1 or much larger. Nevertheless, note that the parameters with the smallest
mean errors are also those whose estimates have minimal coefficient of variation
Table 9.17c), which is a quantity that can give some insight also when true
parameter values are not known in advance. Another positive note is that the
mean improvement rate is quite large for all parameters (see Table 9.17b).

9.3 Discussion and conclusions

In this chapter, we took the BBP model L23 PC cADpyr229 1 into consid-
eration and performed two twin experiments with the idea of progressively
approaching truly experimental conditions. In both cases, we applied the en-

182

∣∣ θ̂−θ†
θ†

∣∣ mean sd

ḡNat2 9.72e-2 1.01e-1
ḡKv3.1 1.62e-1 1.19e-1
ḡSK 2.79 5.25

ḡCaHVA 9.09e-1 6.17e-1
ḡCaLVA 1.45e1 1.50e1
γ 1.26e3 3.08e3

decay 8.76e2 2.26e3

(a) Relative error.

∣∣∣µθ0−θ†
θ̂−θ†

∣∣∣
1.74e3
2.23e2
2.91e1
1.05e2
6.78

4.22e1
1.83e1

(b) Mean
improve-
ment rate.

θ̂-mean θ̂-cv

8.45e-1 1.19e-1
8.84e-2 1.70e-1
2.36e-1 2.43
5.14e-4 7.51e-1
1.19e-2 1.00
6.73e-1 2.44
3.00e5 2.58

(c) Estimated val-
ues.

θ†

9.27e-1
1.03e-1
9.94e-2
3.73e-4
7.78e-4
5.33e-4
3.43e2

(d) True
values.

Table 9.17: Parameter estimation quality for the “good runs” selected in the
validation step, namely those EnKF runs that produce a small validation error in
the first out-of-sample time window (DS(out1) < 0.05)

semble Kalman filter to an augmented state-space model, so to estimate the
model parameters in addition to the unmeasured activation variables and the
internal calcium concentration. The transformation approach described in Sec-
tion 4.3 was adopted to deal with the boundedness of state variables and model
parameters. Enforcing such bonds was necessary because of implementation
issues, but also to guarantee the interpretability of the parameter estimation
results.

In the first twin experiment, the objective was to fine tune the EnKF pa-
rameters (namely, the ensemble size N , and the dynamical noise variances for
the activation variables σ2

m and for the maximal conductances σ2
g) in order

to assess the most effective configuration which allows the model to fit the
data and predict out-of-sample responses to new stimuli, while confining the
computational cost if possible. In this preparatory test, we imposed initial
conditions centred on the true values of the model parameters (unbiased ini-
tial condition). Our results suggest that an ensemble of relatively small size
(composed of a total of N = 100 particles) performs significantly better than
larger ensembles in predicting the neuron behaviour. Since previous applica-
tions of the EnKF to a hydrodynamic models obtained good estimations for a
similar ensemble size and found no gain in further increasing the ensemble size
[76], this appears to be a relatively robust property of the EnKF. In addition,
note that other studies advocate such general belief in the practitioners com-
munity to motivate their effort aimed at theoretically justify the effectiveness
of the EnKF for small ensemble sizes [114, 184]. As a desirable side effect, we
found that an ensemble of 100 particles results in a computational wall time of

183

about 25 min 35 s ± 2 min 4s, which reduces 4.2 times the computational load
with respect to a (N = 500)-sized EnKF (1 h 48 min 41 s ± 19 min 38s), and
8.4 times the average computational load of a (N = 1000)-sized EnKF run
(3 h 36 min 49 s ± 37 min 21s). As far as dynamical noise variances σv and σg
are concerned, our results suggest that their value do not play any major role,
at least in the range we tested (10−2, 10−3), but we found no confirmation of
such result in the literature and we suggest care in generalising such result to
other models.

Then, in the second twin experiment we made the initial condition for the
model parameter unbiased. In particular, we turned µθ0 into a hyperparam-
eter whose components are, in average, thirty-five times larger than the true
parameter values. In such way, the random walk of the parameters in the
Θ space is not pro forma, and the EnKF does need to explore the parameter
search-space in order to retrieve the correct parameter values. In this unbiased
case, our findings showed that:

i) there is a high correlation between the in-sample and the out-of-sample
DS-performance score, so that a very small in-sample error can be con-
sidered as a reasonable indicator that the out-of-sample prediction will
be good;

ii) the performance score distribution is bimodal, with the lower peak cor-
responding to essentially perfect in-sample estimations and rather good
out-of-sample predictions;

iii) one should only focus on the few best runs (measured according to the
forecast skill in a validation time window which is not part of the train-
ing dataset) when interested in foretelling the neuron behaviour in un-
observed conditions, because mean results are not satisfactory;

iv) small parameter errors do not guarantee good out-of-sample predictions,
so that we should scale down our expectations on the ability of aug-
mented state-space filters to consistently estimating model parameters.
Possibly, only few maximal conductances can be tracked down with suf-
ficient accuracy.

Finally, we report here that the average computational wall time for one of
the 40 EnkF runs in this biased twin experiment is 8 min 37 s ± 6 s, which is
significantly smaller than the one obtained using an ensemble of N = 100
particles in the previous twin experiment. The reason of such discrepancy was
not investigated, but a possible explanation is that a different amount of CPUs
was actually employed in the two experiments due to the shared usage of the
computing facility by other users.

184

In conclusion, in light of the last twin experiments, we have more modest
hopes in the potentiality of the augmented state-space EnKF. In particular,
one cannot expect that all model parameters can be estimated with high accu-
racy. However, we are still confident that the method is able to provide good
predictions in relatively cheap execution time, although it is foreseeable that
only a few high-quality runs will provide reasonable prediction results.

In the next chapter, we move to a truly experimental setting where the
neuronal data to be assimilated are not generated by the prior model, but
they are recorded by experimentalists in a laboratory.

185

186

Chapter 10

Assimilating experimental data
in a realistic BBP model

In the previous chapters, we applied some Bayesian inference methods to a
couple of single-neuron models and showed that we are able to recover the
dynamics of the unmeasured variables as well as the values of many modelling
parameters in different twin experiments. We drew the conclusion that these
methods can be effective, at least when the data are generated by the same
model that is then used for the data assimilation. However, this is not of much
use for practical purposes. In fact, in the real world one only has experimental
data and a proposed model which is not guaranteed to be suitable to reproduce
those data. Would the Bayesian methods employed so far be still effective?

In this chapter we address such problem by focusing on the application
of some inference methods, but only in the case of data obtained from ex-
periments. As we show, many practical issues arise when dealing with such
data.

In the first Section 10.1 we present the experimental dataset concerning
pyramidal cells which is used in this work, while in Section 10.2 we introduce
and propose a solution to some practical issues. Note that after several prelim-
inary attempts, we noted that the previously used model parameters bounds
prove not to allow any reasonable estimation when assimilating experimental
data on BBP neuron model L23 PC cADpyr229 1. As a consequence, in Sec-
tion 10.2 we describe our proposal for reducing the parameter search space
size. Disappointingly, not even such adjustment made the EnKF effective. So,
in Section 10.3 we describe our choice for another suitable data-assimilation
method. In conclusion, in Section 10.4 we present the data assimilation results
which finally gave some acceptable prediction and then draw our conclusions.

187

10.1 Blue Brain Project experimental dataset

The experimental dataset we consider in this chapter contains the membrane
potential traces which characterize the electrophysiology of some layer-5 pyra-
midal cells of Wistar rats. Such traces were recorded in vitro according to
several different experimental protocols. Note that this is the dataset em-
ployed by the Blue Brain Project to fit the pyramidal cell models for all layers
of the neocortical microcircuitry described in [149]. We refer to this paper and
its Supplementary material for further details about the experimental protocol
conditions.

Unlike our approach, the BBP fine-tuning method is not Bayesian but it
employs a multi-objective evolutionary algorithm in order to fit the statistics
(namely, the mean and the standard deviation) of some relevant electrophysio-
logical features such as the resting potential, the spike rate, the action potential
height, etc. Note that such procedure does not fit any single trace, but uses
the same extracted values obtained recording different principal neurons to
evaluate the model parameters of all pyramidal cells in the microcircuit. The
exact procedure is described in [60] and, more recently, in [203] where the issue
of features extraction is addressed as well. In [85], the resulting algorithm is
applied in detail in order to generate realistic models of layer 5b pyramidal
cells. We acknowledge the Neuroinformatics division of the Blue Brain, di-
rected by Sean Hill at the École Politechnique Fédérale de Lausanne (EPFL),
for kindly providing us all the neurophysiology data mentioned and used in
this chapter. These data should be available on the NMC portal soon.

To give an idea of the traces contained in the dataset, a brief overview
of the various protocols is given in Figure 10.1, where the activity of a same
cell in response to different stimuli is depicted. First, Figure 10.1a exemplifies
the IDRest protocol, which consists in presenting a step input current of the
form (5.15): a negative hyperpolarizing current is injected in the cell for three
seconds in order to keep the membrane potential hovering around its voltage
base, and then a depolarizing current lasting two seconds is superimposed after
the first 700 ms in order to elicit some kind of response. On the other hand,
the ramp current protocol APThreshold results from considering an input cur-
rent which increases linearly from zero ampere up to a pre-decided value as
in Figure 10.1b. These are two experimental protocols which are commonly
known in the electro-neurophysiology community as they allow one to identify
some key properties of in vitro neurons. However, more exotic protocols are
available in the BBP dataset. For instance, the SineSpec protocol consists
in presenting a sinusoidal input current as the one pictured in the bottom
panel of Figure 10.1c, while the NoiseSpiking protocol results from inject-
ing an oscillating input current with a stochastic white noise overlapped (see

188

0 2000 4000 6000 8000 10000 12000
80

60

40

20

0

20

40

V
(t

)
(m

V
)

0 2000 4000 6000 8000 10000 12000
1.0
0.5
0.0
0.5
1.0
1.5

I e
x
t(
t)

(n
A
)

X_IDrest_330

(a) Step input current.

0 5000 10000 15000 20000
80

60

40

20

0

20

40

V
(t

)
(m

V
)

0 5000 10000 15000 20000
1.5
1.0
0.5
0.0
0.5
1.0
1.5

I e
x
t(
t)

(n
A
)

X_APThreshold_254

(b) Ramp input current.

0 2000 4000 6000 8000 10000
100

80

60

40

20

0

20

40

V
(t

)
(m

V
)

0 2000 4000 6000 8000 10000
1.0
0.5
0.0
0.5
1.0

I e
x
t(
t)

(n
A
)

X_SineSpec_423

(c) Sinusoidal input current.

0 5000 10000 15000 20000
120

100

80

60

40

20

0

20

40

V
(t

)
(m

V
)

0 5000 10000 15000 20000
1.5
1.0
0.5
0.0
0.5
1.0
1.5

I e
x
t(
t)

(n
A
)

X_NoiseSpiking_412

(d) Noisy input current.

Figure 10.1: Examples of external current profiles and corresponding membrane
potential traces for four different experimental protocols considered in the Blue Brain
Project dataset for pyramidal cells. In each subfigure, the bottom panel depicts
the input current profile whereas the top panel shows the corresponding membrane
potential time course. All traces in the picture refer to the same layer 5 pyramidal
cell (named C060109A1 in the dataset).

189

Figure 10.1d).
Notice that in all panels of Figure 10.1 the x-axis (corresponding to the

time variable), has different time resolution in each protocol. For instance,
the IDRest protocol spans a 3000 ms time window with 12 000 points (i.e.
four points per millisecond) whereas the APThreshold protocol only spans
2100 ms with almost the double of total amount of points (ten points per
millisecond). Also note that in general, in correspondence of the membrane
action potentials, the underlying current profile has similar spikes. This is due
to the rapid membrane potential sign switch which influences the recording
device.

10.1.1 Experimental traces selected for data assimila-
tion

As for the simulated data we used in the twin experiments described in the
previous chapter, we here only consider data from the step current protocol
IDRest. In particular, we consider the trace represented in the top panel of
Figure 10.1a as the true data y0:J , where J = 19 999. As in the simulated
data generation process described in Section 5.3.3, the input current is a step
current of the form (5.15),

I
(in)
ext (t) =

Ihyp t ∈ [0, 700ms)

Ihyp + I
(in)
dep t ∈ [700ms, 2700ms)

Ihyp t ∈ [2700ms, 3000ms]

,

where the hyperpolarizing current amplitude is Ihyp = −0.0240728 nA and

the depolarizing current amplitude is I
(in)
dep = 0.3314559 nA. These values are

extracted from the experimental current trace (lower panel in Figure 10.1a) by
averaging the input current values in each regime.

In addition, two other experimental traces were taken into account in order
to test the data assimilation algorithms forecasts. These are represented in Fig-
ure 10.2, and they are the responses to the input currents I

(out1)
dep = 0.5522364

nA (the first out-of-sample trace, Figure 10.2a) and I
(out2)
dep = 0.6999846 nA (the

second out-of-sample trace, Figure 10.2b). The hyperpolarizing step current
assume the same value Ihyp ≈ −0.024 for all traces, although small O(10−4)-
deviations are possible because of the averaging of experimental traces. Fi-
nally, Figure 10.2c shows the raster plot relative to the in-sample and both
the out-of-sample traces, allowing a visual comparison between the respective
spike timing. For instance, we note that incrementing the depolarizing cur-
rent amplitude from I

(in)
dep = 0.3314559 (in-sample trace) to I

(out2)
dep = 0.6999846

190

0 2000 4000 6000 8000 10000 12000
100

80

60

40

20

0

20

40

V
(t

)
(m

V
)

0 2000 4000 6000 8000 10000 12000
1.0
0.5
0.0
0.5
1.0
1.5

I e
x
t(
t)

(n
A
)

X_IDrest_336

(a) First out-of-sample true trace

0 2000 4000 6000 8000 10000 12000
100

80

60

40

20

0

20

40

V
(t

)
(m

V
)

0 2000 4000 6000 8000 10000 12000
0.5
0.0
0.5
1.0
1.5

I e
x
t(
t)

(n
A
)

X_IDrest_340

(b) Second out-of-sample true trace

0 0.5 1 1.5 2 2.5 3t (sec)

in

out1

out2

(c) Overall raster plot

Figure 10.2: Experimental dataset for assimilation: plots of the two out-of-sample
experimental traces (a-b) and raster plot of the in-sample trace and both out-of-
sample traces (c).

(second out-of-sample trace) results in an increased number of output spikes.
Indeed, the spike rate increases from 6.5 Hz (13 spikes in the two-seconds-long
injection time for the in-sample experimental trace) up to a 17.5 Hz for the
second out-of-sample trace.

