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Abstract 
 

 

 

 

 

The present Doctoral Thesis deals with the in-depth chemical characterization of the Italian 
olive oil volatile fraction contributing to the quality features of this unique product, with emphasis 
on compounds correlated to sensory perception. With this objective in mind, research efforts have 
been directed to the development of analytical strategies for accurate profiling and effective 
fingerprinting of volatile organic compounds (VOCs). Through a systematic design, sample 
preparation by headspace techniques has been exploited and its performances examined in light of 
the molecular resolution potential of multidimensional gas chromatography coupled to mass 
spectrometry and flame ionization detector. Moreover, the challenging step of multidimensional 
signals data processing, has been also investigated for its flexibility and reliability when multiple 
analytical batches or signals derived from different analytical platforms have to be explored. The 
outcomes of the PhD project research have the ambition to propose straightforward analytical 
solutions that achieve molecular resolution characterization of olive oil VOCs (i.e., profiling) with all 
the advantages of fingerprinting effectiveness in samples identidation and discrimination. By these 
analytical tools, that include computer vision strategies and artificial intelligence smelling machines, food 
quality objectification makes a step ahead as advanced analytical chemistry enters in our daily life. 

Extra virgin olive oils (EVOOs) analyzed during a timeframe of 3 years were supplied by 
Progetto Ager, with the grant ID “Valorization of Italian OLive products through INnovative 
analytical tools- VIOLIN”. EVOOs were selected within top-quality products often awarded with 
extra-certifications as protected designation of origin – PDO, protected geographical indication – 
PGI, or as Organic. Samples represent a snapshot of the impressively complex heritage of olives 
genetic varieties typical of the Italian production (i.e., about 540 different registered cultivars and 46 
PDO EVOOs) and of the impact of the terroir due to the local pedoclimatic related to the different 
geographical locations (i.e., Regions).  

EVOOs is recognized as the most valuable product among the edible oil, and the reason of the 
increasing demand for high-quality EVOO is related not only to its nutritional and healthy values, 
due to the presence of antioxidants and high oleic acid content, but also to its peculiar sensory 
characteristics. For this reason, EVOO is listed among the top foods subjected to adulteration (e.g., 
addition of external cheap products, mislabeling practices etc.), with quality control issues that are 
mainly related to a lack of sufficiently powerful analytical methods able to provide an objective 
classification of olive oils (OOs). In particular, OO is to date the only food product whose 
classification is officially regulated by an evaluation of the sensory properties based on a Panel Test 
assessment, and the scientific community is searching for analytical methods able to support it. 
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When the aim is to provide a full identitation of an OO, i.e., to define the identity of a particular 
OO based on the characteristic features that make it singular or unique, multidimensional analytical 
(MDA) platforms are required. They are characterized by the combination of a physicochemical 
separation (e.g., chromatography, electromigration, size exclusion, etc.) with spectroscopic 
techniques (e.g., Mass Spectrometry - MS, Nuclear Magnetic Resonance - NMR, Infrared - IR, 
Ultraviolet - UV, etc.), having the potential to discriminate, identify and quantify sample 
constituents, providing a solid foundation for generating hypothesis driven studies. 

In particular, the core of the research activity of this PhD project is represented by MDA 
platforms combining headspace sampling (HS), multidimensional separation, and different 
detection approaches often combined with “parallel detection” solutions. Each configured platform 
was optimized and/or adapted to match for sample’s compositional complexity and dynamic range 
of concentrations to cover. 

Headspace sampling was explored as the most suitable sample preparation approach to cover 
highly-to-semi volatiles within the EVOO volatilome. A series of high concentration capacity 
(HCC) techniques were tested including: (a) solid phase microextraction (SPME), (b) headspace 
sorptive extraction (HSSE) with either a single-material coating (polydimethylsiloxane—PDMS) or 
a dual-phase coating that combines PDMS/Carbopack and PDMS/EG (ethyleneglycol); (c) 
monolithic material sorptive extraction (MMSE), using octa-decyl silica combined with graphite 
carbon (ODS/CB); and dynamic headspace (d) with either PDMS foam, operating in partition 
mode, or Tenax TA™, operating in adsorption mode. Among them, SPME was found to be the 
most suitable for both accurate quantitative profiling and comprehensive fingerprinting due to the 
possibility of full automation and integration with the available analytical platforms. Sampling 
parameters by SPME (i.e., amount of sample, sampling temperature and sampling time) were then 
optimized matching for headspace linearity conditions, to provide a meaningful picture of sample’s 
components and a realistic quantitative reference for quantitative investigations. 

The separation step was by comprehensive two-dimensional gas chromatography (GC×GC), 
selected for its separation power, sensitivity, and for the intrinsic potential of being also an effective 
fingerprinting tool. In view of a possible routine adoption of GC×GC screening, the translation of 
analytical methods from a platform equipped with a loop-type thermal modulator to a system 
equipped with a differential-flow modulator (DFM) was therefore investigated and operational 
parameters optimized.  

The hyphenation of the GC×GC with a mass spectrometry (MS) detection adds another level 
of specificity while providing essential information for analyte identification, thanks to the spectra 
produced by electron ionization (EI). The potential of a Tandem IonizationTM system, able to 
provide variable energy electron ionization, was also explored. 

The large amount of information provided by the HS-SPME-GC×GC-MS requires for 
dedicated data elaborations to exploit the informative levels encrypted by samples components 
distribution. In this context, advanced fingerprinting approaches, i.e., combined Untargeted and 
Targeted (UT) fingerprinting, were exploited to allow a comprehensive cross-sample comparison by 
considering both the distribution of known and unknown volatiles. Moreover, a workflow for 
chromatographic fingerprinting by template matching based on pattern recognition algorithms was 
defined, optimized and adapted through data re-alignment tools to address 2D-peak patterns 
variations occurring in long-term studies, as to cover different harvest years of shelf-life 
modifications. 

The optimized analytical workflow was then applied on a large selection of EVOOs, providing 
validation of ripening markers and quality indicators and solid foundation for samples identitation 
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and discrimination based on production regions. Finally, the UT fingerprinting process was combined 
with an accurate quantitative profiling by multiple headspace solid phase microextraction (MHS-
SPME) to quantify a large selection of key-odorants and quality markers by external calibration and 
flame ionization detection (FID) predicted relative response factors (RRFs). By accurate amounts 
of odorants responsible of positive and negative attributes, odor activity values (OAVs) were 
defined while extending the concept of sensomics based expert system to a fully automated 
platform acting as an artificial intelligence smelling machine that delineates EVOOs aroma blueprint.
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Outline 
 

 

 

 

 

The Doctoral Thesis is organized in five chapters covering the main topics of the research 
activities conducted over the three years of the project. 

- Chapter 1 – The olive oil. This chapter proposes an overview on olive (Olea europaea L.) 
oil production chain by introducing olive tree botanical features, followed by a brief history 
of the product with a focus on the Italian heritage. Then, the process of transformation of 
olives into edible oil is described, the legislation framework for olive oil classification is 
introduced highlighting the peculiar condition for which the olive oil is, to date, the only 
food product with commercial classification officially regulated by a sensory evaluation (i.e., 
Panel Test). Olive oil composition is then described, while a specific section is dedicated to 
the volatile fraction, object of this thesis.  

- Chapter 2 – Comprehensive two-dimensional gas chromatography. In this chapter, 
the brief introduction on the origin of multidimensional gas chromatography (MDGC) is 
followed by the conceptualization of the term “multidimensionality” and the description 
of the two general categories of MDGC, the heart-cut MDGC (H/C MDGC) and the 
GC×GC, which is the core analytical platform of this PhD project. Columns’ 
configurations and related properties (e.g., orthogonality, selectivity and separation logic) 
are introduced. A focus on the modulation process and on the evolution of modulators 
technology complete the technological overview.  

- Chapter 3 – Principles of chemometrics. This chapter provides an overview of the most 
common data processing and data mining approaches suitable to explore the great 
complexity of GC×GC patterns; they are introduced according to a rational workflow from 
the design of experiment (DoE) to the creation of classification and regression models. 
Principles of DoE are explained, together with the main designs – grouped in designs for 
screening and response surface designs – and the parameters considered to evaluate the 
model. Then, raw chromatographic data preprocessing steps, directed to the correct 
acquisition, interpretation, and alignment of GC×GC analyses, are described. Data 
processing includes pertinent algorithms adopted for the purpose of this thesis. Multivariate 
analysis completes the chapter by describing exploratory analysis algorithms (i.e., principal 
component analysis – PCA, and cluster analysis – CA) and supervised techniques (i.e., linear 
discriminant analysis – LDA, k-nearest neighbor – k-NN, classification and regression tree 
– CART, soft independent modeling of class analogy – SIMCA, principal component 
regression – PCR, partial least square regression – PLS, and partial least square discriminant 
analysis – PLS-DA). 
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- Chapter 4 – Published reviews. It is dedicated to reviews published within the PhD thesis 
period; they are: 

▪ Chromatographic fingerprinting by comprehensive two-dimensional 
chromatography: fundamentals and tools. 

▪ Untargeted approaches in food-omics: the potential of comprehensive two-
dimensional gas chromatography/mass spectrometry 

▪ Comprehensive two-dimensional gas chromatography as a boosting 
technology in food-omics investigations. 

- Chapter 5 – Published research papers. This last chapter includes the published research 
papers dealing with technical advancements related to the characterization of the EVOO; 
they are: 

▪ Highly informative fingerprinting of extra-virgin olive oil volatiles: The role 
of high concentration-capacity sampling in combination with 
comprehensive two-dimensional gas chromatography. 

▪ Chromatographic fingerprinting by template matching for data collected by 
comprehensive two-dimensional gas chromatography. 

▪ Untargeted and Targeted Fingerprinting of Extra Virgin Olive Oil Volatiles 
by Comprehensive Two-Dimensional Gas Chromatography with Mass 
Spectrometry: Challenges in Long-Term Studies. 

▪ A step forward in the equivalence between thermal and differential-flow 
modulated comprehensive two-dimensional gas chromatography methods. 

▪ Exploring the extra-virgin olive oil volatilome by adding extra dimensions 
to comprehensive two-dimensional gas chromatography and time of flight 
mass spectrometry featuring tandem ionization: validation of ripening 
markers in headspace linearity conditions. 

▪ Chromatographic fingerprinting enables effective discrimination and 
identitation of high-quality Italian extra-virgin olive oils. 

▪ Delineating the extra-virgin olive oil aroma blueprint by multiple headspace 
solid phase microextraction and differential-flow modulated 
comprehensive two-dimensional gas chromatography. 
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Chapter 1 
 

The olive oil 
 

 

 

 

 

1.1 Olea europaea L.  
1.1.1 Botanical introduction 

The olive tree (Olea europaea L.) belongs to the botanical family of Oleaceae,1 and two subspecies 
can be found: Olea europaea L. ssp. sativa, or olive, namely the cultivated olive tree, and Olea europaea 
L. ssp. sylvestris, or oleaster, namely the wild olive tree.2  

Olea europaea L. is native of the Mediterranean basin and Middle East, cultivated after a long 
process of domestication and selection. It is a typical Mediterranean plant, that can face low 
temperatures in winter, but needs of warm springs and hot summers. Olive tree demand for water 
is not very high, although non-stratified and moderately fine textured soils, providing aeration for 
root growth and having a high water holding capacity are prefeable.3 

Olea europaea L. var sativa is an evergreen slow-growing small tree (maximum height of 8-10 
meters) characterized by a greyish cylindrical trunk until the tenth year of age, after which it becomes 
knotty, contorted and with a darker colour.4 

Leaves grow from spring to autumn and are shed every two years; they are opposite, lanceolate 
and persistent, 6-7 cm long and 1-2 cm broad, dark green in the upper side and silver in the lower 
side, depending on the presence of trichomes.2,5 Flowers, growing on axillary branches, are white, 
with a persistent quadridentate calyx and a gamopetalous tetramer corolla (4-5 mm).1,3  

The fruit is produced through a phenomenon known as induction: undifferentiated tissue is 
transformed into vegetative and/or reproductive buds by endogenous metabolic factors and, in 
general, a year of low production is followed by a year of high vegetative activity and viceversa.4,6 The 
olive is an oval or spheroid drupe 1-3.5 cm long and 1-7 g weight, composed by different parts (see 
Figure 1.1): 
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- Epicarp or skin (1.5-3%), with a color that changes 
from green to purple-black during the ripening and 
covered by a protective waxy layer. 

- Mesocarp or pulp (75-85%), characterized by a high oil 
content. 

- Endocarp or kernel (13-23%), a woody shell containing 
the seed (2-4%), itself constituted by an external 
membrane named episperm enveloping the 
endosperm, finally including the embryo, containing a 
small amount (1-1.5%) of oil hardly extractable.6 

The olive chemical composition is influenced by several 
factors, including cultivar, ripening stage, pedoclimatic conditions 
etc. However, a ripe olive is on average composed by a 40-50 % of 
water, 15-35% of oil and 10-20 % of carbohydrates, with a 
remaining part which is mostly raw fiber and ash.2,6,7 

 

1.1.2 History 

Olive tree is one of the oldest plant in the world and it seems to have coexisted with humans 
since the early bronze age, 6000-7000 years ago,4,8 having its origin in the region corresponding to 
Persia and Mesopotamia.9 The olive plant later spread from this area to nearby territories on the 
eastern Mediterranean Coast, corresponding to present-day Syria, Palestine and Lebanon.8,9 After 
the domestication in this area it spread from east to west thanks to Phoenicians, nation of traders 
and navigators, to Egypt, Crete and Greek (Figure 1.2), where its cultivation was favored by 
extremely suitable climate and soils.9,10 

 
Figure 1.2. Diffusion of the olive tree cultivation in the Mediterranean area, distinguished 

in first (black lines) and second wave (red dotted line). 4 

In Italy, the olive tree was known since the period of the Etruscan civilization, however the 
regular cultivation was adopted after the Greek’s colonization of the area called Magna Grecia, 
corresponding to the present Sicilia, Calabria, Campania, Puglia and Basilicata regions.9 Romans 
learned olive cultivation through their contacts with Greeks colonies in Italy, and contributed 
themselves to propagate olive diffusion in all the Roman Empire, expanding their dominion into 
North Africa and Iberian Peninsula.9,11 

Figure 1.1. Olive structure. Adapted from7  
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In summary, all ancient civilizations grown around the Mediterranean basin and in the Middle 
east evolved, in different moment, the olive cultivation, leaving clear evidence of olive cultivation 
and oil production activities (Figure 1.3). The olive was a key element of the Mediterranean culture 
however, interestingly, the edible use was not the most common and/or the main one.4,9,12 Olive oil 
was primarily a lamp fuel8,13, in the ancient 
Egypt was used in religious ceremonies and as 
an ointment9, as in Greece, where it was used 
as pharmaceutical ointment to cure disease, to 
make skin and hair appear healthier and during 
athletics ceremonies.8  

The key role of the olive in the ancient 
cultures is finally testified by myths and 
religions. In Greek mythology, in the conflict 
for the possession of the Attica region, 
Poseidon and Athena offers to people different 
gifts: Poseidon used his trident to create a 
seawater spring on land, claiming Athenians 
would rule the waves (another version has 
Poseidon offering the first horse, symbolizing 
war and power), while Athena created the first olive tree, symbol of food, lighting, medicine and 
cosmetics. People preferred Athena’s gift, giving to the capital of Attica the name of Athens, in her 
honor.4,13 In the Old Testament instead, in the narration of the Flood, Noah released a dove that 
returned with an olive branch, symbol of the new peace between God and humans.13 

 

1.1.3 Italian cultivars 

A cultivar is a group of similar of plants selected for one or more desirable characteristics that 
are maintained during propagation, and it is worthy of mention the origin of this term, which 
probably derives from a combination of the words “cultivated” and “variety”.14  

The Italian olive genetic assets is the widest in the world, with 538 registered cultivars against 
the 262 registered for Spain, which is the first world producer of olive oil.14,15 However, a limited 
number of cultivars is intensively used: about 80 cultivars account for the 90% of the total olive-
growing surface area in Italy and, in particular, 24 cultivars account for about the 60% of the total 
olive growing surface area.14 They are: Coratina, Ogliarola salentina, Cellina di Nardò, Carolea, 
Frantoio, Leccino, Ogliarola barese, Moraiolo, Bosana, Cima di Mola, Dolce di Rossano, Ogliarola 
messinese, Ottobratica, Sinopolese, Nocellara del Belice, Canino, Carboncella, Itrana, Moresca, 
Rotondella, Taggiasca, Tondina, Grossa di Gerace, Nocellara Etnea. 

Not all cultivars are widespread throughout Italy, but each region has its own typical ones, that 
in many cases have been genetically characterized. Figure 1.4 shows the regional map of the 
principal and most used Italian Olive cultivars, each one characterized by typical flavor perceptions, 
from the marked strong bitter and spicy notes distinctive of Coratina (Puglia) to the well balanced 
taste, with almond and fresh grass notes characterizing Frantoio (Toscana).16,17 Figure 1.4 reports the 
region of origin and traditional cultivation for major cultivars from Italy. Some of them, as Leccino 
and Frantoio, are widespread in all the Italian soil, and in the latest decades  they were transplanted 
and cultivated also in Piemonte and Val d’Aosta, thanks to their adaptability and resistance to lower 
temperatures.18 

Figure 1.3. Archaeological find, in the Knossos Palace, 

Crete: vases (pithoi) for olive oil storage.12 
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Figure 1.4. Regional map of the principal Italian Olive cultivars. 
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1.2 From olives to olive oil 
1.2.1 Ripening stages and maturity index 

The decision of the proper “when” for the harvesting of olives influences organoleptic 
characteristics, color, shelf life and yield of the final olive oil produced. The harvest time depends 
on a series of factors (i.e., cultivar, pedoclimatic conditions as temperatures and sunlight, irrigation) 
influencing the ripening process, which results in a change of the olives’ chemical composition: 
decrease of the total polyphenols content, increase of the unsaturated fatty acids fraction, especially 
oleic acid, and changes in tocopherols and pigments levels are the most relevant.6,19–21 

Ripening stages of olives are essentially three: (a) green immature and quite firm fruit, with a 
high content in polyphenols and chlorophyll resulting in a quite green oil, characterized by marked 
bitter and pungent notes; (b) veraison fruit, having a skin that turns in red-purple color and with a still 
high polyphenol content, resulting in some bitterness and pungency, although balanced by the 
developing of some ripe-fruity characteristics; (c) black mature fruit (even if some varieties never 
turn totally black), characterized by a low content of polyphenols and chlorophyll and an increased 
content of carotenoid, with the resulting oil more golden in color and described as sweeter, less bitter 
and less pungent.20 The oil yield increases from green to black olives because of an easier destruction 
of vacuoles containing oils, while the shelf life is shorter for oils produced from black mature fruits. 

Although high-quality oils are usually produced from olives picked at least at the veraison stage, 
harvest timing depends also on the desired oil aroma and shelf life characteristic and should take 
place when most of the olives are at the desired stage. To help producers in their evaluation and in 
comparing oils from year to year, a maturity index (MI) was developed in 1975 by Uceda and Frias22 
and it is still considered the official method by the International Olive Council (IOC). The maturity 
index depends on the color of skin and flesh of one-hundred olives randomly picked out from a 
representative sample of the olives in a crop and each olive is assigned to a score from 0 to 7 
(Figure 1.5): 0) skin color deep green, 1) skin color yellow-green, 2) skin color with less than half 
the fruit surface turning red, purple or black, 3) skin color with more than half the fruit surface 
turning red, purple or black, 4) skin color all purple or black with all white or green flesh, 5) skin 
color all purple or black with less than half the flesh turning purple, 6) skin color all purple or black 
with more than half the flesh turning purple, 7) skin color all purple or black with all the flesh purple 
to the pit. 

 



Page | 20 

 

 

Figure 1.5. The eight score classes used to calculate the maturity index of olives. Modified from [21]. 

 

At this point, by following Equation 1.1, the number of the olives in each group is counted 
and the olive MI is calculated as the sum of the number of olives in each group (n) multiplied by 
the relative score, and finally divided by 100. 

Equation 1.1               𝑀𝐼 =  
(𝑛×0)+(𝑛×1)+(𝑛×2)+(𝑛×3)+(𝑛×4)+(𝑛×5)+(𝑛×6)+(𝑛×7)

100
 

 

1.2.2 Harvest 

Olives are generally harvested between the end of October and the beginning of March, 
depending of the climate, the cultivar and the harvest method.6   

Harvesting method are referable to three main groups:5,6,23 

- Hand-picking: it is the best method, with olives directly collected into a basket, however 
it is also the less efficient and consequently the most expensive. 

- Stripping: it is faster and less expensive, developed through (mechanical) devices, 
however it is stressful for the trees and olives could be damaged. Most common devices, 
with an increasing degree of automation, are: (a) plastic rakes and long wood sticks, (b) 
electric vibrators or shaker sticks, (c) machinery which shakes the entire tree. 

- Picking after the fall, from nets placed under the tree crown or directly from the ground: 
in this case olives are contaminated with vegetal (i.e., leaves and small branches) and 
mineral (i.e., soil, dust, small stones) impurities.  

The three method are listed in decreasing order of costs and time, but also of resulting quality: 
stripping and fall could damage olives, and usually fallen olives have a degree of maturation higher 
that the desired, with a consequent increase of the free acidity and a reduced shelf-life.6 

0           1          2           3

4           5          6           7
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1.2.3 Extraction 

The olive oil extraction is a process composed by different technological steps.24 The entire 
procedure can be in continuous or not, and the phase separation can be conducted by using various 
technological approaches; however, before the final separative step, cleaning, crushing and 
malaxation are required to turn the entire olives into a homogeneous paste. 

 

1.2.3.1 Cleaning  

The first step in the oil extraction 
process is the removal of extraneous 
matter that can affect the final quality of 
the olive oil.23   

Before washing, leaves are removed: 
they are responsible of an increase in 
green color of the oil, depending on a 
higher quantity of chlorophyll pigment, 
and of a stronger perception of green, leaf-
like and bitter notes (depending on an 
increased level of (E)-2-hexenal), that 
may not be agreeable for consumers.13,23  

After leaves removal, olive washing 
is performed to remove dust, sand, soil, 
small stones, and any metallic 
contaminant (Figure 1.6).25 They are 
removed both for hygienic reasons and 
because they are abrasive and could 
damage the metallic parts of a hammer mill.6,23 Moreover, to produce a top-quality extra virgin olive 
oil (EVOO), it is appropriate to perform a selection of the olives, by excluding wrinkled and rotten 
ones; usually washing machines are provided with grills intended for the cut-off selection.6,13,23 

 

1.2.3.2 Crushing 

The second step consists in olives crushing, which cause the oil droplets release by breaking up 
the cellular structure (specifically, the vacuoles) and smashing the endocarp. The result of this 
process is an olive paste, composed by oil, water and solids.6,13 

The traditional method consists in olive crushing conducted by 2-6 granite mill-stones for 20-
40 minutes (Figure 1.7A), while modern machines are high rotation centrifugation system equipped 
with metallic crushers, as disks (Figure 1.7B) or hammers (Figure 1.7C), usually integrated into a 
continuous process.6,23 

Figure 1.6. Leaves removal and olives washing.25 
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Figure 1.7. (1.7A) Traditional stones mill, (1.7B) Disks crusher, (1.7C) Hammer crusher.26 

 
The milling method affects the quality and the amount of the olive oil produced. In particular 

metallic crushers result in higher extraction yields, reduced process’ time (depending also on the 
fact that traditional mills are non in continuous) and a higher content of polyphenols resulting in a 
higher intensity of bitter and pungent notes.23,24 

Moreover, it is important to monitor the olive paste heating depending on the transformation 
of kinetic energy into thermal, to avoid olive paste degradation. The use of metallic crushers, 
characterized by a high speed, results in an increase of 13-15°C of the olive paste, while by using 
low speed stone mill the temperature increase is lower (i.e., 4-5°C).23,24,27 

 

1.2.3.3 Malaxation 

The last step before the phase separation it is a process named malaxation. It consists of a 
continuous slow kneading of the freshly crushed olive paste to break the oil-water emulsion and 
allow the concentration of the microscopic oil droplets into larger ones, to increase the extraction 
yield.6,23,24,28 In particular, after the malaxation, about 80-85% of oil droplets in olive paste had a 
diameter greater than 30 microns.23 
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Malaxation is carried out in vats 
with different shape and size, 
however they are usually 
semicylindrical, with a horizontal 
shaft and spiral mixing blades 
realized in stainless steel (Figure 
1.8).13,23,24,29  

The olive paste is stirred at 
approximately 20-30 rpm and the 
container is equipped with a heating 
jacket where hot water is circulated 
to heat olive paste. In recent years, 
many efforts were spent to increase 
the overall heat transfer coefficient 
improving the ratio between the 
surface area of the malaxing vat and 
the volume of the olive paste.23,24,30 A temperature increase is needed to lower the olive paste 
viscosity and enhance the olive oil yield, however temperature also affects the resulting olive oil 
sensory profile therefore the time-temperature ratio has to be carefully controlled.24,27 Temperature 
lower than 30-32 °C are recommended to avoid an increase in acidity and, in case of 30-35°C 
temperature, the malaxation time has to be reduced to 10-15 minutes to avoid the development of 
sensorial defects. However, to obtain an increased oil yield, more time is required, and a low 
temperature of 25°C allows olive paste to be malaxed for 30-60 minutes, with a concurrent decrease 
in polyphenols content and bitter perception.13,23,24,28  

The malaxation step is fundamental especially for olive pastes obtained from crushers because, 
when tradition granite millstones are used for crushing, from one side the low rotation speed 
reduces the emulsification of oil with water, from the other the slow movement of olive paste during 
the process is equivalent to a partial malaxation. For this reason, when the olive paste is obtained 
from a tradition mill operating with a pressure system, the malaxation step is usually reduced to 10-
20 minutes with a temperature of 20-25 °C.23 

 

1.2.3.4 Phase separation 

The separation of oil from the other constituents of olive paste (solid and water liquid phases) 
can be obtained by using only mechanical methods.23 It particular, the extraction processes are 
mainly three: pressure, centrifugation and selective filtration (or percolation).13,24 

- Pressure process. It is the oldest and most widespread system, at least in Italy, to obtain 
virgin olive oil (VOO); traditional mills have been unchanged during millennia, until the 
XX century when they were upgraded with the invention of the hydraulic press.23 In 
this process, the olive paste is placed in 2-3 cm thick layers on oil diaphragms, which 
are then placed in moving units with central shaft.13 A metal tray is placed after every 3-
4 diaphragms to obtain uniform pressure application and a stable loading. Then pressure 
is applied and the liquid phase (a mixture of oil and water) run through the “olive cake”, 
while the residual solid fraction stacking on diaphragms is named pomace.6,13 The liquid 
phase is then centrifugated to separate oil from vegetation water, avoiding oxidation 
phenomena. VOO extracted by pressure is known to be especially rich in polyphenols, 
it is cheap, simple and it requires a low energy consumption; however it is a 
discontinuous process and sometimes it is affected by diaphragms contamination.6 

Figure 1.8. Detail of the malaxation process.29 
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- Centrifugation. It is a worldwide spread continuous system developed in the 1980s and 
based on the difference density characterizing the olive paste constituents.13,23 The 
separation is performed through an horizontal 3-phases centrifuge, named decanter, 
where, to facilitate the separation, warm water (30°C) can be added to the olive paste 
(40-60 l/100 kg of olive paste).6,23  A rotational speed of 6000-7000 rpm is needed to 
separate solid, water and oil; each decanter has a maximum hourly capacity that usually 
ranges from 1.5 to 7 tons per hour. 3-Phases decanters are fast, easy cleaning, 
automatized and continuous, also allowing a high separation yield; conversely, the 
energy demand is higher, and the addition of warm water to olive paste causes a lower 
content of natural antioxidants in the oil and an increase in the volume of vegetable 
water. To solve part of the drawbacks of 3-phases decanters, in the early 1990s a 2-
phase decanter was launched on the market. 23 It works without adding water or only 
adding a minimal amount of water in the olive paste has a moisture amount < 50%, to 
facilitate separation. Main advantages of the 2-phase decanters are a lower water and 
energy consumption, reduced volume of vegetable water and lower operating costs, 
moreover they give and olive oil with a higher polyphenols content. 23,24 The only 
drawback is represented by the higher moisture percentage in the pomace. 23 

- Selective filtration or percolation. This is another method still used and it is based on 
the different surface tensions of the liquid phases in the paste: a steel plates is plunged 
into olive paste and it is coated with oil that then drips off, creating a low of oil. 13,24 The 
process is repeated many times to recover most of the oil from the paste, however the 
extraction yield reaches usually a maximum of 80%. 23,24 For this reason, this method is 
usually followed by a centrifugation, to extract the residual part of oil contained in the 
olive paste. 13,24 

Finally, an optional step suggested by IOC after the separation is represented by filtration, 
useful to make the oil clearer excluding all the suspended particles. The same result can be obtained 
spontaneously leaving to stand the VOO for a while, preferably in a conical bottom vessel.6 

 

1.2.4 Bottling and labelling 

Olive oil exposition to oxygen, light and heat is the main reason of oxidative degradation, so a 
proper bottling is needed and usually an extra virgin olive oil, depending also on its quality, should 
be consumed within two years. Marketing standards for olive oil are ruled by EU Regulation n° 
29/2012 of 13 January 2012, which indicate in 5 liters the maximum capacity of a packaging 
presented to the final consumer, while, in the case of oils intended for consumption in restaurants 
or collective establishments, the maximum capacity of 5 liters can be exceeded. 6,31  

Moreover, a series of information on olive oil labelling are provided; the mandatory indications, 
in clear and indelible lettering, are:   

- Sales denomination that, depending on the olive oil classification, is (a) “superior category 
olive oil obtained directly from olives and solely by mechanical means” for extra virgin olive oil; (b) 
“olive oil obtained directly from olives and solely by mechanical means”, for virgin olive oil; (c) “oil 
comprising exclusively olive oils that have undergone refining and oils obtained directly from olives” for 
olive oil composed of refined olive oils and virgin olive oils; (d) “oil comprising exclusively 
oils obtained by treating the product obtained after the extraction of olive oil and oils obtained directly 
from olives” or “oil comprising exclusively oils obtained by processing olive pomace and oils obtained 
directly from olives”, for olive-pomace oil. 
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- Designations of origin for extra virgin and virgin olive oil. It must refer to the 
geographical area in which the olive oil was obtained, which is usually also the area in 
which the oil was extracted from the olives; if not, the information regarding the 
harvesting place should be stated on the packaging. Depending on the case, the 
information regarding the designation of origin. shall only consist of:  
(a) a reference to the Member State, to the Union or to third country, as appropriate, in 
the case of olive oil originating from one Member State or third country.  
(b) the indication “blend of olive oils of European Union origin” or a reference to the Union; 
“blend of olive oils not of European Union origin” or a reference to origin outside the Union; 
“blend of olive oils of European Union origin and not of European Union origin” or a reference to 
origin within the Union and outside the Union; in the case of blend of olive oils 
originating from more than one Member State or third country. 
(c) the indication “(extra) virgin olive oil obtained in (the Union or the name of the Member State 
concerned) from olives harvested in (the Union or the name of the Member State or third country 
concerned)”, in the case of olives harvested in a Member State or third country other than 
that in which the mill where the oil was extracted from the olives is situated. 

- Net amount: not exceeding the volume of 5 liters when directly sold to the final 
consumer. 

- Storage conditions: “Store in a dry place, protected from light and heat sources”. 

In addition to mandatory indications, some optional information can be added: 

- “first cold pressing” allowed only for extra virgin or virgin olive oils obtained at a 
temperature below 27 °C from a first mechanical pressing of the olive paste by a 
traditional extraction system using hydraulic presses. 

- “cold extraction” allowed only for extra virgin or virgin olive oils obtained at a temperature 
below 27 °C by percolation or centrifugation of the olive paste. 

- Indication of acidity or maximum acidity that, if present, must be accompanied by an 
indication, in lettering of the same size and in the same visual field, of the peroxide 
value, the wax content and the ultraviolet absorption. 
 
 

1.3 Olive oil classification 
The virgin olive oil is protected and normed by a comprehensive and detailed regulation 

including laws and standards from three organizations6,32:  

- EU, whose Regulation is effective for the EU member states, which are the most 
important olive oil producers in the world. 

- IOC, which is the only international organization dedicated specifically to olives and 
olive oils. 

- FAO/OMS that, in agreement with all the member states, produces the Codex 
Alimentarius, a set of guidelines regarding all foods and, within them, olive oil. 

In the past, regulations produced from the three organization not always agreed; however, from 
2003, an adequate harmonization between them has been reached.33–36 

Current definitions, in accordance with the last EU Regulation updates – Regulation (EU) 
2013/1308 of 17 December 2013 and Regulation (EU) 2019/1604 of 27 September 2019 – are the 
following33,36: 
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- Virgin Olive Oils. They are “oils obtained from the fruit of the olive tree solely by 
mechanical or other physical means under conditions that do not lead to alterations in the 
oil, which have not undergone any treatment other than washing, decantation, 
centrifugation or filtration, to the exclusion of oils obtained using solvents or using 
adjuvants having a chemical or biochemical action, or by re-esterification process and any 
mixture with oils of other kinds.” Virgin olive oils are then classified in three subgroups: 

a) Extra Virgin Olive Oil: It is “virgin olive oil having a maximum free acidity in terms 
of oleic acid, of 0.8 g per 100 g, the other characteristics of which comply with those 
laid down by the Commission in accordance with Article 75(2) for this category”;  
b) Virgin Olive Oil: It is “virgin olive oil having a maximum free acidity in terms of oleic 
acid, of 2 g per 100 g, the other characteristics of which comply with those laid down 
by the Commission in accordance with Article 75(2) for this category;  
c) Lampante Olive Oil: "Lampante olive oil means virgin olive oil having a free acidity 
in terms of oleic acid, of more than 2 g per 100 g, and/or the other characteristics of 
which comply with those laid down by the Commission in accordance with Article 75(2) 
for this category. 

- Refined Olive Oil. It is an “olive oil obtained by refining virgin olive oil, having a free acidity 
content, expressed as oleic acid, of not more than 0.3 g per 100 g, and the other 
characteristics of which comply with those laid down by the Commission in accordance 
with Article 75(2) for this category”. 

- Olive Oil – Composed of Refined Olive Oils and Virgin Olive Oils. It is “olive oil obtained 
by blending refined olive oil and virgin olive oil other than lampante olive oil, having a free 
acidity content, expressed as oleic acid, of not more than 1 g per 100 g, and the other 
characteristics of which comply with those laid down by the Commission in accordance 
with Article 75(2) for this category.”  

- Crude Olive-Pomace Oil. It is “oil obtained from olive pomace by treatment with solvents 
or by physical means or oil corresponding to lampante olive oil, except for certain specified 
characteristics, excluding oil obtained by means of re-esterification and mixtures with other 
types of oils, and the other characteristics of which comply with those laid down by the 
Commission in accordance with Article 75(2) for this category EN L 347/820 Official 
Journal of the European Union 20.12.2013”. 

- Refined Olive-Pomace Oil. It is “oil obtained by refining crude olive-pomace oil, having 
free acidity content, expressed as oleic acid, of not more than 0.3 g per 100 g, and the other 
characteristics of which comply with those laid down by the Commission in accordance 
with Article 75(2) for this category”.  

- Olive-Pomace Oil. It is “oil obtained by blending refined olive-pomace oil and virgin olive 
oil other than lampante olive oil, having a free acidity content, expressed as oleic acid, of 
not more than 1 g per 100 g, and the other characteristics of which comply with those laid 
down by the Commission in accordance with Article 75(2) for this category EN 20.12.2013 
Official Journal of the European Union L 347/821”. 

In addition to acidity, indicating the percentage of free fatty acids developed from triglyceride 
enzymatic hydrolysis, other analytical parameters are used to evaluate olive oil quality and 
authenticity:  

- Peroxide value: it is expressed in active O2 milliequivalents per oil kg and it is index of the 
oil oxidation, reporting a bad storage. 
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- K232 and K270, respectively the UV absorbance at 232 nm and at 270 nm, and K: they 
indicate the presence of conjugated diene and triene because of refining or oxidation 
processes. 

- Fatty acid ethyl esters: a high concentration depends on fermentative processes caused by 
bad storage or harvesting after olives’ falling. 

- A series of parameters indicating a contamination with seeds oil: C14:0 (EU limit: 0.05%), 
C18:3 (EU limit: 0.9%), C20:0 (EU limit: 0.6%), C20:1 (EU limit: 0.4%), C22:0 (EU limit: 
0.2%), C24:0 (EU limit 0.2%). 

Table 1.1 reports limit values of these parameters for each class previously defined. 

Table 1.1. Limit values of the analytical parameters used to evaluate the oil quality36 

 
Acidity Peroxide value 

(mEq O2/Kg) 
K232 K270 ΔK Fatty acid ethyl 

esters (mg/kg) 

Extra virgin olive oil ≤ 0.80 ≤ 20.0 ≤ 2.5 ≤ 0.22 ≤ 0.01 ≤ 35 

Virgin olive oil ≤ 2.0 ≤ 20.0 ≤ 2.6 ≤ 0.25 ≤ 0.01 / 

Lampante olive oil > 2.0 / / / / / 

Refined olive oil ≤ 0.30 ≤ 5.0 / ≤ 1.25 ≤ 0.16 / 

Olive oil composed of 
refined olive oil and 
virgin olive oil 

≤ 1.00 ≤ 15.0 / ≤ 1.15 ≤ 0.15 / 

Crude olive-pomace oil / / / / / / 

Refined olive-pomace oil ≤ 0.30 ≤ 5.0 / ≤ 2.00 ≤ 0.20 / 

Olive-pomace oil ≤ 1.00 ≤ 15.0 / ≤ 1.70 ≤ 0.18 / 

 
Finally, depending on the different quality, Regulation (EU) 2019/1604 of 27 September 2019 
establishes the following price’s reference threshold regarding virgin olive oils: (a) 1779 €/ton for 
extra virgin olive oil; (b) 1710 €/ton for extra virgin olive oil and (c) 1 524 €/ton for lampante olive 
oil with two degrees of free acidity, this amount being reduced by 36.70 €/ton for each additional 
degree of acidity. 

 

1.3.1 Sensory analysis 

The classification of virgin olive oil has a peculiar and unique characteristic: in addition to 
analytical parameters, it is mandatory to collect information from a sensory evaluation, introduced 
by Regulation (ECC) 2586/1991.  

The last update of the method for the organoleptic assessment of virgin olive oil is published 
in 2018 by IOC35 and the method consists in the determination, by a group of trained tasters named 
panel, of the intensity of the fruitiness and of the defects perceived in the virgin olive oil. 6,35,37 

A panel is a group of 8-12 expert tasters coordinated by a panel leader and test conditions are 
strictly normed:37,38 

- The oil samples shall be presented in standardized tasting glass, which are dark to avoid an 
influence of the color on the final evaluation. The glasses are marked with a random code 
of digits and letters, and shall contain 14-16 ml of oil or 12.8-14.6 g if weighted.   

- The oil samples must be kept in the glasses at 28°C ± 2°C and the test room must be at a 
temperature between 20°C and 25°C. 

- It is recommended to hold the tasting sessions between 10.00 a.m. and 12.00 noon.  
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- Tasters shall not smoke or drink coffee at least 30 minutes before the time set for the test 
and they must not have used any fragrance, cosmetic or perfumed soap 1 hour before the 
tasting. 

- It is recommended the evaluation of four samples at the most in each session, with a 
maximum of three sessions per day. 

- The tasting technique consists in different phases. Tasters shall rotate the glass and warm 
up it with hands. Then they smell the sample, taking slow deep breaths, for a maximum of 
30 s; if necessary, after a short rest, the operation is tried again. At this point tasters shall 
evaluate the buccal sensation (retro-nasal olfactory, gustatory and tactile sensations) with 
small sip of approximately 3 ml of oil: it is important to distribute the oil throughout the 
whole of the mouth cavity and to take short and successive breaths that, drawing in air 
through the mouth, enables the taster both to spread the sample over the whole of the 
mouth and to perceive the volatile aromatic compounds via the back of the nose by forcing 
the use of this channel. 

After the tasting, each taster of the panel shall enter the intensity of each perceived negative 
and positive attributes on a scale in the profile sheet provided.  

At this point, the coordinator catches all the evaluations and calculates the median of each 
attribute and, as result of the Panel Test, virgin olive oil can be classified in one of the following 
classes: 

- Extra virgin olive oil: the median of the defects is 0.0 and the median of the fruity attribute 
is above 0.0.  

- Virgin olive oil: the median of the defects is above 0.0 but not more than 3.5 and the median 
of the fruity attribute is above 0.0.  

- Ordinary virgin olive oil: the median of the defects is above 3.5 but not more than 6.0, or 
the median of the defects is not more than 3.5 and the median of the fruity attribute is 0.0. 

- Lampante virgin olive oil: the median of the defects is above 6.0.  

 

 

1.4 Olive oil composition 
The olive oil composition is well-known, and compounds can be classified in two main groups: 

saponifiable and unsaponifiable fraction. 

- The saponifiable fraction is the main one (98-99%), and it mainly consists of esters of 
glycerol with fatty acids: they are mostly triacylglycerols or triglycerides (97-98%), but 
small amounts of diacylglycerols or diglycerides (1-3%) and monoacylglycerols or 
monoglycerides (0.1-0.2%) are also present.6,39 

- The unsaponifiable fraction (1-2%), including a series of minor compounds as 
hydrocarbons, aliphatic and aromatic alcohols, fat-soluble vitamins, polyphenols, 
pigment, phytosterols and volatile compounds. This fraction, although minor in terms 
of abundance, strongly affects both organoleptic and nutritive characteristic of an olive 
oil.6,19,20,39 
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1.4.1 Triacylglycerols or triglycerides  

Triacylglycerols (TAG) are esters derived from glycerol and three fatty acids. TAG can be 
simple (55%) if all the alcoholic functions of the glycerol are esterified by the same fatty acid, or 
mixed (45%) if fatty acids are different.6 The most prevalent triacylglycerol in olive oil is the oleic-
oleic-oleic – OOO (40-59%) followed, in order of incidence, by palmitic-oleic-oleic – POO (12-
20%), oleic-oleic-linoleic – OOL (12.5-20%), palmitic-oleic-linoleic – POL (5.5-7%) and stearic-
oleic-oleic – SOO (3-7%).6,39  

Therefore, oleic acid is the most plentiful fatty acid in olive oil followed by palmitic and linoleic 
acids,40,41 and fatty acid compositional limits adopted in the most recent editions of the International 
Olive Council are given in Table 1.2.42 

Table 1.2. Fatty acids composition as determined by Gas Chromatography (% m/m methyl esters): average values. * Limit raised 
to <0.3 for olive-pomace oils. 

Fatty acid IOC 

Myristic C14:0 < 0.05 

Palmitic C16:0 7.5-20.0 

Palmitoleic C16:1 0.3-3.5 

Heptadecanoic C17:0 ≤ 0.4 

Heptadecenoic C17:1 ≤ 0.6 

Stearic C18:0 0.5-5.0 

Oleic C18:1 55.0-83.0 

Linoleic C18:2 2.5-21.0 

Linolenic C18:3 ≤ 1.0 

Arachidic C20:0 ≤ 0.6 

Eicosenoic C20:1 ≤ 0.5 

Behenic C22:0 ≤ 0.2* 

Lignoceric C24:0 ≤ 0.2 

 

Fatty acid composition is influenced by cultivar, climate, ripening stage etc. and, in particular, 
a prolonged stay of the olive on its tree causes a progressive decrease of the palmitic acid and the 
oleic acid with a contemporary increase of the linoleic acid.5,6 A good quality olive oil usually 
contains less than 73% of oleic acid, while the percentage of linoleic acid is usually lower than 10%, 
with a ratio oleic/linoleic ≥ 7. The abundance of oleic acid is the reason of the higher stability and 
resistance to oxidation of the olive oil, if compared to other vegetable oils, usually richer in linoleic 
and linolenic acids, which are polyunsaturated.6 

 

1.4.2 Partial glycerides 

The presence of partial glycerides in olive oil is due either to incomplete triacylglycerol 
biosynthesis or hydrolytic reactions.39 Diacylglycerols concentration range from 1 to 3% and their 
composition gives information about age of the oil and storage conditions because 1,2-
diacylglycerols present in fresh oil tend to isomerize to the more stable 1,3-diacylglycerols; for this 
reason the ratio 1,3-DAG/1,2-DAG is usually considered a quality control criterion.6,39 
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Monoacylglycerols are present in smaller amounts, usually less than 0.25%, and 1-species are 
significantly higher than 2-species.39 

 

1.4.3 Hydrocarbons 

Hydrocarbons constitute the 30-50% of the unsaponifiable fraction and the two hydrocarbons 
most abundant are squalene and β-carotene.5,39 The latter is discussed in the pigment section, while 
squalene, the last metabolite preceding sterol ring formation, represent itself more than 90% of the 
hydrocarbon fraction. In addition to them, diterpene and triterpene hydrocarbons, polyolefins and 
paraffins have been individuated.39 

 

1.4.4 Aliphatic alcohols, aromatic alcohols, and waxes 

Aliphatic and aromatic alcohols present in olive oil are found in free and esterified form and, 
when constituted of less than twelve carbon atoms, are part of the volatile fraction.39 In the liquid 
phase, the most important are fatty alcohols and diterpene alcohols. 

The main fatty alcohols are docosanol, tetracosanol, hexacosanol and octacosanol, while fatty 
alcohols with odd carbon atoms may be present in trace amounts.39 

In the group of diterpene alcohols, phytol and geranylgeraniol are the main compounds. Phytol, 
probably originating from chlorophyll, is present in monovarietal virgin olive oils at levels ranging 
from 25 to 595 mg/kg, while geranylgeraniol has been found in virgin olive oil at levels lower than 
50 mg/kg.39  

Waxes, which are esters of fatty alcohols with fatty acids, are important minor olive oil 
constituents, and their content is officially used by the IOC for the distinction between extra virgin 
olive oil (waxes content < 150 mg/kg), virgin olive oil (waxes content < 200 mg/kg), lampante 
olive oil (waxes content < 300 mg/kg) and refined olive oil (waxes content < 350 mg/kg).39,42 

 

1.4.5 Fat-soluble vitamins  

Tocopherol, or vitamin E, is the main fat-soluble vitamin found in virgin olive oil, although 
cultivar, ripening step and technological process strongly impacts on its level, and it is important 
for its in vivo antioxidant properties. α-tocopherol is the main homologue with an average 
concentration significantly higher than 100 mg/kg, while amounts of β-tocopherol, δ-tocopherol 
and γ-tocopherol are usually lower than 10-20 mg/kg.6,39 

1.4.6 Polyphenols 

Polyphenols constitute the 2-3% of the unsaponifiable fraction and are specialized plant 
metabolites chemically characterized by the presence of one or more aromatic rings with one or 
more hydroxyl substituents.6,41  

Polyphenols includes over 8000 compounds and in olive oil it is mainly composed by phenolic 
acids, phenolic alcohols, secoiridoids and flavonoids.6,41 Hydroxytyrosol (HT) is the most abundant 
phenolic compound in olive oil and it is enclosed in complex structures, named secoiridoids, as the 
oleuropein. Oleuropein, due to the action of hydrolytic enzyme during the mechanical processing 
of the olives, is hydrolyzed into free HT and aglycon structures, which are HT precursors. During 
human ingestion, the precursors are themselves hydrolyzed leading to an increase in free HT.41 
Polyphenols are known for their remarkable antioxidant power and strongly contributes to the 
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stability of olive oil; however, HT is the only one backed by a European Food Safety Authority 
(EFSA) health claim, which focuses on the protection provided by HT and its derivatives, i.e., 
oleuropein and tyrosol, to LDL-C particles against oxidative damage.39–41,43  

Moreover, as previously mentioned in Chapter 1.2, the technological process strongly impacts 
on polyphenols content, and their abundance is directly correlated with the intensity of bitter and 
pungent notes.43 

 

1.4.7 Pigments 

Pigments responsible of green and yellow shades of virgin olive oil belongs to two groups of 
fat-soluble pigments: chlorophylls and carotenoids.39 Chlorophylls in olive oil are principally 
pheophytin α and chlorophylls α, more abundant in fresh oils, while β forms are present in minor 
amounts; chlorophylls have prooxidant activity in the presence of light and antioxidant activity in 
the dark.6,39 The most important carotenoids, instead, are lutein and β-carotene.39 

 

1.4.8 Phytosterols 

Phytosterols are important constituents related to the quality of the oil and used for checking 
its genuineness: total sterol content, expressed in mg/kg, is normed by IOC legislation, with refined 
olive oils usually containing lower levels (losses of phytosterols during the refining proves may be 
as high as 25/30%).39,42 The main component is β-sitosterol, which constitutes between 75% and 
90% of the total sterol fraction; other important phytosterol are campesterol and stigmasterol, 
constituting about 4% and 2%, respectively, of the total fraction.39 

 

1.5 Volatile compounds 
Volatile compounds are low-molecular weight (< 300 Da) non polar compounds released from 

the olive oil at room temperature.44 A subgroup of them, after reaching the olfactory epithelium of 
both orthonasal and retronasal olfaction, dissolves into the mucus and bonds with olfactory 
receptors to give an odor sensation. 

 

1.5.1 Origin and composition of the volatile fraction 

Volatiles organic compounds (VOCs) characterizing VOO mainly originate from three 
pathways: the lipoxygenase (LOX) pathway, the autooxidation and photooxidation of fatty acids, 
and the microbiological activity.44,45 

 

1.5.1.1 Lipoxygenase pathway 

The LOX pathway involves several enzymes and produces C5 and C6 volatile aldehydes, 
alcohols, and esters, which are the most important fraction of volatile compounds of high quality 
virgin olive oils; they are responsible for the green and fruity notes perception.44–46 

The pathway starts with the production of 9- and 13-hydroperoxides of linoleic and linolenic 
acids, which are subsequently cleaved by hydroperoxide lyases leading to C6 aldehydes (i.e., hexanal, 
(Z)-3-hexenal and (E)-2-hexenal, with the unsaturated ones that can isomerize from cis-3 to trans-
2 form, more stable).46 At this point, through the mediation of alcohol dehydrogenase, C6 aldehydes 
are reduced to the corresponding alcohols (i.e., 1-hexanol, (Z)-3-hexen-1-ol and (E)-2-hexen-1-ol) , 
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which are themselves substrate for the production of esters (i.e., hexyl acetate, (Z)-3-hexenyl acetate, 
(E)-2-hexenyl acetate) because of the catalytic activity of alcohol acetyl transferases.45,46  

When the substrate is linolenic acid, an addition branch of the LOX pathway is active: 
hydroperoxides are cleaved through alkoxy radical producing stabilized 1,3-pentene radicals that 
can dimerize to C10 hydrocarbons or couple with a hydroxy radical producing C5 alcohols, which 
can be enzymatically oxidated to the corresponding C5 carbonyl compounds (e.g., 1-penten-3-ol, 1-
penten-3- one etc.).45,46 

 

1.5.1.2 Fatty acids oxidation  

Although VOO is one of the edible oil most resistant to auto-oxidation and photo-oxidation 
process, thanks to the abundance of antioxidants and the prevalence of oleic acid, if oxidation is 
poorly prevented it can cause the development of compounds responsible for off-flavors 
perception.44–46  

The autoxidation process is a radical-induced chain reaction, involving unsaturated fatty acids, 
that triggers the formation of free radicals and hydroperoxides; these latter decompose in secondary 
products among which there are aroma active compounds responsible for off-flavors, in particular 
rancidity.45 Autoxidation starts with the formation of a lipid alkyl radical through the removal of a 
hydrogen atom from the fatty acid chain and the subsequent quick reaction with singlet O2 to form 
a lipid peroxyl radical. The initiation step is favored by heat, metal catalysts, and UV-Vis light; in 
particular, the effect of light in the presence of sensitizers such as chlorophylls is particularly strong 
and is known as the photo-oxidation. 

VOCs usually associated with oxidation process and rancid perception are mainly aldehydes 
(i.e., pentanal, (E)-2-heptenal, (E,E)-2,4-heptadienal, nonanal, (Z)-2-nonenal, (E,Z)-2,4-decadienal 
and (E,E)-2,4- decadienal), but also short chain fatty acids (e.g., acetic, propanoic and butanoic 
acids), octane, lactones, and furans have been associated with oxidation.45 The role of hexanal is 
instead ambiguous, being it produced both linoleic acid oxidation and the LOX pathway. Finally 
C8 compounds, usually associated with musty perception, are associated to a photo-oxidation 
process.45 

 

1.5.1.3 Microbiological activity 

Another possible source of VOC responsible for off-flavors is represented by enzymatic 
activities of mold, yeasts and other microorganisms that may depend on both improper and 
prolonged olive storage, and prolonged storage of unfiltered VOOs.44–46 

Compounds responsible for the fusty defect derives from the conversion of some amino acids: 
2-methyl-butanal, 2-methyl-1-butanol, 2-methyl- butanoic acid from isoleucine, and 3-methyl-
butanal, 3-methyl-1- butanol, 3-methyl-butanoic acid from leucine. Molds belonging to the 
Penicillium and Aspergillus species lead to an increase of C8 compounds (e.g., 1-octen-3-ol, 1-octen-
3- one) and methyl ketones (i.e., 2-heptanone, 2-octanone and 2-nonanone), while acetobacters are 
responsible for the oxidation of ethanol (produced by yeast through the fermentation of sugars) in 
acetic acid.45 

Other VOCs usually associated with the presence of molds, yeasts and/or bacteria are benzyl 
alcohol, phenylethyl alcohol, 2- and 3-methyl-1-butanol, 1-pentanol, 2-heptanol, butanone, and 
methyl-butyl acetate. Moreover, the presence of microorganisms is often associated with an  overall 
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decrease of the VOCs belonging to the LOX pathway, probably inhibited because of an increase 
of acidity and the competition among enzymes of these species and the LOX pathway.45 

 

1.5.2 Minor components of the volatile fraction 

In addition to the major chemical classes mentioned above (i.e., saturated and unsaturated 
aldehydes, ketones, esters and alcohols), together with their origin pathway, other minor classes 
compose the volatile fraction of VOO. They include either native compounds or compounds 
originated from minor pathways. 

Lactones have been detected in variables amounts depending on cultivar, and their role in 
defining the aroma of VOO is still unclear, even if some authors reported them as contributing to 
determine fruity notes.45,47 The most common identified are butyrolactone, δ-valerolactone γ-
caprolactone, γ-nonalactone, γ-decalactone, δ-decalactone, and γ-dodecalactone.45  

Terpenes have been identified in the volatile fraction of VOOs and the composition of this 
chemical class is strongly influenced by the cultivar and the pedoclimatic conditions. δ-limonene, 
β-ocimene, linalool, α-copaene, (E,E)-α-farnesene, and δ-3-carene are the most common and 
reports as contributing to define green and floral notes.45,48,49  

Several saturated and unsaturated hydrocarbons are present, however they are characterized by 
high odor thresholds and their contribution to the overall aroma is poor, although synergistic effects 
may affect it.45,50 However, in addition to well-known hydrocarbons derived from endogenous 
mechanisms (e.g., pentene dimers formed in a branch of the LOX pathway), some hydrocarbons 
derived from exogenous contamination (i.e., environmental contaminants) have been occasionally 
found: acenaphthene, acenaphthylene, anthracene, some benzene derivatives, fluorene, 
fluoranthene, phthalates, and pyrene.45 

Finally, some minor classes, as furans, identified at low concentration and probably resulting 
from decomposition of hydroperoxides during oil storage,51 and volatile phenols, as guaiacol, 4-
ethylguaiacol, 4-ethylphenol, and 4-vinylphenol, contributing to define fusty and musty defects.45 

 

1.6 Olive oil consumption: current challenges  
In the last 25 years the EVOO, symbol of the Mediterranean diet, has increased its 

worldwide diffusion and consumption.40 The increased number of producer and consumer 
countries has stressed the request of a quality and authenticity control, and the concept of 
traceability has become an issue of great interest for regulators, suppliers, and consumers, in both 
traditional and emerging markets.52  

Traceability consists of documented proof of the identity of a product and it has two main 
goals: (a) juridical, in case of physical or economical damage to the consumers because of 
wrongdoing or misleading information; (b) technical, with the identification of the causes of loss or 
spoilage, in order to apply an appropriate correction and individuate the step of the production 
where improper handling or fraud took place. 14 For this reason, traceability is based on 
documenting material balances through management and discrete batch monitoring, where a batch 
is intended as a portion of a given material having a specific identity and composition.14  

However, despite the increased relevance of the traceability concept, first criterion of choice 
for most consumers is still price, with the current market scenario characterized by increasing levels 
of competition based on cost reduction.14,53 This strategy depends on consumers’ difficulties in 
evaluating the quality of olive oils and on a lack in the olive oil culture, but the price war cannot last 
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forever, and it is important to develop persuasive communication strategies to increase consumers’ 
awareness and, consequently, their willingness to pay an higher price to guarantee a proper income 
for high quality producers.53 In particular, the adoption of health claims is needed, being EVOO 
known for its nutraceutical value and a lot of studies confirm and investigate the beneficial effects, 
especially on cardiovascular system, of a regular EVOO consumption; these positive effects are 
mainly driven by phenolic constituents, especially hydroxytyrosol and oleuropein. Polyphenols’ 
concentration and composition is not only related to health effects, but it also affects the sensory 
perception of an EVOO, being directly correlated with the bitter perception that, together with fruity 
and pungent, is the main positive attributes considered by panelists.53,54 However, as reported in 
literature, on average consumers still don’t have the ability to discriminate between an high quality 
and a low quality olive oil53,55 or, even, they prefer a “neutral taste” instead of a higher bitterness and 
pungency.54 

Currently, the emerging need to characterize the EVOOs quality, meant as sensory properties, 
traceability, safety, nutritional value and biological activity led to the development of advanced 
analytical methodologies applying “omics” strategies to investigate the EVOOs chemical 
fingerprints.9,56–58 In particular, multidimensional analytical (MDA) platforms combining 
physicochemical separation techniques (e.g., chromatography, electromigration, size exclusion, etc.) 
with spectroscopic techniques (e.g., Mass Spectrometry - MS, Nuclear Magnetic Resonance - NMR, 
Infrared - IR, Ultraviolet - UV, etc.) have the potential to discriminate, identify and quantify sample 
constituents, providing a solid foundation for generating hypothesis-driven studies.  

In the next chapter, principles and evolution of the comprehensive two-dimensional gas 
chromatography (GC×GC) are introduced, being this technique, usually coupled to MS, the 
technical core of the research activity of this PhD project. 
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Chapter 2 
 

Comprehensive two-
dimensional gas chromatography 

 

 

 

 

 

2.1 Introduction 
As anticipated in Chapter 1, EVOO’s volatile fraction, and more in general foods’ volatile 

fraction, consists of a large number of chemical classes having a wide molar mass range, variable 
polarity, and a broad concentration range.1 Over the years, great efforts have been done to develop 
improved analytical methods for foods analysis, and nowadays MDA platform combining 
physicochemical separation with spectroscopic techniques are considered the golden standard to 
discriminate, identify and quantify foods constituents. This chapter is focused on the “core” of the 
MDA platform used during this PhD project: the separation step, which is often the limiting factor 
in a complete analysis of complex chemical mixtures.2 An introduction to the history of 
multidimensional gas chromatography (MDGC) resulting in the development of comprehensive 
two-dimensional gas chromatography (GC×GC) is here proposed, together with some fundamental 
and theoretical aspects. 

 

2.1.1 The origin of Chromatography and Gas Chromatography (GC) 

The first idea of chromatography was reported by Professor Friedrich Goppelsröder during 
the Congress of “Naturforschenden Gesellschaft” held in Basel in 1861 and the successive paper 
"Note sur une méthode nouvelle propre à déterminer la nature d'un mélange de principes colorants" 
(Note on a new method for determining the nature of a mixture of dyes) published in 1862.3,4 The 
paper reported that: "A strip of filter paper (is dipped) several millimetres into an aqueous solution of blue litmus. 
The solution is seen to rise quickly above the level of the liquid by capillary aspiration. (…) No separation between 
solvent and dissolved substance is observed. A different situation arises when the experiment is repeated with litmus 
coloured with sulphuric acid. In this case, three zones are formed on the paper above the liquid. The first (i.e., the 
highest) contains only water, the second is due to dilute sulphuric acid, and the third contains water, acid, and dye. 
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Clearly, a partial separation of the three components in the mixture has occurred and is due to their different abilities 
to rise within the pores of the paper." Goppelsröder, at the end of the paper, added the following 
consideration: "I saw in these observations the key to a new analytical method".3,4 

Goppelsröder’s observations were, around 40 years later, taken in account by Mikhail 
Semenovich Tswett, which is usually considered the inventor of chromatography.4 Tswett described 
the method in 1901 during the XI Congress of Naturalists and Physicians in St. Petersburg. Then, 
in 1906, published a paper presenting a separation of herbal pigments in colored bands by using 
calcium carbonate as a solid absorber and petroleum ether with a small amount of alcohol as the 
mobile phase, through the instrumentation shown in Figure 2.1.5  

 

Figure 2.1. The first chromatographic instrumentation, presented by Twsett in 1901. 

In this paper he termed for the first time this technique as “chromatography”, derived from the 

Greek words χρωμα, meaning color, and γραϕι, to write.4,5 

Tswett’s research was the starting point for a century, the 20th, dominated by a growing interest 
on the exploration of nature’s complex mixtures.6 Each decade brought new innovations in the 
chromatography area and, at the end of the 20th century, chromatography has become the most 
widely used separation technique in chemistry and biochemistry.7  

In the 1930s chromatographic separation by continuous adsorption/desorption on open 
columns was applied on various plant extracts.8,9 In 1941 Martin and Synge replaced countercurrent 
liquid-liquid extraction by partition chromatography for the analysis of amino acids contained in 
wool.10 Martin again, together with James, developed gas chromatography (GC) in 1951 by using a 
gas, rather than a liquid, as mobile phase.11,12 A turning point is represented by the work of Marcel 
Golay, in 1958, which showed how a tortuous path along a packed bed could be replaced by a 
straighter path through a narrow open tube.13 Metal and glass capillaries were soon fabricated, 
however applications on capillary columns were minor, until the revolutionary introduction of silica 
column in 1979 and the successive development of a variety of stationary phases.6  

Since its introduction in 1951, GC demonstrated to be suitable for food analysis and it has been 
successfully adopted for different applications: flavor and aroma characterization; investigation of 
volatile organic compounds (VOCs) mixtures from vegetable matrices, essential oils and extracts; 
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fat analysis and characterization; residues and contaminants determination, food packaging 
migration products; food origin authentication etc.14  

 

2.1.2 From GC to MultiDimensional Gas Chromatography (MDGC) 

Over time, however, the complexity of the applications increased, with a growing interest for 
the determination of non-targeted compounds, and this process reached its apex in the late 1990s, 
with the dawn of the “-omic” sciences.15 The impact of these increasingly sophisticated applications 
opens to the challenge to improve the peak capacity and the resolution power of GC. 

Peak capacity, introduced by Giddings in 1967,16 is defined as the maximum number of peaks 
that can be separated on a given column with a defined resolution in a defined retention time 
window, e.g., starting from the first peak (hold-up time) up to the last peak (retention time or 
retention factor of the last peak).16,17 It can be described as the number of individual components 
that can be placed, side by side, as single entities, within the separation space.2 Peak capacity (nC), 
calculated as indicated in Equation 2.1, is correlated with peak width and it is a metric that informs 
about column efficiency.17 

Equation 2.1.   𝒏𝒄 = 𝟏 +
√𝑵

𝟒𝑹𝑺
∗ 𝒍𝒏(

𝒕𝑹(𝒎𝒂𝒙)

𝒕𝑴
) 

where N is the plate number, RS peaks resolution, tM hold-up time, tR(max) the retention time of 
the last peak. 

However, peak capacity is a theoretical value assuming that the peaks are evenly distributed 
across the chromatograms, but unfortunately it seldom happens in real separations. Indeed, Davies 
and Giddings demonstrated that peak resolution (i.e., the degree of separation for an adjacent peak 
pair) is affected if the number of solutes exceeds 37% of the peak capacity and that, in order to 
resolve 98% of the components, the peak capacity must exceed the number of components by a 
factor of 100.18,19 The most common approach to improve peak capacity matching for the analysis 
of very complex mixtures is to use a longer column; however, a more effective way to enhance 
separation power is to work on technology implementation.20 

Matching for new challenging applications, during decades, two different path of technology 
implementation were engaged. On one side the improvement of the resolution power of 
chromatographic columns, as done with the invention of the capillary columns by Golay. On the 
other side, the route of the multidimensional chromatography (MDC) and the multidimensional 
gas chromatography (MDGC) was explored, with many significant developments in the last 60 
years.15 

 

2.2 MDGC and the development of comprehensive 
two-dimensional gas chromatography (GC×GC) 
2.2.1 Concept of multidimensionality and multidimensional gas 
chromatography (MDGC) 

Multidimensional separations have the advantage of providing a greatly increased peak capacity 
due to the combination of multiple separation steps, or dimensions, within a single analysis.1,19 
Moreover, MDC and MDGC add further advantages related to the possibility of exploring sample 
chemical dimensionality, a parameter that strongly influences component resolution. Sample 
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dimensionality (s) is defined by Giddings as “the number of independent variables that must be specified to 
identify the components of the sample. It is assumed (as part of this definition) that the properties of the components, 
including chromatographic retention parameters, vary in some systematic way with the s variables.”.19 

The example in Figure 2.2A can be helpful to understand this concept. The components of a 
sample are distributed in a 3D space defined, on the three axes, by volatility, polarity, and molecular 
weight. Different volatility of the components of a sample is the main separation mechanisms in 
GC, and it is captured by different parameters as boiling point or Kovats/Van den Dool retention 
index.21,22 Polarity is the second most exploited separation mechanisms as it results from several 
interactions mechanisms, including hydrogen bonding, dipole-dipole forces, and dipole-induced 
dipole forces.15,17 Finally molecular weight, defining the range of molecules composing the sample.15 
In a simple mixture consisting of 60 analytes (from one to three order of magnitude lower than the 
components of a natural mixture) a mono-dimensional separation (e.g., mono-dimensional gas 
chromatography - 1D-GC) corresponds to a linear probe (Figure 2.2B) exploring only of the three 
dimensions previously defined. A multidimensional separation, instead, allows the exploration of 
the sample dimensionality by using a planar probe (Figure 2.2C).15 

 

 
Figure 2.2B. A sample described by three dimensions (2.2A) and explored by a mono-dimensional separative technique 

(2.2B) or a two-dimensional separative technique (2.2C) 

MDC has therefore emerged has a probe able to better investigate sample composition and to 
obtain higher and further levels of information. More recently a general definition of MDC was 
proposed as “n-dimensional analysis that generates n-dimensional displacement information”.14 A variety of 
combinations of different separation mechanisms can be used to create multidimensional 
separation as long as, as discussed by Giddings in 1990,23 two conditions are verified.2 The first one 
is that the two (or more) separations steps should be governed by orthogonal discrimination 
principles; the second is that the separation produced during the first separation step should be kept 
in the following step, so that the resolving power of the composite separation exceeds that of each 
individual stage.14,24,25 

When gas-phase separations are considered, MDGC has been defined by Marriott as “the process 
of selecting a (limited) region or zone of eluted compounds issuing from the end of one GC column, and subsequently 
subjecting the zone to a further GC displacement’’.26,27 

The large majority of the MDGC separations use two columns, therefore they are classified as 
two-dimensional gas chromatography (2D-GC).25 Figure 2.3 shows the schematic diagram of a 
2D-GC system, which can be classified into two main categories: heart-cut (H/C or H/C MDGC 
or GC-GC) and comprehensive two-dimensional gas chromatography (GC×GC).1,20,25,28,29 
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Figure 2.3. Scheme of a 2D-GC. Differences between H/C (or GC-GC) and GC×GC depends on the operative principles 

and dynamics of the interface.25 

GC-GC or heart-cut, where a single fraction (or a few specific fractions) of the primary column 
eluate is transferred to the secondary column for further separation, with the aim to improve 
separation by combining different discrimination principles.14,20 The theoretical peak capacity of 
such a system is the sum of peak capacities of the first and second dimension, the latter multiplied 
by the number of heart-cuts performed (Figure 2.4A).20 This method proved to be effective in 
target analysis, where the focus is on individual fraction(s) and not on the entire sample.2,27 If the 
interest is extended to the whole sample components, multiple analytical runs are required to enable 
multiple yet comprehensive cuts over the entire volatility/polarity range. 

The solution for those interested in separating the entire sample in two dimensions is to extend 
comprehensively the heart-cut over the entire analytical run as it is done by GC×GC.20 The first 
separation through a GC×GC platform was documented by Liu and Phillips 30 years ago, in 1991:30 
it was characterized by a fast and continuous heart-cutting, named modulation.14,27 The interface 
between the two columns in GC×GC is the “modulator” and is considered the “heart” of the 
GC×GC system. The modulator works as an inter-column injector that serially traps fractions 
eluting from the primary column before their re-injection/introduction into the secondary column. 
These operations occur at a fixed time intervals called modulation period (PM).15 In theory, by 
GC×GC, the system peak capacity is approximately the product of the peak capacities of the two 
separation dimensions (Figure 2.4B).20 However, Blumberg et al. 2,20 proved that it approaches the 
theoretical one just when optimal chromatographic conditions are applied to both analytical 
dimensions and modulation efficiency does not produce excessive band-broadening in space.31  
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Figure 2.4. Schematic visualization of multidimensional GC instrumental configurations and their actual peak capacity: 2.4A 

shows H/C MDGC system, while 2.4B shows a GC×GC system. Here the list of abbreviation used: Inj - injector; aux EPC - 
auxiliary gas electron pressure controller; Det 1 - primary detector; Det 2 - secondary detector; V - switching interface; M - 

modulator; 1D - first dimension column; 2D - second dimension column; n - 1D peak capacity; m - 2D peak capacity. Adapted 
from14 

 

2.2.2 Heart-cut  

H/C MDGC is based on a heart-cutting process, which allows the transfer of one or more 
selected portions of the primary column eluate into the secondary column for additional 
separation.15 The interface of a H/C MDGC system (letter V in Figure 2.4A)allows efficient 
transfer of fractions from the primary column (1D) into the secondary column (2D). The sample is 
initially injected into the 1D then, before the elution of the fraction of interest, the interface is 
switched in the transfer position for a fixed time. Once the fraction is completely loaded onto the 
2D, the interface is switched back to its original or idle state, completing the heart-cutting process.25 

An important milestone for the development of an efficient H/C procedure was the invention 
of a switching device named Deans Switch (from the name of the author, David Deans) in 1968, 
that solved some issues related to the functioning of mechanical valves in coupled-column 
systems.15,32 The first H/C system was developed by Schomburg in the 1980s and the first 
applications were presented for petroleomics.15,33 

H/C was appreciated for the increased peak capacity and the possibility to resolve challenging 
separations; however, it has an important limitation, represented by the increased total runtime 
when the sequential separation has to be applied to multiple cuts. Indeed, having first and second 
column similar dimensions, even if different stationary phases, the time scale of the secondary 
separations is approximately equal to that of the primary. It means that each second-dimension 
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analysis will easily add 30-60 minutes to the total runtime and, if more than one or two “cuts” are 
necessary the total runtime will be drastically increased.24,25 

 

2.2.3 GC×GC 

Comprehensive two-dimensional gas chromatography, namely GC×GC, is the natural 
progression of the H/C MDGC. H/C MDGC is developed through a dedicated time-
programmable interface that, automatically and online, transfers selected eluting fractions from the 
1D to the 2D; conversely, in GC×GC, each fraction eluting from the 1D is trapped, focused and 
released into 2D for further separation. The full/complete transfer of the 1D column effluent into 
the 2D is the reason for the introduction of the term “comprehensive” to describe this 
technique.4,14,34,35 The principle is to subject small chromatography bands, potentially containing co-
eluted and non-resolved compounds, to an additional separation in a continuous and sequential 
manner.36 

The operation of trapping, focusing and re-injecting in the second separative dimension is done 
by a modulator within a fixed time (usually 2-8 s), which is ideally also the time allowed for the 
analysis in the 2D.14,36 It means that GC×GC, thanks to the fast separation in the second dimension, 
allows to perform a comprehensive multidimensional separation within the time of a 1D-GC 
separation.24,29 

In addition to the possibility of keeping reasonable analysis times by combining two-separation 
dimensions, GC×GC offers a series of additional advantages, if compared to 1D-GC: (a) the 
effective in-space band-focusing (especially in case of thermal modulation) toward the 2D resulting 
in an increased overall peak capacity; (b) a signal-to-noise ratio (S/N) increase, resulting in a 
sensitivity gain of one order of magnitude (especially in case of thermal modulation); and (c) 
formation and identification of group-type patterns based on homologous series of compounds 
that have a retention logic over the 2D separation space.36,37 

The augmented informative potential of a GC×GC analysis, in addition to its effective total 
analysis time if compared to the H/C MDGC, brought to a remarkable increase of applications and 
published research based on this technique over the years. Figure 2.5 shows the number of 
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publications per year (years 1991-2020) recorded on Scopus database using the keywords: 
“comprehensive two-dimensional gas chromatography”. 

 

Figure 2.5. Number of publications per year recorded on Scopus database with the keywords: “comprehensive two-dimensional 
gas chromatography”, years 1991-2020. 

During the 1990s applications were mainly focused on petroleomics Flame Ionization 
Detection (FID) as elective detection technique. In 1999 appeared the first paper reporting the 
adoption of Mass Spectrometry (MS) and, since that time, the powerful alliance of comprehensive 
two-dimensional gas chromatography with mass spectrometry (GC×GC-MS) allowed to address 
the needs of many different application areas.34,36,38 In 2002 the first application in the food area was 
by Shellie and Marriott, studying enantiomer separations in a bergamot essential oil. At present, 
GC×GC-MS is used in several fields: petrochemicals and fuels; food, flavor and fragrance; forensic; 
environmental; biological; metabolomics and volatile organic compounds (VOCs) profiling.15,36,39 

Method optimization in GC×GC is generally addressed to maximize method separation power 
and sensitivity.20 The main parameters that impacts on them involve the modulation step (i.e., 
selection of the appropriate modulator and PM), columns configuration (i.e., the choice of suitable 
columns’ dimensions and combination of stationary phases), carrier gas flow, temperature 
programming and detector settings.20,29 

In the next sections, relevant aspects related to the column selection, the modulation step and 
the detectors are further investigated. 

 

2.3 Columns configuration 
In GC×GC, the effluent of the first column is focused in narrow fractions at regular and short 

time intervals, and then injected into the secondary column.4,40 Therefore, the resulting 
chromatogram is composed by two axes corresponding to the retention time of each of the two 
columns and, being each peak eluting from the first dimension “cut” into at least four or five 
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fractions, the separation of the fractions of the second column must be completed within a few 
seconds. Figure 2.6 shows an example of a second dimension chromatogram resulting from the 
cut of a first dimension peak in GC×GC.4 

 

 

Figure 2.6. Cut of a first dimension peak in six fractions into the second column in a GC×GC system.4 

To ensure a fast separation in the 2D, the column is usually a short segment, while the primary 
column is usually a 15-60 m GC column with conventional internal diameter (ID) (0.25 – 0.32 mm 
ID).34 Moreover, matching for an appropriate orthogonality of the separative process, the two 
columns are generally characterized by different stationary phases, that typically consist of a non-
polar 1D combined to a mid-polar/polar in the 2D.20 Their operating temperatures (i.e., minimum 
and maximum temperatures of usage) often vary from each other as well as the relative retention 
of analytes, therefore it is a preferable option to place them in two separate GC ovens (i.e., primary 
and secondary oven) that enable temperature off-set along the chromatographic run.35,41 

 

2.3.1 Columns’ dimension 

As anticipated in the introduction, 1D and 2D columns are characterized by different dimension: 
the 1D column is a typical GC “normal-bore” usually long 15–60 m, with 0.25 mm ID and a film 
thickness of 0.18–1.0 µm, while the 2D column is shorter and often with a narrow-bore, typically 
0.5–1.5 m × 0.1–0.25 mm ID, and a film thickness of 0.1–0.25 µm.4,34,42 The different dimensions 
affect the nC of the two columns, with the 2D column that may have a modest nC due to its short 
length and/or very fast elution: approximate typical values of nC might be 500 and 20 for the 1D 
and 2D column, respectively.43 

This design is necessary to ensure, as in any hyphenated technique, that the 2D works at much 
higher speed than the 1D, to produce a series of many hundreds of fast analyses (2-8 s), during the 
period of one 1D analysis.34,40 The optimum relative speed of the two columns must generate an 
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appropriate number of secondary chromatograms during the elution of each peak from the 1D: a 
too slow relative 2D separation degrades the 1D separation, as there are not enough analyzed 
samples (at least 3-4) across each peak to preserve the resolution obtained; conversely, a too fast 
relative 2D separation results in a low resolution in the 2D.40 

Consequently, a typical choice in many GC×GC systems is to slow down the 1D separation, 
with an oven temperature rate in the order of 1-4°C/min, to provide 1D peaks having a width of 
tens of second (i.e., 30-40 s).4,35 It means that, the second column operates very rapidly in 
comparison with the first column and in comparison with the temperature gradient in the column 
oven: the result is that the temperature of the second column increases only of a few tens of a 
degree per separation, and thus 2D separations are basically isothermal separations.4 

However, the result of the optimization of the relative speed among the two columns is that 
each single column works in conditions different from the optimal, and especially the 2D works at 
a linear velocity that is far from the ideal, with column overloading that could be an issue. To reduce 
this risk many strategies have been tested and adopted.4,35,42 Broader 1D peaks help to produce 
smaller fractions of the analytes in the 2D, reducing the chance of 2D overloading. One possibility 
to generate broader peaks, in addition to a slow temperature rate, is to increase the film thickness 
in the 1D. 1 μm film thickness over 0.25-0.32 mm ID, provide optimal resolution in both 
dimensions, but at the expense of a much longer analysis time, while 0.1 μm over 0.25-0.32 mm ID 
is inadequate for GC×GC separations. Intermediate phase ratios values can be considered good 
compromises.4 Another possibility is to split the 1D effluent in two parallel secondary columns 
behind the modulation step. It was first described by Seeley, and the dual secondary columns 
GC×GC (GC×2GC) was demonstrated to be effective to increase the resolution of the two-
dimensional separation.44 Harynuk et al., instead, studied the influence the 2D column ID on peak-
width, concluding that narrow-bore columns in the 2D might not provide as great advantages as is 
commonly thought.45 When high chromatographic resolution is desired, a thicker film 1D column 
coupled to a larger diameter (i.e., 0.18 mm) 2D column could be a better combination. Similar results 
were obtained by Cordero et al., testing a series of OV1-OV1701 column sets, in which the two 
dimensions differ in ID and/or film thickness. Results showed that 0.25 mm homologous ID 
column combination, reduced 2D column overloading effects due to the increased 2D mass 
loadability, thus facilitating the analysis of mixtures whose components differ significantly in relative 
abundance.46 Conversely, if the goal is to prioritize the speed of the separation at the cost of 
chromatographic resolution, a standard 0.25 mm ID 1D column can be coupled to a 0.05 mm ID 
2D column, as applied by Adahchour et al.47 Other expedients to optimize linear velocity in GC×GC 
separations are: the reduction of the head pressure that, however, results in a loss of resolution in 
the 1D column, and the use of longer 2D column, requiring an increase in the modulation time.31,35,48 

 

2.3.2 Orthogonality and stationary phases 

As anticipated in the introduction of this chapter, the separations performed in the two 
dimensions are properly tuned matching for the orthogonality of the system; it means that the 
separation mechanisms of the two columns must produce a low-degree of retention correlation in 
the two dimensions, to avoid the risk of a one-dimensional separation with peaks distributed along 
the diagonal. In particular, the orthogonality is achieved by varying the retention of the 2D as a 
function of the 1D separation.4,40 

Figure 2.7 shows an example of ideal orthogonal separation where two uncorrelated 
mechanisms, volatility and polarity, are combined. Graphically it is represented by a Cartesian plane 
with perpendicular axes corresponding to the two separation principles.4 To note, this situation is 
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not realistic since in any GC separation the relative volatility is driving components 
separation/discrimination. Moreover, as discussed by Marriott et al., stationary phases selectivity 
and system orthogonality can be tuned by playing with columns dimensions and temperature 
programming even by adopting the same stationary phase in both analytical dimensions.49  

 

Figure 2.7. Orthogonality of GC×GC because of the application of two different separative principles.4 

Moreover, system orthogonality enables the generation of structured elution patterns as a 
function of the differential selectivity of the two separation dimensions. When properly combined, 
homologous series result distributed over the separation space with a stringent logic and group-type 
analysis is possible.42,50 It can be easily explained by following the visual example in Figure 2.8, 
inspired to the concept of sample dimensionality introduced by Giddings in 1995.19 A hypothetical 
sample whose components differ in shape, color and size has a dimensionality of three, and there 
is no chance of separating all of them using a 1D system. However, if the proper combination of 
orthogonal separative principles (i.e., size and shape in this case) is applied, not only the complete 
resolution of all components is achieved by using the total separation space, but also components 
are ordered on the 2D depending on their shape.19 
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Figure 2.8. Sample separation through two orthogonal separation systems.4 

It implies that, in GC×GC, components’ identification is potentially more reliable being each 
compound described by two retention times, and the formation of structured patterns in the two 
dimension is a further identification source.4 

In principle, all kinds of stationary phases can be used in the 1D of a GC×GC system; however, 
the most common column set is a non-polar/low-polarity column as 1D (e.g., 100% dimethyl 
polysiloxane, or 5% diphenyl/95% dimethyl polysiloxane) combined with a medium-polarity or 
polar column as 2D (e.g., polyethylene glycol, or 50% phenyl/50% methyl polysiloxane).20,29,35,51 This 
configuration provides a separation of the analytes in the 1D based on their vapor pressures; while 
the relative retention in the 2D is mostly related to the presence of polar functions.20,42 

However, in several applications, the polar × apolar combination is particularly effective. 
Flavours and fragrances, with a predominance of polar analytes, as well as some petroleum cuts 
take benefits from a “reversed” stationary phase combination20,42 

Figure 2.9 summarizes the most used column combinations for GC×GC as it results from 
published papers until 2018: as anticipated, the “apolar × polar configuration is the most common.42 
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Figure 2.9. Relative proportions of column combinations used in GC×GC published papers until 2018.42 

 

2.4 Modulation and modulators 
2.4.1 Modulation process and visualization 

The modulation is the key-aspect of GC×GC process.43 The term modulation was adapted 
from the telecommunication industry, where audio and video signals’ frequency can be modulated 
to facilitate their transmission over long distances to the signal receiver. In chromatography, as in 
telecommunication industry, the modulation of the signal does not carry new or extra information, 
however it led to the possibility of a different elaboration of the raw signal. Figure 2.10 shows how 
the mono dimensional chemical signal, when combined to the injection frequency corresponding 
to the PM, produces in the 2D a composite chemical signal with the form of the modulation (i.e., 
composed by a series of “pulsed” peaks, or “subpeaks”, or “peaklets”) but containing the 
information of the analytical signal.15,43  
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Figure 2.10. Transformation of the mono-dimensional chemical signal in a modulated signal. Adapted from15 

The modulated chromatogram is so divided into sequential modulation events, each of a given 
PM.43 The appropriate resulting visualization is the next step: it is implemented through rasterization  
by arranging data values acquired during a single modulation cycle as a column of pixels, so that the 
ordinate corresponds to the elapsed time for the 2D separation, while the abscissa axes corresponds 
to the elapsed time for the 1D separation.14 Figure 2.11A shows an example of two coeluted peaks 
modulated with a PM of 4 s. Retention times in both dimensions are then calculated by peak 
integration for each modulate peak (Figure 2.11B). In particular, 1tR predicted as the apex position 
of the fitted peak, while the intensity is calculated as sum of all modulated sub-peaks intensities. At 
this point, a 3D plot is obtained by changing the position of the successive modulation from 
subsequent to side-by-side, by placing each modulated peak in the Cartesian coordinate system 
defined by 1tR and 2tR (Figure 2.11C). The intensity is represented by the peak height however, in 
the common top-down contour plot visualization, height is substituted by a color-scale.14,43 
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Figure 2.11. (2.11A) An example of modulated chromatogram containing coeluting peaks modulated with a PM of 4s; 

(Figure 2.11B) Calculation of the retention times in both dimensions are then calculated by peak integration for each modulate 

peak; (Figure 2.11C) 3D plot and Contour plot visualization.43 

The modulation process is characterized by the PM. To maintain the separation produced in the 
1D, the effluent must be sampled frequently enough to prevent the coelution of already separated 
components. As suggested by Murphy et al., each chromatographic peak should be sampled 3-to-4 
times to meet this condition.52,53 The choice of a correct PM, is fundamental to obtain a proper 2D 
separation, however this parameter can be better described by the modulation ratio (MR), defining 
the effective number of times that the chosen PM will modulate a given 1D peak.27 It is calculated as 
indicated in Equation 2.2, where the peak width at the base (wb), or 1.6985 times the peak width at 
half height of the peak (wh), is divided by the PM. 

Equation 2.2  𝑀𝑅 =
4𝜎

𝑃𝑀
=  

𝑤𝑏

𝑃𝑀
=  

𝑤ℎ×1.6985

𝑃𝑀
   

Moreover, in case of modulation performed through low-duty cycle modulators (see Chapter 
2.4.2),  MR value can be used as indicator to guide the choice of the correct PM: a value of at least 3 
should be used for quantitative measurements of trace compounds, while for qualitative analysis a 
value of about 1.5 is considerate adequate.27  

The correct reconstruction and the degree of resolution of a peak depends on the phase of 
modulation. This is defined as the difference between the center of the 1D peak and the mean of 
the peak region sampled by the modulator.43,53 The two limiting scenarios, represented in Figure 
2.12, are respectively in phase (Figure 2.12A), having the single maximum peak centered at the 
peak apex of the 1D peak, and 180° out of the phase modulation (Figure 2.12B), where two equally 
tall symmetric maxima are equidistant from the 1D peak maximum. Figure 2.12C, instead, 
represents a phase between the two limiting cases.53 
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Figure 2.12. Different phases of a GC×GC peak pulse: (2.12A) in-phase modulation, (2.12B) 180° out-of-phase modulation 

and (2.12C) an intermediate phase modulation.53 

Finally, the peak wrap-around is a phenomenon occurring when the 2D retention of an analyte 
is longer than the PM.27,53 It happens when an analyte has a stronger retention in the 2D column, 
eluting in the successive PM (Figure 2.13A). Peak wrap-around leads to potential coelutions 
between components belonging to subsequent fractions and can disturb the structure of the 
chromatogram, making method development and data interpretation more complicate (Figure 
2.13B).20,28,53 

 

Figure 2.13. Example of peaks wraparound. (2.13A) Analytes exceed the duration of a single modulation period (indicated 
by the dotted line) and (2.13B) they elute overlapping with separated peaks in the subsequent modulation period. 
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2.4.2 Modulators 

As previously anticipated, the modulator is the core of a GC×GC system being responsible for 
the correct transferring of the analyte from the 1D column to the 2D column, through its action of 
cut, re-concentration, and re-injection of portions of 1D column effluent into the 2D column in a 
sequential and continuous way.54,55 

A modulator is required to create very narrow chromatographic bands during the re-injection 
into the 2D to preserve peak capacity and improve method sensitivity. It should be compatible, in 
terms of efficiency, to the MW range of the analytes under study, should be robust, and cost-
effective.54–56 The first modulator adopted for GC×GC was that proposed by Liu and Phillips in 
1991.30 It consisted of a 15 cm segment of gold-coated thick-film capillary column, looped outside 
the GC oven and position between the 1D column and the 2D column; the modulation was 
produced by periodic resistive heating of the gold-painted trap.20 Since its invention a wide variety 
of other modulators have been developed and, nowadays, they can be classified in two main groups 
based on the principle used to obtain the modulation: 

- Thermal modulators, that use a positive and/or negative temperature difference, compared 
to GC oven, to transfer fractions from the 1D to the 2D.14,34 Thermal modulators can be 
further subdivided into: (a) heater-based, collecting analytes bands eluting from the 1D at 
the oven temperature (or slightly below it) and releasing them through an increase in 
temperature; and (b) cooling-based, usually cryogenic, collecting analytes at very low 
temperatures obtained through cryogens (usually liquid N2 or CO2) and releasing them at 
the oven temperature (or above it).53 Thermal modulators are characterized by a duty cicle 
of 1, it means that they completely transfers all of the 1D eluate into the 2D column, without 
losses.14,54 

- Pneumatic modulators, adopt valves connected either in-line or out-line through a sample 
loop (or channel) with the column set, for band transfer.14,29,34,56 Pneumatic modulators can 
be further subdivided into valve-based modulators, where the flow rates for the 1D and the 
2D are not coupled, and flow-based modulators, where the two columns flows are 
coupled.29 Pneumatic modulators can have a duty cycle ≤ 1, depending on their design. 
When the duty cycle is ≤ 0.5, they are named low duty cycle modulators.54 

 

2.4.3 Thermal modulators 
2.4.3.1 Heater-based modulators 

Heater-based modulators, as mentioned above, trap primary column effluent at ambient 
temperature (or slightly below it) usually with the help of thick stationary phases, while active 
heating is used for the rapid desorption of the trapped analytes.2,35,53 

2.4.3.1.1 Thermal desorption modulator (TDM) 

The first modulator, the thermal desorption modulator (TDM) introduced by Liu and Phillips in 
1991,30 used a 15 cm segment thick-film capillary column externally gold-coated and allowing for 
electrical heating. It was originally developed as a single-stage modulator, but it rapidly evolved in a 
dual-stage modulator to solve the problem band broadening and analytes breakthrough.2,35 Figure 
2.14 shows how it worked the dual-stage modulation:  
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Figure 2.14. (2.14A) Trapping and focusing of analytes eluting from the 1D column. (2.14B-C) Remobilization of the 
analytes and trapping in the second stage, while the next fraction of analytes reached the first stage of modulation. (2.14D) Re-

injection in the 2D column.53 

Analytes eluting from the 1D column were trapper and focused by the stationary phase coating 
of the 2D column (Figure 2.14A). At this point, the direct resistive heating through a 20-ms 
electrical pulse of the first stage of the modulation process remobilized the analytes (Figure 2.14B), 
which were then trapped and focused in the second stage while first step cooled down to trap the 
next fraction of analytes (Figure 2.14C). The second stage was finally resistively heated and trapped 
analytes were injected into the 2D column (Figure 2.14D).53,55 The use of a dual-stage modulation 
allowed the injection of the analytes in the 2D column in narrow band, if compared to those 
produced by a single-stage modulation, rapidly abandoned. However, this first modulator presented 
many drawbacks, and the design was not robust enough for routine applications, due to frequent 
capillary burnouts and the delicate nature of the thin conductive film.35,53  

2.4.3.1.2 Rotating thermal modulator (RTM) – “sweeper” 

The first commercially available device was the rotating thermal modulator (RTM), or “sweeper”, 
introduced by Zoex (Zoex Corporation, Lincoln, NE, USA). It was theoretically described by 
Ledford and Phillips in 1996, but the final version was presented in 1999, after over 2 years of 
development and optimization.57 The RTM, commonly referred to as the “sweeper”, worked in 4 
steps (i.e., accumulate, cut, focus and launch) by using a slotted heater rotating around a shaft to 
heat the modulator capillary, as described in Figure 2.15. 2,53,55 
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Figure 2.15. Modulation process of the sweeper in 4 main steps: accumulation (2.15A), cut (2.15B), focus (2.15C), re-injection 

(2.15D).53 

Analytes from the 1D column accumulate at the head of the modulator capillary coated with a 
thick film of the stationary phase (Figure 2.15A) until the rotation of the slotted heater remobilize 
analytes trapped in the upstream portion of the modulator (Figure 2.15B). Remobilized analytes 
are then refocused in the downstream portion of the modulator (Figure 2.15C) and finally injected 
into the 2D column (Figure 2.15D). To produce sufficiently narrow modulated peaks, it is required 
a temperature difference of at least 100°C between the heater and the modulator capillary: this 
limited the maximum GC oven temperature thus reducing the volatility range of compounds that 
could be modulated.2,53  

 

2.4.3.2 Cooling-based modulators 

Cooling based modulators are the most common thermal modulators: they use cold 
temperatures to trap and focus compounds, that are then released through temperatures equal or 
above the oven temperature. In particular, temperatures required to trap compounds from C4 to 
C40 on a deactivated modulator column were determined: to trap and focus any compound in this 
range, a temperature of 120-140°C lower than its average elution temperature is required while, for 
their release, temperatures approximately 40°C above the elution temperature are needed.58 

The focusing is usually operated by using cryogens (i.e., liquid N2 or CO2), and the two main 
design are developed through a longitude movable trap or a jet trap. Although the use of cryogens 
added a consumable cost to the system, it provided the best performance and overcome the 
temperature limitations experienced using heater-based thermal modulators.53 Band focusing is 
operated between 1D column and 2D column, and it can be done on a portion of the 1D column, 
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in a deactivated column of suitable inner diameter (usually a narrow bore-capillary 0.10 mm ID), or 
at the head of the 2D column.14 

2.4.3.2.1 Longitudinal modulated cryogenic system (LMCS)  

The longitudinal modulated cryogenic system (LMCS) was introduced by Kinghorn and Marriott in 
1998, in a short communication describing the separation of a kerosene sample.2,55,59 

Figure 2.16 shows the scheme of the LMCS using a trap, cooled through a flow of liquid CO2, 
that moved longitudinally along the head of the 2D column in less than 10 ms, through a pneumatic 
arm electrically controlled.2,53 It works in three main steps: (a) in the first step analytes were trapped 
at the segment of the column cooled by the trap in the top position; (b) then the longitudinal 
movement of the trap to the bottom position exposed the cooled segment of the column to the 
GC oven temperature, allowing the remobilization of the focused band and the successive re-
focusing at the second trap position; (c) finally, the trap moved back to the original position, 
allowing the trapped band to remobilize again entering the 2D column.53 

 

Figure 2.16. Diagram of the longitudinal modulated cryogenic system (LMCS).53 

The LCMS was a straightforward innovation in modulation technology since the RTM 
developed by Phillips.20 LCMS had its own limitations: very volatile analytes were difficulty trapped, 
ice buildup in the trap could cause column breakage and the mechanically moving trap is potentially 
problematic.20,35 However, the successive introduction of gaseous N2 as cryogen solved part of these 
problems and it was estimated that by 2004, cryogenic modulators had likely replaced almost all of 
the TDMs in use.2,53 

 

2.4.3.2.2 Dual-stage quad-jet modulator 

In 2000, Ledford introduced a new modulator, based on a static cryogenic modulation, to 
overcome possible problems arising from the use of mechanically moving parts.60 The dual-stage 
quad-jet modulator utilized two cold jets cooled through liquid CO2 (subsequently replaced by N2) and 
two hot gas jets, and its operation mode is showed in Figure 2.17.35,56  
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Figure 2.17. Dual-stage quad-jet modulator modulation process. (2.17A) Activation of the upstream cold-jet to trap and 

focus analytes eluting from the 1D column, (2.17B) Remobilization of the trapped analytes through the activation of the upstream 
hot-jet and subsequent focusing by the downstream cold-jet, (2.17C) focusing of the next fraction of analytes by the upstream 

cold-jet, and (2.17D) injection of the band in the second stage into the 2D column by activating the downstream hot-jet.53 

Analytes eluting from the 1D column were trapped and focused through the upstream cold-jet 
(Figure 2.17A), then the upstream hot-jet was pulsed to remobilize the trapped analytes towards 
the second stage, where they are refocused by the downstream cold-jet to prevent any breakthrough 
(Figure 2.17B).2,20,53 The upstream cold-jet started again to trap the next fraction of analytes (Figure 
2.17C), and the refocused band in the second stage was injected into the 2D column by activating 
the downstream hot-jet, while the upstream cold-jet still stayed on to prevent breakthrough (Figure 
2.17D).2,53  

Since all jets are placed close into a small chamber, hot-jet and cold-jet may influence each 
other, therefore the duration of the heating and cooling periods needs proper optimization. A too 
long hot-jet period, or a too high temperature, will result in a breakthrough of a part of the trapped 
fraction or on a thermal degradation of the column’s stationary phase and consequent bleeding. On 
the other hand, when the temperature of the cryogen is too low, or the cold-jet period is too long, 
the analytes will not be properly remobilized.4  

The dual-stage quad-jet modulator is one of the most appreciated and used design of thermal 
modulator. It was commercialized by Zoex as the KT2001 modulator, while currently is available 
from the LECO (LECO Corporation, St. Joseph, MI, USA) in their Pegasus lineup. 
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2.4.3.2.3 Dual-stage loop modulator 

A couple of year later the introduction of the dual-stage quad-jet modulator, in 2002 Ledford and 
coworkers presented the dual-stage loop modulator, capable of providing a dual-stage modulation 
although using a single couple of hot and cold-jets.20,61 

Figure 2.18 shows how each gas-jet passed through two-segments of a looped capillary. The 
cold-jet ran continuously creating two cold-spots, in the upstream and in the downstream portion 
of the loop (Figure 2.18A). The hot-jet instead, was activated periodically, diverting the cold-jet 
from the loop, and heating the cold spots to remobilize the trapped analytes in both spots (Figure 
2.18B).29,53 

 

 

 
Figure 2.18. Modulation process of the dual-stage loop modulator: (2.18A) the cold-jet creates two cold spots in the 

upstream and downstream portion of the loop and (2.18B) the subsequent hot-jet, periodically activated, remobilize the trapped 
analytes in each section of the column. 

