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Abstract

The term structure of equity and its cyclicality are key to understand the risks driving

equilibrium asset prices. We propose a general equilibrium model that jointly explains

four important features of the term structure of equity: (i) a negative unconditional

term premium, (ii) countercyclical term premia, (iii) procyclical equity yields, and (iv)

premia to value and growth claims respectively increasing and decreasing with the

horizon. The economic mechanism hinges on the interaction between heteroskedastic

long-run growth—which helps price long-term cash flows and leads to countercyclical

risk premia—and homoskedastic short-term shocks in the presence of limited market

participation—which produce sizeable risk premia to short-term cash flows. The slope

dynamics hold irrespective of the sign of its unconditional average. We provide empir-

ical support to our model assumptions and predictions.
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Over the last decade, there has been a significant interest in the term structure of equity,

which has proved to be a powerful tool to understand equity markets and their connection

with economic fundamentals. van Binsbergen, Brandt, and Koijen (2012) have pioneered

a recent stream of literature that documents the empirical properties of the term structure

of equity and tries to explain it in light of asset pricing theory. While leading asset pricing

models have proved to be unable to explain sizeable compensations to short-term claims of

equity payouts, a few recent models point to a number of potential explanations for a negative

equity term premium (see van Binsbergen and Koijen, 2017). However, van Binsbergen,

Hueskes, Koijen, and Vrugt (2013) and Gormsen (2020) document rich conditional dynamics

of the term structure of equity, which are still unexplained. These dynamics and their link

with economic fundamentals are important because they help understand which risks drive

asset price fluctuations. Moreover, the conditional term structure of equity is informative

about the economic outlook and discount rates and, thus, has implications for real decisions.1

This paper proposes a general equilibrium model that explains the most important prop-

erties of the term structure of equity, including (i) a negative unconditional equity term

premium, (ii) procyclical equity yields, (iii) countercyclical equity term premium, (iv) pre-

mia to claims of value (respectively, growth) payouts that are increasing (decreasing) with

the horizon, and (v) a countercyclical value premium. Our model links the dynamics of the

term structure of equity to the timing of risk of economic fundamentals and, specifically,

sheds light on the pivotal effect played by the volatility of expected growth. We provide

supportive empirical evidence of the model assumptions and predictions.

The model mechanism hinges on the interaction of two risk factors steering economic

fundamentals. First, a permanent component is driven by time-varying expected growth,

gives rise to a stochastic trend, and induces upward-sloping risk with the horizon. Second, a

transitory component produces stationary (short-term) fluctuations and leads to downward-

1For instance, Gormsen and Koijen (2020) investigate the impact of Covid-19 pandemic on economic
growth expectations. Breugem, Marfè, and Zucchi (2020) study the effect of heterogeneity in the pricing
and firm’s exposure to risks of various persistence on corporate policies and their horizon.
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Figure 1: Equity Slope Dynamics. This figure displays the model-implied dynamics
of the forward equity yields and the dividend strip risk premium. The short-term and the
long-term assets represent the average value of the above quantities respectively over the
first five years and the residual infinite-horizon. The state refers to the level of expected
growth volatility and, endogenously, to the price level.

sloping risk. The upward-sloping risk component is heteroskedastic, whereas the downward-

sloping one is homoskedastic. In equilibrium, the relative weight of these two risks determines

the slope of equity compensations as a function of the horizon. To generate a counter-cyclical

equity term premium, the weight of the two risk factors needs to be time-varying, with most

of the variation driven by the upward-sloping risk factor. Thus, when expected growth

volatility rises, prices decline and become more volatile, short-term equity yields rise relative

to long-term ones, and long-term equity risk premia rise relative to short-term ones. The

model jointly explains the cyclical patterns of the term structure of equity documented by

van Binsbergen et al. (2013) and Gormsen (2020) and finds support in our empirical analysis.

Figure 1 summarizes the model predictions about these dynamics.

We also investigate the cross-sectional predictions of the model. Heterogeneous loadings

on expected growth volatility lead to a cross section of equities, whose valuation ratios and

risk premia can either decrease or increase with expected growth volatility. Thus, the model

generates a positive and countercyclical value premium (Petkova and Zhang, 2005). This

result arises from the higher payout cyclicality of value firms relative to growth firms (Koijen,

Lustig, and Van Nieuwerburgh, 2017) and from risk premia to claims of value-payouts being
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steeper with the horizon than those of growth-payouts (Giglio, Kelly, and Kozak, 2020).

Notably, the equilibrium dynamics of our model are robust to the unconditional properties

of the term structure of equity. Namely, two features of our model are noteworthy. First, the

model mechanism driving the cyclicality of equity yields and term premia holds irrespective

of the sign of their unconditional slope. Second, our model reconciles standard asset pricing

moments with sizeable risk premia to short-term assets independently of the sign of the

unconditional equity term premium—the main challenge posed by van Binsbergen et al.

(2012) to leading models. Thus, our economic mechanism is not affected by the empirical

concern posed by Bansal, Miller, Song, and Yaron (2020): a short sample may not properly

capture the alternation of good and bad economic conditions and lead to biased estimates

of the unconditional slope, because the equity term premium switches sign over time.2

Our empirical analysis provides tight support to the model mechanism and its predictions.

We estimate a simple measure of expected growth volatility (EGV) from survey forecasts

of economic growth, which is an observable and genuine measure of investors’ expectations.

We document that EGV rises during economic downturns, as in Bansal, Kiku, Shaliastovich,

and Yaron (2014)—a stylized pattern that we feed into our model.

Then, we document four stylized facts that arise as endogenous outcomes in our equi-

librium model, then supporting its economic mechanism.First, as predicted by the model,

we provide evidence that the market price-dividend ratio decreases with EGV, whereas its

volatility increases with EGV. This result allows us to link macroeconomic fundamentals

with the cyclicality of the equity term premium, estimated through the price-dividend ratio

as Gormsen (2020). Second, the slope of the equity yields is strongly negatively correlated

with EGV, consistently with the model and with the procyclical dynamics of the equity

yields slope documented by van Binsbergen et al. (2013). Third, EGV predicts the realized

slope of equity returns with positive coefficient. Thus, EGV is a good candidate to drive the

2Differently from the empirical findings of van Binsbergen et al. (2012) and Gormsen (2020), the uncon-
ditional negative slope estimated by Giglio et al. (2020) is less susceptible to this criticism, as well as the
criticism concerning liquidity and bid-ask spreads, because their methodology exploits a broad cross-section
of stock returns over more than forty years of data.
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countercyclical dynamics of the equity term premium, in accord with the model and with the

empirical findings of Gormsen (2020). Fourth, EGV predicts the value firms return and the

value-minus-growth return with positive coefficient, whereas it does not predict the growth

firms return. Thus, EGV credibly drives the countercyclical dynamics of the value premium,

consistent with our model. Moreover, EGV strongly predicts the value firms return at long

horizons, in accord with the model mechanism that produces upward-sloping compensations

to the claims of value-payouts—as documented by Giglio et al. (2020). To the best of our

knowledge, this is the first work that theoretically and empirically connects the dynamics of

both equity yields and equity term premia to macroeconomic fundamentals.3

Given our focus on the term structure of equity, our assumptions aim at correctly de-

scribing the timing of fundamentals’ risk and how it transmits to the equilibrium state-price

density. Our economy assumes consumption and payouts cointegration and limited market

participation (Greenwald, Lettau, and Ludvigson, 2014; Marfè, 2017). These assumptions

are supported by the empirical evidence and play a relevant role in shaping fundamentals’

risk. Cointegration implies that payout risk is downward-sloping with the horizon (Belo,

Collin-Dufresne, and Goldstein, 2015; Marfè, 2016), whereas limited market participation

implies that market participants’ consumption is much more correlated with payouts than

aggregate consumption (Berk and Walden, 2013).4 Thus, by affecting the timing of funda-

mentals’ risk, these assumptions can help understand the properties of the term structure

of equity in equilibrium. Indeed, we verify that our model calibration matches both the

downward-slope of payout risk as well as the predictability of payout growth by the payout-

to-consumption ratio across the horizons. Instead, many models disregard such empirical

patterns and strongly overestimate payout risk at long horizons—further amplified under

3All the results of the empirical analysis are robust to many alternative specifications of EGV.
4Berk and Walden (2013) show that limited market participation arises endogenously because labor

markets provide risk-sharing to workers. Consistently, a major fraction of workers does not invest in the
financial markets and the consumption of market participants is more correlated with corporate payouts and
equity returns than aggregate consumption (Mankiw and Zeldes, 1991; Guvenen, Schulhofer-Wohl, Song,
and Yogo, 2017). However, market participants’ consumption is subject to aggregate consumption long-run
risk (Malloy, Moskowitz, and Vissing-Jørgensen, 2009), in accord with cointegration.
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preferences for the early resolution of uncertainty. Moreover, we should avoid the model ex-

plains sizeable risk premia of short-term assets because of a mis-specified state-price density

that weighs too much on short-term risk. Therefore, we exploit the state-price density de-

composition of Alvarez and Jermann (2005) and Hansen and Scheinkman (2009): We verify

that under our calibration, the fraction of state-price density volatility due to its permanent

component does not violate the high lower bound estimated by Alvarez and Jermann (2005).

This supports the way the timing of fundamentals’ risk gets priced in equilibrium.

Several works study the term structure of equity in light of macroeconomic risk. Economic

channels that have been investigated are beliefs formation (Croce, Lettau, and Ludvigson,

2015), financial leverage (Belo et al., 2015), disaster recovery (Hasler and Marfè, 2016), labor

costs rigidity (Marfè, 2017), investment vintage (Ai, Croce, Diercks, and Li, 2018), alternative

preferences (Andries, Eisenbach, and Schmalz, 2019), and reinvestment risk (Gonçalves,

2020). We complement this literature by providing a parsimonious equilibrium framework

that explains the rich conditional dynamics of equity slope, which are consistent with recent

empirical findings (van Binsbergen et al., 2013; Giglio et al., 2020; Gormsen, 2020).

Our paper is also related to works about the cross-section of equity returns and the value

premium. Among others, Berk, Green, and Naik (1999), Gomes, Yaron, and Zhang (2003),

Carlson, Fisher, and Giammarino (2004), and Zhang (2005) propose equilibrium models

with heterogeneity either in growth options risk or in adjustment costs. We complement this

literature by explaining the pricing of value and growth payouts across the horizon (Giglio

et al., 2020)—further corroborating the model mechanism about the equity slope dynamics.5

The paper is organized as follows. The empirical analysis of Section I supports the main

model assumption and predictions. Section II and III describe the theoretical model and

investigate its predictions. Section IV concludes. Model derivation and robustness results

are in Appendix A and B respectively.

5Marfè (2015) and Ai et al. (2018) also study the term structure of equity and the value premium
in general equilibrium, explaining the link with cash-flow duration (Dechow, Sloan, and Soliman, 2004).
Recently, Hasler, Khapko, and Marfè (2020) show that rational learning helps understand the unconditional
term structures of value and growth risk premia: we complement their approach and focus on dynamics.
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I Stylized Evidence

In this section, we first provide empirical support for the main model assumption about

expected growth volatility (EGV). Then, we generate a set of key stylized facts about the

dynamics of the term structure of equity, which can be jointly rationalized within our model.

To build our baseline EGV measure, we obtain US mean growth forecasts from the Survey

of Professional Forecasters (SPF) maintained by the Federal Reserve Bank of Philadelphia

about real gross domestic product (GDP). Survey data allows to more genuinely capture

market participants’ actual expectations about the economy’s fundamentals as opposed to

inferring them from realized variables, and can provide important insights into asset price

dynamics (e.g., Barberis, Greenwood, Jin, and Shleifer, 2015; Greenwood and Shleifer, 2014).

We lever on survey expectations to investigate the drivers of the dynamics of the equity term

structure over the business cycle. Building on SPF data, we also construct alternative EGV

measures from industrial production (IP) and personal consumption expenditures (PCE)

growth forecast, as well as a measure exploiting cross-sectional dispersion of GDP growth

forecasts. The time series of SPF forecasts are the longest available, covering the period

1968-2019 at quarterly frequency, with the exception of PCE whose forecasts start in 1981.

Information on actual macroeconomic conditions (e.g., inflation, Treasury rates, reces-

sions) is from Federal Reserve Economic Data (FRED) of the Federal Reserve Bank of St.

Louis. We obtain information on aggregate stock market and equity term structure from a

variety of sources. As stock market index, we either rely on the value-weighted index from

Center for Research in Security Prices (CRSP) or on the S&P 500 index as reported on

Robert Shiller’s webpage. Monthly data on both indices are available throughout the period

1968-2019. Equity yields over different investment horizons are computed from van Bins-

bergen et al. (2012) and Giglio et al. (2020), who provide information at monthly frequency

for the period 1996-2009 and 1975-2016, respectively. Monthly data on value and growth

portfolio value-weighted returns for the period 1968-2019 are from Kenneth French’s website.