191

10.2 Choosing the parameter search space

First of all, we tried to apply the ensemble Kalman filter to the experimental
dataset pictured in Figure 10.2c in similar conditions to the twin experiments
described in the previous chapter. That is to say that only positivity con-
straints were considered on the modelling parameters. As a consequence, the
parameter state space was given by the first orthant of the dθ-dimensional space
Θ = (0,+∞)dθ in this bootstrap attempt. Without going into too many details
on the EnKF settings, we just report that we first assumed that the parameter
initial condition was centred on the Blue Brain Project value µθ0 = θBBP.

As this never yielded any acceptable output (all output traces never ex-
hibited more than one spike at onset of the excitatory input), we also tested
different parameter initializations, not only changing the mean but also testing
different variance amplitudes. Unfortunately, despite testing an uncountable
number of setting parameters configurations, no sufficiently good result was
obtained in such conditions. Then, we decided to try overcome such issue
by shrinking the search space for the parameter vector Θ in some meaningful
fashion.

Therefore, at the first attempt we resorted to the parameter bounds the
Blue Brain Project considered in its optimisation procedure. These are not
explicitly reported in [149], but they can be recovered from the newly imple-
mented Blue Brain optimiser bluepyopt [BLUE:werner˙bluepyopt], which
is available at the web page [9]. We summarise the BBP parameter search

intervals in Table 10.3 and henceforth refer to any of such intervals as I
(k)
BBP,

where the integer k is intended to index the components of the parameter
vector θ. Reading such table we notice, for instance, that the sodium and
potassium conductances have search interval rather large for both somatic and
axonal compartments (up to 4000 mS/cm2 for axonal ḡNat and ḡNap), especially
when compared to the calcium conductances.

However, despite the precaution of reducing the search space to a bounded
set, the estimation results were still highly unsatisfactory. Such reiterated
failure caused the necessity to understand what was going awry with the EnKF,
and to possibly identify some way of further reducing the parameter bounds
in an effective manner.

10.2.1 Likelihood profiles

Driven by the idea that Bayesian methods should in principle converge to the
vicinity of some absolute minimum θopt of the posterior distribution (which is
the case at least for smoothing methods), we decided to look at the likelihood
marginal profiles. Indeed, the likelihood term gives a substantial contribu-

192

Parameter Somatic I
(k)
BBP Axonal I

(k)
BBP Apical I

(k)
BBP Unit

ḡNat [0, 4000] mS/cm2

ḡNat2 [0, 1000] [0, 40] mS/cm2

ḡNap [0, 4000] mS/cm2

ḡKt [0, 100] mS/cm2

ḡKp [0, 1000] mS/cm2

ḡM [0, 1] mS/cm2

ḡKv3.1 [0, 1000] [0, 2000] [0, 40] mS/cm2

ḡSK [0, 100] [0, 100] mS/cm2

ḡCaHVA [0, 1] [0, 1] mS/cm2

ḡCaLVA [0, 10] [0, 10] mS/cm2

γ [0.0005, 0.05] [0.0005, 0.05] 1
decay [20, 1000] [20, 1000] ms

Table 10.3: Search parameter intervals I
(k)
BBP for the optimiser considered in the

Blue Brain Project according to the examples implemented in [9]. Only the pa-
rameters that were considered free to fit the model in the BBP are reported (for
instance, no basal parameter appears in the table because all the modelling parame-
ters of the basal compartment were considered fixed in the BBP). The complete list
of model L23 PC cADpyr229 1 parameters and the corresponding values computed
in the Blue Brain Project are given in Table 5.7.

tion to the smoothing posterior (2.12), and it might very well be that some
large “energy barrier” separates the initial condition (which is close to θBBP)
from the target minimum θopt. This statement is motivated in more detail in
Remark 10.1.

To this end, we introduce the average sum of squared errors (SSE)

dSSE(θ, y0:J) =
1

J + 1

J∑
j=0

|yj − Vj(θ)|2. (10.1)

In the above expression, we denote V0:J(θ) the deterministic solution of model
L23 PC cADpyr229 1 (equations (5.11), (5.12), (5.13), and (5.14)) with mod-
elling parameters given by θ and a deterministic initial condition given by
V0 = y0 ≈ −70mV. The initial values for activation and inactivation variables
are given by the corresponding asymptotic values mion,∞(V0) and hion,∞(V0)
and the value of 5× 10−5 mM is taken as initial calcium concentration1. With

1Note that in the following Remark 10.1, the shorthand x0(V0) is used to denote the
complete initial state variable vector defined as a function of the initial membrane potential
V0 according to such asymptotic-value procedure.

193

such definition of V0:J(θ), we can look at the previous expression as a sort of
distance between the parameter vector θ and the experimental trace y0:J : the
smaller dSSE(θ, y0:J) gets, the closer θ is to the target parameter set θopt.

Remark 10.1. Note that the function θ 7→ dSSE(θ; y0:J) defined in (10.1) is
proportional to the (neg-log-) smoothing distribution (2.12) of the augmented
state space (x, θ) ∈ X × Θ for model L23 PC cADpyr229 1, in case of deter-
ministic dynamics.

In fact, suppose that Σz = diag(Σx,Σθ) = 0 (deterministic dynamics in both
x and θ), that Cz0 = diag(Cx0 , Cθ0) = 0 (the initial condition is deterministic),
and that the measurement covariance matrix is given by Γ1/2 = 1 mV. Then,
since the neg-log-smoothing function (2.12) writes2

S(x0:J , θ0:J ; y0:J) =
1

2
δx0(y0)(x0) +

1

2

J∑
j=1

δgj−1(xj−1)(xj) +
1

2

J∑
j=0

δθ0(θj)

+
1

2

J∑
j=0

|yj − Vj(θ0)|2,

we have that the posterior function only consists in the likelihood term. Indeed,
all Dirac delta terms can be seen as simple constraints. However, we notice
that in the r.h.s. of the above equation, the last sum can be written as the
squared L2-distance d2(V0:J(θ0), y0:J). Hence, in case of Gaussian state-space
model the likelihood derives from the Euclidean distance on the measurement
space Rdy(J+1) which, in return, is proportional to the average SSE.

In conclusion, we just showed that minimizing dSSE(· , y0:J) is equivalent
to find the maximum of the smoothing distribution in case of deterministic
dynamics and Gaussian state-space model. ♠

For θk = ḡNat2, ḡKv3.1, ḡSK, ḡCaHVA, ḡCaLVA, ḡL, ḡH, γ, decay, the generic k-th
panel of Figure 10.4 plots the marginal likelihood profile in case all model
parameters but the k-th are fixed to the value compute by the BBP, while
the k-th parameter spans the Blue Brain Project search interval I

(k)
BBP in a

univariate manner. Note that all BBP search intervals are listed in Table 10.3,
except for those of parameters ḡL and ḡH which were considered fixed in the
BBP. In our experiments, we chose these two search spaces to be both equal
to [0 mS/cm2, 0.01 mS/cm2].

In formulas, the k-th panel pictures the graph of the marginal univariate
dSSE-fit function

θk 7→ dSSE(θ
(¬k)
BBP, y0:J)

2We recall that we use the notation δx̃(x) to indicate the Dirac mass centred on the
singleton {x = x̃}.

194

200 600 1000
0

1000

2000

(a) ḡNat2

200 600 1000
100

300

500

700

(b) ḡKv3.1

20 60 100
100

300

500

700

900

(c) ḡSK

0.2 0.6 1.0
100

300

500

700

900

(d) ḡCaHVA

2 6 10
100

300

500

700

(e) ḡCaLVA

0.002 0.006 0.010
60

100

140

180

220

(f) ḡL

0.002 0.006 0.010
110

114

118

122

126

(g) ḡH

0.01 0.03 0.05
0

200

400

600

(h) γ

200 600 1000
0

200

400

600

800

(i) decay

Figure 10.4: Graphs of the univariate dSSE-fit functions, i.e. the marginal average

sums of squared errors I
(k)
BBP 3 θk 7→ dSSE(θ

(¬k)
BBP, y0:J). The red crosses mark the

position of the parameter value computed from the BBP, while the orange, blue
and light blue crosses point out the parameter values that produced the traces in
Figure 10.5.

for θk ∈ I(k)
BBP, where θ

(¬k)
BBP = (θ1

BBP, . . . , θ
k−1
BBP, θ

k, θk+1
BBP, . . . , θ

dθ
BBP). A red cross

is reported in each panel to point out the parameter value θkBBP.

The first straightforward observation is that the red crosses are all located
at the far left of the search intervals, corresponding to conductances which are
very small with respect to the overall size of the search space. In addition, it
appears that the likelihood is small only in a neighbourhood of the BBP value,
whereas it gets almost constant approaching the supremum of the search space.

To investigate the reasons of such parameter-space structure, we plotted the
traces corresponding to some of the parameter large values. The specific values
are those corresponding to the orange, the dark blue, and the light blue crosses
in Figure 10.4a, Figure 10.4e, and Figure 10.4i, respectively. The resulting
trajectories are plotted in Figure 10.5, and we immediately note that most of
them do not really represent any plausible neuronal activity. In particular,
the dark blue trace and the orange traces (which result from setting all model
parameter to the BBP values, except for ḡCaLVA and ḡNat2, respectively) only
produce one action potential and then exhibit a somewhat unrealistic resting

195

0 500 1000 1500 2000 2500 3000
time (ms)

100

80

60

40

20

0

20

40

60
V

 (
m

V
)

θ= θBBP

ḡNa, t2 = 474. 75

ḡCa,LVA = 1. 41

decay = 39. 80

Figure 10.5: Numerical solutions of model L23 PC cADpyr229 1 for different val-
ues of the modelling parameter θ. The red trace exhibiting seven spikes corresponds
to θ = θBBP, whereas the other lines are produced modifying one single component
of the parameter vector (see the legend).

behaviour.

Then, we also plot the graph of the univariate DS-fit function

θk 7→ DS(θ
(¬k)
BBP, y0:J),

where DS is the SPIKE-distance defined in (7.2) and the distance between

the parameter θ
(¬k)
BBP and the dataset y0:J is intended in the same sense as

in (10.1). Analysing Figure 10.6, we remark that the plateau effect is even
more pronounced. Since that SPIKE-distance captures more accurately the
electrophysiological activity than SSE, we deduce that the electrophysiology
properties are substantially constant in that region. Hence, it looks like in a
very large portion of the search space, the model simply does not represent an
active neuron when the in-sample input I

(in)
ext (t) is presented!

We draw the conclusion that a large portion of the parameter space is
actually irrelevant to our search. Indeed, in such parameter region the model
seems to be no plausible candidate to reproduce the neuron activity we feed
it. In the following section we describe our choice of a criterion for reducing
the parameter search space size.

196

200 600 1000
0.2

0.3

0.4

0.5

(a) ḡNat2

200 600 1000
0.2

0.3

0.4

0.5

(b) ḡKv3.1

20 60 100
0.2

0.3

0.4

0.5

(c) ḡSK

0.2 0.6 1.0
0.20

0.24

0.28

0.32

0.36

(d) ḡCaHVA

2 6 10
0.20

0.24

0.28

0.32

0.36

(e) ḡCaLVA

0.002 0.006 0.010
0.15

0.25

0.35

0.45

(f) ḡL

0.002 0.006 0.010
0.198

0.202

0.206

0.210

0.214

(g) ḡH

0.01 0.03 0.05
0.14

0.18

0.22

0.26

0.30

(h) γ

200 600 1000
0.15

0.25

0.35

(i) decay

Figure 10.6: Graphs of the univariate DS-fit functions, i.e. the marginal SPIKE-

distances IkBBP 3 θ(k) 7→ DS(θ
(¬k)
BBP, y0:J). The red crosses mark the position of the

parameter value computed from the BBP, while the orange, blue and light blue
crosses point out the parameter values that produced the traces in Figure 10.5.

10.2.2 Reducing the parameter search space size

Analysing Figure 10.5, we choose to base our search-space shrinkage on whether
or not model L23 PC cADpyr229 1 produces realistic responses in a given
parameter region. Specifically, in order to perform such analysis in an non-
subjective manner, we decide to tell apart a plausible parameter configuration
from a non-realistic one based on whether the number of spikes elicited by the
input current I

(in)
ext (t) is smaller or larger than three.

Indeed, we report that most of the traces exhibiting less than three ac-
tion potentials that we inspected were similar to the orange and the dark blue
traces in Figure 10.5. These exhibit only one spike3 and then display a strange
resting behaviour which we consider as too odd to represent a neuron plausi-
ble response to an excitatory input. We think that searching the parameter
values in those portion of the parameter intervals would be a waste of time.
On the contrary, we deem desirable to leave enough room in the search space

3Using the elephant Python module, an action potential is detected only when the
membrane potential surpasses the 0 mV value and changes sign.

197

to include traces like the light blue one. Indeed, although this one exhibits a
peculiar behaviour, it is still close to a plausible neural response to I

(in)
ext (t). In

fact, although the potential trace is significantly ragged, it could be that mod-
ifying other parameters the choice decay = 39.80 ms would result in realistic
trajectories.

Since, as hinted by Figure 10.4 and Figure 10.6, we observed a monotony in
the number of spikes, we argue that identifying the parameter values θk such
that V0:J(θ

(¬k)
BBP) exhibits exactly three action potentials is enough to effectively

reduce the search-space size. In order to do so in an automated manner, we take
advantage of the Victor-Purpura SPIKE distance introduced in Section 7.1.1
using q = 0. As for such value of the metric parameter only the number of
spikes are compared, in this chapter we write DCOUNT instead of DSPIKE

q=0 for
the sake of notation compactness. In particular, we compare the spike train
resulting from a given trace V0:J(θ) to an empty spike train (denoted 0 here),
and look for the zeros of the univariate function

θk 7→ DCOUNT(θ
(¬k)
BBP, 0)− 3.

Again, this means that we look for the parameter value such that the
resulting model exhibits exactly three action potential. We stress that this is
the only condition we impose to discriminate between realistic and unrealistic
parameter values: if for a given parameter set the model produces less than
three spikes, then the model’s response to I

(in)
ext (t) is considered as unrealistic

and that parameter set is hence discarded.
In practice, we choose to apply a bisection method with absolute tolerance

tol= 10−3 (i.e., the θk zero-point value has to be accurate to the third decimal
digit). We chose the bisection method as we are dealing with a discrete-valued
function (DCOUNT only assumes integer values) so no derivative-based method
or secant-like method would be particularly effective. Note that, theoretically
speaking, the bisection method only applies to continuous functions. How-
ever, we assume that the Victor-Purpura COUNT distance is continuous in
an integer-sense (i.e., for small changes in a single parameter value θk, the
function varies smoothly assuming all intermediate integer values), so that the
bisection method is guaranteed to converge to some zero of the target function.