It means that analytes eluted from the 1D column are trapped by the cold-jet at the upstream 
spot and then the activation of the hot-jet remobilizes them into the loop capillary. As the analytes 
traveled through the loop the hot-jet was deactivated allowing the formation of new cold spots to 
through the cold-jet: analytes in the loop are trapped in the downstream cold spot and, at the same 
time, the next fraction of the analytes eluting from the 1D column is trapped in the upstream spot. 
The subsequent activation of the hot-jet injected the refocused band of analytes from the 
downstream spot into the 2D column and released the trapped analytes from the upstream cold 
spot into the loop.35,53 
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As for the dual-stage quad-jet modulator, the dual-stage loop modulator needs an optimization of the 
temperatures to avoid breakthrough while matching for an efficient reinjection of the trapped 
analytes. Moreover, the length of the delay loop requires an optimization, and typically its length is 
about 1 m. If the loop is too short, the risk is that the band travelling through it might reach the 
second spot at a time when it is not still sufficiently cold, allowing breakthrough to occur; 
conversely, multiple injections from the first cold-spot could be present within the loop 
simultaneously, if the loop is too long.20 For this reason, a model to optimize the length of a loop 
capillary in GC × GC systems adopting a dual-stage loop modulator  was proposed by Harynuk and 
Gorecki in 2005.62 

The dual-stage loop modulator is today on of the most used and it is commercially available 
from Zoex.53  

 
2.4.3.2.4 Cryogen-free thermal modulators 

Cryogen free thermal modulators were designed with the purpose to eliminate cryogens, and 
thus reducing costs, without significant compromises to the performance and robustness. 

For both the dual-stage quad-jet modulator and dual-stage loop modulator are available consumable free 
variants using a chiller instead of liquid N2 to cool the heat exchanger. However, while cryogen 
modulators are able to modulate analytes in the range C4-C40, cryogen-free thermal modulator are 
unable to trap highly volatile species under C7 or C8.

29 Nevertheless, in addition to those variants of 
cryogenic modulators, original designs for cryogen-free thermal modulators were developed: 

- Single-stage consumable-free modulator. It was introduced by the Gorecki group in 2015 and 
utilized a specially coated stainless steel capillary trap that could be passively or actively 
cooled.63 Analytes were focused on the trap  thanks to two ceramic cooling blocks that were 
cooled – passively or actively –  through a copper heat transfer conduit. Then, the focused 
band of analytes was injected into the 2D column by resistively heating through a capacitive 
discharge.53 

- Solid-state modulator. It was introduced from Luong et al in 2016 as thermal independent modulator 
(TiM) and produced by J&X Technologies (J&X Technologies, Shanghai, China).64 The 
TiM operated outside the GC oven with thermally independent heating and cooling stages: 
heated areas used micathermic heaters to heat the aluminum chambers from ambient 
temperature to over 350°C, while cooling zones can be programmed from -50°C to +50°C 
through a pair of three-stage thermoelectric coolers.53,64 Dual-stage modulation was 
obtained by mechanically moving the modulator column back and forth: analytes from the 
1D column were trapped in correspondence of the cooled zone and remobilization was 
accomplished by moving the column toward the heated entry zone. This movement 
simultaneously exposed the downstream segment of the modulator column to the cooling 
units, while the newly cooled zone for the second stage of trapping is reached by the 
remobilized analytes. Finally, moving the column toward the exit zone, trapped analytes are 
once again exposed to high temperature and injected into the 2D column, with a 
simultaneous exposition of the upstream segment of the column to the first stage of 
trapping. The modulation range depends on the modulator column installed (e.g., C2-C14, 
C9-C40 etc.), while a replacement of the moving parts has to be done after a defined number 
of modulations: 100,000 for the column guides and 1,000,000 for the modulator column.53,64 
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2.4.4 Pneumatic modulators 

The growing interest for cryogen-free modulators led to the development of modulators based 
on a different modulation principle. While thermal modulators trap effluent from the 1D column 
using temperature differentials, pneumatic modulators adopt valves connected either in-line or out-
line through a sample loop (or channel) with the column set, for band transfers.14,29,34,56 

Different designs have been developed and optimized matching for an effectiveness 
comparable to that achieved by thermal modulators that, to date, are still considered the “golden 
standard”. In particular, two major families of pneumatic modulators exist: valve-based modulators, 
where the flow rates for the 1D and the 2D are not coupled and that are usually low-duty cycle 
modulators, and flow-based modulators, where the two columns’ flows are coupled and the full (or 
almost full) transfer of the 1D effluent into the 2D column results in a duty cycle = 1 (or close to 
1).14,29,34,53,56 However, in order to achieve a full transfer modulation, high 2D column flows are 
necessary, leading to an increased difficulty of use when coupled to under vacuum detectors, such 
as mass spectrometers. 53 

 

2.4.4.1 Diaphragm valve modulator (DVM) 

The diaphragm valve modulator (DVM) was the first pneumatic modulator, particularly a valve-
based one, successfully applied to GC×GC.2 It was described by Bruckner et al in 1998 as alternative 
to thermal modulators for the analysis of VOCs.65 

The DVM, shown in Figure 2.19, utilized four ports of a gas-actuated diaphragm valve with 
low dead-volume fittings as interface between the two columns within the oven; gas supply, instead, 
was by a three-port solenoid valve. The diaphragm valve would be activated twice per second for a 
very short time, allowing a small portion of the 1D column effluent to enter the 2D column (Figure 
2.19A) then, while the separation was occurring, all residual effluent from the 1D column would be 
vented to the atmosphere (Figure 2.19B).53 It means that this modulator is not mass conservative 
and it is characterized by a low duty cycle, with only a 2-10% of the effluent from the 1D column 
that is transferred to the 2D column.14,35 Relatively narrow 2D peak widths were obtained with 
interesting results in term of robustness, with an excellent 2tR reproducibility.29 However, because 
of the significant loss in mass transfer, this modulator is less sensitive than a thermal modulator and 
is not suitable for trace analysis. Moreover, the valve could be operated at a maximum temperature 
of 175°C, restricting analysis to very volatiles VOCs and thus limiting the modulator applicability.2,53  
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Figure 2.19. Scheme of the DVM showing (2.19A) the primary column effluent entering the 2D column and (2.19B) the 
primary effluent being vented to the atmosphere during the second separation.53 

This first design of DVM for modulation in GC×GC has continued to improve in the next 
few years mainly by Synovec’s group, with two aims: (a) the improvement of a higher duty cycle to 
enhance detector sensitivity, and (b) the overcoming of the temperature limits. 

The first goal was matched with the work of Mohler et al in 2006, which introduced a total-
transfer valve based modulator bringing the fraction of the 1D column effluent transferred to the 
2D column from 5-10% to 100%.66 As shown in Figure 2.20, a high-speed six-port diaphragm valve 
was used and a sample loop implemented, based on the original idea by Seeley developed on 
differential flow modulator (DFM) in 2000 (see Chapter 2.4.4.3 for details). 
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Figure 2.20 Diagram of the total-transfer diaphragm valve-based GC×GC with the dotted lines showing the port 
connection in the column 2 inject mode.66 

An early solution to temperature limit, instead, was to have the valve face mounted external to 
the oven: this approach extended the maximum temperature of usage to 250°C, enabling 
application to higher boiling point analytes.67 However, a successive technical solution was found 
by Freye et al.,68 in 2015, by replacing the temperature sensitive O-ring with a perfluoroelastomer-
based O-ring, allowing reliable function up to 325°C. The functioning of the updated 6-port 
modulator was investigated, showing the narrow and reproducible 2D peak widths were produced, 
with a high reproducible 2tR and a detection sensitivity 8-fold higher than 1D-GC due to zone 
compression.68 

 

2.4.4.2 Flow-diversion or Microfluidic Deans Switch modulator 

The flow-diversion modulator was introduced by Seeley in 2007.69 As the first design of DVM, it 
was a low-duty cycle modulator sampling the 1D effluent for only a small portion of the PM. 
However, Seeley here replaced multiport valves that cannot operate at elevated temperatures with 
a Deans Switch - used for decades in H/C systems - as a flow diversion modulator, that have been 
successfully tested at temperatures as high as 350°C. Nevertheless, it must be considered that the 
time scale for H/C is about 1 order of magnitude greater than the time scale required for successful 
GC×GC modulation, thus Deans Switch should not be used under high-speed separation 
conditions, when high precision is desired. Indeed, it has been reported that the RSD of the fraction 
of material transferred from the 1D to the 2D is less than 1% if the MR is greater than 2.5, while 
increases rapidly when the MR is decreased below 2.5.69 

The modulator was created by implementing a three-port solenoid valve, placed outside the 
oven, with an Agilent microfluidic Deans Switch five port manifold, placed inside the oven. Figure 
2.21 illustrate the functioning of the modulator: the two-state fluidic device directed the 1D effluent 
to the 2D column of a flow restrictor, which was a deactivated fused silica column with the same 
dimensions as that of the 2D column. The state of the modulator is then determined by the direction 
of the auxiliary carrier gas – whose flow was significantly greater than 1D column flow – provided 
by the solenoid valve: (Figure 2.21A) in the “bypass” state the 1D column effluent was directed to 
the flow restrictor, while (Figure 2.21B) in the “inject” state, the 1D column passed onto the 2D 
column.53,69 Modulation continued by alternating between the two states of the Deans Switch 
throughout the entire chromatographic run. 
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Figure 2.21. Flow diversion/Deans Switch modulator. (2.21A) Bypass state, showing the 1D column effluent directed 

toward the flow restrictor; and (2.21B) Inject state, showing the auxiliary flow directing the 1D column effluent into the 2D 
column.53 

Today this modulator is commercialized as Flux™ Flow Modulator by LECO, that implement it 
on the Pegasus® BT platform.  

 

2.4.4.3 Differential flow-modulator (DFM) 

DFMwas introduced by Seeley in 2000 to overcome the weaknesses characterizing the first 
DVM design,70 but new developments occurred in the successive years and a key event for the 
wider adoption of flow modulation was Agilent Technologies’ introduction of the capillary flow 
technology (CFT) modulator in 2008, based on the modulator originally introduced by Seeley et al. 
in 2006.71 

The first design of DFM, named “Forward-Fill/Forward-Flush Modulator” is shown in Figure 
2.22 indicating how, through a valve and a collection channel (or sample loop), the modulation 
process is realized in two main steps: (Figure 2.22A) “fill” and (Figure 2.22B) “flush”. When the 
valve is switched into the “fill” mode, the 1D eluate flows into the collection channel and an auxiliary 
flow of carrier gas enters the 2D column; the auxiliary gas is supplied by a pressure control module 
(PCM) through a solenoid valve that can be switched.14 At the end of the collection period, the 
collection capillary is flushed for 100–200 ms by a very high gas flow (typically 20 ml min-1) 
generated by switching the valve to the flush position, allowing the entering of the eluate into the 
2D column. The flow in the sample loop is generally higher than that of the primary column and 
this design of modulation allows the entire volume of the 1D column to be diverted into the 2D 
column: it means that it produces a true “comprehensive” GC×GC, differently from low-duty cycle 
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pneumatic modulators.35,56 This simple design resulted effective, even if susceptible to breakthrough 
if modulator channel is overfilled.72 

 

 
Figure 2.22. “Forward-Fill/Forward-Flush Modulator”: (2.22A) fill mode and (2.22B) flush mode. Abbreviation: PCM - 

pressure control module. Adapted from72 

Another important advancement resulted from the introduction of a new design combining 2 
CTF by Griffith et al. in 2012 and successively commercialized by Agilent Technologies in a single 
CFT, with the addition of a vent restrictor: the “Forward-Fill/Reverse-Flush Modulator”.25,73 As shown 
in Figure 2.23A in the first step the collection channel is forward filled in the direction of a vent 
restrictor (usually a narrow-bore capillary) that, if opportunely set, avoid the collection channel 
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overloading without loss of effluent from the 1D column. The flush (Figure 2.23B) instead, 
differently from the first design, is in reverse mode, resulting in a tailing of the peak at the base 
reduced 10-20 fold.73 Excellent precision has been demonstrated as well as the capacity to handle 
significant overloading without loss of resolution in the 2D dimension, resulting in an increase of 
the effective peak capacity of flow modulated GC×GC.25,73 Moreover, the maximum operational 
temperature reported to be up to 300°C for both DFM design allows an extension of the possible 
applications, if compared to DVM.56 

 
Figure 2.23. “Forward-Fill/Reverse-Flush Modulator”: (2.23A) fill mode and (2.23B) flush mode. Abbreviation: PCM - 

pressure control module. Adapted from72 
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Other manufacturers have subsequently introduced their own commercial version of the DFM 
as SepSolve, that has recently introduced the INSIGHT flow modulator (Figure 2.24), which is 
based on a reverse fill/flush modulation.29 

 

Figure 2.24. INSIGHT flow modulator from Sepsolve.74 

Another version of the DFM was proposed by Tranchida et al. in 2011.75 It was based on a 
seven port valve with a flexible loop between ports to collect the sample and it offers the possibility 
to optimize flows using a waste branch bridging the interface and a needle valve (Figure 2.25). 

 

 
Figure 2.25. Scheme of the DFM accumulation (2.25A) and injection modes (2.25B). Abbreviations: V: 2-way solenoid 

valve; APC: advanced pressure controller. 
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The interface comprises a metallic disc and internal rectangular channels, with two metallic 
branches connecting the valve to the interface in positions 2 and 5, and the 1D and 2D columns 
linked to positions 1 and 6, respectively.75 The size of the loop is chosen considering PM, 1D and 2D 
columns flow and dimensions, with the flow exiting the loop that it divided between the channels 
linked to ports 6 and 7. The operating mechanism is related to the Seeley design discussed above, 
with fill and flush steps here named as accumulation and injection stages. 

 

2.4.4.4 Stop-flow modulator 

A particular design of modulator, combining valves and cryogens, is the Stop-flow modulator 
proposed by Harynuk and Gorecki in 2004:76 It stops the carrier gas in the 1D column to allow the 
separation of the effluent in the 2D column to reach completion. The scheme of this modulator is 
shown in Figure 2.26: the interface utilized an air-actuated six-port valve within a heated chamber 
and a single-stage N2 jet was placed downstream of the valve to trap and focus the 1D effluent 
before the subsequent injection into the 2D column. An uncoated fused silica capillary having the 
same dimensions of the 1D column is used to supply auxiliary carrier gas and a separate transfer line 
of deactivated fused silica was placed between the valve and the cryotrap. In the sample position 
(Figure 2.26A), the 1D column effluent passed through the valve to the cryotrap where it was 
trapped and focused by the liquid N2 jet. After a determine time, the valve was switched to the stop 
position, the cryo-jet was switched off and the warm-jet activated. The 1D column flow was then 
stopped and the carrier gas directed to allow the flush of the focused analytes into the 2D column 
(Figure 2.26B). Finally, after the completion of the 2D separation, valve was re-activated, and cryo-
jet was employed. The main advantage of the Stop-flow modulator consists of the independent use of 
the two dimensions, therefore overcoming the necessity of operating in “fast” conditions in the 
second dimension; on the other hand, the overall analysis time was extended by the total stop 
time.35,53 
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Figure 2.26. Scheme of the Stop-flow modulator showing the two positions: (2.26A) sample and (2.26B) stop. The black dots 

correspond to the plugged ports, while the open dots correspond to the three ports that were utilized.53 

 

2.4.5 Perspectives 

Nowadays thermal modulation is still considered the “golden standard” because of superior 
performances in terms of sensitivity and overall peak capacity. However, the perspective of a 
cryogen-free modulation is of growing interest, leading to a significant reduction of the associated 
setup and running costs, in addition to the decrease of safety issues.34 If from one side research is 
progressing in the field of cooling-based cryogen-free modulators, an exponentially increasing 
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interest is directed towards the world of flow modulators: Zanella et al. reported that, while only 
7% of the studies making used of flow modulators until 2017, this number was increased to 16% 
in 2020.34 

New applications are several, and an accurate optimization of the DFM setup is bringing to a 
performance level that is increasingly closer to that produced by cryogen modulators. Recent studies 
from Aloisi et al.77 and Stilo et al.78 demonstrated that is still difficult to simultaneously match for 
sensitivity and separation power to those obtained by a cryogen modulated platform, however an 
equivalent separation power can be reached at the cost of sensitivity or, an almost equivalent 
sensitivity can be achieved at the cost of ~20% separation power.  

An interesting recent innovation in this field was that proposed by Seeley et al in 2018 with the 
introduction of the multi-mode modulator (MMM).79 It is a fluidic device proposed with the ambition 
to cover the entire range of possibilities included in the world of MDGC: it can be used as a 
traditional heart-cutting device, a low duty cycle GC×GC modulator, and a full transfer GC×GC 
modulator. It is characterized by a deactivated metal joining capillary linked on the 2D column side 
to a T union and on the 1D side to a cross union, while an auxiliary pressure unit supplies a solenoid 
valve connected to the unions through two metal capillaries. When the valve flow is directed to the 
T union, the 1D gas flow can be directed to the restrictor (low duty cycle mode) or accumulated in 
the joining capillary (high duty cycle mode) while, when the valve flow is directed to the cross union 
(normally in closed position), the 1D effluent is directed to the 2D column.79,80 

The latest advancement proposed in the field of pneumatic modulator was by Aloisi et al. in 
2021, presenting the use of the Flux™ Flow Modulator under conditions capable of providing a 
higher duty cycle (0.04), with an acceptable level of analyte transfer from the 1D to the 2D column. 
It was implemented with a columns set-up using a 10 m×0.25 mm×0.25 μm as 1D column, and a 
1 m×0.10 mm×0.10μm as 2D column, and a PM of 700 ms, with a re-injection period of 80 ms was 
used.80  

Finally, the latest frontier in the field of MDGC was explored by Synovec’s group since 2007, 
with the introduction of comprehensive three- dimensional (3D) gas chromatography (GC3). 
However, interesting advancements have been done with the introduction of the high-temperature 
diaphragm valve based on the perfluoroelastomer-based O-ring, which was recently implemented 
on a GC×GC×GC-TOF MS platform combining the Diaphragm valve and a Dual-stage quad-jet 
modulator.81,82 

 

2.5 Detectors for GC×GC 
Peaks eluted from the 2D are the result of a focusing and reinjection process operated by the 

modulator, and they are characterized by a narrow width (i.e., 100-300 ms).14,27,29 For this reason, 
the main requirement of a GC×GC detector is a suitably fast acquisition rate (at least 50-100 Hz, 
to provide a minimum of 10 scans per peak).25,27,29,35 

Detectors provide a conversion from analog-to-digital of the chromatographic signal collected 
and they are classified in univariate or single channel detectors, producing a single data point for 
each time point of the chromatogram, and multivariate or multichannel detectors, producing 
multiple data points for each time point (typically over a spectral range).14,29 Data collected are then 
stored under proprietary data file format that can be converted to text by using the ASCII format 
comma separated values (CSV) or the ASTM format analytical data interchange (ANDI), which is 
a standard for chromatography and MS data.14 
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2.5.1 Single channel detectors 

Flame ionization detector (FID) was the first detector coupled to GC×GC. It detects ions 
formed from the combustion of organic compounds by a hydrogen flame, giving a response that is 
mostly proportional to the number of carbons present in the molecules. It is simple, robust, with a 
small internal volume, and it is characterized by a high acquisition frequency (50-300 Hz). FID is 
particularly suitable for quantitative purposes and it is highly adopted in studies of the petroleum 
area29,35  

Electron capture detector (ECD) is usually characterized by a slow acquisition rate, being 
theoretically not suitable for GC×GC analysis. However, being an electron emitter attracting high 
electron affinity molecules, it is sensitive to halogenated compounds and thus used for specific 
applications (e.g., pesticides, herbicides).14,27,35 

Nitrogen-chemiluminescence detectors (NCD) and sulfur-chemiluminescence detectors (SCD) 
are other element-selective detectors used for specific applications. They have higher acquisition 
speed than ECD, comparable to that of FID. 14,27,35 

Nitrogen–phosphorous detector (NPD), more correctly named Thermoionic Detector (TID) 
because of its ionization mechanism. It is very similar to the FID, however here the source is not a 
flame, but an alkali salt inside a ceramic cement matrix.35 

 

2.5.2 Multichannel detectors 

Multichannel detectors have the ability to produce spectral data used to identify the analyte 
based on known spectral databases.29 

The most used multichannel detectors are mass spectrometers (MS) and, particularly, the most 
common implementation of MS within a GC×GC system is time-of-flight-MS (TOF-MS), due to 
its high acquisition frequency (50-250 Hz).25,29,35 TOF-MS is highly selective and it is based on the 
simple principle according to which, if the ionized species start from the same point at the same 
time, their acceleration and velocity are directly correlated to their mass-to-charge ratio (m/z), and 
they will reach the detector at a time depending on their masses.35 Recently, high-resolution TOF-
MS platforms (e.g., Pegasus GC-HRT+ 4D) have offered an increased informative potential through 
an accurate mass detection, at the cost of a reduced acquisition frequency.14,35 Tandem ionization 
TOF-MS (e.g., BenchTOF-Select TOFMS by Markes International) are able instead to alternate the 
defined ionization energy in the range 10-70 eV (at the cost of a halved acquisition frequency – 50 
Hz per channel), producing twin data streams that bring the complementary information derived 
from the hard and the milder electron ionization energies (EI).29 

Less effective are quadrupole MS (q-MS) because of their relatively low acquisition frequency 
(i.e., 20-50 Hz). However, they represent a good alternative to high-end MS because of their lower 
costs and robustness.14,25,27 

Finally, an alternative multichannel detector is the Vacuum Ultraviolet (VUV). Modern VUV 
detectors (e.g., VGA-100 and VGA-101 by VUV Analytics) reach an acquisition frequency of 90 
Hz; moreover, they provide a linear response and no need for calibration, they are excellent for 
isomer differentiation and robust, with minimal maintenance requirements.29 
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2.6 GC×GC and olive oil 
This short chapter is intended to be a guide including the current state-of-the-art regarding the application of GC×GC to olive oil 

characterization. GC×GC has been applied to investigate the complex fractions of volatiles and semi-volatiles composing olive oil, by exploiting 
both untargeted fingerprinting based on 2D patterns and detailed profiling of known compounds (i.e., targeted analytes). Applications related to 
olive oil geographical origin and variety discrimination, technological issues, identification of ripening indicators and characterization of minor 
fractions are collected in Table 2.6.1, listed by alphabetical order by author. 

 

Table 2.6.1. It includes the list of GC×GC papers related to olive oil before July 2021. Papers are listed in alphabetical order by author 

Author Title Year Journal DOI 

Adahchour M. et al. 
Twin comprehensive two-dimensional gas chromatographic system: concept and 

applications 
2005 Journal of Chromatography A 10.1016/j.chroma.2004.12.021 

Aloisi I. et al. 
Fingerprinting of the Unsaponifiable Fraction of Vegetable Oils by Using 

Cryogenically Modulated Comprehensive Two-Dimensional Gas 
Chromatography-High Resolution Time-of-Flight Mass Spectrometry 

2020 Food Analytical Methods 10.1007/s12161-020-01773-9 

Barp L. et al. 
In-pipette solid-phase extraction prior to flow-modulation comprehensive two-
dimensional gas chromatography with dual detection for the determination of 

minor components in vegetable oils 
2017 Talanta 10.1016/j.talanta.2017.01.009 

Cajka T. et al. Traceability of olive oil based on volatiles pattern and multivariate analysis 2010 Food Chemistry 10.1016/j.foodchem.2009.12.011 

Da Ros A. et al. 
Complementary Untargeted and Targeted Metabolomics for Differentiation of 
Extra Virgin Olive Oils of Different Origin of Purchase Based on Volatile and 

Phenolic Composition and Sensory Quality 
2019 Molecules 10.3390/molecules24162896 

Fiori F. et al 
Enhanced Profile Characterization of Virgin Olive Oil Minor Polar Compound 

Extracts by Comprehensive Two-Dimensional Gas Chromatography with Time-
of-Flight Mass Spectrometric Detection 

2016 Polish Journal of Applied Sciences  

Janssen H.-G. et al. 
Comprehensive two-dimensional liquid chromatography × gas chromatography: 

evaluation of the applicability for the analysis of edible oils and fats 
2003 Journal of Chromatography A 10.1016 /S0021-9673(02)02058-7 

Lukic I. et al. 
Combined targeted and untargeted profiling of volatile aroma compounds with 

comprehensive two-dimensional gas chromatography for differentiation of virgin 
olive oils according to variety and geographical origin 

2019 Food Chemistry 10.1016/j.foodchem.2018.07.133 

Magagna F. et al. 
Combined untargeted and targeted fingerprinting with comprehensive two-
dimensional chromatography for volatiles and ripening indicators in olive oil 

2016 Analytica Chimica Acta 10.1016/j.aca.2016.07.005 
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Mondello L. et al. 
Evaluation of fast gas chromatography and gas chromatography–mass 

spectrometry in the analysis of lipids 
2004 Journal of Chromatography A 10.1016/j.chroma.2004.02.058 

Purcaro G. et al. 
Determination of polycyclic aromatic hydrocarbons in vegetable oils using solid-

phase microextraction–comprehensive two-dimensional gas chromatography 
coupled with time-of-flight mass spectrometry 

2007 Journal of Chromatography A 10.1016/j.chroma.2007.05.105 

Purcaro G. et al. 
Fingerprinting of vegetable oil minor components by multidimensional 

comprehensive gas chromatography with dual detection 
2015 

Analytical and Bioanalytical 
Chemistry 

10.1007/s00216-014-8140-x 

Purcaro G. et al. 
Characterisation of minor components in vegetable oil by comprehensive gas 

chromatography with dual detection 
2016 Food Chemistry 10.1016/j.foodchem.2016.06.048 

Purcaro G. et al. 
Toward a definition of blueprint of virgin olive oil by comprehensive two-

dimensional gas chromatography 
2014 Journal of Chromatography A 10.1016/j.chroma.2014.01.067 

Stilo F. et al. 
Untargeted and Targeted Fingerprinting of Extra Virgin Olive Oil Volatiles by 

Comprehensive Two-Dimensional Gas Chromatography with Mass Spectrometry: 
Challenges in Long-Term Studies 

2019 
Journal of Agricultural and Food 

Chemistry 
10.1021/acs.jafc.9b01661 

Stilo F. et al. 
Highly Informative Fingerprinting of Extra-Virgin Olive Oil Volatiles: The Role 
of High Concentration-Capacity Sampling in Combination with Comprehensive 

Two-Dimensional Gas Chromatography 
2019 Separations 10.3390/separations6030034 

Stilo F. et al. 
Chromatographic Fingerprinting by Template Matching for Data Collected by 

Comprehensive Two-Dimensional Gas Chromatography 
2020 Journal of Visual Experiment 10.3791/61529 

Stilo F. et al. 

Exploring the extra-virgin olive oil volatilome by adding extra dimensions to 
comprehensive two-dimensional gas chromatography and time of flight mass 
spectrometry featuring tandem ionization: validation of ripening markers in 

headspace linearity conditions 

2020 Journal of AOAC International 10.1093/jaoacint/qsaa095 

Tranchida P.Q. et al. 
Elucidation of fatty acid profiles in vegetable oils exploiting group-type patterning 
and enhanced sensitivity of comprehensive two-dimensional gas chromatography 

2008 Journal of Separation Science 10.1002/jssc.200800002 

Vaz-Freire L.T. et al. 
Comprehensive two-dimensional gas chromatography for fingerprint pattern 

recognition in olive oils produced by two different techniques in Portuguese olive 
varieties Galega Vulgar, Cobranc¸ osa e Carrasquenha 

2009 Analytica Chimica Acta 10.1016/j.aca.2008.11.057 

Vyviurska O. et al. 
Comprehensive Two‑Dimensional Gas Chromatography–Mass Spectrometry 

Analysis of Different Types of Vegetable Oils 
2015 

Journal of the American Oil 
Chemists' Society 

10.1007/s11746-015-2635-2 
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Chapter 3 
 

Principles of chemometrics 
 

 

 

 

 

3.1 Introduction 
It is difficult to define a proper date for chemometrics’ birthday: modern chemometrics is the 

result of a gradual approach of the chemistry to sciences as mathematical and statistical to select or 
design optimal measurement procedures, while providing maximum relevant chemical information 
by analyzing chemical data.1 

One of the fathers of chemometrics is the food chemist William Sealy Gosset. Since the 
company where he was employed did not allow him to publish the outcomes of his researches, he 
assumed the pseudonym Student, considering himself as a modest contributor in the field.2 He is 
mostly known for his work, published in 1908, describing the probability distribution commonly 
known as Student’s distribution.2 

However, despite the important role played by some fathers of the discipline in the early XXth 
century, the modern chemometrics is a younger discipline: Svante Wold, a Swedish organic chemist, 
used the term chemometrics in a grant application for the first time in 1972 and, together with the 
US analytical chemistry Bruce Kowalski, sent a letter to Analytical Chemistry in 1974 proposing to 
officially use this term to identify a scientific discipline aiming to extract useful chemical information 
from complex chemical data.2–4 Mathematics and statistics offer to chemistry a toolbox including 
both univariate methods, considering one variable at a time, and multivariate methods, taking into 
account the inter-correlation between chemical variables, and allowing a more complete exploration 
and interpretation of data structures.2 These tools assist the analyst in select the right experiments 
to perform, explore chemical data, build optimal models and interpret the final models,4,5 always 
remembering that a chemometrician is first of all a chemist, and the data analyst should always have 
a complete understanding of the nature of the analytical data and a deep awareness of the problem 
under study.2 Different chemical data require in fact different processing strategies.2 

In the late 1980s and 1990s, the diffusion of more user-friendly computers lead to the 
incorporation of complex algorithms into packaged software (e.g., PLS-Toolbox, Pirouette, 
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XLSTAT, SIMCA etc.) and the word chemometrics widespread.3 That moment is considered, by 
“hard” chemometricians, as a crucial point: more people heard about chemometrics and more 
wanted to use these methods, but without spend time in learn about computational and statistical 
basis of chemometrics methods. Chemometrics has become domain of people who want this 
methods immediately, through a fast and easy learning route and the rapid expansion of 
chemometrics packages coincided with a slow decline in dedicated chemometrics expertise.3  

For this reason, this chapter of introduction to chemometric is included to provide an overview 
of the most common methods used within the GC×GC and food-omics field, ordered in a rational 
workflow from the design of experiment to the creation of classification and regression models. 

Indeed, GC×GC(-TOF MS) generate high/multi-dimensional data files that, combined with 
an ideally large number of samples, lead GC×GC users to adopt robust chemometrics tools to 
access and extract reliable information.6 Chemometrics can be used for different purposes within 
GC×GC-TOF MS foodomics dataset, including: (a) design of experiments, necessary to generate 
high quality-raw data; (b) preprocessing, intended both in terms as GC×GC signal preprocessing 
and data preprocessing; (c) showing simple trends by univariate methods; (d) exploring complex 
data matrices by exploratory analysis and pattern recognition; and (e) modelling classification and 
discrimination by supervised methods.6–8 

 

3.2 Design of Experiment 
3.2.1 Introduction 

Design of experiment (DOE), or experimental design, is a multivariate approach that aims at 
maximizing the quality of information extracted from a chemical system/process while minimizing 
the experimental efforts.9 This concept was introduced in 1935 by Ronald A. Fisher,10 which 
implemented the concept of a rational planning and selection of the experiments to perform, in 
order to obtain the best knowledge of the system under study.9 

This strategy is based on the idea that each experimental system (e.g., chemical reaction, 
instrumental analysis, extraction procedure etc.) is characterized by variables (i.e., factors that can 
be changed and set at specific values) and responses (i.e., measurable quantities indicating the result 
of an experiments).9 Variables can be qualitative or quantitative, and usually they are not totally 
independent from each other, making it necessary an approach (i.e., DOE) able to consider and 
study interaction among variables.9,11,12 This optimization approach is opposed to the one-variable-
at-a-time (OVAT) strategy, which optimize a system changing one variable at a time while keeping 
constant all the other, in order to study separately the effect on each variable. The problem of this 
approach is that interactions among variables are totally missed and only a small part of the 
experimental domain is explored although, with an increasing number of variables, the number of 
required experiments grows fast.9,11,12 

The usual workflow followed during an experimental design is the following: 

- Define the goal of the experiment.  

- Define the variables/factors to investigate. All variables having an effect have to be 
selected, while variables that are not selected have to be kept constant ad a fixed level 
in all experiments; however, in case of doubt about some variables, it is always better 
to include a few extra variables at the beginning than adding one variable later.13  
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- Plan the experiment. It is necessary to define the range of investigation for each variable 
and the model to be applied, depending on the scope of the study (screening or 
optimization).9,11,12 

- Perform the experiment. 

- Analyze results. Information extracted from the model are transformed into logical 
conclusions. If a single experimental design does not lead to the solution of a problem, 
information obtained are used to reformulate the problem (by removing non-significant 
variables, redefine the experimental domain etc.) and to perform a new design of 
experiment.11  

Experimental designs can be divided into two main categories: (a) experimental designs for 
independent variables, where each variable can be set at any value inside its range regardless of 
values takes by other variables; and (b) mixture design, used for mixture components, where the 
implicit constraint is that the sum of all the component/variables must be 1 (i.e., 100%) and what 
matter is the proportion of each component in relation to others.11,13 In this chapter mixture designs 
are not discussed, while the focus will be on experimental designs for independent variables, by 
distinguishing between screening designs and optimization designs. 

 

3.2.2 Screening designs  

Screening designs are usually used to detect the relevant variables in a system, or to remove the 
non-relevant ones; for this reason, if a variable is already known to be relevant, it should be not 
included in this study, to not “cover” the effect of the others.9,11 

Common screening designs are (a) Plackett-Burman design, used to screen the linear effects of 
a large number of factors with a limited number of experiments without including interactions 
between variables; and (b) factorial design (full or fractional), which is not properly a screening 
design, but it is simple and therefore often used for this purpose.9,11 

 

3.2.2.1 Plackett-Burman design 

Plackett-Burman design, introduced in 1946,14 is the most efficient approach when the aim is 
to determine the main effect of a large number of variables with a small number of experiments.9 
The linear terms of the postulated model are computed as shown by Equation 3.1, where Y is the 
response, k the number of variables, b0 is the constant term and bi are the coefficients of the 
variables. 

Equation 3.1  Y = b0 +  ∑ bixi
𝑘
𝑖=1  

Two levels are set for each variable, coded as -1 and +1 (or simply – and +), and the number 
of experiments (N) is equal to the first multiple of 4 greater than the number of variables (k): it 
means that, differently from other designs where a precise number of variables correspond to a 
defined number of experiments, here N experiments can be used for a different number of 
variables, up to N-1.9 

The building of the experimental matrix for a Plackett-Burman design is quite simple: the first 
row of the experimental matrix can be found in literature (Table 3.1) while the second row is built 
taking the last element of the first row and making it the first of the second row, then copy all the 
remaining elements of the first row shifted by one position to the right. Third row, fourth row, etc. 
are built by repeating the same procedure, starting from the previous row.9,11 The final model matrix 
is obtained by adding a first column of + to compute the constant term b0. 
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Table 3.1. First row of the experimental matrix for Plackett-Burman designs of 8,12,16,20 and 24 experiments.9 

N First row 

8 + + + - + - -                 

12 + + - + + + - - - + -             

16 + + + + - + - + + - - + - - -         

20 + + - - + + + + - + - + - - - - + + -     

24 + + + + + - + - + + - - + + - - + - + - - - - 

 

Although Plackett-Burman design allows to investigate N-1 variables with only N experiments, 
for the experimental design it is recommended to add some replicated experiments to estimate 
experimental variability and validate the model.9,11 Performing additional experiments in replicates, 
introduces more degrees of freedom (DoF), that are calculated as indicated in Equation 3.2, where 
N is the number of experiment and p the number of model coefficients . 

Equation 3.2  𝐷𝑜𝐹 =  𝑁 −  𝑝 

Moreover it is a good practice to perform the experiments in a random order to avoid 
systematic errors or drifts.9 

Finally, it is worthy of mention that this simple and rapid approach, although useful to select 
the most important variables to investigate, does not detect interactions among them. Therefore, it 
might happen to draw misleading conclusions if a main effect is masked by an interaction.9  

 

3.2.2.2 Full Factorial design 

The simplest type of experimental design that allows to understand the effect of the 
variables and their interaction on the response is the Full Factorial design.9 It requires a number of 
experiments equal to 2k, where k is the number of variables under study.12 Variables can be both 
quantitative and qualitative, and they are explored at two levels as in the Plackett-Burman design.11 
From a geometrical point of view, as shown in Figure 3.1, a Full Factorial design explores the 
corners of a square, a cube of a hypercube, depending on the number of variables k.11,12 However, 
it is recommended to include three to four center experiments to minimize the risk of missing a 
non-linear relationships in the middle of the intervals and to determine confidence intervals.13 
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Figure 3.1. The experiments in a Full factorial design (A) with two variables and (B) with three variables.13 

A general equation for a model obtained by a two-level Full Factorial design is Equation 
3.3, where Y is the response, k the number of variables, b0 is the constant term, bi is the coefficient 
of the variables and bij is the coefficient of the binary interactions. 

Equation 3.3   Y = b0 +  ∑ bixi 
𝑘
𝑖=1 +  ∑ bijxixj 

𝑘
1≤𝑖<𝑗  

Full factorial design is simple and useful, but the number of experiments exponentially grows with 
the number of factors (e.g., 5 factors investigated mean 32 experiments, 6 factors mean 64 
experiments etc.). An option to reduce the number of experiments is to apply a Fractional Factorial 
design.9 

 

3.2.2.3 Fractional Factorial design 

In a Fraction Factorial design, the number of experiments is equal to 2𝑘−𝑝, where k is the 
number of the variables and p the size of the 
fraction: the fraction is defined by the formula 

(
1

2
)p, therefore p=1 means 

1

2 
, p=2 means 

1

4 
, p=3 

means 
1

8 
 and so on.9,13 A graphical visualization of 

a 23−1 design is given by Figure 3.2, where the 
number of experiments has been reduced by half. 
The figure shows how the Full Fractional selects 
a limited number of experiments, without 
investigating the interactions between all the 
variables, while covering as much as possible of 
the experimental domain, in this case with 
experiments having the form of a tetrahedron.13 

Fractional Factorial designs investigate many 
variables with a reduced number of experiments: less 
information is gained compared to full factorial designs, 
at the price of a contamination of the main effects by the interactions’ effects. 

 

Figure 3.2. Distribution of the experiments in a 23-1 
Fractional factorial design.13 
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3.2.3 Response surface designs 

Response surface methodologies are the most used approaches to optimize a process and 
determine an optimum: for this purpose, it is necessary that their polynomial function contains 
quadratic terms.13 Response surface designs, moreover, are a good way to graphically illustrate the 
relation between couple of experimental variables and the response.13  

Theoretically, a three level (i.e., +1, 0, -1) Full Factorial design is the best for this purpose but, 

being for this model the number of experiment (N) equal to 3𝑘, it is useless if applied to a process 
including more than 3 variables. For this reason, the most common response surface design is the 
Box-Behnken, the Central Composite and the Doehlert. They are incomplete versions of a full 
factorial design differing for the selection of the experimental points and fitting experimental data 
to a second-degree polynomial model defined by Equation 3.49 

Equation 3.4.  Y = 𝑏0 +  ∑ 𝑏𝑖𝑥𝑖  
𝑘
𝑖=1 +  ∑ 𝑏𝑖𝑖𝑥𝑖

2
 

𝑘
𝑖=1 +  ∑ ∑ 𝑏𝑖𝑗𝑥𝑖𝑥𝑗 +  𝜀 

𝑘
𝑖<𝑗  

where Y is the response, k the number of variables, b0 is the constant term, bi is the coefficients of 
the variables, bij  is the coefficient of the quadratic effect, bij are the coefficients of the binary 
interactions and ε is the residual term.13  

 

3.2.3.1 Box-Behnken design 

The Box-Behnken design is characterized by rotatability (i.e., the precision of the response 
estimation is equal in all directions) and it is defined as quasi-orthogonal, being zero the covariance 
among the coefficient for most terms and almost zero for the others.13 The number of experiment 
required is defined by Equation 3.5.15 

Equation 3.5.   𝑵 = 𝟐𝒌(𝒌 − 𝟏) + 𝑪𝟎  

where k is number of factors and C0 is the number of replicates at the central point. 

Figure 3.3 shows the actual distribution of the experimental points in a design with 3 variables: the 
extreme points of the experimental domain are not explored.13,15 It means that Box-Behnken design 
is not totally suitable in case the optimum falls in extreme regions.13,15 

 

Figure 3.3. Experimental points of a Box-Behnken design with 3 factors.9 
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3.2.3.2 Central Composite design 

The Central composite design is characterized by rotatability and orthogonality and it is the 
most used for fitting quadratic response models. 

The number of experiments required is defined by Equation 3.6.9  

Equation 3.6.   𝑵 = 𝟐𝒌 + 𝟐𝒌 +  𝑪𝟎  

where k is number of factors and C0 is the number of replicates at the central point. 

The Central Composite design explore a cubical domain and that it is the result of the 
combination between a Factorial Design, exploring the extreme point of the domain, and a Star 
Design, exploring the central points.11,12 The two most common type of Central Composite design 
are the Face Centered design (Figure 3.4A) and the Circumscribed Central Composite design 
(Figure 3.4B), where the “arms” of the star are longer and correspond to the square root of the 
variables number.11,12 In the latest, all points are equidistant from the center, and the domain 
explored is spherical.12 

Both designs include (a) levels -1 and +1 typical of a Factorial design; (b) central points, having 
coordinates 0,0..0, providing an estimation of pure error and contributing to estimate the quadratic 
terms; (c) star points, exploring different combination of the three levels -1,0,+1 in the Face 
Centered design, while including two additional levels (-α and +α, named axial points), whose value 
corresponds to the square root of the variables, in the Circumscribed Central Composite design.11–

13  

 
Figure 3.4. Experimental points of (3.4A) a faced centered and (3.4B) a circumscribed central composite design for 3 factors. 

Green circles represent the star points. 9 

 

3.2.3.3 Doehlert design 

The Doehlert design satisfies the rotatability only for k=2, and it is not completely orthogonal, 
although the covariance among the coefficients of the model is minimal.9  

The number of experiments required is defined by Equation 3.7.9  

Equation 3.7.   𝑵 = 𝒌𝟐 + 𝒌 +  𝑪𝟎  
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where k is number of factors and C0 is the number of replicates at the central point. 

Interestingly, the number of experiments is smaller than for a Box-Behnken design or a Central 
Composite design, nevertheless the Doehlert design too contains coefficients for linear terms, 
interactions and quadratic terms.11,12 It explores an hexagonal domain: Figure 3.5 shows the actual 
distribution of the experimental points in a design with two variables (Figure 3.5A) and three 
variables (Figure 3.5B).13 Figure 3.5 also highlights an attractive feature of Doehlert design that 
makes it versatile: it can be extended both in terms of variables and levels, adding some experiments 
to the already performed ones when the choice of factors or the domain is unclear.9,13  

 
Figure 3.5. Experimental points for (3.5A) a 2 factors Doehlert design and (3.5B) a 3 factors Doehlert design. Pink circles 

represent the starting 2-factor design, while light-blue circles are the extensions. 9 

 

3.2.4 Evaluation of the model 

The evaluation of the model can be made with different approaches: residual analysis, analysis 
of variance (ANOVA), cross validation or by validating the model with an external test set.9,13  

Here the first approach is examined: residuals represent the difference between the 
experimental and the fitted values, and the parameters considered to evaluate the model are the 
explained variance and the significance of coefficients. 

- Explained variance. It corresponds to R2 (i.e., determination coefficient of the 
regression model normalized to its degree of freedom) and indicates the percentage of 
data variability explained by the model.9 The acceptable value for R2 depends on the 
aim of the optimization, but usually values ≥ 0.8 are considered good for chemical data, 
while for biological data values > 0.7 are considered acceptable.13 

- Predicted variance. It corresponds to Q2 and it corresponds to the fraction of the total 
variation of the response that can be predicted in the model. As for the explained 
variance the acceptable value depends on the nature of the data, values ≥ 0.5 are 
considered acceptable for chemical data, while values > 0.4 are considered sufficient 
for biological data.13 

- Significance of coefficients. It indicates the statistically significant variables and the level 
of confidence. A p value is associated to each coefficient: smaller the p value higher the 
probability that the coefficient is significant (e.g., p<0.05 corresponds to a confidence 
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level of 95%, p<0.01 corresponds to a confidence level of 99%, p<0.001 corresponds 
to a confidence level of 99.9%).9 
 

3.3 Preprocessing 
The optimization of the experimental conditions is followed by the analytical experiments, 

whose final step is data acquisition and then results interpretation. However, to move from raw 
acquired data to cleaned data ready for data elaboration, the application of some preprocessing 
action is often an important (or even mandatory) step. 

However, the term preprocessing can be referred to two different categories of treatments, 
depending on the object: (a) signal preprocessing, typical of the technique of analysis (i.e., GC×GC-
MS) and in this case mainly directed to the correct acquisition, interpretation, and alignment of the 
analyses; and (b) data preprocessing, mostly aiming to correct signals’ intensity. 

 

3.3.1 Signal Preprocessing and Template creation 
3.3.1.1 Signal preprocessing 

Signal preprocessing is a step with a medium-to-low impact on data interpretation time. 
GC×GC-MS commercial software implements a basic signal preprocessing package with many 
functions performed automatically/semi-automatically and most users usually apply the default 
settings.6 The most common steps of signal preprocessing are here listed and described. 

Phase correction. During the rasterization of GC×GC data is common that the initial datapoint 
of each 2D chromatogram in the image corresponds to the time that the modulator released into 
the 2D column, and the vertical axis of the image indicates the retention time in the 2D column. 
However, when the initial data point is not synchronized as desired with the modulation cycle, the 
phase correction is necessary. This operation consists in a shift of the data to align the start of each 
modulation cycle with the initial part of each image column or, when wrap-around phenomena 
occur, the synchronization is preferably based on the hold-up time of the compound with the 
shortest 2D retention time, to easily individuate peaks eluting during the void time of the following 
modulation.16 

Baseline correction. Baseline, under controlled conditions, consists primarily of the steady-state 
standing-current baseline of the detector and unresolved complex mixture, and baseline fluctuations 
are generally due to low frequency detection noises and systems fluctuations (i.e., temperature, 
pressure etc.).6 It means that, in a typical GC×GC analysis, each datapoint value results from the 
sum of (a) the signal due to the presence of the detected compound(s); (b) a non-negative baseline 
value present even where there is no sample compound detected; and (c) the signal due to random 
noise fluctuations.16 A baseline correction is thus required since it may affect chemometric analysis 
or, quantification, and has the purpose of separate analyte(s) signals from noise signals and 
baseline.7,8  

Two general methods exist to estimate the baseline: the estimation of the baseline around each 
individual peak and the estimation of the baseline across the data comprehensively. Schmarr and 
others have estimated the baseline around each datapoint by using the rolling ball algorithm, moving 
a sphere across the underside of the 3D surface defined by the datapoint values.17,18 When the 
baseline is comprehensively estimated, instead, the two main approaches are: (a) curve fitting 
methods, where a polynomial function is fitted to the baseline, and its contribution is consequently 
subtracted from the original signal, as asymmetric least squares (ALS) method; and (b) baseline 



Page | 92 

 

modelling by multivariate resolution methods, as multivariate curve resolution-alternating least 
squares (MCR-ALS) and parallel factor analysis (PARAFAC).6,7,19 

Peak detection. Peak detection and reconstruction is based on retention times, S/N and MS 
library matches, and it is usually associated with a deconvolution step, which aims to identify 
isotopic peaks corresponding to the same compound, to remove redundant information and create 
a simplified data matrix.6,8 

Indeed, the association of each single peak to a single “object” defined by the detection 
algorithm (e.g., GC Image™ software names these objects as blobs) is not obvious: over-segmentation 
is the error defined by the detection multiple objects that should be detected as a single peak, while 
under-segmentation occurs when multiple analyte peaks are detected as one single object, requiring the 
unmixing or deconvolution, previously mentioned.20 The creation of objects, ideally corresponding 
to single peaks, allows the computation of important statistical features named metadata associated 
to them, as response measurement, association to unique coordinates (i.e., 1tR and 2tR), measurement 
of the peak-width, ratio of the tailing and fronting half-widths to evaluate symmetry and so on.16 

Analyte identification. An important metadata associated, when possible, to the objects 
composing an analysis is analyte identification. It is automated or semi-automated in many software 
and it is the result of a double channel of identification: 

- Identification by retention index (RI). RI are used to convert retention times into 
system-independent constants, and they are the result of the interpolation of a chemical 
compound retention time between adjacent n-alkanes. RI were introduced by Kovats 
in 1958 and they are sufficiently independent from chromatographic parameters (e.g., 
column length, film thickness, diameter, inlet pressure), while dependent from the 
stationary phase of the capillary columns used.21 Kovats RI however, is only suitable 
for isothermal analyses: in 1963 it was updated into a more general form to include also 
temperature programmed analyses by Van den Dool and Kratz.22 This generalized RI 
is calculated as indicated in Equation 3.8. 

Equation 3.8.    𝑰𝒊 = 𝟏𝟎𝟎 ∗ (𝒏 +
𝒕𝒊−𝒕𝒏

𝒕𝒏+𝟏−𝒕𝒏
) 

- Identification through spectral data. It is possible in case of a multichannel detector 
coupled to GC×GC, the most common of which is MS. In this case the identification 
depends on the comparison between the analyte(s) electron ionization (EI) mass 
spectra with those loaded on libraries through an automatic algorithm (e.g., NIST).6,8,19 

 
3.3.1.2 Data alignment and Template creation 

Data alignment is a crucial step necessary to eliminate retention times shifts caused by system 
fluctuations that can affect subsequent chemometric analysis.7 Alignment methods use different 
approaches, the main ones are: (a) time warping and parametric time warping algorithms, that 
stretch and shift each chromatogram in order to match a reference chromatogram (ChromaTOF™ 
software); (b) tile-based approach, based on the definition of tiles, which cut chromatograms into 
sub-pieces matched across chromatograms (see Synovec’s group researches23–25); (c) peak features 
and peak region features based alignment, where metadata (i.e., 1tR, 2tR, IT, MS) from each feature 
are included in a template, which is the applied over all chromatograms searching for positive 
matches and eventually updated following polynomial geometrical transformations (GC Image™ 
software).6,8 A detailed discussion about features used in GC×GC-MS investigations, and their role 
in affecting signal preprocessing, is included in the review at Chapter 4.1. 
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In particular, the straightforward concept of template matching based on pattern recognition 
algorithms to align GC×GC data is implemented by GC Image™ software package.26 Template 
matching is a powerful extension of the traditional approaches of retention time windows and 
marker peaks to identify patterns of peaks in multidimensional separations. A template includes 
patterns of blobs (i.e., objects, corresponding to peaks) with their complete set of metadata resulting 
from one or several analyzed chromatograms, and template matching algorithm establishes as many 
correspondences as possible between objects in the template and 2D-peaks in the selected analysis.26 
After matching, all metadata are copied from the template to the analysis, consequently, all the 
matched objects in the analysis are identified through the template. 

 

3.3.2 Data Preprocessing 

After data acquisition and signal preprocessing, data are organized in a matrix form Xij, where 
column vectors (j) are called variables and row vectors (i) are called objects or samples.1 Data 
preprocessing is an important step necessary to correct signal intensity, however it is important to 
remember that each preprocessing method influences the information contained in the data and 
the successive elaborations.4,6  

Moreover, chemometric elaborations require to have a complete matrix, without missing data 
or zero values. The best way to substitute missing data is to use column means or partial column 
means, while measurement below the limit of detection (LOD) – in many cases erroneously 
reported as zero – can be substituted with a fixed fraction of the LOD (e.g., half of the LOD).1 

Data preprocessing methods belong to three main categories: normalization, transformation, 
and scaling. 

 

3.3.2.1 Normalization 

Normalization in chromatographic analysis is a necessary step to react to unexpected signal’s 
variations corresponding to a fluctuation of the peaks’ response. The most common approach is 
the normalization on an internal standard,6,27 where samples are spiked with known quantity of a 
non-native compound. This approach is effective for targeted studies, while it is more complex for 
untargeted analysis.28,29 

Another common possibility, alternative or coupled with internal standard normalization, is the 
total area normalization. It consists in dividing the response of each peak by the total response 
measured in the chromatograms. The effectiveness of this normalization strategy, also used for 
untargeted studies, depends on samples composition, because it assumes that each sample contains 
the same number of analytes spanning the same range of concentrations.6,19 

A more recent approach, introduced in the last years, is the probabilistic quotient normalization 
(PQN).30 This methods evaluate the distribution of quotients to determine the most probable 
normalization factor, and it doesn’t affect neither the variable correlation nor the data structure.6,19,30 

 

3.3.2.2 Transformation 

Transformations of variables are used for different purposes: stabilize the variance, normalize 
the distribution, realize more robust models.4,6 

The most common transformations are:  



Page | 94 

 

- Logarithmic transformation. It is used to linearize the behavior of variables having a 
multiplicative effect.4 It is defined by Equation 3.9. 

Equation 3.9.   𝑥𝑖𝑗
′ = log(𝑥𝑖𝑗)   𝑜𝑟  𝑥𝑖𝑗

′ = log(1 + 𝑥𝑖𝑗)   

- Square root transformation. It is used to correct data belonging to Poisson distribution, 
where variances are proportional to mean values (common for biological data).4 It is 
defined by Equation 3.10. 

Equation 3.10.   𝑥𝑖𝑗
′ = √𝑥𝑖𝑗 + 0.5  𝑜𝑟  𝑥𝑖𝑗

′ = √𝑥𝑖𝑗 +
3

8
   

Other common transformations are arcsine transformation, inverse transformation, hyperbolic 
tangent transformation.4 

 

3.3.2.3 Scaling 

Scaling methods are used to make variables comparable in terms of order of magnitude and 
variance.4 For this reason, they are extremely useful when successive elaborations include also 
models influenced by the variables variance (e.g., principal component analysis – PCA) and where 
variables with highest variance dominate the projection. 4,6  

The most used scaling methods are here listed. 

- Mean centering. It corresponds to the subtraction of the mean value of each 
variable, namely the columns in the data matrix, from each measured variable, as 
indicated in Equation 3.11.1,4,6,19  

Equation 3.11.   𝑥𝑖𝑗
′ =  𝑥𝑖𝑗 −  �̅�𝑗  

After mean centering, the mean value of each variable is zero instead of the mean. It 
corrects differences between high and low abundance compounds, without modifying 
data variance.4 It is usually used together with other scaling approaches.6 

- Range scaling. It includes the maximum column value and the minimum column 
value, scaling each variable as indicated in Equation 3.12.4,6  

Equation 3.12.   𝑥𝑖𝑗
′ =  

𝑥𝑖𝑗−𝑚𝑖𝑛𝑖(𝑥𝑖𝑗)

𝑚𝑎𝑥𝑖(𝑥𝑖𝑗)− 𝑚𝑖𝑛𝑖(𝑥𝑖𝑗)
 

After range scaling all variables range between 0 and 1. 

- Autoscaling. It is one of the most used scaling method, and it consists of a mean 
centering together with the use of the standard deviation as scaling factor, as indicated 
in Equation 3.13.2,4,6,19 

Equation 3.13.   𝑥𝑖𝑗
′ =  

𝑥𝑖𝑗− �̅�𝑗

𝑠𝑗
  

Autoscaling results in a mean value equal to 0 and a variance equal to 1, making all 
variables having the same importance in the projection.  

Other common scaling methods are maximum scaling, block scaling, unit variance scaling, 
pareto scaling, logarithmic scaling and logarithmic double centering.1,4,19 
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3.4 From univariate to multivariate methods 
After data preprocessing, the data matrix is ready to be converted into information. The simpler 

methods are univariate ones, approaching one variable at a time; they are still the most used in many 
cases, although they usually offer a limited information potential, if compared to multivariate 
analysis.2 

The most common univariate methods are graphical tools, as histograms, radar-charts, point-
charts etc. They are easy to understand, simple to be performed and offer an immediate 
visualization. However, this short section only includes some tools that are useful as preliminary 
step and/or coupled to multivariate analysis, in particular normality test and Analysis of variance – 
ANOVA. 

 

3.4.1 Normality test 

The normal distribution is a basic requirement that must be verified since it is a precondition 
for the application of many multivariate methods. Frequency distribution can be evaluated visually 
by examining histograms shapes, but the basis of the most used group of normality tests (i.e., 
Kolmogorov-Smirnov tests) is the evaluation of the cumulative empirical frequency distributions.2 

One of the most effective method is the Lilliefors test.31 It is used to assess the fitting between 
the empirical distribution and the theoretical one: the null hypothesis (H0) is that, at a given 
significance level, they are not significantly different, while the alternative hypothesis (H1) is that 
the empirical distribution is not compatible with the theoretical normal distribution.2,31 

The test consists in ordering the values of the variable to be tested and scaling them by 
autoscaling (or Student’s transformation), as indicated in Equation 3.13. Then the theoretical 
probability distribution is estimated for the values obtained and it is compared with the empirical 
distribution, at a given significance level, to determine the acceptance of the rejection of the null 
hypothesis.2,31 

 

3.4.2 Analysis of variance – ANOVA  

Analysis of variance (ANOVA) is a statistical method based on Fisher’s F tests generally used 
to verify the existence/absence of significant differences between groups of data.2,4,6 

The null hypothesis (H0) is that all data derive from the same population, namely there is no 
significant difference between the groups considered, while the alternative hypothesis (H1) is that 
the data belongs to different populations.2 Consequently, the Fisher ratio is calculated as the ratio 
between the between-class variance and the within-class variance, and the resulting valued is 
compared to the F critical value at a given significance level.2,6 

The simplest case of ANOVA test is the one-way ANOVA, when a single variable is explored; 
however it can be applied also when the effect of two variability sources has to be verified, in this 
case is called two-way ANOVA.2 To note that this test is sensitive to the normal distribution of 
data, which must be verified before running an ANOVA test. 
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3.4.3 Parametric vs. non-parametric tests 

ANOVA belongs to the group of parametric tests, which assume underlying statistical 
distribution (usually normal distribution) in the data.32 Non-parametric tests, instead, do not rely on 
any distribution and thus are also called distribution-free tests.32,33 

Parametric and non-parametric tests are like two sides of the same coin, since parametric tests 
often have nonparametric equivalents, as indicated in Table 3.2, which includes the most common 
tests. 

Table 3.2. Common parametric and non-parametric tests. 

Parametric tests Non-parametric test 

1-sample t test 1-sample Sign, 1-sample Wilcoxon 

2-sample t test Mann-Whitney test 

One-Way ANOVA Kruskal-Wallis, Mood’s median test 

 

In addition to their dependence or not on a particular distribution, parametric and non-
parametric tests present different characteristics and areas of application: 

- Parametric tests work on group means, while non-parametric tests work on group 
medians; the choice of the correct test depends on whether the center of the 
distribution and the area of study are better represented by a mean or a median value.33 

- Non-parametric tests are more suitable when the sample size is very small, while 
parametric test can perform quite well even if the distribution is non-normal provided 
that sample size guidelines are achieved (i.e., sample size > 20 for 1-sample t test, group 
size > 15 for 2-sample t test, while for ANOVA each group must be greater than 15 if 
the number of groups is 2-9, while the groups size requirement increase for an higher 
number of groups).33 

- Parametric tests have a higher statistical power (i.e., the p-value associated to a 
parametric test is usually lower to that associated to the equivalent non-parametric test 
run on the same dataset), while non-parametric tests are more robust, having fewer 
limitation and a broader range of validity.32 

 

3.5 Exploratory analysis  
Exploratory data analysis represents the first step for chemometric processing. They provide, 

without the need of a pre-formulated hypothesis, an overview of the data, allowing pattern 
recognition, outliers diagnosis and variable importance in describing the system.8 

The most important and common exploratory analysis are principal component analysis (PCA) 
and cluster analysis (CA). 

 

3.5.1 Principal Component Analysis – PCA 

PCA’s origin is attributable to the work of K. Pearson in 1901, even if its fundamental ideas 
were based on approaches named eigen-analysis well known to physicists and mathematicians even 
before the XX century.2,34 
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PCA is the most used explorative analysis technique and, broadly, the most used multivariate 
analysis approach.19 It is based on the principle that multivariate data having high variability (i.e., 
high variance value) underline an amount of information that can be more easily explored through 
a process of data reduction.2,35 PCA works through the definition of a small number of linearly 
uncorrelated variables named principal components (PCs), able to replace all correlated original 
variables of a data matrix, thus retaining most of the information and explaining the majority of the 
variation in the original system.19,34 

PCA algorithm builds, in the multidimensional space of the original data, hyperplanes that are 
linear combinations of the original variables, and then describe the hyperplanes through the 
definition of PCs.2,34 The first principal component (PC1) is built on the maximum variance 
direction, preferably passing through the data centroid, while the second principal component 
(PC2) must be orthogonal to the first one in order to explain the larger amount of the remaining 
variance.19,34 The other components and the defined likewise until the explanation of the total 
variance included in the system. Figure 3.6 shows the easier example, corresponding to a system 
described by only two original variables. 

 

 

Figure 3.6. PCs definition when the system is described by two variables. 

From a mathematical point of view, given a data matrix XO,V (Figure 3.7), where o =1:O 
represents samples/objects along the rows and v=1:V represents variables along the columns, the 
principal components (so,p) are calculated as linear combination of the original variables (Equation 
3.14). 

Equation 3.14     so,1 = xo,1 . l1,1 + xo,2 . l2,1 + xo,3 . l3,1 + ....+ xo,v . lv,1 = xo,V . lV,1   → sO,1=XO,V . lV,1 

                       so,2 = xo,2 . l1,2 + xo,2 . l2,2+ xo,2 . l3,2 + ....+ xo,v . lv,2 = xo,V . lV,2  → sO,2=XO,V . lV,2      

where sO,1 e sO,2 are new vectors resulting from the product of the original data (XO,V) and the 
relative coefficients lV,1, lV,2.

36 
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Figure 3.7. Data matrix structure.37 

Equation 3.15 is the result of the extension of this calculation to all PCs, which is also 
represented in Figure 3.8.  

Equation 3.15   SO,P= XO,V . LV,P  

where SO,P is the called scores matrix e LV,P is called loadings matrix.1,2,37 

 

Figure 3.8. Matrix creation for (3.8A) one sample and one component, (3.8B) all samples and one component, (3.8C) all 

samples and all components.37 

Scores, corresponding to samples (or objects or observations), are expressed in the same unit 
of the original data when data are mean-centred while they are dimensionless when data are 
autoscaled. They are visualized in a score plot, a 2D or 3D plot containing all observations 
represented within the plan defined by the selected PCs; the score plot shows samples distribution, 
their similarity and the eventual formation of natural groupings.2,4  

Loadings, geometrically speaking, correspond to the cosines of the angles between each original 
variable and each component. For this reason, when the angle between a variable and a component 
is equal to 0, the loading is equal to 1 while when the angle is 180°, the loading is equal to -1; 
orthogonal directions (90°) instead, have loadings equal to 0.19,37 In the same way, two compounds 
are positively correlated if the angle is small, while an angle close to 180° or 90° indicates an anti- 
correlation or absence of correlation, respectively.19 A loading plot, showing the position of the 
original variables in the new plane defined by PCs, indicates the correlation of each variable with 
the selected PCs and, consequently, the correlation between each variable and each sample or 
clusters of samples. 
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Figure 3.9 shows an example of score and loadings plot resulting from a data matrix composed 
by 14 observations/samples and 7 variables. 

 

Figure 3.9. Examples of a (3.9A) score plot and a (3.9B) loading plot. 

How to decide how many PCs must be considered? Different approaches exist, for example it 
may stop after reaching a specific value of total explained variance (i.e., the sum of the variance 
explained by each PC considered), but this value is strongly affected by the nature of the data, their 
distribution and the size of the data matrix.2,4,5 The most common approach consists in the visual 
analysis of the scree plot, showing on the x-axis the number of the components and on the y-axis 
the aggregate value of cumulative variability: usually PCs are considered until the addition of a new 
PC doesn’t result in a significant increase the cumulative variability.  

 

3.5.2 Cluster Analysis – CA 

Cluster analysis methods are used to individuate, within the dataset, natural groupings of 
samples (i.e., clusters) that are more similar to each other than to those in other groups/clusters. 

The two types of CA are hard clustering and fuzzy clustering: in hard clustering, each object 
belongs to only one cluster, while in fuzzy clustering, an object can belong to one or more clusters 
with a specific probability.38 Only hard clustering is matter of discussion of this chapter, and it 
includes hierarchical cluster analysis (HCA) and non-hierarchical (or partitional) cluster analysis.38  

CA methods are based on the concept of similarity between objects and this similarity is 
measured by using different types of distances, the most common are Euclidean, Pearson, 
Manhattan, Mahalanobis and Minkowski.1,4,19 Moreover, different linkage rules, used to calculate 
the distance among groups, have been defined: simple, average, complete and Ward’s method are 
the most common.1 
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3.5.2.1 Hierarchical Cluster Analysis – HCA 

HCA includes different methods to link the objects, as single linkage, average linkage, complete 
linkage, Ward’s method etc.1,4,34 They can be divided in two main categories: (a) divisive or top-
down methods, less used, where all observation starts in one cluster, followed by division into 
smaller clusters as the hierarchy moves down; (b) agglomerative methods, more common, where 
clustering begins with single-object clusters and, at each step, the most similar cluster pairs are 
combined until all objects are included in a single cluster.4,8,38 

The result of this process is presented in the form of a dendrogram (or tree diagram), which 
allows an easy and rapid detection of clusters and similar objects.4,19,34,38 In the example shown in 
Figure 3.10, object B and E are easily identified as the most similar, followed A and H, while the 
final agglomeration involves the two main clusters [A,H,B,E,D,G,C] and [F,J,I].4 

 

 

Figure 3.10. Example of dendrogram resulting from an HCA.4 

HCA, due to its simplicity, is the most widely used clustering approach.19 However, it works better 
with smaller data sets, while it is not recommended for larger ones.38 Moreover, its main 
disadvantage is that it does not provide information about the compounds responsible for the 
resulting clustering.19 For this reason, it is often associated to an Heatmap visualization showing the 
composition of the object or to a non-hierarchical clustering. 

 

3.5.2.2 Non-hierarchical/Partitional cluster analysis 

Partitional clustering includes methods are based on different techniques and they are very 
efficient (compared to HCA) when applied to big data set.38  

The most common partitional clustering method is the k-means clustering. This algorithm is 
characterized by the following steps: 
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1. Random selection of the centroids, whose number (k) is a priori decided, representing 
clusters.  

2. Each object of the dataset is assigned to the closer centroid by measuring its distance 
between all the selected centroids. 

3. The mean of each cluster is calculated defining new centroids, and the assignment is 
reconsidered until the clustering does not change anymore; at this point the quality of 
the clustering is assessed by summing up the variation within each cluster. 

4. Points 1-3 are repeated with a completely new random selection of the centroids and 
the comparison between the total variation within each class provides the best 
clustering.4,19,38 

The algorithm is so repeated several times until the optimal set of centroids (i.e., the one 
providing the lower total variation within each class) is found.19 

Moreover, a method is used to set the optimal number (k) of centroids (point 1), and it is similar 
to the scree plot method used to define the number of PCs considered in a PCA. Usually, as k 
increases, the average variation within each class decreases, being objects grouped in a higher 
number of clusters. However, at a certain point, the addition of another cluster doesn’t result in a 
significant decrease of the average variation within each class: this is the best value of k to use.38 

 

3.6 Supervised techniques 
Supervised techniques, usually performed after exploratory analysis, are based on the 

construction of a model having predictive capabilities for new data.7,8  

Methods and algorithms belonging to this group of supervised techniques can be classified 
following different criteria: 

- Classification vs. regression models.  
The application of classification or regression models depends on the type of variable 
that one wants to predict, discrete or continuous respectively.8  

- Class modelling techniques vs. discriminant classification techniques.  
Class modelling techniques works to build class(es), defined as group(s) of individuals 
having one or more properties in common, described by continuous or discrete 
variables.39 Class modelling techniques define independently an enclosed class space 
(see Figure 3.11A) for each class: for this reason, they can be used both when the focus 
is on one class and the aim is to verify samples’ compliance to this class (e.g., verification 
of food authenticity) and when the aim to distinguish samples from two or more 
classes.39,40 Boundary position and shape are determined exclusively on the basis of the 
samples of the modeled class; it means that classes’ spaces may both overlap, producing 
a region in which samples are recognized as compatible with more than one class, and, 
conversely, not cover a region of the global domain, resulting in a non-assignment for 
some samples.40 For this reason, class modelling techniques are also classified as 
soft/fuzzy classification methods, assigning to each sample the probability of being part 
of one or more classes or, even, leaving some samples without assignation. The most 
common class modelling techniques are soft independent modeling of class analogy 
(SIMCA) and unequal dispersed classes (UNEQ).39,40 
Discriminant classification techniques delineate a delimiter between two or more 
classes. The main difference with modelling approaches is that discriminant techniques 
use the contribution of samples from all of the classes considered to create delimiter(s) 
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among classes.40 The result of this process is that, as indicated in Figure 3.11B and 
Figure 3.11C, the different composition of one class affects the region delimiting other 
classes, while the modelling class space stay unvaried.40 Moreover, in discriminant 
classification techniques, also known as hard classification methods, all samples are 
assigned to only one class and the entire domain is covered, thus all samples have an 
assignation to a class.34,39,40During time, modified discriminant strategies have been 
proposed, defining a maximum allowed distance for each class centroids and excluding 
samples too far, so helping the individuation of potential outliers.39 
Despite their limits, because of historical and convenience reasons, discriminant 
classification techniques are more common than class modelling ones. The most used 
algorithms are linear discriminant analysis (LDA), quadratic discriminant analysis 
(QDA), k-nearest neighbors (k-NN), classification and regression trees (CART), 
Random forest (RF), artificial neural networks (ANNs), support vector machines 
(SVM) and partial least squares discriminant analysis (PLS-DA).7,34,39,40 

 

Figure 3.11. Examples of (3.11A) the definition of an enclosed class space by using a classification modelling approach and 
(3.11B and 3.11C) the effect of a class composition in defining the region deliming other class(es) 

- Parametric vs. non-parametric classification algorithms.  
Parametric, or linear, algorithms offer simple interpretation of the results, fewer 
parameters to optimize and fast calculation, some examples are LDA, PLS-DA and 
SIMCA. Non-parametric, or non-linear, algorithms instead, as k-NN, CART, RF, SVM 
and ANN, are more complex but usually powerful and more accurate in the 
prediction.7,8,19 

Although many different algorithms are available, a common strategy can be applied for 
classification purposes. It could be stepped as follows:34 

1. Build the training set. The training set is composed by all analyzed known samples used 
to build the model. It is fundamental to have a training set as larger as possible, and 
representative of the real composition of the entire population 

2. Validate the model. The quality of the predictions arising from the model built with the 
training set must be validated by using and independent test set. A focus on validation 
is the object of Chapter 3.5.1. 

3. Model application. Once a satisfactory model is obtained, it can be applied to unknown 
new samples to make predictions. 
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3.6.1 Model performance evaluation  

The performance of a class model can be evaluated through different parameters, the most 
important of which are here described. 

- Sensitivity. It is defined as the fraction of samples belonging to the modeled class that 
is correctly accepted by the respective model.40 It is calculated following Equation 3.16, 
where TP stays for true positive (i.e., samples modeled within the correct class), and FN 
stays for false negative (i.e., samples belonging to a class, but modeled outside). 

Equation 3.16. 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

- Specificity. It is defined as the fraction of samples not belonging to the modeled class 
that is correctly rejected by the respective model.40 It is calculated following Equation 
3.17, where TN stays for true negative (i.e., samples correctly modeled outside a class), 
and FP stays for false positive (i.e., samples not belonging to a class, but found within 
its boundaries). 

Equation 3.17. 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

- Precision. It indicates the probability that a positive decision is correct and it is 
calculated following Equation 3.18.40 

Equation 3.18. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

- Efficiency. It is the parameter used to measure the ability of the model to avoid errors 
during classification.41 A useful tool to evaluate this parameter is represented by receiver 
operating curve (ROC). They are usually obtained by plotting the sensitivity value vs. 
the (1-specificity) value, as shown in Figure 3.12.39,40 
The red dotted diagonal line from the lower left corner to the upper right corner 
represents a model that provide a random assignment of samples, while curves that 
tend towards the upper left corner indicate efficient models.40 The area under the curve 
(AUC) is often used as indicator of a model performance.40 
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Figure 3.12.  Example of ROC curves (solid lines) used to evaluate the performance of different class models. 
Efficiency of models associated to the curves decreases from blue to green, while the red dotted diagonal line from the 

lower left corner to the upper right corner represents a model that provide a random assignment of samples.39 

3.6.2 Model validation 

The validation is a crucial part of data analysis, used to evaluate performances and robustness 
of a model when applied to new data.19 Indeed, it is necessary to avoid the overfitting: a situation 
in which a model fits well on data used to build it, being vice versa unable to perform well when it 
is used for predictive purposes on a new dataset.4,6,8  

The most common validation methods are here explained: 

- Training and validation set. The optimal approach, when the number of samples is 
adequate, data are divided into a training set, used to train the supervised method, a 
validation/test set, to optimize the parameters, and an independent test, to evaluate the 
performance of a model and its predictive power.6,19 Validation set is built by selecting 
a fraction corresponding to the 10-50% of the available samples (usually 20-30%) and 
the selection can be random (it requires multiple runs to ensure different scenarios) or 
guided (by selecting a set representing of the whole population variability).4,6,19,42 

- Cross validation (CV). It is a very common validation strategy, used as alternative for 
the first one especially when the number of samples is not so high.6,8 CV splits the N 
rows of a data matrix (i.e., samples) into C cancellation groups following a 
predetermined scheme, and the model is computed C times, using each time one of the 
cancellation groups as test set and the remaining samples as training set.39 The number 
of cancellation groups C is usually between 4 and 8, but it can theoretically range from 
2 to N. In this latest case CV correspond to a leave-one-out validation. 



Page | 105  

 

- Leave-one-out. It is the extreme case of a CV, where the dataset is divided into as many 
cancellation groups as the samples number.19 Leave-one-out validation is usually 
characterized by optimistic results, with an over estimation of the predictive power of 
the supervised model.19,39  

Other types of validation commonly used are the double CV or nested CV, and the bootstrap 
method.4,6,39 

 

3.6.3 Linear Discriminant Analysis – LDA 

Linear discriminant analysis (LDA) is the first multivariate classification technique, introduced 
by Fisher in 1936.40 LDA is a linear discriminative classification technique that searches for a linear 
delimiter between classes of objects and use it to assign unknown samples to a class.8 LDA can be 
used when more than two classes have to be discriminated and can be only applied when the 
number of samples is larger than the number of measured compounds.19 Another limitation to the 
application of LDA, in addition to the requirement of a normal distribution, is that LDA considers 
that all classes have the same dispersion, so the variance-covariance matrix.8,40 For this reason, when 
groups have different variance structures, it is more appropriate to use non-linear methods.40 

The classification can be expressed both in the Bayesian form, based on the probability that an 
objects belong to the probability density distribution of a class, and using Mahalanobis distance.4,8 
The Mahalanobis distance is calculated for all samples to the class centers, and samples are assigned 
to the lowest class distance.8 The delimiter between two classes, instead, is created by connecting 
the intersection points of each couple of corresponding class ellipses, having equal eccentricity and 
axis orientation, with a straight line.40  

 

3.6.4 K-Nearest Neighbor – k-NN 

K-NN is a non-parametric discriminant classification technique, and it is one of the simplest 
approaches for classification.2 It is a distance-based method and the algorithm works by calculating 
the distance of an unknown compounds to all members of the training set.4,34 At this point, a 
number k is chosen, and the unknown object is assigned to the class better represented among the 
closer k known objects.34 It is useful to perform k-NN analysis using different values of k, searching 
for the model able to provide the best performance.4 In some cases, it is possible that, for objects 
close to the delimiter, the assignation of an unknown compound could change with a different k 
selection, as shown in Figure 3.13. In this case the assignation of the unknown object is blue if k 
value is 3 (Figure 3.13A) and green if k value is 5 (Figure 3.13B). 
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Figure 3.13. Different assignation of an unknown sample when k value is 3 (3.13A) or 5 (3.13B) 

Distance is usually calculated by using Euclidean distance, but also Mahalanobis distance can 
be used.2 k-NN works well in a lot of situation, it is simple, very efficient in describing complex 
nonlinear boundaries between the groups while it not considers the variance in the classes.19,34 
However it is influenced by the numerosity of the classes, that should be approximately equal to 
avoid a bias towards the classes highly represented, and, being a distance-based method, it is 
sensitive to eventual scaling procedures applied and to the measurement unit.19,34 

 

3.6.5 Classification And Regression Tree – CART 

CART is a method proposed by Breiman in 1984,43 and it is a non-parametric discriminant 
classification method not requiring nor a normal distribution of data neither the equality of the 
within-class variance.44 The outcome of the CART is represent by a tree, built by dividing samples 
from a parent node into two child nodes by following a rule base on one compound.19 Each node 
represents a single compounds and branches arise from a binary answer (i.e., present/absent) or a 
multi-interval answer (i.e., depending on different levels of abundance of a compound in the 
different classes).19 

Figure 3.14 shows the simpler example of a CART: a binary tree where objects are assigned to 
class 1 or 2 (i.e., C1 and C2) depending on the value of variables x1 and x2. Here each node uses a 
different compounds but, in more complex problems resulting in branched trees, the same 
compound may appear more than once.19 
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Figure 3.14. A decision tree built for a binary classification problem.45 

CART has many advantages: it is a simple method, where each step is characterized by only 
one variable, it is robust to outliers presence and the visual output also provides a selection of the 
most important variables in the discrimination process.4 Conversely, this method is characterized 
by a strong tendency of overfitting results.19 

To address this drawback, the random forest (RF) method was proposed by Breiman in 200146: 
RF builds a large collection of uncorrelated trees resulting from a random selection of subsets of 
the original samples.19 RF is an approach more robust than CART, especially when the number of 
variables is much larger than the number of samples.19 

 

3.6.6 Soft Independent Modeling of Class Analogy - SIMCA 

SIMCA is the first class modeling technique introduced into chemometrics by Svante Wold in 
1977.47 It is a non-parametric and non-probabilistic distance-based method, where each class of the 
training set is modeled independently and, being a soft modeling approach, each object could 
belong to multiple (or no one) classes simultaneously.4,34,40  

SIMCA models are based on the PCs, by definition the directions of maximum variance in a 
multivariate data space, of a PCA performed using only the samples of the category studied.2,39,40 
Then it is evaluated the number of significant PCs through a CV, and this number defines the so-
called SIMCA inner space that could corresponds to a rectangle (two PCs), a parallelepiped (three 
PCs) or to hyper-parallelepipeds (in case of more than three PCs).39,40 Finally, residuals (i.e., the 
distances between each sample and the model) are evaluated in the full dimensional space, including 
also the so called SIMCA outer space, defined by non-significant PCs.40 The distance from sample 
s to class C (dS,C) is calculated as indicated in Equation 3.19, where ID is the distance in the score 
inner space and OD is the distance from the class model.39 

Equation 3.19. 𝑑𝑠,𝐶 =  √𝐼𝐷𝑠,𝐶
2 + 𝑂𝐷𝑠,𝐶

2  

The critical value of this distance, determining acceptation/rejection of a new sample, is defined 
by a critical value of Fisher statistics at a predetermined confidence level.39 
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SIMCA defines an enclosed space for each class, and a common method to visualize the results 
of SIMCA classification is represented by Coomans plots (Figure 3.15). In these plots the 
coordinates of each object correspond to the ratio of their distances from the two classes (in the 
simplest case) to the critical distance corresponding to the boundary of each class, which are 
represented by the two straight lines parallel to axes.39 The plot area is divided in four section, 
respectively containing: samples accepted by class 1 (upper left rectangle); samples accepted by class 
2 (lower right rectangle); samples accepted by both of the models (lower left square) and samples 
rejected by both of the models (upper right square).39  

 

Figure 3.15. Example of Coomans plot. 

SIMCA algorithm can be also used as alternative discriminant classification technique, by 
calculating the delimiter (usually non-linear) as the locus of points having the same distance from 
the models of the two classes.40 

 

3.6.7 Regression methods 

As for classification methods, regression methods are used for prediction, but their difference 
is about the type of variable that they predict: while classification algorithm are used to predict 
discrete values/label/classes, regression methods are about predicting continuous values and 
quantities. 

A conventional regression problem, in terms of matrices, includes a XIJ predictor matrix and a 
YIK response matrix, where K is equal to the number of classes.19 Traditionally this modelling of Y 
is done using multiple linear regression (MLR) based on Ordinary Least Squares (OLS). The least 
squares solution it is calculated by following Equation 3.20, where b is the column vector of the 
regression coefficient, X the independent variable array for the calibration set objects, and y is the 
vector containing he reference responses for the same objects.2  

Equation 3.20. 𝑏 = (𝑋′𝑋)−1𝑋′𝑦  
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MLR works well until X-variables are fewer than the number of samples analyzed and 
sufficiently uncorrelated.2,48 However, when X contains variables resulting from multidimensional 
analytical (MDA) platforms, X-variables are usually a lot and often strongly correlated (especially in 
the case of continuous analytical signals used as predictor variables).48 

To address this limitation, regression techniques based on latent variables (LVs) that reduce the 
space of the original predictors to a limited number of orthogonal components, were introduced. 
They are Principal Component Regression (PCR) and Partial Least Squares (PLS) regression. 

 

3.6.7.1 Principal Component Regression – PCR  

PCR satisfies the requirement for the number of objects higher than the number of predictors 
by using PCs as LVs: the matrix of predictors X is projected into the space defined by PCs and the 
significant PCs are selected.2 Thus, although not all the original information is considered, the 
information contained in the system is not deformed, being PCs a linear combination of the original 
predictors. This transformation results in a reduction in the number of predictors, moreover the 
new variables are orthogonal to each other and therefore non-correlated.  

PCR is a technique very efficient in many cases however, not always the directions which 
explain the highest variance amount are the most important in predicting a response variable.2 For 
this reason a refined approach was then introduced and it is the PLS regression. 

 

3.6.7.2 Partial Least Square regression – PLS and Partial Least Square Discriminant 
Analysis – PLS-DA 

PLS is the most important regression method, and although historically it was proposed to 
handle continuous variables it can be adapted to solve classification tasks, by using categorical 
output variables.19,49 In this case it is named Partial Least Square Discriminant Analysis (PLS-DA). 

PLS is based on PCs as PCR but, instead of maximizing variance in the data it is focused on 
capturing most of the information in the data related to a response/class vector Y, in a linear way.6 
Thus, the first LV is the direction characterized by the maximum covariance with the selected 
response variable. The information related to the first LV is then subtracted from both the original 
predictors and the response, and the second LV, orthogonal to the first one, is the direction of 
maximum covariance between the residuals of the predictors and the residuals of the response. This 
approach continues for the subsequent LVs.2 

A modification of PLS is Orthogonal-PLS (O-PLS).6 It is based on splitting the overall variation 
in the data into response predictive (i.e., linearly related to the class/response vector) and orthogonal 
(i.e., uncorrelated to the response). The main benefit of O-PLS is the simpler interpretation of the 
model, being relevant information captured by the first LV, while irrelevant information is directly 
filtered out. However, it is important to specify that O-PLS and PLS have comparable prediction 
power.6 

Results of a PLS can be graphically visualized on a score plot, while variable importance can be 
obtained from the regression coefficient.6 Different approaches are available to select relevant 
variables, however Variables Importance in the Projection (VIPs) score is probably the most used.6 
This score, usually represented in form of bar chart (Figure 3.16) is a summary of the importance 
of each variable in the model.  
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Figure 3.16. Variables Importance in the Projection (VIPs) score represented in form of bar chart. 

Usually variables with VIP score (± standard deviation) ≥ 1 are considered significant and, 
among them, higher the VIP score higher the importance of the variable.19 
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4.1.1 Abstract  

This contribution reviews state-of-the approaches for chromatographic fingerprinting of 2D 
peak patterns. Concepts of sample’s fingerprint and profile, as established in metabolomics, are 
conceptually translated to comprehensive two-dimensional chromatography (C2DC) separations 
embracing the principles of biometric fingerprinting.  

Approaches founded on this principle - referred to as chromatographic fingerprinting - are described 
and discussed for their information potential and limitations for providing a higher level of 
information about sample composition. The different type of features (i.e., datapoint, region, peak, 
and peak-region) are discussed and insights on processing tools and advances in the development 
of new algorithms are provided. Selected examples cover the most relevant application fields of 
GC×GC. Challenging scenarios with severe chromatographic misalignment, parallel detection, and 
translation of methods from thermal to differential-flow modulated GC×GC are also considered 
for their relevance in specific applications. Machine learning/chemometrics tools are briefly 
introduced, highlighting their fundamental role in supporting fingerprinting workflows.  
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4.1.2 Introduction 

The terms 'profiling' and 'fingerprinting' have been adopted for metabolomics1,2 to refer to 
distinct analytical approaches capable of informing about compositional differences between 
samples. For profiling, analytical platforms are set to provide detailed information (retention, mass 
spectrum, detector response, etc.) on qualitative and/or quantitative distributions of samples' 
components. Profiling can be conducted on a targeted basis,3 if analytes of interest are defined a 
priori and monitored across all samples. However, if the analytical process is capable of generating 
individual yet distinctive features for all components, the process can be conceptually extended 
toward a comprehensive evaluation of all detected constituents and referred to as "untargeted 
profiling".4,5 Fingerprinting, as defined by Fiehn,2 is a high-throughput process capable of 
unravelling compositional differences between samples, not necessarily achieving accurate 
quantitative data or compound identifications for all individual constituents. A fingerprint provides 
a comprehensive set of features ideally corresponding to all chemical constituents and aims to 
extract the non-evident chemical information included in the whole signal acquired from an 
analytical instrumental technique. This information mining process is carried out by application of 
statistical-mathematic tools of chemometric multivariate analysis. Note that chemometrics does not 
work magic. The information of concern to be mined must be previously embedded in the analytical 
signal, even if it is hidden to an observer, and the analytical methods to obtain that signal must be 
specifically designed and optimized keeping this crucial fact in mind.  