All returns and monetary variables are expressed in real terms. Monthly observations are

6

Electronic copy available at: https://ssrn.com/abstract=3657285



converted to quarterly frequency by summing them (for returns, which are logarithmic) or

by taking the average (for other variables) over the quarter. Detailed information on data

sources and variables definitions is in Appendix Table B1.

EGV and Expected Growth. The main assumption of our model is that the expected

economic growth is heteroskedastic, so that its conditional volatility (EGV) is time-varying

and, in particular, higher when the economic outlook deteriorates. To substantiate this

assumption, we construct our baseline EGV measure by first filtering the conditional mean

out of GDP growth forecasts with an AR(1) model and, then, by computing a moving average

of the absolute residuals so obtained. In particular, we denote survey-based expected GDP

growth as of time t for the period (t, t+ 1) as ĝ(t, t+ 1) and estimate an AR(1) specification:

ĝ(t, t+ 1) = θ0 + θ1ĝ(t− 1, t) + ε(t). (1)

Residuals from this model are not serially correlated, but their absolute values are. Thus,

we build a simple measure of EGV (or conditional volatility):

σ(t, t+ 1) =
1

n

∑n−1

i=0
|ε(t− i)|. (2)

A moving average of four lags produces a good fit of residuals. The inferred time series of

conditional volatility σ(t, t+ 1) is our main EGV measure and explanatory variable.6

Importantly, EGV is negatively and significantly correlated with the expected growth, at

-18% (p-value of 0.012). When investors have low expectations about future growth, forecasts

are more volatile. This evidence supports the main assumption of our general equilibrium

model: Expected growth is decreasing with its conditional volatility. Another approach to

detect the negative relation between expected growth and EGV is to exploit the persistence of

6Technically, the model assumes that expected growth is driven by a heteroskedastic long-run factor and
a homoskedastic short-run factor. To verify the validity of our measure of EGV in (2) in light of these
assumptions, we thus conduct the following exercise. First, we condition expected growth on business-
cycle by regressing GDP growth forecasts on the (de-trended) labor share of the corporate sector, finding
a Newey-West t-statistic of -3.52. Second, we apply the model of equations (1)-(2) to the residuals. The
resulting conditional volatility σ(t, t+1) is strongly correlated with the EGV computed without conditioning
on business-cycle. Appendix Table B2 shows that the correlation is 99.32%. This suggests that expected
growth heteroskedasticity mostly concerns its long-run component. The same table also shows that our
preferred EGV specification generally provides a better fit of residuals than ARCH or GARCH models.
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Figure 2: Expected Growth Forecastability by EGV. The left panel of the figure
shows the slope point estimates as well as 90% confidence intervals (based on Newey-West
standard errors with four lags) from predictive regressions of the SPF growth forecasts of
GDP on its EGV over the horizons from one quarter to ten years for the period 1968-2019.
The right panel of the figure shows the corresponding R2.

EGV and verify whether it positively predicts cumulative expected growth. Figure 2 reports

the predictive slope and the Newey-West confidence intervals for any horizon between one

quarter and ten years. The limited EGV persistence does not lead to very precise coefficients

but a clear positive relation can be observed for horizons beyond one year.

We next document four empirical facts concerning the relation between EGV and (i)

macroeconomic conditions, (ii) the equity yield slope, (iii) the equity term premium, and

(iv) the returns of value and growth firms.

The Cyclicality of EGV. The negative correlation between EGV and expected growth

suggests that EGV is a countercyclical measure of the state of the economy. We confirm this

intuition in Table 1 through contemporaneous regressions of EGV on macroeconomic and

financial measures. EGV exhibits a negative and significant relation with the Chicago Fed

National Activity Index (CFNAI) and the logarithm of the price-dividend ratio of the CRSP

value-weighted index. It also exhibits a positive and significant relation with an indicator

for National Bureau of Economic Research (NBER) recessions and the default spread.

Based on this evidence, we examine the relation between EGV and the logarithm of the
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Table 1: The Cyclicality of EGV

EGV

(1) (2) (3) (4)

Constant 0.243∗∗∗ 0.219∗∗∗ -0.000 1.153∗∗∗

(10.32) (9.13) (-0.01) (6.43)
CFNAI -0.049∗∗

(-2.35)
NBER recession 0.162∗∗∗

(4.53)
Default spread 0.226∗∗∗

(5.59)
ln(P/D) -0.249∗∗∗

(-5.22)

Observations 205 205 205 205
R2 0.06 0.11 0.30 0.30

Note. This table reports estimates from contemporaneous regressions at quar-
terly frequency of EGV on selected measures of macroeconomic (the three-month
moving average of the CFNAI and an indicator for NBER recessions) and financial
conditions (the default spread and the logarithm of the price-dividend ratio of the
CRSP value-weighted index) over the period 1968-2019. Coefficient estimates are
multiplied by 100 to favor readability. The t-statistics are reported in parentheses
and are based on Newey-West standard errors with four lags. Significance at the
10%, 5%, and 1% levels is indicated by ∗, ∗∗, ∗∗∗, respectively. Detailed variable
definitions are provided in Appendix Table B1.

price-dividend ratio in more depth. Theoretical models predict that the price-dividend ratio

is driven by the latent factors that affect the distribution of aggregate cash flows. In the left

panel of Figure 3, we consider the following regression:

pd(t) = α + βσ(t, t+ 1) + ε(t).

We observe that EGV decreases with the logarithm of the price-dividend ratio (correlation

of -55%, statistically significant at the 1% level). This negative correlation can be generated

in a model where investors feature an elasticity of intertemporal substitution above one, that

is when the substitution effect dominates the wealth effect (e.g., Bansal and Yaron, 2004).

We then study the correlation between EGV and the conditional volatility of the logarithm

of the price-dividend ratio, which we obtain following the same approach as in equation (2).

In the right panel of Figure 3, we estimate this regression:

σpd(t, t+ 1) = α + βσ(t, t+ 1) + ε(t).

9
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Figure 3: EGV and the Price-Dividend Ratio. This figure shows the scatter plots of
either the log price-dividend ratio (left panel) or log price-dividend ratio volatility (right) of
the CRSP value-weighted stock market index against the EGV estimated from GDP growth
forecasts for the period 1968-2019.

We observe a positive correlation of 57% between EGV and the conditional volatility of the

price-dividend ratio, significant at the 1% level. These results conform with the literature on

macroeconomic volatility and uncertainty (Bansal et al., 2014; Boguth and Kuehn, 2013).

EGV and the Equity Yield Slope. The second empirical pattern regards the relation

between EGV and the slope of equity yields, which is defined as the difference between

the long- and the short-maturity equity yield at each point in time. van Binsbergen et al.

(2013) illustrate that such a slope is procyclical: short-maturity equity yields are lower than

long-maturity ones during economic expansions, whereas they exceed long-maturity ones

during recessions. Bansal et al. (2020), Gormsen (2020) and Giglio et al. (2020) document

similar patterns. We verify if the procyclical nature of the equity yield slope is—at least

partially—channeled through EGV, which we have shown to be countercyclical.

Because of the hard-to-observe nature of the equity yield slope, we measure it in a variety

of ways. First, we use data by van Binsbergen et al. (2012), who extract information on short-

maturity equity yields from option prices on the S&P 500 index. We then proxy for the slope

by taking the difference between the S&P 500 dividend yield (ey(t, long)) and short-maturity

equity yields (ey(t, short)), whose maturity ranges between 0.5 and two years. Second, we
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Table 2: Equity Yield Slope and EGV

Panel A

Equity Yield Slope (BBK12)

(1) (2) (3) (4)
MKT-0.5Y MKT-1Y MKT-1.5Y MKT-2Y

Constant 0.141∗∗ 0.071∗∗ 0.045∗ 0.036∗

(2.08) (2.01) (1.80) (1.82)
EGV -47.448∗∗∗ -32.920∗∗∗ -24.242∗∗∗ -19.323∗∗∗

(-3.31) (-4.70) (-4.69) (-4.71)

Observations 55 55 55 55
R2 0.08 0.12 0.14 0.15

Panel B

Equity Yield Slope (GKK20)

(1) (2) (3) (4)
10Y-2Y 25Y-2Y 100Y-2Y MKT-2Y

Constant 0.012∗∗∗ 0.019∗∗∗ 0.025∗∗∗ 0.022∗∗∗

(6.16) (7.41) (8.80) (8.12)
EGV -3.269∗∗∗ -4.571∗∗∗ -5.779∗∗∗ -5.276∗∗∗

(-4.07) (-4.94) (-5.69) (-5.40)

Observations 165 165 165 165
R2 0.22 0.26 0.30 0.28

Note. This table reports estimates from contemporaneous regressions at quar-
terly frequency of the equity yield slope on EGV. Panel A uses measures of the
equity yield slope based on data by van Binsbergen et al. (2012, BBK12) for
the period 1996-2009. Panel B uses measures of the equity yield slope based on
data by Giglio et al. (2020, GKK20) for the period 1975-2016. The maturities
of the long and short legs considered to compute the equity yield slope are in-
dicated at the top of each column. The t-statistics are reported in parentheses
and are based on Newey-West standard errors with four lags. Significance at
the 10%, 5%, and 1% levels is indicated by ∗, ∗∗, ∗∗∗, respectively. Detailed
variable definitions are provided in Appendix Table B1.

use the model-implied equity yields made available by Giglio et al. (2020), which allow us

to compute the equity slope at various maturities up to 100 years (ey(t, long)) relative to

the two-year yield (ey(t, short)). For consistency with the first set of proxies based on van

Binsbergen et al. (2012), we also compute it using the dividend yield of the CRSP value-

weighted index as ey(t, long).7 By spanning the period 1975-2016, the equity yields by Giglio

et al. (2020) are informative about the slope dynamics across different economic conditions.

Table 2 reports the estimates from the regressions of these measures of the equity yield

7In this case, we use the CRSP value-weighted index rather than the S&P 500 index, because model-
implied equity yields by Giglio et al. (2020) are based on a wide cross-section of stocks corresponding to the
former index. Results remain unscathed when using the S&P 500 dividend yield.
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Figure 4: EGV and the Equity Yield Slope. The left of the figure shows the stan-
dardized time-series of the equity yield slope based (solid line) and the EGV (dashed line).
The right panel shows the scatter plot of the standardized equity yield slope against the
EGV. The equity yield slope is computed as the difference between the dividend yield of
the CRSP value-weighted index and the model-implied 2-year equity yield of Giglio et al.
(2020) for the period 1975-2016.

slope—based on data by van Binsbergen et al. (2012) in Panel A, and by Giglio et al. (2020)

in Panel B— on EGV:

ey(t, long)− ey(t, short) = α + βσ(t, t+ 1) + ε(t).

We observe a negative correlation between EGV and the slope of equity yields. The slope

coefficients are negative and significant at the 1% confidence level across all the horizons.

The R2 from the regressions lies in the 8-30% range, pointing to a substantial explanatory

ability of EGV as to the business cycle dynamics of the equity yield slope.8

Consistently, the left panel of Figure 4, which focuses on a slope measure based on Giglio

et al. (2020), documents a strong negative relation between EGV and the slope of equity

8To limit measurement error, we use spot equity yields (ey(t, τ)) rather than forward ones (fey(t, τ)) to
compute the equity yield slope. Because fey(t, τ) = ey(t, τ) − by(t, τ), using forward yields would require
subtracting risk-free yields (by(t, τ)) of the appropriate maturity τ from each leg of the slope. This would
be problematic in our case, because we also use the 100-year equity yield and the market dividend yield as
the long maturity leg, and it is not obvious to find information on risk-free rates for maturities above 30
years. Nonetheless, using spot equity yields from Giglio et al. (2020), in untabulated tests we compute the
equity yield slope with forward yields for the 5-, 10-, and 20-year horizons (i.e., the maturities for which
an appropriate risk-free rate is easily available). In each case, the correlation with the slope based on spot
equity yields is above 98%. Reassuringly, we also find that the coefficient estimates from regressions of these
forward slopes on EGV are virtually the same as in Table 2.

12

Electronic copy available at: https://ssrn.com/abstract=3657285



yields. We observe a sharp mirror effect: the slope strongly decreases when EGV increases.

The right panel of Figure 4 shows the corresponding scatter plot and linear fit. These results

confirm that EGV is a major driver of the procyclical dynamics of the equity yield slope.

EGV and the Equity Term Premium. Third, we study the relation between EGV

and the equity term premium—that is, the compensation of long-term equity claims over

the compensation of short-term equity claims. Gormsen (2020) finds that the equity term

premium is time-varying and countercyclical. Namely, long-term equity premia are more

sensitive to price levels than short-term equity premia. This implies that the equity term

premium increases in bad times and decreases in good times. We test if EGV helps explain

time-variation of the equity term premium in light of macroeconomic risk.