In fact, θk 7→ DCOUNT(θ
(¬k)
BBP, 0)−3 assumes opposite sign at the boundaries

of I
(k)
BBP for most parameters. In particular, for all parameters but ḡNat2, decay,

and ḡH the function is positive in the lower boundary and negative (i.e., it pro-
duces less than three spikes) in the upper boundary. On the other hand, decay
and ḡH always produce realistic traces (the respective univariate DCOUNT func-
tions assume positive values at both edges), whereas the univariate DCOUNT

function relative to ḡNat2 is negative at both boundaries. For the latter, we pro-

198

Parameter Somatic I
(k)
new Somatic I

(k)
BBP Unit

ḡNat2 [0.463353, 6.78065] [0, 1000] mS/cm2

ḡKv3.1 [0, 1.95312] [0, 1000] mS/cm2

ḡSK [0, 0.585938] [0, 100] mS/cm2

ḡCaHVA [0, 0.00585938] [0, 1] mS/cm2

ḡCaLVA [0, 0.136719] [0, 10] mS/cm2

γ [0.0005, 0.00755762] [0.0005, 0.05] 1
decay [20, 1000] [20, 1000] ms
ḡL [0, 0.00112305] [0, 0.01]∗ mS/cm2

ḡH [0, 0.01] [0, 0.01]∗ mS/cm2

Table 10.7: Updated search parameter intervals I
(k)
new compared to those of the Bue

Brain Project I
(k)
BBP. Only somatic parameters considered in our data-assimilation

experiment are reported. The intervals marked with an asterisk (*) were not con-
sidered by the BBP but arbitrarily set by the authors.

ceeded running the bisection method on two separate intervals: the first inter-
val ranges from the lower bound of ḡNat2’s I

(k)
BBP and θ

(k)
BBP = 0.926705 mS/cm2,

while the second ranges from θ
(k)
BBP to the upper boundary of ḡNat2’s I

(k)
BBP. This

is possible, because we know from Figure 10.5 that for θ = θBBP such func-
tion is greater than zero (the red trace exhibits seven action potentials). Such
bisection procedure resulted in the updated search intervals for the somatic
parameters I

(k)
new which are presented in Table 10.7.

Note that we could have included axonal and apical parameters as well.
However, in all tests we ran the influence of non-somatic parameters on the uni-
variate DS- and the dSSE-fit functions was several order of magnitude smaller
than the somatic ones. Then, we concluded that assessing non-somatic pa-
rameters would not be meaningful without including non-somatic data in the
assimilation.

Remark 10.2. We acknowledge that the bisection approach we propose here is
far from being ideal. Some of the main flaws we identified include the following.

 The main choices we made to come up with such procedure are extremely
application-dependent. In particular:

I only responses to the input current I
(in)
ext (t), starting from the single

specific initial condition x0(y0) are tested;

I assessing whether or not a model is able to represent a neuron only
based on the number of action potentials it produces is a choice which
neglects several aspects of a neuron electrophysiology.

199

 The algorithm output depends on the “base point” θBBP. Using a different
parameter set as base point to univariately modify one parameter at the
time would result in different updated intervals.

 It is possible that there are multiple zeros and we only took the first one
reachable via the bisection method.

 Our procedure only considers a univariate approach. However, note that
a more complete multivariate analysis would be too expensive from a
computational point of view. Indeed, sampling the whole multidimen-
sional parameter space with a sufficiently dense mesh requires a huge
number of function evaluations. For instance 100 sample points per uni-
variate interval would result in O(1018) function evaluations. To give an
idea, considering that one hundred function evaluations (i.e. one hundred
model runs) take about 3 min 3s ± 43 s in average4, this would result in
an execution time of about ten billion years, approximately twice the age
of planet Earth. This is a clear example of the curse of dimensionality.

Nevertheless, such approach has the advantage of being simple, fast to be exe-
cuted, and, most importantly, it allows one to identify a good set of parameters
fitting the experimental trace in some sense, as we show in the following sec-
tions. ♠

After this adjustment, we ran the EnKF enforcing the new reduced bounds
I

(k)
new’s. However, all output traces turned out being absolutely unrealistic once

again, so that it is not even worth reporting them here. Then, since at this
point we got convinced the sequential algorithm was not effective to assimilate
experimental data in model L23 PC cADpyr229 1, we decided to double back
to some kind of variational method to explore the parameter search space in a
more direct way. In particular, we decided to apply a brute-force minimization
method of some cost function of choice. In the following section we describe
and motivate our final decision for such an objective function.

10.3 Selecting an effective assimilation method

In practice, we tested a number of objective functions and, in analogy to the
procedure which motivated the search-space size reduction, the first natural

4Value estimated running one hundred parameter configurations for 2500 ms in parallel
on the Fudan University Institute for Science and Technology for Brain-Inspired Intelli-
gence (ISTBI) computing cluster ten times. The cluster specifics are those reported at the
beginning of Section 9.1

200

choice was to select the multivariate SSE-distance θ 7→ dSSE(θ, y0:J), or some
`p
(
Rdθ
)
-distance (i.e., a sort of parameter-equivalent of the absolute measure-

ment error defined in Section 4.4.1). Unfortunately, our preliminary studies
seemed to highlight that such metrics were not effective at all, even though we
tested different values of the distance parameters p.

In a second attempt, we also tried to augment the solution space with the
time derivatives (approximated via finite-difference methods) of both V0:J(θ)
and of y0:J , so to equip the `p-comparison of the two traces with some in-
formation regarding the time placement of action potentials. In fact, spikes
consists in a sudden depolarization followed by the swift hyperpolarization of
the neuron membrane potential, and such increase and decrease pattern has a
sharp counterpart into both the magnitude and the sign of the potential dif-
ference quotient

Vj+1−Vj−1

2∆t
. Disappointingly, not even this expedient improved

the performances with respect to the previously tested `p distance.
Then, we redirected ourselves to some metric more tailored to detect differ-

ences in two single-neuron activities. In particular, we dropped the ambition
to point-wisely estimate the membrane potential trace and focused on the
following spike train distances:

• the van Rossum distance, defined in Section 7.2.1, resulting in the van
Rossum objective function

θ 7→ DRoss
q (θ, y0:J);

• the Victor-PurpuraDSPIKE
q SPIKE train distance defined in Section 7.1.1,

resulting in the objective function

θ 7→ DSPIKE
q (θ, y0:J),

which we refer to as the Victor-Purpura objective function;

• and the parameter-free SPIKE distance defined in Section 7.3.1, corre-
sponding to the SPIKE-distance objective function

θ 7→ DS(θ, y0:J).

In all results we present in the following, we took advantage of the size reduc-
tion presented in the previous section. Namely, the parameter search-space
was set to be the dθ-dimensional hyper-rectangle Θ =

∏dθ
k=1 I

k
new.

Remark 10.3. Note that, using the same notation established at the beginning
of this chapter, when we mention the spike-train cost functions it is implied

201

that the distance is computed between the respective spike-trains. For instance,
DSPIKE
q (θ, y0:J) denotes the Victor-Purpura spike distance between the spike

train extracted from the membrane potential trace V0:J(θ) and the spike train
extracted from the experimental trace y0:J . ♠

One may think that minimizing such objective functions essentially consists
in resorting to the 4DVAR smoothing method. However, this is actually true
only if we assume a uninformative prior distribution on the signal augmented
variable.

However, even assuming we are applying 4DVAR, resorting to minAone
code was not an option for implementation reasons. In fact, the code devel-
oped by H. Abarbanel’s research team requires that the complete ODE vector
field underlying the deterministic discrete-time map gj−1(xj−1, θj−1) can be
explicitly written in symbolic form. Although this is possible in many appli-
cations, it is not the case for the Neuron-implemented BBP models. In fact,
Neuron uses the compiled programming language nmodl5 to build its neuron
models, and linking the Python scripts which include the resulting executables
to the IPOPT minimization toolbox minAone hinges upon is not straightfor-
ward. As a consequence, we decided to take advantage of some other Python
optimisation toolbox.

However, since at this point we wished to use some ready-to-use library, we
first tested simulated annealing [204], a global metaheuristic and probabilistic
optimisation method which is related to Metropolis-Hastings methodology to
a certain extent. However, in addition to requiring a non-negligible fine tuning
of its setting parameters, such method appeared to converge extremely slowly
and it did not provide any useful solution in all runs we launched.

Then, we tested a different family of optimisation methods, namely meta-
heuristic population-based algorithms. In particular, we took advantage of the
efficient implementation of the particle swarm optimisation method (PSO, see
Remark 2.8) provided by the parallel Python module pygmo [25], developed by
F. Biscani and D. Izzo.

In the following section, we analyse the results obtained minimizing the
above-mentioned objective functions with the PSO methods .

10.4 Results analysis

In particular, we applied the canonical particle swarm method with constric-
tion factor, corresponding to variant 5 of algorithm PyGMO.algorithm.pso

5the Neuron version of the model description language (modl) [87], developed by the
NBSR (National Biomedical Simulation Resource, [119])

202

0 500 1000 1500 2000 2500 3000
-100

-80

-60

-40

-20

0

20

40

60

(a) Median result for q = 50 s−1

60

40

20

0

-20

-40

-60

-80

-100
0 500 1000 1500 2000 2500 3000

(b) Median result for q = 15 s−1

Figure 10.8: Median result of van Rossum objective function for (a) q = 50 s−1

and for (b) q = 15 s−1

(refer to [168] for more details on such method) using the following values
of the method parameters: constriction factor ω = 0.7298, cognitive compo-
nent η1 = 2.05, social component η2 = 2.05, and maximum velocity coefficient
vcoeff = 0.5 (refer to [10] for more details on the pygmo implementation of the
PSO; such website also provides a general overview of the pygmo Python mod-
ule, its essential documentation, and some use examples). For all objectives,
we considered 100 independent runs of the PSO, using a swarm size of 25
particles, evolving for up to 150 generations.

First, we tested if the van Rossum objective function provided sufficiently
good solutions. Since in principle the larger the q-value, the more sensitive
the metric is to precise spike timing, we started off by selecting q = 50 s−1. A
trace representative of the resulting general output is represented Figure 10.8a,
where the estimated membrane potential time course corresponding to the
median DRoss

q=50-value is plotted against the assimilated experimental data. It is
evident that the average result produced by such metric is not satisfactory at
all, as the timing of about one action potential out of two is correctly estimated.
Nevertheless, we remark that the results obtained with such objective function
are still far better than those produced by any of the unreported attempted
methods (from EnFK, to previously tested minimization methods or metrics).

Then, we tested different values of the scale parameter q, to check if this
was enough to improve the estimation quality. The overall results for q =
15 s−1, 20 s−1, 30 s−1, 50 s−1 are presented in compact form trough the box-plots
pictured in Figure 10.9a. These highlights that selecting q = 15 s−1 actually
allows the minimization method to reach considerably smaller objective values
than any other tested q-value. The statistical significance of this statement was
confirmed by the application of a Tukey’s HSD test with p < 5% (note, in this

203

1.5

2

2.5

3

3.5

4

(a) van Rossum distance

2

4

6

8

10

12

14

16

18

(b) Victor-Purpura distance

Figure 10.9: Box-plot comparison of the in-sample results obtained minimiz-
ing (a) the van Rossum, and (b) the Victor-Purpura objective functions with
q = 15 s−1, 20 s−1, 30 s−1, 50 s−1, ranked according to the respective fitness values.
The box lower and upper edges mark the first and third quartile, respectively, while
the bar in the middle of the box denotes the median objective function value and
the notches its confidence interval. The whiskers extend up to 1.5 times the inter-
quartile range, and the points falling outside such ranges are considered outliers of
the distribution. The dark green crosses denote the distribution mean, while the
light green error bars their confidence intervals.

204

sense, the non-intersecting confidence intervals of the group means marked by
light-green error-bars). In term of membrane potential traces, this translates
in the substantial improvement of the matching between the estimated spike-
train and the experimental one pictured in Figure 10.8b.

Aiming at identifying the objective function able to obtain the best estima-
tion results, we first performed the same test on the Victor-Purpura objective
function. Again, we obtained that q = 15 s−1 is the best choice for such metric
too (see Figure 10.9b). Then, we took the SPIKE-distance objective function
into consideration. In order to compare the results obtained with the best
q-value for both the van Rossum and the Victor-Purpura objective function
to the SPIKE-distance ones, we needed a single comparison criterion. Being
only parameter-free and uniformly bounded metric, we opted for ranking all
previously found solutions according to the DS-metric. This simply means
that we computed the performance scores DS(in), DS(out1), and DS(out2)
for all traces produced minimizing each of the cost functions (DS, DRoss

q=15, and
DSPIKE
q=15), and used such values to compare the quality of each run. Note that,

since, as we show in the following, once the suitable scale parameter q has
been identified the three metrics yield very similar results, we argue that using
any of these metrics to rank and compare the results would actually lead to
analogous outcomes. Nevertheless, we claim that the normalization consid-
ered in the [0, 1]-valued DS distance allows one to better compare the response
to stimuli with different amplitudes. Indeed, both van Rossum and Victor-
Purpura SPIKE distances are approximately linear in the number of spikes
contained in the spike train, and the comparing the response in, say, the out1

and out2 time window would lead to a larger bias. In fact, the different time
windows we considered contain a significantly different number of spikes. Note
that, before proceeding in the comparison, we first verified that q = 15 s−1

is the best value for both van Rossum and Victor-Purpura results also when
measuring the fitness-value according to the SPIKE-distance.

First, running a non-parametric Friedman test on the in-sample fitness
values DS(in) we observed that no statistically significant difference holds
between the results produced by these three metrics. Then, considering the
average error among all time windows [DS(in) +DS(out1) +DS(out2)]/3, we
found that the distribution of the predicted results across all time windows
is essentially the same (see Figure 10.10). All these evidences highlight that,
for the three cost functions considered, the procedure fits the assimilated data
reaching fundamentally the same in-sample precision and similar out-of-sample
predictions.

Furthermore, we found that unlike the biased twin experiment results, a
small in-sample error is not a good predictor for a good out-of-sample esti-

205

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0

5

Figure 10.10: Empirical p.d.f.’s of the DSPIKE
q=15 results (red line), the DS results

(bright green line), and theDRoss
q=15 results (blue line). The x-axis represents [DS(in)+

DS(out1) + DS(out2)]/3, i.e. the average value of the SPIKE-distance error in
the in-sample and both out-of-sample time windows. Box-plot description as in
Figure 10.9.

mation. Indeed, the absolute correlation coefficient |ρ| between the in-sample
error DS(in) and the average out-of-sample error [DS(out1) + DS(out2)]/2
is always smaller than 0.05. Then, if using the EnKF a good in-sample score
already gives some insight on the quality of the out-of-sample predictions (see,
the twin experiment described in Section 9.2 and, in particular, Figure 9.10),
using a cost-function minimization approach the successful runs can only be
selected based on some out-of-sample prediction.