Fingerprinting methodology can be effectively performed by different approaches:  

1.  The fingerprint is directly obtained from the sample in its natural state without any pre-treatment 
except, if applicable, dissolution.  

2.  The fingerprint is recorded from a particular fraction or family of compounds after a separation 
or fractionation step. Thus, the fingerprints would be specific of a compound family (e.g., the 
volatile organic compounds).  

3.  The fingerprint is obtained after a chemical reaction step (e.g., derivatization), so that there is an 
alteration of the initial chemical composition of the sample and new compounds are produced 
(e.g., the fatty acids methyl esters).  

A sample's fingerprint can be considered as a totally unspecific signal when the first approach is 
applied and a partially specific signal when the second and third approaches are employed.  

In this sense, signals from spectroscopic techniques fit well with this definition; and nuclear 
magnetic resonance (NMR), chromatography, mass spectrometry (MS), and Fourier transform 
infrared spectroscopy (FT-IR) spectra are in fact the most popular fingerprinting methods in 
metabolomics.6 Fingerprinting and related concepts have been extended to other fields, e.g.: 
foodomics,7 sensomics,8,9 nutrimetabolomics,10 and petroleomics.11 With the rapid evolution of 
analytical techniques, more stable and informative multidimensional platforms now are readily 
available, offering further possibilities to develop the concept of fingerprinting.  

 
4.1.2.1 Nomenclature for working data in the area of chemical fingerprinting 

Regarding analytical signals recorded by each analytical technique, there is a proper 
nomenclature for the different working data 6, based on the instrumental signals with different 
measuring setups, namely with different detection systems. In order to fully understand and to 
extract the relevant information of a signal, it is important to define and clarify the meaning of the 
terms usually employed during the step of treatment of data: dimension, way, order, vector, matrix, cube, 
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tensor and array. The terms dimension, way and order refer to the type of signal acquired by the analytical 
instrument. Each analytical signal is described by a main dimension or way that is related with the 
signal intensity and one or more complementary dimensions or ways which characterize the position 
scores of each intensity value into the signal. The number of complementary dimensions defines 
the data order. A conventional chromatogram (e.g., 1D GC-FID) is an instance of a two-way signal 
(retention times and detector intensities) and constitutes a first-order data. Note that in the particular 
case of signals defined by two chromatographic dimensions with two retention times, the term 2D 
chromatogram is then applied which in turn is a three-way signal. The terms vector, matrix and cube are 
usually employed to name a mathematical layout where the working data are arranged once the 
acquired signal is exported from the instrument. For example, a vector denotes a first-order data (two-

way signal), a matrix containing a second‐order data (three-way signal), and a cube is used for third-order 
data. The term tensor is used to name collectively all of these. Finally, the term array should refer to 
a structure consisting of a set of tensors including the working data from a group of samples. Every 
array has an additional dimension, i.e., the number of samples, with regard to the dimensionality of 
each sample data.  

Usually, the raw chromatographic signal exported from the instrument consists of several 
thousand intensity values and could be used as a whole to apply fingerprinting. However, the 
number of elements may be reduced by applying mathematical methods (e.g., resampling) or 
scientific-technical operations (e.g., computing peak areas). This strategy is typical of profiling. The 
reduction of the number of elements may reduce the dimensionality, e.g., obtaining a peak-response 
vector (first-order data) from a 2D chromatogram (second-order data), although this is not always 
applicable. A tutorial on analytical chromatographic fingerprinting is provided by Cuadros et al.6  

 

4.1.2.2 Conceptual translation to 2D patterns fingerprinting  

Most multidimensional analytical (MDA) platforms, provide physico-chemical discrimination 
of a sample's constituents by chromatographic processes, e.g., gas chromatography (GC) and liquid 
chromatography (LC), accompanied by spectroscopic processes, e.g., MS, to achieve suitable 
specificity and selectivity thereby expanding discrimination potentials. When chromatography is 
conducted by comprehensively coupling two separation dimensions, as in the case of 
comprehensive two-dimensional chromatography (C2DC), the analytical output requires suitable 
processing to enable data visualization and interpretation.  

In particular, in C2DC (e.g., GC×GC, LC×LC, or SFC×SFC), two columns are serially 
connected and components eluting from the first-dimension (1D) column are periodically trapped 
and on-line re-injected into a second-dimension (2D) column. In GC×GC, this operation is 
governed by a modulator, e.g., a thermal or valve-based focusing interface with a brief modulation 
time-period (PM), typically between 0.5 to 8 s. The detector, connected to the end of the 2D column, 
produces sequential data values that vary as a function of the quality/identity and amount of eluting 
analytes. An analog-to-digital (A/D) converter collects the signal output at a certain frequency and 
in a sequential order. Two-dimensional chromatogram visualization therefore is rendered by 
arranging data values from single modulation period (or cycle) as a column of pixels (picture 
elements) where each pixel corresponds to a single detector event. This process is known as 
rasterization. Pixel columns are sequenced along the abscissa (X-axis, left-to-right) according to 1D 
separation time and 2D data is presented in a right-handed Cartesian coordinate system, where the 
ordinate (Y-axis, bottom-to-top) corresponds to the 2D separation elapsed time.12  

2D peak patterns generated by C2DC can be treated as sample's unique fingerprint with 
detected compounds providing minutiae features to be used for effective cross-comparative analysis. 
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The term minutiae derives from fingerprint recognition technology, exploited in forensic 
applications, where the term corresponds to ridge endings and ridge bifurcations on fingertips. 
Automatic biometric fingerprint verification systems localize and extract a set of minutiae from 
inked impressions, or detailed images of human fingertips, for cross-matching with stored templates 
13.  

By translating the concept of biometric fingerprinting into C2DC, any process that detects, re-
aligns, and compares minutiae features extracted from 2D peaks patterns across a series of 2D 
chromatograms, can be classified as fingerprinting. Moreover, because, at the processing level, the 
2D chromatographic fingerprint "contains unspecific and non-evident information which should be extracted by 
chemometric tools",6 such an approach can be deemed "chromatographic fingerprinting". This is in 
keeping with established views that chromatographic fingerprints refer "to the entire chromatogram from 
a certain test material which is distinctive of its composition" and that "chromatograms provide a specific and 
differentiating tool, as an identity card, which could be used in order to ‘identitate’ or identify a certain material".6 
Figure 4.1.1 illustrates how chromatographic signals can be processed according to fingerprinting 
or profiling principles to achieve a high level of information. The types of features available will be 
introduced at Section 4.1.4.  

 

 
Figure 4.1.1. Types of features for C2DC data processing according to fingerprinting and/or profiling methodologies. Adapted 
from Ref 6 

In this review, by following this conceptual track, data processing approaches and workflows 
that comply with the above-mentioned definition are presented, illustrated by selected applications, 
and critically discussed in view of their capabilities to provide higher levels of information. If 2D 
chromatographic signals,6 together with all their metadata, informing about components' identity 
and physico-chemical characteristics (retention times, detector response, spectral signatures, etc.), 
are subjected to chromatographic fingerprinting, the overall process achieves a truly comprehensive 
meaning. 
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4.1.3 Analytical platforms, dimensions of information available and 
fingerprinting specificity.  

To maximize the information achievable by 2D chromatographic fingerprinting, the analytical 
platform must be appropriately configured and sample preparation, the zeroth dimension of the 
system,14 should be tuned to avoid biases that compromise investigational meanings. Moreover, as 
stated by Fiehn,2 to access hidden information in metabolomics, fingerprinting should take into 
consideration that the resolution of the analytical devices must be high enough to handle critical information".  

For GC×GC, the separation power, a system characteristic that relates to separation efficiency 
and resolution, is the product of two separation dimensions and operating in optimized conditions 
can be very close to its theoretical limit.15,16 This separation power improvement produces detailed 
2D chromatographic fingerprints where co-elution issues and hidden analytes are relatively limited. 
Based on sample's dimensionality 17, compositional complexity, and components' concentration 
dynamic range, the choice of the columns' configuration (i.e., columns' dimensions and stationary 
phases) is a key aspect. In petroleomics, samples' compositional characteristics enable rational 
ordering of chemical classes and homologous series over the chromatographic space.18,19 

Figure 4.1.2A shows the image of a diesel fuel analyzed by an apolar × semi-polar column 
combination producing a high peak capacity.18 This study was conducted on a 1D column BPX-1 
(60 m × 0.25 mm × 0.25 μm) combined to a 2D column BPX-50 (3 m × 0.1 mm × 0.1 μm) and 
thermal modulation by quad-jet dual-stage modulator (LECO Corp., St. Joseph MI, USA). 
Chemical classes and groups show relative retentions that follow the discrimination principles of 
the two dimensions. n-Alkanes have the lowest retention along the 2D, while 1D separation is 
according to carbon number. The π−π interaction, provided by BPX-50 with 50% phenyl 
substitution, provides separation for unsaturated compounds and, within them, an increasing 
relative retention based on the presence of multiple aromatic rings. To achieve a high-resolution 
2D pattern, a long 2D column was used, with an independent temperature program to avoid pattern 
distortion (e.g., wrap-around phenomena).  

In this example,18 detection was by time-of-flight MS (TOF MS) operated at nominal mass 
resolution and 200 Hz acquisition frequency. Multi-channel detection, e.g., by MS, Vacuum 
Ultraviolet (VUV) analyser, or diode array detection (DAD), provides an additional dimension to 
the data matrix and superior discrimination to make 2D chromatographic fingerprinting more 
specific. The specificity relies on the possibility to actively use, for example, MS information for 2D 
patterns exploration or to open for further data visualization opportunities with scripting. In 
particular, by Visual Basic Scripting (VBS),18 on the fragmentation pattern obtained by electron 
ionization (EI) at 70 eV, rules were derived to enable selective visualization of compounds and 
compound classes. The application of scripting based on common fragmentations of 
monoaromatics, enables selective visualization (Figure 4.1.2B) of alkylated benzenes from the 
samples whose complete detectable pattern is shown in Figure 4.1.2A. Scripting tools, 
implemented in most of the commercial software for C2DC, are of help in various application 
fields, e.g., food20,21 and environmental applications.22 
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Figure 4.1.2. Complete 2D chromatogram (4.1.2A) of a common diesel fuel. Internal standards are named, while colours indicate 
different chemical classes and groups. In 4.1.2B the application of the script base on common fragmentation of aromatics, 

enabling the selective visualization of alkylated benzenes by carbon number. The column set was: 1D column BPX-1 (60 m × 0.25 
mm × 0.25 μm) and 2D column BPX-50 (3 m × 0.1 mm × 0.1 μm). Thermal modulation by quad-jet dual-stage modulator. 

Primary oven program: 60 °C to 220 °C, at 2.0 °C/min; secondary oven program: 60 °C to 140°C at 2.0 °C/min, and 140-310°C 
at 2.4 °C/min. PM 6s, 0.6 s hot-jet. From Jennerwein et al.103 

Single-channel detectors, e.g., flame ionization detector (FID), electron capture detector (ECD), 
sulphur chemiluminescence detector (SCD), ultraviolet (UV) detector, etc., produce single values 
for each time sample, a first-order data. In this case, fingerprinting specificity is somewhat limited 
but chromatographic efficacy and separation pattern logic may support particular applications. To 
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approach a detailed analysis of hydrocarbons in middle distillates type light cycle oil (LCO), Semard 
et al.23 optimized the column set-up in a differential-flow modulated (FM) platform with FID 
detection. The application needs suitable resolution and efficiency that provides coherent chemical 
groups’ patterns logic. The authors achieved a global peak capacity (nGC×GC) of 5,148 and filled 56% 
of the available separation space. The resulting method was suitable for high-throughput screening 
and qualification of LCO in a cryogen-free GC×GC platform.  

Thermal modulation (TM) achieves band-compression in space, which improves method 
sensitivity by one order of magnitude over conventional 1D GC.16 This characteristic opens the 
possibility to acquire data with parallel detectors without compromising method information 
potential. MS and FID are the most commonly paired detectors; they can be connected with a 2D 
column post-splitting device24 or directly to two-parallel second dimension columns 25,26 with some 
advantages on separation performances. 2D patterns generated by parallel detectors can be explored 
by various chromatographic fingerprinting approaches (as in Section 4.1.4) although their 
alignment is sometimes challenging due to the different operative pressures of the detectors 
(vacuum for MS vs. ambient pressure for FID). However, the complementary nature of these two 
detectors offer further possibilities to extend quantitation by response factors (RF)18,24,27 and 
predicted RF.28,29  

Novel MS technologies providing variable energy electron ionization (viz., Tandem 
Ionization™30) by rapidly switching between two pre-selected energies, offer intriguing possibilities 
to explore chromatographic fingerprints from tandem.31–35 Details of chromatographic 
fingerprinting from parallel detector and tandem signals are provided in Section 4.1.6. 

By configuring the analytical platform, the analyst can optimize and tune chromatographic 
fingerprint information potential; key aspects are: system geometry, and resulting separation 
power;15 system orthogonality;36–38 and resulting logic of the separation patterns; and detection 
options, and resulting specificity. What follows the analytical process/data acquisition, i.e., data 
processing, should extract and treat features in a way to achieve a high level of information: 
discrimination, classification, prediction, and information about composition.39  

 

4.1.4 Data processing principles and tools 

Here, our discussion of data processing focuses on feature extraction for pattern recognition 
(PR), but these data-analysis steps may require preprocessing such as for rasterization, modulation-
phase adjustment, baseline correction, retention time alignment, and peak detection. Some recent 
developments in these areas are discussed here as they relate to feature extraction and analysis, but 
several reviews discuss methodologies in these areas more comprehensively.12,40–44 

Reichenbach et al.45 described five types of C2DC features for cross-sample analyses: visual 
images, datapoints, peaks, regions, and peak-regions. Visual images present chromatograms using 
various methods such as pseudo-colorization and three-dimensional projections. Datapoint 
analyses treat each datapoint as a feature. Peak-based approaches attempt to separately integrate 
multiple datapoints induced by each individual analyte. Regional features aggregate datapoints in 
separate regions of the two-dimensional chromatographic plane. Peak-region methods attempt to 
define a region for each individual analyte. Sections 4.1.4.1-4.1.4.4 discuss the four quantitative 
approaches to C2DC features (i.e., all except visual images). 

After corresponding features are established across chromatograms, PR and machine learning 
(ML) methods can be used for various cross-sample problems, including classification, chemical 
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fingerprinting, trend monitoring, unsupervised clustering, and chemical marker discovery. Section 
4.1.6 introduces some of the PR and ML methods that have been used for C2DC analyses. 

 

4.1.4.1 Datapoint features 

One of the earliest approach for comparing C2DC chromatograms used the datapoints 
themselves as separate features: e.g., FID intensities with Fisher's f ratio (FR) and principal 
components analysis (PCA),46 and, later, MS spectra with PCA for selected channels47,48 and with 
pointwise summed f ratios across MS spectral channels.49 In 2015, Pierce et al. surveyed pixel-level 
GC×GC data analyses, including fingerprinting and PR.50 

Datapoint features are comprehensive of untargeted analytes and provide the highest precision 
for chromatographic fingerprints, but: (a) there are many duplicative features per analyte (i.e., 
multiple spectra per analyte), which results in greater computational complexity, and (b) retention 
time variations confound feature matching between chromatograms. Various methods for aligning 
chromatograms have been proposed, but none guarantee accuracy to within a datapoint. 

 

4.1.4.2 Region features 

Marney et al.51 used small rectangular tiles to generate features, summing multiple datapoints to 
reduce the number of features and diminish adverse effects of chromatographic misalignment. 
Results indicated that this approach enhanced PR of true positives and reduced the likelihood of 
false positives compared to datapoint features. Although this approach requires less computation 
and is less susceptible to chromatographic misalignment, it is not fully selective, i.e., there may be 
multiple analytes per tile and analyte peaks may be split across tiles. Still, informative patterns may 
be recognizable in such tiles if discriminative analytes are not dominated by other analytes in the 
tiles. Regions features are well-suited for group-type investigations in which there is a region for 
each chemical group and the total response for analytes eluting within each region is computed and 
adopted for classification and qualification. This is a popular approach for petroleomics.11,19  

 

4.1.4.3 Peak features 

Peak features, i.e., summed data for each analyte peak with associated metadata, aim to profile 
a sample’s constituents. Cross-comparative analyses using peak features require matching peak 
features across multiple chromatograms. For targeted analyses, this approach requires detection of 
the peak for each target analyte, using its known characteristics, in each chromatogram. Then, the 
peaks for each target analyte are explicitly matched across chromatograms by the target name. 
Untargeted cross-comparative analyses with peak features are more difficult because there is no 
explicit matching of peaks across chromatograms. So, before performing cross-comparisons of 
untargeted analytes using peak features, the software must match unidentified (or putatively 
identified) peaks across chromatograms — a process usually referred to as peak matching or peak 
tracking.  

Ideally, untargeted peak matching results in a list of all analytes in each chromatogram, but in 
practice the results tend to be incomplete and/or error-prone for large sets of chromatograms with 
many detected peaks. Ambiguities arise from variations in retention time and spectral signatures 
across chromatograms and among multiple analytes with similar (or co-eluting) retention times and 
similar spectral signatures, especially if some of those analytes are not detected in some 
chromatograms. For cross-comparisons of many complex chromatograms, matching invariably 
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results in unmatched and mismatched peaks. Because of these challenges, the matching process 
typically yields a list of matched peaks that is not comprehensive of all peaks in all chromatograms 
and therefore of all analytes. However, many automated methods have been proposed and 
demonstrated and this approach in LECO's Statistical Compare (SC) software (LECO Corp., St. 
Joseph MI, USA) is used widely. 

Cross-matched peak lists profile each sample with respect to the same analytes. However, with 
reference to the previous definitions, these profiles provide only partial fingerprints if some peaks 
are discarded in the matching process. The ultimate goal of research aimed at improving peak 
matching (some of which is surveyed below) is to produce more accurate and complete profiles and 
fingerprints. 

Our previous literature review of C2DC peak features for comparative analysis 45 described 
early work from 1999 through early 2011. More recently, other reviews covering methods with 
comparative peak features include those by Pierce et al.,50 Seeley and Seeley,52 Chin and Marriott,53 
Tranchida et al.,54 Reaser et al.,55 and Berrier et al.56 

Since 2011, Almstetter et al.57 developed a retention time correction and data alignment tool, 
Integrative Normalization and Comparative Analysis (INCA), and compared it to SC, noting 
advantages and disadvantages of each tool. Castillo et al.58 developed the GUINEU software for 
GC×GC data, including a tool for constructing sequential "paths" containing matching peaks in 
successive chromatograms. 

The research group of Xiang Zhang at the University of Louisville has published several papers 
on peak matching. Kim et al.59 proposed a similarity measure computed as a mixture of the peak 
distance and the spectra similarity and implemented peak alignment algorithms in a software 
package named mSPA. Subsequently, Kim and Zhang60 published a comparative analysis of MS 
similarity measures on peak alignment. Kim et al.61 also developed peak alignment algorithms using 
Smith-Waterman (SW) local alignment62 and, in experiments with two experimental mixtures each 
analysed with varying chromatographic conditions, the SW-based method out-performed the 
DISCO algorithm.63 Wang et al.64 developed DISCO2 to improve upon the DISCO algorithm. 
DISCO2 has two stages: full alignment, to find peaks present in all chromatograms, and partial 
alignment, to align the remaining peaks. Jeong et al.65 developed a model-based peak alignment 
method using different distance and MS similarity measures. Wei et al.66 developed the 
Metabolomics Profiling Pipeline (MetPP) that performs peak-list alignment in the two steps, full 
alignment and partial alignment (as in DISCO2). MetPP results improved on LECO's SC and 
compared favourably to DISCO and GUINEU.  

Deng et al.67 developed four variations of a point matching algorithm but did not compare their 
performance with other methods. Hoffmann et al.68 developed bidirectional best-hit peak 
assignment and clique extension for 2D chromatograms (BiPACE 2D) to match peaks across a 
large number of chromatograms based on comparing peak mass spectra and retention times. Their 
results indicated that BiPACE 2D outperformed mSPA, SW, and GUINEU for precision, recall, 
and F1 on data sets acquired under homogeneous conditions but lagged mSPA and GUINEU for 
data sets acquired with heterogeneous temperature programs. (F1 is the product of precision and 
recall divided by their average.) Bean et al.69 developed a work-flow to improve SC with filters for 
peak-picking and alignment. Egert et al.70 developed an alignment strategy called SquareDance, but 
did not present comparative results with other methods. Barcaru et al.71 developed two variants of 
an FID peak tracking method that ranks candidates based on Bayesian statistics. Pirok et al.72 
developed an algorithm for peak tracking between pairs of LC×LC chromatograms. Titaley et al.73 
developed a method to improve the output of SC by post-processing. Li et al.74 developed four 
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variations of a global peak alignment algorithm based on coherent peak drift and presented results 
in which CPD achieved better F1 scores than mSPA, SW, and BiPACE 2D. 

 

4.1.4.4 Peak-region features 

Peak-region features combine the ideas of regions and peaks by attempting to define one region 
in the 2D retention time plane for each analyte peak. Peak-regions seek to achieve one-feature-to-
one-analyte selectivity, as do peak features, but with implicit matching of the same peak-region 
across multiple chromatograms, which peak features do not provide. Due to the intrinsic properties 
of peak-regions, the process of their re-alignment across chromatograms provides comprehensive 
chromatographic fingerprinting.  

Reichenbach et al.75–77 and Schmarr et al.78,79 described similar peak-region approaches. After 
pre-processing, the source chromatograms are aligned then combined (e.g., simply by addition or 
other fusion operations80) to form a single composite chromatogram that comprises peaks for all 
analytes in all samples. Then, a region for each peak detected in the composite chromatogram is 
recorded in a feature template. Finally, each source chromatogram is analyzed by geometrically 
remapping the feature template back to each source chromatogram.   

Ideally, peak-region features are comprehensively selective, accounting for each and every 
analyte, and feature matching is implicitly performed by mapping each region of the template to 
each chromatogram. In practice, co-elutions and variable retention times complicate the definition 
and application of peak-regions, just as they do for peak-based features. For MS data, co-elutions 
within a peak-region can be addressed with quantitative ions in some cases, but deconvolution 
(which can be incorporated into peak features) is required for co-eluted analytes with similar spectral 
signatures. Variations in retention time are addressed by geometric transformations in the retention 
time plane, as described below. Peak-regions are supported by GC Image GC×GC and LC×LC 
software (GC Image, LLC, Lincoln NE, USA) in its Smart Templates™, which also support peak 
features for target compounds and other reliably matched peaks. 

Chromatograms must be aligned to construct a composite chromatogram from which the 
feature template is extracted, and the feature template must be realigned to analyse each 
chromatogram. (Note that the transform to align a chromatogram for compositing can be inverted 
to map the composite feature template back to that chromatogram.) The task of chromatographic 
alignment for peak-region features is related to the problem of peak matching for peak features; in 
fact, the most common approach to chromatographic alignment is to parameterize a transformation 
model using a set of matched peaks. 

Early work on GC×GC retention time variations81 found that simple global, affine 
transformation model can largely account for retention time variability, but subsequent work has 
explored more powerful methods. Gros et al 82 developed a method that uses piecewise linear 
interpolation/extrapolation for the first dimension and Sibson natural-neighbor interpolation83 for 
the second dimension. On three data sets, their method generally outperformed methods proposed 
by Pierce et al.84 and Zhang et al.85 De Boer and Lankelma86 developed Curfit2D, an extension of 
semi-parametric warping87 to two-dimensions, but did not present comparative results with other 
methods. Reichenbach et al.88 demonstrated that global, low-degree polynomial transforms could 
effectively align GC×2GC chromatograms (with dual second columns for FID and MS detectors). 
Rempe et al.89 presented results for global, low-degree polynomial alignment transformations 
indicating that performance was highly dependent on the size of the matching-points set and that 
with enough alignment points they can outperform Gros' method. Zushi et al.90 extended Gros' 
method to high-resolution MS data. Couprie91 2017 developed an alignment method called 
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BARCHAN that uses a non-rigid transformation in the first dimension and a rigid transformation 
in the second dimension. For one of the two data sets analyzed, BARCHAN out-performed rigid 
transforms in both dimensions. 

 

4.1.5 Applications of chromatographic fingerprinting based on various 
features 

4.1.5.1 Chromatographic fingerprinting Visual images and datapoints features  

Comparative visualization is a chromatographic fingerprinting approach that enables prompt 
and intuitive evidence of compositional differences between samples pairs. It could be classified 
within datapoint features approaches since chromatograms pairs are compared pixel-by-pixel with 
or without pattern re-alignment or transformation. It has been applied to reveal differences in 
petrochemical applications,92–94 food,78,95–98 body fluids metabolites composition99–101 and in plant 
metabolomics.102,103 

An effective workflow was recently designed to reveal patterns of volatiles related to spoiled 
hazelnuts showing sensory defects (mouldy, rancid, solvent-like, stale, and general unpleasant notes) while 
compensating for the compositional variability due to the presence of confounding variables 
(cultivar, geographical origin, shelf-life and storage) that dominate volatiles composition.95 The 
workflow generates composite class-images from samples grouped by sensory qualification of 
spoilage. Composite chromatograms were obtained by combining 2D chromatograms from 
samples of the same class into a single composite chromatogram or image. The procedure was made 
more robust by effective re-alignment of 2D chromatograms through registration peaks reliably 
matched across chromatogram patterns, and made informative by analytes targeting by 
untargeted/targeted (UT) fingerprinting.104,105 The combination of two chromatographic 
fingerprinting approaches in one single workflow (i.e., visual/datapoint features and peak-regions 
features extended to untargeted and targeted compounds) enabled not only the prompt delineation 
of fingerprint features correlated to spoilage but also the identification of specific chemical markers 
to be used in a classification tree with suitable sensitivity and good specificity.  

The challenging scenario of multitrophic interactions between plants, insects, and microbes 
was the object of a study by Pizzolante et al.102 In particular, they investigated the association among 
Mentha aquatica, its specific herbivore Chrysolina herbacea (mint bug), and insects' gut microbial 
community. Comparative visualization was applied to reveal metabolites patterns deriving from 
oxidative metabolism of gut microbial communities on mint leaf terpenoids. Figure 4.1.3 shows 
the comparison between volatiles from C. herbacea feces (frass) and those from M. aquatica leaf 
(reference image); Figure 4.1.3A relates to female population feeding on M. aquatica leaf while 
Figure 4.1.3B is for male population. Colour rendering was by "colorized fuzzy ratio"106 revealing 
compositional differences based on normalized responses (over the total image response) and not 
on absolute detector signal. Red colorization locates features whose normalized response was larger 
in the reference image (M. aquatica leaf), green colour locates features with larger response in female 
(Figure 4.1.3A) or male (Figure 4.1.3B) frass. Yellow circles highlight features further investigated 
to understand biotransformation and/or degradation metabolism while pink circles indicate gender-
specific analytes, exclusively detected in male population.  
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Figure 4.1.3. Comparative visualization between volatiles patterns from C. herbacea feces (analyzed image) and those from M. 

aquatica leaf (reference image) in a female (4.1.3A) or male (4.1.3B) population. Colour rendering is by colorized fuzzy ratio 
(details provided in the text). The analyses were performed by a column set consisting of a 1D SE52 (30 m × 0.25 mm ID, 0.25 

µm) and a 2D OV-1701 (0.1 m × 0.1 mm ID, 0.1 µm). Thermal modulation was by loop-type modulator. Modulator capillary: 1 m 
× 0.10 mm ID of deactivated fused silica capillary. Oven program: 45 °C (1 min) to 260 °C (5 min), rate 2.5 °C/min, PM 4s, hot-jet 

0.25s. Adapted from Pizzolante et al.93 

Examples provided here suggest how strategic is the combination of different chromatographic 
fingerprinting strategies, or the combination of fingerprinting with profiling, to access higher level 
information (Figure 4.1.1) encrypted within the chemical code. By visual/datapoint fingerprinting, 
samples are discriminated based on their 2D signatures’/patterns’ quali-quantitative compositions. 
Behind datapoints, if metadata are tracked, ex-post investigation enables identification of potential 
markers while deepening the knowledge of sample composition and on the phenomenon under 
study. 

 

4.1.5.2 Chromatographic fingerprinting by regions features  

Region features that collect information for multiple analytes belonging to a series of 
homologues or a chemical group are adopted in the quantitative chromatographic fingerprinting of 
petrochemical samples18,92,107–110 and for safety assessments of food suspected of mineral oil 
hydrocarbon (MOH) contamination.111  
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Sample dimensionality17 in petrochemical samples enables effective fingerprinting by region 
features and differential quantification of chemical classes. Figure 4.1.4 shows GC×GC-(TOF)MS 
plots of crude oil samples (named B06, B08, B07) analysed by a 1D DB-17 (Agilent Technologies, 

Wilmington, DE, USA), 50%-phenyl-50%-dimethyl-siloxane (30 m, 0.25 mm i.d., 0.25 μm df) 
coupled to 2D DB-5 (Agilent Technologies, Wilmington, DE, USA), 5%-phenyl-95%-dimethyl-

siloxane (1.2 m, 0.18 mm i.d., 0.18 μm df) and quad-jet thermal modulator (LECO Corp., St. Joseph 
MI, USA). By this stationary phase combination, saturated n-alkanes have longer retention in the 
2D while aromatics are less retained. Samples were compared by their differential amounts of group 
classes (n-alkanes, branched alkanes, monocyclic, bicyclic and polycyclic hydrocarbons, 
alkyl-benzenes, alkyl-naphthalenes, alkyl-phenanthrenes and alkyl-9H-fluorenes) by the semi-
quantification by total ion chromatogram (SQTIC) method.18,112 The class semi-quantification was 
by summing all peak areas from each class before their normalization to that of the class specific 
internal standard (n-hexadecane-D34 for saturated hydrocarbons up to 20 carbon atoms and 
pyrene-D10 for aromatic hydrocarbons) at a known concentration. Authors applied the group-type 
semi-quantification to a selection of Brazilian crude oils (n=12) ranging between 14.8 and 44.5°API. 
By direct analysis of a single oil drop, and without any fractionation or clean up, effective 
discrimination was achieved with rational explanation of samples’ behaviours. 
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Figure 4.1.4. Contour plot of crude oil samples with different API° values. Group classes, enclosed in region features, are shown 
with different colours: n-alkanes, branched alkanes, monocyclic, bicyclic and policyclic hydrocarbons, alkyl-benzenes, alkyl-

naphthalenes, alkyl-phenanthrenes and alkyl-9H-fluorenes. The column set was: 1D column DB-17 (30 m × 0.25 mm × 0.25 μm) 
and 2D column DB-5 (1.2 m × 0.17 mm × 0.17 μm). Thermal modulation by quad-jet dual-stage modulator. Oven program: 40 °C 
(5 min) to 330 °C, at 3.0 °C/min; secondary oven 45 °C (5 min) to 335 °C, at 3.0 °C/min. PM 9s, 2.25s hot-jet. From Coutinho et 

al.99 

MOHs are a complex mixture of isomers including mineral oil saturated hydrocarbons 
(MOSHs) and mineral oil aromatic hydrocarbons (MOAHs); their occurrence in food might be 
related to contamination by exogenous sources. The MOSH fraction includes aliphatic 
hydrocarbons (linear -alkanes, branched – isoalkanes and cyclic compounds – cycloalkanes or 
naphthenes) with possible substitution. The MOAH fraction includes aromatic derivatives with one 
or more benzene rings and extensive alkylation. Within this class, known toxic compounds are 
present, exerting mutagenic activity and tumour promotion. To date, an official confirmatory 
method aimed at accurately quantifying exogenous MOH in food with the concurrent possibility of 
establishing the origin of this contamination 24,111,113 is not yet available.  
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The analytical challenge, faced by established methods for MOSH/MOAH quantification in 
food and based on liquid chromatography (LC) off-line/on-line coupled to GC-FID,114 relies on 
the presence of several interfering compounds not effectively isolated by sample preparation and/or 
by LC pre-fractionation.115,116 The unresolved complex mixture (UCM) profile, also called a "hump", 
produced by the LC-GC approach does not guarantee accurate quantification, and overestimation 
is an issue. To comply with the need for adding a confirmatory step to the analytical procedure, as 
required by EU Commission Decision 657/2002,117 MS is fundamental although not sufficiently 
selective to isolate unique and distinctive signals from exogenous MOSHs and MOAHs.  

In this complex scenario, the potentials of GC×GC were immediately clear; Grob and 
collaborators proposed a fingerprinting approach based on a medium polar × apolar column 
combination (OV-17 in the 1D and PS-255-dimethyl polysiloxane in the 2D) capable of separating 
compound classes with a clear logic based on their physico-chemical properties while enabling a 
fingerprinting based survey to define the source of contamination.118 Figure 4.1.5 shows on the left 
LC-GC-FID chromatograms of MOSH and MOAH fractions and, on the right, the corresponding 
GC×GC-MS 2D plots from Asian rice samples suspected for MOH contamination of unknown 
origin.   

 
Figure 4.1.5. LC-GC-FID chromatograms (left side) of MOSH and MOAH fractions and the corresponding GC×GC-TOF MS 
contour plots (right side) from Asian rice samples. The column set was: 1D column OV-17 (15 m × 0.25 mm × 0.15 μm) and 2D 
column PS-255 (2.5 m × 0.15 mm × 0.055 μm). Thermal modulation by loop-type modulator. Oven program: 70 °C (3 min) to 

310 °C, at 5.0 °C/min; PM 6s. Acronyms are explicated in the text. From Biedermann and Grob.109 

Samples images in Figure 4.1.5 show, for the MOSH fraction, the ordered elution pattern of 
n-alkanes ranging from n-C13 (internal standard) to n-C25 mostly present in uncontaminated rice. 
Branched paraffines, are ordered along the elution line of n-alkanes but with a slightly higher 
retention in the second dimension. Oligomeric polyolefins (POSH) (C21 oligomers) from 
polypropylene (PP) packaging have distinctive elution regions. Between the POSH and the 
n-alkanes, monounsaturated PP oligomers were detected. Naphthenes, cyclic hydrocarbons, have a 
lower retention along the 2D while forming slanted elution bands. Monocyclic C17 naphthenes 
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(dodecyl cyclopentanes, 12-Cyclo5, and undecyl cyclohexanes, 11-Cyclo6) are highlighted in the 
pattern.  

The MOAH fraction (lower plots) produces on the LC-GC a hump with unresolved 
hydrocarbons; by structuring analytes elution over the 2D space retention logic enables the 
separation of diisopropyl naphthalenes (DIPN), selective indicators for recycled paperboard, 
suggests that MOAHs likely belong to such a contamination source. Moreover, the 2-ring and 3-
ring MOAHs show clear elution bands with increasing retention based on the degree of alkylation.  

The application of GC×GC-MS to MOSH-MOAH determination brought to truly 
multidimensional solutions by, for example, combining, on-line the LC pre-fractionation and 
parallel detection by FID/MS provide room for the development of a methodology capable of 
qualifying and quantifying MOH contamination with the potential of fingerprinting to accurately 
identify contamination source(s).119 

 

4.1.5.3 Chromatographic fingerprinting by peak features 

Chromatographic fingerprinting by peak features is challenging and, as previously discussed, it 
often results in unmatched and mismatched peaks that impact the comprehensiveness of the 
process and may hide a sample’s traits of relevance. Well established software for untargeted cross-
comparative analysis of GC×GC-(TOF)MS data (e.g., LECO SC) might be adopted for 
chromatographic fingerprinting although careful tuning of processing parameters (S/N detection 
thresholds, MS matching thresholds, deconvolution function parameters etc.) is mandatory to 
obtain comprehensive yet distinctive peak lists. Recent review papers cover application fields where 
this approach was successful,120–125 although in most cases data reduction with various criteria 
reduces the profiles’ comprehensiveness.  

Among recent contributions, untargeted investigations on bacterial volatile organic compounds 
(VOCs) are worthy of mention69,121,126–131 for the attempts to capture diagnostic fingerprints from 
specific bacteria strains. Franchina et al.130 investigated bacterial VOCs signatures after their 
sampling from in vitro cultures. Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli were 
selected within bacterial species causing infections and sepsis in the respiratory tract. In their study, 
in view of clinical translation of the methodology, the authors tested dynamic headspace extraction 
(DHS) followed by thermal desorption with sorbent tubes (TDTs) packed with various materials 
(Carbopack Y/X/Carboxen1000, Carbopack Y, Tenax TA and Carbopack B/X). Raw 2D 
chromatograms were processed to extract comprehensive yet consistent untargeted peak features 
across all samples. In particular, processing parameters were set to discard peaks below a S/N 
threshold of 100, while re-aligning features based on retention times windows of 6 s and 0.1 s in 
the 1D and 2D respectively. Inter-chromatogram spectral match threshold, to confirm positive 
correspondence between features generated by the same component, was set at 70% while a post 
hoc S/N threshold of 50 was defined to recover features lost by the initial peak finding.  

The data processing/analysis workflow included a first step of chromatographic fingerprinting 
followed by data reduction and feature selection (i.e., profiling). Operations were as follows: (a) 
chromatograms alignment (n=40); (b) artefacts removal; (c) inclusion/exclusion criteria to retain or 
discard features; (d) response normalization; and (e) discriminatory feature selection by random 
forest. Of the 317 untargeted peak features, 67 were selected for their discrimination potential and, 
from these, a few targeted analytes were identified and interrelated to existing knowledge on 
bacterial VOCs emission. 
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Focant’s group at the University of Liege developed a methodology based on GC×GC-
(TOF)MS for the discrimination of cannabis species (Cannabis indica, Cannabis sativa and hybrids). 
Cannabis volatiles were extracted by stirbar sorptive extraction (SBSE) and analysed on a system 
equipped with a differential-flow modulator based on the Bueno and Seeley design132 and a column 
set consisting of an apolar 1D Rxi-5MS (5% diphenyl-95% dimethylpolysiloxane phase) (30 m × 
0.25 mm i.d. × 0.25 μm df) and a medium polar 2D Rxi-17Sil MS (equivalent to a 50% 
diphenyl-50% dimethylpolysiloxane phase) (5.0 m × 0.25 mm i.d. × 0.25 μm df (Restek 
Corporation). Figure 4.1.6A shows the 2D plot of a representative sample of cannabis 
inflorescence volatiles. The fingerprinting by peak features was accompanied with classification 
regions coherent with the chemical classes characterizing the sample. Untargeted features were 
annotated with additional information about chemical groups (i.e., monoterpene and sesquiterpene 
hydrocarbons, sesquiterpene alcohols, fatty acids and cannabinoids) while enabling informative 
clustering, shown in Figure 4.1.6B, and classification of samples based on different chemotypes. 
Furthermore, the intrinsic profiling power of the technique, enabled the identification of exogenous 
components (i.e., pesticides and plasticizers) with relevance for product safety. 
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Figure 4.1.6. Contour plot of cannabis volatiles (4.1.6A) analyzed after stirbar sorptive extraction with a column set consisting of: 
1D column Rxi-5MS (30 m × 0.25 mm × 0.25 μm) and 2D column Rxi-17Sil MS (5.0 m × 0.25 mm × 0.25 μm). Differential-flow 
modulation based on Bueno and Seeley design [123]. Oven program: 50 °C (5 min) to 330 °C, at 3.0 °C/min; PM 6.6s. 1D flow 0.7 
mL/min; 2D flow 7 mL/min. Heat-map (4.1.6B) and hierarchical clustering of 70 peak features with meaningful differences between 
samples. Features connoted by an asterisk were confirmed by reference standard analysis. Adapted from Franchina et al.155  
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4.1.5.4 Chromatographic fingerprinting by peak-region features  

Chromatographic fingerprinting based on peak-region features has been adopted in many fields 
including metabolomics,33,77,88,100,133 forensics125,134,135 bio-oils136,137 and food applications.96,98,104,105,138–

142  

The reliability of peak-region features fingerprinting was validated against a peak features 
approach, based on template matching, in a study aimed at delineating distinctive patterns of 
volatiles in roasted hazelnuts from nine different geographical areas.96 Data processing was 
conducted by: (a) locating peak-region features over the GC×GC chromatographic plane and 
extracting information from analytes distribution; and (b) considering a subset of 2D peaks, 
together with all available metadata, for features re-alignment. The latter, approaching the 
chromatographic profiling concept.  

The first step was by delineating peak-region features from a cumulative chromatogram formed 
by summing all of the chromatograms of the set after retention times alignment. Then, peak-regions 
were detected and collected in a "consensus template", i.e., the collection of minutiae features from 
the sample set accounting for 411 peak-regions. From the consensus template, peak-region features 
were copied into individual 2D chromatograms with retention time transformation by geometric 
scaling and translation parameterized through peak matching. Results, expressed as % of matching 
between consensus template peak-regions and those delineated for each sample of the set, were 
interpreted as similarity indicator. Piemonte hazelnuts (considered as gold standard for confectionery 
industry) had the lowest similarity (68%) vs. the complete set of minutiae features investigated. The 
second step, validation, was by template matching of individual 2D peaks across all chromatograms. 
A consensus template of peak features was built by adding MS similarity constraints to positive 
matches and by template transformation to compensate for retention time shift. The resulting 
consensus template had 422 peaks with a subset of 196 reliable peaks that matched in all 
chromatograms. By this comprehensive peak features template, Piemonte hazelnuts confirmed their 
lowest similarity to the reference fingerprint. Moreover, peak features with the highest response 
and meaningful variations within the set of samples were putatively identified. With the exception 
of three features (out of twenty), the two chromatographic fingerprinting approaches gave univocal 
results. Of the most discriminant variables: acetic acid, 3-methylbutanal, 5-methyl-(E)-2-hepten-
4-one, and octanal were also key-aroma compounds informing about peculiar sensory 
characteristics of samples.  

A large set of wine samples (n=127; 254 chromatograms), from three main grape producing 
regions of Brazil, were analysed for their volatiles profiles by UT fingerprinting followed by ML. 
The challenge was to effectively re-align peaks and peak-regions from a large dataset with incidental 
retention time fluctuations. The UT workflow identified 53 reliable peaks, well distributed over the 
chromatographic space and 793 peak-regions. Response data from peak-regions were explored to 
answer many different questions about samples characteristics. Grape variety, vintage year, growing 
region, and winery were explored by various ML methods while accounting for computation time 
for training, classification, and cross validation. The study demonstrates the importance of a reliable 
and almost comprehensive mapping of targeted and untargeted features. Whatever the question of 
interest, if the answer has foundation in the examined fraction and its chemical dimensions, 
comprehensive chromatographic fingerprinting might help provide consistent answers by achieving 
higher level information.  

4.1.6 Challenging scenarios  

Chromatographic fingerprinting faces several challenges when severe misalignment occurs 
between the chromatograms of a set. As previously discussed, by template matching fingerprinting, 
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retention times variations can be compensated by applying suitable transformations (see Section 
4.1.4.4). However, severe misalignment might need analyst supervision in setting critical processing 
parameters. Stilo et al.140 tackled pattern misalignment and detection inconsistencies, such as those 
occurring in long-term studies, by examining the effect of processing parameters for UT 
fingerprinting of extra-virgin olive oil volatiles. The authors induced severe distortion by changing 
chromatographic conditions (carrier gas linear velocity across columns and modulation period) and 
impacted on detector performances by applying different tuning to the TOF MS.  

Signal-to-noise ratio detection threshold, reference spectra choice (2D-peak or highest 
modulation), and similarity match factor threshold for matching constraints critically impacted the 
false-negative matches’ rate. Moreover, distance thresholds, in the two retention dimensions, and 
the second-order polynomial transform were key parameters to effectively re-align template data. 
For targeted analytes, template matching executed by full supervision of the analyst achieved a 97% 
of accuracy (i.e., 97 % true-positive matches) when replicated samples of the same batch were 
analysed, while a 92.5% of accuracy was achieved for severely misaligned patterns. By UT 
fingerprinting, a fully unsupervised procedure, accuracy was of 99.7 % in replicated analyses (same 
batch) and 97.9 % for misaligned data.  

Another context where chromatographic fingerprinting might be challenging is when 2D 
patterns need re-alignment between platforms operating with different modulator principles. 
Cordero and co-workers examined the feasibility of translating chromatographic methods from TM 
GC×GC to differential-flow modulated (FM) GC×GC143–146 by preserving analytes elution order, 
relative retention in the two-chromatographic dimensions, and limit of quantification (LOQ). 
Method translation147 offers the opportunity of transferring applications from TM to FM platforms 
with benefits for laboratory operational costs. However, if this task is conducted without 
considering the chromatographic parameters governing analytes' elution, the resulting 2D patterns 
may be distorted and difficult to re-align. In practice, method translation attempts to replicate a 
sample's chromatographic fingerprint without distortions so as to be effectively used for 
discrimination and qualification.  

Figure 4.1.7 shows the GC×GC images of volatiles from a roasted cocoa sample analysed by 
a reference methodology with TM GC×GC (Figure 4.1.7A) combining a 1D PEG SolGelWax™ 
(30 m, 0.25mm dc, 0.25 μm df) (Trajan Scientific and Medical, Ringwood, Victoria, Australia) to a 
2D OV1701 (1.0 m, 0.10 mm dc, 0.10 μm df) (J&W, Wilmington, DE, USA) of by FM GC×GC 
with translated chromatographic parameters (Figure 4.1.7B) on a system equipped with a reverse-
inject differential-flow modulator (Agilent Technologies, Wilmington, DE, USA) and a column set 
consisting of a 1D PEG SolGelWax™ (10 m, 0.10 mm dc, 0.10 μm df) (Trajan Scientific and Medical, 
Ringwood, Victoria, Australia) and two-parallel 2Ds columns OV1701 (1.3 m, 0.10 mm dc, 0.10 μm 
df) (J&W, Wilmington, DE, USA). Pink circles indicate targeted peak features whose relative 
positions were kept coherent between the two analytical platforms. The consistency of the 2D 
patterns enabled effective transfer of all metadata collected for peak-region features (red areas in 
Figure 4.1.7C) in the original method. Metadata included: target peaks chemical names, reference 
MS, qualifier and quantifier ions, and MS similarity thresholds. The template of peaks and peak-
regions was transformed88,89 and then matched over the FM GC×GC sample's pattern with minimal 
supervision. With the translated method, the total analysis time was reduced by a factor of 2, from 
60 to 30 minutes of analysis, while fingerprinting information potential was maintained, enabling 
coherent classification of cocoa samples based on cultivar/origin and processing step. 
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Figure 4.1.7. Contour plots of a roasted cocoa sample analyzed by loop-type TM-GC×GC-TOF MS (4.1.7A) and in translated 
conditions by reverse-inject FM GC×GC-qMS (4.1.7B). Figure 4.1.7C shows peak-region features template (red areas) after its 

transform from the reference pattern obtained by TM-GC×GC. In the original method (4.1.7A) the column set was by 1D column 
SolGelWax (30 m × 0.25 mm × 0.25 μm) and 2D column OV-1701 (1 m × 0.1 mm × 0.1 μm).  Thermal modulation by loop-type 
thermal modulator. Oven program: 40 °C (1 min) to 190°C (10 min) at 3.0 °C/min. PM 3s, 0.25 s hot-jet. In the translated method 
(4.1.7B and 4.1.7C) the column set was by: 1D column SolGelWax (10 m × 0.1 mm × 0.1 μm) and 2D column OV-1701 (1.3 m × 
0.1 mm × 0.1 μm). Modulation by a reverse-inject differential-flow modulator. Oven program: 40 °C (0.43 min) to 190°C at 6.94 

°C/min. PM 2s, 0.11 s pulse time. From Magagna et al.137 
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Parallel detection by MS and FID is commonly adopted in those applications where 
fingerprinting is followed by, or accompanied by, profiling, identification, and quantitation of 
marker analytes. FID, in fact, offers the opportunity to accurately quantify analytes based on RFs 
or predicted RFs148. However, the re-alignment between tandem signals from two detectors can be 
challenging. For MS and FID, the different operative pressures (i.e., vacuum and ambient pressure 
respectively) generate a carrier gas linear velocity gradient along the 2D column that impacts on 2D 
retention times (2tR).  

Parallel detectors pattern re-alignment was the object of contribution by Reichenbach and co-
workers88 who adopted a two-parallel second dimension columns and detection (GC×2GC-
MS/FID) to capture complementary fingerprint from urine samples of diabetic (type-2 diabetes) 
patients from IDES2 cohort study 149. To achieve a consistent data fusion from the two detectors, 
chromatographic features (peaks and peak-regions) were aligned by mapping retention times from 
one detector chromatogram to those of the other detector. Figure 4.1.8 shows misalignment 
vectors for a selection of 2D peak pairs (n=156) between FID and MS and resulting re-alignment 
by applying affine or polynomial transforms. Low-degree polynomial mapping functions out-
performed affine transformation (as measured by root-mean-square residuals for matched peaks) 
and achieved good performance close to a lower-bound benchmark of inherent variability. The 
transformation grids are illustrated in Figure 4.1.8 along with the results obtained by their 
application to pattern re-alignment. The authors examined experimental results and concluded that 
third-degree transforms out-performed the second-degree polynomials, although second-degree 
polynomials might be preferred for computational simplicity, number of parameters to be set, and 
overall robustness.  

More recently, the issue of parallel detection re-alignment was tackled by Byrne et al.150 who 
adopted stencils regions around 2D peaks of interest for effective pattern re-alignment between 
qMS and FID data from kava (Piper methysticum) volatiles fingerprinting. Another application relates 
to MOSH-MOAH contaminant analysis where regions of the chromatogram where these 
contaminants elutes need re-alignment between (TOF)MS and FID for accurate group quantitation 
by RF.119 
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Figure 4.1.8. Misalignment vectors (from FID to MS) for 156 peak pairs in chromatograms from GC × 2GC analysis of a urine 
sample. Columns from left to right are for the four alignment transformations which grid is illustrated in the second-row images: 

None (f0), affine (f1), second-degree polynomial (f2), and third-degree polynomial (f3). Adapted from Reichenbach et al.79 

 

4.1.7 Machine learning for effective data exploration  

Generally, PR with C2DC has proceeded with established methods rather than developing new 
methods. A fundamental division of PR is between supervised and unsupervised problems. For 
supervised PR, a training set of feature vectors with class labels (e.g., healthy or unhealthy) are 
provided; then, the training set is used to develop a method(s) to discern differences between 
classes. For unsupervised PR, methods must discern both natural groupings/clusters and 
differences between those clusters. 

PR can be conducted with complete fingerprints that provide comprehensive feature sets 
corresponding to all (i.e., untargeted) chemical constituents or with partial fingerprints (e.g., features 
extracted for targeted compounds or from non-comprehensive profiles). C2DC typically generates 
many features, especially for untargeted analyses, so it can be useful to reduce the number of feature 
variables by either (a) projecting feature vectors into a reduced-dimension feature space or (b) 
selecting a subset of the most relevant features. However, it should be noted that any feature 
reduction and/or selection may decrease the information available for PR (e.g., per Shannon's 
information theory151). Multivariate analysis for which there are many features relative to the 
number of samples (i.e., hyper-variate) pose the risk of over-fitting models to limited sample data. 
Cross-validation is a method for evaluating over-fitting by dividing the labelled samples into training 
and testing sets. 

 

4.1.7.1 Popular unsupervised pattern recognition methods 

PCA computes a set of orthonormal basis vectors with maximal energy packing (i.e., the ith 
vector is the best fit of the data while being orthogonal to the first i-1 vectors). PCA can reveal 
natural clusters if those clusters are well separated by the features with greatest variance. PCA also 
can be used to reduce features by capturing feature correlations. In the C2DC literature, PCA has 



Page | 140 

 

been used frequently for unsupervised PR even when class labels are available, but that may be due 
to familiarity with PCA and lack of familiarity with methods for supervised PR. 

Hierarchical cluster analysis (HCA) builds a hierarchy of clusters, with one cluster with all 
samples at the pinnacle and one cluster for each sample at the base. Two approaches for HCA are 
agglomerative which builds the hierarchy from the bottom up by combining clusters from a lower 
level to create clusters for the next higher level, and divisive which builds the hierarch from the top 
down by dividing clusters from a higher level to create clusters for the next lower level. The 
operations (to combine or to divide) attempt to create the densest clusters with the greatest 
separation between clusters. Various measures for the distance between items and the distance 
between clusters have been proposed.152 

 

4.1.7.2 Popular supervised pattern recognition methods – Qualitative and quantitative 
approaches 

The most commonly used classification methods apply discriminant analysis and voting-based 
decision rules. Discriminant analysis consists of the establishment of boundaries among the 
different classes defined by the training set and voting-based decision rules divide the samples into 
subsets based on the value of certain variables, and this process is repeated on each derived subset 
of samples. In both cases probabilistic approaches are applies for classification since the belonging 
of each sample to one class or another is established determining distances or voting. The distances 
employed are based on Euclidian, Manhattan, or Mahalanobis, among others.  

The F-test or Fisher ratio (FR) is a popular method for assessing discriminative efficacy with 
the ratio of between-class variance to within-class variance; a large between-class variance relative 
to the within-class variance indicates discriminative power. The F-test assumes normal distributions 
and sample independence. Linear discriminant analysis (LDA) determines the linear combination 
of features (i.e., projection) with the maximal FR, assuming identical class covariances. Subject to 
its assumptions, LDA is the Bayes-optimal classifier. Quadratic discriminant analysis (QDA) relaxes 
the constraint that class covariances are equal. Regularized discriminant analysis (RDA) employs 
two parametric regularization methods to generalize both LDA and QDA. 

K nearest neighbors (kNN) classifies a sample by a vote of the k most similar samples in the 
training set. The value of the number k is a parameter and there are various alternative methods for 
measuring nearness (i.e., similarity or distance) and for weighted voting. kNN classifiers don't posit 
any distribution or model for the data and so can be especially effective for complex distributions 
that would be difficult to model. 

Decision tree learning builds a tree that organizes a system of rules (or tests) that sequentially 
drive the method toward its conclusion (e.g., a sample's class). Decision trees are simple to 
understand and relatable to the features; however, they tend to be not robust, which is a danger for 
small training sets with many features. In order to cope with such problems, ensemble methods 
build multiple decision trees with boosting (emphasizing mis-modelled samples) or bagging 
(resampling training data). Random forests (RF) utilize multiple decision trees to render a decision. 

Partial least-squares discriminant analysis (PLS-DA) is a variant for categorical predicted 
variables. This involves building a PLS regression model to establish class limits and then, performs 
a discriminant analysis (DA) to achieve classification. Orthogonal projection to latent structures 
(OPLS) and OPLS-DA are related methods with orthogonal projections.  

Support vector machines (SVM) construct a hyperplane in a high-dimensional space for 
classification, regression, and other PR problems. Various kernel functions can be specified for the 
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decision function, which provides flexibility. SVM can perform relatively well even for large feature 
spaces. Deep learning refers to a broad family of methods based on artificial neural networks 
(ANNs) and is one of the hottest ML topics. However, deep learning is best suited for problems 
with large data sets, which, unfortunately, is atypical for C2DC, and so has not yet been much used 
for C2DC analyses.  

Quantitative multivariate methods are focused on determining the functional relationships 
between the analytical signal acquired from a set of samples and a characteristic feature of such 
samples such as their composition. The advantages compared to using univariate quantitative 
methods are to perform the quantification in the presence of interfering substances and to quantify 
materials (not analytes), e.g., the proportion of particular vegetal oil in a blend of vegetal oils or the 
quantification of mineral fuel in biodiesel.153 The most widely used is PLS, which consists of 
building a linear model projecting observable (predictors) and predicted (responses) variables to a 
new space maximizing covariance.  

 

4.1.7.3 C2DC pattern recognition research 

Some previous work from the past decade on pattern analysis with C2DC data is summarized 
here. In 2010, Humston et al.138 used GC×GC to assess progressive moisture damage to cacoa 
beans, employing PCA for dimensionality reduction and visualization and a suite of ten regression 
methods to model progressive damage with 29 analytes selected by FR analysis. Reichenbach et al.76 
used k-NN, SVM, and PCA with SVM with data from urine samples analysed by LC×LC to classify 
samples by individual, before/after procedure, and concentration with leave-one-out and replicate 
K-fold cross-validation. In 2012, Caldeira et al.154 used Partial Least Squares-Discriminant Analysis 
in tandem with Monte Carlo Cross Validation with data from exhaled breath samples analysed by 
GC×GC-(TOF)MS to assess the predictive power and aid interpretation of recovered compounds 
possibly related to oxidative stress, inflammation processes, or other cellular processes characteristic 
of asthma. 

In 2015, Steingass et al.155 used GC×GC to assess ripening-dependent changes for pineapple 
volatiles, employing Analysis of Variance (ANOVA) for selection of 477 features for unsupervised 
HCA and PCA and for supervised Partial Least Squares Discriminant Analysis (PLS-DA) and 
Partial Least Squares (PLS) regression. In 2016, Strozier et al.156 used GC×GC to classify chemical 
agents, employing RF to distinguish different formulations of three types of organophosphate 
pesticides (OPPs); and Zhu et al.157 used GC×GC to analyse aroma components of teas, employing 
orthogonal projection to latent structures discriminant analysis (OPLS-DA) and HCA with 478 
features to determine compounds with significant across group differences. In 2017, Dubois et al.158 
used GC×GC to assess changes in volatile profiles of human blood, employing FR and ANOVA 
to filter features and PCA and HCA for dimensionality reduction and visualization; and Miyazaki et 
al.159 used GC×GC to analyse serum metabolites of neonatal calves, employing HCA, PCA, and 
PLS regression, and correlation coefficients. 

In recent years, the Hill Lab (Bean,131 Rees,160 Purcaro,161 Beccaria,162 et al.) has used GC×GC 
extensively to investigate various issues of respiratory diseases, including fungi, bacteria, viruses, 
and human breath; employing HCA, PCA for dimensionality reduction, RF, linear SVM, and PLS-
DA. In 2018, Reichenbach et al.105 evaluated 22 different ML methods (including decision trees, 
discriminant analysis, SVM, k-NN, and ensemble methods) for seven different classification 
problems with GC×GC-MS chromatograms for 127 different Brazilian wines; and Shi et al.163 used 
GC×GC to analyze 39 dark teas by group, employing PCA for dimensionality reduction and HCA. 
In 2019, Lukić et al.164 used GC×GC for differentiation of olive oils by variety and geographic origin, 
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employing ANOVA and FR for feature ranking, PCA for dimensionality reduction, HCA, and 
forward stepwise linear discriminant analysis (SLDA). 

 

4.1.8 Conclusions   

Chromatographic fingerprinting by C2DC is undoubtedly a profitable strategy for cross-
comparative analysis of large set of samples with an almost comprehensive coverage of their 
constituent components. Dedicated data processing on instrumental fingerprint is necessary to 
extract meaningful high-level information from different types of features, while tackling issues 
related to retention times misalignment and MS detection inconsistencies. 

Multidimensional analytical platforms combining orthogonal information dimensions enable 
highly accurate and specific chromatographic fingerprinting, giving access to components’ profiles 
(MS spectra) that brings the investigation toward profiling knowledge. By machine learning, 
fingerprinting allows sample classification, discrimination, and even identification, while the 
combination with profiling gives access to a higher level of information corroborated by a deep 
knowledge on sample constitutive elements.  

Algorithms and workflows for effective chromatographic fingerprinting are available within 
most of the commercial software packages dedicated to GC×GC and other C2DC platforms. 
Besides the clear advantages of automatic procedures, analyst supervision and critical approaches 
can make the difference and guides to the selection of the most appropriate strategy to achieve 
investigation goals. 
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4.2.1 Abstract  

The contribution focuses on untargeted data processing/analysis approaches that are currently 
adopted to explore the 4D-data matrices produced by comprehensive two-dimensional gas 
chromatography-mass spectrometry (GC×GC-MS) in food-omics. Strategies for untargeted 
explorations are rationalized through the type of features adopted (i.e., visual, datapoint, peak, and 
peak-regions) at the data processing level, and then discussed through relevant applications and 
illustrative examples, selected over peer-reviewed literature. The role of MS, including high vs. low 
resolution MS, as an active probe for specific cross-comparative analysis, is critically discussed also 
in the context of spectral deconvolution and subtraction, well-established procedures for 1D GC-
MS explorations. Moreover, the challenging task of post-targeting aimed at identifying “unknown 
– knowns”, is examined in its potential, being the key to access a higher level of information. 
Selected examples emphasize the importance of reliable identification by retention indexing, 
retention pattern ordering, sensory evaluation (sensory analysis and olfactometry), and data mining.  
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4.2.2 Introduction 

4.2.2.1 OMICs disciplines related to food  

Inspired by systems biology,1 hypothesis-generated investigations aimed at understanding the 
impact the food metabolome has on the human body (nutrimetabolomics),2 the linkage between 
food composition with health and well-being (foodomics)3 and its concomitant compositional 
linkages to sensory quality (sensomics and flavoromics).4,5 Toward this end, modern approaches 
that provide a comprehensive analysis of food metabolome 6 are fundamental to integrate the 
multiple dimensions of information (sensory, biological, chemical, environmental) with a 
comprehensive knowledge of food chemical code.  

The ability to correlate food chemical patterns with orthogonal properties such as sensory 
quality, traceability, safety, nutritional value, and biological activity requires analytical approaches 
that offer total detection of the metabolome. Multidimensional analytical (MDA) platforms that 
combine physicochemical separation techniques (chromatography, electromigration, size exclusion, 
etc.) with spectroscopic techniques (mass spectrometry (MS), nuclear magnetic resonance (NMR), 
infrared (IR), ultraviolet (UV), etc.) have the potential to discriminate, identify, and quantify sample 
constituents, over the long-term, while providing a solid foundation for generating hypothesis-
driven studies. 

MDA technologies support comprehensive untargeted investigations by providing a larger 
number of features with greater information for data processing/mining. An “untargeted” 
approach is a process in which as many features as possible are detected and monitored with the 
possibility of annotation and tracking across multiple samples.7,8 In contrast, “targeted” approaches 
focus on identifying and quantifying a limited number of known analytes, defined a priori. Target 
analysis, in general, provides limited information with regard to the total composition of a sample 
and does not take full advantage of MDA platforms’ information power. 

In untargeted cross-sample analyses, various important goals can be achieved, for example: (a) 
classification, (b) chemical fingerprinting, (c) monitoring (within multiple samples or time-resolved 
changes), (d) clustering, and (e) marker discovery.9 Figure 4.2.1 summarizes the key characteristics 
of untargeted and targeted approaches as implemented in MDA platforms.  
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Figure 4.2.1. Key characteristics of untargeted and targeted investigations by GC×GC-MS in food-omics. Adapted from 8. 

 

In the next section, we introduce some typical examples related to food, where untargeted 
characterization based on comprehensive two-dimensional gas chromatography (GC×GC) coupled 
to high/low resolution mass spectrometry [(HR)/(LR)-MS] has produced successful investigations. 
In particular, we discuss the information obtained by the analytical platform employed in light of 
its potential to inform on feature-identity during ex-post data analysis (i.e., post-targeting).  

 

4.2.2.2 Untargeted investigations and food compositional complexity: the role of GC×GC-
MS 

GC×GC with high or low resolution (HR)/(LR)MS has proven successful and capable of 
providing a high level of information10 in untargeted investigations related to food. Applications 
include: (a) profiling and fingerprinting of volatile organic compounds (VOCs) to determine food 
sensory quality and spoilage, to understand the impact of environmental conditions on plant 
phenotype, or to discriminate samples’ geographical origin,11–20 (b) fatty acids methyl esters 
(FAMEs) profiling and fingerprinting as diagnostic markers of fat fraction quality and 
composition,21,22 and (c) non-volatile small, primary metabolites as indicators of food quality23 and 
harvesting and storage practices,24–26 and for evaluating impacts of climate events on crops.27,28 A 
few representative examples of untargeted strategies are provided in Section 4.2.5.  

Data acquisition in untargeted explorations is fundamental to enable effective annotation and 
tracking of untargeted features across multiple samples. Data dependent acquisition (DDA)8 is the 
most widely adopted strategy for GC×GC-MS explorations. DDA relies on full scan MS1 to acquire 
individual features (accurate mass spectral signatures or fragmentation patterns) to allow specific 
cross-comparative analysis. Raw data is processed to produce relevant and meaningful features 
(datapoints or peak features in Section 4.2.4) that are further investigated to determine structure 
elucidation and identification. In contrast, data dependent acquisition (DIA) approaches integrate 
full MS1 with tandem MS (MS/MS or MSn) fragmentation to produce precursor ions, which are 
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either fragmented in a second stage simultaneously (MSE)29 or by a priori fixed mass ranges 
(sequential window acquisition of all theoretical fragment ion spectra - SWATH).30 DIA methods 
are more extensively adopted in LC-MS/MS metabolomics, they produce complex fragmentation 
spectra that likely offer the potential to provide structure identification.8  

In the case of MDA platforms, with comprehensive two-dimensional chromatography 
(GC×GC and LC×LC), untargeted investigations are corroborated by obtaining structured 
separation patterns for chemically correlated analytes. This key characteristic is the result of two 
concurrent yet independent properties. One is system orthogonality, which depends on the 
different separation mechanisms combined in the two analytical dimensions.31 The second is an 
intrinsic property of the sample and relates to its dimensionality (i.e., s),32 a property that does not 
depend on the number of components (i.e., m) in the sample, but refers to the number of 
independent variables that must be specified to identify the components in the sample. Briefly, the 
more chemical classes in the sample, the greater its dimensionality, and, consequently, the rationale 
for multidimensional separation.  

Based on the compositional peculiarity (i.e., sample dimensionality), the choice of stationary 
phase combination plays a fundamental role in providing group-type separations33 or ordered 
homologues patterns.31 Group-type separations also open simultaneous quantification of each 
chemical class as well as individual analytes within each class. For example, to assess mineral oil 
contamination in food and food packaging materials,33,34 the saturated hydrocarbon fraction 
(MOSH) must be quantified independently from the aromatics (MOAH) and, within the latter, a 
few toxicologically relevant analytes need accurate quantitation by external calibration. Figure 4.2.2 
shows the chromatographic image of a mixture of mineral oils, to which were added the 16 
polycyclic aromatic hydrocarbons selected by the U.S. Environmental Protection Agency (16 EPA 
PAH) and internal standards (Cycy, cyclohexyl cyclohexane; Cho, cholestane; MNs, 1- and 2-methyl 
naphthalene; Tbb, tri-tert butyl benzene; Per, perylene; DEHB, di(2- ethylhexyl) benzene; 18B, n-
octadecylbenzene). The MOSH fraction (green-outlined area) is chromatographically separated 
from the MOAHs (blue-outlined area) due to the differential retention exerted by a medium polarity 
× apolar column combination.  
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Figure 4.2.2. Contour plot of a mixture of mineral oils, to which were added the 16 polycyclic aromatic hydrocarbons selected by 

the U.S. Environmental Protection Agency (16 EPA PAH - EU Reg 1881/2006) and internal standards [Cycy, cyclohexyl 
cyclohexane; Cho, cholestane; MNs, 1- and 2-methyl naphthalene; Tbb, tri-tert butyl benzene; Per, perylene; DEHB, di(2- 

ethylhexyl) benzene; 18B, n-octadecylbenzene]. The green area includes the mineral oil saturated hydrocarbon fraction (MOSH) 
while the blue area highlights the mineral oil aromatic hydrocarbons (MOAH) elution area. The analysis was by a column set 
consisting of a 1D OV-17 (15 m × 0.15 mm ID, 0.15 µm df) and a 2D PS-255 (3.2 m × 0.15 mm ID, 0.055 µm df).  Thermal 

modulation by loop-type modulator. Modulator capillary: 1 m of the 2D column, leaving 2.2 m for the separation process. Oven 

temperature program: 50 °C (3 min) to 340 °C (1 min), rate 5 °C/min; PM 6s. Modified from Biedermann and Grob.33 

 

Moreover, ordered patterns are of great help in the post-targeting of relevant features; their 
relative retention within a homologue class and within different chemical classes helps to 
disambiguate, especially when linear retention data are not available or sufficiently consistent.35–37  

 

4.2.3 The role of mass spectrometry in untargeted investigations 

The role played by MS, the third dimension of the analytical system, is fundamental. It adds 
another level of specificity to cross-comparative investigations while providing essential 
information for analyte identification. The spectra produced by electron ionization (EI) is a third 
probe of discrimination, in addition to 1D and 2D retention data, also providing the means to 
identify co-eluting compounds by spectral deconvolution. EI produces stable and reproducible 
fragmentation patterns rendered as a compound’s spectral signature. Moreover, at 70 eV, mass 
spectra are considered reproducible between MS instrument-types (e.g., fast scanning quadrupole, 
time-of-flight, orbitrap, etc.)8. The standardization of EI ionization allows analysts to confidently 
use commercial or open-source spectral libraries, such as the GOLM Metabolome Database,38 
National Institute of Standards and Technology (NIST) Mass Spectral Database.39 Wiley Registry 
of Mass Spectral Data,40 and Adams’ Identification of Essential Oils Components by GC/MS.41 

It should also be mentioned that recently patented technologies that provide variable energy 
electron ionization23,42,43 (viz., tandem ionization™) or “soft” ionization by laser photo-ionization44 
have been successfully used in untargeted GC×GC-MS studies. Their main drawback, however, is 
the limited potential for features identification due to the lack of available databases. 
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Spectra acquisition frequency, together with resolution and resolving power, are important 
characteristics that may have a role in the effectiveness of untargeted analysis. The highly efficient 
separation, correlated to the effective band compression in space provided by thermal modulation, 
produces very narrow modulated peaks. Peak-widths can, in fact, be as little as 100-300 ms at the 
baseline (wb), thus requiring faster scanning quadrupoles and time-of-flight analyzers that achieve 
suitable acquisition rate for accurate peak definition.45–47 Most TOFMS systems used for GC×GC 
operate at 100-200 Hz at unit mass resolution thereby providing adequate sampling density for 
effective spectra deconvolution.  

Of the technologies capable of achieving high mass resolution, high mass accuracy, and very 
fast scan speeds, TOF analyzers are most often used, despite their limited application in the field 
of food-omics. A system commercialized by Agilent Technologies (Santa Clara, CA, USA) performs 
tandem mass spectrometry by coupling a low-resolution quadrupole filter to provide collision 
induced dissociation before the HR-TOF. Its application to a food related matrix, hop (Humulus 
lupulus L.) for beer production,35 resulted in a wide coverage of different detectable analytes. 
Depending on the specific genotype, 210 to 306 unique compounds were detected, with 99 
positively or tentatively identified. The authors described a workflow for consistent identification 
of untargeted candidates through a step-by-step procedure consisting of: (a) low-resolution MS 
fragmentation pattern search for similarity with candidates in commercial libraries; (b) congruency 
verification for molecular ion and base peaks mass accuracy (± 15 ppm) for candidates with a direct 
match factor ≥ 700; (c) 1D linear retention index (1IT) consistency for isobaric compounds (± 20 
units); and (d) position/relative retention over the 2D structure-retention pattern to complete the 
putative identification of unknowns.  

The role of 1IT is critically important for disambiguating isobaric compounds that yield 
similar fragmentation patterns. Popular libraries, such as from NIST39 and Wiley,40 now incorporate 
experimental and estimated retention indices into compound records; and popular MS search 
software, such as the NIST MS Search software, include retention-index constraints. 
Conventionally, IT values for analytes are computed from their retention times by piecewise linear 
or logarithmic interpolation from the retention times and indices of IT calibration standards, e.g., the 
Kovats or Van den Dool Indexes from n-alkanes. Recently, Reichenbach et al.48 developed an ad 
hoc method for IT computation that does not require IT standards, but instead uses putative 
identifications returned by comprehensive, untargeted MS search based on the analytes detected by 
GC×GC. Based on the analysis of a terpenes’ standard mixture, a consistent IT calibration was 
derived from 15 of the 21 most concentrated analytes. (Three analytes were eliminated because their 
library record did not have an experimental IT and three others eliminated because of inconsistent 
IT, indicative of misidentification.)  

 

4.2.4 Features and strategies for untargeted cross-comparative analysis  

The goal of untargeted cross-comparative analytical strategies is to examine the distribution of 
all constituents in each and every sample of a set in a context where the chemical characteristics are 
not known a priori. Therefore, characteristic feature(s) must be comprehensively generated for each 
and every constituent. Within those features, mass spectral (total and/or selected ion) intensities 
provide the most comprehensive array of information for chemical identification and 
relative/absolute quantitation. As previously discussed, to achieve suitable method specificity, 
untargeted features must be: (a) comprehensive, to cover the full sample dimensionality; (b) 
selective, to avoid major components obscuring minor yet informative constituents; (c) matched 
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across all chromatograms, to avoid incorrect comparisons; and (d) accurate, to catch subtle 
differences between samples. 

 

4.2.4.1 Approaches for feature generation  

Different types of features have been used for untargeted investigations with GC×GC-MS, 
specifically: datapoints, tiles, and regions; peaks; and peak-regions. Datapoint features compare 
chromatograms based on the 2D arrays of GC×GC data, i.e., each datapoint is a feature. For MS 
data, each datapoint is a mass spectrum. Tile and region features increase the granularity from single 
datapoints to subsume multiple datapoints per feature, with rectangular regions for tiles and more 
general shapes for regions. Peak features subsume multiple datapoints for each analyte peak 
detected in each chromatogram. Peak-region methods define a region feature for each analyte peak 
detected in a composite of all chromatograms. 

Important considerations for choosing an approach include the difficulty of generating 
features, the ease of effective chemical interpretation of features, and the ability to comprehensively 
match features between two or more chromatograms for cross-sample analysis. Each approach has 
advantages and disadvantages, which are discussed at more length in the following sections, and 
each approach has been used for successful multi-sample analyses. In general: 

• Datapoint, tile, and region features are relatively simple to generate and match comprehensively across 
samples but are not especially well suited for interpretive analysis of individual constituents. These 
approaches may be best suited for quickly evaluating chromatographic regions or groups of analytes for 
further investigation by other approaches. 

• Peak features are, in principle, ideal for chemical interpretation because so long as a single peak is 
separately detected for each analyte, there is a one-to-one correspondence between analytes and features. 
However, in practice, peak detection is challenging and imperfect for complex samples, which effectively 
renders comprehensive matching across many samples incomplete and/or error prone. This approach 
may be best suited for analyses that yield easily interpreted but non-comprehensive results, e.g., targeted 
analyses. 

• Peak-region features require the most up-front work — datapoint alignment is required for creating a 
composite chromatogram and peak detection is required to define the peak-region features — but the 
resulting features are comprehensive, related to individual analytes, and inherently matched across 
chromatograms. This approach may be best suited for comprehensive, easily interpreted analyses 
provided that more up-front effort can be justified. 
 

4.2.4.2 Datapoint, tile and region features 

An early approach for comparing GC×GC chromatograms used datapoints features: first, for 
FID signals with Fisher’s f ratio from analysis of variance (ANOVA) and principal components 
analysis (PCA),49, and, later, for MS data with PCA for selected channels50,51 and with point-wise 
summed f ratios for MS spectral channels.52 In 2015, Pierce et al. surveyed pixel-level GC×GC data 
analysis, including fingerprinting and pattern recognition 53. The Synovec Lab54 pioneered and 
continues to demonstrate this approach. 

Datapoint features require no extra computation to generate. They are comprehensive of all 
analytes and provide the highest-possible precision in the retention time plane, but there are many 
duplicative features (i.e., multiple datapoints) per analyte, which means there is not a simple 
correspondence between analytes and features, and which requires substantially more 
computational complexity for cross-sample feature analysis. Matching of datapoint features across 
samples is straightforward, but retention time variations introduce matching errors unless alignment 
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is performed exactly. Various methods for aligning 2D chromatograms have been proposed, but 
none promise accuracy to within a datapoint. 

Tile features, by subsuming rectangular regions of datapoints, are more computationally 
efficient for cross-sample analysis and less susceptible to retention time misalignment. Also, they 
reduce the number of features per analyte, but they do not yield one feature per analyte (nor one 
analyte per feature). Marney et al.55 used tile features to reduce the feature set size and diminish 
adverse effects of chromatographic misalignment. Results indicated that this approach enhanced 
pattern recognition of true positives while simultaneously reducing the likelihood of detecting false 
positives. Although this approach is more computationally efficient and less susceptible to retention 
times misalignment, it is not fully selective, i.e., there may be multiple analytes per tile. Still, it may 
recognize informative patterns in such tiles if the informative analyte is not dominated by other 
analytes in the tile. 

Region features have the advantages of tile features vis a vis datapoint features, but region 
features can be defined to provide a better correspondence between analytes and features which 
makes chemical interpretation more straightforward. However, region features require a process to 
delineate regions. It can be relatively simple to define regions for group-type analyses, but, as 
discussed below for peak-region features, it is more complex to define regions that provide one-to-
one correspondence with individual analytes like datapoint features, tile and region features are 
implicitly matched (after alignment) across chromatograms for multi-sample analyses. Honeywell 
UOP demonstrated region features in two standard methods for petroleum analyses with GC×GC-
FID,56,57 for which group-type analysis is important, but region features are less well suited for food-
omics, for which analyses of individual compounds may be critical 

 

4.2.4.3 Peak-based features  

Peak features (i.e., detected peaks with their metadata) provide a relatively straightforward basis 
for cross-comparative analyses of targeted analytes because data processing need only identify the 
detected peak for each target analyte, using its known characteristics, in each chromatogram. Then, 
detected peaks for each target analyte are explicitly matched across chromatograms. Untargeted 
cross-comparative analyses with peak features are more difficult because there is no explicit 
matching of peaks across chromatograms. So, before performing cross-comparisons of untargeted 
analytes using peak features, the software must match unidentified (or putatively identified) peaks 
across chromatograms — a process usually referred to as peak matching or peak tracking. 

Peak features proceed from peak detection performed on each chromatogram. Ideally, peak-
matching results in a list of all analytes in each chromatogram; however, due to coelutions (discussed 
in Section 4.2.6), chromatographic variability, and noise, the peak lists will have merged peaks (i.e., 
multiple analytes per feature), fractured peaks (i.e., multiple features per analyte), displaced peaks, 
undetected peaks, and spurious peaks. Moreover, some analytes might be detected in some samples 
but not in others. Thus, the peak lists vary among chromatograms, which makes matching of peaks 
across chromatograms extremely challenging. For untargeted analysis of complex samples, peak 
matching invariably results in many peaks that cannot be confidently matched across 
chromatograms, so the resulting analyses are not comprehensive and/or error prone. However, 
many automated methods have been proposed and demonstrated and the approach is used in 
LECO’s Statistical Compare (SC) software (LECO Corp., St. Joseph MI, USA). 

Our previous literature review of GC×GC peak features for comparative analysis9 described 
pioneering work from 1999 through early 2011. Since then, other reviews covering methods with 
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comparative peak features include those by Pierce et al.,58 Seeley and Seeley,59 Chin and Marriott,60 
Tranchida et al.,61 Reaser et al.,62 and Berrier et al.63 

 

4.2.4.4 Peak-regions features  

Peak-region features attempt to define one region in the 2D retention time plane for each 
analyte peak. Peak-regions seek to achieve one-feature-to-one-analyte selectivity, as do peak 
features, but with implicit matching of the same peak-region across multiple chromatograms, which 
peak features do not provide. Figure 4.2.3 shows the contour plot of a Yunnan tea extract 
submitted to oximation-silylation to map primary and specialized metabolites. Figure 4.2.3A shows 
the distribution of targeted 2D peaks (green circles) and connection lines with the internal standard 
(IS - 1,4-dibromobenzene) while Figure 4.2.3B shows untargeted–targeted (UT) peak-regions (red 
graphics) that comprehensively cover the chromatographic space. The enlarged area of Figure 
4.2.3C highlights the position of the target L-Proline (green squared) and of the untargeted feature 
#245 with corresponding spectra. 

 
Figure 4.2.3. Contour plot of a Yunnan tea sample harvested after the monsoon season in 2014. (4.2.3 A) Shows targeted 2D 

peaks, highlighted with green circles, and connection lines with the internal standard. (4.2.3 B) Shows the distribution of UT peak‐
regions, identified by red graphics, comprehensively covering the chromatographic space. Enlarged area (4.2.3 C) highlights the 
position of the targeted peak L-Proline and of the untargeted peak-region #245, together with their corresponding spectra. The 
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column set was configured as follows: 1D DB-5 (30 m × 0.25 mm ID, 0.25 µm df) and a 2D OV-1701 (2 m × 0.1 mm ID, 0.1 µm 
df).  Thermal modulation by loop-type modulator. Modulator capillary: 0.80 m of the 2D column, leaving 1.2 m for the separation 

process. Oven program: 75 °C (1 min) to 290 °C (15 min), rate 4 °C/min; PM 5s. From Stilo et al.28 

 

Reichenbach et al.64–66 and Schmarr et al.26,67 described similar peak-region approaches. After 
preprocessing, the source chromatograms are aligned then combined (e.g., simply by addition or 
other fusion operations)68 to form a single composite chromatogram that comprises peaks for all 
analytes in all samples. Then, a region for each peak detected in the composite chromatogram is 
recorded in a feature template. Finally, each source chromatogram is analyzed by geometrically 
remapping the feature template back to each source chromatogram. 

Ideally, peak-region features are comprehensively selective, accounting for each and every 
analyte, and feature matching is implicitly performed by mapping the template to each 
chromatogram. In practice, coelutions and variable retention times complicate the definition and 
application of peak-regions, just as for peak-based features. For GC×GC-MS datasets, coelutions 
within a peak-region can be addressed with quantitative ions in some cases, but deconvolution 
(discussed in Section 4.2.4.5) is required for coeluted analytes with similar spectral signatures. 
Variations in retention times are addressed by geometric transformations in the retention times 
plane, as described below. Peak-regions are supported by GC Image GC×GC and LC×LC software 
(GC Image, LLC, Lincoln NE, USA) in its Smart Templates™, which also support peak features 
for target compounds and other reliably matched peaks. 

Chromatograms must be aligned to construct a composite chromatogram from which the 
feature template is extracted, and the feature template must be realigned to analyze each 
chromatogram. (Note that the transform to align a chromatogram for the composite can be inverted 
to map the composite feature template back to that chromatogram.) The task of chromatographic 
alignment for peak-region features is related to the problem of peak matching for peak features; in 
fact, the most common approach to chromatographic alignment is to parameterize a transformation 
model using a set of matched peaks. 

 

4.2.4.5 Features based on spectral deconvolution and subtraction  

Coelutions confound feature extraction regardless of the approach and type of feature analysis 
because the raw detector signals result from more than one analyte. Spectral deconvolution seeks 
to provide suitable specificity and the foundation for confident identification of relevant features. 
The most common algorithm for spectral deconvolution is AMDIS, developed by NIST, nowadays 
implemented in number of different vendor instruments. AMDIS extracts mass spectra, then fits a 
least-squares regression model to the compound’s deconvolved ion current chromatogram. The 
process involves four sequential steps: 1) noise analysis, 2) component perception, 3) spectrum 
deconvolution, and 4) compound identification. However, AMDIS is incapable of unambiguously 
identifying low-concentration analytes in high-concentration matrixes unless three or more “clean” 
scans exist in the total ion current peak.69,70 

LECO’s (LECO Corp., St. Joseph, MI, USA) data analysis spectral deconvolution algorithm, is 
based on finding at least one unique target compound mass spectrum from peak scans in which 
chemical noise is minimal.71,72 Once found, a system of simultaneous equations is used to 
deconvolve the remaining peak scans. This process is more akin to chromatographic deconvolution 
than “true” spectral deconvolution and it requires high-speed signal transmission of TOF filters to 
provide the necessary data density. Because chromatographic profiles change from sample-to-
sample, even within the same sample-type, it is critically important that the data analysis be 
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independent of the matrix. Toward this end, the combination of both spectral deconvolution and 
mass spectral subtraction algorithms provides a synergistic approach resulting in the potential 
identification of all detectable compounds in complex samples analyzed by either 1D or 2DGC-
MS.73  

For example, Antle and co-workers74 developed spectral deconvolution software for GC×GC-
MS analysis of polycyclic aromatic hydrocarbons (PAH) and sulphur heterocycles (PASH) and their 
alkylated homologs in heavy hydrocarbon fractions (i.e., crude oil and refined products, coal tar, 
and (Athabasca) tar sands). The authors used the deconvolution strategy to identify constituents 
and then modelled 2D component maps for these compounds to predict how they weathered in 
the environment.73 

Also, Robbat and co-workers75 developed optimized spectral deconvolution – MS subtraction 
algorithms to automate untargeted/targeted workflows. Once target compounds are identified by 
spectral deconvolution their spectra are subtracted from the TIC, resulting in peak signals that 
approximate the baseline or residual ion signals due to one or more coeluting compounds. If 
residual ion signals correspond to one compound, the peak maxima (or average) spectrum and 
retention time, if available, are compared to commercial libraries (NIST, Wiley, Adams, etc.). 
Although analyte peak areas are typically determined by deconvolving target compound signals 
(untargeted compounds become target compounds once input to the software), MS subtraction can 
also determine the peak intensities of unknowns. Annotations for identified compounds include 
chemical name, retention time or IT, “clean” mass spectrum (for subtraction), relevant ions and 
their abundances (for deconvolution), relative peak area, etc. For compounds that cannot be 
identified, univocal identifiers are inputted associating retention times or IT, spectra, relative peak 
areas, and sample information. If subtraction of the mass spectrum indicates multiple compound 
coelution, the above process repeats until residual and background signals approximate one 
another. 

An example of how spectral deconvolution with MS subtraction was used to identify volatile 
specialized metabolites in tea leaves by GC×GC-MS27,28 is shown in Figure 4.2.4. First, spectral 
deconvolution of target compounds 2-nonanone (228) and terpinolene (230) found in the TIC peak, 
followed by MS subtraction of each compound’s mass spectrum, yields a residual signal that does 
not approximate background signal. Second, the library-building algorithms inspect the residual 
peak spectra, determining an invariant spectrum for p-cymenene (n=229 positively matched with 
NIST and Adams libraries). After the spectrum for this compound was subtracted from the TIC, 
the fragmentation pattern for unknown G48 (232) was invariant until signals from 231 and 232 
caused subsequent spectra to differ. Because the methyl benzoate (231) spectrum dominated and 
was invariant between the tail of 232 and rising signals from 234 and 235, its spectrum, subtracted 
from the TIC, yielded the spectrum for undecane (233). Finally, linalool (234), a target compound, 
when subtracted from the TIC, yielded residual, whose peak scans were constant, unknowns G49 
and G50. The figure shows the spectra produced by co-eluting compounds at specific times along 
the TIC peak prior to deconvolution and MS subtraction. Subtraction of the targeted/untargeted 
compound spectra from the TIC results in a signal that approximates background (black line).  
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Figure 4.2.4. Illustrative example of the MS subtraction used to identify volatile specialized metabolites in tea leaves by 

GC×GC-MS.27,28 The TIC trace (black-line) is subjected to sequential deconvolution and MS subtraction to isolate clean MS 
spectra for co-eluting analytes. The detailed description is provided in the text. Numerical coding for spectral features is as follows: 

#228 2-nonanone (dark green); #229 p-cymenene (red); #230 terpinolene (purple); #231 methyl benzoate (orange); #232  
G48/unknown (blue); #233 n-undecane (black); #234  linalool (green); #235  G49/unknown (light green); #236 G50/unknown 

(pink). 

 

 

4.2.5 Untargeted investigations in the food domain  
4.2.5.1 Food volatilome and odorant patterns 

Food volatiles are an interesting example of high complexity mixtures, resulting in thousands 
of detectable components that belong to different chemical classes. For this reason, thanks to its 
high dimensionality,32 the food volatilome is often used as a test bench to develop new 
fingerprinting approaches in untargeted explorations. 

In a study focused on roasted hazelnuts (Corylus avellana L.),15 advanced untargeted 
fingerprinting methods were applied to investigate sample origin discrimination. The peak-regions 
features approach was adopted to build a consensus template composed by 422 peaks matched across 
the set of chromatograms. Pattern recognition by template matching using a least-squares-optimal 
retention time transformation, was set to establish 2D peaks correspondences while adding 
additional constraints on MS fragmentation pattern similarity. Within the 422 untargeted features, 
a sub-set of 79 analytes with known information potential (e.g., indicators of thermal treatments, 
potent odorants or lipid oxidation products) were identified. The combined untargeted and targeted 
investigation was successful for both fast, untargeted origin authentication and qualification based 
on sensory characteristics. 

Peak-regions were also adopted by Schmarr et al.26 to study volatile patterns from apples, pears 
and quince fruit. Researchers designed a workflow based on 2D gel proteomics, as illustrated in 
Figure 4.2.5, where 2D images were fused and merged into a consensus pattern accounting for 
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more than 700 volatiles. This template pattern was then propagated to all images, by using Delta 2D 
software. The approach is comprehensive, since it computes the whole chromatographic information 
collected in all experiments, and relatively fast in terms of computational time. Data analysis by 
diverse pattern recognition tools allowed consistent clustering of similar samples with good 
prediction performance for unknowns. The main limit of this workflow is related to the 
identification of unknowns that is only possible with off-line operations back to the original 
acquisition software (i.e., HyperChrom or Xcalibur, Thermo Fisher).  

 
Figure 4.2.5. Workflow for the peak-region features untargeted fingerprinting proposed by Schmarr et al.26. Steps: (1) samples 

preparation and analysis by HS-SPME-GC×GC-qMS; (2) transformation of the 2D chromatograms into 32-bit images; (3) storage 
of the 2D images in Delta2D software; (4) positional correction through warp vectors resulting in images congruency; (5) image 
fusion and volatiles mapping; (6) detection of spot consensus; (7) application of spot consensus boundaries to all 2D images for 

gray level integration; (8) extraction of volatiles profiles obtained by quantitative data resulting from integration. The analyses were 
performed through a column set consisting of a 1D SolGel-Wax (30 m × 0.25 mm ID, 0.25 µm df) and a 2D composed by OV-
1701 (0.15 m × 0.15 mm ID, 0.15 µm df) and a BPX-5 (2 m × 0.15 mm ID, 0.15 µm df); column connections were made via 

press-fit connectors. Dual-jet thermal modulator. Oven program: 50 °C (5 min) to 235 °C, rate 6 °C/min (condition 1) or 50 °C (5 
min) to 225 °C, rate 5 °C/min (condition 2); PM 7s. From Schmarr et al.26 

Long-term studies pose another challenging problem for effective untargeted fingerprinting 
because of shifting chromatography profiles, which makes analyte/pattern re-alignment difficult. 
Stilo et al.16 simulated chromatographic misalignment by analysing volatiles from extra virgin olive 
oil (EVOO) samples with two different instrumental set-ups, characterized by different carrier gas 
linear velocities and with different modulation periods (PM). The combined Untargeted and 
Targeted (UT) fingerprinting approach 76 was optimized by selecting key-processing parameters: 
signal-to-noise ratio (SNR) detection threshold, type of reference spectra for template construction, 
and similarity match factor thresholds. The computation was extended to about 1,500 peak-regions 
included in the template, of which 257 UT peaks were reliably matched across all-but-one 
chromatograms. The best performing realignment function was the second-order polynomial 
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transform that, combined with optimized thresholds, enabled an average cross-matching of 97.95% 
between Picual oils analyzed with severe misalignment.  