We proxy for the equity term premium by taking the difference between the CRSP value-

weighted index return (long-maturity claim) and the return on the two-year dividend strip

based on the corresponding model-implied equity yield by Giglio et al. (2020).9 Then, we

compute the one- to ten-year ahead cumulative equity term premium. Finally, we perform

regressions of the future cumulative equity term premium on EGV to verify whether the

current conditional volatility of expected growth predicts it. Figure 5 points to a rather

strong positive relation between EGV and the equity term premium. The left panel displays

that the predictive slope for the current EGV is positive and mostly statistically different

from zero for predictive horizons above four years. The right panel shows that R2 reaches

roughly 8% for longer horizons. This evidence suggests that EGV is a credible channel

through which the term structure of equity incorporates macroeconomic risk. Gormsen

(2020) highlights the cyclicality of the equity term premium as measured by its correlation

with the price-dividend ratio. We go a step further and show that EGV is a plausible link

among the state of the economy, prices, and the term structure of equity. As we show below,

this pattern is amenable to be endogenized in a tractable general equilibrium framework.

9An alternative approach to measure the equity term premium is to look at the so-called cash-flow duration
premium (Weber, 2018). However, such an approach builds on the assumption of a constant discount rate
across firms and maturities and is thus unsuitable to study the dynamics of the term structure of equity.
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Figure 5: EGV and the Equity Term Premium. The left panel of the figure shows the
slope point estimates as well as 90% confidence intervals (based on Newey-West standard
errors with four lags) from predictive regressions of long-minus-short equity returns (equity
term premium) on EGV across the horizons from one quarter up to ten years. In our measure
of the equity term premium, the long leg is the CRSP value-weighted index return and the
short one is the return on the two-year dividend strip obtained from model-implied yields
by Giglio et al. (2020) for the period 1975-2016. The right panel of the figure shows the R2

from the predictive regressions for each horizon.

EGV and the Cross-Section of Returns. Fourth, we look at the relation between the

EGV and the returns of value firms, growth firms, and the value-minus-growth portfolio

(Fama and French, 1992). In Figure 6, we estimate predictive regressions of the cumulative

returns from one quarter up to ten years ahead from either value firms, growth firms, or

the value-minus-growth portfolio on EGV. We find a strong positive relation between EGV

and both the value firms return and the value-minus-growth return. Instead, EGV does not

significantly predict the growth firms return over most horizons. The return predictability

increases with the horizon for both the value and the value-minus-growth portfolio.

All in all, through EGV, we uncover that the value premium is—at least partially—related

to the dynamics of the term structure of equity. Firms more (less) exposed to EGV feature,

on the one hand, increasing (decreasing) risk premia and, on the other hand, lower (higher)

valuation ratios. Thus, we interpret them as value (growth) firms. This is consistent with the

term structure of value and growth portfolios estimated by Giglio et al. (2020). In turn, the

value-minus-growth return is positively predicted by EGV and inherits its countercyclical
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Figure 6: EGV and the Value Premium. The left panels of the figure show the slope
point estimates as well as 90% confidence intervals (based on Newey-West standard errors
with four lags) from the predictive regressions of the value return (upper panels), the growth
return (middle panels), and the value-minus-growth return (lower panels) on EGV across
the horizons from one quarter up to ten years. The value (growth) returns correspond to the
top (bottom) decile of stocks sorted on the book-to-market ratio for the period 1968-2019.
The right panels of the figure show the corresponding R2.
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behavior, in accord with the literature on the value premium (Petkova and Zhang, 2005).

The Cyclicality of the Term Structure of Equity. We now study the cyclical properties

of the equity term structure dynamics in light of the recent findings in the literature. To

this end, in Appendix Table B3, we estimate univariate specifications of our measures of the

equity yield slope and of the equity term premium on business cycle proxies for the period

1975-2016. We are able to confirm the procyclicality of the equity yield slope, both when

looking at EGV (column 1) and when looking at macroeconomic measures such as CFNAI

and NBER recessions (columns 2 and 3) or at financial variables such as the default spread

and the price-dividend ratio (columns 4 and 5).

Moving to the ten-year ahead equity term premium, the picture becomes more nuanced.

It appears to correlate negatively with current macroeconomic conditions when these are

measured through the EGV (column 6). Yet, the link with CFNAI and NBER recessions

is statistically insignificant (columns 7 and 8). Moreover, when capturing the state of the

business cycle by means of financial variables like the default spread and the price-dividend

ratio, the countercyclicality of the equity term premium stands out again (columns 9 and

10). It is worth drawing a comparison between these findings and those in the literature. On

the one hand, the EGV confirms the procyclical behavior of equity yields documented by van

Binsbergen et al. (2013) and Bansal et al. (2020), by means of dividend strip prices, which are

available only from the early 2000s. On the other hand, the lack of clear evidence with regards

to the correlation of the equity term premium with “pure” macroeconomic variables, coupled

with its negative correlation with EGV and with the price-dividend ratio, corroborates the

analysis of Gormsen (2020) and enhances the role of EGV. Indeed, the long time series of

equity yields (1975:2016) from Giglio et al. (2020) points to the countercyclicality of the

equity term premium. In addition, our EGV incorporates the component of macroeconomic

fundamentals that is relevant for the pricing of equity claims, which is in turn coherent with

the negative link between the equity term premium and financial variables.
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Alternative Specifications. In Appendix Table B4, we test the robustness of our results

to using seven alternative EGV measures. First, we rely on a non-generated measure, namely

the cross-sectional dispersion of real GDP growth forecasts. Second, we look at the AR(1)-

ARCH(1) specification of EGV of GDP, which, as illustrated in Appendix Table B2, exhibits

a good fit of residuals. Third, we create two regression-based measures of EGV of GDP: one

capturing only its macroeconomic component, the other capturing both the macroeconomic

and the financial markets component. Fourth, we obtain the EGV of GDP growth forecasts

computed after filtering out of the latter the short-term business cycle component by means

of the (de-trended) labor share of the nonfinancial corporate sector. In addition, we build

the EGVs of IP growth and of PCE growth forecasts by applying the baseline approach of

equations (1)-(2).

Like the baseline EGV, all these measures are strongly countercyclical as highlighted by

the negative and significant relation with the logarithm of the price-dividend ratio and the

positive and significant relation with its volatility (columns 1 and 2). Similarly, columns 3 and

4 confirm that even these alternative EGV measures capture the procyclicality of the equity

yield slope. At the same time, the positive relation of EGV measures with the equity term

premium (columns 5 and 6) remains economically important, especially over long predictive

horizons. For the ten-year ahead term premium, only EGV measures based on the AR(1)-

ARCH(1) specification and on IP growth forecasts exhibit coefficients that are insignificant at

conventional levels (p-value of 0.19 and 0.13, respectively). We also qualitatively reproduce

the result about value, growth, and value-minus-growth portfolios (columns 7-8-9). Although

some of the alternative EGV measures have insignificant predictive power with respect to

value or value-minus-growth returns, coefficients’ sign and magnitude are unchanged.

Summary and Theoretical Underpinnings. Overall, the analysis of this section sup-

ports the idea that EGV is a major driver of the term structure of equity. When investors

experience a higher conditional volatility of expected growth, (i) economic conditions deteri-

orate, (ii) prices decline, (iii) the slope of equity yields drops, (iv) the equity term premium
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increases, and (v) the slope of value claims becomes steeper relative to the slope of growth

claims, leading to an increase in the value premium.

The next section illustrates a parsimonious general equilibrium model that jointly endo-

genizes all these effects by assuming that expected growth is the negative of a square root

process. It is worth discussing the intuition behind the economic mechanism rationalizing

the above features (iii) and (iv)—i.e., the two most distinctive facts about the cyclicality of

the term structure of equity—as well as (v). With regards to (iii), in our framework, bad

economic conditions and, hence, low prices arise when EGV is high and, in turn, short-term

expected growth declines. Moreover, in these periods, long-term expected growth is high,

and long-term discount rates are low. This implies a negative correlation between EGV and

the slope of equity yields. Such a mechanism is further corroborated by the related model

prediction that equity yields positively predict future realized growth, in line with the empir-

ical findings of van Binsbergen et al. (2013). With regards to (iv), in our general equilibrium

setting, a positive correlation between EGV and the term premium on equity claims can

explain the dynamics of the equity slope documented by Gormsen (2020). Indeed, EGV

commands an equilibrium compensation that is larger for long-term equity claims than for

short-term equity claims. In turn, the former are more sensitive than the latter to move-

ments of EGV. Because EGV moves countercyclically, the premia on long-term equity claims

feature more prominent countercyclical behavior than the premia on the short-term equity

claims. This leads to a time-varying and countercyclical equity term premium. With regards

to (v), a positive relation between EGV and the value premium arises endogenously in our

model from the heterogeneous exposure of payouts to heteroskedastic long-run growth across

value and growth firms. Thus, we exploit cross-sectional returns to further corroborate the

model mechanism about the equity term structure dynamics as well as to explain in general

equilibrium the recent findings of Giglio et al. (2020) about the term structures of value and

growth returns.
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II The Model

In this section, we describe a parsimonious general equilibrium model that jointly captures

the distinctive empirical properties of the term structure of equity, including its unconditional

negative slope (van Binsbergen et al., 2012), procyclical yields (van Binsbergen et al., 2013),

and countercyclical term premia (Gormsen, 2020). Cross-sectional predictions on value and

growth claims (Giglio et al., 2020) provide further support to the model mechanism.

The Economy

A representative firm produces a cash-flows stream, C, which constitutes the revenues from

production distributed to workers and shareholders. Workers receive wages, W , and share-

holders receive payouts, D, such that C = W +D. In the spirit of Berk and Walden (2013),

the model assumes limited market participation.10 That is, workers do not access financial

markets and consume their wages, whereas shareholders act as a representative agent in the

stock market and consume dividends. Shareholders feature recursive preferences in the spirit

of Kreps and Porteus (1979), Epstein and Zin (1989), Weil (1989), and Duffie and Epstein

(1992). These preferences allow for the separation between the elasticity of intertemporal

substitution and relative risk aversion. The utility at each time t is defined as

Ut ≡
[
(1− βdt)Ĉ

1−γ
θ

t + βdtEt
(
U1−γ
t+dt

) 1
θ

] θ
1−γ

, (3)

where Ĉ is a consumption process, β is the time discount factor, γ is the coefficient of risk

aversion, ψ is the elasticity of intertemporal substitution, and we define θ = 1−γ
1− 1

ψ

.

We assume that the dynamics of aggregate consumption depend on two components. The

first is a permanent shock, which is driven by time-varying expected growth: It gives rise

to a stochastic trend and induces upward-sloping risk with the horizon—i.e., the variance of

growth rates increases with the horizon. The second component is a transitory (short-term)

10Recent asset pricing models assuming limited market participation are Marfè (2017) and Greenwald et al.
(2014). Although unnecessary for the qualitative predictions of our model, the assumption of limited market
participation helps generate sizeable risk premia for short-term assets. Moreover, it allows for tractability
and for comparability with endowment economy asset pricing models.
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shock zt, that produces stationary fluctuations and induces downward-sloping risk with the

horizon. The two shocks jointly allow for flexible term structures of risk. Consistent with

the empirical evidence of Section I, we assume that expected growth is heteroskedastic and

negatively correlated with its conditional variance. Aggregate consumption dynamics follow:

d logCt = (µ+ x̄− xt)dt+ dzt, (4)

where the permanent and the transitory components are governed by:

dxt =λx(x̄− xt)dt+ σx
√
xtdBx,t, (5)

dzt = − λzztdt+ σzdBz,t. (6)

The Brownian shocks Bx,t and Bz,t are assumed to be independent, for the sake of tractability.

The dynamics of aggregate consumption, wages, and payouts are all subject to the per-

manent shock and, thus, are cointegrated in levels (Lettau and Ludvigson, 2005). Moreover,

following previous contributions, we acknowledge that the rigidity of labor costs (Menzio,

2005; Marfè, 2017) with respect to short-term fluctuations lead to a mechanism of income

insurance from shareholders to workers, which impose a leverage effect on payouts.11 We

parsimoniously capture this effect by assuming that wages and payouts respectively satisfy:

Wt = ω(zt)Ct and Dt = (1− ω(zt))Ct,

where the share ω(zt) is a function of the transitory (short-term) shock zt:
12

ω(zt) = 1− δe(φ−1)zt .

The parameter φ ≥ 1 denotes the leverage effect on payouts. That is, payouts (respectively,

wages) are more (less) exposed to short-term shocks than the firm’s total cash flow stream.

Consistently, payouts evolve as follows:

d logDt = (µ+ x̄− xt)dt+ φ dzt. (7)

11A complementary channel is sticky financial leverage (Belo et al., 2015).
12The function ω(zt) belongs to (0, 1) with probability very close to one because δ > 0 is small in the data

(e.g., about 10%).
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Although parsimonious, these dynamics account for many empirical stylized facts, such as:

(i) cointegration among consumption, wages, and payouts (Lettau and Ludvigson, 2005),

(ii) excess volatility of payouts over consumption at short horizons (Belo et al., 2015), (iii)

variance ratios of payout and wage growth rates, which respectively lie below and above

those of consumption (Marfè, 2017), and (iv) countercyclical wage share (Ŕıos-Rull and

Santaeulàlia-Llopis, 2010).