10.4.1 Selection by validation in a forecast-skill sense

Then, to select the good runs obtained minimizing each of the three spike-train-
based cost function, we proceeded by a validation argument as in Section 9.2.4.
Namely, we checked how the model endowed of the estimated set of parameters

206

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

5

10

15

20

25

30

35

Figure 10.11: Empirical p.d.f.’s of the DSPIKE
q=15 results (blue line), the DS results

(bright green line), and the DRoss
q=15 results (red line). The x-axis represents DS(out1),

i.e. the SPIKE-distance score in the validation set (the first out-of-sample time
window).

θ̂ predicts experimental traces in the first out-of-sample time window out1

(consisting in experimental data which were not used to train the model).

The empirical p.d.f.’s represented in Figure 10.11 highlight that the re-
sulting DS(out1) statistics is substantially overlapping for all three cost func-
tions and the profile is extremely similar too. Then, in order to identify the
good runs produced by each cost function, we considered the best 10 runs
in a forecast-skill sense (those with minimal DS(out1) performance score) for
each cost-function. In particular, such runs correspond to the empirical 10-
percentile of the DS(out1) value (0.160 for the DSPIKE

q=15 cost function, 0.155
for the DS cost function, and 0.164 for the DRoss

q=15 results, respectively; see the
vertical dotted lines in Figure 10.11). Limiting ourselves to these good runs,
we were able to compute the prediction error in the second out-of-sample win-
dow out2. Note that such quantity represents an estimate of the prediction
quality of the neuron response to new stimuli. We obtained that the perfor-
mance score in such test dataset is analogous for all three metrics: for the
Victor-Purpura DSPIKE

q=15 good runs the DS(out2) score is 0.171 ± 0.007, for
the SPIKE-dist DS results it is 0.166 ± 0.024, and for the van-Rossum DRoss

q=15

results 0.174 ± 0.009. In addition, note that such values are fairly close to
the respective 10-percentiles, suggesting that if a parameter set θ̂ predicts an

207

Parameter Victor-Purpura SPIKE-distance van-Rossum

mean cv mean cv mean cv
ḡNat2 5.51 0.23 5.79 0.21 4.37 0.38
ḡKv3.1 0.31 0.67 0.54 0.68 0.38 0.60
ḡSK 0.29 0.59 0.25 0.72 0.30 0.67

ḡCaHVA 0.0035 0.34 0.0039 0.45 0.0037 0.56
ḡCaLVA 0.0479 0.93 0.0278 0.78 0.0306 1.27
γ 0.0029 0.82 0.0034 0.56 0.0033 0.71

decay 20.33 0.03 24.36 0.35 28.95 0.47
ḡL 0.0003 1.02 0.0002 0.65 0.0003 1.37
ḡH 0.0033 1.01 0.0057 0.62 0.0047 0.69

Table 10.15: Mean and coefficient of variation of the parameter values underlying
the “good runs” resulting by the minimization of cost functions DSPIKE

q=15 , DS , and

DRoss
q=15.

out-of-sample trace accurately, it is reasonable to expect it predicts well other
out-of-sample traces too.

To give a graphical representation of the corresponding solutions, we show
the raster plot and the underlying out-of-sample predictions of one of the
ten selected runs for the Victor-Purpura cost function (Figure 10.12), for the
SPIKE-distance cost function (Figure 10.13), and for the van Rossum distance
(Figure 10.14). As one can notice, only the spike timing are predicted with
good (but not perfect) accuracy whereas the overall time course of the mem-
brane potential is not reproduced by any of the traces. In particular, the base
potential value of the predicted traces is lower than the one of the experimental
recordings, as well as the value of the after-hyper-polarization depth and the
action-potential height.

To investigate the values of the model parameters that underlie the selected
runs, in Table 10.15 we report the mean and the coefficient of variation of
the estimated parameters in the “successful runs” obtained minimizing each
cost function. Analysing the table, we observe that the smallest coefficient of
variation are those for parameters decay, ḡNat2, ḡCaHVA (all smaller or close to
0.5 for all cost functions), and then for ḡKv3.1, ḡSK and γ (usually between 0.5
and 0.75). On the contrary, the coefficient of variation of ḡCaHVA, ḡL and ḡH

appear to be close or larger than one, suggesting that their estimate cannot be
considered precise. As a consequence, we argue that the estimates for ḡNat2,
ḡKv3.1, ḡSK, ḡCaHVA, decay and γ may be considered sufficiently accurate in a
forecast-skill sense, meaning that the range of the estimated values is likely to
that one which allow the behaviour of the experimental recordings. Indeed,

208

out2

out1

in

0 0.5 1 1.5 2 2.5 3
t (sec)

(a) Overall raster plot. The black bars indicate the spike times
of the experimental trace y0:J , while the blue traces denote the
spike times of the estimated trajectory.

0 500 1000 1500 2000 2500 3000

60
40
20
0

-20

-40
-60
-80

-100

(b) First out-of-sample time window

60
40
20
0

-20

-40
-60

-80

-100

-80
-100

0 500 1000 1500 2000 2500 3000

(c) Second out-of-sample time window.

Figure 10.12: Output obtained minimizing the DSPIKE
q=15 -objective function repre-

sentative of the corresponding “good runs” (the lower 10-percentile). In (b) and (c)
the blue traces indicate the estimated potential trace, which is plotted against the
respective experimental trace (dashed black line).

209

out2

out1

in

0 0.5 1 1.5 2 2.5 3
t (sec)

(a) Overall raster plot. The black bars indicate the spike times
of the experimental trace y0:J , while the orange traces denote
the spike times of the estimated trajectory.

60

40

20

0

-20

-40

-60

-80

-100
300025002000150010005000

(b) First out-of-sample time window

60

40

20

0

-20

-40

-60

-80

-100
0 1000 1500 2000 2500 3000500

(c) Second out-of-sample time win-
dow.

Figure 10.13: Output obtained minimizing the DS-objective function represen-
tative of the corresponding “good runs” (the lower 10-percentile). Legend as in
Figure 10.12.

210

out2

out1

in

0 0.5 1 1.5 2 2.5 3
t (sec)

(a) Overall raster plot.

60

40

20

0

-20

-40

-60

-80

-100
300025002000150010005000

(b) First out-of-sample time window.

60

40

20

0

-20

-40

-60

-80

-100
0 500 1000 1500 2000 2500 3000

(c) Second out-of-sample time win-
dow.

Figure 10.14: Output obtained minimizing the DRoss
q=15-objective function represen-

tative of the corresponding “good runs” (the lower 10-percentile of the DS(out1)
performance score). Legend as in Figure 10.12.

211

it appears that the values of the parameters estimates are rather consistent
across the three cost functions, and the resulting ranges are relatively small
compared to the search intervals of each parameters (see Table 10.7).

Computational cost of the PSO minimization procedure

As far as the computational load is concerned, the three metrics require es-
sentially the same execution time. In fact, running the neuron model is much
more time-consuming than computing any of the the spike-train distances.
To give a reference of the overall computational load, consider that running
ten optimisation procedures in parallel on the ISTBI computing cluster6 took
about 5 h 57 min 42 s ± 1 h 12 min 20 s (such statistics is computed considering
the wall time of all optimization results reported here). Then, ignoring pos-
sible slowdowns due to the usage of the shared facility by other users and
supposing a uniform distribution among all runs, we can estimate the mean
execution time of a single PSO run to be about 35 min 46 s± 7 min 14 s, which
is comparable to the average execution time of the (N = 100)-sized EnKF in
the first twin experiment on the BBP model (cfr. Section 9.3).

10.5 Discussion and conclusions

In this last experiment, we aimed at assimilating Blue Brain Project experi-
mental data produced by step input currents (see Figure 10.1a and Figure 10.2)
into the detailed neuron model used by the BBP to reproduce the data for layer
2 and 3 pyramidal cells. The objective was, on the one hand to test the meth-
ods we applied using simulated data in a completely experimental setting, and
on the other hand to check the quality of the BBP model by verifying its ability
to exactly reproduce part of the same experimental data they used.

In sharp contrast to the twin experiments carried out in the previous chap-
ters, we were not able to successfully apply the ensemble Kalman filter even
though we adopted some earlier identified precautions (e.g. enforcing positivity
constraints) and some new ones too (such as exploring a bounded search space
whose size decreased attempt after attempt). Point-wise assimilation of the
membrane potential trace was not possible even using a maximum-likelihood-
like approach or any brute-force minimization of other cost functions based
on `p-point-wise estimation of the experimental recording. Only resorting to
neuron-tailored objective functions resulting from spike-train metrics allowed
us to identify a suitable set of model parameters able to predict some features
of the real neuron response to out-of-sample stimuli. In particular, we used a

6the cluster specifics are those reported at the beginning of Section 9.1

212

validation dataset (the experimental data in the first out-of-sample time win-
dow) to select the successful runs of the minimization procedure, and then
evaluated the quality of the DA method using a different test set (the experi-
mental data in the second out-of-sample time window). However, we first had
to substantially reduce the parameter search-space size to make the minimiza-
tion procedure work, but the size-reduction procedure is far from being solid
and can difficultly be proposed as a standard for future studies.

Nevertheless, renouncing to point-wise estimation in such way, we were able
to obtain some parameter estimates that produce reasonable out-of-sample
predictions of the experimental spike trains. In particular, let us highlight
that

i) we found both the prediction quality and the parameter estimates to be
rather stable with respect to the minimized spike-train metric (either the
parameter dependent Victor-Purpura SPIKE distance and van Rossum
distance or the parameter-free SPIKE distance);

ii) the parameter estimates we identified do make the model match and
predict the experimental spike trains significantly better than the BBP
value θBBP (for instance, compare the red trace in Figure 10.5 to the one
in Figure 10.8b).

However, let us discuss the results we obtained in relation to the prior
model and the type of experimental data used for the assimilation. To begin
with, what we found seems to highlight that the model proposed by the BBP is
not able to point-wisely reproduce the data they assimilated. This is testified,
for instance, by the fact that the traces which have a good agreement with the
assimilated spike trains, all undergo a small but persistent hyperpolarization
at the beginning of all time windows (see Figure 10.8, Figure 10.13b-c, and
Figure 10.14b-c). It appears that when the initial Ihyp current is injected,
the experimental traces are already at their resting state, whereas the model
always hyperpolarizes in order to reach its resting potential, although both
receive the same input current. In the BBP paper [149], it is reported that
the leak conductance ḡL “was manually fixed to a value that created a resting
potential [...] in accordance with reported values” for pyramidal cell models
(see the Supplementary material at the section “Neuronal physiology”), but
even considering such parameter as an unknown, our optimization procedure
did not yield any parameter configuration compatible with the experimental
data. This fact can also explain the EnKF failure: since such method has to
track down even the first values of the experimental potential time course, it is
immediately driven away from the good state-variables and parameters values
which agree with the experimental data.

213

However, we do not think this is a proof that detailed single-neuron models
cannot be fine-tuned to membrane potential data using Bayesian DA meth-
ods in general, but only that data produced by step-current IDrest protocols
are not informative enough. Indeed, there are plenty of examples where this
task has been successfully carried out: see for instance [199, 122, 206, 164,
106]. However, all these works do assimilate neural responses to much more
complicated and dynamically diverse stimuli. In particular, it has been argued
that input currents should drive rapid changes in the neuronal activity and
explore wide dynamical ranges in order to allow parameter estimation through
single-trace fitting [88].

On the other hand, the BBP fitting procedure does not aim at point-
wisely fitting any potential trace produced by the IDrest protocol at all. In
fact, the targets of such multi-objective optimization are the statistics of sev-
eral electrophysiological features (resting potential, spike rate, action potential
amplitudes etc.). Note that the features are extracted from the responses of
different layer 5 pyramidal cells to step-currents of different amplitude, and
the statistics are built aggregating the traces with similar current-amplitude
to rheobase ratio. This is done so that a given neuron model accounts for
the electrophysiological diversity of neural populations but, as a result, any
of the inputs that generated their dataset elicits the same response as in the
experimental data. Nevertheless, paying the price of needing several potential
traces and aggregating them, the BBP procedure appears to get the best out of
the step-current data, to enforce more constraints than point-wise fitting does,
and to rely on those electrophysiological criteria that allow an experimentalist
to classify given neuron types.

Summarizing, we think that the compatibility of the model and the quality
of data we employed is the origin of the unsatisfactory results we obtained. If
only experimental step-current data are available, the BBP fitting procedure is
probably the best choice to fine-tune detailed neuron models, whereas a simpler
model may be considered to achieve better point-wise fitting through DA.
However, assimilating experimental recordings generated by more complicated
input currents one should still be able to reproduce and predict the neural
response to new stimuli employing Bayesian DA methods on realistic models
as the BBP one.

To conclude, we think that carefully selecting a prior model, ensuring the
dynamical richness of the data, and investigating the compatibility of the two
before performing DA is of paramount importance. In particular, in view of
future assimilation projects on neural networks models, one should first ver-
ify that, on the one hand, the model is able to exhibit various dynamical
behaviours (e.g., neural synchronization, reproduce some characteristic oscil-

214

lation rates such as alpha waves, gamma oscillations, beta activity, etc.), and
on the other hand that the assimilated data are rich enough to explore several
network states.