EVOO volatiles were studied by Vaz-Freire et al.,18 who adopted a datapoint features approach, 
based on image processing with dedicated software (ImageJ), National Institute of Mental Health, 
Bethesda, Maryland, USA) to discriminate EVOOs belonging to three olive cultivars (i.e., Galega, 
Carrasquenha and Cobrançosa) obtained either with a metal hammer-decanter or a traditional metal 
hammer-press. The 2D contour plots were transformed into JPEG format digital images, converted 
into grey scale images, and then virtually divided in 12 quadrants (each 1,000s in the 1D and 2s in 
the 2D): the quantity of pixels for each quadrant reflected the presence of different compounds, 
and the values obtained were then submitted to chemometrics. Informative compounds capable of 
discriminating cultivars and extraction technology were highlighted and submitted to post-targeting 
in the acquisition software (i.e., LECO’s ChromaTOF software, LECO Corp., St. Joseph, MI, USA). 
Authors stated that a simple untargeted approach could be an effective alternative when 
fingerprinting is the main objective, and a full characterization of samples is not required. 

Sensory analysis can guide post-targeting toward informative compounds with high 
discrimination power. In a study by Da Ros et al.,77 monovarietal Italian EVOO and commercial-
blended EVOO samples were screened for sensory profile by a panel test and then profiled for 
their volatiles by GC×GC-TOFMS. Monovarietal oils were found to be characterized by higher 
intensity of positive sensory attributes (apple, green grass/leaf, aromatic herbs) and absence of 
defects (muddy sediment, fusty, winey/vinegary, rancid, musty). An untargeted/targeted 
investigation based on peak features (LECO ChromaTOF software) was developed to differentiate 
the two groups of oils of different quality, subsequently searching for the analytes responsible of 
the different sensorial perceptions. Above all, the commercial-blended EVOOs were characterized 
by a larger number of volatile markers, including also those contributing to negative sensory notes 
(2-phenyl ethanol, isoamyl alcohol, isoamyl acetate, ethyl-2-methyl benzene, ethyl hexanoate, 3-
methyl-2-buten-1-ol, 3-hydroxy-2-butanone), while some minor components, with positive odor 
qualities, were only found in the monovarietal EVOOs group. 

Consistent with the above-mentioned study, some interesting applications used GC-
Olfactometry (GC-O) to guide analyte post-targeting. Barbarà et al.78 examined the impact of the 
grape maturation degree and maceration times on Syrah wine aroma. Untargeted peak features, 
resulting from GC×GC-TOFMS analyses, were submitted to supervised chemometrics to highlight 
discriminant analytes. Of them, 29 were identified and correlated to perceivable and pleasant 

sensory notes arising from GC-O-OSME (from ϴσµε, Greek word for odor). Results enabled 
determination of an optimal maturation degree at 19° Brix accompanied by a volatile fraction rich 
of compounds contributing to pleasant odors with higher persistence and intensity. 

Chin et al.79 adopted an integrated GC×GC/MDGC system with FID/O/MS detection to 
guide the identification of odor active analytes from Shiraz wine and coffee powder. In this study, 
the separation power of GC×GC and/or heart-cut 2D-GC (H/C-2DGC) are combined to the 
specificity of olfactometric detection that offers the unique opportunity of directing the post-
targeting of unknowns toward sensory active analytes. 

Peak features were used on an untargeted basis for authenticity confirmation of protected 
designation of origin (PDO) honeys labelled as “Corsica”.20 Honey samples (n=374) from Corsica 
(n=219) and from other European countries (n=155) were analyzed for their volatile fraction 
composition. Peak features significantly varying in their intensity among the two groups were 
subjected to post-targeting, with 26 of them tentatively identified. Advanced chemometrics 
(artificial neural networks – ANN, linear discriminant analysis – LDA, soft independent modeling 
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of class analogies – SIMCA, and support vector machines – SVM) were applied to discriminate 
Corsican honeys from others. The model constructed by SVM presented the best results, with a 
sensitivity of 93.2% and a specificity of 87.2%.  

The challenging problem of climate change and its impact on food was tackled by Morimoto 
et al.27 who studied the Pu-erh tea volatilome from samples harvested in the Yunnan province 
(China) at different elevations during the pre- and post-monsoon seasons. The study combined the 
UT fingerprinting by template matching on the total detectable volatilome with spectral 
deconvolution and subtraction for effective analytes targeting. In particular, by peak-regions 
features matching, 2D patterns were mapped and untargeted features re-aligned across all 
chromatograms. First, this approach, conducted with tools available in the GC Image software (GC 
Image LLC, Lincoln, NE, USA), resulted in the tentative identification of 107 of 300 detected 
compounds by spectral similarity and 1IT congruence. Second, spectral deconvolution, by Ion 
Analytics software (Gerstel, Mülheim an der Ruhr, Germany), was conducted on the raw signals to 
detect known compounds, followed by (MS) subtraction of their spectra from the total ion current 
chromatogram to reveal untargeted compounds, as described earlier. Figure 4.2.6 illustrates the 
process adopted to validate the strategy that combines untargeted/targeted fingerprinting by peak-
region features and template matching to sequential spectral deconvolution and subtraction.  

Unknowns’ spectra were then back matched with in-house and spectral libraries to allow further 
putative identifications. Of the 300 features, 34% were positively identified with reference 
standards, 42% were tentatively identified by spectral matching and 1IT congruence, and the 
remaining 24% were recoded as unknowns. The authors concluded their comparative evaluation 
by suggesting an integrated strategy that combines the effectiveness, in terms of computational 
time, of peak-region features fingerprinting to comprehensively map complex 2D patterns followed 
by spectral deconvolution and subtraction to highlight unknowns’ locations and more efficiently 
directing post-targeting.   
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Figure 4.2.6. Flow-charts illustrating the step-by-step procedures applied to cross-validate untargeted/targeted fingerprinting of 
tea leaves volatile metabolome by combining peak-region features pattern recognition (by GC Image software, GC Image LLC, 
Lincoln, NE, USA) and deconvolution followed by MS subtraction (by Ion Analytics, Gerstel, Mullheim an der Ruhr, Germany. 

From Morimoto et al.27 

 

Untargeted investigations were applied to support de-risking strategies on cocoa (Theobroma 
cacao). Magagna et al.80 adopted peak-region features fingerprinting to characterize cocoa volatilome 
by analyzing samples from seven geographical origins (Mexico, Java, Sao Tomè, Columbia, 
Venezuela, Ecuador, and Trinidad) and different processing stages (raw, roasted, steamed, and 
nibs). The 2D peaks patterns were mapped by combining both untargeted and targeted features by 
the UT fingerprinting workflow. The resulting data set, accounting for 595 reliable peak regions 
including 130 known analytes, was adopted for classification and discrimination purposes, to 
explore origin, process, and sensory profile signature. In particular, raw and roasted cocoa were 
grouped in 3 clusters depending on their origin, and a strong accordance between targeted and 
untargeted fingerprinting results was revealed. The authors argued that, for classification and origin 
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discrimination purposes, full untargeted fingerprinting could be preferred, being effective, efficient, 
and less time-consuming than targeted analysis.  

Humston et al.11,12 studied cocoa volatilome to define robust markers of moisture damage. The 
authors selected cocoa beans of different geographical origin and with a different extent of moisture 
damage (usually associated with mold formation). Untargeted investigation by datapoint features 
with PARAFAC, mathematically resolved analytes of interest from background noise and by 
interferences, providing useful quantitative information. Twenty-nine informative peak features 
resulted from the Fisher ratio algorithm on non-moldy vs. moldy cocoa samples. They were 
successfully identified and quantified along 8 different time points. Prediction algorithms were also 
designed to determine whether moisture damage occurred before any visible sign of mold. 

 

4.2.5.2 Fatty acids methyl esters – FAMEs 

Fatty acids (FAs) profiling and fingerprinting provide an interesting example to show the power 
of GC×GC-MS, especially for its peculiar characteristic of generating ordered patterns for 
chemically correlated compounds. FAs from plant and animal origins are generally characterized by 
homologue series with even carbon number within the C4-C24 range. Analysis by gas 
chromatography requires transformation of FAs into their methyl ester derivatives, namely, fatty 
acids methyl esters (FAMEs). For odd carbon number FAs and/or branched derivatives, 
commercial standards are not readily available, a crucial impediment for a targeted approach. 
Despite these shortcomings, Tranchida and co-workers21,22 described the role post-processing 
played in targeting potential biomarkers and/or their disambiguation. 

The signature of FAMEs from a refined hazelnuts oil was investigated 21 with a polar × apolar 
column combination and thermal modulation. The enlarged area of the C15-C24 elution region is 
shown in Figure 4.2.7A. The authors performed an untargeted fingerprinting, based on peak 
features, to reveal compositional differences within samples while structure-related patterns were 
further explored for post-targeting. FAMEs are aligned along diagonal retention lines showing 
increasing relative retention based on carbon number (along the 1D) and presence and geometry of 
double bonds (along the 2D). Mathematical functions helped in locating unknowns while assigning 
putative identity in absence of reference compounds 21,22. Thanks to the enhanced sensitivity, 
provided by band compression in space of the thermal modulation, a series of rather unexpected 
odd FAMEs appeared on the 2D space plane; they were: C19:0, C21:0, C23:0, C25:0, C19:1, C17:2, C17:3, etc.). 

Delmonte et al.81 went further in generating retention patterns for a FAMEs fraction prepared 
from human colon adenocarcinoma cells. By on-line sample hydrogenation, obtained at the 
conjunction between the two chromatographic dimensions of the GC×GC-FID system, FAMEs 
derivatives were chemically modified providing highly informative retention patterns. 
Hydrogenation of the analytes was accomplished using the carrier gas, H2, by passing it through a 
fused silica capillary coated with Pd installed immediately before the modulation capillary. The 
resulting elution pattern, illustrated in Figure 4.2.7B, shows increasing retention along the first 
dimension for analytes with the same carbon number but with different numbers of double bonds. 
Parallel elution series, along the 2D, enable effective post-targeting even for very complex mixtures 
as for menhaden fish oil.  
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Figure 4.2.7. Contour plot (4.2.7A) obtained by GC×GC-FID of FAMEs from refined hazelnut oil. The column set was: 1D SP-
2560 (100 m × 0.25 mm ID, 0.20 µm df) and 2D OV-1701 (0.9 m × 0.25 mm ID, 0.25 µm df). The modulator was a longitudinally 

modulated cryogenic system (LMCS). Oven program: 150 °C to 250 °C (10 min), rate 3 °C/min; PM 6s. For peaks identification 
refer to the original paper from Tranchida et al.21 Double bonds - DB. Contour plot (4.2.7B) obtained by GC×GC-FID with on-
line hydrogenation of a FAMEs fraction prepared from human colon adenocarcinoma cells. The column set was: 1D SLB-IL111 
(200 m × 0.25 mm ID, 0.20 µm df) and 2D SLB-IL111 (2.75m × 0.10 mm ID, 0.08 µm df). Thermal modulation by loop-type 
modulator. Modulator capillary: 2 m × 0.10 mm ID of deactivated fused silica capillary for the first stage and 0.25 m of the 2D 

column for the second stage, leaving 2.5 m for the separation process. Oven program: 130 °C (23 min) to 220 °C, rate 1.3 °C/min; 
PM 2s. For peaks identifications, refer to the original paper from Del Monte et al.76 Reprinted with permission from (P. Delmonte, 
A.R. Fardin-Kia, J.I. Rader, Separation of Fatty Acid Methyl Esters by GC-Online Hydrogenation × GC, Anal. Chem. 85 (2013) 

1517–1524). Copyright (2013) American Chemical Society. 

 

4.2.5.3 Food metabolome  

Food metabolomics is an emerging area where GC×GC could be of great help.24 To better 
understand the interconnection between food chemical composition and variables influencing it 
(e.g., crop botanical origin, harvesting area, climate impact, post-harvest treatments, storage 
conditions, and shelf-life), comprehensive untargeted investigations provide larger candidates lists 
with higher intrinsic informative power. Romo-Pérez et al. 25 investigated primary and specialized 
metabolites (i.e., formerly defined to as secondary plant metabolites) in onions to understand the 
effect of cold storage, to prevent early sprouting and rooting, while acquiring knowledge on bulb 
composition and storability. Onions of different genotypes were selected and analyzed fresh and 
after 5 months of storage; 120 peak features exhibited meaningful differences as a function of 
storage. Among them, 56 features were submitted to post-targeting resulting in 43 analytes with a 
putative identification (spectral matching and 1IT) and 21 that remained unidentified. In addition, 
by untargeted peaks distribution, it was possible to clearly discriminate the three studied genotypes 
in fresh onions while evidencing a confounding role of storage in this discrimination.  

Wong et al.14 focused on Eucalyptus spp. leaf oil analyzed by GC×GC coupled to high resolution 
TOFMS. The detailed untargeted profiling, based on peak features, of specialized metabolites 
enabled effective chemotaxonomic classification, correctly discriminating Eucalyptus species under 
study while opening further possibilities to explore synergistic relationships between chemical 
components. More than 400 metabolites were detected; of them, 183 were identified by post-
targeting combining mass spectral profile, mass accuracy, and 1IT. The power of HR-MS was 
exploited through confident identification of an extended list of metabolites that brings the 
chemical investigation closer to biologic outcomes. 

Peak-region features fingerprinting was successful in deepening the understanding of extreme 
climate events (drought and temperature) on tea (Camellia sinensis L.) primary metabolome.28 By 
UT fingerprinting on tea hydrophilic extracts submitted to a standard oximation-silylation 
protocol, primary metabolites generated complex 2D patterns accounting, on average, for 760 UT 
peak regions. Of them, 74 analytes were putatively identified, and their biological meaning 
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validated over available literature. Moreover, the untargeted comparative visualization of 2D 
patterns supported the fingerprinting process by making easier the location of compositional 
(absolute and relative) differences between samples. Figure 4.2.8 shows a comparative 
visualization, by visual features fingerprinting, between a Yunnan tea harvested at high elevation 
(4.2.8A) and a Fujian tea harvested at low elevation (4.2.8B) both during spring season vs. a 
reference sample from Fujian but harvested at high elevation. Pair-wise comparison is rendered 
with a colorized fuzzy difference. Pixel’s saturation (color vs. grey tones) indicates the magnitude 
of the difference between the analyzed and reference images, with grey indicating equal pixel 
values and bold colors (green or red) indicating large differences. Enlarged areas corresponds to 
monosaccharides (a/c) and specialized metabolites belonging to the chlorogenic acid and flavan-
3-ol classes (b/d). Untargeted comparative visualization, when implemented with UT 
fingerprinting, enables the localization of key primary metabolites and other biomarkers 
up/down-regulated comparing pre- vs. post-monsoon and high- vs. low-elevation tea samples. 

  

New technologies applied to EI-MS based on variable ionization energy systems offer new 
possibilities. In a study applying tandem ionization TOFMS, the primary metabolome of raw 
hazelnuts (Corylus avellana L.), was explored to better understand compositional differences  

correlated to cultivar and geographical origin.23 By UT fingerprinting, based on peak region features, 
the authors delineated about 140 reliable analytes present in all-but-one sample under study. Of 
them, 108 analytes were putatively post-targeted. Analytical data were examined to understand the 
complementary nature of tandem signals (i.e., 70 and 12 eV). Primary metabolites that are also 
known precursors of key-aroma compounds (e.g., 3-methylbutanal with isoleucine; 2,3-
butanedione/2,3-pentanedione with monosaccharides - fructose/glucose derivatives; 2,5-
dimethylpyrazine with alanine; 1H-pyrrole, 3-methyl-1H-pyrrole, and 1H-pyrrole-2-carboxaldehyde 
with ornithine and alanine derivatives) were further investigated to validate linear correlations 

Figure 4.2.8. Comparative visualization, based on visual features, rendered with a colorized fuzzy difference of tea primary 
metabolites. Pair-wise comparison is between a reference tea sample from Fujian Province (China) harvested at high elevation 

and (4.2.8A) a Yunnan tea from a high elevation and (4.2.8B) a Fujian tea from a low elevation. The magnitude of the 
difference between analyzed and reference images is rendered by pixel saturation, with grey indicating equal pixel values and 

bold colors indicating large differences. Enlarged areas highlight absolute compositional differences of monosaccharides 

(4.2.8 a/c) and specialized metabolites belonging to chlorogenic acid and flavan‐3‐ol classes (4.2.8 b/d). The column set was 
configured as follows: 1D DB-5 (30 m × 0.25 mm ID, 0.25 µm df) and a 2D OV-1701 (2 m × 0.1 mm ID, 0.1 µm df).  

Thermal modulation by loop-type modulator. Modulator capillary: 0.80 m of the 2D column, leaving 1.2 m for the separation 
process. Oven program: 75 °C (1 min) to 290 °C (15 min), rate 4 °C/min; PM 5s. From Stilo et al. 28. 
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between them. When combined, tandem signals provide useful cross-validation of results, support 
post-targeting by improving the relative abundance of structure-related high molecular weight 
fragments in the spectra, and extend the dynamic range of the method.  

 

4.2.6 Concluding remarks 

Untargeted analysis of GC×GC-MS data is undoubtedly the most profitable strategy for 
exploring the food metabolome, its variations due to changing inputs (e.g., climate variability), and 
its interaction with living organisms (e.g., humans, animals, microbes). MDA platforms provide 
multiple and orthogonal information about each sample’s composition and when mass 
spectrometry is used at the data processing level, the comparative process becomes specific and 
highly informative, enabling effective post-targeting. Features, if consistently annotated and 
recorded together with all available analytical metadata, can be treated as “unknown – knowns” and 
their disambiguation/identification, when libraries and reference compounds are not available, can 
be postponed (e.g., in ex-post analysis) until needed (e.g., until they become important sensory 
contributors or health and environmental makers). 

Although MDA platforms are rapidly evolving to produce robust, stable analytical systems that 
provide increasing multidimensional, high-density data, such systems result in increasing data 
analysis challenges due to the need univocally record and annotate detected features as well as re-
aligning them across multiple samples and over many years. To date, only a few software tools 
produce automatic, intuitive 2D chromatograms processing with the possibility for supervised 
investigation (e.g., scripting) and personalized workflows. If we can conclude that analytical 
chemistry tools are mature enough to tackle food samples’ compositional complexity, we must 
affirm that analytical strategies and data processing alone cannot provide all answers. 
Comprehensive sampling, including all relevant variables modulating the phenomenon under study, 
robust experiment design and interaction between experts in different disciplines are fundamental 
to achieve higher level information. In this review, we found that the increased separation space 
offered by GC×GC coupled with MS feature alignment can detect/identify “unknown – knowns” 
while providing the means to obtain the total, detectable metabolome in agricultural crops and food. 
We expect, in the near future, a wider spread of untargeted strategies in food-omics; we know such 
investigations will be successful and convince the analytical chemistry community of the real 
potential of these tools.  
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4.3.1 Abstract 

This review focuses on the role that GC×GC can play within the investigation workflows of 
food-omics and related disciplines and sub-disciplines, including food metabolomics, 
nutrimetabolomics, sensomics, and food safety. After a short introductory survey, discussing the 
intriguing context of system biology and integrationist approaches of investigation, the concepts of 
analytical dimensions and the key-characteristics of GC×GC are introduced. Through a selection 
of relevant examples, the boosting role of GC×GC within food-omics is described, providing to 
the reader evidence of how comprehensive multidimensional separations-based platforms have 
introduced new concepts and tools in the analytical measurement of complex biological samples. 
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4.3.2 Introduction 

Comprehensive two dimensional gas chromatography (Comprehensive 2DGC or GC×GC) is 
a highly effective realization of the definition of a multidimensional (MD) technique introduced by 
Giddings in 1987:1 “a separation system [is] multi-dimensional when i) all components of a sample are subjected 
to two or more separation steps, in which their displacements are dependent on different factors, and when ii) two or 
more components are substantially separated in any single step, they should remain separated until the end of the 
separation process.” This definition clearly stated the concept of multidimensionality, restricting the 
then-contemporary techniques that conformed with it to two-dimensional thin layer (TLC) and 
paper chromatography, widely used by biochemists. It took only four years for John Phillips with 
Zaiyou Liu to materialize this theoretical concept for gas chromatography (GC) and to develop a fit-
for-purpose instrument.2 The synergic achievements of the concepts developed by Giddings and 
Phillips have been the basis of other MD chromatographic techniques not only involving GC but 
also liquid chromatography (LC) and supercritical fluid chromatography (SFC) such as LC×LC, 
SFC×SFC, and SFC×LC.  

As for all innovative techniques, GC×GC had to overcome three phases before achieving a full 
recognition.  The introduction and optimization of its theory and operation covered a time span of 
about 10 years (1991-2000) during which the petrochemical industry played a fundamental role for 
GC×GC development because of its continuous need to characterize high complexity sample.3,4 
Next, popularization of the technique covered another time span of about 10 years (2001-2012), 
during which GC×GC was opened to widely differing disciplines.5–7 This development also 
coincided with the routine introduction of fingerprinting approaches in the biological studies in 
which analysis, or better a comprehensive “view” of high complexity mixtures in a single step, 
became fundamental for applications in the omics disciplines and in particular to metabolomics (see 
below).8 These years also coincided with a considerable evolution of the hardware, standardization 
of instrumentation, optimization of GC×GC coupling with MS, and development of specially 
dedicated software.5,6,9,10 Finally, during the current period, GC×GC has moved out of the academic 
laboratories to enter routine activity even as analytical innovation influences the evolution of the 
strategies of analysis (e.g., the adoption “dilute-and-shoot” methods).  

In this context, research studies adopting GC×GC as primary analytical tool, should: (a) design 
a suitable configuration of the analytical platform, by combining all relevant analytical dimensions; 
(b) define the data processing approach that maximizes the effective extraction of relevant 
information from raw data; and (c) apply suitable data mining to interpret results and achieve higher 
levels of information about the phenomenon under study. The elements of this rational approach 
are visualized in Figure 4.3.1 together with their interrelation with food omics investigative goals. 
A detailed discussion of individual key elements is outside the scope of this contribution; readers 
interested in more recent advancements on data processing and data mining for “omics” areas 
might refer to recent reviews.9,11–14 

GC×GC is nowadays a self-consistent technique fully independent but complementary to GC, 
covering important fields of applications that mono-dimensional GC (1D-GC) cannot achieve with 
a single analysis, such as the analysis of highly complex mixtures with more than 250 components, 
the practical limit today achievable with 1D GC.  

After a (short) schematic introductory survey discussing the principles of system biology and 
the concept of analytical dimensions, this overview focuses on the role that GC×GC can play with 
the different disciplines and subdisciplines related to the food field (food-omics) including food 
metabolomics, nutrimetabolomics, sensomics, and food safety.  
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Figure 4.3.1. Main investigation goals of food omics (i.e., food metabolomics, sensomics, nutrimetabolomics, and food safety) 

correlated with the steps of a rational approach adopting GC×GC as primary analytical tool: analytical platform configuration, data 
processing and data mining. 

 

4.3.2.1 From reductionism to interactionism: the role of analytical chemistry  

The complexity of biological systems and the multi-level interactions behind biological 
phenomena have motivated the development and evolution of system biology, a discipline that tries 
to model the complexity by unraveling higher-order network structures and relationships between 
conditions, taking into account the effect of molecular patterns on multiple targets.15 From the 
opposite direction, at least from a conceptual viewpoint, chemical biology, growing in parallel to 
system biology, offers well-consolidated strategies and approaches aimed at pairing individual 
compounds and targets. A “one compound/one target” mindset also referred to as reductionist 
approach biology.15  

Food chemical investigations moved from reductionism to the integrationist mindset of system 
biology15 by following, from one side, the ever increasing demand for high-quality food with high 
nutritional value and bio-active beneficial components, and, on the other side, the evolution of 
analytical chemistry measurements concepts and tools. It was in fact foreseen in 1991 by R. Wilson 
in an editorial for Analytical Chemistry16 that:: “A persistent research frontier is the analytical chemistry of 
the mixtures of chemical substances generated by living organisms. The problems of separation, molecular 
identification, and quantification of these mixtures are enormous. They are the ultimate molecular mishmash. The 
challenges they offer have demanded, and produced, many new concepts in chemical measurement science”.  

For chromatographers, 1991 marked a turning point with the first paper introducing the 
concept and the tools to realize comprehensive two-dimensional separation in gas phase.2 Liu and 
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Phillips and presented the separation of a standard mixture obtained by coupling in-series two 
capillary columns, a first dimension (1D) polyethylene glycol (PEG) column [21 m × 0.25 mm id × 
0.25 um df] and a second dimension (2D) apolar dimethyl polysiloxane column [1 m × 0.10 mm id 
× 0.10 um df] interfaced with a thermal modulator. The separation was achieved in 2.5 min with a 
modulation period (PM) of 2 s and a clear ordered pattern was obtained with a relative retention 
over the separation space patterned by the analytes’ relative volatility and polarity. 

Since then, although with an “induction period” of several years due to skepticisms of several 
expert chromatographers who were not fully convinced of the advantages and potential of 
GC×GC, the technique entered in several application fields as an alternative to 1D-GC or as a 
replacement of it.3–5,17–23 The possibilities offered by improved separation, resulting in higher 
separation power, efficiency, and resolution accompanied by band-compression in space, which 
improves methods sensitivity, make GC×GC the tool of choice to explore complex samples 
chemical dimensions,24 matching integrationist needs for informative patterns of triggering 
molecules. 

However, to achieve a suitable informative level regarding sample composition, multiple 
analytical dimensions must be combined appropriately. The next section introduces the concept of 
multidimensional analytical (MDA) platforms and illustrates common GC×GC configurations and 
their informative dimensions.  

 

4.3.2.2 Analytical dimensions  

MDA platforms combine orthogonal principles of measurement through the hyphenation of 
physicochemical discrimination by chromatography, electromigration, size exclusion, etc. and 
spectroscopic techniques (e.g., mass spectrometry (MS), nuclear magnetic resonance (NMR), 
infrared (IR), ultraviolet (UV), etc.). By collecting multiplex analytical information, the process has 
the potential of discriminating, identifying, and quantifying sample constituents, or homologous 
classes, even when sample dimensionality is high and the presence of interferents might challenge 
the measurement process. Moreover, the higher the “orthogonality degree” of the information 
collected, the larger the opportunities to comprehensively approach food.13,15,18,25  

Although the integrationist approach looks for patterns of chemicals rather than for single 
components/biomarkers, the analytical process should provide consistent information on analytes’ 
identities and amounts – relative or absolute. To achieve these goals, MS operating at unit-mass 
resolution or by exact mass assignments (with high-resolution MS - HRMS) is fundamental. 
Molecular features and functionality can be derived by fragmentation patterns obtained through 
electron ionization (EI-MS) either at standard 70 eV or at lower energies,26 by molecular ions or 
adducts produced with chemical ionization (CI-MS); or by multiple fragmentations from tandem 
MS (MS/MS or MSn). However, due to the great compositional complexity of food fractions that 
includes hundreds of isomer/isobaric components, univocal identification and robust quantitation 
cannot be achieved if the measurement is not accompanied by adequate physicochemical 
discrimination, provided by chromatography (1D or GC×GC). Moreover, when food sensory 
properties are of interest for the investigation, if not the primary aim, odor quality assignment 
through olfactometry becomes an essential dimension of the analytical system. The section devoted 
to sensomics provides a deeper insight on the role of olfactometry, on-line or off-line, combined 
with GC×GC platforms. 

The separation power of GC×GC is undoubtedly a key characteristic that leads to the 
production of highly detailed 2D chromatographic fingerprints with rationally ordered retention 
structures that open new and interesting perspectives for data processing, e.g., group-type 
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analyses,27–29 while increasing confident identification of unknowns.30 For example, the appropriate 
combination of column dimensions, stationary phase chemistries, and modulation dynamics in 
rationalizing the retention logic of alkyl substituted pyrazines from roasted coffee, was discussed by 
Ryan et al.31 and by Mondello et al.32 This was one of the first demonstrations of the advantages 
provided by GC×GC in group-type investigations of food. The authors adopted a polar × apolar 
column combination (1D PEG × 2D 5% phenyl - 95% dimethylpolysiloxane) and achieved univocal 
identification by combining linear retention indices (IT) in the 1D, MS fragmentation patterns by EI 
and time-of-flight MS (TOF MS) and 2D retention logic. Figure 4.3.2 illustrates the ordered 
retention pattern of twenty alkyl pyrazines from a roasted Robusta coffee sampled by headspace 
solid-phase microextraction (HS-SPME) followed by GC×GC-FID with a longitudinally 
modulated cryogenic system (MLCS) operating with liquid CO2 as cryogen. Pyrazines follow a 
rational order along the 1D by the molecular weight and alkylation degree, whereas along the 2D, 
the relative retention is more strongly influenced by alkylation.  

 

 
Figure 4.3.2. Ordered retention pattern of twenty alkyl pyrazines from roasted Robusta coffee volatiles sampled by headspace solid-
phase microextraction (HS-SPME). Compounds assignment are: (9) for pyrazine, (10) for 2-methylpyrazine, (14) for 2,5-
dimethylpyrazine, (15) for 2,6-dimethylpyrazine, (16) for 2-ethylpyrazine, (17) for 2,3-dimethylpyrazine, (19) for 2-ethyl-6-
methylpyrazine, (20) for 2-ethyl-5-methylpyrazine, (21) for 2,3,5-trimethylpyrazine, (22) for 2-ethyl-3-methylpyrazine, (23) for 2,6-
diethylpyrazine, 25 2-ethyl-3,5-dimethylpyrazine, (26) for 2,3-diethylpyrazine, (27) for 2-ethyl-3,6-dimethylpyrazine, (28) for 3,5-
diethyl-2-methylpyrazine. The analyses were performed by a column set consisting of a 1D Supelcowax-10 (30 m × 0.25 mm ID, 
0.25 mm) and a 2D SPB-5 (0.1 × 0.1 mm ID, 0.1 mm). Thermal modulation was by longitudinally modulated cryogenic system 
(LMCS) operating with liquid CO2 as cryogenics. Modulator capillary: 1 m × 0.10 mm ID of deactivated fused silica capillary. Oven 
program: 60°C (5 min) to 230°C (5 min), at 1.5°C/min, and to 280°C (2 min) at 50°C/min, PM 5s. From Mondello et al.32. 

 

Many fermented primary materials or processes for food have clear signatures of homologues 
deriving from common biosynthetic pathways (e.g., short-chain fatty acids – SCFAs and primary 
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alcohols in cocoa fermentation),33–36 or whose formation derives from common reaction 
frameworks (e.g., Maillard reaction in roasted foods).37–39 SCFAs, aliphatic alcohols, linear saturated 
and unsaturated aldehydes, esters, furans, and pyrroles are, among the others, compound classes 
with rational retention logic that is of great help in identification and disambiguation.  

Besides ordered retention logic, the role of 1D IT is fundamental for disambiguating 
isomers/isobaric compounds with similar EI-MS patterns. The most popular MS databases, such 
as those from NIST40 and Wiley,41 incorporate experimental and estimated retention indices on 
most common stationary phases, making possible by MS search software the application of 
retention-index constraints. This option was pioneered by Mondello and co-workers42,43 who 
developed one of the first interactive-databases for flavor and fragrance applications. More recently, 
Reichenbach et al.44 developed an algorithm for IT computation that does not require calibration by 
standard n-alkanes or fatty acids methyl esters (FAMEs). By this approach, putative identifications 
obtained by automatic and comprehensive, untargeted MS search on sample’s constituents, generate 
from their retention times the locking points to compute piecewise linear or logarithmic 
interpolation of IT, e.g., the Kovats (with isothermal analysis) or Van den Dool Indices (i.e., linear 
retention indices). Figure 4.3.3A plots, by piecewise linear interpolation function, 1tR vs. Library IT 
for 21 analytes of a terpene standard mixture. IT are those incorporated into database entry for the 
top ranked analyte resulted by direct match factor (DMF) similarity. Figure 4.3.3B shows the 
reliable model for preliminary IT calibration without standardization, obtained by eliminating 3 
entries (IDs #8, #18, and #21 44) for which analyst supervision revealed incorporated IT 
inconsistencies.  

 

 
Figure 4.3.3. IT calibration based on fitting the calibration model to the observed relationship between 1tR and the top ranked 

analyte resulted by direct match factor (DMF) similarity. (4.3.3A) 18 of Top 21 analytes (3 #1 hits lacked library IT); (4.3.3B) 15 of 

Top 21 analytes consistent with piecewise linear IT calibration model. Adapted from Reichenbach et al.44 

When the high compositional complexity of processed food prevents the clear identification 
of component signatures, on both retention patterns and MS spectra, dedicated data processing 
tools could be of help. If homologues patterns are mutually overlapped, the selective extraction of 
diagnostic MS signatures from the third analytical dimension by scripting functions27,28,45,46 enable 
effective isolation of individual components and classes accompanied by 2D visualization. Figure 
4.3.4 shows pseudocolor images of whole dried milk volatiles extracted by dynamic headspace (D-
HS) by means of polydimethylsiloxane (PDMS) trap (4.3.4A and 4.3.4B) or by headspace sorptive 
extraction (HSSE) on a PDMS sorptive phase. Figure 4.3.4A reports the TIC trace obtained by a 
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polar × medium-polar column combination; Figure 4.3.4B shows the resulting image after 
applying a CLIC™ Expression (GC-Image, LLC Lincoln NE, USA) targeted to linear saturated 
aldehydes MS spectral signature (prioritizing 57, 82, 95 m/z); and Figure 4.3.4C shows selected 
lactones (prioritizing 55, 71, 99 m/z). 

 

 
Figure 4.3.4. Pseudocolor 2D images of a whole dried milk sample extracted by dynamic headspace (D-HS) or by headspace 
sorptive extraction (HSSE). (4.3.4A) The TIC trace of the sample headspace (D-HS-PDMS), (4.3.4B) the SIM trace of linear 

saturated aldehydes (57,82,95 m/z) and (4.3.4C) SIM trace for lactones (55,71,99 m/z) recovered by HSSE-PDMS. SIM images 
were obtained by scripting with CLIC™ Expression (GC Image, LLC Lincoln NE, USA). The column set was by a 1D SolGel-

Wax (30 m × 0.25 mm ID, 0.25 mm) and a 2D OV1701 (1 × 0.1 mm ID, 0.1 mm). The system was equipped with a two-stage KT 
2004 loop thermal modulator (Zoex Corporation, Houston, TX) cooled with liquid nitrogen controlled by OptimodeTM V.2 (SRA 

Instruments, Cernusco sul Naviglio, MI, Italy). PM 5s and hot-jet pulse 0.25 s. Modulator capillary: 1 m × 0.10 mm ID of 
deactivated fused silica capillary. Oven program: 40 °C (1 min) to 170 °C at 2 °C/min and to 250 °C at 20 °C/min (5 min). From 

Nicolotti et al. 46 

 

MS is a fundamental dimension of MDA for food investigations; besides its confirmatory role, 
it can improve specificity in the cross-comparative analysis of large sets of samples while also 
enabling confident untargeted investigations.13 Worthy of mentioning are MS platforms that operate 
at variable energy EI47–49 (viz., Tandem Ionization™), “soft” ionization by laser photo-ionization,50 
or those including chemical ionization (CI).51 By multiplexing spectra generation with time-
switching between two energies,48 and thanks to a specific design of the ion source, efficient 
ionization with minimal sensitivity loss is achieved even at low energy (e.g., 10-20 eV)49,52–56. 
Successful applications in food include volatiles and potent odorants in cocoa 49 and in extra-virgin 
olive oil,57 and primary metabolites silyl derivatives from hazelnuts.47 

TOF analyzers are the most popular MS detection platforms in combination with GC×GC; 
however, just a few of them are capable of achieving high mass resolution, high mass accuracy, in 
combination with fast scan speeds. Only a few examples of HR-TOF MS or food applications have 
been demonstrated, but their potential is clear for confident identification and database 
construction for complex fractions whose components are not fully covered by commercial 
databases. Tranchida and co-workers dedicated efforts in this direction by studying the 
unsaponifiable fraction of milk fat from different mammals (cow, buffalo, ewe, and goat),58,59 and 
more recently unsaponifiable fraction of vegetable oils.60 The benefits provided by HR-TOF MS 
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were mainly related to the sterols class for which both group-type retention ordering and HR-
spectra helped in their reliable identification. 

On the other hand, more common single quadrupole instruments achieve frequencies and 
sensitivities suitable to be successfully used for MS detection in combination with GC×GC, 
although with minor limitations in the mass range extension to afford recording a diagnostic 
number of data points per peak. 

 

4.3.2.3 Omics fields related to food: open questions to be answered 

Commonly, omics refers to the process of “collective characterization and quantification of 
pools of biological molecules that translate into the structure, function, and dynamics of an 
organism or organisms”.61 The first omics discipline was genomics, aimed at studying the entire 
genomes, and was conceptually opposed to genetics, that interrogates individual variants or single 
genes. To date, a number of different omics have been defined, covering many different fields of 
genetics, biology, and chemistry. Interestingly, most of the omics related to food attempt to 
correlate chemical patterns/composition with biological properties of food such as nutritional 
density and its impact on humans, sensory properties, biological activity, responses to external 
stimuli such as climate changes on crops, processing practices on semi-finished and finished 
products, and effects of bacterial metabolism on food composition (e.g., fermented food).    

With a comprehensive and reliable definition of the food chemical code, a better understanding 
on different phenomena is achieved: (a) key food quality markers in primary materials and finished 
products; (b) bioactive components in food products, extracts, and/or biological fluids; (c) 
biomarkers in dietary interventions; and (d) human response indicators correlated to metabolic 
alterations induced by food groups and patterns. 

Within the universal framework of foodomics,62 defined as “a discipline that studies the food 
and nutrition domains through the application of advanced omics technologies to improve 
consumer’s well-being, health, and confidence”, many other omics related to food have been 
delineated. They focus on more specific interrelations while sharing common investigational 
strategies and approaches.  

Of them, food metabolomics aims at improving the understanding of the relationships between 
food chemical composition and external variables/stimuli (e.g., crop botanical origin, harvesting 
area, climate impact, post-harvest treatments, storage conditions, and shelf-life). It represents an 
emerging area in which GC×GC is demonstrating its central role63 and boosting effect, providing 
larger candidates lists with higher intrinsic informative power.  

On the other hand, and tightly connected to food metabolomics, the integration of nutritional 
science with metabolomics delineates the framework of nutrimetabolomics. Within its boundaries, 
nutrimetabolomics investigates “perturbations of the human metabolome by specific diets, foods, 
nutrients, micro-organisms or bioactive compounds”64 while supporting deep mechanistic 
understanding of the impact of diet and dietary patterns on human health. Its interrelation with the 
food metabolome, considered as “the part of the human metabolome directly derived from the 
digestion and biotransformation of foods and their constituents”,65 refers to the presence of both: 
(a) nutrients that trigger metabolic response in humans, and (b) non-nutrients that might interact 
with receptors’ patterns and metabolic cycles with effects on human metabolism.   

When food hedonic profiling is the object of the investigation, sensomics and its well-
established workflow, attempts to “molecularize flavor entities of nature” by defining the unique 
and peculiar odor and taste code capable of evoking food recognition while driving consumers to 
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pleasant culinary experiences.66 Sensomics and correlated disciplines such as flavoromics67 provide 
solid foundations for objective and rational qualification of food on the basis of chemoreceptive 
events occurring in our nose and oral cavity.  

Food safety and authenticity, although to date have not been developed with an “omics” related 
framework, have a central role in food analysis. In particular, food safety is a compulsory 
requirement/pre-requisite for all food products intended for human consumption. For the purpose 
of this review paper, food safety is included in the discussion due to the potentials of GC×GC in 
safety assessments and its information power in suggesting supportive actions to improve the 
overall safety of the food chain. Some interesting examples in the context of food authentication 
and food identitation are provided in referenced literature.68–70   

 

4.3.2.4 Investigation approaches  

Well established analytical approaches within metabolomics are those defined as profiling and 
fingerprinting.71,72 They both inform about compositional differences between samples although with 
a different extent. Profiling is conducted by optimizing the whole analytical process toward known 
samples' components, along the reductionist track. Detailed information on analytes’ retention, 
mass spectrum, detector response, etc. is collected to allow qualitative and/or quantitative 
comparisons. If profiling is conducted toward a priori defined analytes (i.e., known components),73 
it can be a targeted profiling. However, if the analytical process generates distinctive features for all 
individual components, enabling a truly comprehensive evaluation on sample’s constituents, the 
approach can be defined as untargeted profiling.74,75  

Conceptually different is fingerprinting, as it was defined by Fiehn72 for metabolomics. As a high-
throughput process for effective cross-comparative analysis of samples, it does not necessarily 
achieve the one-feature/one-component resolution of profiling, while it keeps the potential of 
informing about the comprehensive set of features ideally corresponding to chemical constituents 
of a sample. In the case of profiling, the level of information (qualitative and quantitative) achievable 
is function of the analytical dimensions of the system. For example, some spectroscopic techniques 
(e.g., nuclear magnetic resonance – NMR, near infrared spectroscopy - NIR) can achieve the highest 
information level, although signals from trace and ultra-trace components could be lost.  

Thanks to the rapid and straightforward evolution of MDA platforms, more stable and 
informative systems are now readily available, offering opportunities to extend and improve the 
concept of fingerprinting.27 2D peak patterns generated by GC×GC, or by LC×LC, can 
conceptually be compared to human fingertips whose minutiae features (e.g., ridge endings and 
bifurcations) are exploited by fingerprint recognition technology for individuals’ identification. In 
chromatographic fingerprinting, minutiae features within 2D peaks patterns, are detected, aligned, and 
compared across many samples. Depending on system dimensionality, 2D chromatographic 
features can provide multifaceted information, also referred to as metadata, including retention 
times in the two chromatographic dimensions (1tR, 2tR), detector responses, MS spectral signatures 
and/or additional data related to olfactory quality, parallel detection information, etc. 
Chromatographic fingerprinting has the potential to give access to the higher levels of information 
encrypted in MDA data sets. Its fundamental concepts and tools have been recently reviewed.27   

The next section presents selected research, within food-omics and related fields, that 
demonstrates the boosting role of GC×GC in developing a more comprehensive understanding of 
complex phenomena, more accurate and informative results, or simply a new perspective of 
investigation of complex samples. 
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4.3.3 Straightforward applications of GC×GC in the food area 

4.3.3.1 Food-metabolomics 

Food metabolomics by GC×GC can be directed to volatile organic compounds (VOCs), a 
fraction sometimes referred to as food volatilome.76 By accurate profiling and fingerprinting of VOCs, 
deeper insights can be achieved on food quality and spoilage, on the effect of climate changes on 
plant phenotype expression, or to understand the effect of pedoclimatic variations and geographical 
origin.35,36,38,77–83 The lipid fraction, by fatty acids methyl esters (FAMEs) profiling and fingerprinting, 
can be mined for its diagnostic role in terms of quality and origin.84,85 For food of vegetal origin, 
plants’ primary metabolites (i.e., non-volatile small molecules such as amino acids, sugars, low 
molecular weight acids, amines, etc.) inform about primary materials’ quality 47, harvesting practices, 
storage conditions and processing impacts,63,86,87 and abiotic and biotic stress factors effects on 
crops.88,89  

Mack et al.90 investigated postharvest ripening impact on kiwifruit. The authors applied 
untargeted metabolomics to evaluate metabolic changes in kiwifruits across six stages of postharvest 
ripening plus two non-marketable stages that were connoted by a dramatic water loss. Sugars, sugar-
related substances, and organic acids, together with other known and unknown components, 
showed meaningful variations along post-harvest ripening stages. Of them, sugars followed an 
incremental trend while organic acids predominantly decreased. In addition, unexpected changes in 
the concentration of some known and unknown metabolites were observed. One of the most 
interesting aspects of this study was the multiplatform approach that combined GC×GC-qMS, GC-
MS, and NMR on the same samples. Results were thus cross-validated between platforms indicating 
GC×GC–qMS was the most sensitive platform (of those in the study), allowing the detection of 
the major part of the kiwifruit primary metabolites. The most concentrated analytes, e.g., main sugars 
and some organic acids, were better profiled by targeted GC-MS. NMR was least sensitive 
compared to GC×GC-MS and GC-MS, although for some analytes it showed better reproducibility. 
The metabolome coverage was quite satisfactory, with about 160 analytes reproducibly measured 
by GC×GC-qMS and GC-MS. About 45% of all metabolites were identified using an in-house 
spectral database, while for unknowns it was possible to hypothesize the chemical class, based on 
the MS fragmentation patterns and relative retention over the 2D space.  

By their untargeted multi-platform approach, the authors were able to examine 
comprehensively the evolution of kiwifruit metabolome during ripening and over-ripening. By the 
complementary nature of the three platforms, a wider dynamic range of concentrations was 
covered. The most relevant variations were those of sugars and related substances, which increased 
during ripening, and of organic acids, which decreased until over-ripening. Other metabolites, such 
as methanol and xylose, had a maximum in the middle-ripe stages whereas galacturonic acid was 
detected only in overripe fruits. The study provides a solid foundation for the adoption of GC×GC-
qMS as an exploratory analytical platform for untargeted food metabolomics.  

When the interest focuses on extreme climate events (drought and temperature effects) and 
their impact on high-economic value crops, untargeted food metabolomics by GC×GC-TOF MS 
has demonstrated to be a valid complement to other techniques targeted to non-volatile specialized 
plant metabolites.91,92 Stilo et al. investigated tea (Camellia sinensis L. Kuntze) primary metabolome89 
to better understand plant metabolism adaptation to drought and heavy rains or to daily temperature 
variations due to elevation. By adapting an extraction/derivatization protocol, well established in 
biological fluids metabolomics,93 an extensive coverage of tea primary metabolites was obtained. Of 
the 780 peak features detected and monitored over more than 40 samples, 74 metabolites were 
putatively identified based on their relative retention (2D pattern logic and 1D IT) and MS spectral 
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similarity. Most of the detectable features showed meaningful variations according to season (spring 
vs. summer) and/or to harvest altitude. The known metabolites coverage included 15 amino acids, 
21 organic acids, 7 polyalcohols, 14 sugars, and a few specialized metabolites belonging to the 
phenols class (flavan-3-ols and phenolic acids) and alkaloids (caffeine).  

Results revealed that during spring, alanine, aspartic acid, glycine, threonine, valine, 
phenylalanine, phosphoric acid, xylonic acid, and xylitol were up regulated by the tea plant. When 
the investigation was extended across samples belonging to two harvest years, fructose, glucose, 
maltose, and arabinose had consistent up-regulation in spring teas. The impact of altitude, which 
induces daily temperatures differences, was seen in an up-regulation of alanine, isoleucine, tyrosine, 
catechin, gallic acid, glycolic acid, malic acid, and ribonic acid in low-elevation teas.  

The study, complementing previous work on unprocessed tea focused on volatiles, on 
specialized metabolites and metals,88,91,92 extended the existing knowledge on the complex 
interrelation between tea plants and climate. The authors stated: “…this work’s objective was to identify 
key primary metabolites and other biomarkers that can contribute to our understanding of the complex relationships 
and feedback loops that occur between human and natural systems, specifically, strategies to counter climate effects on 
tea plants.” The higher level of information achievable by the extended metabolite coverage of 
GC×GC-TOF MS metabolomics, including known and unknown features consistently tracked 
across many samples, opens new perspectives in food research. The rich set of metadata (retention 
times in two dimensions, MS fragmentation patterns, absolute and relative responses, etc.) linked 
to all untargeted features, can be ex post explored for specific discrimination potential with 
compound identification elucidated by EI-MS spectra, 1D IT, and pattern retention logic.13  

Fatty acids (FAs) accurate profiling and fingerprinting is another research subject where 
GC×GC-MS has introduced a new perspective in the investigation. Although lipid fraction 
chemical dimensionality is not very high, the concurrent presence of several FAs isomers, showing 
very similar retention behavior, requires high separation power and selectivity for an accurate 
profiling and deep investigation. GC×GC combines both analytical features (i.e., separation power 
and differential selectivity on the two chromatographic dimensions) and adds the unique 
opportunity of generating 2D patterns whose retention logic might help in the identification and 
disambiguation of components not available as reference standards (e.g., odd carbon number and 
branched FAs). Tranchida and Mondello dedicated efforts in this application field by profiling and 
fingerprinting FAs from plants, algae, and animal origin.84,85 FAs homologue series within the C4-
C24 range can be transformed into methyl ester derivatives (fatty acids methyl esters - FAMEs) and 
then characterized by different column combinations. Figure 4.3.5A shows the 2D pattern of 
human plasma FAMEs analyzed by an apolar × polar column combination. Analytes are aligned 
along diagonal bands based on carbon number (CN) within C14 and C24 (zones indicated by black 
arrows) and grouped while forming 2D sub-patterns ordered based on double-bond (DB) number. 
In the example of Figure 4.3.5A, seven DB bands are marked and aligned along the 2D. As 
additional retention criteria, the relative position of DBs, form diagonal retention bands. The ω-
derivatives of C20:5ω3, C20:4ω3, and C20:3ω3 are illustrated in the enlarged area of the chromatogram of 
Figure 4.3.5B.  

In the example of Figure 4.3.5A-B, analyte identifications were conducted by confirming the 
presence of 36 FAMEs though reference standard compounds while the identification of the 
residual 29 components, for which standards were not available, was based on highly ordered nature 
of the 2D pattern.94 
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Figure 4.3.5. (4.3.5A) 2D pattern of human plasma FAMEs within the C4-C24 range. Analytes are aligned along seven diagonal 
bands, based on carbon number (CN) within C14 and C24 (zones indicated by lack arrows), and grouped while forming 2D sub-

patterns ordered based on double bonds (DB) number. (4.3.5B) Enlarged area showing the C20 FAMEs group. The analyses were 
performed by a column set consisting of a 1D Equity-1 (30 m × 0.25 mm ID, 0.25 mm) and a 2D Supelcowax-10 (0.95 × 0.1 mm 

ID, 0.1 mm). The GC system was equipped with an LMCS Everest longitudinally modulated cryogenic system (LMCS; 
Chromatography Concepts, Doncaster, Australia), with a mechanical stepper motor drive for movement of the cryotrap operating 

with liquid CO2 as cryogenics. Oven program: 180°C to 280°C (10 min), at 3°C/min, PM 6s. Adapted from Tranchida et al.94 

 

4.3.3.2 Nutrimetabolomics 

When knowledge on food composition is matched with nutritional science, the context of 
nutrimetabolomics appears clear and highlights a very promising track toward advanced nutritional 
care, dietary treatments, and personalized nutrition 64.  

In this investigation area, the major challenges are related to the great chemical dimensionality 
of biological fluids (i.e., urine, plasma and saliva) and the difficulty of obtaining highly-ordered 
patterns for chemically related compounds. Moreover, the large concentration difference between 
analytes and analyte classes is an additional issue that impacts system contamination, method 
precision, and long-term reproducibility.  

Therefore, most of the efforts in nutrimetabolomics by GC×GC-MS are directed to achieve 
close-to-optimal separation power in both analytical dimensions accompanied by adequate 
system/column loadability and appropriate injection to enable full separation/resolution of 
detectable components within the actual dynamic range of concentration and, consequently, highly 
reliable quantitation – absolute or relative. Recently, an interdisciplinary group of researchers, 
belonging to the FoodBAll Consortium (BioNH call of the Joint Programming Initiative “A 
Healthy Diet for a Healthy Life” (JPI-HDHL),64 comprehensively revised the nutrimetabolomics 
strategies while also proposing good practices and standardized protocols to achieve high-quality 
results.  

In this highly challenging context, GC×GC has been successfully applied by Mack et al.95 to 
reveal coffee intake robust biomarkers. The authors investigated the complex human urine 
volatilome from a subset of 24 hours urine samples belonging to the cross-sectional study Karlsruhe 
Metabolomics and Nutrition (KarMeN), performed at the Max Rubner-Institut in Karlsruhe, 
Germany, between 2011 and 2013. The urine samples were submitted to HS-SPME followed by 
GC×GC-qMS and combined untargeted/targeted (UT) fingerprinting based on pattern recognition 
algorithms. Overall, 138 volatiles were reliably detected across all samples with a few of them 
showing strong-positive correlation to coffee intake. Six most informative volatiles were 
highlighted: 2-methyl-furan, guaiacol, 2-/3-methyl-butanoic acid, 2-vinylfuran, and 3,4-dimethyl-
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2,5-furandione; with the last as the most promising robust biomarker. Of great interest for the 
nutrimetabolomics context was the evaluation of the most suitable normalization methodology to 
account for unequal concentration of urine samples that leads to interesting observations applied 
to the specific context of urine volatilome. The untargeted/targeted investigation workflow is 
illustrated in Figure 4.3.6, including the 2D raw data pre-processing step including batch correction 
by quality standards, normalization based on different parameters (creatinine content, osmolarity, 
urine volume, mass spectral total useful signal - MSTUS and probabilistic quotient normalization - 
PQN), followed by data mining to reveal potential biomarkers through combined evaluation of 
correlation and statistical meaningfulness. Further insights on the normalization methods and their 
effect on variation coefficients (CVs%) are provided in the reference.95  

 

Figure 4.3.6. Untargeted/targeted investigation workflow, including 2D raw data pre-processing step (i.e., batch correction by 
quality standards and normalization based on different parameters: creatinine content, osmolarity, urine volume, mass spectral 

total useful signal - MSTUS - and probabilistic quotient normalization - PQN) followed by data mining to reveal potential 

biomarkers through combined evaluation of correlation and statistical meaningfulness. From Mack et al.95 

 

Another interesting study focused on the metabolic transformations of dietary polyphenols by 
colonic microbiota.96 The authors compared in vitro microbial phenolic metabolite signatures of 
selected foods and beverages with those from urine of healthy subjects undergoing dietary 
intervention (8-week clinical trial) with the same foodstuffs. GC×GC-TOF MS was applied in 
targeted mode for known polyphenolic patterns. Green tea, the most polyphenol-rich food included 
in the intervention, and its main specialized metabolites (namely phenolic acids) showed patterns 
of derivatives with modifications on the carbon backbone and extensive oxidation (mainly 
oxydrilation). Of them 3,4-dihydroxybenzoic acid; 3,4-dihydroxyphenylacetic acid; 3,4-
dihydroxyphenylpropionic acid; 3-hydroxybenzoic acid; 3-hydroxyphenylacetic acid; 3-
hydroxyphenylpropionic acid; 4-coumaric acid; 4-metylcatechol; 4-hydroxybenzoic acid; benzoic 
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acid; gallic acid; ferulic acid; sinapic acid; enterodiol; and vanillic acid were those reporting 
meaningful, positive correlation between urine excretion and in-vitro colon model. Moreover, 
considerably higher amounts of hippuric acid, 3-hydroxybenzoic acid, and ferulic acid were detected 
in urine of healthy subjects than in the colon model while the hepatic conversion model 
complemented the residual amounts of phenol-derived metabolites. The study contributed to a 
better understanding of the bioavailability of diet polyphenols and elucidated their interconnections 
to urinary metabolites signatures.  

Untargeted investigation on urinary metabolites signatures helped in a deeper understanding of 
the impact of solid vs. liquid fructose formulations in animal models.56,97 Bressanello et al.56 designed 
a system combining a 1D column with parallel dual secondary column-dual detection by MS and 
FID (GC×2GC-MS/FID) to capture changes in metabolic fingerprints from mice urines. Samples 
were from mice fed with a normal (control diet) or fructose-enriched diet provided in aqueous 
solution or in solid form. The intervention was followed for 12 weeks and metabolites signatures 
evolution tracked for single individuals and for sub-population/group.  

UT fingerprinting enabled coherent clustering of mice according to dietary manipulation; 
metabolite fingerprints related to high doses of liquid fructose showed meaningful variations on 
fructose, glucose, citric, pyruvic, malic, malonic, gluconic, cis-aconitic, succinic and 2-keto glutaric 
acids, glycine acyl derivatives (N-carboxyglycine, N-butyrylglycine, N-isovaleroylglycine, N-
phenylacetylglycine), and hippuric acid concentrations. Post-targeting on additional, informative 
features highlighted further metabolites not a priori pre-targeted: N-acetyl glucosamine, N-acetyl 
glutamine, malonyl glycine, methyl malonyl glycine, and glutaric acid, while quantitative GC-MS 
confirmed the role of several potential biomarkers through accurate quantitative results. 

Visual features fingerprinting, based on comparative visualization of urine signatures at 
different time points of the diet intervention, tracked individual variations while showing the 
potential role of data processing in supporting personalized strategies. Figures 4.3.7A and 4.3.7B 
show pseudocolor images of mouse #40 urine at 6 (4.3.7A) and 12 weeks (4.3.7B) of diet 
intervention with liquid fructose supplementation. Red graphics locate untargeted/targeted features 
delineated by the UT fingerprinting workflow. Green graphics instead correspond to column 
bleeding and/or interferences and were excluded by the computation. Figure 4.3.7C shows the 
comparative visualization rendered with a colorization that emphasized relative differences between 
patterns. The image is obtained by visual features comparison between the 12 weeks (reference 
pattern) vs. 6 weeks (analyzed pattern) urine signatures. Yellow areas over the 2D space in Figure 
4.3.7C correspond to targeted analytes whose response differences are reported in the list.  
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Figure 4.3.7. Visual features fingerprinting (MS signal full scan acquisition) based on comparative visualization of urine samples’ 

signature at different time points of the diet intervention, with red graphics locating untargeted/targeted features, while green 
graphics correspond to column bleeding and/or interferences and were excluded by the computation. (4.3.7A) pseudocolor images 
of mouse #40 urines at 6 weeks of diet intervention with liquid fructose supplementation – analyzed pattern; (4.3.7B) pseudocolor 

images of mouse #40 urines at 12 weeks of diet intervention with liquid fructose supplementation – reference pattern; (4.3.7C) 
comparative visualization rendered with a colorization that emphasized relative differences between patterns, yellow areas over the 
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2D space correspond to targeted analytes whose response differences are reported in the list. The column set was by a 1D SE52 
(30 m × 0.25 mm ID, 0.25 mm) and a 2D OV1701 (1.4 × 0.1 mm ID, 0.1 mm). The system was equipped with a two-stage KT 
2004 loop thermal modulator (Zoex Corporation, Houston, TX) cooled with liquid nitrogen controlled by OptimodeTM V.2 

(SRA Instruments, Cernusco sul Naviglio, MI, Italy). PM 5s and hot-jet pulse 0.35 s. Modulator capillary: 0.6 m × 0.10 mm ID of 
the 2D column. Oven program: 60 °C (1 min) to 300 °C (10 min) at 4 °C/min. From Bressanello et al.56 

 

4.3.3.3 Sensomics and Flavoromics 

Sensomics aims98 “to map the combinatorial code of aroma and taste-active key molecules, which are sensed 
by human chemosensory receptors and are then integrated by the brain….” Aroma alone contributes about 
80% of the hedonic profile of food 66 and it is modulated by volatile components generally present 
at trace- and ultra-trace levels (mg/kg or μg/kg) and characterized by low solubility in water media, 
low polarity, and molecular weights below 300 amu. Odorants, interacting with multiple Odorant 
Receptors (ORs) in the olfactory epithelium, produce a complex pattern of signals (i.e., the Receptor 
Code).66,99–101 The integration of these signal patterns by the nervous system produces olfactory 
perceptions.  

In this context, a fundamental contribution to the encryption of food odor code, the so-called 
aroma blueprint,66,102 is provided by the accurate and comprehensive chemical characterization of all 
potential ligands and modulator components constituting the Chemical Odor Code. Well-
established approaches combine multiple, discrete steps in a systematic workflow. They include 
volatiles isolation/extraction/concentration; chromatographic separation accompanied by 
olfactometric screening to identify odor active analytes; accurate quantitation; and validation of 
aroma contributions by recombination and omission tests.66,98,103  

GC×GC platforms can implement most of the sensomics tools. Marriott and co-workers made 
substantial advancements in developing multi-multidimensional platforms.104,105 Instrumental solutions 
include the possibility of switching between GC×GC and targeted multidimensional gas 
chromatography system (i.e., switchable GC×GC/targeted MDGC)106 to achieve full 
chromatographic resolution in critical regions of the separation space where potent odorants elute. 
The further, orthogonal dimension of olfactometry was added in a system designed by Chin et al.107 
to study aroma-active compounds in coffee and wine. The platform, combining GC-olfactometry 
(GC-O) and GC×GC with TOF MS/ flame ionization detector (FID)/ flame photometric detector 
(FPD) in sulfur mode, was used for screening odor-active compounds, separating them by bulk 
volatiles with GC×GC and identifying with TOF MS and FPD in combination.  

Besides the multi-multidimensional GC×GC platforms, which have a central role in flavor 
research, conventional systems are mature enough to become fundamental pillars for sensomics 
and flavoromics. Nicolotti et al.108 developed a fast, sensomics-based expert system – SEBES, to 
predict key-aroma compounds of a given food without applying all discrete steps of the 
conventional workflow 66,98,103. The authors developed an analytical method for isolation and 
accurate quantitation of about 100 odorants out of the 226 known key-food odorants (KFOs) listed 
by Dunkel et al..66 By a dedicated data-processing step, implementing additional data on odor 
thresholds, odor activity values (OAV; ratio of concentration to odor threshold) were calculated 
and sample’s combinatorial odor code encrypted. The role of GC×GC was fundamental, as 
observed by authors, to extend the method dynamic range enabling accurate quantification of 
analytes present at very different concentrations in real-world samples. Moreover, GC×GC 
separation efficiency and resolution, enabled a direct injection of crude extracts without further 
sample preparation steps. Validation of the SEBES system was by comparison with classical 
sensomics; accuracy was very high with a maximum quantification error of ±20%. As a conclusive 
remark, the authors stated that “it was successfully shown that it is possible to characterize key food odorants 
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with one single analytical platform and without using the human olfactory system, that is, by artificial intelligence 
smelling”.  

Many other applications have emphasized the fundamental role of GC×GC in flavor research. 
Of interest are those that directly analyze volatiles fractions by headspace (HS) 
approaches33,34,38,46,55,57,79,102,109,110. One of the emerging application areas is extra-virgin olive (EVO) 
oil volatiles. Within this complex fraction some potent odorants are responsible for positive 
attributes and of aroma defects.55,80–82 

Stilo et al. 57 explored the complex EVO oil volatilome analysing samples obtained from Picual 
olives harvested at different ripening stages. The combination of HS-SPME to GC×GC-TOF MS 
featuring hard and soft ionization in tandem (i.e., tandem ionization) enabled the identification of 
about 130 analytes, over more than 450 detectable volatiles. For most of the targeted analytes with 
a known role in the definition of the aroma blueprint of EVO oils,102,111,112 HS linearity was 
achieved,113,114 enabling accurate quantitation in a fully automated analysis. Moreover, the adoption 
of tandem ionization TOF MS extended the dynamic range of the method and the linear range of 
response, improving method capabilities and informative potential.  

 

4.3.3.4 Food safety  

Mineral oil hydrocarbons (MOHs) are complex mixtures of aliphatic hydrocarbon isomers and 
derivatives (linear -alkanes, branched – isoalkanes and cyclic compounds – cycloalkanes or 
naphthenes), also referred to as mineral oil saturated hydrocarbons (MOSHs) and of aromatic 
hydrocarbons (MOAHs). The latter includes aromatic moieties, with one or more benzene rings, 
and extensive alkyl-substitution. Certain MOAHs fractional components are known for their 
mutagenicity, toxicity, and tumor promoting effects.  

MOSH and MOAH occurrence in food primary materials, semi-finished, and finished products 
might be related to exogenous contamination sources, whose origin identification would be of great 
help to implement safety policies for the entire food-chain. MOH fractions quantitative and 
qualitative assessment represents a great challenge for analytical chemistry; the presence of many 
foodborne interfering compounds makes mandatory the adoption of suitable confirmatory 
methods.115–117 

The state-of-the-art approaches for MOSH/MOAH quantification in food are based on 
established methodologies that adopt liquid chromatography (LC) off-line or on-line coupled to 
GC-FID,118 but the presence of hundreds-to-thousands of isomers producing an unresolved 
complex mixture (UCM) profile in GC and the lack of a detection dimension with suitable 
specificity does not guarantee accurate quantitation even by LC-GC.119,120 Although (HR)MS may 
be a fundamental dimension to implement, alone it is not sufficient to isolate unique and distinct 
signals from exogenous MOSHs and MOAHs as required by EU Commission Decision 
657/2002.121  

In this scenario, the potentials of GC×GC were immediately clear. Biedermann and Grob 
proposed MOHs chromatographic fingerprinting based on medium polar × apolar column 
combinations capable of discriminating compound classes by pattern retention logic based on 
relative polarity/volatility. At the same time, through pattern recognition, the fingerprinting survey 
enables the identification of contamination sources.122 Figure 4.3.8 compares chromatographic 
profiles by reference LC-GC-FID method (left side) corresponding to MOSH and MOAH 
fractions with the corresponding GC×GC-TOF MS pseudocolor images from Asian rice suspected 
for MOH contamination.  
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Figure 4.3.8. LC-GC-FID chromatograms (left side) of MOSH and MOAH fractions and the corresponding GC×GC-TOF MS 

contour plots (right side) from Asian rice samples. Compounds’ assignment are (11) for n-undecane, (Cycy) for cyclohexyl 
cyclohexane, (Cho) for cholestane, (13) for n-tridecane, (20) for n-eicosane (DPB) for diphenoxy benzene, (5B) for n-pentyl 

benzene, (MN) for 1- and 2-methyl naphthalene, (TBB) for tri tert. butyl benzene, (Per) for perylene. The column set was: 1D 
column OV-17 (15 m × 0.25 mm × 0.15 μm) and 2D column PS-255 (2.5 m × 0.15 mm × 0.055 μm). Thermal modulation by 

loop-type modulator. Oven program: 70 °C (3 min) to 310 °C, at 5.0 °C/min; PM 6s. Acronyms are explicated in the text. From 
Biedermann and Grob.122 

The fingerprinting potential of GC×GC is illustrated through the ordered pattern of n-alkanes 
from n-C13 (internal standard) to n-C25 present in uncontaminated rice. Branched paraffines, with 
longer 2D retention, follow the elution line of n-alkanes, while oligomeric polyolefins (POSH) (C21 
oligomers) likely originating from polypropylene (PP) packaging, form a distinct cluster. Between 
n-alkanes and POSH, monounsaturated PP oligomers are detected. Slanted elution bands with 
lower retention in the 2D correspond to naphthenes and cyclic hydrocarbons (e.g., dodecyl 
cyclopentanes, 12-Cyclo5, and undecyl cyclohexanes, 11-Cyclo6).  

The lower plots of Figure 4.3.8 illustrate the MOAH fraction 1D and 2D profiles. LC-GC 
produces an unresolved hump while by GC×GC structured elution patterns are more evident. 
Above all, the group of diisopropyl naphthalenes (DIPN) suggests a possible source of 
contamination by recycled paperboard. 

GC×GC-TOF MS has a crucial role in MOSH-MOAH accurate quantification with 
opportunities for fingerprinting and identification of contamination sources. The boosting effect 
of the technique in this area of investigation could deliver truly multidimensional solutions that 
combine on-line LC pre-fractionation to GC×GC with parallel detection by FID/MS.123 By this 
approach, open to untargeted investigations, the concurrent tracing of non-intentionally added 
substances (NIAS) can be run.117   

In a more future perspective, GC×GC shows a great potential within the food safety context 
for monitoring chlorinated paraffins (CPs), synthetic chlorinated n-alkanes, widely used in industrial 
environments as lubricants, paints, coating agents, sealants, etc. According to carbon-chain length, 
CPs’ products are grouped into short chain chlorinated paraffins (SCCPs; C10-C13), medium chain 
chlorinated paraffins (MCCPs; C14-C17), and long chain chlorinated paraffins (LCCPs; C18-
C30).124 SCCPs and MCCPs recently received attention from the European Food Safety Authority 
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(EFSA) because of their potential toxicity for humans and persistence in the environment and 
bioaccumulation.125  

GC×GC coupled to low-resolution TOF MS was successfully applied to accurate quantitation 
of SSCPs even in absence of reference calibration standards for individual components. The 
authors125 proceeded by establishing a calibration between total response factor (RF) and chlorine 
(Cl) content based on peak volumes of quantifier ions for 24 congener groups. Results, from CP 
products and urban air sampling, indicated variations largely among CP materials while seasonal 
fluctuations on urban air were mostly influenced by average daily temperatures. The highest SCCP 
concentration was detected in summer compared to winter, with lighter congeners (C10 group and 
Cl6 group) dominating the gas phase and heavier compounds (C13 group and Cl7 - Cl8) more 
distributed in particle phase.  

Interesting developments in the direction of accurate assessment accompanied by the 
identification of the contamination source by informative fingerprinting based on GC×GC- TOF 
MS could fill the gap evidenced by the EFSA report,125 which stated: “…only limited data on the 
occurrence of SCCPs and MCCPs in some fish species were submitted to EFSA. …the Panel noted 
that dietary exposure will be higher due to the contribution of CPs from other foods.” A systematic 
mapping of the potential environmental sources of contamination crossing the food chain might 
help and provide solid data to complete risk assessment and make safer our food. 

 

4.3.4 Concluding remarks 

Food-omics investigations require a truly comprehensive approach to capture compositional 
complexity of samples and to establish robust correlations with external stimuli and complex 
biological phenomena. Comprehensive two-dimensional chromatography has the potential to 
tackle compositional challenges (chemical dimensionality and dynamic range of concentrations) and 
provide consistent bases for hypothesis generation. Moreover, dedicated data processing further 
enriches the toolbox, increasing the investigation potentials while embracing the modern concepts 
of individual/personalized investigations.  

Undoubtedly, GC×GC-MS is a key-analytical platform for food-omics investigations and its 
widespread could boost research while opening new and concrete perspectives for more 
comprehensive understanding of food quality, nutritional value, and health benefits.  

The industrial request for straightforward solutions to practical problems does not prevent the 
adoption of MDA platforms and omics concepts even in the industrial research framework. The 
larger the breadth of an investigation, the better is the understanding of the effects of processing, 
storage, fermentation, and biotransformation on the overall quality and safety of a food product.  

The full potential of GC×GC was probably not clear at its introduction, but its widespread 
adoption in different areas and the infusion of strategies and concepts from other disciplines, have 
definitely highlighted its central role of missing technique: “from a technique that did not exist… to a 
technique that was missing”.126  
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5.1.1 Abstract  

The study explores the complex volatile fraction of extra-virgin olive oil by combining high 
concentration-capacity headspace approaches with comprehensive two-dimensional gas 
chromatography, which is coupled with time of flight mass spectrometry. The static headspace 
techniques in this study are: (a) Solid-phase microextraction, with multi-polymer coating (SPME- 
Divinylbenzene/Carboxen/Polydimethylsiloxane), which is taken as the reference technique; (b) 
headspace sorptive extraction (HSSE) with either a single-material coating (polydimethylsiloxane—
PDMS) or a dual-phase coating that combines PDMS/Carbopack and PDMS/EG (ethyleneglycol); 
(c) monolithic material sorptive extraction (MMSE), using octa-decyl silica combined with graphite 
carbon (ODS/CB); and dynamic headspace (d) with either PDMS foam, operating in partition 
mode, or Tenax TA™, operating in adsorption mode. The coverage of both targeted and untargeted 
2D-peak-region features, which corresponds to detectable analytes, was examined, while 
concentration factors (CF) for a selection of informative analytes, including key-odorants and off-
odors, and homolog-series relative ratios were calculated, and the information capacity was 
discussed. The results highlighted the differences in concentration capacities, which were mainly 
caused by polymer-accumulation characteristics (sorptive/adsorptive materials) and its amount. 
The relative concentration capacity for homologues and potent odorants was also discussed, while 
headspace linearity and the relative distribution of analytes, as a function of different sampling 
amounts, was examined. This last point is of particular interest in quantitative studies where accurate 
data is needed to derive consistent conclusions. 
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5.1.2 Introduction 

Comprehensive two-dimensional gas chromatography (GC × GC) is a multidimensional 
separation technique that enables the in-depth chemical characterization of the complex food 
volatilome1. It combines, in a single analytical platform, two separation dimensions with mass 
spectrometry, i.e., an orthogonal measurement principle that is fundamental for analyte 
identification and quantitation, and automated sample preparation. Such configured platforms 
deliver highly efficient profiling (detailed investigation of single molecular entities) with the intrinsic 
fingerprinting potential, and can provide accurate and informative cross-comparative analyses 1. 

The chemical characterization of the olive-oil volatilome is a challenging, although 
fundamental, task that is part of the quality assessment process. The composition of the volatile 
fraction, also referred to as the chemical signature, is an informative and diagnostic tool for oil 
quality characterization and sensory qualification 2–5. Only a few of the considerable number of 
detectable volatiles are responsible for the positive and negative attributes that delineate olive oil 
sensory profiles. In fact, olive oil is, to date, the only food product whose sensory attributes are 
officially regulated by EU legislation, and standardized sensory assessment protocols 6,7, in the form 
of smelling and tasting experiments, are run by constantly updated and trained panelists. Virgin 
olive oil is classified into three categories, extra-virgin (EV), virgin (V), and lampante oil, according 
to the presence/absence and the intensity of coded defects (i.e., fusty/muddy sediment, 
musty/humid/earthy, winey/vinegary, rancid) and the perception of the “fruity” taste.  

Improved separation power and detection sensitivity are needed to efficiently extract 
information on the presence of potent odorants, sometimes at trace and ultra-trace concentration 
levels. These features, if accompanied by a structured logic of elution for chemically correlated 
compounds, can provide highly confident and accurate chemical characterizations, while offering 
new perspectives to the important problems of quality and authenticity assessment 8. 

GC × GC has been adopted to characterize the olive-oil volatilome in studies that aim to define 
the volatile signatures of olives that differed in terms of variety, origin, and process technology 9–11 
using both targeted and targeted/untargeted analyte distributions. A significant step ahead was 
made by Purcaro et al. 2, who explored the 2D-patterns of volatiles, after headspace solid-phase 
microextraction (HS-SPME) sampling, to delineate the coded defects in the chemical signature of 
the oil (i.e., blueprint). Olive ripening and its impact on volatiles distribution and oil quality has been 
studied by Magagna et al. 12, who also introduced a systematic strategy for efficient untargeted and 
targeted investigations, which was based on pattern recognition by template matching; the strategy 
was defined as combined untargeted/targeted (UT) fingerprinting and has been recently extended 
to several other applications in the fields of food 13–15, and nutrimetabolomics 16. 

All of the above-referenced studies have exploited HS-SPME as a sampling strategy; it 
combines the advantages of gas-phase extraction approaches with the possibility of achieving 
suitable enrichment factors that match method-sensitivity requirements 17–22. 
However, as the zeroth dimension of an analytical process 23, HS-SPME, and more generally any 
sampling procedure, may impact on method information potential by discriminating analytes in 
function of one of their specific characteristics (polarity, volatility, etc.). If the focus of the 
investigation is potent odorants, the ideal sampling system should comply for: (a) 
Appropriate/tunable extraction selectivity; (b) high extraction efficiency toward ultra-trace analytes 
with high odor potency; (c) mild interaction mechanisms (sorption/partition is preferable) that limit 
the formation of artifacts that may be induced during the thermo-desorption of volatiles at high 
temperatures; and (d) the full integration of all operation steps in the analytical system 19,20,24. 
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In this context, it would be interesting to compare the effectiveness of a number of gas-phase 
extraction procedures, more specifically headspace-sampling approaches, in delineating informative 
volatile patterns in extra-virgin olive oil. In fact, conventional SPME can show limited extraction 
capability for ultra-trace odorant analysis and/or suffer from headspace saturation 25, towards major 
HS components. Interesting solutions to enhance the sensitivity of the HS-SPME method have 
been presented by Chin et al. 26, who proposed that cumulative multiple HS-SPME samplings be 
used in combination with a number of different fiber coatings, and followed by successive GC 
injections, which are delayed over time to achieve odor detection limits for GC-olfactometry (GC-
O) screenings of wine aroma. More recently, Oliver-Pozo et al. 25 have developed a dynamic 
headspace (DHS) sampling system that enables volatiles to be accumulated in SPME fibers, while 
also providing higher enrichment factors than the static headspace (SHS) approach and better 
aldehyde and alcohol recovery. The above-mentioned methods unfortunately have some 
limitations, such as automation difficulties and, in the case of GC-O screenings, the fact that 
replicate analyses and dilution experiments are not possible. 

In this scenario, a systematic investigation of the different and complementary HS sampling 
methods, combined with high-resolution fingerprinting by GC × GC coupled to time-of-flight mass 
spectrometry (TOF MS), would be of great interest, especially when the fingerprinting includes key-
odorants that are responsible for the positive and negative sensory attributes of olive oil. 

In this study, a selection of HS approaches has been used to study the complex volatilome of 
a commercial EV olive oil. They include enriched SHS with: (a) SPME with a multi-polymer coating 
(divinylbenzene/carboxen/polydimethylsiloxane—DVB/CAR/PDMS), taken as the reference 
technique; (b) headspace sorptive extraction (HSSE) either with a single-material coating (PDMS) 
or dual-phase coating that combines PDMS/Carbopack 27 and PDMS/EG 28 (ethyleneglycol); (c) 
monolithic material sorptive extraction (MMSE) by octa-decyl silica combined with graphite carbon 
(ODS/CB); and (d) D-HS, with either PDMS foam, operating in partition mode, or Tenax TA™, 
operating in adsorption mode. 

The coverage of both targeted and untargeted peak-region features that correspond to 
detectable analytes has been examined, while concentration factors (CF) have been calculated for a 
selection of informative analytes, including key-odorants and off-odors. Homolog-series relative 
ratios have also been calculated and information capacity has been discussed. 

 

5.1.3 Materials and methods 
5.1.3.1 Reference Compounds and Samples  

The pure reference compounds for the confirmation of the identity of potent odorants, n-
alkanes (n-C9 to n-C25) for linear retention index (IT) determination, and the reference compounds 
for internal standardization, α- and β-thujone, for SPME (see below) were obtained from Sigma-
Aldrich (Milan, Italy). Pure dibutyl phthalate was used for internal standard (IS) working-solution 
preparation (0.1 g/L) and was purchased from Merck (Milan, Italy). 

A commercial sample of extra virgin olive oil was selected from those collected as part of the 
Italian “Violin” Project (valorization of Italian olive products through innovative analytical tools—
AGER Fondazioni in rete per la Ricerca Agroalimentare). In particular, the olive oil used was an 
EV olive oil with a protected geographical indication (PGI) quality label from Azienda Agricola 
Mori Concetta, PGI Toscano, olives Mariolo cultivar (San Casciano in Val di Pesa, Firenze, Italy). 

A reference oil from International Olive Council (IOC) for the fusty/muddy defect was kindly 
supplied by Prof. Lanfranco Conte from the University of Udine. 
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5.1.3.2 Headspace Solid Phase Microextraction  

Automated HS-SPME was performed using an MPS-2 multipurpose sampler (Gerstel, 
Mülheim a/d Ruhr, Germany) installed on the GC × GC-TOF MS system. SPME fibers were 
obtained from Supelco (Bellefonte, PA, USA) and consisted of 
divinylbenzene/carboxen/polydimethylsiloxane—DVB/PDMS/CAR df 50/30 μm–2 cm. Fibers 
were conditioned before use, as recommended by the manufacturer. Sampling conditions and 
thermal desorption parameters are summarized in Table 5.1.1. 

 

Table 5.1.1. Sampling devices and conditions adopted in the study. 

Acronym Sampling Approach Sample 
Weight/Volume 

Temperature and 
Time 

Other 

SPME-TRIF HS-SPME—
DVB/CAR/PDMS 

1.500 g oil 
Sampling vial: 20 mL 

Temperature: 40 °C 
Sampling time: 60 min 

Constant stirring 
Desorption time: 5 (min) 
S/SL injector: 250 °C 
Split ratio 1:10 

HSSE-TW1 HSSE—Twister™ 
PDMS 1 cm 

1.500 g oil 
Sampling vial: 20 mL 

Temperature: 40 °C 
Sampling time: 60 min 

TDU conditions: from 
30 °C to 27.0°C  
(5 min) at 60 °C/min; 
Flow mode: Splitless 
Transfer line: 270 °C. 
CIS-4 PTV injector 
temp: −50 °C 
Coolant: Liquid CO2; 
Injection temp program: 
From −50 °C to 270 °C 
(10 min) at 12 °C/s. 
Inlet operated in split 
mode: Split ratio 1:10. 

HSSE-TW2 HSSE—Twister™ 
PDMS 2 cm 

HSSE-
PDMS/CPB 

HSSE—Twister™ 
PDMS—Carbopack 
B™ 

HSSE-
PDMS/EG 

HSSE—Twister™ 
PDMS—Ethylene 
glycol EG 

MMSE-ODS MMSE-ODS 
MMSE-
ODS/GC 

MMSE 
ODS—Graphite 
carbon 

DHS-
TENAX 

D-HS 
TENAX TA™ 

1.500 g oil 
Sampling vial: 20 mL 

Incubation: 40 °C 
Sampling: room 
temperature 
Carrier: nitrogen 
Sampling flow: 10 
mL/min 
Sampling time: 20 min 

DHS-PDMS D-HS 
PDMS (foam) 

 

5.1.3.3 Headspace Sorptive Extraction 

HSSE sampling was performed using commercial Twister™ devices. 100% PDMS df 500 μm 
1 cm and 2 cm long twisters, as well as EG/Silicone (PDMS/EG copolymer) twisters were supplied 
by Gerstel (Mülheim a/d Ruhr, Germany). PDMS-Carbopack B™ df 500 μm–2 cm Dual Phase 
(DP) twisters were obtained from the Research Institute for Chromatography—RIC (Kortrijk, 
Belgium). Sampling was carried out in a thermostatic bath with constant stirring; HSSE twisters 
were suspended in the vapor phase with a stainless-steel wire, and volatiles were thus transferred to 
GC × GC-TOF MS by a MPS-2 multipurpose sampler (Gerstel, Mülheim a/d Ruhr, Germany) 
equipped with a Thermo Desorption Unit (TDU) and a CIS-4 PTV injector (Gerstel, Mülheim a/d 
Ruhr, Germany). Sampling conditions and thermal desorption parameters are reported in Table 
5.1.1. 
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5.1.3.4 Monolithic Material Sorptive Extraction 

MMSE sampling was performed using commercial devices, named MonoTrap™ (GL Sciences, 
Tokyo, Japan), in the form of monolithic rods consisting of a combination of octa-decyl silica and 
graphite carbon (ODS/GC). Sampling was carried out in a thermostatic bath with constant stirring; 
MonoTraps were suspended in the vapor phase with the stainless-steel wire supplied by the 
manufacturer, and volatiles were thus transferred to GC × GC-TOF MS by an MPS-2 multipurpose 
sampler (Gerstel, Mülheim a/d Ruhr, Germany) equipped with a Thermo Desorption Unit (TDU) 
and a CIS-4 PTV injector (Gerstel, Mülheim a/d Ruhr, Germany). Sampling conditions and thermal 
desorption parameters are reported in Table 5.1.1. 

 

5.1.3.5 Dynamic Headspace Sampling 

Dynamic headspace sampling was performed using traps assembled in the authors’ laboratory. 
They consisted of (a) 50 mg (±2) of Tenax TA™—60/80 meshes from Supelco (Bellefonte, PA, 
USA) and (b) 100% PDMS foams (15 mm length—30 mg ± 2) supplied by Gerstel (Mülheim a/d 
Ruhr, Germany). Packing materials were assembled on inert, single taper, glass liners for the TDU 
unit.  

During sampling, traps were gas-tight connected to the outlet of a 20 mL sampling vial kept at 
40 °C, and analytes were stripped with nitrogen at 10 mL/min for 20 min (200 mL of total volume). 
Traps were maintained at room temperature during sampling to increase extraction efficiency. 
Sampling conditions and thermal desorption parameters are given in Table 5.1.1. 

 

5.1.3.6 GC×GC-MS Instrument Set-up and Analytical Conditions  

GC × GC analyses were performed on an Agilent 7890B GC unit coupled with a Bench TOF-
Select™ system (Markes International, Llantrisant, UK) featuring Tandem Ionization™. The ion 
source and transfer line were set at 270 °C. The MS optimization option was set to operate in single 
ionization mode with a mass range between 40 and 300 m/z; the data-acquisition frequency was 
100 Hz; filament voltage was set at 1.60 V. Electron ionization 70 eV. 

The system was equipped with a two-stage KT 2004 loop thermal modulator (Zoex 
Corporation, Houston, TX, USA) cooled with liquid nitrogen, and controlled by Optimode™ V.2 
(SRA Instruments, Cernusco sul Naviglio, MI, Italy). The hot-jet pulse time was set at 250 ms, the 
modulation period (PM) was 4 s, and cold-jet total flow was progressively reduced as a linear 
function, from 40% of the mass flow controller (MFC), at initial conditions, to 8% at the end of 
the run.  

The column set was configured as follows: 1D SolGel-Wax column (100% polyethylene glycol; 
30 m × 0.25 mm dc, 0.25 μm df) from SGE Analytical Science (Ringwood, Australia) coupled with 
a 2D OV1701 column (86% polydimethylsiloxane, 7% phenyl, 7% cyanopropyl; 2 m × 0.1 mm dc, 
0.10 μm df), from J&W (Agilent, Little Falls, DE, USA). The two columns were connected in series 
by a μ-union (SGE Analytical Science) and the first meter of the capillary was wrapped in the 
modulator slit acting as modulator capillary (i.e., the loop capillary). Columns were placed in the 
same oven and no temperature offset was applied to the two dimensions. The carrier gas was helium 
at a constant flow of 1.3 mL/min. The oven temperature program was from 40 °C (2 min) to 240 
°C at 3.5 °C/min (10 min). 
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The n-alkanes liquid sample solution for IT
S determination was analyzed under the following 

conditions: Split/splitless injector in split mode, split ratio 1:50, injector temperature 250 °C, and 
injection volume 1 µL. 

 

5.1.3.7 Analytes Identification 

Analytes were identified on the basis of their linear retention indices (IT) and MS electron 
impact (MS-EI) spectra that were either compared to those of authentic standards (where available) 
or tentatively identified through their EI-MS fragmentation patterns and IT. The list of targeted 
analytes is reported in Table 5.1.2 together with their retention times (1tR, 2tR), IT, odor qualities, and 
odor thresholds, as reported in reference literature, and their correlation with coded defects 2. 

Table 5.1.2. List of targeted analytes together with their retention times in the two dimensions (1tR and 
1tR), linear retention times—

IT, their known role in defining attributes (defects of qualities), odor quality, odor threshold—OT (mg/Kg), and reference literature 
for data on sensory features. Sensory defect and quality acronyms: Fusty—F; Vinegary—V; Rancid—R; Mold—M; Morchia—Mo; 
and Fruity—Fr. 