The shock xt—the key variable of the model—drives the variance of expected growth,

which satisfies:

Vt[d(µ+ x̄− xt − λzzt)] = (σ2
xxt + λ2

zσ
2
z)dt.

The conditional variances of consumption and payout growth rates across the horizon are

respectively given by:

σ2
C(t, τ) =

1

τ
log

Et[C2
t+τ ]

Et[Ct+τ ]2
= sc0(τ) + scx(τ)xt,

σ2
D(t, τ) =

1

τ
log

Et[D2
t+τ ]

Et[Dt+τ ]2
= sd0(τ) + sdx(τ)xt,

where both the terms scx(τ) and sdx(τ) increase with the horizon τ . As we illustrate in

the following, the shock xt—the model counterpart of EGV—is key to rationalize the main

empirical properties of the term structure of equity and its dynamics in general equilibrium.

State-Price Density and Equity Returns

Recursive preferences lead to a non-affine state-price density. Therefore, to solve for prices

and preserve analytic tractability, we follow the methodology presented by Eraker and

Shaliastovich (2008), which is based on the Campbell and Shiller (1988)’s log-linearization.13

The continuous time (continuously compounded) log-return on equity—e.g., the claim on the

shareholders’ consumption Dt—can be expressed as

d logRt = k0dt+ k1d(pdt)− (1− k1)pdtdt+ d logDt,

13Campbell, Lo, and MacKinlay (1997), Bansal, Kiku, and Yaron (2012), and Hasler and Marfè (2016)
show the high accuracy of the return log-linearization, which we assume exact hereafter.
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where pdt = log(Pt/Dt) and the endogenous constants k0 and k1 satisfy

k0 = − log
(
(1− k1)1−k1kk11

)
and k1 = eE(pdt)/

(
1 + eE(pdt)

)
.

Recursive preferences lead to the following Euler equation, which allows to characterize the

state-price density, Mt, used to price any asset in the economy:

Et
[
exp

(
log

Mt+τ

Mt

+

∫ t+τ

t

d logRs

)]
= 1. (8)

The state-price density satisfies

d logMt = θ log βdt− θ

ψ
d logDt − (1− θ)d logRt. (9)

To solve for the return on equity and, in turn, the state-price density, we conjecture that pdt

is affine in the vector of state variables. Then, the Euler equation is used to solve for the

coefficients. In turn, the state-price density has dynamics:

dMt

Mt

= −rtdt− Ωx(xt)dBx,t − ΩzdBz,t. (10)

In this equation, the risk-free rate is affine in the shocks xt and zt, as follows:

rt = r0 + rxxt + rzzt,

where the coefficients rx and rz satisfy:

rx = − γ − Ax(γψ − 1)(1− k1(1− λx))
ψ − 1

− A2
xk

2
1σ

2
x(γψ − 1)2

2(ψ − 1)2
,

rz = − λzφ

ψ
,

Moreover, the two equilibrium prices of risk are given by

Ωx(xt) =σx
√
xt
k1Ax(γ − 1/ψ)

1− 1/ψ
and Ωz = σz

k1Az(γ − 1/ψ)

1− 1/ψ
+ σz γφ,

where the price elasticities Ax and Az are defined below. The equity price is given by

Pt =

∫ ∞
0

Et
[
Mt+τ

Mt

Dt+τ

]
dτ = Dt exp (A0 + Axxt + Azzt) , (11)

where

Ax = − 2(1− 1/ψ)

1− k1(1− λx) + Φ
and Az = − φλz(1− 1/ψ)

1− k1(1− λz)
,
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with Φ =
√

1− k1 (2(1− λx) + k1(2(γ − 1)σ2
x − (1− λx)2)). Under plausible assumptions

about preferences (γ > 1/ψ, ψ > 1), we have that the market prices of permanent and

transitory risk satisfy Ωx < 0, Ωz < 0, and Ax < 0, and −φ < Az < 0. Thus, prices relative

to payouts decrease with both expected growth volatility and short-term shocks.

An application of Itô’s Lemma provides the return variance:

σ2
R(xt) =xtσ

2
xA

2
x + σ2

z(φ+ Az)
2,

and the equity premium:

RP(xt) =xtσ
2
x

(
γ − 1/ψ

1− 1/ψ
A2
xk1

)
+ σ2

z (φ+ Az)

(
γφ+

γ − 1/ψ

1− 1/ψ
Azk1

)
.

Return variance and equity premium increase with expected growth volatility, under plausi-

ble preferences. Return variance moves negatively with prices in accord with the volatility

feedback (Campbell and Hentschel, 1992). The equity premium increases with expected

growth volatility, in accord with the long-run risk literature (Bansal and Yaron, 2004).

Term Structures of Equity and Bond

The price of the dividend strip with maturity τ is defined as the integrand of Eq. (11) and

has exponential affine solution:

Pt,τ =Et
[
Mt+τ

Mt

Dt+τ

]
= Dt exp (a0(τ) + ax(τ)xt + (az(τ)− φ)zt) .

The deterministic functions a0(τ), ax(τ), and az(τ) solve a system of ordinary differential

equations. The price elasticities to the permanent and short-run shocks are given by:

ax(τ) =
2Ψ0√

Ψ2
1 − 4Ψ0Ψ2 coth

(
τ
2

√
Ψ2

1 − 4Ψ0Ψ2

)
−Ψ1

,

az(τ) =
φ

ψ
+ φ(1− 1/ψ)e−λzτ ,

where

Ψ0 = γ − 1 + Ax(1− k1(1− λx))
γ − 1/ψ

1− 1/ψ
+ A2

x

k2
1σ

2
x(γ − 1/ψ)2

2(1− 1/ψ)2
,

Ψ1 = − k1σ
2
xAx

γ − 1/ψ

1− 1/ψ
− λx,
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Ψ2 =
σ2
x

2
.

Using the dividend strip price, we can compute the term structure of the dividend strip risk

premium, RPDS(xt, τ), which is a function of only xt and the maturity τ :

RPDS(xt, τ) = xtσ
2
xax(τ)

(
k1Ax(γ − 1/ψ)

1− 1/ψ

)
+ σ2

zaz(τ)

(
k1Az(γ − 1/ψ)

1− 1/ψ
+ γφ

)
. (12)

The dividend strip risk premium is increasing in the conditional volatility of expected growth.

Moreover, for γ > ψ > 1, the first and the second term of Eq. (12) imply respectively that the

permanent shock (and, thus, expected growth volatility) induces an upward-sloping effect,

and the short-term shocks induce a downward-sloping effect on the term structure. When

the conditional volatility of expected growth is large, the upward sloping effect dominates

and the price-payout ratio declines. Conversely, when the conditional volatility of expected

growth is small, the downward-sloping effect dominates and the price-payout ratio rises. In

turn, the equity term premium—that is, the slope of the dividend strip risk premium—is

counter-cyclical as documented by Gormsen (2020).

Similarly, we compute the term structure of the forward equity yields. The forward equity

yield with maturity τ is the difference between the equity yield and the risk-less bond yield:

fey(t, τ) = ey(t, τ)− by(t, τ), (13)

where

ey(t, τ) = − 1

τ
log(P (t, τ)/Dt), and by(t, τ) = −1

τ
logB(t, τ).

The price of the risk-less bond with maturity τ is given by

B(t, τ) =Et
[
Mt+τ

Mt

]
= exp (b0(τ) + bx(τ)xt + bz(τ)zt) .

The deterministic functions b0(τ), bx(τ), and bz(τ) solve a system of ordinary differential

equations. The price elasticities are given by:

bx(τ) =
2Φ0√

Φ2
1 − 4Φ0Φ2 coth

(
τ
2

√
Φ2

1 − 4Φ0Φ2

)
− Φ1

,
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bz(τ) =
φ

ψ

(
1− e−λzτ

)
.

where Φ0 = Ψ0 + 1, Φ1 = Ψ1, and Φ2 = Ψ2.

Cross-Sectional Equity Returns

We introduce a cross-section of payout streams, which can be interpreted as the payout of

firms or the payout of portfolios of stocks. Specifically, we define the cross-sectional payout

stream, Dϕ
t , by the following dynamics:

d logDϕ
t = d logDt + ϕ(x̄− xt)dt+ σϕdBϕ,t. (14)

The loading ϕ captures the heterogeneous additional exposure to xt in the cross-section.14

Furthermore, the volatility parameter σϕ 6= 0 allows for idiosyncratic risk. Following Eraker

and Shaliastovich (2008), the log return on the stock paying out Dϕ
t evolves as

d logRϕ
t = kϕ0 dt+ kϕ1 d(pdϕt )− (1− kϕ1 )pdϕt dt+ d logDϕ

t ,

where kϕ0 and kϕ1 are endogenous constants. The price of this stock then can be written as

Pϕ
t =

∫ ∞
0

Et
[
Mt+τ

Mt

Dϕ
t+τ

]
dτ = Dϕ

t exp (Aϕ0 + Aϕxxt + Aϕz zt) , (15)

where

Aϕx = −
√
η2

1 − 4η0(ϕ)η2 + η1

2η2

and Aϕz = − φλz(1− 1/ψ)

1− kϕ1 (1− λz)
,

with η0(ϕ), η1, and η2 derived in Appendix A. The price elasticity Aϕx with respect to xt is

larger (smaller) in magnitude than the market price elasticity Ax if ϕ is larger (smaller) than

zero. Thus, the larger the payout loading on expected growth volatility, the more pro-cyclical

the valuation ratio and, hence, the more counter-cyclical the risk premium. Applying Itô’s

Lemma to Eq. (15), the corresponding risk premium is given by

RPϕ(xt) = xtσ
2
xA

ϕ
x

(
k1Ax(γ − 1/ψ)

1− 1/ψ

)
+ σ2

z(A
ϕ
z + φ)

(
k1Az(γ − 1/ψ)

1− 1/ψ
+ γφ

)
. (16)

The risk premium is increasing in the conditional volatility of expected growth.

14For the sake of simplicity and exposition, we do not assume other forms of heterogeneity.
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Consider the payout streams associated with two loadings ϕV > ϕG. The valuation ratio

associated to the payout with the higher exposure to xt (i.e., ϕV ) is lower and more cyclical

than the valuation ratio associated to the payout with the lower exposure (i.e., ϕG). Thus,

for ϕV � ϕG, we can interpret the former and the latter as the payout streams of value and

growth firms respectively. Therefore, the model-implied value premium is given by

V P (xt) = RPϕV (xt) − RPϕG(xt) > 0.

Since the coefficient of xt in Eq. (16) is positive and increasing in ϕ, then the value premium

is positive and counter-cyclical, in accord with the empirical evidence. In particular, xt is a

driver of the value premium consistently with the predictive regressions in Section I.

To better connect this prediction with the model predictions about the term structure of

equity, we look at the term structures of risk premia in the cross section. The price of the

claim that pays out Dϕ
t+τ at maturity τ is given by

Pϕ
t,τ =Et

[
Mt+τ

Mt

Dϕ
t+τ

]
= Dϕ

t exp (aϕ0 (τ) + aϕx(τ)xt + (aϕz (τ)− φ)zt) .

The deterministic functions aϕ0 (τ), aϕx(τ), and aϕz (τ) solve a system of ordinary differential

equations. The price elasticities are given by:

aϕx(τ) =
2Θ0√

Θ2
1 − 4Θ0Θ2 coth

(
τ
2

√
Θ2

1 − 4Θ0Θ2

)
−Θ1

,

aϕz (τ) =
φ

ψ
+ φ(1− 1/ψ)e−λzτ ,

where Θ0 = Ψ0 − ϕ, Θ1 = Ψ1, and Θ2 = Ψ2. Applying Itô’s Lemma to this strip price, we

compute the term structure of the strip risk premium, which depends on xt and the maturity:

RPϕ
DS(xt, τ) = xtσ

2
xa

ϕ
x(τ)

(
k1Ax(γ − 1/ψ)

1− 1/ψ

)
+ σ2

za
ϕ
z (τ)

(
k1Az(γ − 1/ψ)

1− 1/ψ
+ γφ

)
.

The strip risk premium is increasing in the conditional volatility of expected growth. The

larger the payout loading ϕ on expected growth volatility, the steeper the (unconditional)

strip risk premium. In turn, the unconditional slope of the strip risk premium is larger for

value firms than growth firms.
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III Model Analysis

The next proposition summarizes the main model predictions about equilibrium dynamics,

as a function of xt, i.e., EGV, which are consistent with the empirical analysis of Section I.

Proposition. Under plausible parameters, the model predicts that:

1. The price-payout ratio decreases with EGV:

∂
∂x

logPt/Dt < 0

2. The slope of the equity yields decreases with EGV:

∂2

∂τ∂x
ey(t, τ) < 0

3. The slope of the dividend strip risk premium increases with EGV:

∂2

∂τ∂x
RPDS(xt, τ) > 0

4. The value premium increases with EGV:

∂
∂x

(RPϕV (xt)−RPϕG(xt)) > 0.