215

216

List of Figures

1.1 Diagram of a general state-space model. 15

1.2 DAG of the Gaussian nonlinear state-space model described in
Example 1.3 . 18

2.1 minAone: evolution of 100 action minimums for the Lorenz96
Gaussian problem as a function of β. 39

2.2 Mindmap of data assimilation methods 41

3.1 Graphical representation of the prediction-analysis filtering up-
date. 44

3.3 Graphical representation of the Kalman filter. 47

4.2 Graphical representation of the Kalman filter in case of bounded
variables. 72

4.4 Graph of the logit function and its inverse. 75

4.5 Graphical representation of a logit-normally distributed random
variable. 75

5.1 Graphs of sample sigmoid-shaped asymptotic value functions
and Gaussian-like characteristic-time functions. 93

5.2 Ionic currents dynamics for different values of the membrane
potential. 95

5.5 Sample trajectory of the toy model of single neuron. 99

5.6 Representation of model L23 PC cADpyr229 1 for layer 2 and
3 pyramidal cells. 101

5.8 L23 PC cADpyr229 1 twin experiments: in-sample simu-
lated dataset. 108

5.9 L23 PC cADpyr229 1 twin experiments: in-sample and
both out-of-sample simulated dataset. 109

5.10 Sample solution of model (5.16) for different values of constant
input current Iext all with the same initial condition (V0, a0)T =
(60 mV, 0.5)T . 112

217

5.11 Bifurcation diagram of the two-dimensional model (5.16) with
respect to parameter Iext ∈ [−10 µA cm−2, 45 µA cm−2]. 113

6.1 Summary of the morphological types considered in the neocor-
tical microcircuit. 121

6.2 Examples of different e-types and me-types electrical activities,
and the me-types distribution across layers. 122

6.5 Sample time course of a single-exponential synapse s(t). 125
6.6 Sample LIF network dynamics 129

7.1 Representation of the basic operations needed for the cost-based
spike train distances. 133

7.2 Van Rossum spike train distance and Schreiber et al. similarity
measure. 135

7.3 Illustration of the local quantities needed to calculate the in-
stantaneous dissimilarity values for ISI- and SPIKE-distances. . 137

8.1 Toy neuron model twin experiment: sample filtering dis-
tribution. 149

8.2 Toy neuron model twin experiment: true parameter values
versus filtering mean for EnKF, BF, and OPT-SIRS. 150

8.3 Toy neuron model twin experiment: parameter component
of the filtering error for EnKF, BF, and OPT-SIRS. 151

8.4 Toy neuron model twin experiment: graphical representa-
tion of the definition of θ̂ (8.1), for component ḡL. 152

8.7 Toy neuron model twin experiment: forecast skill in the
first 100 ms of the generalization time window of EnKF, BF,
and OPT-SIRS. 155

9.1 Unbiased twin experiment on model L23 PC cADpyr229 1:
approximated filtering distribution computed by a single run of
the EnKF. 164

9.2 Unbiased twin experiment on model L23 PC cADpyr229 1:
approximated filtering distribution computed by the EnKF: detail.165

9.3 Unbiased twin experiment on model L23 PC cADpyr229 1:
sample EnKF signal estimation performance. 167

9.4 Unbiased twin experiment on model L23 PC cADpyr229 1:
box plots of the performance scores. 170

9.5 Unbiased twin experiment on model L23 PC cADpyr229 1:
Tukey’s HSD test for the ensemble size effect. 171

9.6 Unbiased twin experiment on model L23 PC cADpyr229 1:
error plot of the factorized performance score. 172

218

9.8 Graphical representation of the computational wall time as a
function of the ensemble size N 173

9.10 Biased twin experiment on model L23 PC cADpyr229 1:
estimated p.d.f. of the DS-performance score. 175

9.11 Biased twin experiment on model L23 PC cADpyr229 1:
raster plots of some notable runs. 175

9.13 Biased twin experiment on model L23 PC cADpyr229 1:
filtering distribution of the parameters for some notable runs. . 179

9.16 Response of the fitted model in the second out-of-sample time
window out2 for the “good runs” selected in the validation step.182

10.1 Assimilation of experimental data in the BBP model:
sample content of the BBP experimental dataset. 189

10.2 Assimilation of experimental data in the BBP model:
experimental dataset for assimilation 191

10.4 Assimilation of experimental data in the BBP model:
graphs of the univariate dSSE-fit functions. 195

10.5 Assimilation of experimental data in the BBP model:
numerical solutions of model L23 PC cADpyr229 1 for different
values of the modelling parameter θ. 196

10.6 Assimilation of experimental data in the BBP model:
graphs of the univariate DS-fit functions. 197

10.8 Assimilation of experimental data in the BBP model:
median result for two van Rossum objective functions. 203

10.9 Assimilation of experimental data in the BBP model:
box-plot comparison of the in-sample results obtained minimiz-
ing the van Rossum and the Victor-Purpura objective functions. 204

10.10Assimilation of experimental data in the BBP model:
empirical p.d.f.’s of the DSPIKE

q=15 results, the DS results, and the
DRoss
q=15 results . 206

10.11Assimilation of experimental data in the BBP model:
empirical p.d.f.’s of the DSPIKE

q=15 results, the DS results, and the
DRoss
q=15 results . 207

10.12Assimilation of experimental data in the BBP model:
output obtained minimizing the DSPIKE

q=15 -objective function rep-
resentative of the corresponding “good runs” (the lower 10-
percentile of the DS(out1) performance score). 209

10.13Assimilation of experimental data in the BBP model:
output obtained minimizing the DS-objective function represen-
tative of the corresponding “good runs” (the lower 10-percentile
of the DS(out1) performance score). 210

219

10.14Assimilation of experimental data in the BBP model:
output obtained minimizing the DRoss

q=15-objective function rep-
resentative of the corresponding “good runs” (the lower 10-
percentile). 211

220

List of Tables

4.1 Summary of parameter estimation methods in DA. 59
4.3 Transformations considered for bounded variables and moments

of the log-normal distribution 73

5.3 Model L23 PC cADpyr229 1: list of ionic currents, state
variables, and modelling parameters. 97

5.4 Model L23 PC cADpyr229 1: true parameter values and
unit measure . 98

5.7 Model L23 PC cADpyr229 1: parameter values. 105

6.4 Frequency of layer 2 and 3 me-types in both the in-layer and
in-microcircuit composition. 123

7.4 Spike-train metrics summary . 140

8.5 Toy neuron model twin experiment: mean and standard
deviation of estimated parameters, with respect to the 100 in-
dependent runs of each filter. 153

8.6 Toy neuron model twin experiment: mean of parameter
estimation relative error in the toy model twin experiment. . . . 154

8.8 Toy neuron model twin experiment: mean L1-error in gen-
eralization and prediction time windows and relative estimation
error . 156

9.7 Mean and standard deviation of the computational wall time
(in hours) for different ensemble sizes. 173

9.9 Biased twin experiment on model L23 PC cADpyr229 1:
voltage estimation performance statistics and notable runs per-
formance. 174

9.12 Biased twin experiment on model L23 PC cADpyr229 1:
parameter estimation performance statistics. 177

9.14 Biased twin experiment on model L23 PC cADpyr229 1:
parameter performance of some notable runs. 180

221

9.15 Biased twin experiment on model L23 PC cADpyr229 1:
parameter improvement rate for some notable runs. 181

10.3 Assimilation of experimental data in the BBP model:
search parameter intervals for the optimiser considered in the
Blue Brain Project . 193

10.7 Assimilation of experimental data in the BBP model:
updated search parameter intervals I

(k)
new. 199

10.15Mean and coefficient of variation of the parameter values un-
derlying the “good runs”. 208

222

List of Algorithms

Algorithm 3.2 Kalman filter (KF) 46
Algorithm 3.4 Ensemble Kalman filter (EnKF) 49
Algorithm 3.5 Bootstrap filter (BF) 51
Algorithm 3.6 Optimal importance resampling (OPT-SIRS) 53

223

224

List of Abbreviations

Abbreviations

3DVAR three dimensional varia-
tional method

4DVAR four dimensional variational
method

ANN artificial neural network

BF bootstrap filter

BM Bayesian method

BRAIN Brain Research through Ad-
vancing Innovative Neu-
rotechnologies

DA data assimilation

DAG directed acyclic graph

EM expectation-maximization

EnKF ensemble Kalman filter

EPFL École Politechnique
Fédérale de Lausanne

ExKF extended Kalman filter

HSD honest significant difference
(statistical test)

ISI inter-spike interval

ISTBI Institute for Science and
Technology for Brain-
Inspired Intelligence

KF Kalman filter

KS Kalman smoother

LIF leaky integrate-and-fire

MAP maximum a posteriori

MCMC Markov chain Monte Carlo

MH Metropolis-Hastings

ML maximum likelihood

ODE ordinary differential equa-
tion

OPT-SIRS optimal sequential impor-
tance resampling

PF particle filters

PMMH particle marginal Metropolis-
Hastings

PSO particle swarm optimisation

SMC sequential Monte Carlo
methods

SSE sum of squared errors

SSM state-space model

UKF unscented Kalman filter

UPF unscented particle filter

225

BBP shorthands

BBP Blue Brain Project

BP bipolar cell

BTC bitufted cell

cAC continuous accommodating

cAD continuous adaptive

ChC chandelier cell

DBC double bouquet cell

e-type electrical type

HBP Human Brain Project

L23 layer 2 and 3

LBC large basket cell

m-type electrical type

MC Martinotti cell

me-type morpho-electrical type

NBC nest basket cell

NGC neurogliaform cell

NMC neocortical microcircuit col-
laboration

PC pyramidal cell

SBC small basket cell

SP star pyramidal cell

TTPC1 thick-tufted pyramidal cell

Standard shorthands

a.e. almost everywhere

c.d.f. cumulative distribution
function

cfr. confer (Latin for “com-
pare”)

e.g. exempli gratia (Latin for
“for example”)

etc. et cetera (Latin for “and so
forth”)

i.e. id est (Latin for “that is”)

i.i.d. independent identically-
distributed

l.h.s. left hand side

p.d.f. probability density function

r.h.s. right hand side

r.v. random variable

226

Index

4DVAR, 34
3DVAR, 48

acceptance density, 29
action, 37
analysis step, 44
aperiodic, 26
augmented signal variable, 60
augmented state-space model, 60

Bayesian methods, 59
Bayesian quality assessment, 77
Blue Brain Project, 87
bootstrap filter, 51
burn-in, 33

Carathéodory conditions, 114
Carathéodory existence theorem, 115
conditional mean, 34
consistent, 54
convexity, 36
corner, 138
curse of dimensionality, 33, 200

data, 15
data assimilation, 13
data assimilation time window, 19, 106
derivative-based algorithms, 36
detailed balance, 29
deterministic discrete-time map, 17
deterministic observation operator, 17
directed acyclic graph, 16
dynamical noise process, 16

electrical type, 119

ensemble, 50
ensemble size, 50
ergodic, 27
ergodic theorem, 27
evolutionary algorithms, 36
existence, 54
extended Kalman filter, 47
extended solution, 115

filtering distribution, 43
first out-of-sample time window, 78
forecast skill, 78

generalization time window, 154
genetic algorithms, 36

Haas-White, 135
hidden Markov model, 16
hyperparameter, 63

importance sampling distribution, 50
importance weight, 50
in-sample, 107
in-sample time window, 78, 154
independent samplers, 31
innovation, 46
invariant distribution, 26
irreducibility, 26
ISI-distance, 137

Kalman gain, 46
Kalman smoother, 35

leaky integrate-and-fire, 120
likelihood function, 22

227

Lipschitz constant, 55
Lipschitz continuous, 55

Markov chain Monte Carlo, 26
maximum a posteriori, 34
maximum likelihood, 34
maximum likelihood methods, 59
measurement absolute error, 79
measurement noise process, 17
Metropolis algorithms, 32
Metropolis-Hastings, 29
Monte Carlo approximation, 28, 50
morpho-electrical type, 120
morphological type, 119

negative-log likelihood, 22
negative-log prior, 22
negative-log smoothing density, 23
neocortical microcircuit collaboration,

94
Neuron, 89, 100

observation process, 15
off-line, 25
on-line, 25
optimal sequential importance resam-

pling, 52
out-of-sample, 107
out-of-sample time window, 155

particle filters, 50
particle marginal Metropolis-Hastings,

60
particle swarm optimisation, 36, 202
path integral, 37
path space, 37
predicted distribution, 44
prediction step, 43
prediction time window, 155
prior density, 21
prior model, 67
proposal density, 29

proposal distribution, 50
proposed ensemble, 50

quantile function, 64

recurrent, 26
relative measurement error, 80

Schreiber et al., 135
second out-of-sample time window, 78
section, 100
segments, 100
sequential Monte Carlo methods, 50
sigma points, 48
signal absolute error, 79
signal estimation quality assessment,

77
signal process, 13
smoothing density, 23
smoothing problem, 21
SPIKE synchronization, 139
SPIKE-distance, 138
SPIKE-distance objective function, 201
stability, 54
standard ergodic assumptions, 26
state-space model, 13

thinning, 33
transition kernel, 26
true discrete trajectory, 106
true trajectory, 98

univariate DS-fit function, 196
univariate dSSE-fit function, 194
unscented Kalman filter, 48
unscented particle filter, 54

van Rossum distance, 134
van Rossum objective function, 201
variational methods, 33
Victor-Purpura inter-spike interval dis-

tance, 133
Victor-Purpura objective function, 201
Victor-Purpura SPIKE metric, 132

228

Bibliography

[1] https : / / www . humanbrainproject . eu / en / follow - hbp / news /

worlds - brain - initiatives - move - forward - together/; https :

//www.brainalliance.org.au/learn/media-releases/worlds-

brain-initiatives-move-forward-together/. Declaration of Intent
to Create an International Brain Initiative (IBI). December 2017.

[2] https://github.com/yejingxin/minAone. Reference webpage for
minAone. Last access: October 2017.

[3] https://projects.coin-or.org/IPOPT. Reference webpage for the
interior point optmizer IPOPT. Last access: January 2014.

[4] https://www-sigproc.eng.cam.ac.uk/smc/. Webpage of Signal
Processing and Communications Group at the University of Cambridge.
Last access: February 2018.

[5] https://neuron.yale.edu/neuron/. Reference webpage for the NEU-
RON simulation environment. Last access: January 2017.

[6] https://bbp.epfl.ch/nmc-portal. Blue Brain Project neocortical
collaboration portal. Last access: April 2018.

[7] https://mariomulansky.github.io/PySpike/. Reference webpage
for the Python library for the numerical analysis of spike train similarity
(pyspike Python module). Last access: May 2017.

[8] https://neuralensemble.org/ElePhAnT/. Reference webpage for
the electro-physiology analysis toolkit (elephant Python module). Last
access: March 2018.

[9] https://github.com/BlueBrain/BluePyOpt/. Reference webpage
for the Blue Brain Python optimisation library (bluepyopt Python
module). Last access: April 2017.

[10] https://esa.github.io/pygmo/. Reference webpages for the Python
library for bio-inspired and evolutionary optimization algorithms (pygmo
Python module).

229

https://www.humanbrainproject.eu/en/follow-hbp/news/worlds-brain-initiatives-move-forward-together/
https://www.humanbrainproject.eu/en/follow-hbp/news/worlds-brain-initiatives-move-forward-together/
https://www.brainalliance.org.au/learn/media-releases/worlds-brain-initiatives-move-forward-together/
https://www.brainalliance.org.au/learn/media-releases/worlds-brain-initiatives-move-forward-together/
https://www.brainalliance.org.au/learn/media-releases/worlds-brain-initiatives-move-forward-together/
https://github.com/yejingxin/minAone
https://projects.coin-or.org/IPOPT
https://www-sigproc.eng.cam.ac.uk/smc/
https://neuron.yale.edu/neuron/
https://bbp.epfl.ch/nmc-portal
https://mariomulansky.github.io/PySpike/
https://neuralensemble.org/ElePhAnT/
https://github.com/BlueBrain/BluePyOpt/
https://esa.github.io/pygmo/

[11] S. I. Aanonsen et al. “The ensemble Kalman filter in reservoir engineering–
a review”. In: Spe Journal 14.03 (2009), pp. 393–412.