Compound 1tR 
(min) 

2tR 
(s) 

IT Attributes Odor Quality OT (mg/kg) Ref 

Heptane 4.34 1.09 750 
 

Alkane 
  

Octane 5.59 1.89 800 F/V/R Alkane 0.94 [2] 

1-Octene 6.09 1.68 820 M - 0.08 
 

Ethyl acetate 6.75 1.35 850 F/V Pineapple 0.94 [2] 

Butanal 7.00 1.04 857 F/M Pungent, green 0.018 
 

Ethanol 7.67 1.14 883 V Alcohol 30 [2] 
Pentanal 7.75 1.35 892 

 
- 

  

Nonane 7.82 2.34 895 
 

Alkane 
  

3,4-Diethyl-1,5-hexadiene 
(RS+SR) 

8.50 2.36 917 
 

- 
  

3,4-Diethyl-1,5-hexadiene 
(meso) 

8.66 2.40 923 
 

- 
  

3-Methylbutanal 8.75 2.61 927 F/V Malty 0.0054 [3] 

3-Pentanone 8.84 1.47 930 V Ether 70 [2] 

(Z)-3-Ethyl-1,5-octadiene 9.92 2.61 973 
 

- 
  

1-Penten-3-one 10.17 1.47 983 M Mustard 0.00073 [3] 

(E)-3-Ethyl-1,5-octadiene 10.42 2.61 993 
 

- 
  

Ethyl butanoate 10.59 1.77 1000 F Sweet, fruity 0.03 [2] 

(E)-2-Butenal 10.75 1.38 1010 
 

Green, fruit 
  

Butyl acetate 12.00 1.73 1046 F 
Green, fruity, 

pungent, sweet 
0.3 [2] 

Hexanal 12.25 1.77 1054 F/Mo/V/R 
Green apple, 
grassy 

0.08 [2] 

(E,Z)-3,7-Decadiene 12.25 2.74 1054  -   

(E,E)-3,7-Decadiene 12.58 2.74 1065  -   

(Z)-Pent-2-enal 14.00 1.51 1108 Mo 
Strawberry, fruit, 
tomato, green, 

pleasant 

  

(E)-Pent-2-enal 14.08 1.52 1110 V 
Green, apple, 

tomato, pungent 
0.3 [2] 

Ethyl benzene 14.25 1.78 1115 Fr Strong   

1-Penten-3-ol 14.70 0.20 1129     
1-Butanol 15.42 1.26 1142 V/M Winey 0.15 [3] 

2-Heptanone 16.42 1.89 1161 V Sweet, fruity 0.3  

Heptanal 16.50 1.89 1169 R Oily, fatty, woody 0.5  

Limonene 16.91 2.15 1181  Citrus, mint   

1-Pentanol 17.17 1.45 1190 F/M/V Fruity 3 [2] 
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(Z)-2-Hexenal 17.54 1.61 1198 Fr 
Green leaves, cut 

grass 
0.003 [4] 

(E)-2-Hexenal 18.00 1.64 1208 Mo/V/F/R Bitter almond, green 0.42 [3] 

3-Methylbutan-1-ol 18.35 0.94 1215 F/M/Mo Whiskey, malt, burnt 0.1 [2] 

Ethyl hexanoate 18.36 1.94 1216 F Apple peel, fruit   

1-Hexanol 19.00 1.71 1231 Fr Fruity, banana, soft 0.4 [2] 

Styrene 19.25 1.35 1237  Balsamic, gasoline   

Hexyl acetate 20.33 2.02 1263 Fr Green, fruity, sweet 1.04 [4] 

2-Octanone 20.83 2.06 1274 V Mold, green 0.51  

Octanal 21.08 2.02 1280 Mo/R Fatty, sharp 0.32 [2] 

1-Octen-3-one 21.58 1.89 1292 Mo Mushroom, mold 0.01  

(Z)-2-Penten-1-ol 21.75 1.22 1296  Butter, pungent   

(E)-4,8-Dimethyl-1,3,7-
nonatriene 

21.92 2.36 1300  -   

(Z)-3-Hexen-1-ol acetate 22.08 1.68 1304  Green, banana   

(E)-2-Penten-1-ol 22.09 1.02 1304  Butter, pungent 1.04 [4] 

1-Heptanol 22.31 1.89 1309  Herb   

(Z)-2-Heptenal 22.58 1.77 1315 R Oxidized, tallowy 0.042 [2] 

(E)-2-Heptenal 22.67 1.81 1317 Mo/R - 0.005 [2] 

Ethyl pentanoate 23.08 2.27 1327 M - 0.0015  

6-Methylhept-5-en-2-one 23.17 1.85 1329 Mo/F/R Pungent, green 1 [2] 

(Z)-3-Hexen-1-ol 24.08 1.30 1350 F/R/V Green 1.5 [2] 
(E)-3-Hexen-1-ol 24.92 1.35 1369 V/F Green 6 [4] 

1-Octanol 25.50 1.96 1383 Mo 
Moss, nut, 
mushroom 

0.1  

Nonanal 25.75 2.19 1388 R Fatty, waxy, pungent 0.15 [2] 

(E,Z)-2,4-Hexadienal 25.76 1.46 1388  Green   

(E)-2-Hexen-1-ol 25.92 1.26 1392 V Green grass, leaves 5 [2] 
(E,E)-2,4-Hexadienal 26.00 1.48 1395  -   

(Z)-2-Octenal 27.15 1.86 1420  Green leaf, walnut   

(E)-2-Octenal 27.25 1.89 1424 R Green, nut, fat 0.004 [2] 

Ethyl octanoate 27.50 2.36 1429 V Fruit, fat 10  

1-Octen-3-ol 27.83 1.47 1437 Mo Mold, earthy 0.05  

Acetic acid 28.50 0.97 1453 F/V/R Sour, vinegary 0.5 [2] 
(Z,E)-2,4-Heptadienal 28.58 1.60 1455 R/Mo/F Fatty, rancid 0.36 [2] 

(E,Z)-2,4-Heptadienal 28.66 3.24 1457 R/Mo/F Fatty, rancid 10 [2] 

(E,E)-2,4-Heptadienal 28.75 1.73 1459 R/Mo/F Fatty, rancid 4 [2] 

1-Nonanol 30.02 2.02 1487  Fresh, clean, floreal 0.28 [3] 

Copaene 30.16 2.99 1492  Wood, spice   

Decanal 30.25 2.23 1494 R 
Penetrating, sweet, 

waxy 
0.65 [2] 

(E)-Octa-3,5-dien-2-one 30.91 1.73 1507 V/Mo Geranium-like 0.0005 [4] 

(Z)-2-Nonenal 31.43 1.94 1521 R Green, fatty 0.0045 [3] 

(E)-2-Nonenal 31.75 1.98 1530 R Paper-like, fatty 0.9 [3] 

Propanoic acid 32.24 0.78 1541  Pungent, acidic   

(E)-6-Methylhepta-3,5-
dien-2-one 

33.83 1.64 1568 V/Mo - 0.38 [2] 

Undecanal 34.49 2.02 1597  Waxy, aldehydic, 
soapy 

  

Methyl benzoate 34.91 1.43 1608  Phenolic, prune, 
lettuce 

  

Butanoic acid 35.75 1.01 1630  -   

(E,E)-2,4-Nonadienal 35.82 1.63 1632 R Watermelon 2.5 [2] 

Ethyl decanoate 35.91 2.48 1634 V Grape 10 [2] 

(E)-2-Decenal 36.08 2.02 1638 R Painty, fishy, fatty 0.01 [2] 

1-Decanol 36.20 2.06 1642  Fatty, waxy, floral, 
orange 
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Methyl butanoate 37.41 1.05 1672 F Ether, fruit, sweet 0.06  

γ-Hexalactone 37.91 1.56 1684  Herbal, coconut, 
sweet 

  

Dodecanal 38.65 2.12 1704  Soapy, waxy, citrus   

3,4-Dimethyl-2,5-
Furandione 

39.16 1.35 1717  -   

α-Farnesene 40.15 2.23 1744  Wood, sweet   

Pentanoic acid 40.16 1.05 1751  Sweet, acidic, sharp   

(E,Z)-2,4-Decadienal 40.58 1.73 1756 R Deep-fried 0.01 [2] 

Phenylethyl alcohol 40.80 0.26 1763     

γ-Heptalactone 41.66 1.60 1783  Sweet, coconut, 
nutty 

  

1-Undecanol 41.93 2.10 1792  Fresh, waxy, rose, 
soapy 

  

(E,E)-2,4-Decadienal 42.25 1.64 1800 R Deep-fried 0.18 [2] 

Tridecanal 42.57 2.24 1809 R 
Flower, sweet, must, 

clean 
  

Geranylacetone 43.90 1.85 1846  Magnolia, green   

Butyl benzoate 43.99 1.64 1848  Balsamic, mild, 
fruity 

  

Hexanoic acid 44.16 1.01 1853  Sweet, sour, fatty 0.7 [3] 

γ-Octalactone 45.66 1.77 1891  Sweet, coconut, 
creamy 

  

Tetradecanal 46.31 2.36 1914 R 
Fatty, lactonic, 

coconut, woody 
  

1-Dodecanol 47.57 2.14 1951  Soapy, waxy, clean   

Heptanoic acid 47.99 1.01 1963  Waxy, cheesy, fruity 0.1 [2] 

γ-Nonalactone 49.49 1.85 2007  Fatty, coconut   

Pentadecanal 49.89 2.48 2020 R Fresh, waxy   

Octanoic acid 51.58 1.01 2072  Rancid, soapy, 
cheesy 

3 [2] 

γ-Decalactone 53.16 1.98 2109  Fruity, fresh, peach   

Hexadecanal 53.31 2.58 2126 R Cardboard   

1-Tridecanol 54.23 2.17 2155  Musty   

Nonanoic acid 54.91 1.05 2176  Fatty, waxy, cheesy   

Methyl palmitate 55.90 2.44 2208  Oily, waxy, fatty, 
orris 

  

Ethyl palmitate 57.06 2.61 2247  Waxy, fruity, creamy   

Decanoic acid 58.24 1.05 2286  Soapy, waxy, fruity   

Palmitic acid 59.56 2.69 2332  Waxy, creamy, fatty, 
soapy 

  

Heptadecanal 59.72 2.74 2338 R -   

1-Tetradecanol 60.40 2.21 2361  Coconut   

Butyl palmitate 62.23 3.11 2438     

 

5.1.3.8 Method-Performance Parameters  

A simple validation protocol was designed to establish method performance in terms of 
precision for quantitative descriptors (i.e., 2D peak volumes measured on analytes target ion—Ti). 
This protocol included experiments on HS-SPME with DVB/CAR/PDMS (SPME-TRIF), HSSE 
with 100% PDMS Twister™ (HSSE-TW1), and DHS sampling with PDMS foams (DHS-PDMS). 
Precision data (intra and inter-week precision on retention times and 2D peak volumes on selected 
odorants Ti), were evaluated by replicating analyses (six replicates) over a period of three weeks. 
Results are reported as Supplementary Material— Supplementary Table 5.1.1 and are expressed 
as percentage relative standard deviation (RSD%). 
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5.1.3.9 Raw Data Acquisition and GC×GC Data Handling  

Data were acquired using TOF-DS software (Markes International, Llantrisant, UK) and 
processed using GC Image ver 2.8 (GC Image, LLC, Lincoln, NE, USA). Statistical analyses were 
performed using XLStat (Addinsoft, Paris, France). 

 

 

5.1.4 Results and Discussion  
This study aimed to evaluate how sample preparation can impact upon the high-resolution 
fingerprinting of the olive-oil volatilome when GC × GC-TOF MS is exploited for both its 
untargeted and targeted investigation potential. The oil volatilome has been chosen as the model 
here because of its chemical complexity, also referred to as chemical dimensionality 29, and the 
high informational density it brings to oil-quality characterization and sensory evaluation. 

The performance of the different sample preparation approaches is evaluated by considering 
untargeted and targeted peak-region features using the UT fingerprinting strategy, while a focus on 
some odor-active compounds is also discussed in view of their relevant roles in delineating olive-
oil aroma. 

The next paragraph will introduce the olive-oil volatilome by illustrating 2D-peak patterns as 
they result from a polar × medium-polarity column combination. 

 

5.1.4.1 Extra-Virgin Olive Oil Complex Volatilome by GC×GC Fingerprinting  

The chemical complexity of the olive-oil volatilome can be effectively described by the concept 
defined by Giddings, known as chemical dimensionality 29, which was introduced to describe the 
degree of order/disorder that can be achieved in multidimensional separations. Volatiles in olive oil 
are generated from multiple chemical reactions, mainly promoted by endogenous or exogenous 
enzymes, that occur in olive primary metabolites during fruit ripening and, later, in post-harvest and 
processing stages. In addition, storage and shelf-life may add additional complexity, resulting in 
thousands of volatiles that belong to different chemical classes and differ in their polarity, volatility 
and concentration. 

High resolution separations and orthogonal detection by mass spectrometry are fundamental 
for the accurate fingerprinting of volatiles. In addition, the possibility of obtaining structured 
separation patterns for chemically correlated compounds is of great help; analyte identification can 
be confirmed by observing analyte relative elution, while for unknowns, information about their 
relative polarity and volatility can be reliably hypothesized because of the multiple retention 
mechanisms used by the technique. Figure 5.1.1A shows the 2D pattern of the PGI Toscano extra 
virgin olive oil (EVOO), which was taken as a reference sample for the study. The number of 
detectable 2D-peaks, over a signal-to-noise ratio (SNR) threshold of 50, is about 1500, and reliable 
identification was possible for 114 of them by matching 1D IT and MS spectra with those collected 
in commercial and in-house databases 30,31.  

Of the most important classes of informative volatiles, compounds formed from lipoperoxide 
cleavage, also referred to as the lipoxygenase (LOX) signature (Figure 5.1.1B), are fundamental for 
the definition of fresh-green and fruity notes, which are considered positive attributes. Of the C6 
unsaturated alcohols and aldehydes, hexanal was connoted by green apple and grassy notes, (Z)-3-
hexenal had green and grassy odor, (E)-2-hexenal was described as bitter almond and green, (Z)-3-
hexenol and (E)-3-hexenol had both green notes, (E)-2-hexenol evokes green grass and leaf odors, 
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while (E,Z)-2,4-hexadienal had a green odor. All of these compounds were formed from linoleic 
and linolenic acid oxidative cleavage, as promoted by lipoxygenase (LOX) and hydroperoxide lyase 
(HPL) pathways 32. 

Figure 5.1.1C illustrates the homologous series of linear saturated and unsaturated aldehydes, 
together with a few ketones that were most likely formed by non-enzymatic hydroperoxide cleavage. 
This last group of analytes generally provides information on shelf-life evolution 33; increasing 
concentrations of potent odorants of this class bring rancid and fatty notes. Heptanal, octanal, and 
nonanal, although possessing different odor potencies, had fatty and waxy notes, decanal and 
undecanal were described as waxy and fatty, while the series of (E)-2-unsaturated aldehydes (i.e., 
from (E)-2-heptenal to (E)-2-Decenal) had odors that evoked apple and green leaf, up to fatty and 
tallowy notes for the higher homologues. 

The enlarged area of Figure 5.1.1D shows the retention region of a group of branched 
unsaturated hydrocarbons, eluting later in the 2D. They were identified by Angerosa et al. 34 in olives 
at early stages of ripening. They were 3,4-diethyl-1,5-hexadiene (RS + SR), 3,4-diethyl-1,5-hexadiene 
(meso), (5Z) and (5E)-3-Ethyl-1,5-octadiene, (E,Z)- and (E,E)-3,7-decadiene and (E)-4,8-
Dimethyl- 1,3,7-nonatriene 12,34. 

 

 
Figure 5.1.1. 2D pattern of the PGI Toscano EVOO (5.1.1A), together with some informative patterns of volatiles. The 

lipoxygenase (LOX) signature is shown in panel (5.1.1B), linear saturated and unsaturated aldehydes are illustrated in panel 
(5.1.1C), while panel (5.1.1D) shows the enlarged area of branched unsaturated hydrocarbons correlated to olive fruit freshness 34. 

 

This chemical complexity can also be explored by simple datapoint feature fingerprinting 35; this 
pointwise approach, also explored by Vaz-Freire et al. 9 in a study focused on olive oils from different 
cultivars, enables point-by-point, or pixel-by-pixel, chromatogram comparisons to be performed. In a 
GC × GC-TOF MS chromatogram, every datapoint corresponded to a detector event, i.e., a single MS 
spectrum. Features located at the same retention times in a pair of chromatograms were implicitly 
matched using this approach. Figure 5.1.2 shows the 2D-patterns of the analyzed EV olive oil (Figure 
5.1.2A), and of a reference oil from IOC for the fusty/muddy defect (Figure 5.1.2B). The comparative 
visualization was rendered as the colorized fuzzy ratio in Figure 5.1.2C, and analyte relative abundance 
in the two samples was highlighted by color-coding (green, red, and light-grey). In this specific pair-wise 
comparison, performed on the normalized total ion current (TIC) response to the smooth 
concentration effect, several compounds were present in a higher relative ratio in the analyzed sample 
(e.g., fusty/muddy oil). They were 2,3-butanediol, 2-butenal, 3-methyl-1-butanol acetate, 3,4-dimethyl-
2-hexanone, 2-heptanone, heptanal, 6-methyl-5-hepten-2-one, nonanal, propanoic acid, butanoic acid, 
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3-methyl butanoic acid, and pentanoic acid. On the other hand, red colored datapoints correspond to 
compounds that were more abundant in the reference sample (e.g., EV oil). They were 2-methyl-1-
butanol, (E)-2-hexenal, (Z)-3-hexenol, hexanol, (E)-2-hexenol, acetic acid, and dodecanol.  

 

 
Figure 5.1.2. 2D pattern of the PGI Toscano EVO oil (5.1.2A) and that of a reference oil from IOC for the fusty/muddy defect 

(5.1.2B). Comparative visualization is rendered in (5.1.2C) as colorized fuzzy ratio and analyte relative abundance in the two 
samples is highlighted by color-coding (green, red, and light-grey). For details see text. 

 

This last approach is a clear example of how high-resolution bi-dimensional separation can 
effectively compare sample patterns and give prompt results on compositional differences. The same 
approach, performed on 1D-GC profiles, would fail for minor components or for those affected by co-
elution issues, although it would be effective for more highly abundant peaks/components.  

The next paragraph will discuss the results of the differential information provided by the explored 
sampling approaches, which are based on untargeted peak-region distribution. 

 

5.1.4.2 Sampling Information Potentials Based on Untargeted Data 

Smart-template-concept based pattern recognition 36, was used to study sampling effectiveness and 
2D-pattern information potential. The template corresponds to the pattern of 2D-peaks and/or their 
corresponding graphic objects created over the 2D-peak contour of a reference image(s) (single or 
composite image) 16. This template is then used to recognize similar peak patterns in an analyzed image(s) 
37. Template objects (2D-peak and/or graphic) carry various metadata such as retention times, IT, mass 
spectrum, compound name, compound group, informative ions and their relative ratios, additional 
constraint functions, and qualifier functions. Typical constraint functions are those that limit positive 
correspondence to analytes that show an MS-fragmentation pattern similarity above a fixed threshold, 
while qualifier functions may provide information about quality indicators, as calculated via scripts that 

A B

C
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are developed ad hoc. These functions enable highly specific cross-comparison of data, providing 2D-
peak re-alignment across samples with high consistency. 

Peak-region features, introduced by Reichenbach and co-workers 38,39, are template objects that give 
considerable assistance in compensating for temporal inconsistencies, detector fluctuations and highly 
variable sample compositions. They provide greater robustness than peak-features methods, while 
offering all the advantages of one-feature-to-one-analyte selectivity. The combination of both, 2D-peaks 
and peak-regions was adopted for combined untargeted and targeted fingerprinting—UT fingerprinting 
strategy 5,12,13,16,40. 

In UT fingerprinting, a group of reliable peaks, which positively match across all or most 
chromatograms in a set 41, is established and then used to re-align chromatograms 42, before their 
combination into a single-composite chromatogram. The composite chromatogram corresponds to the 
sum of the re-aligned datapoint responses in the 2D retention time plane. It can therefore be treated as 
a regular 2D-chromatogram for peak detection and metadata extraction. The sub-set of reliable 2D-
peaks and all the peak-regions extracted by peak outlines in the composite chromatogram are collected 
in a feature template, or consensus template, which covers the chemical dimensionality of the whole 
sample-set, and that is capable of capturing chemical variability with high specificity. The subset of 
known compounds can be completed from all detected analytes by filling their metadata fields 
(compound name, ion ratios, IT); this subset—reported in Table 5.1.2—can be separately processed for 
the interpretation of results. 

A schematic of the UT fingerprinting process is illustrated in Supplementary Material—
Supplementary Figure 5.1.1 together with some details on targeted and untargeted 2D peaks and peak-
regions. 

In this specific application, UT fingerprinting is extremely useful since it enables a consistent re-
alignment of detected features (UT peaks) when different sampling approaches are applied. In this 
context, the cross-comparative analysis aims at revealing 2D-pattern differences brought by the 
extraction techniques rather than those related to the different composition of a selection of samples. 

The distribution of about 1500 untargeted and targeted 2D-peak-regions is illustrated as a heat-
map in Figure 5.1.3. Analyte responses (absolute 2D-peak volume) were normalized using the Z-score 
(i.e., mean subtraction and normalization to the standard-deviation) and clustered (hierarchical 
clustering—HC) based on Spearman rank correlation. For each sampling approach, three analytical 
replicates were computed. 
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Figure 5.1.3. Heat-map showing the analyte-response (absolute 2D-peak volume) distribution resulting from the different 

sampling approaches. Data were normalized by Z-score (i.e., mean subtraction and normalization to the standard deviation) and 
clustered (hierarchical clustering—HC) based on Spearman rank correlation. For each sampling approach, three analytical 

replicates were computed. 

 

The tested techniques with higher amounts of polymer gave better results in terms of 
concentration capacity, as expected; the approach with the highest TIC response, calculated over 
all UT peaks, was HSSE-PDMS/CPB (1.56 × 107), as indicated by the predominance of red colored 
spots on the heat-map. This was followed by DHS-TENAX (1.17 × 107) and then by DHS-PDMS 
(8.89 × 106). As expected, SPME-TRIF was the approach with the lowest overall TIC response. 
However, its coverage for key-analytes is quite good, as will be illustrated in the next section. 

These following preliminary considerations can be confirmed upon observing the HC results 
(Figure 5.1.3): SPME-TRIF clusters independently of the other approaches; HSSE with PDMS 
twisters (HSSE-TW1 and HSSE-TW2) and the combination of PDMS and Carbopack B (HSSE-
PDMS/CPB) were all clustered together with the sub-cluster of the two PDMS devices, which 
differed in the amount of extraction polymer. Interestingly, both DHS approaches were closely 
clustered, as were MMSE-ODS/GC and HSSE-PDMS/EG, which, however, showed limited 
accumulation capacity. 

The next section will discuss sampling performance towards a selection of targeted analytes of 
interest for olive-oil sensory profiles. 
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5.1.4.3 Focus on Informative Targeted Analyte Signatures 

Of the group of analytes that were targeted, the class of alcohols provides information on LOX 
activity in ripened fruits, and on enzymatic reactions promoted by bacteria and molds. Their 
concentration factors (CFs), obtained from Equation 5.1.1, are calculated over SPME-TRIF, which 
is taken as the reference technique: 

Equation 5.1.1                     𝐶𝐹𝑖 =
𝐴𝑖 𝑑𝑒𝑣 𝑥

𝐴1𝑆𝑃𝑀𝐸 𝑇𝑅𝐼𝐹
,  

where Ai is the 2D-chromatographic area of the i-analyte obtained by applying a certain 
sampling device/approach (dev x) and Ai SPME TRIF is the analyte i chromatographic area resulting 
from the HS-SPME approach, which is taken as the reference technique. 

Results were visualized in the heat-map of Figure 5.1.4A; alcohols were, in general, better 
recovered by MMSE-ODS/GC and DHS-PDMS sampling, with the latter showing a mean CF of 
120 and a median of 3.36. The alcohols that were recovered most by DHS-PDMS sampling were 
2-methyl-1-propanol (CF 1548) and 1-tetradecanol (CF 557). Indeed, DHS shows lower CF values 
for the most volatile members of the linear series (i.e., ethanol, pentanol, hexanol, heptanol, octanol, 
and nonanol), most probably because of their breakthrough (see below for further comments). The 
two C6 unsaturated alcohols ((E) and (Z)-3-hexenol), with a high information potential being 
fundamental for their green note contribution to the overall flavor, were better recovered by all 
devices, except SPME-TRIF. It is worth noting that their relative abundance in the sample was so 
high that their detection by HS sampling was not generally limiting. Phenylethyl alcohol, the 
aromatic member of this chemical class, showed the opposite tendency, being better enriched by 
SHS with HSSE-PDMS and dual-phase twisters HSSE-PDMS/CBP. 

Another interesting chemical class is that of unsaturated aldehydes; they are formed by the β-
scission of unsaturated fatty-acid hydroperoxides, and their odor thresholds are generally lower than 
those of the saturated homologs. They have been described in the volatile fraction of defected oils 
2 (rancid, moldy and fusty) and contribute with fatty and rancid notes. Figure 5.1.4B shows CF 
values within a sub-set of techniques for the most relevant members of this series. In this case, the 
HSSE approach gave higher average CFs than the other techniques. For (E)-2-octenal and (E)-2-
nonenal, MMSE-ODS/GC reported CFs of 10 and 13, showing good selectivity, compared to 
SPME-TRIF, for these two analytes, which were connoted by very low OTs, i.e., 0.004 and 0.9 
mg/kg. 
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Figure 5.1.4. Heat-map illustrating concentration factor (CF) values for the alcohol series (5.1.4A) and unsaturated aldehydes 

(5.1.4B) relative to the selected devices/approaches, with solid-phase microextraction (SPME)-TRIF being taken as the reference. 

The results could also be examined by observing the relative concentration capacity of each 
device/approach toward selected analytes and by taking the most effective one as a reference. In a 
few words, a unit value was assigned to the most effective approach towards each single analyte 
and the ratios between analyte responses were calculated in a 0–1 range for the other sampling 
devices. Sampling selectivity was emphasized with this parameter, if calculated for homologs, 
therefore it is a parameter to be considered in method optimization. Results for saturated aldehydes, 
alcohols, and short-chain fatty acids are shown in histograms in Figures 5.1.5A–C. 

Saturated aldehydes, the series from C6 to C17, showed an interesting trend. The static 
headspace approaches (SPME-TRIF, MMSE-ODS/GC, and HSSE), better recover the most 
volatile members of the series (from C6 up to C12), provide higher amount of the accumulating 
polymer, and more uniform relative analyte recovery, although they do so to different extents. For 
example, HSSE-TW2 achieves unit values for C6–C9 and C12, and is one of the best performing 
devices for these analytes. For higher homologs in the series, C12–C17, the highest relative 
concentration capacity was shown by DHS-PDMS. Interestingly, opposite trends are observed with 
SPME-TRIF, which discriminates this series in favor of the most volatile species, and DHS-PDMS, 
which better enriches the less volatile members (C13–C17). 

For the alcohols’ series (Figure 5.1.5B), the most effective approach to enrich the higher 
homologs, from C9 to C14, was HSSE-TW2. Complementary behavior is shown by MMSE-
ODS/GC and DHS-PDMS; they effectively enrich alcohols from C2 to C8. SPME-TRIF 
represents this chemical class well and displays less discrimination than observed for aldehydes. 

Fatty acids (Figure 5.1.5C), within the C2 to C10 range, were well characterized by HSSE-
TW2, which maximized the extraction for those with lower volatility. On the other hand, volatility 
discrimination is evident in the SPME-TRIF profile. 

A

B
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Figure 5.1.5. Relative concentration capacity of each device/approach towards selected analyte classes (saturated aldehydes—
(5.1.5A), alcohols—(5.1.5B), and fatty acids—(5.1.5C)) with the most effective approach being taken as the reference. 

 

These experimental results demonstrate how high concentration-capacity (HCC) HS can 
provide useful information on olive-oil volatile-fraction compositions and also enable trace and 
ultra-trace analytes to be quantitatively recovered. However, as demonstrated by observing CF 
trends in absolute and relative terms, this information is partial and can only be adopted for cross-
sample analyses. Any conclusion about the quantitative distribution of volatiles in the sample would 
be erroneous if not obtained via accurate quantitation methods 43,44. 
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To quantify volatiles from a complex matrix, standard addition (SA) or multiple headspace 
extraction (MHE) should be adopted. These methods require headspace linearity conditions 45, for 
all targeted analytes, meaning that no saturation effects should compromise result accuracy. The 
next paragraph will focus on the evaluation of headspace linearity for a selection of potent odorants 
after SPME-TRIF sampling in the selected time–temperature conditions. Considerations about 
internal standard (IS) quantitation will also be discussed as this approach is widely, although often 
erroneously, adopted in several applications. 

 

5.1.4.4 Headspace Linearity and Its Impact on Analyte Relative Distribution 

Volatile fraction profiling 46, can be run for effective cross-sample comparison, as in the case 
of a selection of olive oils that differ in origin, extraction technology, and storage time, so analytes 
and/or informative markers can be compared using chromatographic quantitative indicators that 
are based on peak areas (raw areas, percentage area), and peak-volume percentage in the case of GC 
× GC (raw volume, percentage volume), or IS normalization (normalized area, normalized volume). 
These methods, which are based on relative/normalized responses, have been accepted by the 
scientific community for several application fields 47, despite being inaccurate and misleading if 
treated as absolute concentration indicators. 

They do not take into consideration several concurring effects, such as the effect exerted by 
the condensed phase (i.e., matrix effect) on the release of an analyte into the HS or the displacement 
and multiple-equilibria that occur with adsorption polymers (carboxen—CAR and 
divinylbenzene—DVB). 

Procedures that compensate, or model, the matrix effect are those known as quantitation 
approaches, and these are based on either external or internal calibration with authentic standards 
or stable isotopologues of the target analytes. 

Those suitable for liquid samples are: (a) External calibration in matrix-matched blank samples; 
(b) standard addition (SA) by spiking the sample with known incremental amounts of analyte(s); (c) 
stable isotope dilution assays (SIDA), which are a specific application of SA; and (d) multiple 
headspace extraction (MHE). 

HS linearity must be accomplished for an accurate quantitation of targeted analytes, whichever 
approach is applied. 45 This condition is verified when, under pre-determined sampling conditions 
(e.g., temperature, time, and phase-ratio), the condensed phase (liquid or solid sample) releases a 
minimal analyte amount into the HS without saturation and, in addition, a linear function can be 
established between the analyte concentration in the sample (C0) and its concentration in the gas 
phase (Cg). Linearity is easily achievable for trace and sub-trace components, but becomes 
challenging in multi-analyte quantitation with complex volatile fractions. The linear range depends 
on analyte partition (Khs) and activity coefficients. It generally ranges between 0.1% and 1% of 
actual concentration in the sample and can be tuned by modifying the sampling extraction phase 
(adsorption/sorption mechanisms), the amount of extraction polymers, the sampling temperature 
and time, as well as by modifying the phase ratio between HS (Vh) and the condensed phase volume 
(Vs). 

In this study, HS linearity by SPME-TRIF sampling, which was taken as the reference 
technique, was explored, for the analytes listed in Table 5.1.2, by analyzing different amounts of 
EV olive oil, between 1.500 and 0.100 g, chosen on the basis of previous studies 3,48–51. Results for 
normalized peak volumes and percentage responses are reported in Supplementary Material - 
Supplementary Table 5.1.2, while they are summarized in Table 5.1.3 for a selection of potent 
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odorants. Responses, obtained from three analytical replicates randomly distributed within a 
uniform sampling batch, were normalized over the IS (i.e., α-tujone) and refer to 1.500 g of sample 
(the amount adopted for sampling-device screening) or to 0.100 g. At 0.100 g, at least 50% of the 
analytes failed to reach HS saturation for the applied sampling conditions (20 mL sampling vial, 40 
°C, 60 min). 

Normalized volume ratios, calculated between 0.1 and 1.5 g of sampling amount, differ widely 
within the group of analytes considered. A histogram of Figure 5.1.6 summarizes the results. In 
particular, an average value of 1 (highlighted by a red line) was obtained for (Z)-2-penten-1-ol, 
hexanal, (E)-2-hexenal, ethyl acetate, and 2-pentanol. On the other hand, responses were about 10- 
and 2.6-fold higher for 1-octanol and (E)-2-decenal, respectively, with 0.1 g of sampling amount. 
In this last case, displacement effects that occur on the CAR-DVB material reasonably influence 
the extraction. On the other hand, response ratios for (Z)-3-hexen-1-ol, (E)-2-penten-1-ol, (E)-2-
hexen-1-ol, (E)-2-octenal, and (E,E)-2,4-hexadienal were lower at 0.1 g than at 1.5 g. The results 
clearly highlight the complexity of the multiple-equilibria that coexist in HS-SPME-TRIF sampling 
and suggest that deeper investigations into HS linearity conditions were needed to validate the 
hypothesis of HS saturation at the very least. SHS experiments are required to investigate the 
coexisting effects, such as displacement and phase ratio. Multiple headspace extraction (MHE) was 
therefore applied to confirm these findings. 

The MHE approach is a dynamic, stepwise gas extraction carried out on the sample headspace; 
it was introduced for S-HS applications and adapted to HS-SPME, resulting in a technique referred 
to as MHS-SPME 45,52–56. 

 
Figure 5.1.6. Normalized response ratios (normalized volumes and % volumes) calculated between 0.1 and 1.5 g for selected 

analytes. 

 

It consists of three main steps: 

Step 1. Exhaustive analyte extraction from calibration solutions in a range that matches real-
sample concentrations. 
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Step 2. Exhaustive analyte extraction from selected samples that show comparable matrix 
effects in order to define HS linearity boundaries. 

Step 3. Use of MHE on samples of interest. 

Steps 1 and 2 define the function according to the cumulative instrumental response that is the 
results of consecutive extractions from the same sample/calibration solution. After four to six 
consecutive extractions, in HS linearity 45,54, exhaustiveness is accomplished and the decrease in the 
analyte response (chromatographic peak area) should be exponential. 

By summing the instrumental response (A) from each HS extraction, the total response that is 
virtually generated by the analyte amount in the sample (AT) can be estimated - Equation 5.1.2: 

Equation 5.1.2          𝐴𝑇 =  ∑ 𝐴𝑖 =  𝐴1  
1

(1− 𝑒−𝑞)
=  

𝐴1

(1− 𝛽)

=∞
𝑖=1 ,  

where AT is the total estimated response (chromatographic area), A1 is the response after the 

first extraction, and q is a constant associated with the response exponential decay () over 
consecutive extractions. The term q is obtained from the natural logarithm of the analyte response 
as a function of the number of extractions, and a linear regression equation (Equation 5.1.3) can 
be calculated: 

Equation 5.1.3            ln 𝐴𝑖 = 𝑎 (𝑖 − 1) + 𝑏,  

where i is the number of extraction steps, b is the intercept on the y axis, and a is the slope. β 
(e-q) is analyte and matrix dependent and can be adopted to confirm, or refute, HS linearity. 

In this study, β values and decay functions (all R2 ≥ 0.995) were estimated over four successive 
extractions on sample headspace from 1.500, 1.000, 0.500, and 0.100 g of EV olive oil. Results are 
reported in Table 5.1.3 for the 0.100 g sampling. It is worth noting that HS saturation occurred in 
the range between 0.500–1.500 g with relative β values of ~1 for most of the analytes examined. 
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Table 5.1.3. Normalized and % volumes obtained by sampling 0.100 and 1.500 g of reference EV oil, as calculated after the first 
extraction. % Error refers to the relative error in response indicators as calculated between the two sampling amounts, and by taking 
the lowest as reference. For MHS- SPME-TRIF experiments, slope (β) and decay function formulae are reported. 

 Sampling Amount 0.1 g Sampling Amount 1.5 g  MHS-SPME-TRIF (0.1 g)  

Norm. 
Volume 

% Volume Norm. 
Volume 

% Volume % Error  β Decay Function 

1-Octanol 1.10 9.42×10-3  0.11 6.75×10-4  −89.75 0.67 y = −0.40x + 14.1 

(E)-2-Decenal 0.92 7.82×10-3  0.35 2.07×10-3  −62.06 0.59 y = −0.54x + 14.7 

Heptanal 1.36 1.16×10-2  0.77 4.62×10-3  −43.25 0.47 y = −0.76x + 14.6 

2-Octanone 0.20 1.71×10-3  0.15 8.95×10-4  −25.33 0.76 y = −0.28x + 12.5 

2-Nonanone 0.17 1.46×10-3  0.15 8.91×10-4  −12.96 0.62 y = −0.48x + 12.7 

1-Butanol 3.38 2.88×10-2  2.97 1.77×10-2  −12.05 0.37 y = −1.00x + 16.1 

(E)-2-Pentenal 25.42 2.17×10-1  22.45 1.34×10-1  −11.65 0.28 y = −1.28x + 17.5 

(Z)-2-Penten-1-ol 9.06 7.73×10-2  8.81 5.26×10-2  −2.74 0.39 y = −0.94x + 17.1 

Hexanal 366.32 3.13×100  360.14 2.15×100  −1.69 0.48 y = −0.74x + 20.6 

(E)-2-Hexenal 0.15 1.24×10-3  0.15 8.68×10-4  0.21 0.67 y = −0.74x + 23.6 

Ethyl acetate 0.61 5.23×10-3  0.62 3.68×10-3  0.67 0.63 y = −0.46x + 13.4 

2-Pentanol 0.19 1.61×10-3  0.19 1.15×10-3  2.84 0.69 y = −0.37x + 12.7 

1-Hexanol 304.90 2.60×100  384.66 2.30×100  26.16 0.75 y = −0.28x + 19.8 

Toluene 1.14 9.72×10-3  1.46 8.71×10-3  28.23 0.44 y = −0.81x + 14.6 

(Z)-3-Hexen-1-ol 71.87 6.13×10-1  92.98 5.55×10-1  29.37 0.74 y = −0.30x + 18.5 

(E)-2-Penten-1-ol 220.87 1.88×100  301.14 1.80×100  36.34 0.28 y = −0.82x + 20.3 

1-Penten-3-ol 191.90 1.64×100  267.17 1.59×100  39.23 0.44 y = −0.81x + 20.0 

(E)-2-Hexen-1-ol 171.70 1.46×100  247.77 1.48×100  44.30 0.73 y = −0.32x + 19.3 

Decane 0.34 2.90×10-3  0.49 2.93×10-3  44.54 0.73 y = −0.32x + 13.0 

(E)-2-Octenal 0.41 3.48×10-3  0.59 3.52×10-3  44.89 0.44 y = −0.40x + 13.1 

Acetic acid 15.99 1.36×10-1  37.64 2.25×10-1  135.36 0.45 y = −0.81x + 17.9 

(E,E)-2,4-Hexadienal 19.17 1.64×10-1  50.81 3.03×10-1  165.05 0.48 y = −0.73x + 17.9 

1-Pentanol 3.54 3.02×10-2  9.89 5.90×10-2  179.08 0.51 y = −0.68x + 15.8 

2-Methylfuran 0.25 2.17×10-3  1.11 6.64×10-3  338.20 0.57 y = −0.56x + 13.1 

Nonanal 0.69 5.88×10-3  7.88 4.70×10-2  1043.06 0.58 y = −0.55x + 15.6 

Cyclohexane 15.81 1.35×10-1  273.40 1.63×100  1629.52 0.34 y = −1.07x + 18.0 

 

Based on these data, any conjecture that is made as to the amount of analytes in a sample 
derived from HS-SPME sampling without having applied suitable quantitative strategies (e.g., MHE 
or SA) would be inconsistent and may lead to erroneous results. In practice, if internal 
standardization is used to estimate analyte concentrations in the sample using HS-SPME-TRIF 
sampling on 1.500 g, as reported in some research papers that deal with EV olive oil volatilome, 
relative errors would range between −90% (for 1-octanol) to 1630% (for cyclohexane). These errors 
are just an underestimation of the actual ones, since additional sources of error, such as detection 
or response factors and chromatographic extra-column effects, are not computed. Only external 
calibration 43 or suitable flame ionization detector (FID) response-factor estimation 43,44, 
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accompanied by MHS-SPME or SA, can lead to the accurate quantitation of multiple analytes in 
samples headspace. 

Alternatively, sorption-based materials (PDMS or polyethylene glycol—PEG) with relatively 
high amounts of extraction polymer were able to overcome most of the limitations highlighted in 
the examples discussed herein. New commercial devices that benefit from the advantages of SPME, 
in terms of automation and instrument integration, such as SPME arrows 57,58 and Hisorb™ 
solutions (Markes International) deserve consideration. 

 

5.1.5 Conclusions 

This study showed how high concentration capacity headspace sampling could successfully be 
integrated in a GC × GC-TOF MS platform for highly informative fingerprinting of the complex 
EV olive oil volatilome. The influence of different variables on extraction effectiveness (CFs and 
relative CFs) was shown focusing the attention on potent odorants and/or on key-markers known 
to be correlated with oil sensory defects. Among the others, SPME-TRIF confirmed its good quali-
quantitative coverage of the different chemical dimensions present in the EV oil volatilome. 
However, to derive consistent and accurate quantitative considerations, headspace linearity should 
be accomplished at the sampling stage. When saturation occurs in the sample headspace, analytes 
displacements and distribution on the extraction polymers may change giving unrealistic results in 
quantitative terms. 

Several studies erroneously apply HS-SPME followed by IS “apparent” quantitation by 
working outside the boundaries of headspace linearity and/or by using adsorption polymers (CAR 
and DVB above all) that may be affected by displacement and competition phenomena between 
analytes. In addition, such apparent quantitation approaches do not take into account the actual 
analytes distribution constants (KHS and KD) and detector response factors that, in the case of MS 
detection, may vary greatly analyte by analyte. 

 

5.1.6 Supplementary Material 

Supplementary material at the Google Drive’s link: 
https://drive.google.com/drive/folders/1dw3d3BviJIrAmzTWl_qhkf1GFTmHyIBF?usp=sharin
g 

 

 
  

https://drive.google.com/drive/folders/1dw3d3BviJIrAmzTWl_qhkf1GFTmHyIBF?usp=sharing
https://drive.google.com/drive/folders/1dw3d3BviJIrAmzTWl_qhkf1GFTmHyIBF?usp=sharing


Page | 242 

 

References 

(1)  Cordero, C.; Kiefl, J.; Reichenbach, S. E.; Bicchi, C. Characterization of Odorant Patterns 
by Comprehensive Two-Dimensional Gas Chromatography: A Challenge in Omic Studies. 
TrAC Trends Anal. Chem. 2019, 113, 364–378. https://doi.org/10.1016/j.trac.2018.06.005. 

(2)  Purcaro, G.; Cordero, C.; Liberto, E.; Bicchi, C.; Conte, L. S. Toward a Definition of 
Blueprint of Virgin Olive Oil by Comprehensive Two-Dimensional Gas Chromatography. 
J. Chromatogr. A 2014, 1334, 101–111. https://doi.org/10.1016/j.chroma.2014.01.067. 

(3)  Romero, I.; García-González, D. L.; Aparicio-Ruiz, R.; Morales, M. T. Validation of SPME-
GCMS Method for the Analysis of Virgin Olive Oil Volatiles Responsible for Sensory 
Defects. Talanta 2015, 134, 394–401. https://doi.org/10.1016/j.talanta.2014.11.032. 

(4)  Aparicio, R.; Morales, M. T.; Aparicio-Ruiz, R.; Tena, N.; García-González, D. L. 
Authenticity of Olive Oil: Mapping and Comparing Official Methods and Promising 
Alternatives. Food Res. Int. 2013, 54 (2), 2025–2038. 
https://doi.org/10.1016/j.foodres.2013.07.039. 

(5)  Stilo, F.; Liberto, E.; Reichenbach, S. E.; Tao, Q.; Bicchi, C.; Cordero, C. Untargeted and 
Targeted Fingerprinting of Extra Virgin Olive Oil Volatiles by Comprehensive Two-
Dimensional Gas Chromatography with Mass Spectrometry: Challenges in Long-Term 
Studies. J. Agric. Food Chem. 2019, 67 (18), 5289–5302. 
https://doi.org/10.1021/acs.jafc.9b01661. 

(6)  Commission of the European Communities. Commission Regulation (Eec) No 2568/91. 
Official Journal of the European Communities. 1991, pp 1–83. 

(7)  International Oil Council. COI/T.20/DOC.15/Rev.10 SENSORY ANALYSIS OF 
OLIVE OIL - METHOD FOR THE ORGANOLEPTIC ASSESSMENT OF VIRGIN 
OLIVE OIL. 2018, p COI/T.20/DOC.15/Rev.10. 

(8)  Stilo, F.; Liberto, E.; Bicchi, C.; Reichenbach, S. E.; Cordero, C. GC×GC–TOF-MS and 
Comprehensive Fingerprinting of Volatiles in Food: Capturing the Signature of Quality. 
LCGC Eur. 2019, 32 (5), 234–242. 

(9)  Vaz-Freire, L. T.; da Silva, M. D. R. G.; Freitas, A. M. C. Comprehensive Two-Dimensional 
Gas Chromatography for Fingerprint Pattern Recognition in Olive Oils Produced by Two 
Different Techniques in Portuguese Olive Varieties Galega Vulgar, Cobrançosa e 
Carrasquenha. Anal. Chim. Acta 2009, 633 (2), 263–270. 
https://doi.org/10.1016/j.aca.2008.11.057. 

(10)  Cajka, T.; Riddellova, K.; Klimankova, E.; Cerna, M.; Pudil, F.; Hajslova, J. Traceability of 
Olive Oil Based on Volatiles Pattern and Multivariate Analysis. Food Chem. 2010, 121 (1), 
282–289. https://doi.org/10.1016/j.foodchem.2009.12.011. 

(11)  Lukić, I.; Carlin, S.; Horvat, I.; Vrhovsek, U. Combined Targeted and Untargeted Profiling 
of Volatile Aroma Compounds with Comprehensive Two-Dimensional Gas 
Chromatography for Differentiation of Virgin Olive Oils According to Variety and 
Geographical Origin. Food Chem. 2019, 270 (March 2018), 403–414. 
https://doi.org/10.1016/j.foodchem.2018.07.133. 

(12)  Magagna, F.; Valverde-Som, L.; Ruíz-Samblás, C.; Cuadros-Rodríguez, L.; Reichenbach, S. 
E.; Bicchi, C.; Cordero, C. Combined Untargeted and Targeted Fingerprinting with 
Comprehensive Two-Dimensional Chromatography for Volatiles and Ripening Indicators 



Page | 243  

 

in Olive Oil. Anal. Chim. Acta 2016, 936, 245–258. 
https://doi.org/10.1016/j.aca.2016.07.005. 

(13)  Magagna, F.; Guglielmetti, A.; Liberto, E.; Reichenbach, S. E.; Allegrucci, E.; Gobino, G.; 
Bicchi, C.; Cordero, C. Comprehensive Chemical Fingerprinting of High-Quality Cocoa at 
Early Stages of Processing: Effectiveness of Combined Untargeted and Targeted 
Approaches for Classification and Discrimination. J. Agric. Food Chem. 2017, 65 (30), 6329–
6341. https://doi.org/10.1021/acs.jafc.7b02167. 

(14)  Magagna, F.; Liberto, E.; Reichenbach, S. E.; Tao, Q.; Carretta, A.; Cobelli, L.; Giardina, M.; 
Bicchi, C.; Cordero, C. Advanced Fingerprinting of High-Quality Cocoa: Challenges in 
Transferring Methods from Thermal to Differential-Flow Modulated Comprehensive Two 
Dimensional Gas Chromatography. J. Chromatogr. A 2018, 1536, 122–136. 
https://doi.org/10.1016/j.chroma.2017.07.014. 

(15)  Reichenbach, S. E.; Zini, C. A.; Nicolli, K. P.; Welke, J. E.; Cordero, C.; Tao, Q. 
Benchmarking Machine Learning Methods for Comprehensive Chemical Fingerprinting and 
Pattern Recognition. J. Chromatogr. A 2019, 1595, 158–167. 
https://doi.org/10.1016/j.chroma.2019.02.027. 

(16)  Bressanello, D.; Liberto, E.; Collino, M.; Chiazza, F.; Mastrocola, R.; Reichenbach, S. E.; 
Bicchi, C.; Cordero, C. Combined Untargeted and Targeted Fingerprinting by 
Comprehensive Two-Dimensional Gas Chromatography: Revealing Fructose-Induced 
Changes in Mice Urinary Metabolic Signatures. Anal. Bioanal. Chem. 2018, 410 (11), 2723–
2737. https://doi.org/10.1007/s00216-018-0950-9. 

(17)  Bicchi, C.; Cordero, C.; Rubiolo, P. A Survey on High-Concentration-Capability Headspace 
Sampling Techniques in the Analysis of Flavors and Fragrances. J. Chromatogr. Sci. 2004, 42 
(8). 

(18)  Bicchi, C.; Cordero, C.; Liberto, E.; Rubiolo, P.; Sgorbini, B. Automated Headspace Solid-
Phase Dynamic Extraction to Analyse the Volatile Fraction of Food Matrices. J. Chromatogr. 
A 2004, 1024 (1–2), 217–226. https://doi.org/10.1016/j.chroma.2003.10.009. 

(19)  Risticevic, S.; Vuckovic, D.; Lord, H. L.; Pawliszyn, J. 2.21 – Solid-Phase Microextraction. 
In Comprehensive Sampling and Sample Preparation; 2012; pp 419–460. 
https://doi.org/10.1016/B978-0-12-381373-2.00055-7. 

(20)  Lord, H. L.; Pfannkoch, E. A. Sample Preparation Automation for GC Injection. In 
Comprehensive Sampling and Sample Preparation; Elsevier, 2012; Vol. 2, pp 597–612. 
https://doi.org/10.1016/B978-0-12-381373-2.00061-2. 

(21)  Ross, C. F. 2.02 – Headspace Analysis; Elsevier, 2012; Vol. 2. https://doi.org/10.1016/B978-
0-12-381373-2.10036-5. 

(22)  Bicchi, C.; Cordero, C.; Liberto, E.; Sgorbini, B.; Rubiolo, P. Headspace Sampling of the 
Volatile Fraction of Vegetable Matrices. J. Chromatogr. A 2008, 1184 (1–2), 220–233. 
https://doi.org/10.1016/j.chroma.2007.06.019. 

(23)  Cordero, C.; Schmarr, H.-G.; Reichenbach, S. E.; Bicchi, C. Current Developments in 
Analyzing Food Volatiles by Multidimensional Gas Chromatographic Techniques. J. Agric. 
Food Chem. 2018, 66 (10), 2226–2236. https://doi.org/10.1021/acs.jafc.6b04997. 

(24)  Cordero, C.; Kiefl, J.; Schieberle, P.; Reichenbach, S. E.; Bicchi, C. Comprehensive Two-
Dimensional Gas Chromatography and Food Sensory Properties: Potential and Challenges. 



Page | 244 

 

Anal. Bioanal. Chem. 2015, 407 (1), 169–191. https://doi.org/10.1007/s00216-014-8248-z. 

(25)  Oliver-Pozo, C.; Trypidis, D.; Aparicio, R.; Garciá-González, D. L.; Aparicio-Ruiz, R. 
Implementing Dynamic Headspace with SPME Sampling of Virgin Olive Oil Volatiles: 
Optimization, Quality Analytical Study, and Performance Testing. J. Agric. Food Chem. 2019, 
67 (7), 2086–2097. https://doi.org/10.1021/acs.jafc.9b00477. 

(26)  Chin, S. T.; Eyres, G. T.; Marriott, P. J. Cumulative Solid Phase Microextraction Sampling 
for Gas Chromatography-Olfactometry of Shiraz Wine. J. Chromatogr. A 2012, 1255, 221–
227. https://doi.org/10.1016/j.chroma.2012.03.084. 

(27)  Bicchi, C.; Cordero, C.; Liberto, E.; Sgorbini, B.; David, F.; Sandra, P.; Rubiolo, P. Influence 
of Polydimethylsiloxane Outer Coating and Packing Material on Analyte Recovery in Dual-
Phase Headspace Sorptive Extraction. J. Chromatogr. A 2007, 1164 (1–2), 33–39. 
https://doi.org/10.1016/j.chroma.2007.07.026. 

(28)  Bicchi, C.; Cordero, C.; Liberto, E.; Rubiolo, P.; Sgorbini, B.; David, F.; Sandra, P. Dual-
Phase Twisters: A New Approach to Headspace Sorptive Extraction and Stir Bar Sorptive 
Extraction. J. Chromatogr. A 2005, 1094 (1–2), 9–16. 
https://doi.org/10.1016/j.chroma.2005.07.099. 

(29)  Giddings, J. C. Sample Dimensionality: A Predictor of Order-Disorder in Component Peak 
Distribution in Multidimensional Separation. J. Chromatogr. A 1995, 703 (1–2), 3–15. 
https://doi.org/10.1016/0021-9673(95)00249-M. 

(30)  NIST/EPA/NIH Mass Spectral Library with Search Program Data Version: NIST V17. 

(31)  Adams, R. P. Identification of Essential Oil Components by Gas Chromatography—Mass Spectroscopy; 
Allured Publishing: New York, 1995. 

(32)  Feussner, I.; Wasternack, C. The Lipoxygenase Pathway. Annu. Rev. Plant Biol. 2002, 53 (1), 
275–297. https://doi.org/10.1146/annurev.arplant.53.100301.135248. 

(33)  Berlitz, H. D.; Grosch, W.; Schieberle, P. Food Chemistry; Springer, 2009. 

(34)  Angerosa, F.; Camera, L.; D’Alessandro, N.; Mellerio, G. Characterization of Seven New 
Hydrocarbon Compounds Present in the Aroma of Virgin Olive Oils. J. Agric. Food Chem. 
1998, 46 (2), 648–653. https://doi.org/10.1021/jf970352y. 

(35)  Reichenbach, S. E.; Tian, X.; Cordero, C.; Tao, Q. Features for Non-Targeted Cross-Sample 
Analysis with Comprehensive Two-Dimensional Chromatography. J. Chromatogr. A 2012, 
1226, 140–148. https://doi.org/10.1016/j.chroma.2011.07.046. 

(36)  Reichenbach, S. E.; Carr, P. W.; Stoll, D. R.; Tao, Q. Smart Templates for Peak Pattern 
Matching with Comprehensive Two-Dimensional Liquid Chromatography. J. Chromatogr. A 
2009, 1216 (16), 3458–3466. https://doi.org/10.1016/j.chroma.2008.09.058. 

(37)  GC ImageTM. GC Image GCxGC Edition Users’ Guide; 2017. 

(38)  Cordero, C.; Liberto, E.; Bicchi, C.; Rubiolo, P.; Reichenbach, S. E.; Tian, X.; Tao, Q. 
Targeted and Non-Targeted Approaches for Complex Natural Sample Profiling by GCxGC-
QMS. J. Chromatogr. Sci. 2010, 48 (4), 251–261. 

(39)  Reichenbach, S. E.; Tian, X.; Tao, Q.; Stoll, D. R.; Carr, P. W. Comprehensive Feature 
Analysis for Sample Classification with Comprehensive Two-Dimensional LC. J. Sep. Sci. 
2010, 33 (10), 1365–1374. https://doi.org/10.1002/jssc.200900859. 



Page | 245  

 

(40)  Magagna, F.; Liberto, E.; Reichenbach, S. E.; Tao, Q.; Carretta, A.; Cobelli, L.; Giardina, M.; 
Bicchi, C.; Cordero, C. Advanced Fingerprinting of High-Quality Cocoa: Challenges in 
Transferring Methods from Thermal to Differential-Flow Modulated Comprehensive Two 
Dimensional Gas Chromatography. J. Chromatogr. A 2017. 
https://doi.org/10.1016/j.chroma.2017.07.014. 

(41)  Reichenbach, S. E.; Tian, X.; Boateng, A. A.; Mullen, C. A.; Cordero, C.; Tao, Q. Reliable 
Peak Selection for Multisample Analysis with Comprehensive Two-Dimensional 
Chromatography. Anal. Chem. 2013, 85 (10), 4974–4981. 
https://doi.org/10.1021/ac303773v. 

(42)  Rempe, D. W.; Reichenbach, S. E.; Tao, Q.; Cordero, C.; Rathbun, W. E.; Zini, C. A. 
Effectiveness of Global, Low-Degree Polynomial Transformations for GCxGC Data 
Alignment. Anal. Chem. 2016, 88 (20), 10028–10035. 
https://doi.org/10.1021/acs.analchem.6b02254. 

(43)  Sgorbini, B.; Cagliero, C.; Liberto, E.; Rubiolo, P.; Bicchi, C.; Cordero, C. Strategies for 
Accurate Quantitation of Volatiles from Foods and Plant-Origin Materials: A Challenging 
Task. J. Agric. Food Chem. 2019, acs.jafc.8b06601. https://doi.org/10.1021/acs.jafc.8b06601. 

(44)  Cordero, C.; Guglielmetti, A.; Sgorbini, B.; Bicchi, C.; Allegrucci, E.; Gobino, G.; Baroux, 
L.; Merle, P. Odorants Quantitation in High-Quality Cocoa by Multiple Headspace Solid 
Phase Micro-Extraction: Adoption of FID-Predicted Response Factors to Extend Method 
Capabilities and Information Potential. Anal. Chim. Acta 2019, 1052, 190–201. 
https://doi.org/10.1016/j.aca.2018.11.043. 

(45)  Kolb, B.; Ettre, L. S. Static Headspace-Gas Chromatography : Theory and Practice; Wiley-VCH: New 
York, 2006. 

(46)  Cordero, C.; Liberto, E.; Bicchi, C.; Rubiolo, P.; Schieberle, P.; Reichenbach, S. E.; Tao, Q. 
Profiling Food Volatiles by Comprehensive Two-Dimensional Gas Chromatography 
Coupled with Mass Spectrometry: Advanced Fingerprinting Approaches for Comparative 
Analysis of the Volatile Fraction of Roasted Hazelnuts (Corylus Avellana L.) from Different 
Ori. J. Chromatogr. A 2010, 1217 (37). 

(47)  Brevard, H.; Cantergiani, E.; Cachet, T.; Chaintreau, A.; Demyttenaere, J.; French, L.; 
Gassenmeier, K.; Joulain, D.; Koenig, T.; Leijs, H.; Liddle, P.; Loesing, G.; Marchant, M.; 
Saito, K.; Scanlan, F.; Schippa, C.; Scotti, A.; Sekiya, F.; Sherlock, A. Guidelines for the 
Quantitative Gas Chromatography of Volatile Flavouring Substances, from the Working 
Group on Methods of Analysis of the International Organization of the Flavor Industry 
(IOFI). Flavour Fragr. J. 2011, 26 (5), 297–299. https://doi.org/10.1002/ffj.2061. 

(48)  Vichi, S.; Pizzale, L.; Conte, L. S.; Buxaderas, S.; Lopez-Tamames, E. Solid Phase 
Microextraction in the Analysis of Virgin Olive Oil Volatile Fraction: Characterization of 
Virgin Oils from Two Distinct Geographical Areas of Northern Italy. J. Agric. Food Chem. 
2003, 6577. 

(49)  Cavalli, J. F.; Fernandez, X.; Lizzani-Cuvelier, L.; Loiseau, A. M. Comparison of Static 
Headspace, Headspace Solid Phase Microextraction, Headspace Sorptive Extraction, and 
Direct Thermal Desorption Techniques on Chemical Composition of French Olive Oils. J. 
Agric. Food Chem. 2003, 51 (26), 7709–7716. https://doi.org/10.1021/jf034834n. 

(50)  Morales, M. T.; Luna, G.; Aparicio, R. Comparative Study of Virgin Olive Oil Sensory 
Defects. Food Chem. 2005, 91 (2), 293–301. 



Page | 246 

 

https://doi.org/10.1016/j.foodchem.2004.06.011. 

(51)  Nigri, S.; Oumeddour, R.; Fernandez, X. Analysis of Some Algerian Virgin Olive Oils by 
Headspace Solid Phase Micro-Extraction Coupled to Gas Chromatography/Mass 
Spectrometry. Riv. Ital. delle Sostanze Grasse 2012, 89 (1), 54–61. 
https://doi.org/10.1016/j.jhin.2016.11.012. 

(52)  Costa, R.; Albergamo, A.; Bua, G. D.; Saija, E.; Dugo, G. Determination of Flavor 
Constituents in Particular Types of Flour and Derived Pasta by Heart-Cutting 
Multidimensional Gas Chromatography Coupled with Mass Spectrometry and Multiple 
Headspace Solid-Phase Microextraction. LWT - Food Sci. Technol. 2017, 86, 99–107. 
https://doi.org/10.1016/j.lwt.2017.07.047. 

(53)  Cagliero, C.; Bicchi, C.; Cordero, C.; Rubiolo, P.; Sgorbini, B.; Liberto, E. Fast Headspace-
Enantioselective GC-Mass Spectrometric-Multivariate Statistical Method for Routine 
Authentication of Flavoured Fruit Foods. Food Chem. 2012, 132 (2), 1071–1079. 
https://doi.org/10.1016/j.foodchem.2011.10.106. 

(54)  Nicolotti, L.; Cordero, C.; Cagliero, C.; Liberto, E.; Sgorbini, B.; Rubiolo, P.; Bicchi, C. 
Quantitative Fingerprinting by Headspace-Two-Dimensional Comprehensive Gas 
Chromatography-Mass Spectrometry of Solid Matrices: Some Challenging Aspects of the 
Exhaustive Assessment of Food Volatiles. Anal. Chim. Acta 2013, 798, 115–125. 
https://doi.org/10.1016/j.aca.2013.08.052. 

(55)  Sgorbini, B.; Bicchi, C.; Cagliero, C.; Cordero, C.; Liberto, E.; Rubiolo, P. Herbs and Spices: 
Characterization and Quantitation of Biologically-Active Markers for Routine Quality 
Control by Multiple Headspace Solid-Phase Microextraction Combined with Separative or 
Non-Separative Analysis. J. Chromatogr. A 2015, 1376, 9–17. 
https://doi.org/10.1016/j.chroma.2014.12.007. 

(56)  Griglione, A.; Liberto, E.; Cordero, C.; Bressanello, D.; Cagliero, C.; Rubiolo, P.; Bicchi, C.; 
Sgorbini, B. High-Quality Italian Rice Cultivars: Chemical Indices of Ageing and Aroma 
Quality. Food Chem. 2015, 172, 305–313. https://doi.org/10.1016/j.foodchem.2014.09.082. 

(57)  Kremser, A.; Jochmann, M. A.; Schmidt, T. C. PAL SPME Arrow - Evaluation of a Novel 
Solid-Phase Microextraction Device for Freely Dissolved PAHs in Water. Anal. Bioanal. 
Chem. 2016, 408 (3), 943–952. https://doi.org/10.1007/s00216-015-9187-z. 

(58)  Helin, A.; R??nkk??, T.; Parshintsev, J.; Hartonen, K.; Schilling, B.; L??ubli, T.; Riekkola, M. 
L. Solid Phase Microextraction Arrow for the Sampling of Volatile Amines in Wastewater 
and Atmosphere. J. Chromatogr. A 2015, 1426, 56–63. 
https://doi.org/10.1016/j.chroma.2015.11.061.  

  
  



Page | 247  

 

  



Page | 248 

 

5.2 Chromatographic fingerprinting by template 
matching for data collected by comprehensive two-
dimensional gas chromatography  
 

Federico Stilo1, Chiara Cordero1*, Carlo Bicchi1, Daniela Peroni2, Qingping Tao3 and Stephen E 
Reichenbach3,4* 

 

1Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy 

2SRA Instruments, Cernusco sul Naviglio, Milan, Italy 

3GC Image LLC, Lincoln, NE, USA 

4Computer Science and Engineering Department, University of Nebraska, Lincoln, NE, USA 

 

*Co-Corresponding authors:  

Prof. Chiara Cordero - Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, 
Via Pietro Giuria 9, I-10125 Torino, Italy – e-mail: chiara.cordero@unito.it;  

Prof. Stephen E Reichenbach - Computer Science and Engineering Department, University of 
Nebraska, Lincoln, 260 Avery Hall, Lincoln, NE, 68588-0115, USA – e-mail: reich@cse.unl.edu 

 

 

 

Published: September 2, 2020 

DOI: 10.3791/61529 

J. of Visual Experiment. 2020, 163, 1-20 

 

 

 
  



Page | 249  

 

5.2.1 Abstract  

Data processing and evaluation are critical steps of comprehensive two-dimensional gas 
chromatography, particularly when coupled to mass spectrometry. The rich information encrypted 
in data may be highly valuable but difficult to access efficiently. Data density and complexity can 
lead to long elaboration times and require laborious, analyst-dependent procedures. Effective yet 
accessible data processing tools, therefore, are key to enabling the spread and acceptance of this 
advanced multidimensional technique in laboratories for the daily use. The data analysis protocol 
presented in this work uses chromatographic fingerprinting and template matching to achieve the 
goal of highly automated deconstruction of complex two-dimensional chromatograms into 
individual chemical features for advanced recognition of informative patterns within individual 
chromatograms and across sets of chromatograms. The protocol delivers high consistency and 
reliability with little intervention. At the same time, analyst supervision is possible in a variety of 
settings and constraint functions that can be customized to provide flexibility and capacity to adapt 
to different needs and goals. Template matching is shown here to be a powerful approach to explore 
extra virgin olive oil volatilome. Cross-alignment of peaks is performed not only for known targets, 
but also for untargeted compounds, which significantly increases the characterization power for a 
wide range of applications. Examples are presented to evidence the performance for the 
classification and comparison of chromatographic patterns from sample sets analyzed under similar 
conditions. 
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5.2.2 Introduction 

Comprehensive two-dimensional gas chromatography combined with the time-of-flight mass 
spectrometric detection (GC×GC-TOF MS) is nowadays the most informative analytical approach 
for the chemical characterization of complex samples.1–5 In GC×GC columns are serially connected 
and interfaced by a modulator, e.g., a thermal or valve-based focusing interface, that traps eluting 
components from the first dimension (1D) column before their re-injection into the second-
dimension (2D) column. This operation is done within a fixed modulation time-period (PM), 
generally ranging between 0.5 to 8 s. By thermal modulation, the process includes cryo-trapping 
and focusing of the eluting band with some benefits for the overall separation power.  

Although GC×GC is a two-dimensional separation technique, the process produces sequential 
data values. The detector analog-to-digital (A/D) converter collects the chromatographic signal 
output at a certain frequency then the digitalized data, together with related metadata (information 
about the data), are stored in a file with specific proprietary formats. GC×GC systems employ an 
A/D converter to map the intensity of the chromatographic signal to a digital number (DN) as a 
function of time in the two analytical dimensions. Single-channel detectors (e.g., flame ionization 
detector - FID, electron capture detector - ECD, sulphur chemiluminescence detector SCD, etc.) 
produce single values per sampling time, whereas multichannel detectors (e.g., mass spectrometric 
detector MS) produce multiple values (typically, over a spectral range) per sampling time along the 
analytical run. 

To visualize 2D data, elaboration starts with rasterization of single modulation period (or cycle) 
data values as a column of pixels (picture elements corresponding to detector events). Along the 
ordinate (Y-axis, bottom-to-top) is visualized the 2D separation time. Pixel columns are sequentially 
processed so that the abscissa (X-axis, left-to-right) reports 1D separation time. This ordering 
presents the 2D data in a right-handed Cartesian coordinate system, with the 1D retention ordinal 
as the first index into the array. 

Data processing of 2D chromatograms gives access to a higher level of information than raw 
data, enabling 2D peak detection, peak identification, extraction of response data for quantitative 
analysis, and cross-comparative analysis. 

The 2D peak patterns can be treated as sample’s unique fingerprint and detected compounds 
as minutiae features for effective cross-comparative analysis. This approach, known as template-
based fingerprinting,6,7 was inspired by biometric fingerprinting.6 Automatic biometric fingerprint 
verification systems, in fact, rely on unique fingertip characteristics, e.g., ridge bifurcations and 
endings, localized and extracted from inked impressions or detailed images. These characteristics, 
named minutiae features, are then cross-matched with available stored templates.8,9 

As mentioned above, every GC×GC separation pattern is composed of 2D peaks rationally 
distributed over a two-dimensional plane. Each peak corresponds to a single analyte, has its 
informative potential, and can be treated as a single feature for comparative pattern analysis. 

In this contribution, we present an effective approach for chemical fingerprinting by GC×GC-
TOF MS featuring tandem ionization. The goal is to catalog features comprehensively and 
quantitatively from a set of chromatograms.  

Compared to existing commercial software or in-house routines10,11 that employ a peak-features 
approach, template-based fingerprinting is characterized by high specificity, efficiency, and limited 
computational time. In addition, it has an intrinsic flexibility that enables the cross-alignment of 
minutia features (i.e., 2D peaks) between severely misaligned chromatograms as those acquired by 
different instrumentation or in long-time frame studies.12–14 
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The basic operations of the proposed method are described briefly to guide the reader to a 
good understanding of the 2D pattern complexity and information power. Then, by exploring the 
instrument output data matrix, chemical identification is performed and known targeted analytes 
located over the two-dimensional space. The template of targeted peaks is then built and applied to 
a series of chromatograms acquired within the same analytical batch. Metadata related to retention 
times, spectral signatures, and responses (absolute and relative) are extracted from re-aligned 
patterns of targeted peaks and adopted to reveal compositional differences in the sample set. 

As an additional, unique step of the processing, combined untargeted and targeted (UT) 
fingerprinting is also performed on pre-targeted chromatograms to extend the fingerprinting 
potential to both known and unknown analytes. The process produces a UT template for a truly 
comprehensive comparative analysis that can be largely automated. 

As a final step, the method performs the cross-alignment of features in two parallel detector 
signals produced with high and low electron ionization energies (70 and 12 eV). 

The protocol is quite flexible in supporting analyses of a single chromatogram or a set of 
chromatograms and with variable chromatography and/or multiple detectors. Here, the protocol is 
demonstrated with a commercially available GC×GC Software suite (see Table of materials) 
combined to a MS library and search software (see Table of Materials). Some of the necessary 
tools are available in other software and similar tools could be implemented independently from 
descriptions in the literature by Reichenbach and co-workers.15–19 Raw data for the demonstration 
derive from a research study on extra-virgin olive (EVO) oil from Italy conducted in authors’ 
laboratory. In particular, the volatile fraction (i.e., volatilome) of Italian EVO oils is sampled by 
headspace solid phase microextraction (HS-SPME) and analyzed by GC×GC-TOF MS to capture 
diagnostic fingerprints for quality and sensory qualification of samples. Details on samples, 
sampling conditions and analytical set-up are provided in the Table of Materials. Contact the 
authors to obtain data for demonstration and testing of the protocol. 

Steps 1-6 describe preprocessing of the chromatograms. Steps 7-9 describe processing and 
analysis of individual chromatograms. Steps 10-12 describe template creation and matching, which 
are the basis for cross-sample analysis.  Steps 13-16 describe applying the protocol across a set of 
chromatograms, with Steps 14-16 for UT analysis. 

 

5.2.3 Protocol 

 

1. Import raw data  

NOTE: This creates a two-dimensional raster array for visualization and processing. 

1.1 Launch the Image software. 

1.2 Select File | Import; navigate to and choose the raw data file “VIOLIN 101.lsc”; then click 
“Open”. The chromatogram opens in this software.  

In the Import dialog, set the Modulation Period (PM) to “3.5” s; then click “OK”. 

NOTE: Some acquisition software may not record the modulation period. 

Select File | Save Image As…; navigate to the desired folder; enter the name “Oil 1 
RAW.gci”; then click “SAVE”. 

NOTE: This file is included in the supplemental archive, which can be opened for Step 2. 
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2. Shift modulation phase 

NOTE: This puts all peaks in each modulation cycle into the same image column, including 
those peaks that wrap around the end of the modulation period into the void time of the next 
modulation period.20 

2.1 Select Processing | Shift Phase. 

2.2 In the Shift Phase dialog, set the Shift Amount to “-0.8” s; then click “OK”. 

3. Correct baseline21 

3.1 Select Graphic | Draw Rectangle. 

3.2 Click-and-drag to draw a rectangle in the image where no peaks are detected. 

3.3 Select Tools | Visualize Data; note the mean and standard deviation of the detector signal, 
here 21,850 ± 1,455 SD unit-less digital number (DN); then, close the tool. 

3.4 Select Processing | Correct Baseline. 

4. Colorize the chromatographic image using a value map and color map20 

4.1 Select View | Colorize. 

4.2 In the Colorize dialog, select the Import/Export tab; choose the “#AAAA” custom color 
map; then click “Import”. 

4.3 On the Value Mapping controls, set the value range to the minimum and maximum values; 
then click “OK”. 

5. Detect 2D peaks (i.e., blobs) for analytes18 

5.1 Select Processing | Detect Blobs with the default settings; then, observe that some peaks 
are split and there are spurious detections. 

5.2 Select Configure | Settings | Blob Detection; then set Smoothing to 0.1 1D samples and 
2.0 2D modulations and set Minimum Volume (i.e., threshold for the summed values) to 1.00 
E6; then click “OK”. 

5.3 Select Processing | Detect Blobs with the new settings; then, observe the improvements. 

6. Filter 2D peaks  

NOTE: This is done to automatically remove meaningless detections, e.g., due to column bleeds 
along the 1D and strikes or tailings along the 2D. 

6.1 Select Processing | Interactive Blob Detection. 

6.2 Note the blob detection settings; then, click “Detect”. 

6.3 In the Advanced Filter builder, click “Add”; then, in the New Constraint dialog, select 
“Retention II”; then, click “OK”. 

6.4 With the Constraint sliders, set the minimum and maximum 2D retention times for the filter 
so as to reduce the number of false peaks without losing true peaks. 

6.5 Click “Apply”; then click “Yes” to save to the detection settings with the new filter. 

NOTE: More advanced tools may be required to deal with particular detection problems, e.g., 
ion-peak detection or deconvolution for co-elutions.22  
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7. Calibrate linear retention indices 

NOTE: Perform this step 23 (IT) for the specific retention times across the set of retention index 
(RI) standards (typically n-alkanes). 

7.1 Select Configure | RI Table | Retention Index (Col I). 

7.2 On the RI Table Configuration dialog, click “Import”; then, select the RI calibration file 
(in CSV format with name, retention time, and retention index). 

7.3 Select File | Save Image As…; navigate to the desired folder; enter the name “Oil 1 LRI 
CALIBRATED.gci”; then click “SAVE”. 

NOTE: This file is included in the supplemental archive, which can be opened for Step 8. 

8. Search for peak spectra in the NIST17 MS Library24 

8.1 Select Configure | Settings | Search Library. 

8.2 In the Search Library dialog, set Type of Spectrum to “Peak MS”, Intensity Threshold to 
“100”, NIST Search Type to “Simple (Similarity)”, NIST RI Column Type to “Standard 
Polar”, and NIST RI Tolerance to “10”; then, click “OK”.  NIST MS Search offers many other 
settings that here are set to the defaults. 

8.3 Select Processing | Search Library for All Blobs. 

9. Review and correct analyte identifications 

9.1 On the tool palette, set the cursor mode to Blob | Select Blobs. 

9.2 In the Image view, right-click on the desired peak. 

9.3 On the Blob Properties dialog, inspect blob properties; then, click “Hit List”. 

9.4 Inspect the hit list; then, if the identification is incorrect, select the checkmark beside the 
correct identification. 

9.5 In the Blob Properties dialog, enter the Group Name to designate chemical class and any 
other desired metadata; then, click “OK”. 

9.6 Select File | Save Image As…; navigate to the desired folder; enter the name “Oil 1 
COLORIZED for Template construction.gci”; then click “SAVE”. 

NOTE: This file is included in the supplemental archive, which can be opened for Step 10. 

10. Create a template with targeted peaks15 

10.1 In the Image view (still in Select Blobs mode from Step 9.1), select desired peaks 
with a click on the first peak and CTL + click on additional peaks. 

10.2 On the tool palette, click the “Add to Template” button. 

10.3 When the template is complete, select File | Save Template, specify the folder 
and file name; then, click “Save”. 

10.4 Select File | Close Image. 

NOTE: At this point, these instructions continue with the template created in this fashion by 
the authors to include the desired target peaks, available in the supplemental archive as 
“Targeted tamplate.bt”. 
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11. Match and apply the template 

Note:  Matching recognizes the template pattern in the detected peaks a new chromatogram.  
Applying the matching sets identifications and other metadata in the new chromatogram from 
the template. 

11.1 Select File | Open Image; navigate to and select the “Oil 2 COLORIZED.gci” 
chromatogram file (which already is preprocessed); then, click “Open”. 

11.2 On the tool palette, set the cursor mode to Template | Select Objects. 

 

11.3 Select Template | Load Template.  

11.4 In the Load Template dialog, click “Browse”; navigate to and select the targeted 
peaks template “Targeted template.bt”; then, click “Open”. 

11.5 In the Load Template dialog, click “Load”, then “Dismiss”. 

11.6 In the Image view, right-click on a template peak; then, inspect its object properties, 
including the qCLIC and reference MS. 

11.7 Select Template | Interactive Match Template. 

11.8 In the Interactive Match interface, click “Match All”; then, review the matching 
results both in the table and in the image, in which each template peak is marked with unfilled 
circles and, if a match is made, there is a link to a filled circle for the detected peak. 

11.9 Edit the matches as desired; when satisfied, click “Apply” to transfer metadata from 
the template to the chromatogram. 

NOTE: Matching constraints, such as the qCLIC, help match the correct pattern among the 
detected peaks of the new chromatogram.  Constraint parameters include the type of MS 
signature used as template reference (peak MS or blob MS) and the threshold values for spectral 
similarity (DMF and Reverse Match Factor, RMF). Here, parameters are set based on previous 
studies13,14 to limit false negative matches: peak MS and DMF and RMF similarity threshold 
700. 

12. Transform the template for substantially different chromatography 

NOTE: This step is not necessary unless chromatographic conditions vary substantially causing 
the template to be misaligned with a new chromatogram, such as can be the case over long-
term studies or after a new column is installed.  In such cases, the template can be geometrically 
transformed in the chromatographic retention time plane to better fit the new 
chromatogram.12,13  In this example, the peak patterns of the template and chromatogram are 
similar, but differ in the retention time geometry, such as would be seen for different 
chromatographic conditions.  

12.1 Repeat Steps 11.2-11.5, except navigate to, select, and load “Targeted template 
2.bt”. 

12.2 Select Template | Interactive Match Template; then, click “Edit Transform”. 

12.3 In the Transform Template interface, vary the 1D and 2D scales, translations, and 
shears to better align the template with the detected peaks; then, click “Transform Template”. 

12.4 With the transformed template, click “Edit Match”; then, repeat Steps 11.8 -11.9. 
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13. Perform targeted analysis across a set of chromatograms 

Note: The targeted template is matched to each of a set of chromatograms to establish 
correspondences between targeted analytes, then consistent cross-sample features are extracted 
for pattern recognition. 

13.1 Perform preprocessing (Steps 1-6) and template matching (Steps 11.1-11.9) for all 
chromatograms in the set (i.e., targeted chromatograms of oils). (Alternatively, automate this 
step with Project software or similar software, not described here.) 

13.2 Launch the Investigator software. 

13.3 Select File | Load Images…; then, select and open the image files saved at Step 
13.1. 

13.4 In the Load Options dialog, on the Features tab, select “As is”; on the Attributes 
tab, select specific attributes: retention times, volume, percent response, and volume ratio; and, 
on the Class Assignment tab, assign the chromatograms to classes “Tuscany” or “Sicily”. 

13.5 Click “OK” to process the chromatograms, which, after processing is complete, can 
be opened and examined if desired. 

13.6 Click on the Compounds tab to review metric values and statistics for specific 
analytes across chromatograms, then: 

13.6.1 Click on the Attributes tab to review values and statistics for specific metrics across 
chromatograms. 

13.6.2 Click on the Summary tab to review the summary statistics for both compounds and 
features. If the chromatograms are from different classes, as in this case oils produced from 
olives harvested in two different Regions of Italy, then the Summary tab lists Fisher ratio 
statistics (F and FDR) which provide insights into features for discriminating between 
classes.  

13.6.3 View various charts on all tabs and, if desired, perform Principal Component Analysis 
(PCA) on the Attributes tab.  

14. Construct an Untargeted and Targeted (UT) template 

14.1 Launch the Investigator software. 

14.2 Select File | Load Images…; then, select and open the image files saved at Step  

14.3 In the Load Options dialog, check “Use configuration” and browse to and select 
“OIL CONFIGURATION.cfg”; on the Feature tab, select “Auto generate a feature template”, 
specify an Output Folder and output File Name, set “Preferred Reliable Peaks” to “Most 
Relaxed and Composite Image Normalization to “Total Image Volume”; then, click “OK” to 
begin processing, which may require from minutes to hours depending on the number and 
complexity of the chromatograms to produce a template composited from the detected UT 
peaks in all chromatograms, here named “UT template 70 relaxed.bt”. 

14.4 In the Image software, select File | Open Image…; in the Open dialog, navigate 
to and select “OIL 2 COLORIZED.gci”, then click “Open”. 

14.5 On the tool palette, set the cursor mode to Template | Select Objects; then, select 
Template | Load Template.  
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14.6 In the Load Template dialog, click “Browse”; navigate to and select the UT template 
“UT template 70 relaxed.bt”; then, click “Load”, then “Dismiss”.  This is a hybrid template of 
targeted peaks (generated at Step 10) and untargeted reliable peaks (generated at Step 14.3). 

14.7 As in Step 11.6, in the Image view, right-click on a template peak; then, inspect its 
object properties, including the qCLIC and reference MS, and, if desired, edit the template 
object. 

15. Perform UT analysis across a set of chromatograms 

NOTE: This is the same as Step 13, but with the UT template instead of the target template. 

15.1 Perform preprocessing (Steps 1-6). 

15.2 In the Investigator software, select File -> Load Images…; then, select and open 
the image files saved at Step 13.1. 

15.3 In the Load Options dialog, on the Features tab, select “Apply an existing feature 
template”; click “Browse”; then, navigate to and select the UT template “UT template 70 
relaxed.bt”.  As in Step 13.4, on the Attributes tab, select specific attributes: retention times, 
volume, percent response, and volume ratio; and, on the Class Assignment tab, assign the 
chromatograms to classes Tuscany or Sicily. Finally, click “OK” to analyze the chromatograms. 

15.4 Examine the analysis as in Step 13.6. 

15.5 Select File | Save Analysis.  Here, the analysis has been saved as “Feature Jove su 
70 eV.gca”. 

16. Modify the UT template for parallel MS analysis 

Note: The analysis was performed with both 70 eV and 12 eV (i.e., high and low) electron 
ionization energies.25,26 

16.1 Perform preprocessing (Steps 1-6) on each 12 eV chromatogram.  

16.2 Open one of the 12 eV chromatograms, e.g., “Oil 2 12 eV.gci” and load the UT 
template “UT template 70 relaxed.bt” as described in Steps 11.1-11.6. 

16.3 If necessary, adjust the template to fit the detected 12 eV peaks as described in Step 
12.  Here, there is no significant misalignment because the tandem signals are multiplexed.  
However, it should be noted that because the different ionization settings produce different 
fragmentations, it is necessary to relax constraints for the qCLIC constraints on DMF and RMF 
spectral similarity (not demonstrated here). 

16.4 Select File | Save Template; specify the folder and file name, e.g., “UT template 
12.bt”; then, click “Save”. 

16.5 Apply the 12 eV UT template to the 12 eV chromatograms as described in Step 15 
for the 70 eV UT template and the 70 eV chromatograms. 

16.6 Examine the cross-chromatographic analysis of the 12 eV data, similarly to Steps 
13.6 and 15.4. 

16.7 Select File | Save Analysis.  Here, the analysis has been saved as “Feature Jove su 
12 eV.gca”. 
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5.2.4 Results 

GC×GC-TOF MS patterns of high-quality extra-virgin olive oil volatilome exhibit about 500 
2D peaks above a signal-to-noise ratio (SNR) threshold of 100. Such a threshold was defined by 
previous investigations on food volatiles (Cordero, Guglielmetti, et al., 2019; Stilo et al., 2019) as 
the minimum relative signal over threshold to obtain reliable spectra for cross-comparative analysis. 
Components are distributed over the chromatographic space according to their relative retention 
in the two chromatographic dimensions, and specifically based on their volatility/polarity in the 1D 
and volatility in the 2D. Here, column combination is polar × semi-polar (i.e., Carbowax 20M × 
OV1701).   

The 2D pattern shows a high degree of order. Relative retention patterns for homologous series 
and classes are shown in Figure 5.2.1A with annotations (graphics for groups and bubbles for 
peaks) for linear saturated hydrocarbons (black), unsaturated hydrocarbons (yellow), linear saturated 
aldehydes (blue), mono-unsaturated aldehydes (red), polyunsaturated aldehydes (salmon), primary 
alcohols (green), and short-chain fatty acids (cyano).  
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Figure 5.2.1. Bidimensional contour plot and targeted template. (5.2.1A) Contour plot of the volatile fraction of an extra 

virgin olive oil from Tuscany. Ordered patterns of homolog series and classes are highlighted with different colors and lines: linear 
saturated hydrocarbons - black line and 2D contours, unsaturated hydrocarbons - yellow, linear saturated aldehydes - blue, mono-

unsaturated aldehydes - red, polyunsaturated aldehydes -salmon, primary alcohols - green and short-chain fatty acids – cyano. 
(5.2.1B) Overimposed targeted template of known analytes (red colored circles) with connection lines linking Internal Standards 

(ISs). Panels show 2D peak/blob properties metadata (Decanal) or Template peak properties. 

Detected 2D peaks then can be identified by comparing the average MS spectrum extracted 
from the entire 2D peak (blob spectrum) or from the largest spectrum (apex spectrum). Figure 5.2.2 
illustrates the output of the apex spectrum search for the “blob 5” and returns a high similarity 
match (first 10 hits) for (E)-2-hexenal. Databases explored are those pre-selected by the analyst at 
Step 8 of the method.   
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Figure 5.2.2. Apex MS search. Output of the apex MS search for the “blob 5”. List of the database entries with the highest 

similarity match and related metadata available from the library. 

The identification is validated by active retention indexing. The experimental IT value was 
calculated for the 2D peaks, so that at this stage the library search prioritizes results with coherent 
values of tabulated IT. Tolerance windows can be customized based on analyst experience, reliability 
of reference database values according to stationary phase and analytical conditions applied. New 
tools for smart calibration of linear retention indices without experimental calibration with n-
alkanes, have been recently developed and discussed in a study by Reichenbach et al.22  

The collection of identified 2D peaks, i.e., targeted peaks, can be adopted to build a template 
of targeted peaks to promptly establish reliable correspondences between the same compound 
across all sample chromatograms. The collection of targeted template peaks is visualized in Figure 
5.2.1B. Red circles correspond to the 196 targeted compounds, including two Internal Standards 
(IS) linked to template peaks with connection lines. IS are used for response normalization and 
connection lines help to visualize which of the included IS will be adopted to normalize each 2D 
peak/blob response.   

In Figure 5.2.1B, filled circles indicate positive matches between template peak and the actual 
pattern while empty circles are for template peaks for which the correspondence was not verified. 
False negative matches can be limited by appropriate selection of threshold parameters, reference 
spectra and constraint functions.13,14,18,19 For complex patterns with multiple coelutions, ion peak 
detection functions, based on spectral deconvolution, are advisable and could be a valid option 19. 
Template peak metadata are shown in the enlarged panel of Figure 5.2.2 for (E)-2-hexenal.   

The specificity of template matching relies on the possibility to apply constraint functions that 
limit positive correspondence to those candidate peaks that, falling within the search window of the 
algorithm, have MS spectral similarity above a certain threshold. In this case, at Step 11, similarity 
thresholds24 were set at 700 according to previous experiments aimed at defining optimal 
parameters limiting false negative matches.14 Highlighted areas of the template peak properties in 
Figure 5.2.2 show the information about the reference MS spectrum string and the qCLIC 
constraint function (i.e., (Match("<ms>") >= 700.0) & (RMatch("<ms>") >= 700.0)).  

By applying the template to all chromatograms of a set, one could encounter challenging 
situations as in the case of partial misalignment of patterns. This can be due to oven temperature 
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inconsistencies, carrier gas flow/pressure instabilities, or because of a manual intervention on the 
system as in the case of column substitution or modulator loop-capillary replacement.14,27 Figure 
5.2.3 shows a situation of a partial misalignment between the targeted template and the actual 
chromatogram. For minimal misalignments, an interactive template transforms (Figure 5.2.3, 
control panel) can reposition of template peaks for a better fit. Once repositioned, the template can 
be matched to establish correspondences. In the example, the template (Figure 5.2.3, Step 12) 
peaks correctly match with the actual 2D pattern. In case of severe misalignments, not discussed 
here, the repetition of match-transform-update actions can iteratively adapt the template peaks 
position to the actual peak pattern.12–14    
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Figure 5.2.2. Template realignment. Workflow illustrating the steps that allow re-alignment of the template by transformation. 

Here, the targeted peaks, i.e., known analytes, provide about 40% of the chromatographic result 
(196 targeted peaks of about 500 detectable peaks on average). The other 60% of compounds, 
together with the information they bring, are not taken into consideration in targeted analysis. To 
make the investigation truly comprehensive, consistent cross-alignment of untargeted 2D peaks 
also should be established. The first application where template matching was extended to all 
detectable analytes dealt with the complex volatilome of roasted coffee.7 This process is automated 
in Investigator, here shown at Steps 14-15.  
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In this process, pre-targeted images belonging to the sample set under study (20 samples) are 
used to define reliable peaks by cross matching of all image patterns.28 Subsequently, a composite 
chromatogram is built from which to identify UT reliable peaks and peak-regions (i.e., 2D peaks 
footprint) in the so-called feature template.17   

For analyses acquired at 70 eV, the process determined 144 reliable peaks with relaxed 
reliability,28 76 of which belong to the targeted peaks list. Based on these 144 reliable peaks, the 
process aligns all chromatograms consistently with the average retention times of the reliable peaks 
and then combines them to create a composite chromatogram. Figure 5.2.4 shows a list of all 
samples labelled according to the production Region of the oil (left) and the list of reliable 
peaks/blob volumes in each sample (right).  

 
Figure 5.2.3. GC Investigator interface. Investigator panel with all selected images labelled according to the production 

Region of the oil (left) and the list of reliable peaks/blob volumes in each sample (right). 

The untargeted feature template is composed of 2D peaks from analytes detected in the 
composite chromatogram, shown in Figure 5.2.5A, that are matched by the reliable-peaks template 
(n=168 – red circles for targeted peaks and green circles for untargeted peaks). The mass spectra of 
the composite peaks, as well as their retention times, are recorded in the feature template as shown 
for (Z)-3-hexenol acetate in the enlarged area. Peak-regions are shown in Figure 5.2.5B as red 
colored graphics; they are instead defined by the outlines of all 2D peaks detected in the composite 
chromatogram (n=3578).  
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Figure 4.2.5. Targeted and UT template. (5.2.5A) Reliable peaks as resulting from the automated processing at Step 11; red 

circles correspond to known analytes while green circles are unknowns. In the superimposed panel, template object properties are 
shown for the (Z)-3-hexenal. (5.2.5B) Enlarged area that shows the UT peaks (red and green circles) and peak-regions (red 

graphics) of the UT template matched on a sample oil acquired at 70 eV ionization energy. (5.3.5C) UT template matched on a 

sample oil acquired at 12 eV ionization energy. 
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When unsupervised pattern recognition by Principal Component Analysis is applied to targeted 
peaks distribution within the 20 analyzed samples, Sicilian and Tuscany oils cluster separately 
suggesting that pedo-climatic conditions and terroir impact the relative prevalence of volatiles. 
Results are shown in Figure 5.2.6A and the PCA results from the reliable peaks distribution are 
shown in Figure 5.2.6B. The two approaches cross-validate that oils from different geographical 
areas have different, while coherent, chemical signatures whether targeted or untargeted 
compounds, or both, are mapped.  

 
Figure 5.2.6. They show the natural conformation of samples (oils from Tuscany and Sicily) as they result by (5.2.6A) 

targeted peaks distribution or (5.2.6B) UT peaks distribution. 

Finally, the software enables prompt and effective re-alignment of patterns across parallel 
detection channels. In this application, the re-alignment is proposed for tandem ionization signals. 
The ion source of the MS multiplexes between two ionization energies (i.e., 70 and 12 eV) at an 
acquisition frequency of 50 Hz per channel.29 The two resulting chromatographic patterns are 
closely aligned while spectral data (i.e., spectral signatures and responses) and they bring 
complementary information with different dynamic ranges.25,26 The aligned patterns allow extracting 
features (2D peaks and peak-regions) with univocal IDs (i.e., chemical names for targeted peaks and 
unique numbering # for untargeted peaks and peak-regions).  

Template matching allows effective cross-alignment.  In this situation, there is not much 
misalignment, but MS constraints must be relaxed to allow matches for UT peaks. On the other 
hand, featured UT peak-regions, that have no MS constraints, are promptly matched without any 
false negative matches. Figure 5.2.5C shows an enlarged area of a 12 eV chromatogram where the 
feature template built from 70 eV data is matched. Reliable UT peaks are positively matched because 
of the lowered qCLIC constraints (e.g., DMF threshold at 600). To note, at 12 eV, there are fewer 
detected peaks due to the limited fragmentation induced by low ionization energy.  

 

5.2.5 Conclusions 

Visualization of GC×GC-TOF MS data is a fundamental step for an appropriate understanding 
of the results achieved by comprehensive two-dimensional separations. Image plots with 
customized colorization allow analysts to appreciate detector response differences and so the 
differential distribution of sample components. This visual approach changes completely the analyst 
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perspective on chromatograms interpretation and elaboration. This first step, once understood and 
confidently used by chromatographers, opens a new perspective in further processing.   

Another fundamental aspect of data processing is the accessibility to the full data matrix (i.e., 
MS spectral data and responses) for all sample points, each of which corresponds to a single 
detector event. In this respect 2D peaks integration, so that the collection of detector events 
corresponding to a single analyte represent a critical step. In the current protocol. 2D peaks 
detection is based on the watershed algorithm18 with some adaptations included to improve 
detection sensitivity in case of partial co-eluting compounds. To make this process more specific, 
deconvolution has to be done and more sophisticated procedures adopted. This is possible by 
performing a ion peak detection for MS data; the algorithm processes the data array and isolates 
the response from single analytes based on spectral profiles.19,30  

An important yet critical step of the protocol, and of any GC×GC-MS data interpretation 
process, relates to analytes identification. This procedure, proposed at steps 8 and 9, in absence of 
a confirmatory analysis with authentic standards, has to be carefully conducted by the analyst. 
Automated actions are available in any commercial software; they include MS spectral signature 
similarity evaluation against collected reference spectra (i.e., spectral libraries) and evaluation of 
characteristic ratios among qualifier/quantifier ions. However, additional confirmatory criteria are 
needed to disambiguate identification of isomers. The protocol proposes the adoption of linear 
retention indexes to prioritize the list of candidates; the limit here relates to the availability of 
retention data and its consistency.   

The main characteristic that makes this approach unique is template matching.12,13,15,28 Template 
matching enables 2D pattern recognition in a very effective, specific and intuitive way. It can be set, 
in terms of sensitivity and specificity, by applying customized threshold values and/or constraint 
functions while the analyst can supervise the procedure by actively interacting with transform 
function parameters. The peculiarity of this process relies on the possibility to cross-align targeted 
and untargeted peaks information between samples of a uniform batch but also between samples 
acquired with the same nominal conditions despite medium-to-severe misalignment. Advantages of 
this operation relate to the possibility to preserve all targeted analytes identifications, which is a 
time-consuming task for the analyst, and all metadata saved for targeted and untargeted peaks in 
previous elaboration sessions.  