In the following, we analyze these predictions in detail. We present the model calibration

and the predictions about standard moments and price dynamics. Then, we discuss the

term structure of equity and its dynamics, which is our main focus. We also explore the

predictions about cross-sectional returns and the value premium. Finally, we show that the

dynamics of equity slope hold irrespective of the sign of the unconditional average.

III.A Calibration and Standard Moments

Table 3 provides our baseline setting. Economic fundamentals are described by long-run

growth (µ), the parameters describing expected growth volatility (x̄, σx, and λx), short-run

shocks (σz and λz), and the leverage effect on payouts (φ). These parameters are set to

match a wide array of data moments from the time-series of fundamentals and financial

returns. The table also displays the time discount factor (β), risk aversion (γ), and elasticity

of intertemporal substitution (ψ)—that assume standard values in the literature.
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Table 3: Model Parameters

Fundamentals Symbol Value

Long-run expected growth µ 0.025

Expected growth volatility
location x̄ 0.08
scale σx 0.04
reversion λx 0.15

Short-run shock
scale σz 0.025
reversion λz 0.15

Payout leverage φ 7.5

Preferences Symbol Value

Time discount factor β 0.96
Risk aversion γ 7.5
Elasticity of intertemporal substitution ψ 1.5

Note. Parameter values of the baseline calibration.

Table 4 displays selected moments about consumption, payout, and financial returns

from both the data and the simulated model. The model is simulated at monthly frequency,

and each simulation covers a time period comparable to the postwar experience. Simulated

time-series are then aggregated at yearly frequency. For each moment, we report selected

percentiles from the distribution of our model simulations as well as the population statistic.

Notably, the model matches standard moments considered in the literature quite well.

Consumption and corporate payouts are cointegrated and, thus, their growth rates have

similar sample averages (about 2.5%), which in turn are close to their empirical counterparts.

Moreover, consumption growth volatility is modest (about 3% in the model vs 1.8% in the

data). Notably, our model captures the 1-year excess volatility of payout growth (about

18% in the model vs 15% in the data),15 and the decline in payout growth volatility at long

horizons (20-year volatility is about 10.5% in the model vs 8.5% in the data). Cointegration

implies the stationarity of the payout to consumption ratio, whose volatility is captured quite

15Payout moments in Table 4 correspond to corporate profits data. Other measures of shareholders
remuneration, such as dividends plus net repurchases, feature a 1-year growth rates volatility of about 26.6%
(Belo et al., 2015). These measures can be viewed as bounds, with respect to which the model performs well.
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Table 4: Standard Moments

Moment Data Model

2.5% 5% 50% 95% 97.5% Pop.

Avg consumption growth 0.021 0.007 0.010 0.025 0.038 0.040 0.025
Std consumption growth 0.018 0.024 0.025 0.030 0.036 0.037 0.031

Avg payout growth 0.030 0.005 0.008 0.025 0.041 0.043 0.025
Std payout growth 0.148 0.152 0.157 0.182 0.208 0.212 0.183
20-year Std payout growth 0.083 0.019 0.028 0.105 0.222 0.249 0.121

Std log payout-consumption ratio 0.228 0.177 0.186 0.255 0.355 0.378 0.296

Avg risk-free rate 0.007 -0.022 -0.017 0.008 0.032 0.037 0.008
Std risk-free rate 0.025 0.021 0.022 0.031 0.045 0.048 0.036

Avg excess equity return 0.068 0.025 0.031 0.057 0.085 0.090 0.057
Std excess equity return 0.175 0.116 0.120 0.139 0.159 0.163 0.140
Avg Sharpe ratio 0.388 0.178 0.216 0.409 0.625 0.666 0.403

Avg log price-dividend ratio 3.435 3.121 3.135 3.204 3.271 3.284 3.203
Std log price-dividend ratio 0.443 0.061 0.065 0.090 0.125 0.134 0.104

Avg excess high-minus-low return 0.035 0.001 0.008 0.037 0.066 0.072 0.036
Std excess high-minus-low return 0.129 0.106 0.109 0.127 0.146 0.149 0.127

Note. This table reports moment statistics from both data and model simulations. Model-implied
statistics are either moment quantiles from short-sample (72 years) simulations or population
moments. The model is simulated at monthly frequency. Statistics are yearly moments if not
stated otherwise. Consumption and payout data are from NIPA tables. Returns are from K.
French webpage. The price-dividend ratio is from R. Shiller webpage.

well by the model (about 25% in the model vs 23% in the data).

Consistent with the data, the risk-free rate implied by the model is low (about 0.8% vs

0.7% in the data) and smooth (about 3% volatility vs 2.5% in the data). Moreover, the

model predicts a sizeable equity premium that compares well with its empirical estimates

(about 6% vs 7% in the data). The excess return volatility in the model is somewhat smaller

than in the actual data (about 14% in the model vs 17.5% in the data). In turn, the model

Sharpe ratio is slightly larger than in the data (about 41% in the model vs 39% in the data).

The model predicts a realistic value for the average log price-payout ratio (3.2 vs 3.4 in the
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data) but its volatility is smaller than in the data (9% vs 44% in the data). Moreover, the

model predicts a positive and sizeable value premium that compares well with the historical

average return on the high-minus-low (HML) portfolio (3.7% in the model vs 3.5% in the

data). The HML return volatility in the model is close to its empirical counterpart (12.7%

vs 12.9% in the data).16 Overall, whereas our focus is the term structure of equity and its

dynamics, Table 4 suggests that the model performs well in describing the main properties

of financial markets—then proposing a solution to the challenge posed by van Binsbergen

et al. (2012) to leading models in the literature. For instance, the model explains well the

risk-free rate and equity premium puzzles under a reasonable preference setting.

The quantitative analysis of the model predictions, especially those regarding the term

structure of equity, crucially depends on the balance between long-term shocks—which in-

duce upward-sloping risk with the horizon—and short-term shocks—which induce downward-

sloping risk. We devise three exercises to verify that the timing of risk and its equilibrium

pricing are consistent with the data.

First, we compare the term structure of the volatility of payout growth rates from the

model simulation with that in the actual data. The left panel of Figure 7 displays the model-

implied term structure at any horizon up to 20 years. Volatility monotonically decreases from

about 20% to 10%. The plot also shows the empirical volatility of growth rates computed

from either corporate profits or dividend plus net repurchases. The former decreases from

about 14.8% to 8.3%, and the latter decreases from about 26.6% to 11.8%. Thus, the model

volatility matches well the level and the timing of fundamental risk.

Second, we exploit cointegration and consider the model predictability of payout growth

through the logarithm of the payout-consumption ratio:

(logDt+τ − logDt)/τ = α + β logDt/Ct + εt, τ ∈ (0.25, 10).

The middle panel of Figure 7 shows the median as well as the 2.5% and 97.5% percentiles

of the predictive slope at any horizon between 1-quarter and 10 years. Slopes are negative

16We comment in Section III.C about the setting of cross-sectional heterogeneity.
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Figure 7: Cointegration and the Timing of Payout Risk. The left panel displays
the payout growth rates volatility as a function of the horizon in the model and in the data
(corporate profits and net dividends). The middle and the right panels show the predictive
coefficient from the regression of cumulative payout growth on the payout to consumption
ratio across the horizon in the model and in the data respectively.

and statistically different from zero. This pattern arises because the model assumes that the

ratio is positively driven by the stationary short-run shock zt of consumption and payout.

The right panel of Figure 7 displays the same regression estimates from actual data. Slopes

are negative, and the Hansen-Hodrick 95% confidence interval documents that they are

statistically different from zero across the horizon. The model well matches the sign, the

magnitude, and the slope across the horizons of payout growth predictability.

Third, we verify that our state-price density satisfies the bound introduced by Alvarez and

Jermann (2005). They decompose the state-price density into a permanent and transitory

component and estimate a lower bound on the fraction of growth rates volatility due to

the permanent component. The empirical estimates of the bound are close to and bounded

above by unity. Following Hansen and Scheinkman (2009), we compute the volatility ratio

in our model and find values between 1.03 and 1.05 depending on the horizon. Thus, the

bound is satisfied. Therefore, the way our model transmits permanent and transitory risks

from fundamentals to the endogenous state-price density is consistent with the empirical

evidence: Sizable short-term compensations are not due to over-weighing short-term risk.
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Figure 8: Price Dynamics. The figure reports the model log price to payout ratio
(left panel) and its instantaneous volatility (right panel) as a function of EGV (xt). The
(standardized) unconditional density of EGV is superimposed.

Overall, the model captures well the timing of fundamental risk and how it gets priced

in equilibrium. We believe that, although simple and parsimonious, our model represents a

well-suited laboratory to understand the term structure of equity in equilibrium.17

We conclude this section by showing the dynamics of the logarithm of the price-payout

ratio and its volatility. Figure 8 shows that prices decline when EGV (xt) increases, whereas

their volatility rises. These model results (claim 1 of our Proposition) are consistent with

the empirical evidence in Figure 3. In the following, we study the dynamics of the equity

slope and refer to countercyclical behavior in terms of either a positive correlation with EGV

or, equivalently, a negative correlation with the price-payout ratio (see Gormsen, 2020).

III.B The Term Structure of Equity

We now study the term structure of equity and its dynamics, which are the key focus of our

paper. In particular, we analyze the slope dynamics of forward equity yields and dividend

strip risk premia (claim 2 and 3 of our Proposition), which have attracted substantial

attention by the recent literature. To the best of our knowledge, our framework is the first

17In contrast, many models in the literature disregard co-integration and markedly overestimate long-
horizon payout risk. Such a bias becomes even more relevant in combination with the preferences for the
early resolution of uncertainty, that amplify the impact of long-horizon payout risk on asset prices.
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general equilibrium model that jointly reproduces and rationalizes the empirical patterns

documented by van Binsbergen et al. (2012), van Binsbergen et al. (2013), and Gormsen

(2020), as we illustrate in the following.

In our model, permament shocks induce upward-sloping risk. This upward-sloping risk

exhibits the time-varying and counter-cyclical properties of EGV. Conversely, transitory

(short-term) shocks induce downward-sloping risk. This downward-sloping risk is constant

over time, because transitory shocks are homoskedastic. As a result, the equity term premium

is positive in bad times (in which EGV is high), and negative in good times (in which

EGV is low)—i.e., the countercyclical dynamics of the equity term premium depend on the

heteroskedastic nature of the main source of risk affecting long-term payouts.

The upper panels of Figure 9 show the term structures of the forward equity yield and

dividend strip risk premium in economic expansion, recession, and in the steady state. In

the steady state (xt = x̄), forward equity yields are about flat across the horizon. When

economic conditions deteriorate (EGV rises), short-term forward equity yields substantially

rise, whereas long-term ones increase by a smaller amount. As a result, the slope of forward

equity yields becomes negative during economic recessions. Conversely, when economic con-

ditions improve (EGV falls), short-term forward equity yields substantially decrease (and

become negative), whereas long-term ones decrease by a smaller amount. Thus, the slope

becomes positive during expansions. Overall, the slope dynamics of forward equity yields

are procyclical, as documented by van Binsbergen et al. (2013).

Consider now the dividend-strip risk premia. In the steady-state (xt = x̄), the risk pre-

mium is slightly downward-sloping (van Binsbergen et al., 2012). When economic conditions

deteriorate (EGV rises), long-term risk premia rise substantially, whereas short-term ones

increase only slightly. Thus, the slope of risk premia is positive during economic recessions.

Conversely, when economic conditions improve (EGV falls), long-term risk premia substan-

tially decrease, whereas short-term ones decrease by a smaller amount. Thus, the slope is

negative during economic booms. Overall, the equity term premium dynamics are counter-
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Figure 9: Equity Slope Dynamics. The upper panels of the figure report the model
forward equity yield (left) and the model dividend strip risk premium (right) as a function
of the horizon for several values of EGV (xt). The lower panels of the figure show the model
forward equity yield spread (left) and the model equity term premium (right) as a function
of EGV (xt). The (standardized) unconditional density of EGV is superimposed.

cyclical (Gormsen, 2020). The slope dynamics of the forward equity yield and the dividend

strip premium can also be inspected through the behavior of their infinite-horizon spreads:

lim
τ→∞

fey(t, τ) − lim
τ→0

fey(t, τ) and lim
τ→∞

RPDS(xt, τ) − lim
τ→0

RPDS(xt, τ).

The lower panels of Figure 9 report these spreads as functions of EGV. The forward equity

yield spread is decreasing with EGV, positive in good states, and negative in bad states.

Thus, forward equity yields feature procyclical dynamics. Conversely, the spread of the
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dividend strip risk premium is increasing with EGV, being negative in expansion and positive

in recession. Thus, the equity term premium features countercyclical dynamics. These slopes

switch sign across economic conditions.
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Figure 10: Equity Yield Decomposition. The panels report the model equity yield
(upper, left), the model payout expected growth (upper, right), the model bond yield (lower,
left), and the model equity yield premium (lower, right) as a function of the horizon for
several values of EGV (xt).