[12] H. D. Abarbanel. “Predicting the Future: Completing Models of Ob-
served Complex Systems”. In: AMC 10 (2013), p. 12.

[13] L. F. Abbott. “Lapicque’s introduction of the integrate-and-fire model
neuron (1907)”. In: Brain research bulletin 50.5-6 (1999), pp. 303–304.

[14] R Adams, D. Brown, and A Constanti. “M-currents and other potas-
sium currents in bullfrog sympathetic neurones”. In: The Journal of
Physiology 330.1 (1982), pp. 537–572.

[15] R. P. Agarwal and V. Lakshmikantham. Uniqueness and nonunique-
ness criteria for ordinary differential equations. Vol. 6. World Scientific
Publishing Company, 1993.

[16] J. T. Alander. An indexed bibliography of genetic algorithms: Years
1957-1993. Art of CAD, 1994.

[17] J. L. Anderson. “An adaptive covariance inflation error correction al-
gorithm for ensemble filters”. In: Tellus A 59.2 (2007), pp. 210–224.

[18] D. Aronov et al. “Neural coding of spatial phase in V1 of the macaque
monkey”. In: Journal of neurophysiology 89.6 (2003), pp. 3304–3327.

[19] R. B. Avery and D. Johnston. “Multiple channel types contribute to the
low-voltage-activated calcium current in hippocampal CA3 pyramidal
neurons”. In: The Journal of neuroscience 16.18 (1996), pp. 5567–5582.

[20] V. A. Bavdekar et al. “Constrained dual ensemble Kalman filter for
state and parameter estimation”. In: 2013 American Control Confer-
ence. IEEE. 2013, pp. 3093–3098.

[21] R. Bellman. Adaptive control processes: a guided tour. Princeton Uni-
versity Press, 1961.

[22] L. Bengtsson, M. Ghil, and E. Källén. Dynamic meteorology: data as-
similation methods. Vol. 36. Springer, 1981.

[23] D. Bianchi et al. “On the mechanisms underlying the depolarization
block in the spiking dynamics of CA1 pyramidal neurons”. In: Journal
of computational neuroscience 33.2 (2012), pp. 207–225.

[24] G. D. Birkhoff. “Proof of the ergodic theorem”. In: Proceedings of the
National Academy of Sciences 17.12 (1931), pp. 656–660.

[25] F. Biscani, D. Izzo, and M. Märtens. esa/pagmo2: pagmo 2.7. doi.org/
10.5281/zenodo.1217831. 2018.

230

doi.org/10.5281/zenodo.1217831
doi.org/10.5281/zenodo.1217831

[26] M. Bocquet et al. “Data assimilation in atmospheric chemistry models:
current status and future prospects for coupled chemistry meteorology
models”. In: Atmospheric chemistry and physics 15.10 (2015), pp. 5325–
5358.

[27] Z. Botev. “The normal law under linear restrictions: simulation and
estimation via minimax tilting”. In: Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 79.1 (2017), pp. 125–148.

[28] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge uni-
versity press, 2004.

[29] N. Brunel and M. C. Van Rossum. “Quantitative investigations of elec-
trical nerve excitation treated as polarization”. In: Biological Cybernet-
ics 97.5-6 (2007), pp. 341–349.

[30] N. Brunel and X.-J. Wang. “Effects of neuromodulation in a cortical
network model of object working memory dominated by recurrent inhi-
bition”. In: Journal of computational neuroscience 11.1 (2001), pp. 63–
85.

[31] H. L. Bryant and J. P. Segundo. “Spike initiation by transmembrane
current: a white-noise analysis.” In: The Journal of physiology 260.2
(1976), pp. 279–314.

[32] G. Burgers, P. Jan van Leeuwen, and G. Evensen. “Analysis scheme in
the ensemble Kalman filter”. In: Monthly weather review 126.6 (1998),
pp. 1719–1724.

[33] A. N. Burkitt. “A review of the integrate-and-fire neuron model: I.
Homogeneous synaptic input”. In: Biological cybernetics 95.1 (2006),
pp. 1–19.

[34] W. H. Calvin and C. F. Stevens. “Synaptic noise as a source of vari-
ability in the interval between action potentials”. In: Science 155.3764
(1967), pp. 842–844.

[35] C. Canuto and A. Tabacco. Analisi matematica II: Teoria ed esercizi
con complementi in rete. Springer Science & Business Media, 2008.

[36] O. Cappé, S. J. Godsill, and E. Moulines. “An overview of existing
methods and recent advances in sequential Monte Carlo”. In: Proceed-
ings of the IEEE 95.5 (2007), pp. 899–924.

[37] N. T. Carnevale and M. L. Hines. The NEURON book. Cambridge Uni-
versity Press, 2006.

231

[38] G. A. Carpenter. “A geometric approach to singular perturbation prob-
lems with applications to nerve impulse equations”. In: Journal of Dif-
ferential Equations 23.3 (1977), pp. 335–367.

[39] J. A. Carton and B. S. Giese. “A reanalysis of ocean climate using Sim-
ple Ocean Data Assimilation (SODA)”. In: Monthly Weather Review
136.8 (2008), pp. 2999–3017.

[40] M. Çetin and S. Beyhan. “Adaptive Stabilization of Uncertain Cor-
tex Dynamics under Joint Estimates and Input Constraints”. In: IEEE
Transactions on Circuits and Systems II: Express Briefs (2018).

[41] S. B. Chitralekha et al. “A comparison of simultaneous state and pa-
rameter estimation schemes for a continuous fermentor reactor”. In:
Journal of Process Control 20.8 (2010), pp. 934–943.

[42] N. Chopin, P. E. Jacob, and O. Papaspiliopoulos. “SMC2: an efficient
algorithm for sequential analysis of state space models”. In: Journal
of the Royal Statistical Society: Series B (Statistical Methodology) 75.3
(2013), pp. 397–426.

[43] K. N. Chueh, C. C. Conley, and J. A. Smoller. “Positively invariant
regions for systems of nonlinear diffusion equations”. In: Indiana Uni-
versity Mathematics Journal 26.2 (1977), pp. 373–392.

[44] C. M. Colbert and E. Pan. “Ion channel properties underlying axonal
action potential initiation in pyramidal neurons”. In: Nature neuro-
science 5.6 (2002), pp. 533–538.

[45] D. Crisan and A. Doucet. “A survey of convergence results on particle
filtering methods for practitioners”. In: IEEE Transactions on signal
processing 50.3 (2002), pp. 736–746.

[46] J. Cronin. Mathematical aspects of Hodgkin-Huxley neural theory. Vol. 7.
Cambridge University Press, 1987.

[47] V. Cutsuridis, S. Cobb, and B. P. Graham. “Encoding and retrieval in
a model of the hippocampal CA1 microcircuit”. In: Hippocampus 20.3
(2010), pp. 423–446.

[48] E. D’Angelo et al. “Theta-frequency bursting and resonance in cere-
bellar granule cells: experimental evidence and modeling of a slow K+-
dependent mechanism”. In: Journal of Neuroscience 21.3 (2001), pp. 759–
770.

232

[49] G. Deco, E. T. Rolls, and B. Horwitz. ““What” and “where” in visual
working memory: a computational neurodynamical perspective for in-
tegrating fMRI and single-neuron data”. In: Journal of Cognitive Neu-
roscience 16.4 (2004), pp. 683–701.

[50] P. Del Moral and A. Guionnet. “On the stability of interacting processes
with applications to filtering and genetic algorithms”. In:

[51] A. Destexhe, Z. F. Mainen, and T. J. Sejnowski. “Synthesis of models
for excitable membranes, synaptic transmission and neuromodulation
using a common kinetic formalism”. In: Journal of computational neu-
roscience 1.3 (1994), pp. 195–230.

[52] A. Destexhe et al. “A model of spindle rhythmicity in the isolated tha-
lamic reticular nucleus”. In: Journal of neurophysiology 72.2 (1994),
pp. 803–818.

[53] K. Diba, C. Koch, and I. Segev. “Spike propagation in dendrites with
stochastic ion channels”. In: Journal of Computational Neuroscience
20.1 (2006), pp. 77–84.

[54] S. Ditlevsen and P. Greenwood. “The Morris–Lecar neuron model em-
beds a leaky integrate-and-fire model”. In: Journal of Mathematical
Biology 67.2 (2013), pp. 239–259.

[55] S. Ditlevsen and A. Samson. “Parameter estimation in the stochas-
tic Morris-Lecar neuronal model with particle filter methods”. (unpub-
lished). June 2012. url: https://hal.archives-ouvertes.fr/hal-
00712331.

[56] S. Ditlevsen, A. Samson, et al. “Estimation in the partially observed
stochastic Morris–Lecar neuronal model with particle filter and stochas-
tic approximation methods”. In: The annals of applied statistics 8.2
(2014), pp. 674–702.

[57] S. Diwakar et al. “Axonal Na+ channels ensure fast spike activation
and back-propagation in cerebellar granule cells”. In: Journal of neuro-
physiology 101.2 (2009), pp. 519–532.

[58] A. Doucet, N. De Freitas, and N. Gordon. Sequential Monte Carlo Meth-
ods in Practice. Series Statistics For Engineering and Information Sci-
ence. 2001.

[59] A. Doucet, S. Godsill, and C. Andrieu. “On sequential Monte Carlo
sampling methods for Bayesian filtering”. In: Statistics and computing
10.3 (2000), pp. 197–208.

233

https://hal.archives-ouvertes.fr/hal-00712331
https://hal.archives-ouvertes.fr/hal-00712331

[60] S. Druckmann et al. “A novel multiple objective optimization frame-
work for constraining conductance-based neuron models by experimen-
tal data”. In: Frontiers in neuroscience 1 (2007), p. 1.

[61] S. Druckmann et al. “Evaluating automated parameter constraining
procedures of neuron models by experimental and surrogate data”. In:
Biological cybernetics 99.4-5 (2008), p. 371.

[62] R. C. Eberhart, J. Kennedy, et al. “A new optimizer using particle
swarm theory”. In: Proceedings of the sixth international symposium
on micro machine and human science. Vol. 1. New York, NY. 1995,
pp. 39–43.

[63] H. Eibern and H. Schmidt. “A four-dimensional variational chemistry
data assimilation scheme for Eulerian chemistry transport modeling”.
In: Journal of Geophysical Research: Atmospheres 104.D15 (1999), pp. 18583–
18598.

[64] A. P. Engelbrecht. Computational intelligence: an introduction. John
Wiley & Sons, 2007.

[65] B. Ermentrout. Simulating, analyzing, and animating dynamical sys-
tems: a guide to XPPAUT for researchers and students. Vol. 14. Siam,
2002.

[66] G. B. Ermentrout and D. H. Terman. Mathematical foundations of neu-
roscience. Vol. 35. Springer Science & Business Media, 2010.

[67] G. Evensen. “Inverse methods and data assimilation in nonlinear ocean
models”. In: Physica D: Nonlinear Phenomena 77.1-3 (1994), pp. 108–
129.

[68] G. Evensen. “Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics”. In: Jour-
nal of Geophysical Research: Oceans 99.C5 (1994), pp. 10143–10162.

[69] G. Evensen. Data assimilation: the ensemble Kalman filter. Springer
Science & Business Media, 2009.

[70] A. A. Faisal, L. P. Selen, and D. M. Wolpert. “Noise in the nervous
system”. In: Nature reviews neuroscience 9.4 (2008), p. 292.

[71] A. Filippov. Differential Equations with Discontinuous Righthand Sides:
Control Systems. Vol. 18. Springer Science & Business Media, 1988.

[72] R. FitzHugh. “Impulses and physiological states in theoretical models
of nerve membrane”. In: Biophysical journal 1.6 (1961), pp. 445–466.

[73] S. Gasparini and M. Migliore. “Action Potential Backpropagation”. In:
Encyclopedia of Computational Neuroscience (2015), pp. 133–137.

234

[74] N. Geir et al. “Reservoir monitoring and continuous model updating
using ensemble Kalman filter”. In: SPE Annual Technical Conference
and Exhibition. Society of Petroleum Engineers. 2003.

[75] M. Ghil and P. Malanotte-Rizzoli. “Data assimilation in meteorology
and oceanography”. In: Advances in geophysics. Vol. 33. Elsevier, 1991,
pp. 141–266.

[76] S. Gillijns et al. “What is the ensemble Kalman filter and how well does
it work?” In: American Control Conference, 2006. IEEE. 2006, 6–pp.

[77] J. H. Goldwyn and E. Shea-Brown. “The what and where of adding
channel noise to the Hodgkin-Huxley equations”. In: PLoS computa-
tional biology 7.11 (2011), e1002247.

[78] N. J. Gordon, D. J. Salmond, and A. F. Smith. “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation”. In: IEE Proceed-
ings F (Radar and Signal Processing). Vol. 140. 2. IET. 1993, pp. 107–
113.

[79] G. A. Gottwald and A. Majda. “A mechanism for catastrophic filter
divergence in data assimilation for sparse observation networks”. In:
Nonlinear Processes in Geophysics 20.5 (2013), pp. 705–712.

[80] N. W. Gouwens et al. “Systematic generation of biophysically detailed
models for diverse cortical neuron types”. In: Nature communications
9.1 (2018), p. 710.

[81] W. Govaerts, Y. A. Kuznetsov, and A. Dhooge. “Numerical continua-
tion of bifurcations of limit cycles in MATLAB”. In: SIAM journal on
scientific computing 27.1 (2005), pp. 231–252.

[82] J. S. Haas and J. A. White. “Frequency selectivity of layer II stellate
cells in the medial entorhinal cortex”. In: Journal of neurophysiology
88.5 (2002), pp. 2422–2429.

[83] M Hajós et al. “Modulation of septo-hippocampal θ activity by GABA
A receptors: An experimental and computational approach”. In: Neu-
roscience 126.3 (2004), pp. 599–610.

[84] X. Han and X. Li. “An evaluation of the nonlinear/non-Gaussian filters
for the sequential data assimilation”. In: Remote Sensing of Environ-
ment 112.4 (2008), pp. 1434–1449.

[85] E. Hay et al. “Models of neocortical layer 5b pyramidal cells capturing
a wide range of dendritic and perisomatic active properties”. In: PLoS
computational biology 7.7 (2011), e1002107.