Template matching is also very effective in terms of computational time; low-resolution MS 
data files consists of about 1-2- Gb of packed data while high-resolution MS analyses may reach 
10-15 Gb per single analytical run. Template matching does not process the full data matrix every 
time but, at first, performs retention time alignment between chromatograms using template peaks 
then, processes candidate peaks within the search window for their similarity match with reference 
in the template. In case of severe misalignment, the most challenging situation, global second-order 
polynomial transforms performed better than local methods while reducing computational time.13  

For the GC×GC technique to spread widely beyond academia and research laboratories, data 
processing tools have to facilitate basic operations for visualization and chromatograms inspection; 
identification of analytes should offer the possibility to adopt standardized algorithms and 
procedures (e.g., NIST search algorithm and IT calibration); and cross-comparative analysis should 
be intuitive, effective and supported by interactive tools. The proposed approach addresses these 
needs while offering advanced options and tools to deal with complex situations such as, for 
example, analytes co-elution, multiple analytes calibration, group-type analysis, and parallel 
detection alignment.   
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The referenced literature well covers many possible scenarios where GC×GC and, more 
generally, comprehensive two-dimensional chromatography, offer unique solutions and reliable 
results that cannot be achieved by 1D-chromatography in single run analysis.5,31,32 Although 
GC×GC is a most powerful tool that increases separation capacity and sensitivity, there are always 
limitations to separation power, sensitivity, and other systemic capacities.  As those systemic limits 
are approached, data analysis becomes progressively more difficult.  Therefore, research and 
development must continue to improve the analytical tools at our disposal. 
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5.3.1 Abstract  

Comprehensive two-dimensional gas chromatography coupled with mass spectrometric 
detection (GC×GC-MS) offers an information-rich basis for effective chemical fingerprinting of 
food. However, GC×GC-MS yields 2D-peak patterns (i.e., sample 2D fingerprints) whose 
consistency may be affected by variables related to either the analytical platform or to the 
experimental parameters adopted for the analysis.  

This study focuses on the complex volatile fraction of extra-virgin olive oil and addresses 2D-
peak patterns variations, including MS signal fluctuations, as they may occur in long-term studies 
where pedo-climatic, harvest year or shelf-life changes are studied.  2D-pattern misalignments are 
forced by changing chromatographic settings and MS acquisition. All procedural steps, preceding 
pattern recognition by template matching, are analyzed and a rational workflow defined to 
accurately re-align patterns and analytes metadata.  

Signal-to-noise ratio (SNR) detection threshold, reference spectra extraction, and similarity 
match factor threshold are critical to avoid false-negative matches. Distance thresholds and 
polynomial transform parameters are key for effective template matching. In targeted analysis 
(supervised workflow) with optimized parameters, method accuracy reaches 92.5% (i.e., % of true-
positive matches) while for combined untargeted and targeted (UT) fingerprinting (unsupervised 
workflow), accuracy reaches 97.9 %. Response normalization also is examined, evidencing good 
performance of multiple internal standard normalization that effectively compensates for 
discriminations occurring during injection of highly volatile compounds. The resulting workflow is 
simple, effective, and time efficient. 

 

 

 

 

 

 

 

 

 

 

 

 

Key words 

Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry; 
extra-virgin olive oil volatiles; template matching; combined untargeted and targeted (UT) 
fingerprinting; data alignment in long-term studies  
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5.3.2 Introduction 

One of the most important features of -omics approaches applied to food is the multiplicity of 
encrypted information that they can provide.1 Because of the complexity of the food field, reliable 
results often can be obtained only with projects spread over years. Clear examples are monitoring 
chemical key characteristics of food crops whose cultivation has been moved in non-native 
countries or continents or submitted to the effect of climate changing. The possibility of comparing 
and/or merging data obtained over wide time-ranges, not necessarily resulting from rigorously 
standardized conditions (or improved analytical instrumentation), is therefore mandatory to achieve 
reliable and useful results. Comprehensive two-dimensional gas chromatography (GC×GC) is one 
of the most informative separation techniques for chemical characterization of complex fractions 
of volatiles from food. 2–4 It enables highly effective fingerprinting 5 and, when combined with mass 
spectrometric detection (GC×GC-MS), it has the intrinsic potential to provide a detailed profiling, 
giving access to higher level information encrypted in complex patterns of volatiles, for example: 
sample origin, technological signature, and aroma.3,6–9  

Each analytical run produces dense and multidimensional data, so that elaboration and 
interpretation of chemical information is challenging. Moreover, 2D-peak patterns representing the 
sample 2D fingerprint, are defined by a series of variables also related to the analytical platform and 
to the experimental parameters adopted for the analysis. The choice of flow modulation instead of 
thermal/cryogenic modulation, MS detection by fast scanning quadrupoles vs. time-of-flight MS, 
low-resolution MS vs. high-resolution MS as well as GC×GC stationary phase combination, 
columns lengths and diameters, carrier gas linear-velocities, modulation period (PM) and oven 
temperature programming greatly impact on 2D-patterns signature and informational density.10 

Although most of these parameters, once fixed after method development and optimization, 
are kept constant (e.g., column set-up, carrier gas flows, and modulation parameters) or can be 
standardized as the MS tuning and optimization, some others represent a source of random 
variability that must be considered when fingerprinting and pattern recognition studies extend over 
time and/or across different platforms.  

For mono-dimensional (1D) GC-MS applications, possible strategies for chromatographic 
alignment and data normalization are: (a) linear retention indexing (van Den Dool and Kratz or 
Kovats indices) or retention time locking methods based on pressure/flow adjustments (i.e., 
retention time locking) 11–13 to accurately locate target analytes along the analytical run; (b) 
chromatographic realignment; 14–16 (c) internal standardization for response normalization by single 
or multiple Internal Standards (IS) addition; and (d) external standard normalization by adopting 
single or multiple External Standards (ES). These strategies are effective and routinely adopted in 
peak-features based applications5. However, for GC×GC, these 1D-GC strategies may be 
ineffective especially for retention inconsistencies that result from two, almost independent, 
separation steps. On the other hand, the peculiar nature of 2D-peak patterns offers the possibility 
of exploiting pattern recognition algorithms for fast and effective fingerprinting. So, strategies for 
pattern alignment and normalization are needed.  

Pattern recognition approaches based on peak-region features,5 implemented with the smart 
template concept, 17 use different transform functions to facilitate recognition of 2D peak patterns 
based on retention time coordinates and establish correspondences between 2D-peaks, or 2D-peak-
regions, from a reference pattern to those in an analyzed pattern even in presence of retention times 
shifts17–19 and/or when severe misalignments occur because of different modulation regimes.20,21   

Pattern correspondences are at the basis of the re-alignment of untargeted/targeted 2D-peaks 
or 2D-peak-regions across a samples-set to enable fingerprinting investigations.3 Furthermore, the 
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specificity and reliability of pattern matching can be improved by including constraint functions, 
operating on the third dimension of the data, i.e., the MS signature (i.e., EI-MS fragmentation 
pattern). Typical functions are those that limit positive correspondences to 2D-peaks with spectral 
similarity match above a certain threshold or, more simply, for 2D-peaks that comply for specific 
m/z relative ratios between informative fragments of the spectrum.   

In a scenario that food chemical fingerprinting must be extended over long time-frames, as for 
example to cover different harvest years or shelf-life modifications, strategies and tools for data re-
alignment and normalization are necessary22,23 together with more rational strategies and intuitive 
operative protocols/workflows to guide analysts over the present limits deriving from analytical 
data misalignment.   

This study addresses, for the first time, 2D-peak patterns variations occurring in long-term 
studies that might impact the effectiveness of combined untargeted and targeted fingerprinting (UT 
fingerprinting).   

The complex 2D patterns of volatiles from Extra Virgin Olive oil of different quality are here 
studied as model application. The ccomprehensive profiling and fingerprinting of olive oil volatiles 
can be, in fact, strategically extended over wide-time frames, e.g., over harvest years or across the 
shelf-life of the product, to build databases for authenticity and valorisation of products. A concrete 
challenge faced through the collection of profiling data from Italian extra-virgin olive oils within 
the Violin project.24   

Despite the great potential of GC×GC in exploiting the chemical dimensionality of olive oil 
volatile fractions, just a few studies are available in this field and none of them address challenges 
posed by long time-frame studies. Vaz Freire et al.25 adopted an image-features approach26 to 
investigate characteristic distributions of volatiles. An open-source image analysis software (Image 
J, National Institutes of Health) was used to extract detector response information from 2D regions 
over the separation space. Image-features with a high discrimination potential were selected by 
Principal Component Analysis (PCA) and targeted profiling was then combined to locate known 
analytes within most informative 2D regions.  

Studies aimed at defining geographical origin indicators or cultivar markers include those by 
Cajka et al.27 who adopted GC×GC-TOF-MS to identify 44 compounds able to discriminate extra-
virgin olive oils based on their different geographical origin and production year, and by Lukić et 
al. 28 who applied a peak-features approach to reveal compositional differences between oils 
obtained by different olive cultivars and geographical areas. They considered, as potentially 
informative, both untargeted and targeted analytes as they were extracted from the raw data-set on 
the basis of relative retention and spectral features. Magagna et al. 8 first developed an integrated 
strategy for UT fingerprinting based on template matching, to define olive ripening indicators, while 
Purcaro et al.9 combined targeted and untargeted analysis to delineate chemical blueprints of olive 
oil aroma defects.  

The olive oil volatiles 2D-patterns considered were obtained in a one-year study during which 
misalignments and inconsistencies were introduced by varying column lengths and restrictions, 
modulation period (PM), and operating with the time-of-flight (TOF) MS with differently optimized 
parameters. The processing steps, preceding template matching, are analyzed to define a rational 
workflow enabling consistent pattern recognition and to provide solid foundation for data 
processing procedures to be adopted in such challenging scenarios.  
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5.3.3 Materials and methods 

5.3.3.1 Reference compounds and solvents 

Pure reference standards of α- and β-thujone and methyl-2-octynoate used as Internal 
Standards (ISs), n-alkane standards (n-C7 to n-C25) used for linear retention index (IT) calibration 
and pure reference compounds for targeted analytes’ identity confirmation were supplied by Merk 
(Sigma-Aldrich srl Italy, Milan, Italy). Cyclohexane (HPLC grade) for n-alkane standards and pure 
dibutyl phthalate for ISTDs working solutions were from Merk. 

 

5.3.3.2 Olive Oil samples 

Extra Virgin Olive oils (EVO oils), supplied by the University of Granada (Spain), Prof. 
Luis Cuadros-Rodríguez, were obtained from olives of the Picual cultivar, harvested in the regions 
of Granada Altipiano named Baza and Benamaurel, and grown under differing production and 
irrigation practices. 8 Samples were obtained by mixing olives from five different trees from the 
same plot in duplicate batches (A and B). Olives for oil production were collected at four different 
ripening stages: November 10-12, 2014; November 24-28, 2014; December 16-17, 2014; and 
January 12-15, 2015, and classified by oil quality (Extra Virgin - EVOO, Virgin-VOO or Lampante- 
LOO). Samples acronyms and characteristics are summarized in Table 5.3.1. Oil qualifications were 
by a certified laboratory (ISO 17025:2018) 8 and according to Commission Regulation (EEC) No 
2568/91 of 11 July 1991 and IOC Standard COI/T.15/NC No 3/Rev. 12. Some quality indices are 
reported in Table 5.3.1, including the sensory panel test results. 

 

Table 5.3.1. List of samples together with acronym, harvest region, harvest stage, quality parameters according to COMMISSION 
REGULATION (EEC) No 2568/91 of 11 July 1991 and IOC Standard COI/T.15/NC No 3/Rev. 12, sensory evaluation results 

(Md: median of defects – Mf: median of fruity notes) and commercial classification. 

Sample 
Acronym 

Region Harvest stage Acidity  
(%) 

Peroxide index 
(mEq O2/kg) 

K232 K270 ΔK Md Mf Classification 

Baza-1-A Baza November 10-12 0.2 5 1.84 0.2 0 0 5 EVOO 

Baza-2-A Baza November 24-28 0.2 3 1.6 0.2 0 0 4.1 EVOO 

Baza-3-A Baza December 16-17 0.2 5 1.17 0.2 0 > 0.00 1.3 VOO 

Baza-4-A Baza January 12-15 0.4 11 1.11 0.1 0 > 0.00 0 LOO 

Baza-1-B Baza November 10-12 0.2 4 1.92 0.2 0 0 5.2 EVOO 

Baza-2-B Baza November 24-28 0.1 3 1.65 0.2 0 0 3.8 EVOO 

Baza-3-B Baza December 16-17 0.2 6 1.28 0.1 0 > 0.00 1.7 VOO 

Baza-4-B Baza January 12-15 0.4 13 1.12 0.1 0 > 0.00 0 LOO 

Bena-1-A Benamaurel November 10-12 0.2 5 1.61 0.2 0 0 4.4 EVOO 

Bena-2-A Benamaurel November 24-28 0.2 4 1.53 0.2 0 0 4.3 EVOO 

Bena-3-A Benamaurel December 16-17 0.2 8 1.19 0.1 0 0 3.1 EVOO 

Bena-4-A Benamaurel January 12-15 0.4 19 1.05 0.1 0 > 0.00 0 LOO 

Bena-1-B Benamaurel November 10-12 0.1 4 1.64 0.4 0 0 4.2 EVOO 

Bena-2-B Benamaurel November 24-28 0.2 3 1.48 0.2 0 0 4.3 EVOO 

Bena-3-B Benamaurel December 16-17 0.2 6 1.51 0.1 0 0 2.9 EVOO 

Bena-4-B Benamaurel January 12-15 0.2 14 1.05 0.1 0 > 0.00 0 LOO 
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5.3.3.3 Headspace solid phase microextraction sampling devices and conditions 

Volatiles were sampled from samples by headspace (HS) solid phase microextraction (SPME). 
DVB/CAR/PDMS df 50/30 μm 2 cm length fiber (Supelco, Belle-fonte, PA, USA) was chosen 
based on previous studies 9 and conditioned before use as recommended by the manufacturer. The 
ISs were pre-loaded onto the SPME device, 29,30 before sampling, in a 20 mL headspace vial 
containing a 5.0 μL of α/β-thujone and methyl-2-octynoate at 100 mg L-1 in dibutyl phthalate 
standard solution. ISs were equilibrated at 40°C and pre-loaded by exposing the SPME device for 
5 min.  

Sampling was carried out on 0.100 ± 0.005 g of oil samples precisely weighed in 20 mL 
headspace vials. The very low amount of sample was chosen to comply with HS linearity conditions 
for most of the key-analytes responsible of samples discrimination. 8 Sampling was at 40°C for 60 
min. After extraction, the SPME device was automatically transferred to the Split/Splitless (S/SL) 
injection port of the GC×GC system kept at 260°C for 5 min. Each sample was analyzed in 
triplicate. 

 

5.3.3.4 Instrument set-up and analysis conditions  

GC×GC analyses were performed on an Agilent 7890 GC chromatograph (Agilent 
Technologies, Wilmington DE, USA) coupled to a Markes BenchTOF-Select™ mass spectrometer 
featuring Tandem ionization™ (Markes International, Llantrisant, UK). The GC transfer line was 
at 270°C. TOF MS tuning parameters were set for single ionization at 70 eV and for tandem 
ionization at 70 and 12 eV; the scan range was set at 35-350 m/z with a spectra acquisition frequency 
of 100 Hz for single eV and 50 Hz/channel for tandem ionization.  

The system was equipped with a two-stage KT 2004 loop type thermal modulator (Zoex 
Corporation, Houston, TX) cooled with liquid nitrogen controlled by Optimode v2.0 (SRA 
Intruments, Cernusco sul Naviglio, Milan, Italy). Modulation periods (PM) and hot jet pulse times 
are detailed in Table 5.3.2, along with other parameters. A Mass Flow Controller (MFC) reduced 
the cold-jet stream from 45% to 8% of the total flow with a linear function along the run duration. 
A fused silica capillary loop (1.0 m × 0.1 mm id) was used in the modulator slit. 

 

Table 5.3.2. Set-up 1 and 2 columns characteristics, settings and operative pressures. 

 Set-up 1 Set-up 2 

1D Columns 1D: SolGelWax™ (30 m, 0.25mm dc, 0.25 μm df) 
Batch N° 1238274C06 

1D: SolGelWax™ (30 m, 0.25mm dc, 0.25 μm df) 
Batch N° 1315621E03 

1D Carrier 
gas settings 

He carrier @ 1.3 mL/min - constant flow 
conditions 

Average velocity (1ū): 15.3 cm/s 
Initial head-pressure (relative) 234 kPa 

Outlet pressure (absolute) 285 kPa 
Hold-up 3.27 min 

He carrier @ 1.3 mL/min - constant flow conditions 
Average velocity (1ū): 12.8 cm/s 

Initial head-pressure (relative) 290 kPa 
Outlet pressure (absolute) 349 kPa 

Hold-up 3.89 min 

2D Columns 2D: OV1701 Mega (1.0 m, 0.10 mm dc, 0.10 μm df) 
Loop-capillary: deactivated fused silica (1.0 m, 0.10 

mm dc,) 
Restriction toward MS: none 

2D: OV1701 Mega (1.0 m, 0.10 mm dc, 0.10 μm df) 
Loop-capillary: deactivated fused silica (1.0 m, 0.10 mm 

dc,) 
Restriction toward MS: deactivated fused silica (1 m, 

0.10 mm dc,) 
2D Carrier 

gas settings 
He carrier @ 1.3 mL/min - constant flow 

conditions 
Average velocity (2ū): 157 cm/s 

Mid-point pressure (relative) 184 kPa 
Hold-up 1.28 s 

He carrier @ 1.3 mL/min - constant flow conditions 
Average velocity (2ū): 128 cm/s 

Mid-point pressure (relative) 248 kPa 
Hold-up 2.35 s 

Modulation PM: 3.5 s - Hot-Jet pulse time: 250 ms PM: 4s - Hot-Jet pulse time: 250 ms 
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The column set was configured as follows: 1D SolGel-Wax column (100% polyethylene glycol; 

30 m × 0.25 mm dc × 0.25 μm df) from Trajan Analytical Science (Ringwood, Australia) coupled 
with a 2D OV1701 column (86% polydimethylsiloxane, 7% phenyl, 7% cyanopropyl; 1 m × 0.1 mm 
dc × 0.10 μm df) from Mega (Legnano, Milan, Italy). A capillary restriction towards the MS was used 
to generate a differential pressure-drop influencing actual carrier gas linear velocities along the 
column in Set-up 2 (1 m × 0.1 mm dc deactivated silica). The GC Split/Splitless (S/SL) injector port 
was set at 260°C and operated in split mode with a split ratio 1:20.  

 The carrier gas was helium at a constant nominal flow of 1.3 mL/min. The oven 
temperature programming was set as follows: 40°C (2 min) to 240°C (10 min) at 3.5°C/min. Carrier 
gas average linear velocities (1ū and 2ū), pressure settings, and hold-up times are reported in Table 
5.3.2 and were obtained by basic calculations with a reference temperature of 60°C.  

For IT determination, 1μL of the n-alkanes sample solution was injected with a split ratio 1:50.  
Data were acquired by TOF-DS™ (Markes International, Llantrisant, UK) and processed by 

GC Image ver. 2.8 (GC Image, LLC Lincoln, NE, USA). 

 

5.3.3.5 UT fingerprinting workflow  

The distribution of detectable analytes over the 2D chromatographic space in a GC×GC 
separation is at the core of pattern recognition based on the smart template concept. 17 The template 
is a pattern of 2D-peaks and/or graphic objects (geometrical objects delineating 2D-peak contour) 
built over a reference image(s) (single or composite image) 31 and then used to recognize similar 
patterns of 2D-peaks in an analyzed image(s).32 Each template object (2D-peak and/or graphic) can 
carry various metadata including: compound chemical name, retention times, IT, mass spectrum, 
informative ions and their relative ratios, constraint functions to limit peak correspondences above 
certain thresholds, and qualifier functions examining metadata information by script functions.  

Peak-region features33 are of great help in the presence of temporal inconsistencies and detector 
fluctuations. Peak-regions attempt to define one chromatographic region around each analyte peak, 
thereby achieving the one-feature-to-one-analyte selectivity but with greater robustness than can be 
achieved with single 2D-peak detection.26 2D-peaks and peak-regions are features adopted in the 
combined targeted and untargeted fingerprinting (UT fingerprinting) strategy.8,20,31,34  

UT fingerprinting establishes a group of reliable peaks, positively matched across all or most-of 
chromatograms in set,35 and then uses them to align chromatograms18 for their combination into a 
single, composite chromatogram. From the composite chromatogram, 2D-peaks (i.e., the 
combination of the re-aligned responses in the 2D retention time plane) are detected and their 
outlines are recorded to define peak-region objects. The set of reliable 2D-peaks and peak-regions 
objects are collected in the feature template, or consensus template, covering the whole sample-set 
variability and capable of cross-corresponding chemical feature patterns among samples. Within all 
detected analytes, the subset of targeted compounds can be highlighted by completing their 
metadata fields (compound name, ion ratios, IT) and computed together with untargeted features 
during the data processing.  

A schematic of the UT fingerprinting process is illustrated in the Supplementary Material – 
Supplementary Figure 5.3.1 together with some details on targeted and untargeted 2D peaks and 
peak-regions. 
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5.3.4 Results and discussion  

This section discusses all steps, supervised by the analyst, aiming at selecting key parameters to 
generate a targeted template or a reliable or consensus template covering the entire volatile fraction, 
and its chemical dimensionality,6 of extra-virgin olive oil. In particular, some critical parameters are 
examined for their impact on template matching efficacy: (a) 2D-peaks response thresholds (Signal-
to-Noise ratio - SNR and Volume-to-Noise ratio – VNR); (b) MS reference signature to be used for 
spectral constraints; (c) MS similarity thresholds; and (d) the template matching transform and 
settings to compensate for 2D-peak patterns variability to achieve an effective, reliable and 
comprehensive chemical fingerprinting.  

The next paragraphs illustrate the strategy adopted to generate misaligned patterns and the 
subsequent workflow designed to re-align templates. Results are critically discussed in term of 
accuracy (i.e., true positive matches) and data inter-batch transferability (i.e., response 
normalization). 

 

5.3.4.1 Pattern misalignment challenges 

Chromatographic pattern distortions and misalignments were induced, generating worst-case 
scenarios, by changing the following parameters: (a) columns were from different commercial 
batches; (b) a post-column restriction was added generating a pressure drop between column inlet 
and outlet, influencing carrier gas linear velocities in both analytical dimensions; and (c) the PM was 
set at 4 or 3.5 s generating an absolute 2D retention misalignment. All the other parameters, carrier 
gas nominal flow, oven temperature programming and injection conditions were kept constant. 
Analytical conditions for the two resulting set-ups (i.e., Set-up 1 and Set-up 2) are summarized in 
Table 5.3.2.  Figure 5.3.1 shows the colorized plot of an oil sample obtained from olives at an 
early ripening stage (Baza-1-A) analyzed by the two set-ups (Figure 5.3.1A for Set-up 1 and Figure 
5.3.1B for Set-up 2). Pattern differences are visible and are related to the different chromatographic 
efficiencies (peak-width – 1W and 2W – Table 5.3.2 data) that impact resolution and to the absolute 
retentions that affect system orthogonality.36–38.  
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Figure 5.3.1. Colorized plot of the Baza-1-A sample analyzed with Set-up 1 (5.3.1A) and Set-up 2 (5.3.1B). Red colored areas 

indicate the available separation space while green areas include all targeted peaks elution area. For details, see the text. 

 
The global misalignment between peaks patterns is visualized in Figure 5.3.2 and evaluated by 

calculating analyte relative retention in both separation dimensions against reference peaks.21 (Z)-3-
hexen-1-ol acetate, which elutes in the middle area of the chromatographic plane, was arbitrarily 
chosen as reference/centroid, while phenol, the last-eluting marker, was used to normalize each 
analyte’s relative position i.  

 
The 1D relative retention (1D RR) is calculated by Equation 5.3.1: 

Equation. 5.3.1  1D RR = (1tRi - 
1tR(Z)-3-Hexen-1-ol acetate) / 1tRphenol    

where 1tRi corresponds to the first-dimension retention time expressed in minutes for the 
targeted peak i, (Z)-3-Hexen-1-ol acetate is the reference peak, and phenol is the last eluting peak.  The 
2D relative retention (2D RR) is calculated through Equation 5.3.2: 

Equation. 5.3.2   2D RR = (2tRi - 
2tR(Z)-3-Hexen-1-ol acetate) /

 PM    
where 2tRi corresponds to the second dimension retention time expressed in minutes for the 

targeted peak i, (Z)-3-hexen-1-ol acetate is the reference peak, and PM the modulation time. 21  

A

B
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Figure 5.3.2. Dispersion graph resulting from the relative position of targeted peak analytes (white indicators) from the two set-
ups in the normalized retention times space: homologous series n-alkanes - green indicators, linear saturated aldehydes - orange 

indicator 

As visualized in Figure 5.3.2, there is a dramatic impact on the 2D absolute and relative retention. 
This effect is due primarily to the different PM applied (4 vs. 3.5 seconds) and to the actual carrier 
gas linear velocities (1ū and 2ū) and operative pressures (initial head-pressure and mid-point 
pressure). Analytes falling in the third quadrant show an higher 2D k in Set-up 1, whereas this effect 
decreases as a function of increasing 1D k (retention).  

Interestingly, the two patterns, although misaligned on the normalized retention times space, 
keep coherent the group-type separation for homologous series. Normal alkanes (n-alkanes), shown 
with green indicators, mostly in the second quadrant; linear aldehydes, shown with orange 
indicators, spanning mostly across the first and third quadrants; and short chain fatty acids, shown 
with cyan indicators, appearing in the forth quadrant, all are rationalized over the 2D space.  

The next step of the study addresses detector response variations and examines threshold 
parameters for 2D-peaks descriptors to adopt for consistent template matching.  

 

5.3.4.2 Supervised workflow for reliable targeted template construction 

MS detector response fluctuations due to tuning, optimization, and/or other factors directly 
impact on absolute response and background noise intensity. Such performance issues also may 
affect template matching effectiveness and analyte identity confirmation, as a consequence of 
variable peak detection and the varying quality and reliability of 2D-peak spectra adopted as 
reference for matching. In this study, TOF MS was set differently: in Set-up 1, it multiplexed between 
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high and low ionization energies (Tandem Ionization ™ - 70 and 12 eV) at 50 Hz acquisition rate 
for each channel, whereas in Set-up 2, TOF MS operated in single electron energy acquisition mode 
(70 eV) at 100 Hz. Therefore, MS was tuned differently 39 and output signals exhibited different 
absolute responses (total ion current) and background noise intensities.  

The signals resulting from the same sample (Baza-1-A), whose patterns are illustrated in Figure 
5.3.1A and 5.3.1B, have the following characteristics:  

- Background noise sampled in the middle of the chromatogram within a 50x50 acquisition-
point window reported an average absolute total intensity of 75,500 counts (RSD% 1D 0.6 
and 2D 5.98) for Set-up 1 and 167,000 counts (RSD% 1D 0.5 and 2D 1.57) for Set-up 2. 
Supplementary data visually illustrates performance evaluation operations (Supplementary 
material – Supplementary Figure 5.3.2). 

- After background subtraction40, the average intensity was 38,000 counts (RSD% 1D 1.19 
and 2D 8.9) for Set-up 1 and 88,000 counts (RSD% 1D 0.9 and 2D 2.49) for Set-up 2. 

- The number of detected 2D-peaks above SNR 15 were 770 for Set-up 1 and 500 for Set-up 
2. 

- Within the detected 2D-peaks, SNR values ranged between 15-13,000 in Set-up 1 and 
between 15-3,000 in Set-up 2. 

- Volume-to-noise ratio (VNR) values ranged between 100-14,100 in Set-up 1 and 100-6,700 
in Set-up 2. 

Experimental results indicate that MS, operating with a single ionization energy at 70 eV, results 
in greater absolute and relative background noise (e.g., 1.9 times) compared to the tandem ionization 
settings. Interestingly, the noise fluctuations are greater along the 1D (RSD% values) where column 
bleeding increases as a function of temperature programming. Background noise subtraction has 
almost the same effect, in terms of noise suppression, and in both cases, signal intensity is halved 
compared to the initial values. 

With respect to peak detection, Set-up 1 exhibited better chromatographic efficiency (Table 
5.3.3 1W0.1 and 2W0.1) and resulted in a larger number of detected peaks over SNR≥15, with a wide 
range of variation, i.e., 15-13,000 SNR, whereas in Set-up 2 maximum SNR achieved only a value of 
3,000. On the other hand, VNR, which corresponds to the ratio of analyte 2D-peak volume to the 

standard error (SE (σ/n)), is not so influenced by peak-width as SNR. It informs about the 
dynamic range of the MS response41 and with Set-up 1 this appears  10 times greater (up to 14,100 
vs. up to 6,700 VNR) compared to Set-up 2. Although with Set-up 1 the number of detected peaks 
over a SNR of 15 was higher, a greater volume standard deviation (σ) was computed. 
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Table 5.3.3. List of all targeted analytes together with their experimental IT, identification criterion (a) authentic reference compound or (b) IT ± 20 and spectral similarity direct match ≥ 850, 
elution order (#Rank) in the two set-up; retention times (1tR and 2tR) and relative standard deviation (RSD%) calculated over all analyzed samples, peak-width at 10% of peak height estimated on 

each dimension (1W0.1 (min) and 2W0.1 (sec)). 

 
  Set-up 1 Set-up 2 

Compounds Exp IT Identification # Rank 1tR 

(min) 
RSD

% 

2tR  

(sec) 
RSD

% 

1W0.1 

(min) 

2W0.1 

(sec) 
# 

Rank 

1tR 

(min) 
RSD

% 

2tR 

(sec) 
RSD

% 

1W0.1 

(min) 

2W0.1 

(sec) 

Hexane 778 a 1 4.36 0.77 0.33 3.53 0.12 0.05 1 4.80 8.45 1.06 5.80 0.40 0.15 

2,2,4-Trimethylpentane 789 b 2 4.63 0.73 0.56 0.00 0.10 0.06 2 5.44 3.53 0.83 3.07 0.36 0.13 

Heptane 795 a 3 4.78 0.00 0.58 0.00 0.10 0.05 3 5.53 3.61 0.60 5.38 0.38 0.16 

Cyclohexane 802 b 4 4.96 0.00 0.49 2.34 0.08 0.04 6 5.88 3.49 0.96 7.99 0.29 0.11 

1,3-Pentadiene 813 b 5 5.25 0.00 0.42 0.00 0.37 0.17 4 5.60 0.00 0.54 4.26 0.53 0.17 

Propanal 819 a 6 5.44 0.62 0.28 0.00 0.25 0.12 5 5.82 0.00 0.52 7.62 0.40 0.15 

Octane 830 a 7 5.70 0.59 1.06 0.00 0.10 0.09 8 6.28 1.18 1.68 1.04 0.33 0.15 

Acetone 831 a 8 5.74 0.59 0.29 4.03 0.25 0.11 10 6.67 0.00 0.74 8.48 0.53 0.37 

1-Octene 850 b 9 6.26 0.54 1.01 1.15 0.12 0.08 7 6.26 0.62 1.01 3.78 0.40 0.23 

Tetrahydrofuran 858 b 10 6.46 0.52 0.48 0.00 0.23 0.16 9 6.33 1.82 0.48 13.50 0.36 0.18 

Butanal 867 a 11 6.67 0.51 0.42 0.00 0.23 0.13 11 7.47 2.36 0.91 8.41 0.42 0.23 

Ethyl acetate 873 a 12 6.86 0.49 0.43 2.71 0.18 0.05 13 7.74 0.01 1.08 0.05 0.33 0.16 

2,3-Dimethylheptane 893 b 13 7.43 0.45 1.76 1.14 0.23 0.17 12 7.73 0.86 1.99 11.30 0.38 0.13 

2-Methylbutanal 895 a 14 7.44 0.01 0.60 0.21 0.22 0.07 15 8.27 8.41 1.16 8.24 0.43 0.24 

Ethanol 913 a 15 7.78 0.43 0.26 0.00 0.19 0.09 14 7.78 2.47 0.38 3.53 0.42 0.29 

1-Methoxyhexane 932 b 16 8.42 0.40 1.15 1.01 0.14 0.09 16 9.09 0.43 2.21 2.66 0.29 0.31 

2-Ethylfurane 932 b 17 8.42 0.40 0.54 0.00 0.29 0.07 17 9.11 0.74 1.10 3.64 0.38 0.17 

3,4-Diethyl-1,5-hexadiene 
(RS+SR) 

942 a 18 8.63 0.31 1.61 1.90 0.21 0.08 18 9.15 2.76 2.74 13.90 0.66 0.16 

2,3-Butanedione 955 a 19 8.94 0.38 0.37 3.09 0.37 0.05 19 9.18 3.71 0.45 11.80 0.42 0.13 

Pentanal 956 a 20 9.03 0.00 0.65 0.02 0.30 0.23 22 10.00 0.04 1.26 0.05 0.37 0.16 

3,4-Diethyl-1,5-hexadiene 
(meso) 

960 a 21 9.17 0.16 1.65 1.87 0.23 0.10 20 9.63 2.81 2.78 15.05 0.54 0.14 

3-Methylnonane 960 b 22 9.20 0.37 2.33 0.50 0.31 0.27 21 9.65 0.69 2.48 12.00 0.51 0.19 

Acetonitrile 980 b 23 9.69 0.00 0.27 0.04 0.15 0.10 23 10.27 0.03 0.86 0.29 0.30 0.32 

(Z)-1-Methoxy-3-hexene 991 b 24 10.01 0.34 1.03 1.12 0.14 0.09 25 10.66 0.36 1.99 4.07 0.24 0.24 

Decane 997 a 25 10.18 0.01 2.51 0.03 0.18 0.08 24 10.48 0.06 3.31 0.09 0.32 0.15 

(5Z)-3-Ethyl-1,5-
Octadiene 

999 a 26 10.21 0.17 1.81 1.45 0.24 0.13 26 10.89 2.15 3.20 13.70 0.87 0.20 

1-Penten-3-one 1000 a 27 10.25 0.33 0.56 0.00 0.21 0.06 27 10.96 0.70 1.11 3.74 0.42 0.23 

(5E)-3-Ethyl-1,5-
Octadiene 

1010 a 28 10.63 0.11 1.74 1.55 0.24 0.15 29 11.06 2.19 3.12 12.08 0.72 0.18 

Propan-1-ol 1011 a 29 10.65 0.00 0.29 0.04 0.19 0.08 31 11.43 0.02 0.65 0.11 0.34 0.18 

α-Pinene 1011 a 30 10.66 0.00 1.62 0.01 0.20 0.06 30 11.18 0.01 2.77 0.17 0.28 0.16 
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(E)-2-Butenal 1017 a 31 10.95 1.11 0.50 4.00 0.21 0.15 28 11.05 1.51 0.59 6.55 0.40 0.15 

Toluene 1020 a 32 10.99 0.31 0.68 2.94 0.18 0.07 32 11.61 0.67 1.37 4.68 0.33 0.17 

1-Decene 1032 b 33 11.41 0.00 2.06 0.01 0.17 0.05 33 11.98 0.38 2.98 0.53 0.43 0.20 

2,3-Pentanedione 1033 a 34 11.50 0.00 0.52 0.00 0.21 0.06 35 12.19 0.32 1.16 0.27 0.36 0.23 

4-Methyldecane 1051 b 35 12.04 0.56 2.83 0.41 0.29 0.31 34 12.02 0.56 2.93 2.44 0.53 0.38 

(E,Z)-3,7-Decadiene 1054 a 36 12.15 0.14 1.99 1.23 0.20 0.09 36 12.91 2.41 3.47 12.90 0.58 0.35 

Hexanal 1059 a 37 12.39 0.27 0.86 0.00 0.21 0.07 37 13.09 1.28 1.72 6.23 0.42 0.19 

Isobutyl alcohol 1061 a 38 12.46 0.27 0.34 0.00 0.16 0.04 38 13.10 0.88 0.78 6.51 0.29 0.17 

(E,E)-3,7-Decadiene 1077 a 39 12.91 0.15 2.03 1.15 0.19 0.11 39 13.22 2.33 3.53 14.36 0.46 0.33 

2,4,6-Trimethyldecane 1090 b 40 13.26 0.25 3.11 0.37 0.29 0.33 43 13.99 1.93 3.26 8.52 0.44 0.35 

β-Pinene 1093 a 41 13.59 0.00 1.58 0.00 0.17 0.05 41 13.77 0.01 1.70 0.22 0.25 0.12 

Undecane 1097 a 42 13.75 0.00 2.85 0.01 0.19 0.09 48 14.30 0.01 3.61 0.09 0.32 0.16 

3-Penten-2-one  1100 a 43 13.88 0.00 0.60 0.00 0.27 0.14 40 13.73 1.70 0.69 6.19 0.42 0.22 

1-Methoxy-2-propanol 1101 a 44 13.90 0.01 0.39 0.03 0.38 0.09 44 14.10 0.02 0.48 0.74 0.41 0.22 

3-Methylbutyl acetate 1101 a 45 13.90 0.24 1.02 0.00 0.14 0.10 42 13.95 3.01 1.34 9.21 0.69 0.18 

1-Methoxy-1-propanol 1103 b 46 13.98 0.24 0.39 2.94 0.39 0.16 45 14.12 1.84 0.66 10.90 0.36 0.32 

(E)-2-Pentenal 1004 a 47 14.04 0.03 0.64 0.31 0.28 0.12 47 14.27 0.80 0.88 0.62 0.24 0.27 

Ethylbenzene 1106 b 48 14.12 0.00 0.86 0.00 0.16 0.07 46 14.24 1.51 1.31 7.54 0.42 0.30 

1,4-Dimethylbenzene 1115 b 49 14.41 0.00 0.87 1.32 0.16 0.17 49 14.59 0.53 0.95 10.60 0.47 0.25 

1-Butanol 1115 a 50 14.41 0.00 0.36 0.00 0.21 0.06 50 14.98 1.81 1.22 8.66 0.36 0.23 

1,3-Dimethylbenzene 1121 b 51 14.64 0.00 0.84 0.00 0.14 0.06 51 15.09 0.44 1.75 6.31 0.64 0.35 

(Z)-3-Hexenal 1024 a 52 14.77 0.01 0.73 0.06 0.29 0.13 52 15.42 0.75 1.21 3.67 0.32 0.29 

Butyl 2-methylpropanoate 1128 b 53 14.94 0.00 1.36 0.02 0.12 0.08 54 15.62 0.01 2.12 0.05 0.33 0.15 

1-Penten-3-ol 1130 a 54 15.01 0.22 0.36 0.00 0.16 0.05 53 15.53 0.86 0.99 12.50 0.36 0.24 

2-Methylpropyl butyrate 1141 a 55 15.40 0.00 1.33 0.87 0.31 0.21 56 15.74 1.30 1.55 8.44 0.38 0.15 

ß-Myrcene  1147 a 56 15.65 0.22 1.33 0.87 0.14 0.09 55 15.68 1.07 1.59 6.74 0.34 0.32 

Heptanal 1162 a 57 16.28 0.00 1.02 0.00 0.19 0.08 59 17.07 2.64 2.00 6.10 0.44 0.18 

1,3-Xylene 1163 b 58 16.33 0.00 0.83 1.39 0.18 0.11 57 16.61 0.97 1.34 4.40 0.44 0.29 

2-Ehylhexanal 1166 a 59 16.45 0.00 1.33 0.87 0.14 0.09 60 17.17 3.19 2.3 13.60 0.51 0.29 

(Z)-2-Hexenal 1172 a 60 16.68 0.00 0.71 1.88 0.16 0.07 58 16.98 2.24 0.97 14.10 0.47 0.32 

3-Methyl-1-butanol 1177 b 61 16.86 0.00 0.79 1.47 0.16 0.07 61 17.50 3.19 1.45 13.60 0.51 0.29 

2-Methyl-1-butanol 1177 b 62 16.86 0.00 0.41 0.03 0.16 0.08 63 17.69 0.01 1.10 0.25 0.38 0.25 

Limonene 1182 a 63 17.09 0.00 1.41 0.82 0.16 0.09 62 17.57 0.44 2.87 19.40 0.36 0.26 

Eucalyptol 1190 a 64 17.37 0.00 1.54 0.01 0.32 0.15 65 17.94 0.01 2.43 0.12 0.37 0.24 

(E)-2-Hexenal 1193 a 65 17.50 0.00 0.81 1.43 0.31 0.12 64 17.80 2.43 1.50 3.66 0.31 0.19 

Dodecane 1197 a 66 17.68 0.00 3.02 0.01 0.19 0.09 66 18.18 0.01 3.68 0.08 0.33 0.16 

Terpinene 1229 a 67 18.92 0.18 1.35 0.85 0.12 0.09 67 19.20 0.34 1.71 3.07 0.20 0.30 

(E)-ß-Ocimene 1234 a 68 19.08 0.00 1.27 1.82 0.16 0.11 69 19.49 0.35 2.64 5.06 0.27 0.21 

1-Pentanol 1236 a 69 19.15 0.18 0.11 6.74 0.33 0.17 68 19.33 2.60 0.92 7.57 0.69 0.31 

Styrene 1244 b 70 19.57 0.01 0.62 0.01 0.31 0.22 70 19.98 0.01 1.39 0.10 0.58 0.43 

1-Dodecene 1249 b 71 19.74 0.17 2.67 0.87 0.27 0.32 71 19.98 1.75 2.74 12.80 0.33 0.30 

Hexyl acetate 1250 a 72 19.78 0.00 1.13 1.02 0.18 0.09 74 20.59 0.97 2.35 15.40 0.42 0.22 
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3-Hydroxy-2-butanone 1256 a 73 19.93 0.17 0.63 1.84 0.37 0.21 73 20.58 1.16 1.02 4.55 0.36 0.21 

1,2,3-Trimethylbenzene 1261 b 74 20.18 0.00 0.96 0.00 0.27 0.09 72 20.35 2.01 1.06 3.73 0.38 0.27 

Octanal 1266 a 75 20.36 0.00 1.11 0.25 0.20 0.08 75 20.91 0.47 1.65 1.13 0.39 0.33 

2-Ethyl-2-hexenal 1278 a 76 20.77 0.00 1.14 0.02 0.17 0.09 76 21.34 0.02 2.13 0.08 0.48 0.32 

(Z)-3-Hexenyl acetate 1300 a 77 21.43 0.16 0.94 0.00 0.14 0.09 77 21.95 0.47 1.98 1.01 0.27 0.33 

N,N-Dimethylformamide 1302 b 78 21.53 0.00 0.50 0.00 0.21 0.15 79 22.28 1.95 1.47 13.30 0.36 0.37 

(Z)-2-Heptenal 1306 a 79 21.66 0.16 0.90 0.00 0.25 0.08 78 22.24 1.55 1.38 5.59 0.29 0.29 

6-Methyl-5-hepten-2-one 1319 a 80 22.17 0.00 0.91 1.26 0.18 0.08 80 22.86 0.45 1.87 1.22 0.20 0.29 

1-Hexanol 1328 a 81 22.89 0.03 0.36 0.44 0.31 0.16 81 23.35 0.15 1.03 1.51 0.40 0.26 

(Z)-3-Hexen-1-ol 1346 a 82 23.74 0.00 0.42 0.00 0.21 0.11 82 23.73 0.85 1.03 6.28 0.22 0.24 

(E,E)-2,4-Hexadienal 1369 a 83 24.38 0.00 0.58 0.00 0.18 0.05 85 25.39 0.26 1.22 2.84 0.33 0.49 

Nonanal 1370 a 84 24.44 0.00 1.24 1.61 0.29 0.10 84 24.77 1.48 1.77 14.10 0.49 0.31 

(E)-2-Hexen-1-ol 1373 a 85 24.56 0.00 0.40 0.00 0.21 0.09 83 24.71 2.20 0.91 3.37 0.31 0.31 

(E)-3-Octen-2-one 1382 a 86 24.85 0.00 0.96 0.01 0.28 0.10 86 25.41 0.01 1.82 0.03 0.50 0.33 

α-Thujone (ISTD) 1402 a 87 25.55 0.00 1.24 0.02 0.25 0.16 88 26.47 0.02 2.20 0.13 0.31 0.31 

(E)-2-Octenal 1415 a 88 25.73 0.00 0.98 2.04 0.27 0.14 87 25.83 1.13 1.01 11.90 0.80 0.24 

1-Octen-3-ol 1417 a 89 25.78 0.00 0.34 0.00 0.18 0.08 90 26.83 0.01 1.15 0.09 0.20 0.29 

β-Thujone (ISTD) 1424 a 90 26.26 0.00 1.21 0.01 0.15 0.09 89 26.59 0.01 2.21 0.10 0.21 0.20 

1-Heptanol 1429 a 91 26.43 0.00 0.53 2.19 0.18 0.05 93 27.19 0.28 1.17 2.65 0.27 0.30 

1-Ethenyl-4-ethylbenzene 1430 b 92 26.48 0.00 0.86 0.00 0.37 0.13 91 26.87 0.72 1.81 1.68 0.51 0.25 

Furfural 1434 a 93 26.77 0.00 0.34 0.00 0.17 0.06 95 27.54 0.01 1.17 0.22 0.32 0.30 

(E,E)-2,4-Heptadienal 1437 a 94 26.89 0.00 0.69 1.67 0.14 0.06 96 27.80 1.06 1.44 0.00 0.62 0.25 

5-Methyl-2-(1-
methylethyl)-
cyclohexanone 

1446 b 95 27.13 0.00 1.31 0.88 0.21 0.13 92 27.05 0.28 1.37 2.41 0.33 0.25 

Butyl-2-ethylhexanoate 1453 a 96 27.42 0.00 1.89 1.22 0.39 0.29 94 27.33 0.88 1.97 7.99 0.40 0.19 

2-Ethyl-1-hexanol 1460 a 97 27.72 0.00 0.60 0.00 0.21 0.11 97 28.06 0.02 1.46 0.23 0.34 0.20 

(Z)-Hepten-4-ol 1469 a 98 28.18 0.00 0.46 0.02 0.19 0.08 99 28.93 0.01 1.17 0.23 0.39 0.15 

Decanal 1474 a 99 28.35 0.00 1.30 1.54 0.25 0.09 98 28.60 1.50 1.89 14.30 0.33 0.25 

(E)-2-Hepten-1-ol 1476 a 100 28.41 0.00 0.44 0.02 0.41 0.16 100 29.20 0.00 0.97 0.03 0.55 0.33 

3,5-Octadien-2-one 1485 a 101 28.88 0.00 0.77 0.01 0.21 0.12 101 29.52 0.02 1.56 0.10 0.60 0.31 

Benzaldehyde 1494 a 102 29.03 0.12 0.49 2.34 0.18 0.04 104 29.95 0.47 1.06 15.40 0.44 0.22 

6-Undecanone 1505 a 103 29.38 0.00 1.53 0.01 0.38 0.14 105 29.96 0.01 2.30 0.05 0.44 0.25 

Propanoic acid 1506 a 104 29.40 0.01 0.14 0.06 0.35 0.09 106 30.29 0.02 0.96 0.12 0.47 0.23 

(E)-2-Nonenal 1509 a 105 29.58 0.00 1.05 1.10 0.41 0.17 102 29.66 1.42 1.16 16.5 0.36 0.15 

Linaloool 1514 a 106 29.75 0.00 0.67 1.73 0.18 0.06 103 29.90 0.26 0.72 2.90 0.38 0.12 

1-Octanol 1525 a 107 30.16 0.00 0.57 2.01 0.14 0.05 107 30.69 0.25 1.57 2.40 0.16 0.22 

Nonyl acetate 1567 b 108 31.15 0.00 1.33 0.01 0.25 0.16 108 30.96 0.00 1.29 0.06 0.40 0.28 

5-Methyl-2(5H)-furanone 1589 b 109 31.46 0.11 0.46 0.00 0.54 0.07 109 32.49 0.24 1.02 3.08 0.62 0.25 

Undecanal 1598 a 110 32.08 0.00 1.37 1.69 0.53 0.28 111 32.76 0.12 2.72 0.71 0.78 0.50 

Butanoic acid 1610 a 111 32.57 0.10 0.16 0.00 0.39 0.09 110 32.64 0.42 1.45 7.74 0.47 0.23 

Butyrolactone 1611 a 112 32.61 0.00 0.44 0.00 0.35 0.09 112 32.78 0.12 0.94 3.34 0.24 0.27 
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1-Nonanol 1628 a 113 33.66 0.00 0.63 1.82 0.16 0.05 113 34.22 0.11 1.43 2.20 0.20 0.23 

Ethyl benzoate 1637 a 114 34.03 0.10 0.67 1.71 0.12 0.06 114 34.53 0.84 1.35 10.90 0.40 0.28 

5-Ethyl-2(5H)-furanone 1643 b 115 34.28 0.20 0.41 10.2 0.25 0.16 115 35.04 0.61 1.24 8.38 0.36 0.33 

(Z)-3-Nonen-1-ol 1647 a 116 34.44 0.00 0.57 0.02 0.21 0.07 116 35.04 0.01 1.11 0.26 0.44 0.30 

Dodecanal 1684 a 117 35.64 0.00 1.42 1.41 0.51 0.21 117 36.25 0.38 2.49 8.17 0.47 0.36 

α-Muurolene  1701 a 118 35.99 0.00 1.61 1.89 0.16 0.13 119 36.86 0.28 2.52 12.80 0.40 0.30 

3,4-Dimethyl-2,5-
furandione 

1701 b 119 35.99 0.00 0.54 0.02 0.25 0.11 120 36.96 0.01 1.41 0.12 0.55 0.28 

Pentanoic acid 1710 a 120 36.16 0.00 0.17 0.21 0.32 0.20 118 36.80 0.01 0.94 0.14 0.60 0.34 

1,4-Cyclohex-2-enedione 1710 b 121 36.16 0.00 0.43 0.03 0.33 0.19 121 37.13 0.00 1.28 0.21 0.49 0.22 

α-Farnesene 1725 a 122 36.98 0.00 1.43 0.02 0.15 0.06 122 37.13 0.01 2.16 0.11 0.28 0.15 

(E,E)-2,4-Decadienal 1732 a 123 37.20 0.09 0.91 2.55 0.37 0.20 123 37.64 0.10 0.95 3.20 0.64 0.35 

1-Decanol 1737 a 124 37.37 0.04 0.69 0.72 0.15 0.07 124 37.77 0.22 1.61 0.98 0.50 0.13 

Methyl salicylate  1743 b 125 37.57 0.00 0.57 2.04 0.25 0.11 125 38.11 1.57 1.16 9.73 0.56 0.41 

2-(2-Butoxyethoxy)-
ethanol 

1754 a 126 37.92 0.00 0.52 0.00 0.25 0.16 126 38.39 0.70 1.31 5.33 0.31 0.35 

δ-Pentalactone 1767 b 127 38.33 0.00 0.52 0.00 0.39 0.16 127 39.36 0.00 1.18 2.74 0.60 0.32 

3-Phenyl-2-propenal 1794 b 128 39.20 0.00 0.52 0.00 0.21 0.07 128 40.26 0.10 1.14 3.51 0.40 0.29 

Hexanoic acid 1805 a 129 39.51 0.09 0.20 0.00 0.31 0.22 129 40.47 0.10 0.83 7.78 0.58 0.43 

(Z)-6,10-Dimethyl-5,9-
undecadien-2-one 

1821 b 130 40.02 0.00 1.13 2.05 0.35 0.20 130 40.70 0.09 2.12 0.99 0.31 0.29 

1-Undecanol 1824 a 131 40.11 0.09 0.75 0.86 0.21 0.11 131 41.19 0.19 1.64 4.80 0.29 0.16 

Butyl benzoate 1830 b 132 40.31 0.00 0.82 0.02 0.41 0.27 132 41.27 0.00 1.69 0.14 0.59 0.30 

Benzyl alcohol 1832 a 133 40.37 0.00 0.28 0.00 0.28 0.14 133 41.29 0.00 0.99 0.26 0.46 0.27 

Heptanoic acid 1845 a 134 40.91 0.18 0.23 1.63 0.33 0.15 134 41.38 0.88 0.98 7.93 0.76 0.27 

Phenylethyl alcohol 1869 a 135 41.44 0.16 0.34 0.00 0.29 0.11 135 41.42 0.16 0.83 12.00 0.56 0.34 

4-Phenyl-3-buten-2-one 1914 b 136 42.82 0.00 0.56 0.00 0.40 0.14 136 43.77 0.09 1.12 1.61 0.64 0.25 

1-Dodecanol 1928 a 137 43.23 0.00 0.81 1.42 0.23 0.13 137 43.89 0.32 1.68 8.43 0.38 0.31 

Phenol 1956 a 138 44.04 0.00 1.27 3.97 0.43 0.34 138 44.84 1.51 1.66 18.3 0.53 0.41 

Average   - - 0.11 - 0.87 0.24 0.12 - - 0.97 - 5.39 0.42 0.25 

Min    - - 0.00 - 0.00 0.08 0.04 - - 0.00 - 0.00 0.16 0.11 

Max   - - 1.11 - 10.20 0.54 0.34 - - 8.45 - 19.40 1.04 0.50 
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Based on the differences observed in the absolute response, spectral quality fluctuations were 
expected especially for low-intensity or threshold peaks. Therefore, the next step was to define 
threshold parameters for template construction with the objective of achieving 100% true-positive 
matches (accuracy) in presence of random variability over the application of the method in a short 
term and with the same method set-up. Therefore, these tests were performed between analytical 
replicates of the same oil sample to define benchmark values and then validated over a new sample 
acquired in the same conditions. Tests were done on the three analytical replicates of Baza-4-A 
acquired by Set-up 1; validation was on the three replicates of Bena-4-A acquired by the same set-up.  

Threshold values for candidate peaks populating a template were set for SNR and NIST 
Similarity match factor (direct match factor - DMF); as reference, spectral signatures were tested 
for the average spectrum (named blob spectrum) and the highest modulation spectrum (named peak 
spectrum). SNR values were varied step-wise in a range between 10 and 100, covering 2D peaks with 
a percent response between 0.01 and 0.04, while the DMF threshold was set at 800 or 700.42 
Templates were built with ten 2D-peaks with SNR within the fixed range and homogeneously 
distributed over the 2D space. Experimental results, expressed as % of true-positive matches, are 
reported in Table 5.3.4.  
 

Table 5.3.4. template matching results based on Set-up 1 templates including 2D peaks with SNR ranging from 10 to 100. Similarity 
DMF threshold applied are 800 or 700 while reference spectrum is blob (average 2D-peak spectrum) or peak (highest modulation 
spectrum). The upper part of the table refers to benchmark values obtained by applying Set-up 1 templates over replicated analyses 
of the same sample (i.e., Baza-4-A); lower part of the table refers about results of Set-up 1 templates over replicated analyses of 
another sample (i.e., Bena-4-A). 

 
2D Peaks with SNR values below 50 are connoted by inconsistent MS spectral signatures 

resulting in false-negative matches even when DMF threshold is lowered from 800 to 700. For 
these peaks, neither the blob spectrum nor the peak spectrum are sufficiently reliable to carry consistent 
information for identity confirmation. For 2D-peaks with a SNR within 50-100 in the reference 
chromatogram, the rate of positive matches increases from 10% to 70% when MS constraints are 
kept at 800 DMF and blob spectrum considered. The rate of true-positive matches reaches 100% with 
the combination of lower DMF threshold at 700 and peak spectrum taken as reference MS. Note, in 
these cases no false positives were revealed, meaning that correspondences were just established 
between peaks generated by the same chemical entity.  

Results suggest that a SNR cut-off should be defined, based on 2D data particulars, to limit 
inconsistencies at targeted identity confirmation level. The validation of these settings was by 

Baza-4-A Set-up 1 – three replicates  

   Similarity threshold 800 – Blob MS Similarity threshold 700 – Peak MS 

SNR % Response Peaks n° % Matching Matched peaks n° % Matching Matched peaks n° 

10 ± 2 0.01 Column bleeding or interferences 

30 ± 2 0.02 10 10.00 % 1 40.00 % 4 

50 ± 2 0.02 10 10.00 % 1 90.00 % 9 

70 ± 2 0.03 10 40.00 % 4 100.00 % 10 

90 ± 2 0.04 10 40.00 % 4 100.00 % 10 

100 ± 2 0.04 10 70.00 % 7 100.00 % 10 

 

Baza 4-A Set-up 1 over Bena-4-A Set-up 1 

   Similarity threshold 800 – Blob MS Similarity threshold 700 – Peak MS 

SNR % Response Peaks n° % Matching Matched peaks n° % Matching Matched peaks n° 

10 ± 2 0.01 Column bleeding or interferences 

30 ± 2 0.02 10 10.00 % 1 10.00 % 1 

50 ± 2 0.02 10 10.00 % 1 20.00 % 1 

70 ± 2 0.03 8 25.00 % 2 87.50 % 7 

90 ± 2 0.04 5 40.00 % 2 100.00 % 5 

100 ± 2 0.04 7 42.86 % 3 100.00 % 7 
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applying the templates resulting from the reference sample Baza-4-A to Bena-4-A replicates on the 
same column set-up. Results, reported in Table 5.3.4, confirmed the need for a SNR threshold of 
at least 50 with better performances at DMF threshold of 700 with a reference template spectrum 
collected from the highest modulation (peak spectrum). In this case, some template peaks were 
unmatched (true-negative matches) because they were not detected in the analyzed sample (below 
method Limit of Detection LOD).  

Rules for template peaks thresholds and reference spectra were then applied to build a reference 
targeted template of known analytes. This fully supervised approach aimed at characterizing the 
distribution of marker compounds known for their role in defining olive oil sensory quality or to 
refer about olives ripening status8,9. It was also the complement of the UT fingerprinting process 
and included targeted peaks listed in Table 5.3.3. Analytes identifications were by combining 1D 
retention data (IT) with MS fragmentation pattern similarity above 900 DMF adopting commercial 
42,43 and in-house databases or, when possible, by authentic standards.  

The template of 126 2D-peaks was built by inspecting samples patterns obtained with Set-up 1; 
reference peaks inclusion was limited to those analytes showing a SNR≥100, the reference spectra 
was from the highest modulation (e.g., peak spectrum), and the MS constraint was set at 700 DMF 
and 700 Reverse Match Factor (RMF).42  

Results for targeted template matching are summarized in Table 5.3.5. The average matching 
within Set-up 1 samples achieved 97% (122 over 126 peaks). Further comments will follow for 
template matching for Set-up 2 patterns.  

 
 

Table 5.3.5. template matching results for targeted template (supervised workflow) from Set-up 1 applied to Set-up 2 samples and 

for feature template (unsupervised and automatic workflow) built over Set-up 1 samples and applied on Set-up 2 samples 

 

5.3.4.3 Template transformation 

Once template construction was established with simple rules for confident identification and 
effective matching, the next step was the selection of matching algorithm (transform) and related 
parameters to effectively transform the template to match the peak pattern showing severe 
misalignment. To approach this challenge, global polynomial transformations were tested, as it was 
successful in complex re-alignment problems such as those posed by method translation from 
thermal to differential flow modulated platforms. 18,21 Global, low-degree transformation functions 
(second-degree or third-degree polynomials) are successful when a sufficient number of alignment 
points, at least 10 for affine and 30 for second-degree polynomial, are available to guide the pattern 
re-alignment.18  

The strategy here applied included the re-alignment of the targeted template built over Set-up 1 
analyses to chromatograms from Set-up 2. The first step included the adjustment of the distance 

 
Targeted template (126 peaks) Feature template (257 reliable peaks) 

Set-up 1 Set-up 2 Set-up 1 Set-up 2 
Samples % Peaks n° % Peaks n° % Peaks n° % Peaks n° 

Baza-1 94.44 119 91.27 115 100.00 257 97.28 250 

Baza-2 97.62 123 92.06 116 100.00 257 98.44 253 

Baza-3 98.41 124 95.24 120 100.00 257 98.83 254 

Baza-4 100.00 126 96.03 121 99.22 255 96.86 247 

Bena-1 93.65 118 88.89 112 100.00 257 98.44 253 

Bena-2 96.03 121 91.27 115 100.00 257 96.50 248 

Bena-3 97.62 123 92.06 116 98.83 254 99.22 256 

Bena-4 98.41 124 92.86 117 100.00 257 98.05 252 

Average 97.02 122 92.46 116 99.75 256 97.95 252 

RSD% 2.22 2.22 2.47 2.47 0.45 0.46 0.99 1.22 
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threshold parameters for the 1D and 2D, which correspond to the horizontal and vertical distance 
threshold that limits the after-transformation distance between template and candidate 2D-peaks. 
These distances are expressed in inter-sample distances (i.e., pixel dimensions). To compensate for 
the greater 2D misalignment the 2D distance threshold was step-wise incremented from a minimum 
value of 5 up to 25. On the 1D, where the misalignment was minimal, a threshold of 10 was 
sufficient to avoid false-negative matches.  

At the same time, affine and second-degree polynomial matching transforms were tested for 
performance.18 These functions are available in the current version of GC Image (i.e., v2.8). The 
reader interested in a deeper insight on transform functions and their effectiveness to re-align 
complex patterns can refer to previous research by Reichenbach and co-workers.17,18,35 

The Set-up 1 targeted template was applied to the first (arbitrarily chosen) sample pattern (i.e., 
Baza-4-A) obtained with Set-up 2. At first, the number of true-positive matches was higher for the 
second-degree transform, so the iterative process of match-and-transform was continued. Iterating the 
process of matching and template transform allows the template to be adapted to the actual pattern 
while increasing, step-by-step, the number of matched peaks up to the maximum number that 
corresponds to all targeted analytes actually detected/confirmed in the analyzed pattern. In practice, 
this operation increments the number of alignments points available step-by-step, thus improving 
the quality of the global template transformation at each step.  

Experimental results for the application of the targeted template adapted to Set-up 1 over the 
patterns of Set-up 2 resulted in a 65 positive matches over 126 template peaks (51% - 5.4% RSD); 
after transformation by taking these 65 alignment points, the successive matching step achieved 95 
positive matches with a 75% of matched peaks; then, the next step matched 110 peaks, 87%. The 
maximum number of matched peaks, shown in Table 5.3.5, was 121 (96%) and was achieved after 
one additional matching step. In practice, for a full and effective re-alignment of the targeted 
template, a variable number of iterations between 3 and 5 was applied.  

All such results are listed in Table 5.3.5; benchmark values for maximum template matching 
performance are those corresponding to the application of the targeted template to Set-up 1 samples 
(first column). On average matching performance was better for Set-up 1 patterns (97% of true-
positive matches), although the loss of accuracy on Set-up 2 pattern was just 5% (92.46% vs. 97.02%). 
These results present a solid foundation for the application of this experimented strategy to a fully 
unsupervised approach as that for the reliable template construction.  

The next section illustrates the process of feature template construction over samples patterns 
from Set-up 1 and its successive alignment over Set-up 2 patterns. Accuracy results are discussed as 
% of true-positive matches. 44 

 

5.3.4.4 UT fingerprinting: feature template construction 

The feature template was built over a subset of Set-up 1 chromatograms with the first 
analytical replicate of all analyzed samples. The 2D chromatograms were pre-processed for 
rasterization, background subtraction, and 2D peaks detection above a SNR threshold of 100. Data 
processing was then conducted within a component of the GC Image software suite (Image 
InvestigatorTM) using the previously validated settings: 

- SNR≥100 as threshold value for template peaks; 

- peak spectrum as MS reference to upload in the template; 

- DMF similarity threshold at 700; 

- matching transform parameters with 1D distance threshold of 10 and 2D of 25. 

Additional settings, specific for this process, included an option for reliable peak inclusion that 
was set as most relaxed: with this setting the algorithm considers as reliable peaks all 2D-peaks that 
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match across at least half of the chromatograms. Reliable peaks are fundamental as they are used as 
alignment points for the transform function when the feature template is used to cross-align a large 
set of chromatograms including those obtained with a different set-up.  

The final feature template accounted for 257 reliable peaks and 1500 peak-regions. The reliable 
template built over Set-up 1 chromatograms is shown in Supplementary material – Supplementary 
Figure 5.3.3. Matching constraints for MS spectrum similarity were applied on 2D-peak features 
and results are summarized in Table 5.3.5. The average % of matching for Set-up 1 chromatograms 
was 99.75 (±0.45 RSD%); when the feature template is transformed to match for Set-up 2 patterns, 
the % of matching is slightly lower 97.95 (±0.99 RSD%) but evidences the high accuracy of the 
process. 

Once re-aligned almost all chemical features are detected in all samples patterns, proceeding in 
a sort of data fusion, the final step aimed at defining the best 2D-peak response descriptor for cross-
sample analysis.  

 

5.3.4.5 Response normalization and samples clustering 

As evidenced by signal intensity evaluation and by 2D-peaks statistics (SNR and VNR 
distribution), pattern cross-alignment is not sufficient to compensate for random variations across 
measurement sessions and impacting detector response. Response normalization is mandatory to 
allow consistent cross-comparison of data set. The removal of unwanted intensity variation (i.e., 
normalization) is referred to as signal drift correction, removal of batch effect, scaling, and matrix 
effects removal, and can be approached differently as function of the study objectives.23 
Normalization is, in fact, a fundamental step because it may affect the outcomes of a study; the 
meaningfulness of differentially abundant analytes may vary depending on the normalization 
method.23,40  

In this study, we tested three simple approaches within those generally adopted in volatiles 
profiling studies.3,45 The first included multiple IS normalization with α and β thujone and methyl 
octynoate that were pre-loaded into the SPME device before headspace sampling of olive oils.30 As 
an alternative method, the analyte % response (calculated on the 2D-Volume) was considered. It 
was obtained by: (a) normalizing analyte 2D-Volume over all detected 2D-peaks above fixed 
thresholds or (b) normalizing analyte 2D-Volume over all UT peaks included in the feature 
template. In this last approach 2D-peaks from column bleeding and from interferents were 
excluded.  

Results are illustrated, for a selection of informative analytes covering different volatilities, 
polarities and amounts, in Figure 5.3.3.  
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Figure 5.3.3. Error %, according to Equation 3, calculated between 2D peaks response (Normalized 2D Volume over IS, % 
response over all 2D peaks detected or over UT peaks) taking Set-up 2 as reference for a selection of informative analytes. Red 

dotted lines indicate boundaries for acceptance at ±20%. 

 
The bias is computed as Error %, according to Equation 5.3.3, and between 2D peaks 

response (Normalized 2D Volume over IS, % response over all 2D peaks detected or over UT 
peaks) taking Set-up 2 as reference.  

Equation 5.3.3.  Error % = ((Responsei Set-up 2 - Responsei Set-up 1)/ Responsei Set-up 2) * 100 
   

Normalization by IS(s) performs, on average, more effectively than those on % response 
(Average Error % 11.2 vs. 16.2); it better compensates for response fluctuations derived by S/SL 
injection discriminations here impacting on highly volatiles (heptane and acetone) and due to the 
different operative head-pressures applied to the two set-up. For highly volatile analytes, the Error 
% computed for IS normalization drops below 16 while for % response it reaches 50-60%. On the 
other hand, % response indicators well compensate for detection variability on less abundant 
analytes as 1-octen-3 ol (0.01%), 2-butanone (0.01%), 3-penten-2-one (0.02%), 1-octanol (0.04%), 
and octanal (0.06%). Note, response variations also are influenced by chromatographic 
performance; 2D-peaks showing long tails (carbonyl derivatives or unsaturated alcohols) or 
distorted by overloading phenomena may be split into multiple 2D-peaks. In these cases, 
supervision is needed to merge all 2D-peaks belonging to the same analytes in a single one.   

Although ISs normalization gave better results for analytes heavily discriminated, it requires a 
dedicated sample preparation with ISs pre-loading before sampling that may impact on the global 
analysis time. In addition, a careful selection of standards is necessary by focusing on compounds 
non-present in the samples under study while covering the suitable range of volatility and polarity. 
In this scenario, % response normalization is attractive being simpler and less time consuming 
although it does not rule out the use of quality control procedures as for example external 
standardization (ES) or multiple quality control samples analysis. 
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As a proof of concept, a PCA was run on normalized responses obtained from samples 
analyzed by the two set-ups. The data matrix consisted of 126 chemical variables corresponding to 
the targeted analytes listed in Table 5.3.2, and 16 samples corresponding to 2 plots × 4 ripening 
stages × 2 set-up. Technical replicates were averaged; therefore, the final data matrix was 126 × 16 
dimensioned. Results are shown in the score plot of Figure 5.3.4A; observations (samples) are 
rationally distributed over the Cartesian plane according to the ripening stage of olives (visible along 
the F1 from right to left) and in accordance with oil quality (i.e. extra-virgin, virgin or lampante). 
Results are in agreement with those from the original study by Magagna et al.8 confirming the 
informative role of several analytes related to positive aroma attributes (i.e., (E)-2-Hexen-1-ol, (Z)-
3-Hexen-1-ol and (E,E)-2,4-Hexadienal) with a relevant role in early ripening stages and 6-Methyl-
5-hepten-2-one with higher impact on later stages were oils were classified as lampante or virgin.  

 

 

Figure 5.3.4. PCA score plots based on normalized responses for 126 targeted analytes (Table 5.3.2) resulting from samples 
(Baza and Benamaurel plots) analyzed with set-up 1 and set-up 2 (5.3.4A), colors correspond to different ripening stages of olives 

(1-4). (5.3.4B). Scores plot in based on analytes absolute responses without normalization while confidence ellipses clearly 
highlight the samples clusters influenced by batch effect (set-up 1 red indicators and set-up 2 black indicators. 

Measurements from the two set-ups are homogeneously distributed over the Cartesian plane 
confirming the effectiveness of response normalization on the “batch effect”. The latter is evident 
in Figure 5.3.4B where the PCA was conducted on analytes 2D volumes without normalization. 
Here measurements from the two set-ups are independently clustered, as also indicated by 
confidence ellipses, and well discriminated along the F1. On the other side, as a conformation on 
the consistency of the measurements obtained by the two set-up, along F2 for both clusters, the 
ripening stage is coherently distributed from the upper-side of the graph to bottom.  

 

5.3.5 Supplementary Material  

Supplementary material at the Google Drive’s link: 
https://drive.google.com/drive/folders/1dw3d3BviJIrAmzTWl_qhkf1GFTmHyIBF?usp=sharin
g   
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5.4.1 Abstract  

Comprehensive two-dimensional gas chromatography (GC×GC) based on flow-modulation 
(FM) is gaining increasing attention as an alternative to thermal modulation (TM), the recognized 
GC×GC benchmark, thanks to its lower operational cost and rugged performance. An accessible, 
rational procedure to perform method translation between the two platforms would be highly 
valuable to facilitate compatibility and consequently extend the flexibility and applicability of 
GC×GC. To enable an effective transfer, the methodology needs to ensure preservation of the 
elution pattern, separation power, and sensitivity. 

Here, a loop-type thermal modulation system with dual detection (TM-GC×GC-MSD/FID) 
used for the targeted analysis of allergens in fragrances is selected as reference method. Initially, six 
different columns configurations are systematically evaluated for the flow-modulated counterpart. 
The set up providing the most consistent chromatographic separation (20 m x 0.18 mm dc x 0.18 
μm df + 1.8 m x 0.18 mm dc x 0.18 μm df) is further evaluated to assess its overall performance in 
terms of sensitivity, linearity, accuracy, and pattern reliability. The experimental results convincingly 
show that the method translation procedure is effective and allows successful transfer of the target 
template metadata. Additionally, the FM-GC×GC-MSD/FID system is suitable for challenging 
applications such as the quantitative profiling of complex fragrance materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key words 

Two-dimensional comprehensive gas chromatography-mass spectrometry and flame ionization 
detection; reverse-inject differential flow modulation; suspected fragrance allergens; method 
translation; method limit of detection; repeatability and precision 
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5.4.2 Introduction 

Comprehensive two-dimensional gas chromatography GC×GC coupled with mass 
spectrometry (MS) is a powerful technique for detailed profiling and effective fingerprinting of 
medium-to-high complexity samples. Thermal modulators implementing cryogenic cooling are 
widely used and, to date, considered the “gold standard” for GC×GC. The effective in-space band-
focusing induced by this modulator results in a peak capacity gain (Gn) that is close to the achievable 
theoretical limit.1 At the same time, the signal-to-noise ratio greatly increases resulting in a sensitivity 
gain of one order of magnitude compared to a conventional 1D-GC analysis. Despite these 
advantages, thermal modulators have some drawbacks related to hardware and operational costs 
limiting their widespread adoption in quality control and high-throughput screening.  

Differential-flow modulators (FMs), such as those based on the Seeley et al. design,2,3 are an 
interesting alternative to thermal modulators (TMs). Configurations can have an adjustable 
volume/length accumulation loop, as those proposed by Tranchida et al.4–6 Large accumulation loop 
volumes limit the overloading, extends the re-injection period and provides multi-stage dynamics 
with some benefits on separation power and peak symmetry. The first commercial FM used fixed 
volume accumulation loop devices obtained with Capillary Flow Technology (CFT) microfluidic 
plates. They implement both the forward fill/flush (FFF) injection dynamics described by Seeley et 
al. 7 and the reverse fill/flush (RFF) dynamics connoted by a more efficient band re-injection, 
improved 2D peak widths and symmetry, and effective handling of collection-channel 
overloading.8–12 Commercial RFF modulators are available from Agilent Technologies13 and by Sep-
Solve with the FM named Insight™.14 More recently, Seeley et al.15 proposed the multi-mode 
modulator (MMM). This device, as it is engineered in the commercial platforms by LECO (Flux™), 
enables the adoption of conventional column combinations and carrier gas operational flow in both 
separation dimensions but is characterized by a low duty cycle.  

The growing interest in robust and cryogen-free modulators certainly is driven by the possibility 
they offer to describe in depth the chemical dimensionality of samples16 with a relative ease of use 
and low operational costs. FM gives access to peculiar features of GC×GC separations such as 
group-type characterization, accurate profiling, and advanced fingerprinting based on 2D separation 
patterns.17–21 However, FM dynamics are connoted by a limited flexibility in terms of operative 
flows in the two separation dimensions which in turn require a careful selection of column 
dimensions/characteristics to fully exploit the separation potential.  

If the price to pay is mainly related to the actual separation power of the system, absolute 
method sensitivity is another important issue to consider; to date this method characteristic lacks 
dedicated research especially in the perspective of application transfer between TM to FM 
platforms. This study fills this gap by systematically examining six different column combinations, 
almost equivalent to a reference TM system, for their chromatographic performances and method’s 
figures of merit. Method translation principles 22–25 are here applied for a rational and effective 
translation of the reference methodology developed for a loop-type TM system to the six FM tested 
column configurations, instead of a trial-and-error approach to set chromatographic parameters. 
By this rational approach, the first dimension (1D) elution order and resolution of the original TM 
method are preserved and resulting 2D peak patterns are coherent between mutually translated 
methods. At the same time, in view of routine applications, analysis speed is also evaluated.  

The best performing configuration is then examined for method performance parameters in 
terms of linearity over a 3 order of magnitude in analytes concentrations, sensitivity and quantitation 
accuracy. As a challenging application, raw fragrance materials of medium complexity are 
considered and a selection of targeted analytes referred to as “established contact allergens in 
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humans” by the EU Scientific Committee on Consumer Safety26 are subjected to quantitative 
profiling. They included 60 analytes (single compounds or mixtures of isomers) covering a wide 
range of polarity and volatility. 

 

5.4.3 Materials and methods 
5.4.3.1 Raw materials, pure reference compounds and solvents 

Pure standards of n-alkanes (from n-C9 to n-C25) for Linear Retention Indices (IT) calibration 
were from Merck (Milan, Italy). Pure standards (or isomers mixtures) of tested analytes listed in 
Table 5.4.1 were purchased from Merck (Milan, Italy) or kindly provided by Firmenich SA 
(Geneva, Switzerland). Solvents (cyclohexane and dichloromethane) were all HPLC-grade from 
Merck (Milan, Italy). Pure standards of 1,4-dibromobenzene and 4,4’- dibromobiphenyl used as 
Internal Standards (ISTDs) were from Merck (Milan, Italy). 

Commercial raw fragrance materials for accuracy assessment were kindly provided by Farotti 
srl (Rimini, Italy). Test sample #1 (TS1) consisted of a citrus-like fragrance while test sample #2 was 
a flowery-like fragrance (TS2).  
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Table 5.4.1. List of analytes included in the MMix together with FM-GC×GC-MS/FID precision data on 1D and 2D retention times (1tR and 2tR), 2D peak absolute volumes and normalized volumes on 
FID and MS channels; linearity (R2) and accuracy (relative error %) at two spiking levels. “$” refers to accuracy data calculated on the TIC-MS signal instead of FID. 

 Precision - Repeatability Linearity Accuracy – Relative error % 
 

1D Retention (1tR) 2D Retention (2tR) FID –Responses 
%RSD 

MS TIC – 
Responses 

%RSD 

  Citrus-like TS1 Flowery-like TS2 

Compound Name min St 

dev 

% 

RSD 

sec St 

dev 

% 

RSD 

Vol. Norm. 

Vol. 

Vol. Norm. 

Vol. 

R2 FID R2 MS +1 
mg/L 

+10 
mg/L 

+1 mg/L +10 
mg/L 

1,4-Dibromobenzene 15.17 0.08 0.50 1.35 0.03 1.87 3.69 0.00 2.55 0.00 - - - - - - 

4,4'-Dibromobiphenyl 33.55 0.00 0.00 2.00 0.00 0.25 3.57 0.00 1.68 0.00 - - - - - - 

Benzaldehyde 8.70 0.00 0.00 1.21 0.01 0.63 0.45 1.63 2.07 4.39 0.998 0.994 -7.21 -2.27 -15.07 -12.29 

α-Pinene 8.80 0.00 0.00 0.38 0.00 0.00 1.21 0.03 2.95 9.66 0.998 0.989 -5.06 -9.36 -0.22 -6.16 

β-Pinene  9.85 0.00 0.00 0.51 0.00 0.57 2.02 0.84 0.90 0.07 0.996 0.999 -5.80 3.16 -0.11 -2.75 

Benzyl alcohol 10.63 0.03 0.27 1.34 0.02 1.14 0.24 1.42 1.33 1.41 0.998 0.998 15.26 -6.18 -8.44 2.25 

α-Terpinene  10.83 0.03 0.27 0.52 0.02 3.87 1.10 0.08 1.40 4.39 0.998 0.997 -21.40 -2.51 12.23 -2.78 

Salicylaldehyde 10.88 0.03 0.26 1.34 0.01 0.65 0.70 1.88 3.32 2.60 0.998 0.998 19.74 22.04 -1.86 5.47 

Limonene 11.15 0.00 0.00 0.51 0.01 2.03 1.81 0.63 2.59 2.06 0.996 0.990 -6.44 -7.62 -0.87 16.91 

Terpinolene 12.75 0.00 0.00 0.64 0.01 1.20 14.58 13.41 2.11 2.91 0.993 0.998 -6.79 -0.10 -7.41 -13.09 

Linalool 12.83 0.03 0.22 0.65 0.01 1.55 8.66 9.84 1.81 0.80 0.996 0.996 9.43 -15.61 1.62 -9.05 

Camphor 13.95 0.00 0.00 1.13 0.01 0.89 3.24 2.06 0.72 1.10 0.998 0.997 6.39 2.05 -2.60 2.74 

Menthol 14.90 0.00 0.00 0.72 0.01 1.44 2.73 1.55 0.69 3.33 0.995 0.996 -8.86 -1.21 -21.80 -0.30 

Folione 15.17 0.03 0.19 1.11 0.01 0.45 2.61 1.43 5.63 5.58 0.994 0.997 -9.91 5.22 -6.26 -6.95 

Methyl salicylate 15.23 0.03 0.19 1.28 0.01 0.98 2.51 1.33 4.29 4.42 0.997 0.998 -11.74 -0.67 -0.64$ -13.38$ 

α-Terpineol  15.33 0.03 0.19 0.88 0.01 1.19 3.13 1.95 8.65 1.31 0.997 0.997 -5.16 0.50 -3.82 -13.03 

Citronellol 16.27 0.03 0.18 0.72 0.01 1.44 2.10 0.92 3.28 0.33 0.998 0.993 -2.79 -2.75 -8.83 -4.81 

Neral 16.47 0.03 0.18 0.97 0.01 0.79 2.63 1.45 3.16 3.96 0.998 0.997 -1.36$ 6.28$ -1.59 -5.68 

Carvone 16.50 0.00 0.00 1.20 0.01 0.84 1.22 0.04 4.90 6.15 0.998 0.996 -8.43 0.36 0.60 -0.88 

Cinnamaldehyde 16.90 0.05 0.30 1.76 0.01 0.72 3.78 2.60 4.32 6.27 0.998 0.997 -4.59 15.87 -6.79 8.98 

Geraniol 16.93 0.03 0.17 0.84 0.01 1.19 0.67 0.51 2.82 3.90 0.998 0.995 17.64 7.77 9.97 8.58 

Linalyl acetate 17.10 0.00 0.00 0.66 0.02 2.30 2.66 3.84 4.91 1.61 0.998 0.998 17.12 -6.75 -7.48 -1.31 

Geranial 17.18 0.03 0.17 0.98 0.01 0.78 2.14 0.96 0.55 0.42 0.998 0.998 -16.86 11.12 -0.58$ -5.43$ 

Anise alcohol 17.30 0.05 0.29 1.81 0.02 1.12 1.24 2.42 4.67 8.44 0.998 0.995 -9.85 1.08 -13.22 -10.00 

Hydroxycitronellal 17.47 0.03 0.17 1.03 0.01 1.28 2.02 0.84 0.51 0.86 0.997 0.997 -1.03 -3.02 -20.49 -3.19 
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Anethole trans 17.72 0.03 0.16 1.22 0.01 0.71 4.70 3.52 4.78 1.31 0.998 0.998 -8.64 -0.18 -10.81 -6.72 

Cinnamyl alcohol 17.97 0.03 0.16 1.67 0.02 0.91 0.73 0.45 1.34 5.23 0.997 0.998 4.06 13.18 -15.09 8.44 

DMBCA 18.65 0.00 0.00 1.07 0.01 1.18 1.03 0.15 3.73 1.81 0.999 0.998 5.08 1.92 -20.04 -6.82 

Eugenol 19.47 0.03 0.15 1.34 0.01 0.43 3.28 2.10 1.68 4.40 0.998 0.998 0.03 5.80 -11.21 -10.68 

Vanillin 20.05 0.05 0.25 2.15 0.03 1.40 11.32 10.15 11.6
5 

1.31 0.997 0.996 15.05 16.41 12.39 4.13 

δ-Damascone  20.22 0.03 0.14 0.94 0.00 0.31 11.86 10.69 5.32 4.68 0.978 0.997 0.31 -8.10 -7.76 0.42 

Geranyl acetate 20.23 0.03 0.14 0.87 0.03 3.04 7.85 9.02 4.19 0.19 0.996 0.997 -3.15 13.68 16.80 -6.11 

β-Damascenone 20.38 0.03 0.14 1.09 0.01 0.80 4.10 2.92 7.46 8.32 0.997 0.997 -4.00 2.41 -14.15 -4.19 

α-Damascone  20.65 0.00 0.00 1.01 0.01 1.25 3.70 2.52 0.22 0.47 0.991 0.992 -6.62 -2.16 -11.71 6.89 

Coumarin 21.00 0.05 0.24 2.59 0.03 1.16 2.49 1.31 3.93 3.14 0.997 0.994 -9.81 9.51 -12.50 -17.43 

Majantol 21.02 0.03 0.14 1.19 0.01 1.11 4.08 2.91 6.62 1.70 0.998 0.995 -4.25 6.74 -7.89 4.30 

β-Damascone 21.17 0.03 0.14 1.03 0.01 0.56 3.41 2.23 1.14 5.97 0.998 0.991 -6.38 -5.46 -14.72 -15.45 

Isoeugenol (E) 21.75 0.00 0.00 1.43 0.01 0.73 3.17 1.99 3.03 2.75 0.998 0.998 -19.77 9.51 -14.49 3.96 

β-Caryophyllene 21.87 0.03 0.13 0.70 0.01 1.43 3.54 2.36 4.12 7.26 0.993 0.996 -6.30 -1.75 -4.24 -1.37 

Ebanol (Z isomer) 22.10 0.00 0.00 0.72 0.01 1.40 3.82 2.64 3.99 1.37 0.998 0.998 4.60 3.64 -13.60 -9.55 

Ebanol (E isomer) 22.30 0.00 0.00 0.73 0.01 1.73 3.46 2.28 3.19 0.06 0.997 0.998 -2.12 3.69 -16.47 -8.40 

Isomethylionone alpha 22.92 0.03 0.13 0.87 0.01 0.58 4.63 3.45 2.25 0.80 0.996 0.997 -4.56 -1.99 -5.61 -1.88 

Eugenyl acetate 23.35 0.05 0.21 1.63 0.01 0.31 4.13 2.95 1.13 3.74 0.997 0.999 -9.11 10.74 -7.44 15.63 

Lilial 23.67 0.03 0.12 1.19 0.00 0.24 4.18 3.00 2.51 4.43 0.997 0.996 4.33 -0.18 -5.39 -0.46 

Propylidene phtalide  24.57 0.03 0.12 1.79 0.01 0.32 2.71 1.53 0.81 2.08 0.998 0.998 -27.26 9.69 -3.70 10.25 

Amyl salicylate 24.93 0.03 0.12 1.03 0.01 0.84 0.28 0.90 6.05 2.63 0.995 0.994 -5.19 1.27 -14.88 -8.85 

Isoeugenyl acetate 25.38 0.03 0.11 1.65 0.01 0.46 4.20 3.02 5.88 3.67 0.998 0.992 -9.74 13.06 -6.90 -2.71 

Amylcinnamaldehyde alpha 26.47 0.03 0.11 1.24 0.02 1.68 0.21 1.39 5.26 5.58 0.984 0.993 -3.74 22.29 3.02 4.89 

Lyral (minor isomer) 26.48 0.03 0.11 1.34 0.01 0.65 11.57 10.40 3.63 5.56 0.996 0.999 3.32 -22.34 -9.54 -4.87 

Lyral (major isomer) 26.63 0.03 0.11 1.36 0.01 0.85 3.33 2.16 1.08 0.23 0.997 0.996 -11.96$ 14.81$ -12.89 5.80 

ISO E Super (major isomers) 27.23 0.03 0.11 0.97 0.01 1.07 3.99 2.81 2.33 1.08 0.998 0.996 -12.23 12.79 -10.56 10.33 

Amylcinnamyl alcohol alpha 27.28 0.03 0.11 1.24 0.01 1.01 4.08 2.90 3.02 7.75 0.997 0.990 -5.37 10.41 -17.93 1.20 

α-Santalol 27.42 0.03 0.11 0.98 0.01 0.51 2.87 1.69 2.28 5.97 0.996 0.994 -4.36 5.60 -23.17 -4.82 

Farnesol 28.22 0.03 0.10 0.86 0.00 0.34 0.47 0.71 4.35 4.58 0.997 0.994 -2.05 9.18 5.50 -14.12 

β-Santalol 28.25 0.00 0.00 1.07 0.01 1.17 3.50 2.32 6.66 2.70 0.997 0.998 -3.83 15.37 -12.40 -17.09 

α-Hexylcinnamaldehyde 28.63 0.03 0.10 1.17 0.01 0.89 4.83 3.65 6.24 0.05 0.998 0.997 1.03 8.23 -9.73 5.06 

Benzyl benzoate 28.78 0.03 0.10 1.88 0.01 0.53 5.25 4.07 7.76 3.91 0.997 0.997 -11.89 8.91 -19.23 -1.93 

Acetylcedrene 29.48 0.03 0.10 1.08 0.01 0.71 3.93 2.75 0.09 0.60 0.997 0.999 -3.30 7.53 -11.61 6.86 

Benzyl salicylate 31.00 0.05 0.16 1.76 0.01 0.59 1.87 3.04 1.32 0.40 0.997 0.997 2.85 12.59 2.01 10.91 

Galaxolide (major isomers) 31.50 0.05 0.16 1.22 0.01 0.47 3.38 2.20 1.53 1.61 0.997 0.997 -4.21 10.25 -8.28 13.56 

Hexadecanolactone 32.73 0.03 0.09 1.08 0.01 0.71 3.31 2.13 1.64 1.31 0.993 0.985 8.05 12.62 -10.55 2.86 

Benzyl cinnamate 35.03 0.03 0.08 1.92 0.01 0.30 3.09 1.91 0.12 5.82 0.997 0.998 -5.41 19.90 -4.13 19.67 

Sclareol 37.82 0.03 0.08 1.23 0.00 0.00 1.87 3.05 3.58 11.29 0.998 0.986 0.15 24.33 -8.06 15.02 

Average / / 0.12 / / 0.98 3.51 2.71 3.30 3.20 0.996 0.996 -3.07 4.58 -7.44 -0.69 
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5.4.3.2 Reference solutions and calibration mixtures  

Standard Stock Solutions (SS) of reference analytes were prepared at a concentration of 10 
mg/mL in dichloromethane or cyclohexane and stored at -18°C. The Model Mixture (MMix) stock 
solution was prepared by mixing suitable amounts of SS at a final concentration of 200 mg/L in 
cyclohexane. Fresh calibration solutions were prepared every week by diluting suitable amounts of 
MMix in cyclohexane. Calibration levels covered were: 0.1-0.2-0.5-1-5-10-20-50-100 mg/L. ISTDs 
were at a final concentration of 50 mg/L. Standard reference solutions for purity evaluation (by 
1D-GC-FID) were prepared from SS at a nominal concentration of 100 mg/L in cyclohexane.  

Raw fragrances TS1 and TS2 were diluted 20% (w/v) immediately before analysis in 
cyclohexane. For accuracy evaluation, spiked samples were prepared by adding suitable volumes of 
MMix up to +10 mg/L and +1 mg/L concentration levels. ISTDs were added to all analyzed 
samples at 50 mg/L.  

 

5.4.3.3 GC×GC with reverse-inject differential flow modulation: instrument set-up  

GC×GC analyses with reverse-inject differential flow modulation were run with a GC-MS 
system consisting of an Agilent 7890A GC unit provided with a 4513A auto injector sampler 
(Agilent, Little Falls, DE, USA) and coupled to an Agilent 5977B HES (High Efficiency Source) 
fast quadrupole MS detector (Agilent, Little Falls, DE, USA) operating in EI mode at 70 eV and a 
fast FID detector. The GC transfer line was set at 280°C. The MS was tuned using the HES Tune 
option. The scan range was set to m/z 40-240 with a scanning rate of 12,500 amu/s to obtain a 
spectrum generation frequency of 28 Hz. The flame ionization detector (FID) conditions were base 
temperature 280°C, H2 flow 40 mL/min, air flow 350 mL/min, make-up (N2) 20 mL/min, and 
sampling frequency 200 Hz. 

The system was equipped with a reverse-inject FM (Supplementary Material – Supplementary 
Figure 5.4.1) consisting of a CFT plate connected to a three-way solenoid valve that receives a 
controlled supply of carrier gas (helium) from an auxiliary electronic pressure control module 
(EPC). The CFT plate schematic and modulation dynamics description is provided in 
Supplementary Figure 5.4.1.  

 

5.4.3.4 GC×GC with thermal modulation: instrument set-up  

The TM GC×GC system consisted of an Agilent 7890B GC unit with a 4513A auto injector 
sampler (Agilent, Little Falls, DE, USA) coupled with a Bench TOF-Select™ time of flight mass 
spectrometer (Markes International, Llantrisant, UK). Electron ionization was set at 70 eV. The ion 
source and transfer line were set at 290°C. The MS optimization option was set to operate in Single 
Ionization with a mass range between 35 and 550 m/z; data acquisition frequency was 100 Hz; 
filament voltage was set at 1.60 V.  For parallel detection, the FID was set with a base temperature 
of 280°C, H2 flow 40 mL/min, air flow 350 mL/min, make-up (N2) 20 mL/min, and sampling 
frequency 200 Hz. 