To better inspect the model mechanism, we exploit the equity yield decomposition:

ey(t, τ) = by(t, τ)− gD(t, τ) + ϑ(t, τ).

The equity yield is the difference between the risk-free bond yield, by(t, τ), and expected

payout growth, gD(t, τ), plus the equity yield premium, ϑ(t, τ). In turn, the forward equity
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yield can be written either as the difference between the equity yield and the risk-free bond

yield or as the difference between the equity yield premium and expected payout growth:

fey(t, τ) = ey(t, τ)− by(t, τ) = ϑ(t, τ)− gD(t, τ).

Figure 10 studies the dynamics of the equity yield and its three components as a function

of the horizon in expansion, recession, and the steady state. First, the premium component

features countercyclicality in level and slope, because it represents a time-varying compen-

sation for the exposure to EGV—affecting long-term payouts more heavily than short-term

ones. Second, the bond is a hedge instrument against equity risk and, thus, the risk-free

bond yield features procyclical level. In turn, the slope of bond yields inherits the counter-

cyclical dynamics of the risk premium slope. Third, expected payout growth is procyclical

in level and has countercyclical slope because of the mean-reverting dynamics of both EGV

and short-run shocks. As a result of these three forces, the equity yield is countercyclical

in level—because the joint effect of expected growth and risk premium dominates the effect

of the bond yield—but features procyclical slope—because the effect of expected growth

dominates the joint effect of the bond yield and risk premium. In turn, the forward equity

yield shows slightly sharper cyclicality of both level and slope than the equity yield, because

it does not account for the opposite bond yield cyclicality of both level and slope.18

III.C Cross-Sectional Returns and Value Premium

We now study the model predictions for the cross-section of equity returns. We set ϕV =

−ϕG = 0.40 and assume the idiosyncratic risk σϕ = 7.5%, see Eq. (14).

The upper left panel of Figure 11 shows valuation ratios as a function of EGV for both

value and growth firms. The price of value firms is lower in level and more sensitive to

expected growth volatility. The upper right panel of the figure displays the premium of

the high-minus-low portfolio—that is, the value premium—as a function of EGV. The value

18Consistently, in Section I we document that forward equity yields and equity yields are very similar and
their relation with EGV is indistinguishable.
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premium is positive, sizeable (about 3.7%), and countercyclical. These three results are

consistent with the empirical findings in the literature and with our results in Section I:

EGV is a driver of the value premium dynamics (claim 4 of our Proposition).

To better inspect the model mechanism, we consider the premium on the claim of value

and growth payouts across the horizons. The long-run impact of EGV on payouts suggests

that long-term claims to value-type payouts should feature a larger and more volatile pre-

mium than short-term claims. Instead, the lower loading of growth-type payouts to EGV

suggests that both long-term claims and short-term claims should command a similar risk

premium and feature little sensitivity to EGV. The lower panels of Figure 11 display such

heterogeneity in the dynamics of the premia to claims of value-type and growth-type payouts

across the horizons. This result is consistent with the long-run predictability of value returns

by EGV and the lack of predictability of growth returns documented in Section I.

The model mechanism leading to the value premium dynamics is interesting for three

reasons. First, Giglio et al. (2020) document that the risk premia to claims of value- and

growth-type payouts respectively increase and decrease with the horizon. Recently, Hasler

et al. (2020) show that rational learning helps understand the unconditional slope of these

term structures but they do not investigate dynamics. Our framework provides an alternative

explanation for this stylized fact and reconciles it with the counter-cyclical dynamics of both

the value premium and the equity term premium. Second, our results share with Bansal,

Dittmar, and Lundblad (2005) the idea that the value premium arises from the excess loading

of value firms on long-term fundamental risk over growth firms. However, differently from

their approach, our model does not lead to negligible short-term compensations—in con-

trast with the empirical evidence. Instead, we explain in general equilibrium sizeable short-

term risk premia, similar to the partial equilibrium model of Lettau and Wachter (2007).

Differently from their duration-based interpretation of the value premium but consistent

with recent empirical findings, our model does not predict downward-sloping (respectively,

upward-sloping) compensations to value (growth) firms. Third, the close connection between

37

Electronic copy available at: https://ssrn.com/abstract=3657285



0.00 0.05 0.10 0.15 0.20

3

4

5

EGV

Valuation Ratios

value
growth

PDF(xt)

0.00 0.05 0.10 0.15 0.20
0.00

0.05

0.10

EGV

Value Premium

model

PDF(xt)

0 5 10 15 20

0.06

0.08

0.10

0.12

Horizon

Dividend Strip Premium—Value

0 5 10 15 20

0.04

0.05

0.06

0.07

0.08

Horizon

Dividend Strip Premium—Growth

bad state
average state
good state

Figure 11: Value and Growth Price Dynamics and Term Structures. The upper
panels of the figure report the model log price-payout ratio of value and growth firms (left),
the model value premium (right) as a function of EGV (xt). The lower panels of the figure
show the model dividend strip risk premium for value (left) and growth firms (right) as a
function of the horizon for several values of EGV (xt).

the model predictions about cross-sectional returns and term structures and their empirical

counterparts strongly corroborates the main model mechanism on the dynamics of the equity

term premium.

III.D Robustness: Unconditional Equity Term Premium

We now study the main model predictions in light of the recent debate regarding the mea-

surement of the unconditional equity term premium. van Binsbergen et al. (2012), Gormsen
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Figure 12: Unconditional Equity Term Premium. The figure reports the dividend
strip risk premium as a function of the horizon for several values of EGV (xt) under our
alternative calibration. The shaded area denote the difference with respect to the baseline
calibration in the steady-state.

(2020), and Giglio et al. (2020) provide evidence that the unconditional equity compensa-

tions are downward-sloping. Recently, however, Bansal et al. (2020) call into question this

result as small samples can over-represent economic conditions in which the slope is negative

(e.g., recessions) and lead to a wrong assessment about the unconditional slope.

While we are agnostic about the resolution of this empirical issue, we verify whether our

economic mechanism is robust to the sign of the unconditional slope. In particular, we verify

whether (i) the model dynamics of equity slope are affected by the sign of the unconditional

slope, and (ii) the model can reconcile standard asset pricing moments with the dynamics of

the equity term structure under either increasing or decreasing unconditional term premium.

Our model allows to easily verify that the slope dynamics are robust to the sign of the

unconditional slope. The dividend strip risk premium in Eq. (12) has two components: a

permanent and heteroskedastic component driven by EGV (and commanding upward-sloping

compensations) and a transitory and homoskedastic component due to short-run shocks (and

commanding downward-sloping compensations). The unconditional slope depends on the

relative strength of the two components. However, the conditional slope moves with EGV

and, so, features counter-cyclical dynamics and can switch sign over time.
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We consider an alternative calibration where we increase the persistence of EGV, xt and

decrease the persistence of the short-run shock, zt. Namely, we change λx from 0.15 to

0.10 and λz from 0.15 to 0.20. We keep all the other parameters unchanged. Under this

alternative calibration, standard asset pricing moments are still reasonable and similar to

those under our baseline calibration. Appendix Table B5 reports several moment statistics

from model simulations. We observe a slightly higher equity premium and a lower risk-free

rate as a result of preferences for the early resolution of uncertainty. Importantly, the change

in the relative strength of the two shocks affects the risk premium across the horizon. Figure

12 shows the dividend strip risk premium at the average state under both the alternative and

the baseline calibrations. We observe that a more persistent EGV leads to higher long-term

premia, and a less persistent short-run shock leads to lower short-term premia. Thus, under

this alternative calibration, the unconditional equity term premium shifts from negative to

positive. Figure 12 also shows the dividend strip risk premium in good and bad states.

As under the baseline calibration (see Figure 9) and in accord with the empirical evidence,

compensations increase with the horizon in bad states (recessions) and decrease with the

horizon in good states (expansions). In turn, the equity term premium has counter-cyclical

dynamics as documented by Gormsen (2020).

Overall, our model reconciles standard asset pricing models with the empirically consis-

tent dynamics of the equity term premium. The economic mechanism is robust to the sign

of its unconditional average. Moreover, in accord with the empirical evidence, short-term

assets command a high compensation even if the unconditional term premium is positive, as

shown in Figure 12. Thus, our model provides a solution to the theoretical challenge posed

by the empirical findings in van Binsbergen et al. (2012) to leading models, such as Campbell

and Cochrane (1999), Bansal and Yaron (2004), and Wachter (2013)—that cannot explain

sizeable short-term risk premia, independently of the sign of the unconditional slope.
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IV Conclusion

Using a parsimonious general equilibrium framework, we provide a comprehensive under-

standing of the recent empirical findings regarding the term structure of equity, its dynamics,

and its implications for the cross section of returns. The economic mechanism relies on the

interaction between two risks affecting economic fundamentals: permanent shocks driven by

expected growth volatility—which induce upward-sloping risk with the horizon—and tran-

sitory shocks capturing stationary fluctuations—which induce downward-sloping risk. In

equilibrium, the interaction and the relative magnitude of these two risks determine the

slope dynamics of equity compensations. We provide empirical evidence supportive of the

model assumptions, economic mechanism, and predictions.

Our model jointly generates the observed features of the term structure of equity, in-

cluding the unconditional negative slope of term premia, counter-cyclical variation of term

premia, and pro-cyclical variation of equity yields. The model also explains premia to value

(respectively, growth) stocks, which are increasing (decreasing) with the horizon. At the

same time, our model also perform well in capturing standard asset pricing moments (e.g.,

risk-free rate and equity premium puzzles) under realistic assumptions about the economic

environment (e.g., consumption and dividend co-integration and limited market participa-

tion) and standard preferences.

41

Electronic copy available at: https://ssrn.com/abstract=3657285



References

Ai, H., M. M. Croce, A. M. Diercks, and K. Li (2018). News shocks and the production-based
term structure of equity returns. Review of Financial Studies 31 (7), 2423–2467.

Alvarez, F. and U. J. Jermann (2005). Using asset prices to measure the persistence of the
marginal utility of wealth. Econometrica 73 (6), 1977–2016.

Andries, M., T. M. Eisenbach, and M. C. Schmalz (2019). Horizon-dependent risk aversion
and the timing and pricing of uncertainty. Working Paper.

Bansal, R., R. F. Dittmar, and C. T. Lundblad (2005, 08). Consumption, dividends, and
the cross section of equity returns. Journal of Finance 60 (4), 1639–1672.

Bansal, R., D. Kiku, I. Shaliastovich, and A. Yaron (2014). Volatility, the macroeconomy,
and asset prices. Journal of Finance 69 (6), 2471–2511.

Bansal, R., D. Kiku, and A. Yaron (2012). An empirical evaluation of the long-run risks
model for asset prices. Critical Finance Review 1, 183–221.

Bansal, R., S. Miller, D. Song, and A. Yaron (2020). The term structure of equity risk
premia. Working paper.

Bansal, R. and A. Yaron (2004). Risks for the long run: A potential resolution of asset
pricing puzzles. Journal of Finance 59 (4), 1481–1509.

Barberis, N., R. Greenwood, L. Jin, and A. Shleifer (2015). X-CAPM: An extrapolative
capital asset pricing model. Journal of Financial Economics 115 (1), 1–24.

Belo, F., P. Collin-Dufresne, and R. S. Goldstein (2015). Dividend dynamics and the term
structure of dividend strips. Journal of Finance 70 (3), 1115–1160.

Berk, J. B., R. C. Green, and V. Naik (1999, October). Optimal investment, growth options,
and security returns. Journal of Finance 54 (5), 1553–1607.

Berk, J. B. and J. Walden (2013). Limited capital market participation and human capital
risk. Review of Asset Pricing Studies 3 (1), 1–37.

Boguth, O. and L.-A. Kuehn (2013). Consumption volatility risk. Journal of Finance 68 (6),
2589–2615.
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Ŕıos-Rull, J.-V. and R. Santaeulàlia-Llopis (2010). Redistributive shocks and productivity
shocks. Journal of Monetary Economics 57 (8), 931–948.

44

Electronic copy available at: https://ssrn.com/abstract=3657285



Tauchen, G. (2011). Stochastic volatility in general equilibrium. Quarterly Journal of Fi-
nance 1 (4), 707–731.

van Binsbergen, J., M. Brandt, and R. Koijen (2012). On the timing and pricing of dividends.
American Economic Review 102 (4), 1596–1618.

van Binsbergen, J., W. Hueskes, R. Koijen, and E. Vrugt (2013). Equity yields. Journal of
Financial Economics 110 (3), 503 – 519.

van Binsbergen, J. H. and R. Koijen (2017). The term structure of returns: Facts and theory.
Journal of Financial Economics 124 (1), 1 – 21.

Wachter, J. A. (2013). Can time-varying risk of rare disasters explain aggregate stock market
volatility? Journal of Finance 68 (3), 987–1035.