235

[86] M. L. Hines and N. T. Carnevale. “The NEURON simulation environ-
ment”. In: Neural computation 9.6 (1997), pp. 1179–1209.

[87] M. L. Hines and N. T. Carnevale. “Expanding NEURON’s repertoire
of mechanisms with NMODL”. In: Neural Computation 12.5 (2000),
pp. 995–1007.

[88] K. H. Hobbs and S. L. Hooper. “Using complicated, wide dynamic range
driving to develop models of single neurons in single recording sessions”.
In: Journal of neurophysiology 99.4 (2008), pp. 1871–1883.

[89] A. L. Hodgkin and A. F. Huxley. “A quantitative description of mem-
brane current and its application to conduction and excitation in nerve”.
In: The Journal of physiology 117.4 (1952), p. 500.

[90] P. D. Hoff. A first course in Bayesian statistical methods. Springer Sci-
ence & Business Media, 2009.

[91] I. Hoteit, D.-T. Pham, and J. Blum. “A simplified reduced order Kalman
filtering and application to altimetric data assimilation in Tropical Pa-
cific”. In: Journal of Marine systems 36.1-2 (2002), pp. 101–127.

[92] I. Hoteit et al. “A new approximate solution of the optimal nonlin-
ear filter for data assimilation in meteorology and oceanography”. In:
Monthly Weather Review 136.1 (2008), pp. 317–334.

[93] C. Houghton and K. Sen. “A new multineuron spike train metric”. In:
Neural computation 20.6 (2008), pp. 1495–1511.

[94] P. R. Houser, G. De Lannoy, and J. P. Walker. Hydrological Data As-
similation. InTech, 2012.

[95] P. R. Houser et al. “Integration of soil moisture remote sensing and
hydrologic modeling using data assimilation”. In: Water Resources Re-
search 34.12 (1998), pp. 3405–3420.

[96] Q. J. Huys, M. B. Ahrens, and L. Paninski. “Efficient estimation of
detailed single-neuron models”. In: Journal of neurophysiology 96.2
(2006), pp. 872–890.

[97] Q. J. Huys and L. Paninski. “Smoothing of, and parameter estimation
from, noisy biophysical recordings”. In: PLoS Comput Biol 5.5 (2009),
e1000379.

[98] K. Ide and C. Jones. “Special issue on mathematics of data assimi-
lation”. In: Physica D: Nonlinear Phenomena 230.1–2 (2007), vii:viii.
issn: 0167-2789. doi: doi.org/10.1016/j.physd.2007.04.001.

236

https://doi.org/doi.org/10.1016/j.physd.2007.04.001

[99] E. M. Izhikevich. Dynamical systems in neuroscience: The Geometry
of Excitability and Bursting. Computational Neuroscience. Cambridge,
Massachusetts: MIT press, 2007.

[100] E. M. Izhikevich and B. Ermentrout. “Phase model”. In: Scholarpedia
3.10 (2008), p. 1487. doi: doi.org/10.4249/scholarpedia.1487.

[101] N. Johnson, S. Kotz, and N Balakrishnan. Continuous Univariate Prob-
ability Distributions,(Vol. 1). 1994.

[102] M. I. Jordan. An introduction to probabilistic graphical models. Avail-
able at http://www.cs.berkeley.edu/jordan/prelims/. 2003.

[103] S. J. Julier and J. K. Uhlmann. A general method for approximating
nonlinear transformations of probability distributions. Tech. rep. Tech-
nical report, Robotics Research Group, Department of Engineering Sci-
ence, University of Oxford, 1996.

[104] S. J. Julier and J. K. Uhlmann. “New extension of the Kalman filter
to nonlinear systems”. In: Signal processing, sensor fusion, and target
recognition VI. Vol. 3068. International Society for Optics and Photon-
ics. 1997, pp. 182–194.

[105] S. I. Kabanikhin. “Definitions and examples of inverse and ill-posed
problems”. In: Journal of Inverse and Ill-Posed Problems 16.4 (2008),
pp. 317–357.

[106] N. Kadakia et al. “Nonlinear statistical data assimilation for HVC-
RA neurons in the avian song system”. In: Biological cybernetics 110.6
(2016), pp. 417–434.

[107] R. E. Kalman. “A new approach to linear filtering and prediction prob-
lems”. In: Journal of basic Engineering 82.1 (1960), pp. 35–45.

[108] E. Kalnay. Atmospheric modeling, data assimilation and predictability.
Cambridge university press, 2003.

[109] E. Kalnay. Atmospheric modeling, data assimilation and predictability.
Cambridge university press, 2003.

[110] N. Kantas et al. “An overview of sequential Monte Carlo methods for
parameter estimation in general state-space models”. In: IFAC Proceed-
ings Volumes 42.10 (2009), pp. 774–785.

[111] N. Kantas et al. “On particle methods for parameter estimation in
state-space models”. In: Statistical science 30.3 (2015), pp. 328–351.

[112] K. Katterbauer, I. Hoteit, and S. Sun. “EMSE: Synergizing EM and
seismic data attributes for enhanced forecasts of reservoirs”. In: Journal
of Petroleum Science and Engineering 122 (2014), pp. 396–410.

237

https://doi.org/doi.org/10.4249/scholarpedia.1487

[113] J. P. Keener and J. Sneyd. Mathematical physiology. 2nd. Springer, New
York, NY, 2009. doi: doi.org/10.1007/978-0-387-79388-7.

[114] D. Kelly, K. Law, and A. M. Stuart. “Well-posedness and accuracy
of the ensemble Kalman filter in discrete and continuous time”. In:
Nonlinearity 27.10 (2014), p. 2579.

[115] C. Keppenne et al. “Ensemble Kalman filter assimilation of temperature
and altimeter data with bias correction and application to seasonal
prediction”. In: Nonlinear processes in Geophysics 12.4 (2005), pp. 491–
503.

[116] G. Kitagawa. “A self-organizing state-space model”. In: Journal of the
American Statistical Association (1998), pp. 1203–1215.

[117] P. Kloeden and E. Platen. Numerical solution of stochastic differential
equations. Springer-Verlag New York, 1992.

[118] M Kohler et al. “Small-conductance, calcium-activated potassium chan-
nels from mammalian brain”. In: Science 273.5282 (1996), p. 1709.

[119] M. Kohn. “Computer modeling at the national biomedical simulation
resource”. In: Computers & Mathematics with Applications 18.10-11
(1989), pp. 919–924.

[120] M. H. Kole, S. Hallermann, and G. J. Stuart. “Single Ih channels in
pyramidal neuron dendrites: properties, distribution, and impact on
action potential output”. In: The Journal of neuroscience 26.6 (2006),
pp. 1677–1687.

[121] A. Korngreen and B. Sakmann. “Voltage-gated K+ channels in layer 5
neocortical pyramidal neurones from young rats: subtypes and gradi-
ents”. In: The Journal of Physiology 525.3 (2000), pp. 621–639.

[122] M. Kostuk et al. “Dynamical estimation of neuron and network proper-
ties II: path integral Monte Carlo methods”. In: Biological cybernetics
106.3 (2012), pp. 155–167.

[123] J. H. Kotecha and P. M. Djuric. “Gaussian particle filtering”. In: IEEE
Transactions on Signal Processing 51.10 (2003), pp. 2592–2601. issn:
1053-587X. doi: doi.org/10.1109/TSP.2003.816758.

[124] T. Kreuz. “Measures of spike train synchrony”. In: 6.10 (2011), p. 11934.
doi: doi.org/10.4249/scholarpedia.11934.

[125] T. Kreuz, M. Mulansky, and N. Bozanic. “SPIKY: A graphical user
interface for monitoring spike train synchrony”. In: Journal of neuro-
physiology 113.9 (2015), pp. 3432–3445.

238

https://doi.org/doi.org/10.1007/978-0-387-79388-7
https://doi.org/doi.org/10.1109/TSP.2003.816758
https://doi.org/doi.org/10.4249/scholarpedia.11934

[126] T. Kreuz et al. “Measuring spike train synchrony and reliability”. In:
BMC Neuroscience 8.2 (2007), p. 1.

[127] T. Kreuz et al. “Measuring multiple spike train synchrony”. In: Journal
of neuroscience methods 183.2 (2009), pp. 287–299.

[128] T. Kreuz et al. “Time-resolved and time-scale adaptive measures of
spike train synchrony”. In: Journal of neuroscience methods 195.1 (2011),
pp. 92–106.

[129] T. Kreuz et al. “Monitoring spike train synchrony”. In: Journal of neu-
rophysiology 109.5 (2013), pp. 1457–1472.

[130] M. Krysta et al. “Data assimilation for short-range dispersion of ra-
dionuclides: An application to wind tunnel data”. In: Atmospheric En-
vironment 40.38 (2006), pp. 7267–7279.

[131] Y. A. Kuznetsov. Elements of applied bifurcation theory. Vol. 112. Springer
Science & Business Media, 2013.

[132] S Lange, A. Lupascu, et al. “Data-driven computational modeling of
CA1 hippocampal principal cells and interneurons”. In: BMC Neuro-
science 18.Suppl (2017), P177.

[133] L. Lapicque. “Recherches quantitatives sur l’excitation electrique des
nerfs traitee comme une polarization”. In: Journal de physiologie et de
pathologie générale 9 (1907), pp. 620–635.

[134] K. Law, A. Stuart, and K. Zygalakis. Data Assimilation. Vol. 62. Texts
in Applied Mathematics. Springer, 2015.

[135] K. J. Law and A. M. Stuart. “Evaluating data assimilation algorithms”.
In: Monthly Weather Review 140.11 (2012), pp. 3757–3782.

[136] F. Le Gland, V. Monbet, and V.-D. Tran. “Large sample asymptotics
for the ensemble Kalman filter”. PhD thesis. INRIA, 2009.

[137] S. Li, J. Li, and Z. Li. “An improved unscented kalman filter based
decoder for cortical brain-machine interfaces”. In: Frontiers in neuro-
science 10 (2016), p. 587.

[138] J. Liepe et al. “A framework for parameter estimation and model se-
lection from experimental data in systems biology using approximate
Bayesian computation”. In: Nature protocols 9.2 (2014), pp. 439–456.

[139] H. Lindén et al. “Modeling the spatial reach of the LFP”. In: Neuron
(2011). issn: 08966273. doi: 10.1016/j.neuron.2011.11.006.

[140] H. F. Lopes and R. S. Tsay. “Particle filters and Bayesian inference in
financial econometrics”. In: Journal of Forecasting 30.1 (2011), pp. 168–
209.

239

https://doi.org/10.1016/j.neuron.2011.11.006

[141] A. López-Cuevas et al. “State and parameter estimation of a neural
mass model from electrophysiological signals during the status epilep-
ticus”. In: NeuroImage 113 (2015), pp. 374–386.

[142] A. Lorenc et al. “The Met. Office global three-dimensional variational
data assimilation scheme”. In: Quarterly Journal of the Royal Meteo-
rological Society 126.570 (2000), pp. 2991–3012.

[143] A. C. Lorenc. “Analysis methods for numerical weather prediction”. In:
Quarterly Journal of the Royal Meteorological Society 112.474 (1986),
pp. 1177–1194.

[144] A. C. Lorenc and T. Payne. “4D-Var and the butterfly effect: Statisti-
cal four-dimensional data assimilation for a wide range of scales”. In:
Quarterly Journal of the Royal Meteorological Society 133.624 (2007),
pp. 607–614.

[145] W. W. Lytton. “Optimizing synaptic conductance calculation for net-
work simulations”. In: Neural computation 8.3 (1996), pp. 501–509.

[146] J. Magistretti and A. Alonso. “Biophysical properties and slow voltage-
dependent inactivation of a sustained sodium current in entorhinal cor-
tex layer-II principal neurons a whole-cell and single-channel study”.
In: The Journal of general physiology 114.4 (1999), pp. 491–509.

[147] Z. F. Mainen and T. J. Sejnowski. “Reliability of spike timing in neo-
cortical neurons”. In: Science 268.5216 (1995), pp. 1503–1506.

[148] M. Markaki, S. Orphanoudakis, and P. Poirazi. “Modelling reduced ex-
citability in aged CA1 neurons as a calcium-dependent process”. In:
Neurocomputing 65 (2005), pp. 305–314.

[149] H. Markram et al. “Reconstruction and simulation of neocortical mi-
crocircuitry”. In: Cell 163.2 (2015), pp. 456–492.

[150] P. Z. Marmarelis and K.-I. Naka. “White-noise analysis of a neuron
chain: an application of the Wiener theory”. In: Science 175.4027 (1972),
pp. 1276–1278.

[151] S. Masoli et al. “Single neuron optimization as a basis for accurate
biophysical modeling: the case of cerebellar granule cells”. In: Frontiers
in cellular neuroscience 11 (2017), p. 71.

[152] A. Mazzoni. “From Single Neuron Activity to Network Information Pro-
cessing: Simulating Cortical Local Field Potentials and Thalamus Dy-
namic Regimes with Integrate-and-Fire Neurons”. In: Mathematical and
Theoretical Neuroscience. Springer, 2017, pp. 1–23.

240

[153] H. M. Menegaz et al. “A systematization of the unscented Kalman
filter theory”. In: IEEE Transactions on automatic control 60.10 (2015),
pp. 2583–2598.

[154] R van der Merwe et al. The unscented particle filter Technical Report
CUED. Tech. rep. F-INFENG/TR 380, Cambridge University Engi-
neering Department, Cambridge, England, 2000.

[155] N. Metropolis et al. “Equation of state calculations by fast computing
machines”. In: The journal of chemical physics 21.6 (1953), pp. 1087–
1092.

[156] S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability.
2nd ed. Springer Science & Business Media, 2012.

[157] M. Migliore et al. “Distributed organization of a brain microcircuit ana-
lyzed by three-dimensional modeling: the olfactory bulb”. In: Frontiers
in computational neuroscience 8 (2014), p. 50.

[158] H. Moradkhani et al. “Uncertainty assessment of hydrologic model
states and parameters: Sequential data assimilation using the particle
filter”. In: Water resources research 41.5 (2005).

[159] C. Morris and H. Lecar. “Voltage oscillations in the barnacle giant mus-
cle fiber”. In: Biophysical journal 35.1 (1981), pp. 193–213.

[160] M. Mulansky and T. Kreuz. “PySpike-A Python library for analyzing
spike train synchrony”. In: arXiv preprint arXiv:1603.03293 (2016).