The system was equipped with a two-stage KT 2004 loop thermal modulator (Zoex 
Corporation, Houston, TX) cooled with liquid nitrogen controlled by Optimode™ V.2 (SRA 
Instruments, Cernusco sul Naviglio, MI, Italy). The hot jet pulse time was set at 250 ms, modulation 
period was 5 s, and cold-jet total flow was progressively reduced with a linear function from 35% 
of Mass Flow Controller (MFC) at initial conditions to 5% at the end of the run. 



Page | 304 

 

Injections of the Calibration mixtures (CAL), as well as those for IT
S determination, were carried 

out with a 4513A auto injector under the following conditions: injection mode: split, split ratio: 
1/20 for CAL and 1/50 for n-alkanes, injection volume 2 µL, temperature 270°C.  

 

5.4.3.5 Column set, connections and auxiliary control modules 

The reference method (i.e., TM-GC×GC) columns configuration and those tested with FM-
GC×GC to achieve comparable method performance are summarized in Table 5.4.2. Pressure 
settings (S/SL injector and Auxiliary EPC), carrier gas (helium) volumetric flows in the two 
dimensions, linear velocities across capillaries, and oven temperature programs also are reported. 
Calculations were by reference equations and/or by a validated pneumatic model designed for the 
CFT plate.27 

Connections between the second dimension (2D) column and deactivated silica capillaries 
toward MS and FID for parallel detection were by a three-way un-purged splitter (G3181B, Agilent, 
Little Falls, DE, USA) while columns connection in the TM-GC×GC was by deactivated ultimate 
unions (G3182-61580 Agilent, Little Falls, DE, USA). 1D columns DB-1, 2D columns OV17 and 
deactivated capillaries were from Agilent - J&W (Little Falls, DE, USA). 

 
5.5.3.6 Performance parameters: reference equations 

To evaluate the performances of the tested FM configurations compared to the reference 
method, several chromatographic performance parameters were considered. The reference 
parameters and equations are described here. 

Re-injection pulse width (2σi) directly affects the actual 2σt with an additive effect on 2D peak-
broadening due to the chromatographic process (2σc). Re-injection pulses were defined as peak 
standard deviation (2σi) and estimated on un-retained solvent peaks from FID channel (200 Hz 
sampling frequency).1  

The net separation measure (SGC×GC)28 describes system’s separation ability under the 
experimental conditions applied. SGC×GC extends the concept of separation measure (S) to GC×GC 
separations 29 and refers to the product of S in each chromatographic dimension: 

Equation 5.4.1  𝑆𝐺𝐶×𝐺𝐶 = 𝑆1 × 𝑆2 

where S1 and S2 are calculated, for 1D and 2D respectively, using the reference equation: 

Equation 5.4.2  𝑆 = ∆𝑡
𝜎𝑎𝑣

⁄  

where Δt is the arbitrary time interval between two peaks a and b, Δt = tb – ta, and σav is the 
peak- standard deviation (σ) of a and b: 

Equation 5.4.3   𝜎𝑎𝑣 =
(𝜎𝑎+𝜎𝑏)

2
  

In this study the time interval was that between the first (i.e., benzaldehyde) and the last (i.e., 
sclareol) eluting peaks of the MMix for the 1D and the PM for the 2D. 

Pattern coherence was evaluated by relative retention (RR) in the two chromatographic 
dimensions 11 and taking as reference centroid methyl salicylate and sclareol as last eluting peak. In 
the 2D the relative retention is normalized to PM. Here follows reference equations: 

Equation 5.4.4  1D RR = (1D Rti - 
1D Rtmethyl salicylate)/

1D Rtsclareol  
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Equation 5.4.5  2D RR = (2D Rti - 
2D Rtmethyl salicylate)/PM  

Within method performance parameters, linearity in the calibration range (0.1 – 100 mg/L) was 
evaluated with the determination coefficient of the linear model (R2) while limits of detection (xLOD) 
for MS and FID channels were calculated according to EU guidelines30 as: 

Equation 5.4.6  𝑥𝐿𝑂𝐷 = 3.9
𝑠𝑦,𝑏

𝑏
   

where sy,b is the standard deviation of the blank signal and b is the slope of the calibration curve 
within the lower calibration levels (i.e., 0.1-1 mg/L). 

 Precision was estimated over a one-week validation protocol  as repeatability31 and 
expressed as percent relative standard deviation (% RSD). It was calculated on retention times in 
the two dimensions (1tR and 2tR) at all calibration points (n=8) and for all analytical replicates (n= 
2). Repeatability on absolute and normalized 2D volumes were calculated for the analytical 
replicates in the middle of the calibration range at 1 and 10 mg/L. 

Accuracy was estimated initially at two spiking levels (i.e., 1 and 10 mg/L in the final sample) 
and for two commercial fragrances of medium complexity. Bias was expressed as relative error % 
according to the following equation: 

Equation 5.4.7   𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 % =  
(𝑥𝑚−𝑥𝑒𝑥𝑝)

𝑥𝑒𝑥𝑝
× 100  

where xm is the estimated amount and xexp is the expected amount after spiking. Accuracy was 
established analysing TS1 and TS2 samples and spiked ones in triplicate. The relative error % reported 
in Table 5.4.1 are those resulting from FID signals except for analytes affected by co-elutions and 
reported in the table with the symbol “$”. 

 

5.4.3.7 Data acquisition and 2D data processing 

Data were acquired by TOF-DS software (Markes International, Llantrisant, UK) in the 
reference TM-GC×GC method and Enhanced MassHunter (Agilent Technologies, Little Falls, DE, 
USA) in the translated FM-GC×GC methods. 2D data were processed by GC Image® GC×GC 
Edition Software, Release 2.9 (GC Image, LLC Lincoln NE, USA). 

 

5.4.4 Results and Discussion 

5.4.4.1 Background for the present study and reference method  

In previous studies, we successfully applied the principles of method translation from a 
reference method, implemented with a loop-type thermal modulator GC×GC-MS/FID platform, 
to a reverse-inject differential flow modulated GC×2GC-MS/FID platform.11,12 The configuration 
tested in the FM-GC×GC consisted of a 1D with reduced internal diameter and length, compared 
to the reference set up, and two-parallel 2D columns each one directed to a different detector (MS 
and FID). The column combination included a polyethylene glycol (PEG) stationary phase in the 
1D and 86% polydimethylsiloxane, 7% phenyl, 7% cyanopropyl in the 2D. Based on the models 
developed by Blumberg and Klee,22,32 translatable parameters were set to preserve 1D peak elution 
order, 1D peak capacity, and chromatographic resolution. Temperature programming was therefore 
modified according to the estimated speed gain and corresponding to the ratio between column 
void times (tMref and tMtr). The operation was supported by the method translation software and 
available as free application on the web.33  
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Results were satisfactory and included a reduction of a factor of 2 for the total analysis time (tA) 
of the translated method (32.67 min instead of 65.53 min of the original method) and the 
preservation of the elution order and of the relative retention in the two chromatographic 
dimensions (i.e., pattern coherence). Pattern coherence, between mutually translatable methods, 
enabled effective transfer of metadata from the reference methodology by template matching 
algorithms.11,12,34  

More recently, Aloisi et al.35 explored the possibility of defining an equivalent standard column 
set between TM and FM GC×GC. Their strategy was driven by the choice of two equivalent 
column sets, in terms of separation power, in consideration of the flow restrictions posed by the 
two systems. Their set up included a TM platform with a 1D 30 m x 0.25 mm dc x 0.25 μm df and a 
2D of 1.5 m x 0.25 mm dc x 0.25 μm df with a delay loop of 1.5 m x 0.18 mm dc while the FM was 
with a 1D 20 m x 0.18 dc x 0.18 μm df and a 2D of 5 m x 0.32 dc x 0.25 μm df. The two set-ups 
provided almost equivalent separation power (referred to the efficiency expressed as number of 
theoretical plates N) and analytes relative retention in the two dimensions. However, the FM 
method had lower sensitivity because of the compensation for the lower re-injection efficiency of 
the FM system. The authors report that “… A sample amount 4 x higher was introduced onto the 1D column 
in the FM analysis, to compensate for the higher sensitivity of CM (i.e., cryo-modulator)”.35  

Although the sensitivity drop observed with the FM-GC×2GC-MS/FID set up in translated 
conditions 12 was less drastic, the FM method did not match TM performances. In the mentioned 
study [12], cocoa volatiles fingerprinting covered 75 of the 130 targeted peaks (58%) and 450 of the 
595 (76%) reliable peak-regions compared to the reference TM procedure.  

In this study, to make a step forward in the direction of matching, at the same time, separation 
power and sensitivity, the RFF FM modulator is tested in its full flexibility by combining three 
different 1D columns with two 2Ds for a total of 6 configurations. The application context is that 
of the routine quantification of established volatile allergens in fragrances and the reference method 
that proposed by Belhassen et al. 36. The system included a loop-type TM, with liquid nitrogen, and 
a parallel dual-secondary column/dual parallel detection configuration (i.e., TM-GCx2GC-
MS/FID). The linearity ranges examined were between 2-100 mg/kg for MS and 100-10,000 mg/kg 
for FID. Accuracy was good and quantitation bias was below 20% of error for the majority of the 
analytes (85%).36  

For this study, the reference TM method adopted for benchmarking FM configurations implied 
a longer 1D column, compared to that of Belhassen et al.,36 (e.g., 60 m × 0.25 mm dc x 0.25 μm df) 
and a single 2D of wider diameter (e.g., 1.8 m × 0.18 mm dc x 0.18 μm df). Parallel detection by time-
of-flight mass spectrometry (TOF MS) and FID was obtained by post-column splitting with a 
passive-tee junction and a flow ratio of about 30:70 (MS/FID) in order to balance the relative 
sensitivity of the two channels. Table 5.4.2 reports in detail the reference method column 
configuration, helium carrier flows and linear velocities as they were estimated by reference 
equations, oven programming and total analysis time (tA), modulation parameters and operative 
pressure at the inlet (pi) at the midpoint between the two dimensions (pmid) and at the tee-union. The 
TM-GC×GC-TOF MS/FID method was tested for its linearity within 0.1 to 100 mg/L; calibration 
levels below 1 mg/L were explored because of the industrial needs of a quantitation method able 
to monitor regulated substances even below the conformity limits. The platform including TOF 
MS and FID (30:70) enabled to cover this requirement for both channels. In addition, the larger 2D 
column dc compensates for the limited loadability of 0.1 mm dc columns while helping in situations 
where highly abundant components may overload it to the detriment of both 2D separations and 
TOF MS ionization efficiency. 
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Based on the reference method, the six different FM combinations are detailed in Table 5.4.2 
(Set-up #1a and b; #2a and b; #3a and b). The rationale for their design was based on limitations 
due to the modulation dynamics, which requires low carrier flow in the 1D and high flows in the 
2D. 1D columns tested were therefore 0.10 mm and 0.18 mm dc with variable phase ratios to enable 
higher loadability (e.g., 10 m x 0.10 mm x 0.1 or 0.4 μm df). 

2D columns were set to afford adequate 
loadability and efficiency to match with the benchmark peak-capacity. Chromatographic 
performance parameters were at first examined to evaluate the best configuration. The next section 
reports experimental results on chromatographic performance in a critical perspective. 
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Table 5.4.2. Reference and translated methods settings, including columns characteristics, initial head-pressure (pi), helium volumetric flows, and hold-up times on the basis of reference equations. 
Oven temperature programming and total analysis time (tA) are also reported. Operative conditions include also modulation parameters. 

 1D  2D Connections and 
capillaries 

Oven programming Modulation 
parameters 

Reference method 
TM-GC×GC-
TOFMS/FID 

 

DB1 60 m × 0.25 mm dc x 0.25 μm df 

He @ 2.0 mL/min - constant flow 
Initial head-pressure (pi relative) 254.7 kPa 
Outlet pressure (pmid absolute) 163.7 kPa 
Hold-up 3.52 min - Outlet velocity 46.97 cm/s 

OV17 1.8 m × 0.18 mm dc x 0.18 μm df 

He @ 2.0 mL/min - constant flow 
Initial head-pressure (pmid absolute) 163.7 kPa 
Hold-up 1.8 sec - Outlet velocity 106.6 cm/s 

Loop-capillary deactivated 
silica: 1.0 m, 0.10 mm dc 
MS/FID split ratio 70:30 
to MS: 0.7 m, 0.10 mm dc 
to FID: 1.1 m, 0.18 mm dc 

60°C(1’) to 280°C (10’) @ 
4°/min 
tA= 48.35 min 

PM = 5s 
hot-jet pulse: 
250 ms 

Translated methods 
FM-GC×GC-
MS/FID 

     

Set-up #1a  DB1 10 m × 0.10 mm dc x 0.10 μm df 

He @ 0.27 mL/min - constant flow 
Initial head-pressure (pi relative) 305.27 kPa 
Outlet pressure (paux absolute) 278 kPa 
Hold-up 0.89 min - Outlet velocity 18.80 cm/s 

OV17 1.8 m × 0.18 mm dc x 0.18 μm df 

He @ 8.0 mL/min - constant flow 
Initial head-pressure (paux relative) 177 kPa 
Hold-up 0.6 sec - Outlet velocity 292.57 cm/s 

MS/FID split ratio 70:30 
to MS: 0.5 m, 0.10 mm dc 
to FID: 1.1 m, 0.18 mm dc 
bleeding capillary: 6.37 m, 
0.10 mm dc 

60°C(0.25’) to 280°C (2.52’) 
@ 15.89°/min 
tA= 12.37 min; tA % 
reduction: 25.6% 

PM = 2s 
pulse time: 150 
ms 

Set-up #1b DB1 10 m × 0.10 mm dc x 0.10 μm df 

He @ 0.27 mL/min - constant flow 
Initial head-pressure (pi relative) 288.54 kPa 
Outlet pressure (paux absolute) 253 kPa 
Hold-up 0.83 min - Outlet velocity 19.95 cm/s 

OV17 2.5 m × 0.25 mm dc x 0.25 μm df 

He @ 11.0 mL/min - constant flow 
Initial head-pressure (paux relative) 151.94 kPa 
Hold-up 2.58 sec - Outlet velocity 225.65 cm/s 

MS/FID split ratio 70:30 
to MS: 0.5 m, 0.10 mm dc 
to FID: 1.1 m, 0.18 mm dc 
bleeding capillary: 5.11 m, 
0.10 mm dc 

60°C(0.24’) to 280°C (2.37’) 
@ 16.87°/min 
tA= 11.67 min; tA % 
reduction: 24.1% 

PM = 4s 
pulse time: 150 
ms 

Set-up #2a  DB1 10 m × 0.10 mm dc x 0.40 μm df 

He @ 0.27 mL/min - constant flow 
Initial head-pressure (pi relative) 307.9 kPa 
Outlet pressure (paux absolute) 278 kPa 
Hold-up 0.88 min - Outlet velocity 18.95 cm/s 

OV17 1.8 m × 0.18 mm dc x 0.18 μm df 

He @ 8.0 mL/min - constant flow 
Initial head-pressure (paux relative) 177 kPa 
Hold-up 0.6 sec - Outlet velocity 292.57 cm/s 

MS/FID split ratio 70:30 
to MS: 0.5 m, 0.10 mm dc 
to FID: 1.1 m, 0.18 mm dc 
bleeding capillary: 6.37 m, 
0.10 mm dc 

60°C(1.01’) to 280°C (10.08’) 
@ 3.97°/min 
tA= 48.80 min; tA % increase: 
100.9% 

PM = 3s 
pulse time: 150 
ms 

Set-up #2b  DB1 10 m × 0.10 mm dc x 0.40 μm df 

He @ 0.27 mL/min - constant flow 
Initial head-pressure (pi relative) 291.29 kPa 
Outlet pressure (paux absolute) 253 kPa 
Hold-up 0.83 min - Outlet velocity 20.01 cm/s 

OV17 2.5 m × 0.25 mm dc x 0.25 μm df 

He @ 11.0 mL/min - constant flow 
Initial head-pressure (paux relative) 151.94 kPa 
Hold-up 2.58 sec - Outlet velocity 225.65 cm/s 

MS/FID split ratio 70:30 
to MS: 0.5 m, 0.10 mm dc 
to FID: 1.1 m, 0.18 mm dc 
bleeding capillary: 5.11 m, 
0.10 mm dc 

60°C(0.95’) to 280°C (9.5’) @ 
4.21°/min 
tA= 46.05 min; tA % 
reduction: 95.2% 

PM = 4.5s 
pulse time: 150 
ms 

Set-up #3a  DB1 20 m × 0.18 mm dc x 0.18 μm df 

He @ 0.5 mL/min - constant flow 
Initial head-pressure (pi relative) 227.73 kPa 
Outlet pressure (paux absolute) 278 kPa 
Hold-up 2.72 min - Outlet velocity 13.34 cm/s 

OV17 1.8 m × 0.18 mm dc x 0.18 μm df 

He @ 8.0 mL/min - constant flow 
Initial head-pressure (paux relative) 177 kPa 
Hold-up 0.6 sec - Outlet velocity 292.57 cm/s 

MS/FID split ratio 70:30 
to MS: 0.5 m, 0.10 mm dc 
to FID: 1.1 m, 0.18 mm dc 
bleeding capillary: 6.06 m, 
0.10 mm dc 

60°C(0.77’) to 280°C (7.74’) 
@ 5.17°/min 
tA= 37.85 min; tA % 
reduction: 78.3% 

PM = 3s 
pulse time: 150 
ms 

Set-up #3b  DB1 20 m × 0.18 mm dc x 0.18 μm df 

He @ 0.5 mL/min - constant flow 
Initial head-pressure (pi relative) 207.12 kPa 

OV17 2.5 m × 0.25 mm dc x 0.25 μm df 

He @ 11.0 mL/min - constant flow 
Initial head-pressure (paux relative) 151.94 kPa 

MS/FID split ratio 70:30 
to MS: 0.5 m, 0.10 mm dc 
to FID: 1.1 m, 0.18 mm dc 

60°C(0.72’) to 280°C (7.16’) 
@ 5.58°/min 

PM = 4.5s 
pulse time: 150 
ms 
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Outlet pressure (paux absolute) 253 kPa 
Hold-up 2.52 min - Outlet velocity 13.21 cm/s 

Hold-up 2.58 sec - Outlet velocity 225.65 cm/s bleeding capillary: 2.76 m, 
0.10 mm dc 

tA= 34.95 min; tA % 
reduction: 72.3% 
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5.4.4.2 Chromatographic performances of FM-GC×GC-MS/FID in translated conditions 

The workflow to translate chromatographic parameters is visualized in the Supplementary 
Material – Supplementary Figure 5.4.2. In practice, estimated operative pressures at the inlet (pi) 
and outlet (pout or pmid) of the 1D column in the reference TM method are input in the calculator and 
used by the model to translate conditions for the FM method. For the FM configuration, the pi and 
pout or paux are set based on the a priori fixed flow conditions in both dimensions. The model calculates 
the oven temperature programming for the FM method by normalizing it according to the system 
void time (tm).  

Each modulation period (PM) was defined after a scouting run with each configuration and 
evaluating the 1D baseline peak-width (wb) to obtain a comparable modulation ratio (MR) for all 
methods 37. 

Results are visualized as pseudocolorized images in Figure 5.4.1 for the MMix at 10 mg/L 
from the FID signal. The accordance between relative retention in both chromatographic 
dimensions (i.e., pattern coherence) was evaluated through peaks relative retention against a 
centroid (methyl salicylate) and the last eluting peak (sclareol) for the 1D and against the PM for the 
2D (Equation 5.4.4 and Equation 5.4.5). Results are visualized in Supplementary Material - 
Supplementary Figure 5.4.3 for all configurations. The reference method, visualized in Figure 
5.4.1A, was characterized by an average re-injection pulse of 20 ms against an average value of 40 
ms for the FM-GC×GC (Figure 5.4.2A). The average 1σ for reference peaks (first and last eluting) 
was 2.34 s with a resulting S1 of 934 (Figure 5.4.2C and 5.4.2D). Supplementary Material - 
Supplementary Table 5.4.1 reports 1σ and 2σ for all targeted peaks. On the other hand, the best 
performing set for FM, considering only 1D separation efficiency by 1σ, was Set up #1a the one 
combining 1D 10 m x 0.1 mm dc x 0.1 μm df with a 2D of 0.18 mm dc that showed an average 1σ of 
1.85 s. However, the S1 value of this combination was only 304 (Figure 5.4.2D) due to the lower 
capacity factors (k) expressed by this set-up. 
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Figure 5.4.1. MMix calibration solution at 10 mg/L analyzed with the different configurations. (5.4.1A) reference TM-GC×GC-
TOFMS/FID; (5.4.1B) – FM Set-up #1a [DB1 10 m × 0.10 mm dc x 0.10 μm df + OV17 1.8 m × 0.18 mm dc x 0.18 μm df]; 
(5.4.1C) – FM Set-up #1b [DB1 10 m × 0.10 mm dc x 0.10 μm df + OV17 2.5 m × 0.25 mm dc x 0.25 μm df]; (5.4.1D) – FM 

Set-up #2a [DB1 10 m × 0.10 mm dc x 0.40 μm df + OV17 1.8 m × 0.18 mm dc x 0.18 μm df]; (5.4.1E) – FM Set-up #2b [DB1 
10 m × 0.10 mm dc x 0.40 μm df + OV17 2.5 m × 0.25 mm dc x 0.25 μm df]; (5.4.1F) FM Set-up #3a [DB1 20 m × 0.18 mm dc 
x 0.18 μm df + OV17 1.8 m × 0.18 mm dc x 0.18 μm df]; (5.4.1G) – FM Set-up #3b [DB1 20 m × 0.18 mm dc x 0.18 μm df + 

OV17 2.5 m × 0.25 mm dc x 0.25 μm df]. 

Conversely, average 2σ were almost comparable for all FM methods (average value of 0.11 s in 
Figure 5.4.1E) and, in turn, even better than those estimated for the reference method (i.e., 2σ 0.17 
s). For this reason, all FM systems had comparable separation power in the 2D (Figure 5.4.1F) with 
S2 values ranging between 23 for the Set up #1a [10 m x 0.1 mm dc x 0.1 μm df + 1.8 m x 0.18 mm 
dc x 0.18 μm df] and 42 for the Set up #3b [20 m x 0.18 mm dc x 0.18 μm df + 2.5 m x 0.25 mm dc x 
0.25 μm df]. 
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Figure 5.4.2. separation performances for the reference TM-GC×GC-TOFMS/FID method (red bars) compared to translated 
FM- GC×GC-MS/FID set-up (#1a and b – grey; #2a and b blue; #3a and b green). Performances refer to (5.4.2A) re-injection 

pulse width (iσ); (5.4.2B) net separation measure (SGC×GC); (5.4.2C) 1D peak-width expressed as standard deviation (1σ); 
(5.4.2D) 1D separation measure (S1); (5.4.2E) 2D peak-width expressed as standard deviation (2σ); (5.4.2F) 2D separation 

measure (S2). 

 

The best performing approach in terms of separation power (i.e., SGC×GC) was Set up #3a, [20 
m x 0.18 mm dc x 0.18 μm df + 1.8 m x 0.18 mm dc x 0.18 μm df], with an SGC×GC value of 22809 
against 27464 (~ 83%) of the TM method and a shorter analysis time (~ 78%).  

Based on these premises, the FM-GC×GC-MS/FID set up #3a, consisting of [DB1 of 20 m x 
0.18 mm dc x 0.18 μm df + OV17 of 1.8 m x 0.18 mm dc x 0.18 μm df], was selected to proceed with 
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the evaluation of performance parameters in a one-week validation protocol. The next section 
reports experimental results on linearity, limit of detection (LOD), pattern reliability, and accuracy. 

 

5.4.4.3 Method performance parameters of the translated FM-GC×GC-MS/FID  

5.4.4.3.1 Linearity 

 The calibration ranges explored for reference and translated methods were designed to span 
3 to 4 orders of magnitude of concentrations, as it is in general with natural and synthetic fragrance 
materials.36,38 Calibration at low levels, between 0.1 and 1 mg/L, was explored to cover trace 
amounts for analytes of concern. 

The reference method confirmed its good linearity at the MS channel (TIC signal) within 
both: (a) the 0.1-20 mg/L range with a median R2 of 0.9983 – mean 0.9980 (min 0.9954 / max 
0.9998); and (b) in the full range 0.1-100 mg/L with median R2 of 0.9942 – mean 0.9902 (min 0.9522 
/ max 0.9999). Benzaldehyde exhibited the worst performance with R2 0.9522. Linearity at the FID 
was satisfactory; the median value for R2 was 0.9963 – mean 0.9959 (min 0.9949 / max 0.9987) 
within 0.1-100 mg/L although better performances were registered in the higher calibration range 
(10-100 mg/L) with R2 median value of 0.9996 – mean 0.9995 (min 0.9984 / max 0.9999). The 
reference method means (red cross mark) and median (red line) are reported in red in the scatter 
plot of Figure 5.4.3A showing linearity results. R2 values calculated on linear regression models for 
the translated method are reported in Table 5.4.1.  

 
Figure 5.4.3. (5.4.3A) scatter diagram referring of linearity of calibration models (coefficient of determination R2) obtained 

with the FM-GC×GC-MS/FID method and set-up #3a; red marks report means and median of the reference methodology. 
(5.4.3B) shows accuracy results for the two tested raw materials spiked at 1 and 10 mg/L level. Accuracy is reported as relative 

error % - see section 2.6 for details. 

The translated candidate method exhibited very good linearity; it has to be considered that the 
FM-GC×GC includes a single quadrupole MS with high efficiency source (HES) and actual 
sampling frequency was lower (i.e., 28 Hz) compared to the TOF MS operating at 100 Hz. Despite 
these configuration differences, the qMS data was highly satisfactory, with results visualized in the 
scatter diagrams of Figure 5.4.3A. Median R2 value for the MS TIC signal was 0.9967 – mean 
0.9957 (median – green line / mean – green mark) with a min of 0.9850 for hexadecanolactone and 
a max of 0.9994 for eugenyl acetate in the range 0.1-20 mg/L. Conversely, FID in the full range 
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(0.1-100 mg/L), had median value for R2 of 0.9972 – mean 0.9964 (median – green line / mean – 
green mark) with a min of 0.9784 for damascenone delta and a max of 0.9995 for 
dimethylbenzylcarbinyl acetate (DMBCA).  

 Results indicate that, in terms of linearity within the examined ranges, FM-GC×GC-
MS/FID has performances comparable to the reference method. The FID channel has indeed 
better linear models although, as it will be discussed in the next section, absolute sensitivity for this 
channel is slightly lower.  

 

5.4.4.3.2 Limit of detection 

Absolute sensitivity was estimated according to the EU guidelines for food and feed,30 
generally more restrictive than those for other fields of application (Equation 5.4.6). Results are 
reported as histograms in Figure 5.4.4 for FID (Figure 5.4.4A) and MS (Figure 5.4.4B). On 
average, the MS detection channel had higher sensitivity: the mean LOD value of the reference 
method was 7.25 μg/L, with a maximum value for sclareol (i.e., 29.5 μg/L) and a minimum for 
limonene (i.e., 2.93 μg/L). The translated method followed exactly the same trend, with slightly 
higher LODs (+ 1.4%). To note: the two platforms were equipped with different MS systems, 
consequently this data should be read in light of linearity performances. However, if one considers 
the FM-GC×GC as a suitable system for routine controls, reliability in the established conditions 
are not affected by the slower acquisition frequency of the qMS.  

 
Figure 5.4.4. Histograms showing LOD values (μg/L) estimated for the TM- GC×GC-TOFMS/FID (reference – red bars) and 

FM-GC×GC-MS/FID method and set-up #3a (green bars) on FID signal (5.4.4A) and TIC MS signal (5.4.4B). 
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In accordance with MS results, the FID channel sensitivity with the FM-GC×GC was 
perfectly comparable to that of the TM-GC×GC, revealing an average LOD of 6.36 μg/L vs. 6.25 
μg/L of the TM (+ 1%).  

LODs also inform about the relative sensitivity of the two detectors (i.e., MS and FID) and, 
at the same time, confirm that TIC MS exceeds FID of a factor of 2.3. Of course, by selecting 
diagnostic ion traces, MS can be even more sensitive and, at the same time, more flexible enabling 
to overcome co-elution issues. 

The next section examines pattern reliability, through retention times precision and 
responses stability. 

 

5.4.4.3.3 Repeatability: retention times and responses 

 Retention time stability is a fundamental characteristic for GC×GC separations, since a 
primary criterion for analytes identification is their position in the 2D pattern. Table 5.4.1 reports 
precision data, expressed as RSD % on 1tR and 2tR calculated over 8 calibration points and 2 analytical 
replicates each (n=16 runs). Along the 1D, absolute retention times for the FM method were highly 
similar showing a RSD % of 0.12. Slightly higher values were obtained for 2D retention, with an 
RSD% of 0.98. To note, retention of analytes with 2D tailing and/or distortion effects is less precise; 
linalool resulted in a 1.55 RSD % while vanillin and α-amyl cinnamaldehyde had RSD% of 1.40 and 
1.68, respectively. 

Responses were indeed highly stable; for the FID channel, absolute 2D volumes registered 
an average precision of 3.51 % (RSD) while normalized values (over respective ISTDs) were on 
average 2.71%. The TIC MS signal was comparable with RSD% of 3.30 and 3.20 for absolute and 
normalized responses, respectively.  

 The next section briefly presents accuracy data on medium complexity fragrances spiked at 
1 and 10 mg/L levels.  

 

5.4.4.3.4 Accuracy: medium complexity fragrance mixtures 

 Accuracy was preliminarily assessed for targeted analytes spiked in commercial raw 
fragrances at 1 and 10 mg/L concentration levels. Bias was expressed as relative error % (Equation 
5.4.7) and calculated on the FID signal. In case of co-elutions, the TIC-MS data were adopted and 
indicated in Table with the symbol “$”. Results are reported in Table 5.4.1 and visualized as scatter 
plots in Figure 5.4.3B. Supplementary Material - Supplementary Figure 5.4.4 shows 
pseudocolorized chromatographic images of raw commercial fragrances spiked at 1 and 10 mg/L 
together with targeted peaks template (coloured circles) and connection lines for ISTDs. 

The relative error at the higher spiking level (i.e., + 10 mg/L) was lower for flowery-like TS2 
sample with a median of 6.16 %, calculated on absolute values, compared to the 8.82% at the lower 
level (i.e., + 1 mg/L). For the citrus-like TS1 sample, median values were 7.53% (+ 10 mg/L) and 
5.8% (+ 1 mg/L). Minimum and maximum error values were always below ±30%. Results are in 
line with those validated for the same analytes in the reference method,36 and indicate that the 
translated FM-GC×GC-MS/FID method is a good candidate for a routine quantification of 
targeted analytes in medium complexity fragrances.  
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5.4.5 Conclusions 

This study evidences the flexibility of RFF FM-GC×GC while suggesting a rational approach 
to translate chromatographic conditions by keeping coherent separation patterns and avoiding 
chromatographic distortions (overloading of the accumulation loop, generation of asymmetrical 2D 
peaks etc.). Moreover, the method translation enables the operator to obtain a separation power in 
line with a reference methodology with TM-GC×GC and, thanks to a rational procedure, to exploit 
the flexibility by acting on column characteristics that have direct impact on re-injection efficiency 
and analysis time.  

The best FM configuration, when tested for performances of interest in the context of 
quantitative profiling, demonstrated linearity, sensitivity, and accuracy comparable to the TM 
counterpart. However, the need for higher flows to the 2D of a FM system, at least to achieve 
adequate separation power, slightly limits system performances resulting either in an equivalent 
separation power at the cost of sensitivity33 or in a sensitivity and quantitation consistency at the 
cost of ~20 % separation power.  

 

 

 

5.4.6 Supplementary Material  

Supplementary material at the Google Drive’s link: 
https://drive.google.com/drive/folders/1dw3d3BviJIrAmzTWl_qhkf1GFTmHyIBF?usp=sharin
g 

 
  

https://drive.google.com/drive/folders/1dw3d3BviJIrAmzTWl_qhkf1GFTmHyIBF?usp=sharing
https://drive.google.com/drive/folders/1dw3d3BviJIrAmzTWl_qhkf1GFTmHyIBF?usp=sharing
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5.5.1 Abstract  

Comprehensive two-dimensional gas chromatography combined with time-of-flight mass 
spectrometry (GC×GC-TOF MS) is the most informative analytical approach for chemical 
characterization of the complex food volatilome. Key analytical features include separation power 
and resolution enhancement; improved sensitivity; and structured separation patterns from 
chemically correlated analytes. In this study, we explore the complex extra-virgin olive oil volatilome 
by combining headspace (HS) solid-phase microextraction, applied under HS linearity conditions 
to GC×GC-TOF MS featuring hard and soft ionization in tandem. Multiple analytical dimensions 
are combined in a single run and evaluated in terms of chemical dimensionality; method absolute 
and relative sensitivity; identification reliability provided by spectral signatures acquired at 70 and 
12 eV; and dynamic and linear range of response provided by soft ionization.  

Method effectiveness is validated on a sample set of oils from Picual olives at different ripening 
stages. Ripening markers (3,4-diethyl-1,5-hexadiene (RS/SR), 3,4-diethyl-1,5-hexadiene (meso), 
(5Z)-3-ethyl-1,5-octadiene, (5E)-3-ethyl-1,5-octadiene, (E,Z)-3,7-decadiene and (E,E)-3,7-
decadiene, (Z)-2-hexenal, (Z)-3-hexenal and (Z)-3-hexenal, (E)-2-pentenal, (Z)-2-pentenal, 1-
pentanol, 1-penten-3-ol, 3-pentanone, and 1-penten-3-one) and quality indexes ((Z)-3-
Hexenal/Nonanal, (Z)-3-Hexenal/Octane, (E)-2-Pentenal/Nonanal, and (E)-2-Pentenal/Octane) 
are confirmed for their validity in HS linearity conditions.  

For the complex olive oil volatilome, the proposed approach offers concrete advantages for 
the validation of the informative role of existing analytes while suggesting new potential markers to 
be studied in larger sample sets. The accurate fingerprinting of volatiles by HS-SPME operating in 
HS linearity conditions followed by GC×GC-TOF MS featuring tandem ionization gives the 
opportunity to improve the quality of analytical data and reliability of results. 
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5.5.2 Introduction 

Comprehensive two-dimensional gas chromatography combined with time-of-flight mass 
spectrometric detection (GC×GC-TOF MS) is nowadays the most informative analytical approach 
for chemical characterization of the complex food volatilome.1–3 By this technique, the detailed 
profiling of known analytes (i.e., targeted compounds) is extended from two- to five-fold compared 
to mono-dimensional (1D) GC-MS,2,4–6 while a new concept of fingerprinting can be exploited by 
investigating bi-dimensional (2D) separation patterns with dedicated algorithms.7,8 Key analytical 
features of GC×GC include: (a) separation power and resolution enhancement, provided by the 
appropriate combination of two separation dimensions with orthogonal principles of 
discrimination,9,10 (b) improved sensitivity, due to the effective band focusing-in-space produced by 
thermal modulators; and (c) structured separation patterns from chemically related groups of 
analytes, that are useful for identity confirmation and structural elucidation. All these characteristics 
make GC×GC-TOF MS the platform of choice to obtain the highest level of information encrypted 
in the complex volatiles fractions of foods, while supporting reliable and robust results within the 
challenging scenario of food quality assessment. Origin traceability, technological impact, and 
aroma quality are areas of active research for GC×GC food applications.2,4,5,11–14  

Although GC×GC-TOF MS combined to advanced fingerprinting data processing can be 
considered a well-established technique, several challenging aspects have to be considered when 
volatiles must be accurately profiled, and their relative or absolute amounts adopted to define 
specific sample characteristics. The main challenge relates to sampling representativeness in terms 
of both qualitative and quantitative distributions of analytes and their actual information about 
sample composition.  

Headspace sampling (HS) should be designed carefully in agreement with research aims with 
quantitative results validated through accepted protocols and/or guidelines. Very often, internal 
normalization procedures replace accurate quantitation by standard addition (SA), external 
calibration (ESTD), or stable isotope dilution (SI), and may provide inaccurate and misleading 
results.15–17  

In this study, we explore the complex extra-virgin olive oil (EVOO) volatilome by combining 
HS-SPME, applied under HS linearity conditions,15,18 to GC×GC-TOF MS featuring hard and soft 
ionization in tandem (i.e., tandem ionization). The combination of multiple analytical dimensions in 
a single run is examined in terms of: (a) chemical dimensionality,19 (b) method absolute and relative 
sensitivity achieved by the combination of tandem signals acquired at two different ionization 
energies (e.g., 70 and 12 eV); (c) identification reliability provided by complementary spectral 
signatures. Then, method effectiveness is validated on a sample set consisting of EVOOs from 
Picual olives at different ripening stages. Ripening markers20 and quality indexes13,21–24 are tested for 
their validity in HS linearity conditions. 

 

5.5.3 Materials and methods 

5.5.3.1 Reference compounds and chemicals 

Pure standards of n-alkanes (from n-C6 to n-C25) for system evaluation and Linear Retention 
Index (IT) calibration, internal standards (ISs) α-thujone, β-thujone and methyl-2-octynoate for 
response normalization, and pure reference compounds for targeted analytes’ identity confirmation 
were supplied by Merck (Milan, Italy). Cyclohexane (HPLC grade) for n-alkanes standard solution 
(at 100 mg/L) and pure dibutyl phthalate for ISs working solutions (at 100 mg/L) were also from 
Merck (Milan, Italy).  
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5.5.3.2 Olive oil samples  

Extra Virgin Olive Oil (EVOO) samples were supplied from the University of Granada (Spain) 

by Prof. Luis Cuadros-Rodrig ́uez. They were obtained from olives of the Picual cultivar harvested 
in the Granada Altipiano region, in a plot named Baza. Each sample was available in duplicate and 
obtained by mixing olives from five different trees to have homogeneous and representative 
samples. Olives for oil production were harvested at four different ripening stages: November 
10−12, 2014; November 24−28, 2014; December 16−17, 2014; and January 12−15, 2015, and 
classified by oil quality (Extra Virgin - EVOO; Virgin - VOO; or Lampante - LOO). Samples’ 
acronyms and characteristics are summarized in Table 5.5.1. Oil qualifications were by a certified 
laboratory (ISO 17025:2018) and according to Commission Regulation (EEC) No. 1604/2019 of 
September 27, 2019 and IOC Standard COI/T.15/NC No 3/Rev. 12. Some quality indices are 
reported in Table 5.5.1, including the sensory panel test results.  

 

Table 5.5.1. List of analyzed samples. They were produced under controlled conditions in a plot named Baza (Altipiano de Granada, 
Spain).  Samples are listed with acronyms, harvest period, quality parameters according to Commission Implementing Regulation 
(EEC) No 1604/2019 of September 27, 2019, sensory evaluation results (Md: median of defects – Mf: median of fruity notes), and 
commercial classification. 

Sample 
Acronym Harvest period 

Acidity 
(%) 

Peroxide 
index (mEq 

O2/kg) 
K232 K270 ΔK Md Mf Classification 

Baza-1-A November 10-12 0.20 5 1.84 0.20 0.00 0.00 5.0 EVOO 

Baza-2-A November 24-28 0.20 3 1.60 0.20 0.00 0.00 4.1 EVOO 

Baza-3-A December 16-17 0.20 5 1.17 0.20 0.00 > 0.00 1.3 VOO 

Baza-4-A January 12-15 0.40 11 1.11 0.10 0.00 > 0.00 0.0 LOO 

Baza-1-B November 10-12 0.20 4 1.92 0.20 0.00 0.00 5.2 EVOO 

Baza-2-B November 24-28 0.10 3 1.65 0.20 0.00 0.00 3.8 EVOO 

Baza-3-B December 16-17 0.20 6 1.28 0.10 0.00 > 0.00 1.7 VOO 

Baza-4-B January 12-15 0.40 13 1.12 0.10 0.00 > 0.00 0.0 LOO 

 

5.5.3.3 Headspace solid phase micro extraction sampling devices and conditions   

Volatiles were sampled by automated headspace solid-phase microextraction (HS-SPME) with 
a SPR Autosampler for GC (SepSolve-Analytical). Different commercial fiber coatings were tested 
in order to evaluate their performance and effectiveness in describing the olive oil volatilome. In 
particular, the tested coatings were: (a) Divinylbenzene/Carboxen/Polydimethylsiloxane 
(DVB/CAR/PDMS) 50/30 μm (stationary phase/film thickness) - 1 cm length; (b) DVB/PDMS 
65 μm - 1 cm length; (c) Polyacrylate (PA) 85 μm - 1 cm length; and (d) PDMS 75 μm - 1 cm length. 
All fibers/devices were from Merck (Bellefonte, PA, USA).  

The ISs for system performance evaluation and responses normalization were preloaded onto 
the SPME device according to the procedure proposed by Wang et al.25,26 by exposing the extraction 
phase to the headspace of a 5.0 μL of α/β-thujone and methyl 2-octynoate solution at 100 mg L-1 
in dibutyl phthalate placed in a 20 mL vial for 5 minutes at 40 °C. Sampling was carried out on 
0.100 ± 0.005 g of olive oil precisely weighed in 20 mL headspace vials, matching for headspace 
linearity conditions 15 and kept at 40 °C for 60 min under constant stirring. After sampling, the 
SPME device was automatically transferred to the split/splitless injection port of the GC×GC 
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system kept at 270°C; desorption time was set at 5 min. Each sample was analyzed in triplicate and 
precision data on retention times and targeted 2D peaks normalized volumes expressed as % 
Relative Standard Deviation (% RSD). Average % RSD for 1tR was 2.2, while for 2tR it was 0.4. 2D 
Peak volumes mean %RSD was different as a function of the fiber considered. In decreasing order, 
% RSD on 2D Peak volumes were 12.1% for PA, 10.7% for PDMS, 6.2% for DVB/PDMS and 
4.9 % for DVB/CAR/PDMS. Based on these precision data, successive elaborations considered 
the average value deriving from the three analytical replicates of each sample. 

 

5.5.3.4 Comprehensive two-dimensional gas chromatography: system configuration and 
parameters  

GC×GC-MS analyses were run with a system configuration consisting of an Agilent 7890B GC 
unit (Agilent Technologies, Wilmington DE, USA) coupled with a BenchTOF-Select™ time-of-
flight mass spectrometer featuring tandem ionization (Markes International, Llantrisant, UK). The 
GC transfer line was set at 270°C as was the ion source. TOF MS acquisition was between 40-350 
m/z at 50 Hz per channel and multiplexing ionization energy was between 70 and 12 eV (i.e., tandem 
ionization).  

The column set was configured as follows: 1D SolGel-Wax column (100% polyethylene glycol, 
30 m × 0.25 mm dc, 0.25 μm df) from Trajan Scientific and Medical (Ringwood, Australia) coupled 
with a 2D OV1701 column (86% polydimethylsiloxane, 7% phenyl, 7% cyanopropyl, 1 m × 0.1 mm 
dc, 0.10 μm df) from Mega (Legnano, Milan, Italy). Fused silica capillary loop dimensions were 1.0 
m length and 0.1 mm dc. Fiber thermal desorption into the GC injector port was under the following 
conditions: split/splitless injector in split mode, split ratio 1:20, injector temperature 270°C, and 
thermal desorption 5 minutes. Carrier gas was helium at a constant flow of 1.3 mL/min. The oven 
temperature program was from 40°C (1 min) to 200°C at 3°C/min then to 250°C at 10°C/min (5 
min). No secondary oven was adopted in the system set-up. 

The n-alkanes liquid sample solution for IT determination was analyzed under the following 
conditions: split/splitless injector in split mode, split ratio 1:50, injector temperature 270°C, and 
injection volume 1μL.  

The system was equipped with a two-stage KT 2004 loop type thermal modulator (Zoex 
Corporation, Houston, TX) cooled with liquid nitrogen and controlled by Optimode v2.0 (SRA 
Instruments, Cernusco sul Naviglio, Milan, Italy). Modulation period (PM) was set at 4s, with a hot 

jet pulse time of 250 ms. A Mass Flow Controller (MFC) reduced the cold-jet stream from 45% to 

8% of the total flow with a linear function along the run duration. 
 

5.5.3.5 Data acquisition and elaboration software  

Raw data acquisition was by TOF-DS software (Markes International, Llantrisant, UK). 2D 

data processing was by GC Image GC×GC Software, ver. 2.9 (GC Image, LLC, Lincoln NE, USA). 
Data analysis and chemometrics were by XLSTAT (Addinsoft, New York, USA). 

 

5.5.4 Results and Discussion  
Despite the great potential of GC×GC in exploring the chemical complexity of olive oil 

volatilome, just a few studies are available in this field and none of them address the challenging 
aspect of HS linearity to obtain reliable and representative fingerprints of volatiles. Vaz Freire et al.27 
investigated the volatiles patterns of Portuguese olive varieties Galega Vulgar, Cobrançosa e 
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Carrasquenha by combining HS-SPME with a multi-coating fiber (e.g., 2 cm 50/30 μm 
DVB/Carboxen/PDMS) with GC×GC-TOF MS and image-features data analysis 7. The developed 
method included the HS-SPME sampling of 12 g of olive oil in a 20 mL HS vial for 30’ at 40°C. 
These conditions exceed HS analyte linearity15 but provide a good coverage of samples chemical 
dimensions. Cajka et al.28 developed a GC×GC-TOF-MS profiling approach able to define 
geographical origin indicators and cultivar markers. They considered 914 samples over three 
production seasons and obtained from olives harvested in Liguria in northwest Italy (n = 210) and 
other regions of Italy, Spain, France, Greece, Cyprus, and Turkey (n = 704). Sampling was carried 
out by a DVB/Carboxen/PDMS 2 cm 50/30 μm fiber on 2.0 g of olive oil placed in a 10 mL HS 
vial. Sampling temperature was 40°C for 15’ extraction time. More recently Lukić et al.29 surveyed 
different olive cultivars and geographical areas by sampling 3.00 g of oil in 20 mL HS vials at 50°C 
for 40’ and Da Ros et al.4 profiled volatiles from Italian EVOOs from 2.0 g of sample in 20 mL HS 
vial at 40°C for 30’. In both cases, targeted analyte normalized responses over the internal standard 
were reported as concentrations (mg/kg) relative to the IS. Volatiles sampling outside HS linearity 
conditions brings to inaccurate quantitation by IS normalization that ranges between -90 % for 
highly volatiles to + 1600 % for medium-to-low volatiles.15  

In this scenario, the possibility of capturing in great detail the chemical complexity of EVOOs 
while avoiding HS saturation effects is of great interest, especially if response data can be adopted 
as marker or indicator of sample qualities. However, due to the very wide dynamic range of 
concentrations of EVOOs volatiles that span over 3 orders of magnitude,6,30 profiling methods face 
several challenges and can benefit greatly from GC×GC TOF MS key-features. 

Based on previous studies on cocoa volatilome31 and on hazelnuts primary metabolites 
signatures 32, tandem ionization is used here to test its capability to extend method dynamic range 
through relative and absolute sensitivity expressed by hard (70 eV) and soft (12 eV) ionization, 
when acquired in tandem across a single analytical run.33,34 Moreover, tandem signal data are 
examined for their complementary nature to provide reliable identity confirmation, to add 
additional specificity to the profiling/fingerprinting method and to cross-validate the role of 
ripening markers and quality indicators. 

Following a logic path, the next sections introduce the complexity of EVOO volatilome as it 
results from multidimensional analysis and discuss the complementary information provided by 
HS-SPME carried out with different fibers and additional features deriving from tandem signal data. 
The validation of ripening markers and quality indexes complete the discussion while providing 
evidence of the concrete advantages of a multi-dimensional investigation. 

5.5.4.1 Informative chemical patterns in the EVOO volatilome 

EVOO volatiles fractions are complex mixtures of compounds belonging to different chemical 
classes and covering a wide range of volatility, as illustrated by the list of 136 targeted compounds 
in Table 5.5.2. Analytes are listed according to their elution order in the polar × medium polar 
column configuration and are reported together with their retention times in both chromatographic 
dimensions (1tR - min and 2tR - sec), experimental IT, odor threshold (OT) values,22 and sensory 
descriptors. Volatiles were reliably identified by MS spectral similarity (NIST Identity algorithm),35 
fixing a threshold value of 850 for direct match factor (DMF) and 875 for the reverse match factor 
(RMF), and linear retention index (IT) coherence (IT ± 15 units). For those analytes where a pure 
reference compound was available, identity was confirmed by direct injection of reference standard 
solutions.
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Table 5.5.2. List of the 136 targeted compounds together with their retention times in the chromatographic dimensions (1tR min, 2tR sec). experimental IT, odor threshold (μg/kg), odor 
descriptor, and relative concentration factor calculated for the different fibers (Divinylbenzene/Carboxen/Polydimethylsiloxane - DVB/CAR/PDMS; DVB/PDMS; Polyacrylate – PA; PDMS) 
from TIC signal. Analytes are grouped according to chemical classes. 

 

           

Chemical 
class 

Compound Name 1tR 
(min) 

2tR 
(sec) 

Exp 
IT 

Odor 
threshold 
(μg/kg) 

Odor descriptor PA DVB-
PDMS 

PDMS DVB-CAR-
PDMS 

S
a
tu

ra
te

d
 a

ld
e
h

y
d

e
s 

Hexanal 12.87 1.66 1220 75 Tallowy, leaf-like 20 80 23 100 

Heptanal 16.73 1.98 1317 - Green, aldehydic 40 2 59 100 

Octanal 20.93 2.20 1419 320 Fatty, sharp 38 2 59 100 

Nonanal 25.07 2.36 1518 150 Fatty, waxy, pungent 15 100 24 100 

Decanal  29.07 2.52 1617 650 Penetrating, sweet, waxy 45 100 88 65 

Benzaldehyde 29.93 0.88 1639 - Almond, burnt sugar 25 66 18 100 

Undecanal 32.87 2.62 1715 - Sweet, fatty, floral-citrus 70 100 92 82 

Dodecanal 36.47 2.74 1815 - Soapy, fatty, aldehydic 16 32 100 50 

4-Ethylbenzaldehyde  37.33 1.22 1839 - Almond, bitter, almond 0 100 13 93 

Tridecanal 39.87 2.84 1911 - Fresh, clean, soapy, citrus 64 95 95 100 

Cinnamaldehyde 40.27 0.96 1923 - Sweet, spice, cinnamon 0 100 0 68 

Tetradecanal 43.07 2.96 2005 - Fatty, waxy, amber, 
incense 

23 43 100 50 

Pentadecanal  46.32 3.07 2111 - Fresh, waxy 73 87 93 100 

Hexadecanal  49.51 3.18 2209 - - 12 22 100 13 

Average Saturated aldehydes 

   

31 66 62 80 

U
n

sa
tu

ra
te

d
 a

ld
e
h

y
d

e
s (Z)-2-Pentenal 13.73 1.22 1243 - - 18 42 21 100 

(E)-2-Pentenal 14.60 1.24 1265 300 Pungent, apple-like 13 29 16 100 

(Z)-3-Hexenal 15.27 1.34 1282 3 Leaf-like 8 68 10 100 

(Z)-2-Hexenal 17.40 1.54 1335 - Fruity 18 67 23 100 

(E)-2-Hexenal 18.13 1.52 1352 420 Bitter almond, green 8 65 13 100 

(E)-2-Heptenal 22.40 1.68 1454 5 Fatty, almond-like 43 89 66 100 

(E,Z)-2,4-Hexadienal 25.27 1.06 1523 - Green 0 8 0 100 
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(E,E)-2,4-Hexadienal 25.53 1.04 1529 - Green 0 10 0 100 

(E)-2-Octenal 26.53 1.84 1554 4 Fresh, fatty, waxy 34 76 49 100 

(E,E)-2,4-Heptadienal 27.80 1.28 1585 3620 Fatty, green, oily 0 100 10 99 

(E)-2-Nonenal 30.47 2.00 1653 900 Fatty, green, cucumber 32 61 39 100 

(E)-2-Decenal 34.27 2.10 1754 10 Waxy, fatty, earthy 12 44 15 100 

(E)-2-Undecenal 37.80 2.22 1852 - Fresh, fruity, orange 16 26 23 100 

(E)-2-Dodecenal 40.67 2.38 1877 - Citrus, waxy, green 49 58 62 100 

(E)-2-Tetradecenal 47.13 2.63 2069 - - 31 41 72 100 

Average Unsaturated aldehydes 

  

19 53 29 100 

A
lc

o
h

o
ls

 

Ethanol 8.53 0.34 1091 30000 Alcoholic, ethereal 14 37 26 100 

2-Methyl-1-propanol 12.93 0.64 1222 480 - 52 75 42 100 

1-Butanol 14.93 0.70 1274 150 Winey 27 67 39 100 

1-Penten-3-ol 15.53 0.72 1289 - Pungent 8 76 11 100 

3-Methyl-1-butanol 17.40 0.80 1335 100 - 15 16 19 100 

1-Pentanol 19.13 0.76 1376 470 Sweet, pungent 20 57 28 100 

(Z)-2-Penten-1-ol 21.60 0.60 1435 - Green, plastic, rubber 9 45 7 100 

(E)-2-Penten-1-ol 21.87 0.62 1441 - Mushroom 9 100 7 45 

2-Heptanol 21.93 1.30 1442 10 Fruity, green, earthy 27 64 40 100 

1-Hexanol 23.27 0.86 1474 400 Fruity, banana, soft 9 92 2 100 

(Z)-3-Hexen-1-ol 24.47 0.76 1503 1500 Leaf-like 19 14 19 100 

(Z)-2-Hexen-1-ol 25.27 0.72 1523 5000 Green grass, leaves 0 100 17 30 

(E)-2-Hexen-1-ol 25.60 0.72 1531 - Green grass, leaves 22 0 0 100 

1-Heptanol  27.20 0.98 1570 10 Herb 44 88 54 100 

6-Methyl-5-hepten-2-ol 27.47 1.06 1577 2000 Green, sweet 17 82 100 72 

1-(2-Methoxy-1-methylethoxy)-2-
propanol 

28.00 1.10 1590 - - 0 16 11 100 

2-Ethyl-1-hexanol 28.47 1.16 1601 - - 31 100 14 15 



Page | 330 

 

1-Octanol 30.93 1.10 1665 100 Moss, nut, mushroom 20 100 20 90 

1-Nonanol 34.47 1.20 1759 280 Fresh, clean, floral 29 100 33 78 

1-Decanol 37.87 1.32 1854 - Fatty, waxy 62 100 69 90 

1-Undecanol 41.07 1.46 1946 - Fresh, waxy, rose, soapy 69 88 98 100 

Benzyl alcohol 41.27 0.50 1952 - Sweet, fruity 34 100 16 78 

Phenylethyl Alcohol 42.33 0.64 1984 - Sweet, floral, fresh 21 72 12 100 

1,4-Butanediol  42.40 0.34 1986 - - 63 96 100 93 

1-Dodecanol 44.13 1.58 2038 - Earthy, soapy, waxy, fatty 54 100 84 96 

Phenol 44.93 0.34 2063 - - 73 41 72 100 

1-Tridecanol  47.00 1.70 2128 - Musty 67 87 100 90 

2-Phenoxyethanol 48.80 0.58 2186 - - 27 46 39 100 

1-Tetradecanol 49.80 1.82 2219 - Fruity, waxy, orris, 
coconut 

71 89 100 89 

Average Alcohols 

    

31 71 41 89 

F
a
tt

y
 a

c
id

s 

Acetic acid 27.27 0.20 1572 500 Sour, vinegary 16 60 35 100 

Hexanoic acid 40.53 0.44 1931 700 Goat-like, sweaty 30 89 30 100 

Heptanoic acid 43.73 0.50 2026 100 - 32 100 38 76 

Octanoic acid 46.80 0.60 2121 3000 Fatty, waxy, rancid, oily 22 100 24 57 

Nonanoic acid 49.67 0.68 2215 - Sweaty, waxy 82 92 100 92 

Average Fatty acids 

    

42 81 56 88 

K
e
to

n
e
s 

Acetone 6.67 0.42 1026 - Pungent 12 36 39 100 

3-Pentanone 9.67 1.12 1127 - Ethereal, acetone 4 38 8 100 

1-Penten-3-one 10.87 0.92 1163 50 Pungent, spicy 9 53 17 100 

2-Heptanone 16.67 2.00 1317 300 Sweet, fruity 29 73 41 92 

2-Octanone 20.80 2.16 1415 510 Mould, green 11 98 16 100 

3-Hydroxy-2-butanone 20.67 0.60 1412 - Buttery 16 67 23 100 

6-Methyl-5-hepten-2-one 22.80 1.72 1463 1000 Pungent, green 12 95 21 100 
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2-Nonanone 24.93 2.32 1514 - Fresh, sweet, green 12 12 32 100 

2-Decanone 28.87 2.48 1612 - Orange, floral, peach 39 37 57 100 

2-Undecanone 32.44 2.54 1713 - Fruity, waxy 54 70 77 100 

Acetophenone 34.33 1.00 1756 - Sweet pungent almond 57 84 24 100 

2-Dodecanone 36.20 2.70 1808 - Fruity, floral, orange 51 66 77 100 

2-Cyclohexene-1,4-dione   37.13 0.78 1833 - - 14 30 18 100 

2-Tridecanone 39.60 2.82 1903 - Fatty, waxy, coconut 46 100 58 50 

(Z)-6,10-Dimethyl-5,9-Undecadien-2-one 40.93 2.16 1942 - - 42 100 76 95 

2-Tetradecanone 42.80 2.94 1997 - - 65 93 93 100 

4-Phenyl-3-buten-2-one 43.87 1.06 2030 - Sweet, spice, cinnamon 11 100 12 67 

5,6-Decanedione 49.80 1.12 2219 - - 43 51 60 100 

Average Ketones 

    

37 70 50 93 

L
a
c
to

n
e
s 

Butyrolactone 33.60 0.78 1736 - Creamy, oily, caramel 87 100 25 71 

δ-Valerolactone 37.10 0.98 1786 - Herbal, tonka, sweet 71 100 43 56 

ƴ-Caprolactone 37.51 0.92 1822 - - 13 100 9 59 

ε-Hexalactone 41.80 1.06 1968 - - 71 89 100 96 

ƴ-Nonalactone 46.07 1.46 2097 - Coconut, creamy, waxy 30 100 28 71 

γ-Decalactone 49.27 1.56 2202 - Fresh, oily, waxy, peach 65 100 51 90 

Average Lactones 

    

48 92 50 79 

E
st

e
rs

 

Ethyl acetate 7.67 0.68 1058 940 Fruity, sweet, green 9 100 19 42 

Butyl acetate 12.47 1.60 1210 300 Pear 22 55 26 100 

Hexyl acetate 20.20 2.22 1401 1040 Fruity 15 100 26 99 

(Z)-3-Hexenyl acetate 21.93 1.80 1442 1040 Sweet 9 83 18 100 

Methyl benzoate 33.33 1.06 1729 - - 11 100 6 83 

2-Ethyl-3-hydroxyhexyl 2-
methylpropanoate 

38.47 1.08 1871 - - 21 100 19 93 

2-Phenethyl acetate 39.60 1.20 1903 - Floral, rose, sweet 0 0 0 100 
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Methyl 2-oxohexanoate   43.87 0.56 2030 - - 15 100 6 60 

Methyl anisate 46.80 0.96 2121 - Herbal, anise,sweet 14 13 13 100 

Average Esters 

     

22 79 22 85 

H
y
d

ro
c
a
rb

o
n

s 

(Z)-2-Pentene 5.27 0.32 945 - - 0 100 8 74 

n-Hexane 5.33 0.48 949 - - 0 100 17 84 

1,4-Pentadiene 5.60 0.38 964 - - 0 25 6 100 

n-Heptane  5.67 0.92 968 - Sweet, ethereal 0 100 23 41 

n-Octane 6.47 1.72 1014 940 Solvent, unpleasant 6 34 27 100 

1-Octene 7.00 1.62 1031 - Gasoline 17 61 55 100 

3,4-Diethyl-1,5-hexadiene (RS/SR) 9.33 2.74 1117 - - 0 72 6 100 

3,4-Diethyl-1,5-hexadiene (meso) 9.47 2.78 1121 - - 0 55 7 100 

(5Z)-3-Ethyl-1,5-octadiene 10.60 3.20 1155 - - 2 89 6 100 

(5E)-3-Ethyl-1,5-octadiene 11.07 3.12 1169 - - 3 97 7 100 

(E,Z)-3,7-Decadiene 12.80 3.66 1218 - - 1 88 4 100 

(E,E)-3,7-Decadiene 13.07 3.68 1225 - - 2 100 4 72 

Tridecene 19.13 1.76 1376 - - 0 100 23 87 

(E)-4,8-Dimethyl-1,3,7-nonatriene 21.67 2.80 1436 - - 0 100 7 93 

(Z)-1-Ethenyl-4-ethyl-benzene 26.73 1.64 1559 - - 0 95 5 100 

(E)-1-Ethenyl-4-ethyl-benzene 27.13 1.66 1568 - - 0 100 0 73 

1,3-Diethenylbenzene 31.40 1.26 1677 - - 0 63 0 100 

1,4-Diethenylbenzene 32.07 1.26 1694 - - 0 57 4 100 

n-Heptadecane 35.60 0.72 1790 - - 0 57 36 100 

Average Hydrocarbons 

    

6 79 13 92 

T
e
rp

e
n

e
s δ-3-carene 15.47 3.18 1287 - - 31 38 48 100 

Limonene 17.40 2.88 1335 - Citrus, mint 0 100 8 90 

(Z)-β-ocimene 18.73 2.48 1366 - Floral, citrus 0 100 8 90 
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(E)-β-ocimene 19.40 2.50 1382 - - 0 100 5 81 

Linalool 30.53 1.26 1655 - Citrus 11 100 19 64 

Pinocarvone 31.73 2.09 1740 - Minty 11 23 100 35 

Eremophilene 36.60 3.20 1818 - - 17 100 50 86 

(E,E)-α-Farnesene 37.60 2.88 1847 - - 31 100 39 84 

Limonene dioxide 47.13 1.24 2132 - Menthol 87 94 100 96 

Average Terpenes 

   

17 78 33 86 

O
th

e
rs

 

1-Methoxy hexane 9.00 1.96 1107 - - 8 68 20 100 

(Z)-1-Methoxy-3-hexene 10.53 1.82 1153 - - 6 55 13 100 

Benzyl methyl ether 24.93 1.30 1514 - - 11 10 11 100 

Furfural 27.73 0.86 1593 - Bready, brown, sweet 7 17 100 28 

Isovanillin, TBDMS derivative 28.87 0.76 1612 - - 11 100 27 43 

5-Methyl-2-furaldehyde 29.01 0.88 1582 - Caramellic, brown 0 0 100 9 

Ethylene glycol 29.65 1.23 1621 - - 100 0 1 1 

1,2-Dimethoxypropanol 29.80 1.00 1636 - - 0 14 7 100 

2-Furanmethanol 34.27 0.36 1754 - Alcoholic, musty, sweet 51 62 52 100 

5-Ethyl-2(5H)-furanone 37.87 0.88 1854 - - 9 97 0 100 

Dimethyl sulfone 42.00 0.46 1974 - Sulforous, burnt 18 100 20 41 

Diethylene glycol 44.07 0.36 2036 - Sweet 100 33 32 33 

Average others 

    

25 63 37 69 
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The EVOO volatilome expresses a high chemical dimensionality, a parameter defined by 
Giddings to describe the degree of order or disorder in multidimensional separations.19 In this 
perspective, ordered elution patterns for chemically correlated compounds are a peculiar 
characteristic of the technique. Analytes are distributed according to their polarity/volatility along 
the 1D, while the selectivity of the 2D enables differential retention along the orthogonal axis of 
separation discriminating analytes based on their apolar moieties. Primary alcohols and short chain 
fatty acids elute earlier in the 2D, as illustrated for the Baza-2-A sample in Figure 5.5.1A and 5.5.1D, 
while linear saturated/unsaturated aldehydes and carbonyl compounds (i.e., hydroperoxides 
cleavage products) are more retained along the 2D axis (Figure 5.5.1D). This group of analytes is 
informative about shelf-life evolution and its abundance is generally correlated with the presence 
of rancid and fatty notes 21,36. Saturated and unsaturated hydrocarbons are chemical groups with the 
highest retention in the 2D (Figure 5.5.1A and 5.5.1B). In particular, 3,4-diethyl-1,5-hexadiene (RS 
or SR), 3,4-diethyl-1,5-hexadiene (meso), (5Z)-3-ethyl-1,5-octadiene, (5E)-3-ethyl-1,5-octadiene, 
(E,Z)-3,7-decadiene, and (E,E)-3,7-decadiene are diagnostic markers of early ripening stages 13. 
Finally, lipoxygenases (LOXs) derived compounds (C5-C6 alcohols, aldehydes, and ketones – 
Figure 5.5.1C) generated from linoleic and linolenic acids oxidative cleavage are correlated with 
the perception of positive attributes (i.e., green and fruity notes) and are well resolved over the 2D 
space. 
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Figure 5.5.1. (5.5.1A) Contour plot of the volatile fraction of Baza-1-A sample (0.100 g – 20 mL vial – 40°C 60 min 
sampling) sampled by HS-SPME with a DVB/CAR/PDMS fiber. Enlarged areas highlight retention patterns for (5.5.1B) alkenes 
and (5.5.1C) LOX derived aldehydes and alcohols. (5.5.1 D) The ordered elution for saturated and mono-unsaturated aldehydes 

and primary alcohols are evidenced by a dispersion graph. 
Ordered patterns are not only a clear advantage for identification purposes and/or for a more 

accurate extraction of response data, but also an analytical opportunity since they open new 
perspectives for dedicated processing approaches defined as chromatographic fingerprinting. 5,8,11 An 
example in this direction is given by visual feature fingerprinting applied here to reveal the 
differential information provided by HS-SPME with different fiber coatings (described in the next 
section).  

 

5.5.4.2 Exploring the information capacity of HS-SPME 

Sample preparation by HS-SPME deserves a separate discussion within the analytical 
dimensions exploited in this study. It can be considered as the zeroth dimension of the system37 as 
it applies the initial discrimination of analytes as a function of specific characteristics (polarity, 
volatility, etc.). It should match with the sample’s chemical dimensions19 to give access to the 
multiple levels of information encrypted in analyte patterns. Headspace sampling approaches 
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implementing a concentration step are the elective route to profitably explore complex volatilome 
patterns 15. In particular, HS-SPME, the most popular high concentration capacity (HCC) technique 
38–44, has been widely adopted in this field of applications. Here, we explored the differential effect 
of extraction coating selectivity and efficiency by testing commercially available SPME fibers with 
single or multiple phases operating with different extraction mechanisms (partition/absorption or 
adsorption). This survey is not per se a novelty, but it should be a recommended practice when a 
highly complex matrix is studied.28 In this application, headspace linearity18 was also checked for 
the most informative analytes15 to verify if under pre-determined temperature/time/phase-ratio 
conditions, a minimal analyte amount is released from the condensed phase avoiding saturation, 
thus establishing a linear correspondence between the analyte concentration in the sample (C0) and 
its concentration in the gas phase (Cg).

18 

Four different fibers were tested: PDMS (apolar, partition/absorption), PA (medium polar, 
partition/absorption), DVB/PDMS (apolar/medium polar, absorption/adsorption), 
DVB/CAR/PDMS (apolar/medium polar, absorption/adsorption). The relative concentration 
factors were calculated to describe sampling efficiency. In practice, the absolute chromatographic 
response (2D Peak Volume from Total Ion Current – TIC) of each analyte was divided by that 
obtained from the most effective fiber. Results were re-scaled in a 0-100 range where 0 corresponds 
to “not detected” and “100” to the best performing coating. Results are visualized by spider diagram 
in Figure 5.5.2, where analytes are grouped according to their chemical class; individual values are 
reported in Table 5.5.2.  

 

 
Figure 5.5.2. Spider diagram for tested sampling fibers (Divinylbenzene/Carboxen/Polydimethylsiloxane - 

DVB/CAR/PDMS; DVB/PDMS; Polyacrylate – PA; PDMS) showing the average relative concentration factor calculated for 

selected analytes belonging to different chemical classes. 

As expected, the DVB/CAR/PDMS fiber, visualized with a violet color, was best in terms of 
efficiency (sampling capacity) and representativeness. Its wide-spectrum selectivity, given by the 
combination of polarities and extraction mechanisms (i.e., adsorption and sorption), well covers the 



Page | 337  

 

EVOO volatilome dimensionality. In particular, DVB/CAR/PDMS is very effective toward 
alcohols and carbonyls, including most of key-aroma compounds resulting from the LOXs pathway 
and hydroperoxides cleavage. On the other hand, PDMS/DVB fiber (red color in Figure 5.5.2) 

showed good performances especially for lactones (e.g., butyrolactone, δ-valerolactone, and ƴ-
nonalactone), connoted by creamy, caramel, waxy, and fresh notes. Then PDMS fiber (green color in 
Figure 5.5.2) had good affinity - higher than 60 - only for saturated aldehydes, in particular C12-
C16, and long-chain alcohols (e.g., 6-methyl-5-hepten-2-one, 1-tridecanol, 1-tetradecanol), while PA 
fiber (blue color in Figure 5.5.2) was the worst in terms of extraction efficiency.  

The differential attitudes of tested sampling fibers can be shown with visual features 
fingerprinting.7 This strategy is a pixel based comparative visualization between image pairs where 
the information related to targeted analytes is preserved and easily retrieved during result inspection. 
GC×GC raw data are represented as an a [m, n] matrix, where a is the analyzed chromatogram with 
indexed pixels by 1D retention time, m, and 2D retention time, n. Each pixel corresponds to the 
detector data (i.e., a fragmentation spectrum) while its colorization reveals differential detector 
response.45,46 Figure 5.5.3 shows, through a fuzzy difference colorization, the relative response 
differences between a Baza-2-A oil sampled by DVB/CAR/PDMS (reference image) and the resulting 
pattern for the same sample with PDMS fiber (analyzed image). Green coloured pixels/regions 
indicate a relative intensity higher for DVB/CAR/PDMS while those represented in red indicate a 
relative intensity higher for PDMS. White-grey coloured pixels correspond to analytes with the same 
relative intensity in the two chromatograms. Red bands, enclosed in white rectangles, at higher 1D 
elution time correspond to 2D column bleeding. 

 
Figure 5.5.3. Visual features fingerprinting represented by colorized fuzzy ratio rendering. The analyzed chromatogram 

Baza-2-A oil is sampled by PDMS fiber while the reference chromatogram is by DVB/CAR/PDMS fiber. Green coloured pixels 
correspond to detector relative response values higher for DVB/CAR/PDMS while those in red indicate relative intensities higher 
for the PDMS. White-grey pixels correspond to response values with the same relative intensity in the two chromatograms. White 

squares highlight 2D column bleeding. 
 

The predominance of green colour indicates an overall higher extraction performance for the 
DVB/CAR/PDMS fiber, in particular for some informative regions such as LOX signatures and 
alkenes, confirming data provided by Figure 5.5.2 and Table 5.5.2. However, a higher abundance 
provided by PDMS extraction is shown by red spots corresponding to compounds having a polar 
function and, except for furfural, a relatively high MW (range 150-220 amu): pinocarvone, 1-
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tetradecanol, dodecanal, tetradecanal, and hexadecanal. These compounds, as long chain aldehydes 
and alcohols, characterize sensory defects associated to oxidation during olive oil storage.22  

 

5.5.4.3 Complementary information provided by tandem ionization TOF MS 

The possibility to vary electron ionization energy during the analytical run by multiplexing 
between two values is a peculiar characteristic of the analytical platform adopted in this study. The 
complementary nature of tandem signals, acquired at 70 and 12 eV, in terms of spectral signatures 
differences and relative sensitivity, have been demonstrated in other application fields.31–33,47 Here, 
possible benefits provided by this additional analytical dimension are considered for the validation 
of analytical indices of ripening and EVOO quality.  

The next paragraphs show experimental results and discuss tandem signals absolute and relative 
sensitivity toward a selection of informative targeted compounds and their information potential in 
terms of fragmentation pattern similarity/difference.  

a) Tandem signals complementarity: absolute and relative sensitivity. 

To qualify soft ionization signals as an additional dimension of the system, absolute and relative 
sensitivity were considered and compared to standard, 70 eV signals. The number of detected peaks 
over a fixed threshold was calculated as an indicator of absolute sensitivity. Table 5.5.3 indicates, 
for all samples considered in the study, the number of detected 2D peaks with signal-to-noise ratio 
(SNR) of 100 or more. This value (e.g., 100 SNR) resulted from a previous study aimed at defining 
thresholds above which reliable spectra for cross-comparative analysis data can be extracted.14 

 

Table 5.5.3. Number of detected 2D peaks above a signal-to-noise (SNR) of 100 from 70 eV and 12 eV ionization channels. SNR 
range indicates the minimum (e.g., fixed threshold) and maximum value recorded from analyses. 

 

n° 2D peaks SNR > 100 SNR range (threshold – max) 

Baza-1-A/B 

  

70 eV 332 100 - 6120 

12 eV 187 100 - 12150 

Baza-2-A/B 

  

70 eV 211 100 – 3950 

12 eV 163 100 - 10440 

Baza-3-A/B 

  

70 eV 272 100 - 6550 

12 eV 178 100 - 13270 

Baza-4-A/B 

  

70 eV 288 100 - 5032 

12 eV 145 100 - 11420 

 

On average, the number of detected peaks at 12 eV only reaches the 62% (RSD = 18.8%) of 
those detected at 70 eV, confirming that a higher ionization energy fragmentation generates a larger 
number of fragments and higher analyte responses. On the other hand, surprisingly, the SNR range 
is always greater at 12 eV (2 to 2.5-fold) indicating that at lower ionization energy the dynamic range 



Page | 339  

 

of responses is wider, with possible benefits for method dynamic range and linearity (see results at 
section Validation of ripening indicators in headspace linearity conditions).  

SNRs were recorded based on 2D peak apexes for a selection of informative analytes to 
evaluate the relative sensitivity; the results are shown in Table 5.5.4. Values are from pre-processed 
chromatograms after back-ground noise subtraction. This operation was applied to all 
chromatograms with a well-established algorithm 48 implemented in the processing platform that 
calculates the average spectral noise across the 2D time space. Results in Table 5.5.4 refer of SNRs 
at 12 and 70 eV (average of three analytical replicates and two biological replicates) for selected 
compounds detected in Baza-2-A/B samples.  

For the most abundant volatiles in EVOO samples, e.g., (E)-2-hexenal and (Z)-3-hexen-1-ol, at 
12 eV SNRs are enhanced reaching 2.6 and 2.1 times the 70 eV value. Other analytes for which the 
12 eV resulted in a higher relative sensitivity compared to 70 eV (with SNR ratios) are: ethyl acetate 
(2.8), 1-penten-3-ol (1.5), 1-penten-3-one (1.8), 3-pentanone (1.69), (E)-2-hexen-1-ol (2.2), (E,E)-
α-farnesene (1.3), (5E)-3-ethyl-1,5-octadiene (1.8), (5Z)-3-ethyl-1,5-octadiene (1.6), and (E,E)-3,7-
decadiene (1.5). 

It has to be stressed that although 12 eV signal shows a higher SNR for some analytes, it does 
not necessarily turn out in a higher method sensitivity on this detection channel. The absolute 
response, that indicates the actual number of fragments generated in the ion source, was indeed 
lower at 12 eV compared to that at 70 eV as it is also confirmed by the number of detected 2D 
peaks above SNR 100 and reported in Table 5.5.3.  
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Table 5.5.4. Signal-to-noise (SNR) values estimated for a selection of informative analytes in the Baza-2-A/B samples (mean values); direct match factor (DMF) and reverse match factor (RMF) 
values of the same analytes calculated by the NIST Identity Search algorithm between spectra collected at 12 eV vs. NIST database entries, 70 eV vs. 12 eV, and 12 eV vs. NIST. Data on base peak 

(BP) m/z values at 70 and 12 eV also are reported.  

 Relative 
sensitivity 

Spectral similarity – NIST identity algorithm  

 

SNRs 70 eV vs. NIST 
database 

70 eV vs. 12 eV 12 eV vs. NIST 
database 

Base peak 
(m/z)  

Compounds 70 eV 12 eV DMF RFM DMF RFM DMF RFM 70 eV 12 eV 

L
O

X
 s

ig
n

a
tu

re
 

Ethyl acetate 2464 6836 866 885 724 754 592 620 43 61 

1-Pentanol 265 105 865 886 781 796 698 715 42 70 

1-Penten-3-ol 673 983 870 888 797 798 688 698 57 57 

1-Penten-3-one 640 1170 893 908 763 784 636 661 55 55 

3-Pentanone 943 1551 934 938 775 777 600 621 57 86 

1-Hexanol 1683 1503 914 925 793 798 654 678 56 56 

(Z)-3-Hexenyl acetate 1375 1441 901 917 781 787 656 669 67 82 

Hexanal 985 642 885 895 750 762 602 618 41 56 

Hexyl acetate 631 233 924 929 773 792 607 625 43 56 

(E)-2-Hexenal 3950 10440 880 895 795 822 707 737 55 69 

(E)-2-Hexen-1-ol 3396 7558 871 890 785 801 706 715 57 82 

(Z)-3-Hexen-1-ol 3947 8460 930 953 805 829 662 692 41 82 

(E,E)-2,4-Hexadienal 483 512 873 876 786 781 676 691 81 81 

T
e
rp

e
n

e
s Limonene 586 474 927 955 771 775 591 606 68 136 

Linalool 140 94 921 923 789 804 634 664 71 84 

(E,E)-α-Farnesene 1596 2013 973 978 798 809 607 636 93 123 

A
ld

e
h

y
d

e
s Heptanal 43 <10 833 939 752 797 651 659 43 70 

Octanal 302 79 877 960 790 833 684 690 43 84 
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(E)-2-Heptenal 99 38 917 927 784 815 649 679 43 82 

(E)-2-Octenal 66 13 884 893 781 767 642 649 41 57 

(E)-2-Nonenal 85 35 889 900 775 796 654 664 43 70 

(E)-2-Decenal 443 137 937 960 821 845 700 722 43 70 

Nonanal 1068 430 886 908 750 781 616 628 57 98 

Decanal 221 49 858 877 748 767 606 625 43 82 

Dodecanal 329 94 932 955 792 805 662 667 43 82 

A
lk

e
n

e
s 

3,4-Diethyl-1,5-hexadiene (meso) 489 454 888 913 791 821 695 720 69 69 

3,4-Diethyl-1,5-hexadiene 
(RS/SR) 

420 318 893 920 772 813 648 675 69 69 

(5E)-3-Ethyl-1,5-octadiene 1412 2482 908 929 776 791 644 660 69 109 

(5Z)-3-Ethyl-1,5-octadiene 1167 1876 909 929 791 787 648 656 69 109 

(E,E)-3,7-Decadiene 1516 2275 851 869 774 785 666 670 69 95 

(E,Z)-3,7-Decadiene 1022 1092 857 877 766 806 679 700 43 109 

 Average value 897 917 778 796 650 668   

 Standard deviation 29.9 29.0 19.4 21.3 35.1 34.9   

 RSD% 3.3 3.2 2.5 2.7 5.4 5.2   
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b) Tandem signals complementarity: fragmentation pattern similarity  

Tandem signals also provide complementary information from spectral signatures. This aspect 
has direct impact on method specificity while opening to an additional criterion for identity 
confirmation and cross-validation of quantitative results. Specificity that is very useful in those 
applications where co-elution occur and diagnostic ions are not present on 70 eV MS signature.49 

DMF and RMF were calculated by extracting the MS fragmentation pattern from 2D peak 
apexes of selected informative analytes to evaluate spectral similarity/dissimilarity. Table 5.5.4 
reports the results with spectral similarity of informative analytes calculated on experimental spectra 
recorded at 70 eV vs. NIST reference, 70 eV vs. 12 eV, and 12 eV vs. NIST reference. The first 
comparison, i.e., 70 eV vs. NIST was done to evaluate the actual spectral consistency at 70 eV 
during tandem ionization operations. This spectral quality represents the benchmark for accurate 
identification or analytes and/or targets identity confirmation against spectral databases. 

On average, selected peaks showed an average DMF value of 897 (RSD = 3.3%) and RMF of 
917 (RSD = 3.2%) when spectra are compared to those collected in a commercial database (i.e., 
NIST). This result supports the reliability of analyte identification with tandem ionization. On the 
other hand, data from 70 eV vs. 12 eV are of help to evaluate the dissimilarity of hard and soft 
ionization spectra, and therefore to support the use of this instrumental option for volatilome 
investigations. In this case, DMF was on average 778 (RSD = 2.5%) with a minimum of 724 for 
ethyl acetate and a maximum value of 821 for (E)-2-decenal. RMF was on average 796 (RSD = 
2.7%) with a minimum of 754 for ethyl acetate and a maximum value of 845 for (E)-2-decenal. 
However, comparing 12 eV spectra vs. NIST database, the dissimilarity is even lower with average 
DMF of 650 (RSD = 5.4%) and RMF of 668 (RSD = 5.2%). 

Figure 5.5.4 shows the elution region of informative alkenes 13 from an EVOO sample 
obtained from olives at the earliest ripening stage (Baza-1-A) and recorded at 70 eV (Figure 5.5.4A) 
and at 12 eV (Figure 5.5.4B). The fragmentation patterns, in head-to-tail layout, illustrate spectral 
differences for (5E)-3-ethyl-1,5-octadiene (Figure 5.5.4C) and (E,E)-3,7-decadiene (Figure 
5.5.4D). Spectra at 70 eV are quite similar (DMF=916 and RMF=921) and their reliable 
identification needs retention index confirmation. However, at 12 eV, the two spectra show lower 
similarity (DMF=837 and RMF=845) and different base peaks (BPs): 109 m/z for (5E)-3-ethyl-1,5-
octadiene and 95 m/z for (E,E)-3,7-decadiene. In addition, the molecular ion at 138 m/z is 
enhanced for both analytes at 12 eV compared to 70 eV. 
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Figure 5.5.4. Contour plot corresponding to the retention region of informative alkenes acquired in tandem at 70 eV 

(5.5.4A) and 12 eV (5.5.4B). Head-to-tail spectra compare fragmentation patterns obtained at 70 and 12 eV for (5E)-3-ethyl-1,5-
octadiene (5.5.4C) and (E,E)-3,7-decadiene (5.5.4D).5 

The impact on spectral signatures and on BP distribution is detailed in Table 5.5.4. At 12 eV, 
BP values are generally higher than those at 70 eV, two exceptions are 1-penten-3-one and 3,4-
diethyl-1,5-hexadiene. This characteristic is of great interest because it offers the possibility to add 
a confirmation point for reliable analyte identification and enables cross-validation of profiling data. 
This latter possibility is further discussed in the next section. 

 

5.5.4.4 Validation of ripening indicators in headspace linearity conditions 

The availability of samples deriving from olives harvested in different ripening stages and 
resulting in a different quality, as illustrated in Table 5.5.1, offered the opportunity (a) to investigate 
the evolution of oil volatilome, (b) to observe the presence of known markers13,20 and their trends 
as a function of oil quality, and (c) to confirm their reliability and robustness when headspace 
linearity is verified.  

Existing literature highlights the role of several compounds as ripening indicators. In particular, 
3,4-diethyl-1,5-hexadiene (RS or SR), 3,4-diethyl-1,5-hexadiene (meso), (5Z)-3-ethyl-1,5-octadiene, 
(5E)-3-ethyl-1,5-octadiene, (E,Z)-3,7-decadiene, and (E,E)-3,7-decadiene are correlated to earlier 
stages of olive harvesting 24 independently from olive cultivar and geographical origin. On the other 
hand, both C6 aldehydes (i.e., (Z)-2-hexenal, (E)-3-hexenal, and (Z)-3-hexenal), except for hexanal, 
and C5 aldehydes, alcohols, and ketones (i.e., (E)-2-pentenal, (Z)-2-pentenal, 1-pentanol, 1-penten-
3-ol, 3-pentanone, and 1-penten-3-one) show a decreasing trend during ripening13,20 in Picual, Chétoui 
and Arbequina cultivars. These compounds belong to the LOX pathway, contributing to pleasant 
aroma and positively correlated with bitterness and pungency of olive oils; their decreasing 
concentrations contribute to the downgrading of the analyzed olive oil from EVOO (Baza-1 and 
Baza-2) to VOO (Baza-3) and finally LO (Baza-4). 

Conversely, other compounds have opposite trends, i.e., they increase during ripening and over-
ripening as well as during olive oil storage. They are (E)-2-heptenal, octanal, and nonanal that are 
formed from fatty acids hydroperoxides,20 (E,E)-α-farnesene, 6-methyl-5-hepten-2-one, and octane 
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that characterize later stages of harvesting.13,20 With the exception of 6-methyl-5-hepten-2-one, 
these analytes confirm their informative role within the sample set under study and by linear HS 
sampling.  

Some ripening indexes of Picual cultivar defined by Magagna et al. 13 can be validated in linearity 
conditions. They include: (Z)-3-Hexenal/Nonanal, (Z)-3-Hexenal/Octane, (E)-2-
Pentenal/Nonanal, and (E)-2-Pentenal/Octane. The histograms of Figure 5.5.5 show the trend of 
ripening indexes as they result from tandem signals at 70 eV (blue bars) and at 12 eV (orange bars). 
Data are normalized in a 0-100 range to allow a proper comparison between the two ionization 
channels; trends were estimated by fitting with linear, exponential, or polynomial functions to 
delineate indexes evolution along harvest stage; and the accuracy of fittings is assessed by the 
determination coefficient (R2). Interestingly, values of (Z)-3-Hexenal/Nonanal and (Z)-3-
Hexenal/Octane ratios are better fit with different types of trend-lines: linear and polynomial in the 
first case, linear and exponential in the second case; for (E)-2-Pentenal/Nonanal and (E)-2-
Pentenal/Octane, both 70 eV and 12 eV data fit better to polynomial trend-lines. In all cases, the 
determination coefficient is higher for trend-line generated on 12 eV data. The different trend lines 
are an additional proof of the complementary nature of tandem signals and of their actual 
differences in dynamic and linearity range of responses. 

 
Figure 5.5.5. Histograms illustrating the response ratios between informative analytes (e.g., ripening indexes)13 calculated on 

averaged responses at 70 eV (blue bars) and 12 eV (orange bars) from oils obtained from olives at different ripening stages. Trend 
lines are accompanied by model functions and determination coefficients (R2). 

 

Eight new potential markers of ripening could be also highlighted. For some of them, linear 
HS conditions enable exploration of their actual dynamic range that is compressed in HS saturation. 
Trends are illustrated in histograms of Figure 5.5.6. Hachicha Hbaieb et al. 20 reported, for Chétoui 
and Arbequina olive cultivars, an increase for all C5 LOX-compounds and not significant alterations 
in C6 LOX-alcohols, but here thanks to the wider dynamic range due to HS linearity (Z)-3-hexen-
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1-ol clearly decreased in oils produced with overripe olives. In particular, the decrease of (Z)-3-
hexen-1-ol matches with the trend of other analytes whose formation is well correlated with the 
LOX pathway, e.g., C5 and C6 aldehydes, alcohols, and ketones. Moreover, new informative analytes 
distinctive of earlier harvesting stages can be identified: methyl benzoate, 2-phenoxyethanol, and 
(E)-4,8-dimethyl-1,3,7-nonatriene.  

 
Figure 5.5.6. Histograms illustrating response trends for informative analytes (e.g., ripening markers 20,21) calculated on averaged 

responses at 70 eV (blue bars) and 12 eV (orange bars) from oils obtained from olives at different ripening stages. 
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On the other hand, overripe olives yield oils with low sensory quality and higher relative 
amounts of phenylethyl alcohol, 1-heptanol, and 1-octanol. Note, 1-heptanol and 1-octanol are 
compounds characterized by low OTs (respectively 10 and 100 μg/kg) and correlated to musty, 
moss, and mushroom notes.  

Very interestingly, HS linearity, although impacting on method absolute sensitivity, opens to 
new potential markers of Picual olives ripening and oils sensory quality extending the method 
informative potential while suggesting that additional dimensions at the MS detection level could 
be beneficial in terms of results cross-validation and robustness. The proposed approach could be 
effectively applied in an untargeted fashion (i.e., combined untargeted and targeted UT 
fingerprinting) to exploit the full informative potential and to a larger set of samples to understand 
the general meaning of specific analytes over different cultivars and geographical areas.  

 

5.5.5 Conclusions 

The accurate fingerprinting of volatiles by HS-SPME operating in HS linearity conditions 
followed by GC×GC-TOF MS featuring tandem ionization gives the opportunity to improve the 
quality of analytical data and reliability of results. Highly resolved patterns from complex volatiles 
fraction can be effectively investigated since analytes identification is supported by: (a) stable 
spectral signatures at 70 eV that can be corroborated by complementary information provided by 
soft ionization at 12 eV (or lower energies) where diagnostic ions with higher m/z ratio are 
emphasized; (b) ordered retention patterns for chemically correlated compounds that inform about 
unknowns functionality; (c) high sensitivity provided by the in-space band compression of thermal 
modulation, a characteristic that is fundamental when HS linearity is matched at sampling level; and 
(d) wider dynamic and linear range of response provided by soft ionization that extends method 
capabilities when analytes span a wide concentration range. 

For the complex olive oil volatilome, the proposed approach offers concrete advantages for 
the validation of the informative role of existing analytes while suggesting new potential markers to 
be studied in larger sample sets. 
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5.6.1 Abstract  

The challenging process of high-quality food authentication takes advantages by highly 
informative chromatographic fingerprinting and its identitation potential. In this study, the unique 
chemical traits of the complex volatile fraction of extra-virgin olive oils from Italian production, are 
captured by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass 
spectrometry and explored by pattern recognition algorithms. The consistent re-alignment of 
untargeted and targeted features over 73 samples, including oils obtained by different olives cultivar 
(n=24), harvest years (n=3) and processing technologies, provides solid foundation for samples 
identification and discrimination based on production Region (n=6).  

Through a dedicated multivariate statistics workflow, identitation is achieved by two-level PLS 
regression, that highlights Region diagnostic patterns accounting between 58 and 82 of untargeted 
and targeted compounds, while samples classification is by sequential application of SIMCA 
models, one for each production Region. Samples are correctly classified in five of the six single-
class models and quality parameters (i.e., sensitivity, specificity, precision, efficiency, and area under 
the receiver operating characteristic curve (AUC)) are equal to 1.00.  
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5.6.2  Introduction  

Olive oil (OO) is one of the pillars of the Mediterranean diet and represents the main source 
of fats in the countries of the Mediterranean basin.1 In particular, extra-virgin olive oil (EVOO) is 
recognized as the most valuable product among the edible oils,2 it is extracted from fresh olive fruits 
(Olea europeae L.) by mechanical or physical technologies that preserve the composition of the lipid 
fraction, while limiting autoxidation reactions and alterations of its native quality.3  

The reason of the increasing demand for olive oil of high-quality, i.e., EVOO (Commission of 
the European Communities, 1991; "EU Food Qual. Labels," 2021; IOC, 2015), relates not only on 
its nutritional and healthy values, due to the presence of antioxidants (i.e., tocopherols and phenolic 
compounds) and high oleic acid content, but also on its peculiar sensory characteristics 2 strongly 
related to olives cultivar, pedoclimatic conditions of the harvest region, olives ripeness and 
extraction technology ("EU Food Qual. Labels," 2021).  