Weber, M. (2018). Cash flow duration and the term structure of equity returns. Journal of
Financial Economics 128 (3), 486 – 503.

Weil, P. (1989). The equity premium puzzle and the risk-free rate puzzle. Journal of
Monetary Economics 24 (3), 401–421.

Zhang, L. (2005). The value premium. Journal of Finance 60 (1), 67–103.

45

Electronic copy available at: https://ssrn.com/abstract=3657285



A Model Derivation and Proofs

Affine Notation

The vector Xt = (yt, xt, zt, wt)
ᵀ collects the two state variables of our model xt and zt as

well as accumulated expected growth yt = µt +
∫ t

0
(x̄− xs)ds and the specific component of

cross-sectional payouts wt = ϕ
∫ t

0
(x̄− xs)ds+ σϕBϕ,t. The vector belongs to the affine class

and has dynamics:

dXt =µ(Xt)dt+ Σ(Xt)dBt,
µ(Xt) =M+KXt,

Σ(Xt)Σ(Xt)
ᵀ =h+

∑
i∈{y,x,z,w}

HiXi,t,

with Brownian motions Bt = (By,t, Bx,t, Bz,t, Bw,t)
ᵀ and the following coefficients:

M =


µ+ x̄
λxx̄
0
ϕx̄

 , K =


0 −1 0 0
0 −λx 0 0
0 0 −λz 0
0 −ϕ 0 0

 ,

h =


0 0 0 0
0 0 0 0
0 0 σ2

z 0
0 0 0 σ2

ϕ

 , Hy = Hz = Hw =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , Hx =


0 0 0 0
0 σ2

x 0 0
0 0 0 0
0 0 0 0

 .

The following selection vectors allow to recover consumption, aggregate payouts, and cross-
sectional payouts:

vC = (1, 0, 1, 0)ᵀ ⇒ vᵀCXt = logCt,

vD = (1, 0, φ, 0)ᵀ ⇒ vᵀDXt = logDt,

vϕ = (1, 0, φ, 1)ᵀ ⇒ vᵀϕXt = logDϕ
t .

Moment Generating Function

The following conditional expectation allows to compute the moment generating function
for the logarithm of C,D, and Dϕ at any future horizon τ :

Et[exp(uᵀXt+τ )] = exp(b̄0(τ) + b̄(τ)ᵀXt). (A1)

As shown in Duffie, Pan, and Singleton (2000), the functions b̄0(τ) and b̄(τ) =
(
b̄y(τ), b̄x(τ),

b̄z(τ), b̄w(τ)
)ᵀ

solve the following system of ODE’s:

b̄′0(τ) =Mᵀb̄(τ) +
1

2
b̄(τ)ᵀhb̄(τ),

b̄′(τ) =Kᵀb̄(τ) +
1

2
b̄(τ)ᵀHb̄(τ).
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By setting the initial conditions b̄0(0) = 0 and either b̄(0) = uvC , b̄(0) = uvD, or b̄(0) = uvϕ,
Eq. (A1) computes the time-t conditional expectation of either Ct+τ , Dt+τ , or Dϕ

t+τ with
power u respectively. These expectations can be used to build the term structure of growth
rates volatility.

Equity and State-Price Density

We follow Eraker and Shaliastovich (2008) and the state-price density based on recursive
preferences of Epstein and Zin (1989) type. To do so, we use the Campbell and Shiller
(1988) approximation to log-linearize the return Rt on the wealth of market participants
(that in our economy corresponds to the equity market and pays-out Dt):

d logRt = k0dt+ k1dpdt − (1− k1)pdtdt+ d logDt, (A2)

Where k0 and k1 are endogenous constants to be determined. We conjecture that the log
price-payout ratio (which is also the log wealth-consumption ratio of market participants) is
an affine function of Xt: pdt = A0 + AᵀXt.

We use Eq. (A2) to rewrite the state-price density dynamics as Follows:

d logMt = θ log βdt− θ

ψ
d logDt − (1− θ)d logRt

= (θ log β − (θ − 1) log k1 + (θ − 1) (k1 − 1)Aᵀ (Xt − µX)) dt− λᵀdXt, (A3)

where λ = γvD +(1− θ) k1A and µX = (0, x̄, 0, 0)ᵀ. Then, the Euler equation can be written
as:

1 = Et
[
Mt+τ

Mt

e
∫ τ
0 d logRt+s

]
, ∀τ.

Since the term in the conditional expectation has to be a martingale, we apply Itô’s lemma
to compute its drift that we set equal to zero:

0 = θ log β + χᵀ (M+KXt) + θk0 − θ(1− k1)(A0 + AᵀXt) +
1

2
χΣ(Xt)

ᵀΣ(Xt)χ
ᵀXt (A4)

where χ = θ
((

1− 1
ψ

)
vD + k1A

)
. Since Eq. (A4) holds for all Xt and we set the coefficients

on Xt and the residual constant equal to zero. The endogenous coefficients k1, A0 and
A = (Ay, Ax, Az, Aw)ᵀ are obtained by solving the following system:

0 =Kᵀχ− θ (1− k1)A+
1

2
χᵀHχ

0 = θ (log β + k0 − (1− k1)A0) +Mᵀχ+
1

2
χᵀhχ

θ log k1 = θ (log β + (1− k1)AᵀµX) +Mᵀχ+
1

2
χᵀhχ

The solution coefficients should be inserted into (A3) to obtain the equilibrium state price
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density.19 The equity price is then given by Pt = Dt exp(A0 + AᵀXt), where Ay = Aw = 0.
Applying Itô’s Lemma to (A3) yields:

dMt

Mt

= (θ log β − (θ − 1) log k1 + (θ − 1) (k1 − 1)Aᵀ (Xt − µX) + µ(Xt)
ᵀλ) dt

+
1

2
λᵀΣ(Xt)λdt− λᵀΣ(Xt)dBt

= − (Φ0 + ΦᵀXt) dt− λᵀΣ(Xt)dBt (A5)

where the coefficients Φ0 and Φ = (Φy,Φx,Φz,Φw)ᵀ are:

Φ0 = −θ log β + (θ − 1) (log k1 + (k1 − 1)AᵀµX) +Mᵀλ− 1

2
λᵀhλ

Φ = (1− θ) (k1 − 1)A+Kᵀλ− 1

2
λᵀHλ

Therefore, the risk-free rate is given by rt = Φ0+ΦᵀXt and the vector of risk prices is given by
Ω(Xt) = (Ωy,Ωx,Ωz,Ωw)ᵀ = Σ(Xt)

ᵀλ, where it turns out that Φy = Φw = 0 and Ωy = Ωw =
0. Consequently, the risk premium on equity is equal to RP (xt) = ((A+ vD)ᵀΣ(Xt))Ω(Xt),
which is an affine function of xt only.

Term Structures

Following Duffie et al. (2000), the risk-neutral dynamics of Xt are given by:

dXt =
(
MQ +KQXt

)
dt+ Σ(Xt)dBQt ,

MQ =M− hλ,
KQ =K −Hλ,
dBQt = dBt + Σ(Xt)

ᵀλ dt.

Then, we can compute the discounted value of several payouts, such as Dt+τ , D
ϕ
t+τ , and the

unitary payout of a risk-less bond:

Et
[
Mt+τ

Mt

exp(vᵀXt+τ )

]
= EQ

[
exp(−

∫ τ

0

rt+sds+ vᵀXt+τ )

]
= exp(q0(τ) + q(τ)ᵀXt),

where v ∈ {vD, vϕ, (0, 0, 0, 0)ᵀ}. The deterministic function qo(τ) and q(τ) = (qy(τ), qx(τ),
qz(τ), qw(τ)) solve the following system of ODE’s:

q′0(τ) = − Φ0 +
(
MQ)ᵀq(τ) +

1

2
q(τ)ᵀh q(τ),

q′(τ) = −Φ +
(
KQ
)ᵀ
q(τ) +

1

2
q(τ)ᵀHq(τ),

19Note that the above system of equations could yields multiple solutions. Tauchen (2011) proposes
to select the root which ensures the non-explosiveness of the system. Alternatively, one could select an
economically reasonable solution.
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with initial conditions q0(0) = 0 and q(0) = v.
Therefore, the risk-less bond price, the strip price of the aggregate payout and the strip

price of the cross-sectional payout are given by

Bt,τ = exp(q0(τ) + q(τ)ᵀXt), with v = (0, 0, 0, 0)ᵀ,

Pt,τ = exp(q0(τ) + q(τ)ᵀXt), with v = vD,

Pϕ
t,τ = exp(q0(τ) + q(τ)ᵀXt), with v = vϕ.

Cross-Sectional Equity

The price of the stock paying out the stream Dϕ
t can be computed either as the time integral

of the corresponding strip price over any maturity or via an exponential affine approximation.
Such exponential affine approximation is given by

Pϕ
t = Dϕ

t exp(Aϕ0 + (Aϕ)ᵀXt),

where the coefficients Aϕ0 , A
ϕ = (Aϕy , A

ϕ
x , A

ϕ
z , A

ϕ
w)ᵀ, and the endogenous constant kϕ1 solve

the following system:

0 = (θ − 1)(k1 − 1)A+ (kϕ1 − 1)Aϕ +Kᵀχϕ + (1/2)χᵀ
ϕHχϕ,

0 = θ log β − (θ − 1)(log k1 + (k1 − 1)AᵀµX)− (log kϕ1 + (kϕ1 − 1)(Aϕ)ᵀµX) +Mᵀχϕ

+ (1/2)χᵀ
ϕhχϕ,

0 =Aϕ0 + (Aϕ)ᵀµX − log kϕ1 + log(1− kϕ1 ),

where χϕ = vϕ + kϕ1A
ϕ− λ. It turns out that Aϕy = Aϕw = 0. Therefore, the risk premium on

the cross-sectional stock is equal to RPϕ(xt) = ((Aϕ + vϕ)ᵀΣ(Xt))Ω(Xt), which is an affine
function of xt only.

State-Price Density Decomposition

We follow Alvarez and Jermann (2005) and Hansen and Scheinkman (2009) and decom-
pose the equilibrium state-price density in its permanent (martingale) component and its
transitory component. The logarithm of the state-price density equals:

logMt = −
∫ t

0

(rs +
1

2
(Ω2

x(xs) + Ω2
z))ds−

∫ t

0

Ωx(xs)dBx,s − ΩzBz,t,

with logM0 = 0.
Example 6.2 in Hansen and Scheinkman (2009) nests the above functional form. The
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permanent (martingale) component M̂t of the state-price density is given by

log M̂t = − 1

2
(cxσx − Ωx)

2

∫ t

0

xsds −
1

2
(czσz − Ωz)

2t

− (cxσx − Ωx)

∫ t

0

√
xsdBx,s − (czσz − Ωz)Bz,t,

where

cx =
λx + σxΩx −

√
2rxσ2

x + (λx + σxΩx)
2

σ2
x

,

cz = − rz
λz
,

with Ωx = Ωx(xt)/
√
xt. This decomposition allows us to verify that the state-price density

satisfies the bound introduced by Alvarez and Jermann (2005), as reported in Section III.A.

Proposition Proof

Our results are valid under the parametric restriction σ2
x < σ2

x, where

σ2
x =

ψλx (2γψ + k1 (−2γψ + (γψ + ψ − 2)λx + 2)− 2)

2k1(γψ − 1)2
(A6)

In the steady-state, the equity premium equals 9.5% at the upper boundary σ2
x = σ2

x in
our baseline calibration. Since the equity premium is much lower in the data, the above
constraint is never binding in our analysis. Other parameter restrictions we impose are
0 < k1 < 1, 0 < λx < 1, γ > ψ > 1.

Lemma 1. Ψ0 < 0.

Proof. Note that Ψ0 is strictly increasing in σ2
x:

∂Ψ0

∂σ2
x

=
2k2

1(ψ − 1)(γψ − 1) (k1λx − k1 + 1)

Ψψ2 (k1 (λx − 1) + Ψ + 1) 2
> 0. (A7)

Furthermore, setting σ2
x = σ2

x (i.e., to its highest value given our constraint) yields Ψ0 < 0.
Since Ψ0 is strictly increasing in σ2

x, this implies that for σ2
x < σ2

x, Ψ0 is negative.

Lemma 2. Ψ1 < 0.

Proof. Note that Ψ1 is strictly increasing in σ2
x:

∂Ψ1

∂σ2
x

=
k1(γψ − 1)

Φψ
> 0. (A8)
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Furthermore, setting σ2
x = σ2

x (i.e., to its highest value given our constraint) yields Ψ1 = 0.
Since Ψ1 is strictly increasing in σ2

x, this implies that for σ2
x < σ2

x, Ψ1 is negative.

Lemma 3. Ax < 0.

Proof. Since Ax = − 2(1−1/ψ)
1−k1(1−λx)+Φ

and ψ > 1, we simply need to verify that:

1− k1(1− λx) + Φ > 0. (A9)

Since Φ is a square root term and non-negative and since 0 < k1 < 1 and 0 < λx < 1, this
condition is satisfied.