[161] P. Munõz-Gutiérrez and E Giraldo. “Ensemble Kalman filter for state
estimation of brain activity by considering a large scale nonlinear dy-
namical model”. In: VII Latin American Congress on Biomedical En-
gineering CLAIB 2016, Bucaramanga, Santander, Colombia, October
26th-28th, 2016. Springer. 2017, pp. 445–448.

[162] J. Nagumo, S. Arimoto, and S. Yoshizawa. “An active pulse trans-
mission line simulating nerve axon”. In: Proceedings of the IRE 50.10
(1962), pp. 2061–2070.

[163] J. Nocedal and S. Wright. Numerical optimization. Springer Science &
Business Media, 2006.

[164] A. Nogaret et al. “Automatic construction of predictive neuron mod-
els through large scale assimilation of electrophysiological data”. In:
Scientific reports 6 (2016), p. 32749.

[165] D. S. Oliver, A. C. Reynolds, and N. Liu. Inverse theory for petroleum
reservoir characterization and history matching. Cambridge University
Press, 2008.

241

[166] D. T. Pham, J. Verron, and M. C. Roubaud. “A singular evolutive ex-
tended Kalman filter for data assimilation in oceanography”. In: Jour-
nal of Marine systems 16.3-4 (1998), pp. 323–340.

[167] P. Poirazi, T. Brannon, and B. W. Mel. “Pyramidal neuron as two-layer
neural network”. In: Neuron 37.6 (2003), pp. 989–999.

[168] R. Poli, J. Kennedy, and T. Blackwell. “Particle swarm optimization”.
In: Swarm intelligence 1.1 (2007), pp. 33–57.

[169] N. Politi, J. Feng, and W. Lu. “Comparing data assimilation filters
for parameter estimation in a neuron model”. In: Neural Networks
(IJCNN), 2016 International Joint Conference on. IEEE, 2016.

[170] J Prakash, S. C. Patwardhan, and S. L. Shah. “Constrained nonlin-
ear state estimation using ensemble Kalman filters”. In: Industrial &
Engineering Chemistry Research 49.5 (2010), pp. 2242–2253.

[171] A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics. Vol. 37.
Springer Science & Business Media, 2010.

[172] R. Q. Quiroga, T. Kreuz, and P. Grassberger. “Event synchronization:
a simple and fast method to measure synchronicity and time delay
patterns”. In: Physical review E 66.4 (2002), p. 041904.

[173] S. Ramaswamy et al. “The neocortical microcircuit collaboration portal:
a resource for rat somatosensory cortex”. In: Frontiers in neural circuits
9 (2015).

[174] P. Rebeschini, R. Van Handel, et al. “Can local particle filters beat the
curse of dimensionality?” In: The Annals of Applied Probability 25.5
(2015), pp. 2809–2866.

[175] R. H. Reichle. “Data assimilation methods in the Earth sciences”. In:
Advances in Water Resources 31.11 (2008), pp. 1411–1418.

[176] R. H. Reichle, D. B. McLaughlin, and D. Entekhabi. “Hydrologic data
assimilation with the ensemble Kalman filter”. In: Monthly Weather
Review 130.1 (2002), pp. 103–114.

[177] J Rettig et al. “Characterization of a Shaw-related potassium channel
family in rat brain.” In: The EMBO Journal 11.7 (1992), p. 2473.

[178] I Reuveni et al. “Stepwise repolarization from Ca2+ plateaus in neo-
cortical pyramidal cells: evidence for nonhomogeneous distribution of
HVA Ca2+ channels in dendrites”. In: The Journal of neuroscience
13.11 (1993), pp. 4609–4621.

[179] C. P. Robert and G. Casella. Monte Carlo statistical methods. Springer
New York, 1999.

242

[180] S. Robert and H. R. Künsch. “Localizing the ensemble Kalman parti-
cle filter”. In: Tellus A: Dynamic Meteorology and Oceanography 69.1
(2017), p. 1282016.

[181] M. C. W. van Rossum. “A novel spike distance”. In: Neural Computa-
tion 13.4 (2001), pp. 751–763.

[182] A. Roth and M. C. van Rossum. “Modeling synapses”. In: Computa-
tional modeling methods for neuroscientists 6 (2009), pp. 139–160.

[183] T. Sauer. “Numerical solution if stochastic differential equation in fi-
nance”. In: Handbook of computational finance (2012), pp. 529–550.

[184] C. Schillings and A. M. Stuart. “Analysis of the ensemble Kalman filter
for inverse problems”. In: SIAM Journal on Numerical Analysis 55.3
(2017), pp. 1264–1290.

[185] S. Schreiber et al. “A new correlation-based measure of spike timing
reliability”. In: Neurocomputing 52 (2003), pp. 925–931.

[186] E. Sejdić and L. A. Lipsitz. “Necessity of noise in physiology and
medicine”. In: Computer methods and programs in biomedicine 111.2
(2013), pp. 459–470.

[187] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning:
From theory to algorithms. Cambridge university press, 2014.

[188] B. Shan et al. “UKF-based closed loop iterative learning control of
epileptiform wave in a neural mass model”. In: Cognitive neurodynamics
9.1 (2015), pp. 31–40.

[189] Y. Shu et al. “Selective control of cortical axonal spikes by a slowly
inactivating K+ current”. In: Proceedings of the National Academy of
Sciences 104.27 (2007), pp. 11453–11458.

[190] D. Simon. “Optimal state estimation: Kalman, H infinity, and nonlinear
approaches”. In: 1st ed. John Wiley & Sons, 2006. Chap. 14, pp. 433–
459.

[191] J.-A. Skjervheim et al. “Incorporating 4D seismic data in reservoir sim-
ulation models using ensemble Kalman filter”. In: SPE journal 12.03
(2007), pp. 282–292.

[192] J. Smoller. Shock waves and reaction-diffusion equations. Vol. 258. Springer-
Verlag, 1983.

[193] C. Soto-Trevino et al. “Computational model of electrically coupled, in-
trinsically distinct pacemaker neurons”. In: Journal of neurophysiology
94.1 (2005), pp. 590–604.

243

[194] M Spreng et al. “Central nervous system activation by noise”. In: Noise
and health 2.7 (2000), p. 49.

[195] J. Tabak, C. R. Murphey, and L. Moore. “Parameter estimation meth-
ods for single neuron models”. In: Journal of computational neuro-
science 9.3 (2000), pp. 215–236.

[196] O. Talagrand and P. Courtier. “Variational assimilation of meteorolog-
ical observations with the adjoint vorticity equation. I: Theory”. In:
Quarterly Journal of the Royal Meteorological Society 113.478 (1987),
pp. 1311–1328.

[197] J.-N. Thepaut and P. Courtier. “Four-dimensional variational data as-
similation using the adjoint of a multilevel primitive-equation model”.
In: Quarterly Journal of the Royal Meteorological Society 117.502 (1991),
pp. 1225–1254.

[198] B. Toth. “Python scripting for dynamical parameter estimation in IPOPT”.
In: SIAG/OPT Views-and-News 21.1 (2010), pp. 1–8.

[199] B. A. Toth et al. “Dynamical estimation of neuron and network prop-
erties I: variational methods”. In: Biological cybernetics 105.3-4 (2011),
pp. 217–237.

[200] G Triantafyllou, I Hoteit, and G Petihakis. “A singular evolutive inter-
polated Kalman filter for efficient data assimilation in a 3-D complex
physical–biogeochemical model of the Cretan Sea”. In: Journal of Ma-
rine Systems 40 (2003), pp. 213–231.

[201] R. Van Der Merwe et al. “The Unscented particle filter Technical Re-
port CUED/F-INFENG/TR 380”. In: Cambridge University Engineer-
ing Department (2000).

[202] R. Van Der Merwe et al. “The unscented particle filter”. In: Advances
in neural information processing systems. 2001, pp. 584–590.

[203] W. Van Geit et al. “BluePyOpt: Leveraging open source software and
cloud infrastructure to optimise model parameters in neuroscience”. In:
Frontiers in Neuroinformatics 10 (2016), p. 17. doi: doi.org/10.

3389/fninf.2016.00017.

[204] P. J. Van Laarhoven and E. H. Aarts. Simulated annealing: Theory and
applications. Springer, 1987.

[205] P. J. Van Leeuwen and G. Evensen. “Data assimilation and inverse
methods in terms of a probabilistic formulation”. In: Monthly Weather
Review 124.12 (1996), pp. 2898–2913.

244

https://doi.org/doi.org/10.3389/fninf.2016.00017
https://doi.org/doi.org/10.3389/fninf.2016.00017

[206] D. V. Vavoulis et al. “A self-organizing state-space-model approach for
parameter estimation in hodgkin-huxley-type models of single neurons”.
In: PLoS Comput Biol 8.3 (2012), e1002401.

[207] J. D. Victor. “Spike train metrics”. In: Current opinion in neurobiology
15.5 (2005), pp. 585–592.

[208] J. D. Victor. “Spike Train Distance”. In: Encyclopedia of Computational
Neuroscience. Ed. by D. Jaeger and R. Jung. Springer, 2015, pp. 2808–
2814. doi: doi.org/10.1007/978-1-4614-6675-8_409.

[209] J. D. Victor and K. P. Purpura. “Nature and precision of temporal
coding in visual cortex: a metric-space analysis”. In: Journal of neuro-
physiology 76.2 (1996), pp. 1310–1326.

[210] J. D. Victor and K. P. Purpura. “Metric-space analysis of spike trains:
theory, algorithms and application”. In: Network 8 (1997), pp. 127–164.

[211] A. Wächter and L. T. Biegler. “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming”.
In: Mathematical programming 106.1 (2006), pp. 25–57.

[212] J. P. Walker and P. R. Houser. “Hydrologic data assimilation”. In:
Advances in water science methodologies. Londres: Taylor & Francis,
ed 1 (2005), pp. 25–48.

[213] J. Wang et al. “Data assimilation of membrane dynamics and chan-
nel kinetics with a neuromorphic integrated circuit”. In: Biomedical
Circuits and Systems Conference (BioCAS), 2016 IEEE. IEEE. 2016,
pp. 584–587.

[214] X.-J. Wang and G. Buzsáki. “Gamma oscillation by synaptic inhibi-
tion in a hippocampal interneuronal network model”. In: Journal of
neuroscience 16.20 (1996), pp. 6402–6413.

[215] X. Wang et al. “A survey of recent advances in particle filters and re-
maining challenges for multitarget tracking”. In: Sensors 17.12 (2017),
p. 2707.

[216] L. M. Ward and P. E. Greenwood. “1/f noise”. In: Scholarpedia 2.12
(2007), p. 1537.

[217] J. N. Weiss. “The Hill equation revisited: uses and misuses.” In: The
FASEB Journal 11.11 (1997), pp. 835–841.

[218] J. Ye et al. “Estimating the biophysical properties of neurons with
intracellular calcium dynamics”. In: Physical Review E 89.6 (2014),
p. 062714.

245

https://doi.org/doi.org/10.1007/978-1-4614-6675-8_409

[219] J. Ye et al. “Improved variational methods in statistical data assim-
ilation”. In: Nonlinear Processes in Geophysics 22.2 (2015), pp. 205–
213.

[220] J. Ye et al. “Systematic variational method for statistical nonlinear
state and parameter estimation”. In: Physical Review E 92.5 (2015),
p. 052901.

[221] M. Zafari, A. C. Reynolds, et al. “Assessing the uncertainty in reservoir
description and performance predictions with the ensemble Kalman fil-
ter”. In: SPE Annual Technical Conference and Exhibition. Society of
Petroleum Engineers. 2005.

[222] Y. Zhang et al. “Real-time air quality forecasting, part I: History, tech-
niques, and current status”. In: Atmospheric Environment 60 (2012),
pp. 632–655.

[223] Y. Zhang et al. “Real-time air quality forecasting, part II: State of the
science, current research needs, and future prospects”. In: Atmospheric
Environment 60 (2012), pp. 656–676.

246

	Acknowledgements
	Introduction
	I Data assimilation methods
	Introduction to Part I
	Generalities on state-space models
	The state-space model framework

	Off-line smoothing methods
	The Markov chain Monte Carlo methodology
	The Metropolis-Hastings framework

	Variational methods
	The path integral framework
	minAone

	On-line filtering methods
	Approximate Gaussian filters
	The Kalman filter
	The extended and the unscented Kalman filter
	The ensemble Kalman filter

	The particle filter
	The bootstrap filter
	The optimal sequential importance resampling
	Gaussian particle filters
	Well-posedness and consistency of particle filters

	Practical issues arising in data assimilation
	Handling parameters
	Data assimilation for parameter estimation
	State-space model for hyperparameters estimation

	Twin experiments from continuous-time models
	Dealing with bounded variables
	Single inequality constraint
	Bounded-interval constraint

	Evaluating data assimilation methods
	Performance score for algorithm evaluation

	II Neurobiology modelling
	Introduction to Part II
	Modelling of single neurons
	Generalities on single neuron models
	Ionic currents and state variables

	Toy model for a single neuron
	Sample toy model trajectory

	Realistic model from the Blue Brain Project
	Mathematical model for L23_PC_cADpyr229_1
	Model parameters
	Sample dynamics and artificial dataset

	Mathematical properties of single-neuron models
	Well-posedness of ODE single-neuron models with constant input current
	Qualitative analysis and numerical aspects in neuronal modelling
	More on well-posedness of single-neuron models

	Neural network models
	Neocortical microcircuit composition
	Network model of leaky integrate and fire neurons
	Synaptic current modelling
	Network parameters
	Neural population activity measure
	Sample network time course

	Spike train metrics
	Cost-based spike metrics
	Victor-Purpura SPIKE distance
	Victor-Purpura ISI distance

	Embedding-based spike metrics
	Van Rossum distance
	Similarity measures

	Parameter-free spike metrics
	ISI- and SPIKE-distance
	SPIKE synchronization

	Population extensions

	III Results on data assimilation experiments
	Introduction to Part III
	Twin experiment on the single-neuron toy model
	Twin experiment design
	Signal and parameters estimation
	Signal prediction results
	Discussion and conclusions

	Twin experiments on the BBP single-neuron model
	First experiment: fine tuning of EnKF parameters
	Setting parameters for EnKF
	Sample EnKF output
	ANOVA tests results

	Second experiment: biased initial condition for parameters
	Signal estimation results
	Parameter estimation results
	Improvement rate of the parameter estimation
	Validation in the first out-of-sample time window

	Discussion and conclusions

	Assimilating experimental data in a realistic BBP model
	Blue Brain Project experimental dataset
	Experimental traces selected for data assimilation

	Choosing the parameter search space
	Likelihood profiles
	Reducing the parameter search space size

	Selecting an effective assimilation method
	Results analysis
	Selection by validation in a forecast-skill sense

	Discussion and conclusions

	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Index

	Bibliography