Part 1: Valuation ratios decrease with EGV:

We compute the derivative term:

∂

∂xt
log

Pt
Dt

=
Ax
Dt

exp (A0 + Axxt + Azzt) .

The above term is negative since Ax is negative as shown in Lemma 3.

Part 2: The slope of equity yields decreases with EGV:

We compute the cross-derivative term:

∂2

∂τ∂x
ey(t, τ) =

ax
τ 2
−

∂ax
∂τ

τ
= −

2Ψ0 (ω cosechω2 − cothω)
(√

Ψ2
1 − 4Ψ0Ψ2 + Ψ1

)
τ 2
(

Ψ1 − cothω
√

Ψ2
1 − 4Ψ0Ψ2

)2 . (A10)

To determine the sign of (A10), note that the denominator contains a squared (real) term,
ans is therefore positive. We therefore focus on determining the sign of the numerator. The
term ω = τ

2

√
Ψ2

1 − 4Ψ0Ψ2 is strictly positive since Ψ0 < 0, Ψ1 < 0, Ψ2 > 0, and τ > 0,
Consequently, the trigonometric expressions satisfy ωcosechω2− cothω < 0 and cothω > 1.
Additionally considering Ψ0 < 0 and the minus sign in front of the expression, it suffices to
show that the following term is positive:√

Ψ2
1 − 4Ψ0Ψ2 + Ψ1.

Since Ψ0 < 0 and Ψ2 > 0, this condition is satisfied.

Part 3: The slope of the dividend strip risk premium increases with EGV:

We compute the cross-derivative term:

∂2

∂τ∂x
RPDS(xt, τ) =

Axk1σ
2
x

(
γ − 1

ψ

)
1− 1

ψ

∂

∂τ
ax(τ). (A11)
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Given 0 < k1 < 1, γ > ψ > 1 and Ax < 0, a sufficient condition for showing that (A11) is
negative is that ∂ax(τ)/∂τ is negative, where

∂

∂τ
ax(τ) =

Ψ0 (Ψ2
1 − 4Ψ0Ψ2) (cosechω)2(

Ψ1 − cothω
√

Ψ2
1 − 4Ψ0Ψ2

)2 .

Considering that the expression contains two squared and, hence positive terms, it suffices
to show that the following term is negative:

Ψ0

(
Ψ2

1 − 4Ψ0Ψ2

)
.

Since, Ψ0 < 0 and Ψ2 > 0, this condition is satisfied.

Part 4: The value premium increases with EGV:

It is sufficient to show the following cross-derivative is negative:

∂2

∂ϕ∂x
RPϕ(xt) =

2k1(γψ − 1)σ2
x

ψ
√
η2

1 − 4η0η2 (k1 (λx − 1) + Φ + 1)
> 0.

Using our parameter restrictions, it follows immediately that the numerator is positive.
Additionally, the term ψ (k1 (λx − 1) + Φ + 1) positive as well. The denominator is therefore
positive if and only if the square root term

√
η2

1 − 4η0η2 is positive. Since we assume our
model is well-defined (no imaginary quantities), this condition is satisfied.
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Table B1: Definition of Variables

Variable Sources Definition

Expected Growth Volatility
EGV SPF Expected volatility of growth based on mean growth forecasts of real GDP for the next quarter and on equations

(1)-(2).
EGV(Dispersion) SPF The difference between the 75th and the 25th percentile of real GDP growth forecasts for the next quarter. Because

SPF forecasts are disseminated at the end of the first month of the quarter (January, April, July, October), the
conversion of monthly data to quarterly frequency is done accordingly throughout the paper.

EGV(AR(MA)(1,1)-(G)ARCH(1,1)) SPF Expected volatility of growth based on mean growth forecasts of real GDP for the next quarter and on a
AR(MA)(1,(1))-(G)ARCH((1),1) model for conditional volatility.

EGV(Cond. Macro) SPF, FRED Macroeconomic component of expected volatility of growth based on mean growth forecasts of real GDP. First,
mean GDP growth forecasts are demeaned using equation 1. Second, residuals from such a model are regressed
on the three-month moving average of the CFNAI, an indicator for NBER recessions, the inflation rate, and the
one- and ten-year real Treasury rate. The final EGV measure is the time series of the fitted values from the last
regression.

EGV(Cond. Macrofinance) SPF, FRED, CRSP Macrofinance component of expected volatility of growth based on mean growth forecasts of real GDP. First, mean
GDP growth forecasts are demeaned using equation 1. Second, residuals from such a model are regressed on the
three-month moving average of the CFNAI, an indicator for NBER recessions, the inflation rate, the one- and
ten-year real Treasury rate, the default spread, and the real return and the logarithm of the price-dividend ratio
of the CRSP value-weighted measure. The final EGV measure is the time series of the fitted values from the last
regression.

EGV(Cond. GDP) SPF, FRED Expected volatility of growth based on filtered forecasts of GDP, i.e., residuals from a regression of mean growth
forecasts of GDP for the next quarter on the (de-trended) labor share of the nonfinancial corporate sector. The
econometric approach is the same as in equations (1)-(2).

EGV(IP) SPF Expected volatility of growth based on mean growth forecasts of IP for the next quarter. The econometric approach
is the same as in equations (1)-(2).

EGV(PCE) SPF Expected volatility of growth based on mean growth forecasts of PCE for the next quarter. The econometric
approach is the same as in equations (1)-(2).

Stock Market
ln(P/D) CRSP, Robert Shiller’s

Webpage
Natural logarithm of the quarterly price-dividend ratio of the CRSP value-weighted index or of the S&P 500 index.
The baseline analysis relies on the CRSP index except when using data on equity yields from van Binsbergen et al.
(2012): because those yields are extracted from options on the S&P 500 index, in that case we use information on
the S&P 500 index. To extract information on dividends on the CRSP index, we exploit differences between total
and ex-dividend returns as in Eaton and Paye (2017). As in Eaton and Paye (2017), we then compute dividends in
a given month as the moving average over the previous year to mitigate seasonal patterns. Available data both for
the CRSP and the S&P 500 index are monthly and are converted to quarterly frequency by taking the average of
the ratio over the previous three months as of the first month of each quarter.

(Continued)
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Table B1: – Continued

Equity Yield Slope (BBK12) van Binsbergen et al.
(2012, BBK12)

Difference between the S&P 500 dividend yield (ey(t, long)) and short-maturity equity yields (ey(t, short)), whose
maturity ranges between 0.5 and two years. Short-maturity equity yields are extracted from data on dividend prices

and current dividends by BBK12 by means of the formula ey(t, short) = − 1
n

ln
(
Pn,t

nDt

)
, where Pn,t denotes the price

of dividends up to maturity n at time t, Dt is the current annual dividend at time t, and n = 0.5, 1, 2 years. Note
that, differently from the standard formula to extract equity yields from dividend futures (e.g., Bansal et al., 2020),
Pn,t is obtained from option prices and needs to be divided by n. Indeed, Pn,t in BBK12 is the price of a claim on
all dividends paid up to maturity n (i.e., not on the single dividend paid at date n). Available data are monthly
and are converted to quarterly frequency by taking the average of the yields over the previous three months as of
the first month of each quarter.

Equity Yield Slope (GKK20) Giglio et al. (2020,
GKK20)

Difference between a long-maturity yield (ey(t, long)) and the two-year equity yield (ey(t, short)), where yields are
model-implied measures. The maturiy of the long-maturity yield ranges between ten and 100 years. For consistency
with equity yield slopes based on BBK12, a measure relying on the dividend yield of the CRSP value-weighted index
as ey(t, long) is also computed. Available data are monthly and are converted to quarterly frequency by taking the
average of the yields over the previous three months as of the first month of each quarter.

Equity Term Premium CRSP, GKK20, FRED Difference between the CRSP value-weighted index logarithmic real return (long-maturity claim) and the logarithmic
real return on the two-year dividend strip based on the corresponding model-implied equity yield by GKK20. CRSP
index returns are monthly and are converted to quarterly frequency by summing them over the previous three
months as of the first month of each quarter. The quarterly return on two-year dividend strip at time t is computed

as −1.75ey1.75,t + 2ey2,t−0.25 + ln
(

Dt
Dt−0.25

)
, where the 1.75-year equity yield is obtained by interpolating the one-

and the two-year yields. Finally, the one to ten-year ahead cumulative equity term premia are computed.
Value, Growth, Value – Growth Kenneth French’s

Website
Real returns on the value (growth) returns correspond to the top (bottom) decile of stocks sorted on the book-
to-market ratio and their difference (value–growth), where portfolio construction follows Fama and French (1992).
Portfolio returns are monthly and are converted to quarterly frequency by summing them over the previous three
months as of the first month of each quarter. Finally, the one to ten-year ahead cumulative returns for each of the
three portfolio strategies are computed.

Other macrofinance variables
CFNAI FRED The three-month moving average of the CFNAI as of the end of the first month of each quarter.
NBER Recession FRED Indicator equal to one if at least one month in a given quarter is classified as a recession by the NBER. Each

observation corresponds to the first month of the quarter.
Inflation FRED Quarterly logarithmic inflation rate computed from the seasonally adjusted Consumer Price Index for All Urban

Consumers (CPI). The conversion of other variables in real terms is based on this CPI measure.
Treasury Rates FRED Real one- and ten-year constant maturity rates. Available data are monthly and are converted to quarterly frequency

by taking the average of the spread over the previous three months as of the first month of each quarter. Rates are
expressed in quarterly terms.

Default Spread FRED The difference between the yield to maturity of Aaa- and Baa-rated corporate bonds. Available data are monthly
and are converted to quarterly frequency by taking the average of the spread over the previous three months as of
the first month of each quarter.
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Table B2: Goodness of Fit of Alternative EGV Specifications

GDP Conditional GDP

(1) (2) (3) (4)
Specification RMSE Correlation with baseline RMSE Correlation with baseline

EGV – Baseline 0.0021 1.0000 0.0020 0.9932
EGV (AR(1)-ARCH(1)) 0.0029 0.6451 0.0027 0.6454
EGV (AR(1)-GARCH(1,1)) 0.0030 0.8904 0.0028 0.8812
EGV (ARMA(1,1)-ARCH(1)) 0.0030 0.6568 0.0028 0.6572
EGV (ARMA(1,1)-GARCH(1,1)) 0.0030 0.8841 0.0029 0.8746

Note. This table reports the root-mean-square error (RMSE)

RMSE =
(

(1/T )
∑T−1

t=0

(
|ε(t+ 1)| − σ(t, t+ 1)

)2)1/2

from several specifications at quarterly frequency of conditional and volatility models
as well as the correlation of the EGV measure they generate with the baseline EGV
measure (i.e., based on equations (1)-(2)) for the period 1968-2019. In columns 1
and 2, the EGV measures are estimated from GDP growth forecasts. In columns 3
and 4, the EGV measures are estimated after conditioning growth forecasts on the
(de-trended) labor share of the corporate sector. Detailed variable definitions are
provided in Appendix Table B1.
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Table B5: Alternative Calibration: Standard Moments

Moment Data Model

2.5% 5% 50% 95% 97.5% Pop.

Avg consumption growth 0.021 -0.001 0.004 0.026 0.043 0.046 0.025
Std consumption growth 0.018 0.025 0.026 0.031 0.040 0.042 0.034

Avg payout growth 0.030 -0.002 0.003 0.026 0.044 0.047 0.025
Std payout growth 0.148 0.151 0.156 0.181 0.207 0.212 0.181
20-year Std payout growth 0.083 0.019 0.028 0.101 0.216 0.240 0.125

Std log payout-consumption ratio 0.228 0.163 0.172 0.230 0.309 0.327 0.259

Avg risk-free rate 0.007 -0.034 -0.028 0.001 0.028 0.033 0.000
Std risk-free rate 0.025 0.026 0.027 0.038 0.053 0.057 0.044

Avg excess equity return 0.068 0.042 0.047 0.074 0.100 0.106 0.073
Std excess equity return 0.175 0.119 0.123 0.142 0.162 0.166 0.143
Avg Sharpe ratio 0.388 0.292 0.326 0.519 0.725 0.772 0.512

Avg log price-dividend ratio 3.435 2.884 2.902 2.994 3.073 3.087 2.993
Std log price-dividend ratio 0.443 0.071 0.075 0.104 0.150 0.161 0.124

Avg excess high-minus-low return 0.035 0.033 0.037 0.059 0.080 0.085 0.059
Std excess high-minus-low return 0.129 0.114 0.118 0.137 0.158 0.163 0.137

Note. This table reports moment statistics from both data and model simulations. Model-implied
statistics are either moment quantiles from short-sample (72 years) simulations or population
moments. The model is simulated at monthly frequency. Statistics are yearly moments if not
stated otherwise. Consumption and payout data are from NIPA tables. Returns are from K.
French webpage. The price-dividend ratio is from R. Shiller webpage.
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