In this context, any analytical methodology capable of delineating chemical patterns informative 
of the different functional variables influencing the composition of EVOO is useful and has the 
potential to support the valorization of high-quality products, facilitate sensory quality 
evaluation/screenings at the basis of commercial classification as well as to counteract fraudulent 
practices.7 In this latter context, the accurate fingerprinting of the unsaponifiable fraction and of 
minor components by comprehensive two-dimensional gas chromatography coupled to mass 
spectrometry (GC×GC-MS) and/or with parallel flame ionization detection (MS/FID), was 
successful in identifying admixtures of OO with other fats and/or establish the product 
freshness/shelf-life.8 

Active research in the development of GC fingerprinting methodologies includes also 
investigations on EVOO volatiles. The mono-dimensional (1D)-GC fingerprinting accompanied 
by accurate profiling were recently applied to validate the role of sesquiterpene hydrocarbons as 
geographical origin markers7 in EVOOs from different cultivars and production areas. In their 
study, Quintanilla Casas et al.7 confirmed the superior discrimination power of the total volatiles 
fingerprint (100% correct classification) obtained by GC-MS raw data processing followed by 
suitable supervised chemometrics, compared to the targeted profiling of selected sesquiterpenoids 
which correctness ranged between 46 to 100% of correct classification, as a function of the 
production country. 

Moreover, by the volatiles fingerprinting based on 1D-GC, it was also possible to support the 
commercial classification of OO based on sensory panel evaluation.9 EVOOs are in fact 
characterized by peculiar yet essential aroma qualities such as green, grassy and fruity notes, whose 
perception is at the basis of commercial classification based on EU regulations. Sensory quality in 
fact, together with compositional/chemical standards to be complied,5 and absence of off-flavors, 
guide the OOs classification in EVOO (median of the positive attributes ≥ 0), virgin olive oil (VOO) 
and lampante olive oil (LOO) in presence of sensory defects (rancid, fusty/muddy, musty, and 
winey/vinegary), even at lower levels (e.g., median of the defects ≠ 0).5  

In this study we make a step forward in the direction of validating a powerful and highly-flexible 
chromatographic fingerprinting workflow with superior identitation10 and classification effectiveness 
compared to existing tools. The improved separation capacity of GC×GC, the analytes retention 
logic over the separation space, and the comprehensive capture of component's features generated 
by TOF MS detection, make the resulting 2D fingerprints as sample’s unique traits for effective and 
reliable authentication. Moreover, the specificity of the third information dimension of the system 
(i.e., EI-MS fragmentation patterns), gives access to a higher informative level as any confirmatory 
analytical technique.  
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Compared to existing studies adopting GC×GC as profiling and/or fingerprinting technique,11–

13 the combined information deriving from untargeted and targeted features is here explored in the 
challenging scenario of Italian high-quality EVOOs production connoted by an impressive heritage 
of olives genetic varieties, with about 540 different registered cultivars,14 and 46 Protected 
Designation of Origin (PDO) products from different geographical locations (i.e., Regions) over 
the entire territory.  

The challenge posed by the complexity and high chemical dimensionality of EVOOs volatiles 
is tackled by a dedicated workflow, named combined untargeted and targeted fingerprinting (UT 
fingerprinting),15 where the information from known and unknown components patterns are 
accurately tracked across many samples and their identitation, discrimination, and classification power 
examined in great detail with a focus on Regional characters. Furthermore, the synergy between 
profiling and fingerprinting is also examined by observing the distribution of key-aroma compounds 
and potent odorants strongly correlated to positive and/or negative odor qualities.16–18  

 

5.6.3 Materials and methods  
5.6.3.1  Reference compounds and solvent 

Pure reference standards of α- and β-thujone and methyl-2-octynoate used as internal standards 
(ISs), n-alkanes (from n-C7 to n-C25) used for linear retention index (IT) calibration, and pure 
reference compounds for identity confirmation were supplied by Merck (Milan, Italy). Cyclohexane 
(HPLC grade) for n-alkanes dilution and pure dibutyl phthalate used to prepare ISs working 
solutions were also from Merck (Milan, Italy). 

5.6.3.2  Extra virgin olive oil samples 

Extra virgin olive oils (EVOOs) were supplied within the VIOLIN project19 selection. They 
were obtained by olives of different cultivars harvested between 2016-2018 over the Italian territory; 
samples were all certified as EVOOs by accredited laboratories (ISO 17025:2018) and by the official 
sensory panel test. Details on the sample-set under study, counting seventy-three samples, are 
provided in Supplementary Table 5.6.1 together with harvest/production Regions (i.e., Umbria 
n=7, Garda lake n=10, Lazio n=11, Puglia n=12, Sicilia n=13, and Toscana n=20). Supplementary 
Figure 5.6.1, shows geographical locations of selected EVOOs production sites.    
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5.6.3.3 Headspace solid phase microextraction devices and sampling conditions 

Volatiles were sampled by headspace (HS) solid phase microextraction (SPME). A 
divinylbenzene/carboxen/polydimethyl siloxane (DVB/CAR/PDMS) df 50/30 μm 2 cm length 
fiber (Supelco, Bellefonte, PA, USA) was chosen based on its sampling effectiveness on EVOOs 
volatiles and previous research.16,20–22 SPME fibers were conditioned before use as recommended 
by the manufacturer. 

The ISs were preloaded onto the SPME device by sampling 5.0 μL of α/β-thujone and methyl 
2-octynoate ISs solution (100 mg L–1) placed in a 20 mL headspace vial. ISs pre-loading is by 
exposing the SPME device to the HS kept at 40 °C for 5 min.  

Sampling was carried out on 0.100 ± 0.005 g of oil samples, precisely weighed in 20 mL 
headspace vials, at 40 °C for 60 min under constant stirring. The amount of sample was chosen 
matching for HS linearity conditions for most of the characteristic analytes of EVOOs volatile 
fraction.20,23 After extraction, the SPME device was automatically transferred to the split/splitless 
injection port of the GC×GC system kept at 250 C and thermal desorption was for 5 min.  

5.6.3.4 GC×GC-TOF MS: instrument set-up and conditions 

GC×GC analyses were performed on an Agilent 7890B GC unit (Agilent Technologies, 
Wilmington DE, USA) coupled to a Markes BenchTOF-Select™ mass spectrometer featuring 
Tandem Ionization™ (Markes International, Llantrisant, UK). The GC transfer line was set at 270 
°C. TOF MS tuning parameters were set for single ionization at 70 eV and the scan range was set 
at 40-350 m/z with a spectra acquisition frequency of 100 Hz. The system was equipped with a two-
stage KT 2004 loop-type thermal modulator (Zoex Corporation, Houston, TX) cooled with liquid 
nitrogen and controlled by Optimode v2.0 (SRA Intruments, Cernusco sul Naviglio, Milan, Italy). 
Modulation period (PM) and hot jet pulse times were set, respectively, at 3.5 s and 300 ms, with a 
cold jet stream at the mass flow controller (MFC) from 40% to 8% of the total flow along the run 
duration. No secondary oven was adopted in the GC×GC set-up.  

5.6.3.5 GC×GC columns and settings  

The column set was configured as follows: 1D DB-HeavyWax™ column (100% polyethylene 
glycol; 30 m × 0.25 mm dc × 0.25 μm df) from Agilent J&W (Wilmington, DE, USA) coupled with 
a 2D OV1701 column (86% polydimethylsiloxane, 7% phenyl, 7% cyanopropyl; 1 m × 0.1 mm dc 
× 0.10 μm df) from Agilent Technologies (Wilmington, DE, USA). A fused silica capillary loop (1.0 
m × 0.1 mm dc) was used in the modulator slit.  

The GC split/splitless injector port was kept at 250 °C and operated in split mode with a split 
ratio 1:20. The carrier gas was helium at a constant nominal flow of 1.3 mL min–1. The oven 
temperature programming was set as follows: from 40 °C (2 min) to 240 °C (10 min) at 3.5 °C min–

1.  

The n-alkanes solution for IT determination was analyzed under the following conditions: 
split/splitless injector in split mode, split ratio 1:50, injector temperature 250 °C, and injection 
volume 1 µL.  

5.6.3.6  Combined Untargeted and Targeted (UT) fingerprinting workflow  

The data processing workflow was designed to comprehensively capture the chemical signature 
of volatiles form EVOO samples by computing both peak and peak-region features from 
untargeted (unknowns) and targeted components located over the 2D space. The approach, named 
UT fingerprinting, was designed on EVOO volatile patterns and further adapted to compositional 
peculiarities of samples in other fields.24 In this study, the targeting (i.e., identification) of analytes 
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was done as last step of the process after chromatograms re-alignment over reliable peaks from 
untargeted components/features.  

The generation of untargeted features (i.e., peaks and peak-regions) and their re-alignment 
across all samples chromatograms is by template matching 25 and actively uses metadata, collected for 
2D peaks and peak-regions (i.e., retention times, MS spectrum, and detector response) above a 
signal-to-noise (S/N) threshold value of 100,22 to establish correspondences across 2D patterns. 
Re-alignment specificity, is by active constraints on MS similarity [i.e., threshold value 750 for direct 
match factor DMF and reverse match factor RMF according to NIST MS Search algorithm, ver. 
2.0 (National Institute of Standards and Technology, Gaithersburg, MD, USA)] between template 
(reference) and candidate (analyzed) "peak spectra".22,26,27  

The chromatographic fingerprinting was performed automatically by GC Image Investigator™ 
V2.9 (GC Image LLC, Lincoln NE, USA) on a random selection of samples chromatograms (n=25) 
acquired across a timeframe of two-weeks. It aligned the 25 chromatograms through reliable peaks 
for registration and generated a composite chromatogram over which peak-region features were 
delineated and extracted to form a feature template for further processing. Reliable peaks in this 
study were those that positively matched across all-but-one of the selected 25 chromatograms (i.e., 
most constrained condition option).  

The resulting feature template includes untargeted (reliable) peaks and peak-regions 
comprehensively capturing the chemical composition of samples. Figure 5.6.1A shows the 
pseudocolor image of a Sicilian EVOO (#S1) overlaid with 591 peak-regions (red graphics) and 
159 targeted peaks (green circles). Targeting of informative compounds, including EVOO key-
aroma compounds, ripening indicators and potent odorants responsible of coded defects,28 was 
performed at the end of the re-alignment process over the entire set of chromatograms (n=73).  
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Figure 5.6.1. Pseudocolor image (5.6.1A) of a Sicilian EVOO (Sicilia origin – ID#S1) volatile fraction comprehensively mapped 

through untargeted and targeted (UT) peak-regions (red graphics); identified/targeted analytes (i.e., targeted compounds) are 
highlighted by green circles. (5.6.1B) Patterns of analytes, following a retention logic based on the relative retention exerted by the 

polar × semipolar column combination adopted (alkanes - cyano, alkenes - blue, saturated - brown and unsaturated - orange 
aldehydes, alcohols - purple, terpenoids - grey and fatty acids - black) are highlighted. (5.6.1C) Shows the enlarged area of LOX 

derivatives (red circles). 
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Table 5.6.1. List of 159 target peaks, together with retention times in the two analytical dimensions (1tR, 2tR), % relative standard deviation (%RSD) calculated over six analytical replicates over two-
weeks and referred to retention times and 2D peak volumes; experimental 1D IT and tabulated IT values; identification criteria (a) reference compound confirmation or (b) spectral direct match 

similarity and IT ± 20. Odor descriptors as reported in reference literature.16,18,34,35,42 

Chemical class Compound Name 1tR (min) 
1tR 

%RSD 
2tR (s) 

2tR 

%RSD 

2D-Peak Volumes 
%RSD 

Exp IT Lit IT Identification Odor descriptors 

Alcohols 2-Propanol 7.64 0.39 0.26 1.33 5.37 907 912 a Alcoholic, musty 

 2-Methyl-1-propanol 12.48 0.76 0.34 0.79 14.20 1064 1081 a - 

 1-Butanol 14.41 0.87 0.36 2.75 13.89 1116 1124 a Winey 

 1-Penten-3-ol 15.05 0.73 0.36 1.71 6.94 1133 1139 a Pungent, apple-like 

 3-Methyl-1-butanol 16.92 0.79 0.40 0.88 6.94 1180 1184 b - 

 1-Pentanol 18.08 0.75 0.48 2.91 20.83 1210 1216 a Sweet, pungent 

 (Z)-2-Penten-1-ol 20.94 0.50 0.34 0.92 15.22 1282 1289 a Green, plastic, rubber 

 (E)-2-Penten-1-ol 21.29 0.72 0.34 4.50 10.55 1291 1296 a Mushroom 

 (Z)-3-Hexen-1-ol 22.58 0.99 0.46 3.54 4.05 1324 1344 a Green, leafy 

 1-Hexanol 22.98 0.69 0.50 1.37 4.72 1335 1338 a Fruity, banana, soft 

 (Z)-2-Hexen-1-ol 23.74 0.74 0.42 3.78 6.08 1355 1375 a Leaf-like 

 (E)-2-Hexen-1-ol 24.21 0.00 0.70 3.85 4.66 1367 1379 a Green grass, leaves 

 1-Butoxy-2-propanol 24.56 0.29 0.40 3.60 2.77 1376 1363 b - 

 1-Heptanol 26.43 0.88 0.52 2.60 14.77 1425 1423 a Herbal 

 1-Octen-3-ol 26.72 0.91 0.56 0.64 2.47 1433 1437 a Mushroom, earthy 

 2-Ethyl-1-hexanol 27.77 0.20 0.60 2.12 3.32 1462 1470 a - 

 1-Octanol 29.75 0.23 0.66 0.86 13.60 1517 1518 a Moss, nut, mushroom 

 1-Nonanol 33.02 0.55 0.66 1.59 14.41 1610 1616 a Fresh, clean, floral 

 4-Butoxy-1-butanol 34.83 0.04 0.54 1.21 2.64 1664 1668 b - 

 1-Decanol 36.98 0.87 0.70 3.16 4.15 1730 1738 a Fatty, waxy 

 2-(2-butoxyethoxy)-Ethanol 37.92 0.94 0.52 0.93 19.81 1759 1364 b - 

 Benzyl alcohol 40.37 0.87 0.28 3.79 14.78 1839 1846 a Sweet, fruity 

 1,4-Butanediol 41.30 0.83 0.28 0.71 5.05 1867 1861 b - 

 Phenylethyl alcohol 41.48 0.66 0.34 0.10 2.45 1875 1877 a Sweet, floral, fresh 

 1-Dodecanol 42.88 0.08 0.68 0.77 9.55 1921 1924 a Earthy, soapy, fatty, waxy 

 Phenol 43.93 0.77 1.60 3.59 12.40 1956 1957 a - 

 1-Tetradecanol 47.56 0.48 0.65 2.55 11.68 2118 2137 b Musty 

 2-Phenoxyethanol 47.83 0.29 1.58 4.54 15.91 2130 2145 b - 
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 1-Hexadecanol 54.25 0.34 1.06 3.01 4.02 2345 2356 b Waxy, clean 

Esters Ethyl acetate 6.88 0.35 0.42 3.94 13.34 866 875 a Fruity, sweet, green 

 2,2-Dimethylpropanoate 7.70 0.58 0.72 2.18 16.23 909 913 a - 

 Butyl acetate 12.13 0.73 0.84 3.12 14.29 1055 1064 a Pear 

 Isoamyl acetate 13.94 0.91 1.02 0.85 18.09 1104 1109 a Sweet, fruity 

 2-Methylpropyl butanoate 14.82 0.01 1.08 1.39 7.43 1127 1139 b Sweet, fruity, pineapple 

 Butyl isobutyrate 14.99 0.28 1.36 1.11 15.72 1131 1140 b Sweet, fruity, apple 

 Butanoic butanoate 17.73 0.43 1.28 4.96 19.18 1201 1212 a - 

 3-Hydroxy-2-butanone 20.01 0.84 0.34 2.91 12.18 1259 1270 a Sweet, buttery, creamy 

 Hexyl acetate 20.42 0.81 1.14 3.31 19.31 1269 1275 a Fruity 

 (Z)-3-Hexenyl acetate 21.47 0.49 0.92 3.33 19.79 1296 1310 a Sweet 

 Butyl 2-ethylhexanoate 27.42 0.54 1.88 4.55 6.49 1452 1459 a - 

 Methyl benzoate 30.67 0.59 0.58 3.50 10.67 1546 1560 a - 

 Ethyl benzoate 32.55 0.40 0.72 4.92 3.38 1597 1612 a Sweet, fruity 

 Methyl salicylate 37.57 0.00 0.56 2.37 3.99 1748 1755 b Sweet, minty 

 Butyl benzoate 40.31 0.79 0.82 1.30 20.29 1837 1846 a Balsamic, amber 

Lactones 4-Hydroxy-2-hexenoic acid lactone 31.50 0.35 0.46 3.27 15.41 1567 / b Fruity, minty 

 Butyrolactone 32.20 0.72 0.42 2.15 20.63 1587 1601 a Creamy, oily, caramel 

 β-Angelica lactone 34.24 0.15 0.42 1.45 15.98 1647 1664 b - 

 δ-Pentalactone 35.12 0.59 0.52 0.56 3.22 1672 1684 a Herbal, sweet 

 λ-Hexalactone 38.09 0.35 0.60 3.51 5.84 1765 / a Tonka, creamy 

Fatty acids Acetic acid 26.43 0.13 0.12 3.94 15.78 1425 1427 a Sour, vinegary 

 Propanoic acid 29.52 0.23 0.14 3.99 18.99 1510 1516 a Acidic, pungent 

 Butanoic acid 31.97 0.35 0.62 3.17 20.39 1580 1581 a Cheesy, sharp 

 Pentanoic acid 36.05 0.96 0.30 0.24 5.53 1700 1704 a Cheesy, acidic 

 Hexanoic acid 39.55 0.15 0.20 0.13 13.26 1812 1817 a Goat-like, sweaty 

 Heptanoic acid 42.64 0.23 0.26 4.87 14.40 1914 1920 a - 

 Octanoic acid 45.73 0.04 0.26 4.27 5.55 2053 2058 a Fatty, waxy, rancid, oily 

 Nonanoic acid 48.59 0.02 0.42 1.11 10.84 2181 2180 a Sweaty, waxy 

 Decanoic acid 51.63 0.54 0.30 4.35 16.35 2239 2240 a Soapy, rancid 

Hydrocarbons n-Hexane 3.91 0.40 0.34 1.50 10.88 600 / a - 

 Cyclopentane 4.20 0.95 0.22 2.12 3.19 631 / b Petroleum 

 2,4-Dimethylhexane 4.38 0.39 0.54 0.92 10.70 649 / b - 
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 1,4-Pentadiene 4.61 0.79 0.26 2.53 16.93 675 / b - 

 Cyclohexane 4.96 0.92 0.50 0.31 14.37 700 719 a - 

 n-Heptane 4.96 0.16 0.72 4.22 15.01 700 / a Sweet, ethereal 

 2-Methylheptane 5.31 0.27 0.88 3.15 6.70 754 / b - 

 n-Octane 5.72 0.99 1.06 2.15 15.96 800 / a Solvent, unpleasant 

 1-Octene 6.24 0.95 1.00 0.84 5.71 822 838 b Gasoline 

 2,3-Dimethylheptane 6.48 0.64 1.64 0.57 9.44 839 847 b - 

 2,4-Dimethyl-1-heptene 6.77 0.83 1.12 2.12 18.67 859 878 b - 

 n-Nonane 7.62 0.33 1.72 3.00 4.08 900 / a - 

 Benzene 8.11 0.37 0.48 1.61 15.84 924 934 a Aromatic 

 3,4-Diethyl-1,5-hexadiene (meso) 8.87 0.50 1.54 3.34 6.90 952 966 a - 

 3,4-Diethyl-1,5-hexadiene (RS+SR) 9.10 0.59 1.52 1.50 15.25 961 968 a - 

 n-Decane 10.21 0.97 2.44 1.90 5.35 1000 / a - 

 (5Z)-3-Ethyl-1,5-octadiene 10.33 0.62 1.70 4.40 18.95 1005 1006 a - 

 (5E)-3-Ethyl-1,5-octadiene 10.79 0.04 1.72 4.27 13.16 1018 1012 a - 

 4-Methyldecane 10.79 0.89 2.72 0.23 10.79 1018 1022 b - 

 Toluene 11.03 0.54 0.68 4.86 13.14 1024 1024 a Sweet 

 1-Decene 11.43 0.88 2.04 0.73 20.43 1035 1039 b - 

 (E,Z)-3,7-Decadiene 12.66 0.36 1.82 0.49 19.42 1069 1069 a - 

 (E,E)-3,7-Decadiene 12.95 0.87 1.80 1.42 6.64 1077 1077 a - 

 n-Undecane 13.77 0.44 2.86 1.99 10.91 1100 / a - 

 1,3-Dimethylbenzene 14.12 0.69 0.86 0.50 14.17 1109 1122 b - 

 Ethylbenzene 14.47 0.62 0.86 4.45 11.26 1118 1125 b - 

 1-Dodecene 17.56 0.62 2.50 0.89 19.10 1197 1192 b - 

 n-Dodecane 17.68 0.22 3.04 0.89 2.11 1200 / a Alkane 

 Styrene 19.13 0.56 0.66 0.29 8.42 1237 1242 b Sweet, balsamic 

 (E)-4,8-Dimethylnona-1,3,7-triene 20.07 0.59 1.46 4.56 8.14 1260 1266 b - 

 1,2,3-Trimethylbenzene 20.18 0.78 0.96 1.11 13.72 1263 1282 b - 

 n-Tridecane 21.64 0.90 3.08 3.31 10.77 1300 / a - 

 1-Ethenyl-4-ethylbenzene 26.13 0.51 0.86 4.38 13.83 1417 / b - 

Terpenoids α-Pinene 10.68 0.88 1.62 1.26 17.60 1015 1017 a Herbal, woody 

 β-Pinene 13.07 0.84 1.60 2.12 3.80 1081 1072 a Terpenic, pine 

 ß-Myrcene 15.69 0.54 1.32 2.11 15.33 1149 1154 a Spicy, woody 
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 Limonene 17.09 0.68 1.40 4.56 18.55 1185 1190 a Citrus 

 Eucalyptol 17.38 0.59 1.54 1.17 6.53 1192 1195 a Herbal, minty 

 Terpinene 18.43 0.81 1.24 2.99 12.14 1219 1221 a - 

 (E)-ß-Ocimene 19.13 0.79 1.24 0.58 11.92 1237 1239 a - 

 α-Copaene 28.35 0.70 2.16 1.24 17.55 1478 1485 a Woody, spicy 

 Linalool 29.40 0.78 0.90 1.21 8.86 1507 1507 a Citrus 

 α-Muurolene 36.40 0.92 1.54 1.43 17.84 1711 1714 b Woody 

 α-Farnesene 36.98 0.16 1.44 1.30 10.91 1730 1740 a - 

Saturated 
aldehydes 

Propanal 5.43 0.05 0.28 1.73 4.23 769 762 a Ethereal, musty 

 Butanal 6.71 0.43 0.42 2.09 14.68 856 861 a Cocoa, pungent 

 Pentanal 9.10 0.01 0.64 2.06 19.63 961 965 a Fermented, winey 

 Hexanal 12.43 0.40 0.86 4.41 14.35 1063 1066 a Tallowy, leaf-like 

 Heptanal 15.87 0.55 1.02 1.18 20.24 1154 1161 a Green, aldehydic 

 2-Ethylhexanal 16.45 0.74 1.32 0.89 18.25 1169 1187 a - 

 Octanal 19.78 0.19 1.14 2.02 14.25 1253 1268 a Fatty, sharp 

 Nonanal 24.44 0.39 1.22 1.24 20.93 1373 1380 a Fatty, waxy, pungent 

 Decanal 28.35 0.09 1.30 3.84 5.74 1478 1475 a Penetrating, sweet, waxy 

 Undecanal 32.08 0.57 1.34 3.93 12.16 1583 1585 a Sweet, fatty, floral-citrus 

 Dodecanal 35.64 0.78 1.40 2.65 14.35 1688 1688 a Soapy, fatty, aldehydic 

 Tridecanal 38.79 0.74 1.42 1.18 7.32 1787 1792 b Soapy, fresh, clean 

Unsaturated 
/aromatic 
aldehydes 

(E)-2-Butenal 10.27 1.00 0.90 0.66 14.45 1003 1002a a - 

 (Z)-2-Pentenal 13.24 0.01 0.64 4.81 13.17 1085 1101 a - 

 (E)-2-Pentenal 14.06 0.96 0.64 2.76 13.05 1107 1111 a Pungent, apple-like 

 3-Methyl-2-butenal 16.16 0.67 0.58 0.61 19.81 1161 1164 a Fruity, sweet 

 (Z)-2-Hexenal 16.86 0.13 0.78 3.32 14.98 1179 1183 a Fruity 

 (E)-2-Hexenal 17.50 0.80 0.82 1.59 2.06 1195 1204 a Almond, green 

 (Z)-2-Heptenal 18.32 0.96 0.72 3.02 8.08 1216 1218 a Green, oily, sharp 

 2-Ethyl-2-hexenal 20.83 0.45 1.14 1.94 13.83 1279 1285 a - 

 (E)-2-Heptenal 21.93 0.51 1.06 0.69 15.83 1307 1318 a Fatty, almond-like 

 (E,Z)-2,4-Hexadienal 24.38 0.29 0.58 4.48 16.10 1371 1373 a Green 

 (E,E)-2,4-Hexadienal 24.50 0.38 0.61 2.32 12.38 1375 1376 a Green 
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 (E)-2-Octenal 24.97 0.29 0.86 1.01 19.78 1386 1391 a Fresh, fatty, waxy 

 (E,E)-2,4-Heptadienal 26.89 0.83 0.68 0.96 15.59 1438 1441 a Fatty, green, oily 

 Benzaldehyde 29.05 0.16 0.50 3.46 10.58 1497 1499 a Almond, burnt sugar 

 (E)-2-Nonenal 29.28 0.76 1.10 4.60 17.09 1503 1509 a Fatty, green, cucumber 

 (E)-2-Decenal 33.43 0.44 1.36 3.20 13.67 1622 1625 a Waxy, fatty, earthy 

 (E,E)-2,4-Decadienal 37.22 0.74 0.90 1.98 3.81 1737 1740 a Fatty, oily 

 2,4-Dimethylbenzaldehyde 38.68 0.21 0.64 4.59 4.09 1783 1789 b Almond, bitter 

Ketones Acetone 5.72 0.08 0.30 4.97 14.82 800 819 a Pungent, apple-like 

 2-Butanone 7.12 0.83 0.44 1.48 10.16 880 887 a Ethereal, chemical 

 3-Buten-2-one 8.17 0.40 0.40 2.16 13.95 926 931 a Sweet 

 2,3-Butanedione 8.75 0.27 0.38 0.41 13.05 948 954 a Buttery, sweet 

 1-Penten-3-one 10.27 0.27 0.56 2.38 6.61 1003 1019 a Pungent, spicy 

 2,3-Pentanedione 10.97 0.14 0.52 2.12 14.05 1023 1026 a Buttery, toasted 

 3-Penten-2-one 13.88 0.63 0.58 2.75 19.70 1103 1106 a Fruity, acetone 

 4-Heptanone 14.06 0.47 1.10 0.25 19.18 1107 1118 b Fruity, cheesy 

 3-Heptanone 15.11 0.26 1.08 4.68 9.32 1134 1141 a Green, fatty 

 2-Heptanone 16.33 0.27 1.02 2.66 5.21 1166 1169 a Sweet, fruity 

 2-Octanone 19.22 0.45 1.10 1.97 13.31 1239 1244 a Mould, green 

 6-Methyl-5-hepten-2-one 21.70 0.11 0.90 3.33 18.52 1302 1313 a Pungent, green 

 (E)-3-Octen-2-one 24.68 0.69 0.92 4.03 12.79 1379 1384 a - 

 
5-Methyl-2-(1-

methylethyl)cyclohexanone 
27.13 0.07 1.30 2.64 11.88 1444 1448 b - 

 3,5-Octadien-2-one 28.88 0.24 0.76 0.14 10.74 1492 1492 a Fruity, fatty, mushroom 
 2-Decanone 29.46 0.38 1.54 2.53 11.03 1508 1515 a Orange, floral, peach 

Others Tetrahydrofuran 6.48 0.29 0.46 3.65 16.69 838 845 b - 

 1-Methoxyhexane 8.46 0.86 1.12 0.81 11.63 937 941 b - 

 2-Ethylfurane 8.46 0.03 0.54 3.58 2.11 937 944 a - 

 Acetonitrile 9.74 0.75 0.26 2.91 10.67 985 988 b - 

 Furfural 28.18 0.84 0.40 3.16 4.56 1473 1477 a Bready, brown, sweet 

 Dimethyl sulfoxide 30.28 0.13 0.38 0.19 3.85 1532 1549 b Fatty, oily 

 1-Chloro dodecane 34.48 0.98 1.76 3.71 20.48 1653 1661 b - 

 3,4-Dimethyl-2,5-furandione 35.41 0.52 0.66 4.77 2.66 1681 1685 b - 

 Acetamide 36.46 0.01 0.18 3.30 9.61 1713 1725 b - 
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 Phthalide 53.43 0.66 1.76 3.84 17.87 2312 2323 a - 

 Diethyl phthalate (IS dilution solvent) 53.84 0.07 0.62 0.12 18.26 2329 2332 a - 
 Average %RSD value / 0.34 / 3.01 11.98 /   - 
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Identifications were confirmed by authentic standards when available in authors’ laboratory 
(criterion “a” in Table 5.6.1) or by spectral similarity DMF ≥900 and RMF ≥950 and IT tolerance 
± 20 units (criterion “b” in Table 5.6.1). Table 5.6.1 lists target analytes with 1D and 2D retention 
times (1tR; 2tR), precision data (see section 5.6.3.7), experimental (Exp.) and tabulated (Lit.) 1D IT 
values, and odor descriptors as reported in reference literature.  

The output table collecting 2D peaks and peak-regions aligned across all chromatograms with 
features-related metadata (1D and 2D retention times, MS spectrum, base peak and molecular ion 
m/z, and TIC response) were stored and made available for further processing.  

Supplementary Table 5.6.2 lists untargeted and targeted peak-region features included in the 
UT template, together with their experimental 1D IT values, retention times in the two analytical 
dimensions (1tR, 2tR), % relative standard deviation (% RSD) on retention times across all analyses, 
and reference MS spectral signature from peak-apex spectrum.  

5.6.3.7 Method performance parameters  

Repeatability was evaluated on analytical descriptors considered fundamental for an accurate 
chromatographic fingerprinting based on both 2D peak patterns and analytes responses. Therefore, 
%RSD was calculated on retention times and analytes % response (% normalized 2D volumes over 
IS) for all targeted compounds and on analytical replicates of the same sample analyzed every two-
days over the two-weeks of the study (n = 6). Results are reported in Table 5.6.1. Mean %RSD on 
retention times were, respectively, 0.34% for the 1D (1tR) and 3.01% for the 2D (2tR). Maximum 
%RSD on percent response was instead 20.93%, reported for nonanal, while the mean value was 
11.98%.  

5.6.3.8 Data acquisition and 2D data processing  

Data were acquired by TOF-DS software (Markes International, Llantrisant, UK) and 
processed by GC Image V2.9 suite (GC Image, LLC Lincoln, NE, USA).  

The peak-region features data files from each chromatogram were exported in '.xls' format 
(Microsoft Excel), and then converted to MATLAB format (version R2017b). All the multivariate 
analysis was performed using PLS_Toolbox 8.6.1 (Eigenvector Research, Manson, WA USA) for 
MATLAB environment (MathWorks Inc., Massachusetts, USA, R2017b). Principal component 
analysis (PCA), partial least-squares regression (PLS) and soft independent modelling for class 
analogy (SIMCA) were applied as exploratory analysis, variable selection and classification method, 
respectively. In addition, Microsoft Excel spreadsheet was used for similarity analysis.  

 

5.6.4 Results and Discussion 

Chromatographic fingerprinting based on comprehensive two-dimensional separations has a 
great potential for discrimination and identification of samples based on their chemical signatures, 
a process described as identitation.10 Moreover, it offers further advantages, when mass spectrometry 
is used at the detection level, providing additional information for analytes putative identification. 
This step gives access to a higher information level on samples properties and characteristics.7,17,29  

The strategy adopted to encrypt the hidden information from volatiles patterns of EVOOs 
harvested in different Italian Regions collects information by Untargeted and Targeted (UT) features. 
It is a fingerprinting approach designed to comprehensively map all detectable volatiles from 
GC×GC-TOF MS analyses.15 Chromatograms processing was by a validated workflow described 
in Section 5.6.3.6; the output was a data matrix 73 × 519 dimensioned (i.e., samples × features) 
with a sub set of 159 identified (targeted) compounds.  
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Next section, while introducing the chemical dimensionality and the information encrypted on 
EVOOs volatile fraction, highlights the fundamental role of high-resolution separations and 
retention pattern logic at the basis of samples identitation. Machine learning, based on multivariate 
statistics and modelling algorithms, will be presented as key-tools to access the higher level of 
information to identify distinctive Regional markers patterns.  

5.6.4.1 The complex and multidimensional EVOO volatilome 

EVOO is highly appreciated by consumers because of its unique and characteristic flavor, 
which reflects the chemical complexity and dimensionality30 of its volatile fraction, characterized by 
the presence of many compounds, especially carbonyls (e.g., aldehydes, ketones), esters, alcohols, 
and hydrocarbons (e.g., linear, aromatic, terpenoids etc.). Odor active compounds, with low odor 
perception threshold, and volatiles lacking of sensory features (i.e., interferents),31 concur in the 
modulation of the "odor code" while triggering aroma perception which objectification by 
instrumental methods is challenging.9,32 However, EVOO volatiles encrypt additional information 
about relevant functional variables including olive cultivars, olive trees harvest region and local 
pedoclimatic conditions, olive ripeness, technological processes, and storage condition.1,2,33,34 
Methodologies capable of comprehensively and reliably capturing the complexity of OO 
volatilome, have the potential of being valid and robust fingerprinting tools for discrimination, 
identitation,10 and valorization of high-quality product. This latter process, might help in supporting 
European Union food quality labelling ("EU Food Qual. Labels," 2021) while promoting food fraud 
counteractions in the world market of EVOO. 

Figure 5.6.1A shows the pseudocolor image of a Sicilian EVOO (Sicilia origin – #S1) volatile 
fraction comprehensively mapped through untargeted and targeted (UT) peak-regions (red 
graphics); identified/targeted analytes (i.e., targeted compounds) are highlighted by green circles. 
Patterns of analytes, following a retention logic based on the relative retention exerted by the polar 
× semipolar column combination adopted, are highlighted in Figure 5.6.1B and 5.6.1C. 

Compounds deriving from linoleic and linolenic acids oxidative cleavage, promoted by 
lipoxygenase (LOX) and hydroperoxide lyase (HPL) pathways, constitute the LOX signature (green 
color area in Figure 5.6.1B and enlarged area in Figure 5.6.1C), which is the most abundant 
fraction in high-quality EVOOs.1,12 It is characterized by the presence of C6 and C5 compounds, in 
particular aldehydes, alcohols, ketones, and esters (e.g., hexanal, (E)-2-hexenal, 1-penten-3-ol, 1-
hexanol, 1-penten-3-one, hexyl acetate etc.), fundamental to define positive attributes as fruity and 
green.13,20 

Saturated and unsaturated aldehydes (respectively in brown and orange) are mainly produced 
by oxidation of the unsaturated fatty acids.35 While C6 and C5 unsaturated aldehydes from LOX are 
correlated to positive attributes, the others, with higher molecular weight and low odor threshold 
(e.g., (E)-2-heptenal, (E)-2-octenal, (E)-2-decenal, heptanal, octanal and nonanal) are indicated in 
many studies as responsible of the rancid off-flavor with unpleasant and penetrating notes.18,35,36 
Alcohols (purple line in Figure 5.6.1B), represented by thirty congeners here identified, have a 
strong retention in the 1D polar column and are well separated by informative carbonyls. Of them 
the most relevant are 1-octen-3-ol, 1-nonanol, and 1-decanol, because of their decisive role in 
defining sensory defects eliciting fatty, rancid, earthy, and mushroom-like notes.23,34  

Short-chain fatty acids (Figure 5.6.1B - black line) derive from the oxidation of the 
corresponding aldehydes18,35 with propanoic and butanoic acids as the most odor active, followed 
by pentanoic and heptanoic acids. Their presence was correlated to the perception of rancid and fusty 
defects.1,35,36  
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Hydrocarbons (Figure 5.6.1B in cyano) have a negligible contribution in the definition of the 
EVOO flavor, although some unsaturated derivatives (i.e., 3-ethyl-1,5-octadiene and 4,8-dimethyl-
1,3,7-nonatriene) were linked to green and fruity notes,12 or to rancid and fishy aroma.1 Moreover, a 
series of C10 alkenes, i.e., 3,4-diethyl-1,5-hexadiene (RS or SR), 3,4-diethyl-1,5-hexadiene (meso), 
(5Z)-3-ethyl-1,5-octadiene, (5E)-3-ethyl-1,5-octadiene, (E,Z)-3,7-decadiene, and (E,E)-3,7-
decadiene, which elution region is highlighted in blue on Figure 5.6.1B, are known to be diagnostic 
markers of early ripening stages of olives (Angerosa, Camera, D'Alessandro, & Mellerio, 1998), 
while n-octane is an indicator of over-ripening.3,15,23  

The presence and the abundance of terpenes (grey rectangles in Figure 5.6.1B) is of particular 
interest because of their role as indicators of geographical origin7,13 or of ripening, e.g., α-farnesene.3 
Moreover, they contribute to define positive attributes, as wood, lemon and rose-like odors.12,38  

Lactones are generally detected in low but variable amounts in EVOO, and their relative 
concentration is cultivar-specific.34 Esters as well, closely eluting to lactones, contribute in defining 
fruity notes with C6 and C5 derivatives deriving from the LOX pathway that dominates the class.1,20,34  

5.6.4.2 Multivariate analysis  

Firstly, an exploratory unsupervised analysis was carried out applying PCA; data structure was 
examined to whether geographical origin-related intrinsic groupings of olive oils samples were 
detectable. Then, six two-level PLS regression models (one for each concerned Italian region) were 
built in order to obtain the variable importance in prediction (VIP) scores and to select the variables 
which contribute the most to characterize each EVOO belonging to a particular Italian region 
against the rest of the samples. From these PLS models the six characteristic volatile patterns, one 
for of each geographical region, were delineated and a similarity analysis of the characteristic pattern 
of each region was carried out by applying the nearness index. Finally, six one-input class SIMCA 
classification models were developed and validated. Figure 5.6.2 shows the multivariate analysis 
workflow designed to capture informative and diagnostic patterns capable of correctly 
classifying/discriminating EVOO production regions.  
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Figure 5.6.2. Workflow including data processing (i.e., fingerprinting and profiling) and machine learning 

5.6.4.2.1. Exploratory analysis  

PCA was initially performed considering the 591 variables (i.e., peak-region features) per sample 
(n=73). After inferring from this first PCA model, three variables were removed: phthalide, (E)-2-
hexenal and toluene because the related loadings were very large in all cases, and they were masking 
the behavior of the other variables. Finally, a new PCA with 588 variables was developed and all 
the successive multivariate analysis steps were carried out with these variables. 

The new PCA model was built with 12 principal components, which explained a total of 
variance of the 79.73%. Figure 5.6.3 displays the score plot on PC1 vs. PC2. Some particular 
grouping trends were observed for the olive oil samples from Sicilia, Lazio and Umbria. In addition, 
Garda and Puglia were spread over the bottom and top halves of the PC1.  
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Figure 5.6.3. Principal Component Analysis – PCA score plot on PC1 vs. PC2 accounting for a 79.73 % of the total explained 

variance. The PCA model is based on the TIC % Response from UT peak-regions comprehensively covering the chromatographic 

space. EVOOs from different Italian Regions are displayed in different colors. 

5.6.4.2.2. Variable selection – Characteristic profile 

The variable importance in the projection (VIP) score, that summarize the overall contribution 
of each variable to the PLS model, was used as variable selection strategy in order to highlight 
characteristic volatile patterns for each Region. The "greater-than-one-rule" was applied for 
selecting the VIP scores, and only about 12% from the total number of variables (588) were selected 
as characteristics. On this way the number of selected variables per region was Garda (76), Sicilia 
(58), Toscana (71), Lazio (82), Puglia (71) and Umbria (70), counting together a total of 121 variables 
which were displayed in a bar-chart shown in Supplementary Figure 5.6.2. Supplementary 
Tables 5.6.3-8 list, for each Italian Region, the specific variables and include both untargeted and 
targeted components.  

5.6.4.2.3. Similarity study  

The similarity analysis among the Region characteristic patterns was carried out by calculating 
similarity indices. Such indices are defined as a number between 0 to 1 which describes the 
equivalence of two objects characterized by multivariate data; the value 0 indicates maximum 
difference, and 1 implies maximum similarity. In this study the nearness index (NEAR)39 was 
employed; it is calculated by Equation 5.6.1: 

Equation 5.6.1    NEAR (xC, xR)  =  1 −  
 √ ∑  (xCi− xRri)

2
 

 √ ∑  (xCi+ xRi)
2

 

 

where xci
 and xri

 symbolise each element of the considered and reference characteristic 

profiles, respectively.  
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Equation 5.6.1 could be also re-formulated in matrix notation as reported in Equation 5.6.2: 

Equation 5.6.2   NEAR(𝐗C, 𝐗R)  =  1 − [ √ 
(𝐗C−𝐗R) × (𝐗C−𝐗R)T 

(𝐗C+𝐗R) × (𝐗C+𝐗R)T  ] 

where, correspondingly, 𝐗Ci
 and 𝐗Rri

 are the considered and reference characteristic profile 

vectors, respectively (the superscript T is denoting the transposed matrix).  

To carry out the similarity study a new reduced tertiary vector consisting of 0, 1 and 2 codes 
for each Region was built from the regional characteristic profiles; results reported in Table 5.6.2. 
The following rules were applied to establish the aforementioned codes:   

▪ 0: was assigned to those variables not selected as part of the Region characteristic 
pattern, e.g., the variable 32 corresponding to methyl benzoate was selected only for 
Puglia profile, and thus this variable was codified with the value 0 for the remaining 
reduced tertiary vectors.  

▪ 1: was assigned to those variables whose VIP scores ranged from 0 to 1, e.g., the variable 
46 corresponding to ethyl benzoate was selected for Lazio, Puglia, and Umbria profiles. 

▪ 2: was assigned to those variables whose VIP scores was greater than 1, e.g., the variable 
8 corresponding to α-copaene had a VIP score larger than 1 for Garda, Sicilia, Toscana, 
Lazio and Puglia profiles and a VIP score between 0 and 1 for the Umbria profile. 
Thus, in the five pattern (Garda, Sicilia, Toscana, Lazio and Puglia) this variable was 
codified with the value 2 and in Umbria having the value 1.  

▪  

Table 5.6.3. Reduced tertiary vector from six studied Regions from Italy. 

VIP Variables  GARDA SICILIA TOSCANA LAZIO PUGLIA UMBRIA 

α-Pinene 2 0 1 1 1 2 

α-Copaene 2 2 2 2 2 1 

Terpinene 1 0 0 0 0 0 

Pentanal 1 2 2 1 1 2 

Nonanal 1 0 2 1 2 0 

n-Octane 0 0 0 1 0 2 

n-Hexane 2 0 0 1 0 0 

Methyl benzoate 0 0 0 0 1 0 

Limonene 2 0 2 2 2 2 

Hexyl acetate 0 0 1 2 0 1 

Hexanal 1 1 2 1 1 1 

Ethyl benzoate 0 0 0 1 1 1 

Dodecanal 2 1 1 1 2 0 

Diethyl phtalate 0 0 0 2 2 0 

Cyclopentane 0 0 0 1 0 1 
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Cyclohexane 2 1 1 0 1 2 

Butyl isobutyrate 0 1 0 1 0 1 

Butanoic butanoate 1 0 1 2 2 2 

Benzaldehyde 0 0 0 0 1 0 

Acetonitrile  0 0 0 1 2 1 

6-Methyl-5-hepten-2-one 0 0 0 0 0 1 

4-Hydroxy-2-hexenoic acid 
lactone 

2 
2 2 

2 1 2 

3,4-Diethyl-1,5-hexadiene 
(RS+SR) 

0 
1 0 

1 2 1 

3,4-Diethyl-1,5-hexadiene 
(meso) 

1 
0 0 

1 
0 0 

2-Ethyl-2-hexenal 0 0 1 2 0 0 

2-Ethyl-1-hexanol 0 0 1 0 1 0 

1-Penten-3-one 1 0 2 2 1 2 

1-Penten-3-ol 2 0 0 1 0 0 

1-Methoxyhexane 1 0 1 0 0 0 

1-Hexanol 1 2 2 2 2 2 

1-Butanol 0 0 0 1 0 0 

1,4-Pentadiene 1 0 0 1 0 0 

(Z)-3-Hexenyl acetate 1 2 2 1 2 2 

(Z)-3-Hexen-1-ol 2 2 2 2 2 2 

(Z)-2-Pentenal 0 0 0 0 1 0 

(Z)-2-Hexenal 1 1 1 0 1 0 

(E,Z)-3,7-Decadiene 2 2 2 2 2 2 

(E,Z)-2,4-Hexadienal 0 0 0 1 0 0 

(E,E)-3,7-Decadiene 2 2 2 2 2 2 

(E,E)-2,4-Hexadienal 1 2 0 0 0 0 

(E)-ß-Ocimene 1 0 0 1 0 0 

(E)-2-Pentenal 0 1 1 0 0 0 

(E)-2-Penten-1-ol 1 1 1 2 2 1 

(E)-2-Hexen-1-ol 1 2 2 1 2 2 

(E)-2-Heptenal 0 0 1 0 0 0 

(5Z)-3-Ethyl-1,5-octadiene 1 1 1 2 2 2 

(5E)-3-Ethyl-1,5-octadiene 2 2 2 2 2 2 

160 0 0 0 0 1 0 

166 0 0 0 0 0 1 

175 0 1 1 1 0 1 

178 0 0 0 1 0 0 
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187 1 0 0 0 0 0 

188 2 1 1 0 1 0 

190 0 1 0 0 0 0 

201 0 1 1 2 0 1 

205 0 1 0 1 1 1 

210 0 0 0 1 1 0 

213 1 1 1 1 1 2 

215 2 0 1 1 0 0 

227 1 2 1 0 0 0 

232 0 0 2 1 1 2 

238 1 1 2 2 1 2 

243 1 2 1 0 0 0 

244 0 0 0 1 0 1 

245 2 0 0 0 0 2 

254 2 1 2 2 2 0 

258 1 1 0 0 0 1 

262 2 0 1 0 1 0 

267 2 1 1 0 2 1 

268 0 0 0 0 0 1 

274 1 0 2 1 2 1 

275 1 1 1 1 1 0 

276 1 0 1 0 0 1 

278 1 0 0 0 1 0 

280 0 0 0 0 0 1 

285 1 1 1 1 2 1 

294 1 0 0 0 0 0 

299 1 2 1 2 1 2 

305 1 1 1 2 1 1 

314 2 0 1 2 2 2 

318 2 2 2 2 2 2 

323 2 0 2 2 1 2 

331 1 2 1 2 2 2 

340 1 2 2 2 2 2 

341 0 0 0 0 1 0 

349 0 1 2 1 1 2 

359 0 0 0 0 1 0 

374 2 2 2 1 1 2 

375 0 0 0 1 0 0 
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377 1 2 1 2 2 2 

382 2 2 2 2 2 2 

386 2 0 1 0 0 0 

388 2 0 1 1 0 1 

396 0 0 1 0 1 0 

400 2 0 0 1 1 0 

413 2 2 2 2 2 2 

418 2 2 2 2 2 0 

422 2 1 1 1 2 1 

424 0 1 0 0 0 0 

430 1 0 0 0 0 0 

445 0 0 0 1 0 0 

454 1 2 2 1 2 2 

457 0 0 0 1 0 1 

458 1 2 2 1 2 0 

468 0 0 0 0 1 0 

475 2 0 0 0 0 0 

480 0 0 0 1 1 0 

498 0 1 0 1 1 1 

504 1 0 1 1 1 1 

505 2 1 2 1 2 2 

510 2 0 0 1 0 0 

523 1 2 1 1 0 0 

529 1 0 1 1 0 1 

538 0 0 1 0 0 0 

549 1 0 0 0 0 0 

550 0 1 0 0 1 0 

554 1 2 1 0 0 0 

555 2 2 2 1 0 2 

561 0 1 0 0 0 0 

573 2 1 2 1 2 1 

588 1 1 2 1 1 2 

 

Once the reduced tertiary vectors from characteristic patterns were pairwise compared, a 
similarity matrix was constructed from the found NEAR values, which is shown in the Figure 
5.6.4.  
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Figure 5.6.4. Similarity matrix based on NEAR index resulting from pairwise comparison of Regional patterns. Details are 

provided in Section 5.6.4.2.3. 

As can be seen in the similarity matrix, in all cases the NEAR value is significantly less than 1, 
indicating that the volatiles profile/pattern between the regions is significantly dissimilar. Therefore, 
it may be used to classify samples according to geographical origin. In addition, there were 5 
variables out of the 121 selected, that were present in all characteristic patterns having a code higher 
than 1. It was therefore decided to remove them from the classification models as their contribution 
to the discrimination among Regions would not be relevant.  

5.6.4.2.4. Classification according to harvest/production Region unique signature  

The most conventional way to develop a classification model is based on building a model with 
two input-classes, the target class and the non-target class, but a valid alternative is performing the 
same classification method by training with a single input-class, i.e., the target class.40 Working with 
one input-class classification has significant advantages in food authentication, the model is trained 
using the data from representative samples from genuine foods (target class) and no other samples 
are required. In fact, some authors have stated that it is advisable to develop the models using one-
class classifier in the case of food authentication. Indeed, if well-known discriminant method such 
as partial lest squares-discriminant analysis (PLS-DA) is used and a new sample does not belong to 
any of such classes, the discriminant analysis is unable to properly define the belonging of the 
sample to one particular class. Conversely, one-class classifier such as SIMCA, establishes if the 
acceptance is around the target class delimiting the target samples from other classes.41  

SIMCA involves building a classification method in which each class of the training set is 
modeled independently and the assignment of an unknown sample as belonging to a specific class 
is based on the nearest distance to the corresponding regions established in the space of principal 
components. Six one input-class SIMCA models were built, one for each Italian Region. Each 
individual model was developed using the 116 untargeted/targeted features which were selected in 
at least one of the Regional characteristic patterns. The aim was to generate overall models suitable 
for application in routine analysis. Otherwise, should it be required to classify a sample of unknown 
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origin, which characteristic variables would be selected or chosen? In this way, any classification 
model developed can be applied and it will be possible to assign a class to the sample. Table 5.6.3 
shows the numbers of PCs chosen for each model and the samples used in the training and 
validation step.  

 

Table 5.6.4. Characteristics of the SIMCA models. 

Origin PCs % variance Training set Validation set* 

Garda 7 99.97 10 samples (Garda) 73 samples 

Sicilia 8 93.77 13 samples (Sicilia) 73 samples 

Toscana 12 94.11 20 samples (Toscana) 73 samples 

Lazio 7 99.82 11 samples (Lazio) 73 samples 

Puglia 8 94.49 12 samples (Puglia) 73 samples 

Umbria 5 97.23 7 samples (Umbria) 73 samples 

* For the validation were employed all the samples analyzed 

 

Class boundaries were established for each pre-defined target class model on the basis of the 
values of the Hotelling's T2 and residual Q statistics. The classification criterion of the samples 
regarding each Region were defined using a combination of the reduced T2 and Q statistic values. 
Thus, for a sample to be considered as belonging to certain target class, both values must be less 
than 1.0.  

Because the number of available samples from each Italian Region was limited, each single-
class model training was carried out employing all the samples belonging to the concerned target 
class. Then, all 73 samples, both those belonging to the target class and those not, were used for 
validation purpose. All the samples were correctly classified in five of the six single-class models 
and the quality parameters such as sensitivity, specificity, precision, efficiency (accuracy) and area 
under the receiver operating characteristic curve (AUC) were equal to 1.00 40. The only model that 
misclassified one of the samples was the Garda model, in which a Garda sample was considered as 
non-Garda. Thus, in this model the sensitivity, specificity, precision, efficiency (accuracy) and AUC 
were equal to 0.90, 1.00, 1.00, 0.99 and 0.95 respectively. The classification plots of each model are 
shown in the supplementary material (Supplementary Figures 5.6.3-8).  

5.6.4.3 Regional signatures and GC×GC identitation potential  

Based on the information shown in Table 5.6.2, it is possible to derive some conclusions about 
peculiar chemical traits specific to certain Regions. For example, compounds #28 (n-hexane), #109 
(1-penten-3-ol) and #386, #475 and #510 (all unidentified) are characteristic of the Garda region. 
In the same way, compound #141 ((E,E)-2,4-hexadienal) is specific of Sicilia samples, compound 
#95 (2-ethyl-2-hexenal) of Lazio and compound #27 (n-octane) of Umbria. Further assignments 
could be identified as characteristic of more than one Region, for example, compound #245 
(unidentified) is associated with Garda and Umbria. In the same way, following this assignment 
methodology, and considering the presence/absence of a few volatile compounds previously 
selected, a classification tree rule could be deduced in order to classify undoubtedly any sample of 
EVOO from any of the six considered Regions. However, it might be beneficial to have a larger set 
of representative olive oil samples from each of the Regions for such a classification tree to be 
sufficiently reliable.  
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The classification strategy proposed in this study is based on using the whole UT fingerprint of 
volatiles that is established by considering simultaneously all the compounds that have been selected 
as characteristic of at least one of the Regions concerned. In this way, the one-class SIMCA 
classification models are applied sequentially to any EVOO sample, regardless of geographic origin, 
so that the oil is assigned to one of the Regions. This overall classification approach based on the 
use of UT fingerprinting, i.e., identitation, overcomes the main drawback for the routine application 
of single-step multivariate models. 

Moreover, the strategy takes full advantage by the high-resolution power of GC×GC that 
effectively maps all detectable volatile components including: (a) those related to major functional 
variables (e.g., olive cultivar,12 olives ripening stage,15 harvest year and processing technology11), here 
playing a confounding role for Regional classification; and (b) several potent odorants delineating 
EVOO sensory features. The latter might be masked by co-elution phenomena occurring in 1D-
GC17 while resulting in less effective identitation and poorly informative profiling processes. 

 

5.6.5 Supplementary material 

Supplementary material at the Google Drive’s link: 
https://drive.google.com/drive/folders/1dw3d3BviJIrAmzTWl_qhkf1GFTmHyIBF?usp=sharin
g 

 

 
  

https://drive.google.com/drive/folders/1dw3d3BviJIrAmzTWl_qhkf1GFTmHyIBF?usp=sharing
https://drive.google.com/drive/folders/1dw3d3BviJIrAmzTWl_qhkf1GFTmHyIBF?usp=sharing
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5.7.1 Abstract  
Comprehensive two-dimensional gas chromatography with parallel mass spectrometry and 

flame ionization detection (GC×GC-MS/FID) enables effective chromatographic fingerprinting of 
complex samples by comprehensively mapping untargeted and targeted components. Moreover, 
the complementary characteristics of MS and FID open the possibility of performing multi-target 
quantitative profiling with great accuracy. If this synergy is applied to the complex volatile fraction 
of food, sample preparation is crucial and requires appropriate methodologies capable of providing 
true quantitative results.  

In this study, untargeted/targeted (UT) fingerprinting of extra-virgin olive oil volatile fractions 
is combined with accurate quantitative profiling by multiple headspace solid phase microextraction 
(MHS-SPME). External calibration on fifteen pre-selected analytes and FID predicted relative 
response factors (RRFs) enable the accurate quantification of forty-two analytes in total, including 
key-aroma compounds, potent odorants, and olive oil geographical markers.  

Results confirm good performances of comprehensive UT fingerprinting in developing 
classification models for geographical origin discrimination, while quantification by MHS-SPME 
provides accurate results and guarantees data referability and results transferability over years. 
Moreover, by this approach the extent of internal standardization procedure inaccuracy, largely 
adopted in food volatiles profiling, is measured. Internal standardization refers of an average relative 
error of 208 % for the fifteen calibrated compounds, with an overestimation of + 538% for (E)-2-
hexenal, the most abundant yet informative volatile of olive oil, and a -89% and -80% for (E)-2-
octenal and (E)-2-nonenal respectively, analytes with a lower HS distribution constant.  

Compared to existing methods based on 1D-GC, the current procedure offers better separation 
power and chromatographic resolution that greatly improve method specificity and selectivity and 
results in lower LODs and LOQs, high calibration performances (i.e., R2 and residual distribution), 
and wider linear range of responses.  

As an artificial intelligence smelling machine, the MHS-SPME-GC×GC-MS/FID method is here 
adopted to delineate extra-virgin olive oil aroma blueprints; an objective tool with great flexibility 
and reliability that can improve the quality and information power of each analytical run. 
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Extra-virgin olive oil volatiles; comprehensive two-dimensional gas chromatography; parallel 
detection MS/FID; predicted relative response factors; reverse-inject differential-flow modulation; 
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5.7.2 Introduction 
Comprehensive two-dimensional gas chromatography (GC×GC) coupled to mass 

spectrometry (MS), by combining physico-chemical discrimination of sample constituents with 
spectrometric diagnostic signatures, provides qualitative and quantitative information about single 
analytes and/or groups of analytes and is the basis for in-depth comprehensive investigations with 
fingerprinting and profiling.1–3 The improved separation power of GC×GC, compared to one-
dimensional (1D) GC, accompanied by logical retention patterns for chemically related compounds 
and specialized data processing techniques, make GC×GC-MS one of the most suitable platforms 
for accurate and informative investigations on complex samples. Moreover, GC×GC-MS 
performance, information dimensions, and flexibility are crucial to achieve reliable and consistent 
results when the analytical process is used to answer many different questions about functional 
variables related to a sample’s chemical composition.1,4 

When the fraction under study poses challenges because of the large dynamic range of 
concentrations covered and consists of analytes with a wide polarity range within a relatively narrow 
volatility interval, chromatographic resolution and efficiency are fundamental to achieve 
appropriate method performances. The role of sample preparation, as the zeroth dimension of the 
system and as a key step of the analytical method, is crucial and its design/set-up requires careful 
consideration of the analysis’ final goal(s). If a targeted profiling of selected components is the goal, 
sample preparation efforts can be directed to known analytes and performance parameters 
optimized to achieve high specificity and selectivity, appropriate repeatability, and accuracy for 
those selected targets. However, if the aim of the investigation is untargeted fingerprinting of all 
detectable constituents, then sample preparation must be comprehensive and minimally 
analytes/class-specific, in order to limit discriminations and improve the breadth of the analysis.1 
Moreover, sample preparation should be able to exploit a large dynamic range of analytes’ 
concentrations while providing solid foundations for quantitative cross-comparisons.  

In the context of complex volatile fractions of food origin, GC×GC-MS has been 
demonstrated to be very effective for both untargeted and targeted investigations (e.g., combined 
untargeted/targeted fingerprinting approaches)5,6 by combining high-throughput fingerprinting 
with quantitative profiling7 in the same analysis. In these applications, the role of headspace (HS) 
solid phase microextraction (SPME) as the sampling approach, is central, and its main limits, related 
to the actual volume/amount of extracting/accumulating phase, are fully compensated by the 
analytical performances of GC×GC.  

In this study, we make a step forward in the exploitation of the HS-SPME-GC×GC-MS 
potentials by designing a procedure capable of performing comprehensive chromatographic 
fingerprinting of the complex volatile fraction of high-quality extra-virgin olive oil (EVOO) while 
providing accurate quantitative data on a large list of targeted analytes (i.e., targeted quantitative 
profiling)1 with a high informative potential related to samples’ sensory quality and qualification. 
Moreover, the procedure is highly automated, limiting manual operations to a few simple steps, and 
implemented on a robust, reliable, and commercially available analytical platform in order to be 
considered suitable for high-throughput screenings and quality control assessments. The 
differential-flow modulation technology was chosen as a core element of the GC×GC platform. Its 
stable performance and relative ease of use,8–13 accompanied by the possibility of rationally 
translating validated methods from thermal modulated systems, 8,14,15 are key-aspects to design a 
method complying with minimal performance requirements in EU quality standards for analytical 
measurements.16,17 

Mediterranean countries offer ideal conditions for olive tree (Olea europaea L.) cultivation18 and 
have preserved and valorized olive oil (OO) manufacturing traditions including harvest 
methodologies and milling technologies.19,20 High-quality OO, complying with EU Regulations and 
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International Standards for production, chemical composition, and sensory quality, are labelled as 
extra-virgin (EV)OOs (EEC No 2568/91 and its amendments; IOC/T.20/Doc. No 15/Rev. 10 
2018). Within them, due to peculiar characteristics of olive cultivar(s), pedo-climatic conditions of 
the harvest region, and traditions related to milling technology, the EU recognizes a further 
additional quality through quality schemes and labels. The Protected Designation of Origin (PDO) 
products, for example, are those which “have the strongest links to the place in which they are made” and 
“every part of the production, processing and preparation process must take place in the specific region”.21 

In this context, the possibility to accurately map high-quality EVOO volatiles (i.e., volatiles 
fingerprinting) with additional information about the concentrations/amounts of informative 
components, represents a step forward in the rationalization of the quality concept. To date, EVOO 
quality is defined by its compliance with physicochemical indices (e.g., free acidity, peroxide index, 
UV absorbance) and by absence of sensory defects and presence of a perceivable fruity attribute (i.e., 
median M>0). Nevertheless, these standards do not provide elements for valorization and 
discrimination of products with superior sensory quality or obtained within PDO and Protected 
Geographical Indication (PGI) recognized protocols. A methodology, capable of generating a 
sample’s fingerprint with identitation potentials22 accompanied by the accurate quantification of 
selected chemical markers, might fill this gap while improving the knowledge on EVOO quality 
signature, its aroma blueprint,23,24 and its unicity across production regions and harvest years.  

Within EU quality standards for analytical methodologies, specificity and selectivity are 
matched by a suitable combination of separation phase chemistries in the two chromatographic 
dimensions; sensitivity is achieved by careful tuning the columns  combination dimensions (first 
dimension – 1D and second dimension – 2D lengths and diameters) and differential flows; identity 
confirmation is achieved by MS spectral signature matching constrained by two retention time 
points (1tR and 2tR); and quantitative accuracy is achieved by external calibration and data cross-
validation with two parallel detectors (i.e., MS and flame ionization detector FID). The latter, i.e. 
parallel detection by MS/FID, extends the method’s linear range over two-to-three orders of 
magnitude of actual analytes’ concentrations,25 and opens to the possibility of adopting reliable 
response factors for quantitative estimations.10,26  

To achieve accurate quantitative results, the multiple headspace extraction (MHE) approach is 
combined with the enrichment capacity of SPME with a multi-component fiber (i.e., 
divinylbenzene/carboxen/polydimethyl siloxane) extensively adopted in EVOO volatiles’ 
profiling.27,28 The challenging aspect of the MHS-SPME procedure consists in the need of avoiding 
headspace saturation, the basis of quantification inaccuracy of many methods, while enabling multi-
analyte quantification even without external calibration.  

This study adds a further, advanced, and extremely flexible tool for quality control and 
valorization of high-quality EVOOs, acting as a bridge between 1D-GC based methods for 
fingerprinting 29 and/or quantitative profiling of selected key-markers27,30 to advanced high-
information methods based on GC×GC technology5,24,31,32. Methods performances are tested over 
a set of fifty EVOO samples from Italian top-quality production,33,34 obtained from different olives 
cultivars and from three harvest areas. Fingerprinting potentials are explored briefly and then 
compared to the targeted quantitative profiling information power.  

Quantification accuracy is demonstrated over a set of fifteen informative chemicals subjected 
to external quantification by MHS-SPME and toward an extended set including forty-two volatiles 
for which predicted FID relative response factors (RRFs) can be applied. Results are critically 
compared to existing methods based on 1D-GC-FID or 1D-GC-MS, and the advantages derived 
from improved information potential are discussed in the perspective of an objective qualification 
of high-quality products, including their sensory features, by reliable and standardized instrumental 
methods. 
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5.7.3 Materials and methods 

5.7.3.1 Reference standards and solvents  
Pure standards of n-alkanes (from n-C9 to n-C25) used for Linear Retention Indices (IT) 

calibration, of α/β-thujone and 2-methyloctynoate used as Internal Standards (ISTDs), and solvents 
(cyclohexane and dibutyl phthalate – 99% of purity) were from Merck (Milan, Italy). 

The following key-aroma compounds and potent odorants, selected according to reference 
literature35–41 and adopted for external calibration, were from Sigma Aldrich (Milan, Italy): (E)-2-
pentenal (CAS 1576-87-0), (E)-2-penten-1-ol (CAS 1576-96-1), (Z)-2-penten-1-ol (CAS 1576-95-
0), 1-penten-3-ol (CAS 616-25-1), 1-pentanol (CAS 71-41-0), 2-pentanol (CAS 6032-29-7), ethyl 
acetate (CAS 141-78-6), (E,E)-2,4-hexadienal (CAS 142-83-6), (E)-2-hexenal (CAS 6728-26-3), (Z)-
3-hexen-1-ol (CAS 928-96-1), hexanal (CAS 66-25-1), 1-hexanol (CAS 111-27-3), heptanal (CAS 
111-70-6), (E)-2-octenal (CAS 2548-87-0), and (E)-2-nonenal (CAS 18829-56-6). 

 

5.7.3.2 Reference solutions and calibration mixtures 
Standard stock solutions of reference analytes were prepared at a concentration of 10 g/L in 

cyclohexane and stored at -18°C for one-week. The Reference Working Solution (RWS) was 
prepared by mixing suitable amounts of standard stock solutions to reach the concentration of 
0.250 g/L using dibutyl phthalate as solvent. Calibration Solutions (CS) were prepared by diluting 
suitable amounts of RWS in dibutyl phthalate to reach the final concentrations: 30, 25, 20, 15, 10, 
5, 2, 1, 0.5, 0.2 mg/L. Calibration curves were built by analyzing 5 µL of each CSs by MHS-SPME 
while matching absolute amounts of 150, 125, 100, 100, 75, 50, 25, 10, 5, 2.5, 1 ng. ISTDs working 
solution for standard-in fiber pre-loading42 was prepared at 0.100 g/L in dibutyl phthalate and 
stored at -18°C in sealed vials. A schematic diagram of the operative procedure is reported in the 
Supplementary material. 

 

5.7.3.3 Extra virgin olive oil samples 
EVOO samples were collected within the VIOLIN project (Valorization of Italian OLive 

products through INnovative analytical tools).34 They were obtained from olives of different 
cultivars harvested in 2017 over the Italian territory. Details on the sample-set under study are 
provided in Table 5.7.1 together with harvest regions (i.e., Sicilia, Toscana, and Garda lake) shown in 
Supplementary Material - Supplementary Figure 5.7.1.  

Table 5.7.1. List of analyzed samples with harvest region/origin, identification codes, olives cultivar, and EU quality labelling and/or 
additional certifications (i.e., organic cultivation and production). 

Origin Sample ID Cultivar Additional qualifications 

G
a
rd

a
 

G1 Leccino PDO 

G2 Casaliva, Leccino PDO 

G3 Casaliva, Leccino PDO 

G4 Casaliva, Leccino PDO 

G5 Casaliva, Leccino, Moraiolo, Pendolino PDO 

G6 Casaliva PDO 

G7 Casaliva, Frantoio, Leccino  

G8 Coratina  

G9 Grignano  

G10 Grignano, Favarol, Pendolino, Trepp PDO 
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G11 Blend  

G12 Casaliva Organic 

G13 Casaliva, Frantoio, Leccino PDO 

G14 Casaliva, Frantoio, Leccino  

G15 Casaliva  

S
ic

il
ia

 

S1 Nocellara del Belice  

S2 Nocellara del Belice Organic 

S3 Cerasuola e Nocellara del Belice Organic 

S4 Blend PDO 

S5 Nocellara del Belice  

S6 Tonda Iblea  

S7 Cerasuola, Nocellara del Belice, Biancolilla PGI 

S8 Nocellara del Belice PDO 

S9 Biancolilla PDO 

S10 Nocellara del Belice PDO 

S11 Tonda Iblea PDO 

S12 Nocellara Messinese  

S13 Nocellara Etnea  

S14 Nocellara Etnea  

S15 Nocellara del Belice  

S16 Nocellara del Belice  

S17 Biancolilla  

S18 Cerasuola  

T
o

sc
a
n

a
 

T1 Frantoio, Moraiolo, Maurino, Picholine  

T2 Blend PGI 

T3 Blend Organic 

T4 Blend PDO 

T5 Blend PGI 

T6 Blend PGI 

T7 Blend Organic, PGI 

T8 Moraiolo, Frantoio, Leccino, Americano Organic 

T9 Frantoio, Moraiolo, Leccino PGI 

T10 Moraiolo PGI 

T11 Blend  

T12 Olivastra Saggianese PDO 

T13 Olivastra Saggianese PDO 

T14 Blend PDO 

T15 Correggiolo, Leccino, Frantoio PDO 

T16 Frantoio, Leccino, Moraiolo  

T17 Frantoio, Leccino, Moraiolo, Pendolino  
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5.7.3.4 Multiple headspace solid phase microextraction: devices and conditions 
Volatiles from EVOO samples were extracted by HS-SPME with a 

divinylbenzene/carboxen/polydimethyl siloxane (DVB/CAR/PDMS) fiber (df 50/30 μm; 2 cm 
length) from Supelco (Bellefonte, PA, USA) chosen based on literature on sampling effectiveness 
for EVOO’s informative compounds.24,32,37,43 The SPME fiber was conditioned before use as 
recommended by the manufacturer. 

The ISTDs for response normalization and quality control were preloaded onto the SPME 
device42,44 by sampling 5.0 μL of α/β-thujone and methyl 2-octynoate ISs solution (0.100 g/L) 
placed in a 20 mL headspace vial. ISTDs pre-loading was performed by exposing the SPME device 
in the HS at a temperature of 40 °C for 5 min.  

Sampling was carried out on 0.100 ± 0.005 g of oil, precisely weighed, in 20 mL headspace 
vials, kept at 40°C for 60 minutes under constant agitation. The very low amount of sample was 
chosen to match HS linearity conditions for most of the characteristic analytes of the EVOO 
volatilome.37,45 After extraction, the SPME device was automatically transferred to the split/splitless 
injection port of the GC×GC system, kept at 250 °C, and thermal desorption was for 5 min. 
Samples were analyzed in three replicates randomly distributed over a two-week time frame.  

MHS-SPME from samples and calibration solutions was conducted by applying the above 
indicated conditions, and the number of consecutive extraction steps was set to five, achieving an 
almost exhaustive extraction for the analytes under study.46 

 

5.7.3.5 GC×GC-MS/FID with reverse-inject differential flow modulation: instrument set-
up and conditions 

Automated MHS-SPME, as described in Section 5.7.3.4, was performed by a multipurpose 
sampler, model MPS-2 (Gerstel, Mülheim a/d Ruhr, Germany), installed on a GC×GC system 
equipped with a reverse-inject differential-flow modulator based on capillary flow technology™ 
(Agilent Technologies, Little Falls, DE, USA). The Agilent 7890B GC unit was coupled to an 
Agilent 5977B HES (high efficiency source) fast quadrupole MS detector (Agilent Technologies, 
Little Falls, DE, USA) operating in electron ionization mode at 70 eV. Ion source and transfer-line 
temperatures were set at 280 °C, and the quadrupole temperature was set at 240°C. The scan range 
was set between 45 and 240 m/z, achieving an actual data acquisition frequency of 30 Hz. Parallel 
detection was by a fast FID with base temperature 280 °C; H2 flow 40 mL/min, air flow 350 
mL/min, and sampling frequency 200 Hz.  

The column set was configured as: 1D HeavyWax™ column (100% polyethylene glycol - PEG; 
20 m × 0.18 mm dc × 0.18 μm df) coupled with 2D DB17 column (50% phenyl-methylpolysiloxane; 
1.8 m × 0.18 mm dc × 0.18 μm df), both from Agilent Technologies (Wilmington, DE, USA). The  

microfluidic splitter (G3181B, Agilent, Little Falls, DE, USA). The resulting split ratio was 
70:30 FID/MS. The bleeding capillary of deactivated fused silica (6.06 m × 0.1 mm dc) installed on 
the modulator plate was dimensioned according to a previously validated flow calculator.15 

The GC split/splitless injector port was set at 250 °C and operated in pulsed-split mode (250 
kPa overpressure applied to the injection port until 2 min) with a split ratio 1:20. A special design 
liner for SPME thermal-desorption (Merck) was used to improve analytes transfer into the 1D 
column and limit band broadening in space. The carrier gas was helium at a nominal flow of 0.4 
mL/min along the 1D column and 10 mL/min along the 2D column. The oven temperature 
program was set as: from 40 °C (2.29 min) to 240°C (11’) at 3.06 °C/min and determined by method 
translation of a reference method previously validated in the authors’ laboratory.10,32 The 
modulation period (PM) was set at 3s and pulse time at 150 ms. 
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The n-alkanes liquid sample solution for IT determination was analyzed under the following 
conditions: split/splitless injector in split mode, split ratio 1:50, injector temperature 250 °C, and 
injection volume 1 μL. 

 

5.7.3.6 External standard calibration by MHS-SPME-GC×GC-MS/FID 
Calibration curves were built to cover analyte absolute amounts in the analyzed samples within 

the range 1-150 ng. External standard calibration was conducted on both MS and FID traces. For 
the MS detection channel, extracted target ions (Ti) were selected for each analyte; m/z values are 
reported in Table 5.7.2. Up to three additional qualifier ions (Q1, Q2, Q3) were also monitored 
for quality evaluation. For the FID channel, external calibration was based on 2D peak volumes; 
analytes affected by coelution issues were only quantified by MS. Additional details on the 
calibration/quantification procedure are discussed in Section 5.7.3.2.  

Table 5.7.2 lists target analytes subjected to external calibration together with their odor 
quality, odor threshold (OT), experimental IT, Ti and Qs m/z, regression functions parameters 
including calibration range, determination coefficients (R2), and precision. 
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Table 5.7.2. List of the fifteen targeted odorants with their odor quality, odor threshold in oil as reported in literature (OT ng/g), experimental IT, target ion used for quantification (Ti), additional 
qualifier ions (Q#n), calibration range covered, calibration function for MS and FID channels with the corresponding determination coefficient (R2), intermediate precision data expressed as % 

relative standard deviation (RSD %) obtained by replicated quantitative measurements on a representative sample, limit of detection (LOD) and limit of quantification (LOQ). 

      MHS-SPME calibration MS MHS-SPME calibration FID 

Targeted  

analyte 

Odor quality OT 

(ng/g) 

Exp. 
IT 

Ti 

(m/z) 

Q#n 

(m/z) 

Range 

(ng) 

Regression equation Precision Regression  

equation 

Precision LOD 

(ng/g) 

LOQ 

(ng/g) 

m q R2 RSD% m q R2 RSD% 

  

Ethyl acetate Fruity, sweet, 
winey 

940§ 865 70 88;61 1-5 0.26 0.81 0.996 9.2 0.10 0.03 1 8.9 0.47 1.57 

5-100 0.40 0.11 0.995 0.81 2.38 0.996 

Hexanal Green-apple, 
grass 

300$ 1072 72 82;56 1-10 0.85 1.00 0.995 9.5 1.34 1.44 0.998 9.8 0.33 1.1 

10-150 0.64 4.52 0.993 0.74 7.23 0.995 

2-Pentanol Musty, 
fermented 

380£ 1095 73 87;55;45 1-100 1.61 0.79 0.997 7 0.98 0.68 0.996 9.7 0.16 0.53 

(E)-2-Pentenal Pungent, 
apple-like 

300§ 1121 84 69;55 1-5 1.07 0.11 0.995 3.7 0.34 0.16 0.996 2.9 0.47 1.57 

5-125 1.17 0.74 0.995 1.10 0.22 0.995 

1-Penten-3-ol Pungent, 
butter 

400§ 1151 57 86;71 1-100 2.08 0.41 0.996 9.6 1.19 0.49 0.998 7.3 0.34 1.13 

Heptanal Citrus-like, 
fatty 

500$ 1179 96 81;70;55 1-125 0.99 0.95 0.999 1.9 1.18 0.86 0.997 4.9 0.22 0.73 

(E)-2-Hexenal Bitter almond, 
green, fruity 

320$ 1213 83 98;69;55 1-5 0.82 0.00 0.995 6.2 0.12 0.01 1 4.3 0.32 1.07 

5-125 0.93 0.16 0.995 1.38 0.20 0.995 

1-Pentanol Sweet, 
pungent 

470§ 1240 70 87;55 1-5 1.35 0.03 0.995 2.4 0.21 0.02 0.999 4.2 0.39 1.3 

5-125 1.16 0.20 0.997 1.25 0.29 0.996 

(Z)-2-Penten-1-ol Green, almond 250£ 1306 68 86;57 1-125 1.60 0.09 0.997 2.6 1.27 0.32 0.996 6.3 0.29 0.97 

(E)-2-Penten-1-ol Mushroom, 
earthy 

250£ 1314 68 86;57 1-125 1.36 0.95 0.998 1.7 1.02 0.46 0.995 2.1 0.47 1.57 

1-Hexanol Fruity, banana, 
soft 

400§ 1346 84 102;69;56 1-5 1.49 0.15 0.996 7.8 0.24 0.01 1 3.8 0.26 0.87 

5-125 2.05 2.09 0.999 1.51 0.15 0.997 
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(Z)-(3)-Hexen-
1ol 

Banana, fresh, 
grass 

1100£ 1379 67 100;82;55 1-125 1.62 0.36 0.995 2.7 1.51 1.30 0.995 3.6 0.32 1.07 

(E,E)-
2,4Hexadienal 

Green 270£ 1400 81 96;67;53 1-125 1.68 3.83 0.995 7.4 2.26 1.40 0.996 5.1 0.29 0.97 

(E)-2-Octenal Fatty, nutty 120$ 1428 83 97;70;55 1-125 1.00 2.03 0.995 9.1 1.26 1.94 0.996 7.8 0.32 1.07 

(E)-2-Nonenal Fatty, green, 
soapy 

140$ 1534 96 111;83;70 1-100 0.27 0.56 0.991 3.5 1.14 2.01 0.998 4 0.07 0.23 
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5.7.3.7 Data acquisition and 2D data processing  
Data were acquired by Enhanced MassHunter (Agilent Technologies, Little Falls, DE, USA) 

and processed by GC Image® suite, Release2.9 (GC Image, LLC, Lincoln NE, USA). Statistical 
analysis and chemometrics were by XLSTAT statistical and data analysis solution software 
(Addinsoft 2020, New York, USA). 

 

5.7.4 Results and Discussion  
5.7.4.1 The information potential of olive oil volatiles patterns 

EVOO volatile fractions are complex mixtures of compounds belonging to different chemical 
classes (e.g., aldehydes, ketones, alcohols, esters, lactones, hydrocarbons, terpenes), whose relative 
distributions reflect concurrent functional variables strongly correlated to the above mentioned 
quality concepts: cultivar, geographical origin, quality (i.e., EVOO, virgin olive oil – VOO, and 
lampante olive oil – LOO), olive ripeness, technological processes, and storage conditions.24 Within 
this complex fraction, potent odorants are those components that, reaching the olfactory 
epithelium, dissolve into the mucus and interact with olfactory receptors, triggering olfaction and 
modulating the final aroma perception.36 Potent odorants in their natural concentration in food 
define the odor code or aroma blueprint23 and are at the basis of a rational sensory coding process, 
recently defined as “artificial intelligence smelling”, of great interest for food industry and market.47  

In this study, chromatographic fingerprinting was based on the combined untargeted/targeted 
(UT) fingerprinting process5,32,45 while the accurate quantification was primarily directed to a 
selection of impacting odorants defining high-quality EVOO aroma. Contributing to fresh-green and 
fruity notes, positive attributes20 in EVOOs, are C5 and C6 oxygenated compounds (i.e., alcohols 
and carbonyls). In particular, (E)-2-pentenal, (Z)-2-penten-1-ol, 1-penten-3-ol, 1-pentanol, (E,E)-
2,4-hexadienal, (E)-2-hexenal, (Z)-3-hexen-1-ol, hexanal, and 1-hexanol were targeted and 
subjected to quantitative profiling by external standard calibration. They belong to the so-called 
lipoxygenase (LOX) signature36–40 and are formed by enzymatic oxidation of linolenic and linoleic 
acids through the LOX pathway.40  

Compounds responsible for sensorial defects also were included, although they were expected 
to be at very low concentrations, if not below the method’s limit of detection (LOD), due to the 
quality level and freshness of selected samples. This group included some C7-C10 linear saturated 
and unsaturated aldehydes deriving from fatty acids hydroperoxides cleavage: heptanal, (E)-2-
octenal, and (E)-2-nonenal. They provide information on the autoxidation process and shelf-life 
evolution, and their increasing concentration is correlated to the perception of rancid and fatty 
notes.35,37,38 

The targeted compounds list was completed by analytes correlated to well-known sensory 
defects.36,38,39 (E)-2-penten-1-ol, with mushroom-like and earthy sensations; 2-pentanol, related to musty 
and fermented perception; and ethyl acetate, responsible for the winey note.36,38,39 Table 5.7.2 lists 
targeted analytes together with their odor quality, odor threshold (OT) in oil as reported in literature, 
experimentally determined IT, and additional information related to the quantification procedure. 
Details are discussed in the next sections.  

Figure 5.7.1 shows pseudocolor images of volatile patterns from an EVOO sample analyzed 
by a polar × semi-polar column combination (i.e., PEG × OV1701) and resulting from the parallel 
detection by MS (Figure 5.7.1A) and FID (Figure 5.7.1B). Enlarged areas of the chromatographic 
plane highlight the complexity of the patterns, the chromatographic resolution of analyte clusters 
obtained by combining the two separation dimensions, and the wide range of response variations 
(perceivable by colorization) spanned by detected volatiles in the two detection channels. The list 
of targeted analytes, including those that were not subjected to quantitative assessment, is provided 
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in Supplementary Material - Supplementary Table 5.7.1, together with their retention times in the 
two chromatographic dimensions (1tR - min, 2tR - sec), experimental IT, odor descriptor, and OT 
(ng/g) Supplementary Material - Supplementary Table 5.7.2 lists untargeted and targeted peak 
features, identified by unique labelling on both detection channels (i.e., #ID and chemical names), 
together with retention times in the two chromatographic dimensions (1tR - min, 2tR - sec), 
experimental IT, and raw MS spectra in tabular form.  

 
Figure 5.7.1. Pseudocolor images of the volatiles pattern of S#1 EVOO sample from Sicilia analyzed by a polar × semi-polar 

column combination (i.e., PEG × OV1701) and resulting from the parallel detection by MS (5.7.1A) and FID (5.7.1B). Enlarged 
areas of the chromatographic plane (red rectangles in quadrant I - 5.7.1C, II - 5.7.1D, and III – 5.7.1E) highlights the complexity of 

the pattern and the chromatographic resolution of analytes clusters. 
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5.7.4.2 Accuracy of multiple headspace extraction vs. internal standardization for selected 
potent odorants  

Quantitative analysis is one of the most challenging aspects related with HS sampling, especially 
when carried out through high concentration capacity techniques based on accumulating 
polymers/materials, as for SPME. The main issues related to erroneous results are standardization 
and/or normalization of accumulating polymer(s) performance(s) and accuracy of the selected 
quantification approach.48  

Among the most common approaches, those based on internal standard(s) (ISs) require careful 
consideration about the quality of information that they provide. ISs methods are fast and simple 
and take into account and compensates for detector response variations and sampling variability 
when applied to liquid samples/extracts, but cannot be considered accurate 17 if analytes subjected 
to quantification have different HS partition constants (KHS) and accumulating polymer/material 
distribution constants (KD) under the applied sampling conditions. Moreover, when MS is adopted, 
the differential fragmentation rate and/or relative response of selected Ti might add a further 
quantification error related to the specific response factor of the analytes vs. that of ISs.49 

To overcome inaccuracy issues related to the lack of an appropriate modelling of the actual 
phenomena occurring in the HS sampling, external calibration is compulsory although in the case 
of HS methods, the matrix effect would require its implementation in the form of standard addition 
(SA) procedure.50 Moreover, SA provides accurate results if HS sampling operates in equilibrium 
conditions and/or if analytes HS saturation does not occur.37,45,50,51  

To achieve accurate quantification of multiple volatile targets in a single run, by operating in a 
wide dynamic range of analytes concentration, adopting non-equilibrium sampling with high 
efficient yet standard multi-component SPME devices, MHE method is the elective route.49,52 MHE 
was introduced by Suzuki et al.53 and McAuliffe54 for static HS sampling to measure the area 
representative of the total amount of the target analyte in the investigated matrix. It was further 
developed and modeled by Kolb and Ettre52 and then successfully extended to HS-SPME 
sampling.48,50,55–58 Principles of operation and fundamental equations are well detailed in reference 
literature48,50,55–58 and briefly summarized in the Supplementary material.  

Table 5.7.2 reports, for the fifteen target odorants, information about calibration ranges 
(expressed in ng, as absolute amount of analyte in the HS), calibration functions for MS and FID 
channels accompanied by determination coefficients (R2), and intermediate precision expressed as 
the characteristic % relative standard deviation (RSD%) obtained by replicated quantitative 
measurements of a representative sample over two-weeks. (E)-2-pentenal, 1-pentanol, ethyl acetate, 
(E)-2-hexenal, hexanal, and 1-hexanol required a two-step calibration to match for linearity on MS 
channel. Limit of detection (LOD) and limit of quantitation (LOD) also are reported for the FID 
channel. They were estimated according to EU protocol for food safety analytical methods 
performance parameters59 by extrapolation from calibration curves.  

Due to the lack of certified reference materials (CRM), quantification accuracy was defined 
through recovery % and precision17. Recovery was determined by multiple extraction (until 
exhaustive extraction) of CSs (i.e., blank matrix spiked with known amounts of target analytes) and 
of selected oil samples; quantification error (i.e., inaccuracy or bias) was then expressed as % relative 
error (%RE). Moreover, recovery data were validated by internal cross-matching between MS and 
FID values. Results on accuracy are visualized with histograms in Figure 5.7.2A with dark blue and 
orange bars accompanied by imprecision intervals. Amounts correspond to the average values of 
replicated analyses (n=3) of the 25 ng CS experiment. Expected values (i.e., 25 ng) are marked with 
a green line while boundary, the light green bar, highlights a ± 20% error tolerance.17 
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Of relevance are results on quantification error occurring by applying the ISs approach (see 
Supplementary Material - Supplementary Equation 5.7.1) with a relative response factor RFF=1 
(light blue and orange bars in Figure 5.7.2A). 

 

 
Figure 5.7.2: Histograms illustrating accuracy of MHS-SPME vs. HS-SPME with IS normalization on (5.7.2A) the 25 ng CS (blue 
and orange bars). Expected values (i.e., 25 ng) are marked with a green line while boundary highlights a ± 20% error tolerance. In 

5.7.2B, accuracy is shown for a EVOO sample. Results correspond to the average values of replicated analyses (n=3). 

 

The MHS-SPME method results can be considered accurate according to EU quality standards 
for analytical methods,17 this is true for both MS and FID channels, respectively dark blue and 
orange bars in Figure 5.7.2A.  Almost all analytes were quantified with a %RE lower than 20. For 
the MS channel, the error is 11.7% with a maximum of 25.8% for (E)-2-nonenal, whereas for the 
FID, it achieves 9.5% with a maximum of 21.1% resulting from the quantification of (E)-2-
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pentenal. %RE increases up to 80 when the IS method is applied. In particular, for the MS detection 
channel, the %RE is 35.6, with eleven of fifteen compounds quantified having an error greater than 
20% and a maximum value of 79.3% for 1-penten-3-ol. Accuracy was slightly better for the FID 
channel with an average error of 21.1%, with eight of fifteen compounds quantified with %RE 
greater than 20 and a maximum of 47.7 for quantification of (E)-2-nonenal.  

Of interest are quantification results estimated on the test sample (i.e., EVOO S1 from Sicilia) 
and shown in histogram of Figure 5.7.2B. Here the %RE between the MHS-SPME approach 
(taken as reference for comparison) and HS-SPME quantification based on the IS was calculated 
for the FID channel. The average %RE for the IS approach was 208% with a maximum of +538% 
for (E)-2-hexenal. This analyte is the most abundant in the EVOO volatile fraction and is highly 
informative, being a key-aroma compound validated by sensomics.35.Its overestimation might lead 
to erroneous conclusions about a sample’s aroma blueprint. Similar results were obtained for other 
highly abundant components, such as 1-penten-3-ol, hexanal, (Z)-3-hexen-1-ol, and 1-hexanol, all 
characterized by steeper decay curves, i.e., lower β values (further details are commented below). 

On the other hand, for compounds present in lower amounts and characterized by relatively 
flat decay curves and higher β values, as in the case of (E)-2-octenal and (E)-2-nonenal, 
underestimation was respectively -89% and -80%. Supplementary material - Supplementary Table 
5.7.3 reports accuracy (i.e., recovery and precision) results for analytes subjected to external 
calibration by MHS-SPME on selected CSs (1-10-25-100 ng) and on test samples S1, S8, T3, T10, 
G6, and G12, where exhaustive extractions were conducted until LOD.  

These results provide proof of evidence on how inaccurate might be quantification that 
approximates detector relative response factors to unity (i.e., by using a single IS for quantification) 
and does not consider analytes’ specific KHS and KD under the applied conditions. Moreover, the 
adoption of non-equilibrium HS sampling – at least not for all targeted analytes – and the multi 
component characteristics of the SPME device (e.g., combining adsorption and absorption 
mechanisms) add further variables that make complex and challenging EVOO volatiles 
quantification.  

 
5.7.4.3 Extending quantification to non-calibrated analytes by adopting FID predicted 
relative response factors 

EVOO volatile fractions are highly complex, and the presence of a large number of informative 
components requires greater efforts to extend external calibrations to all analytes matching with HS 
linearity in the defined conditions. However, the possibility to extend the quantification potential 
of the analytical method to a large set of volatiles while keeping an appropriate accuracy is attractive. 
If achieved, batch-to-batch data transferability is possible, even for long-time frame studies and for 
different GC×GC technologies. 

With parallel MS and FID detection, additional options for reliable quantification are available. 
In particular, while MS detection achieves high specificity by selecting specific ion traces in cases of 
co-elution and/or the presence of interferents,60 FID provides stable structure-specific response 
factors in a wider range of concentrations.51,61  

The adopted platform, combining high-resolution and efficient separation of analytes by 
GC×GC with parallel detection by MS/FID, opens the possibility of adopting FID predicted RRFs 
based on combustion enthalpies and molecular structure.61 The alignment of the separation patterns 
from MS and FID detection, as illustrated in Figure 5.7.1, enables reliable analyte identification 
using multiple criteria (retention in two dimensions and MS spectral signature) and across the 
parallel channels, while quantification can be extended over uncalibrated compounds by estimating 
their FID RRFs with Equation 5.7.1.  
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Equation 5.7.1  RRF =  103 ∗ (
𝑀𝑊𝑖

𝑀𝑊𝐼𝑆
) ∗ (−61.3 + 88.8𝜂𝐶 + 18.7𝜂𝐻 −  41.3𝜂𝑂 + 6.4𝜂𝑁 +

64.0𝜂𝑆 − 20.2𝜂𝐹 −  23.5𝜂𝐶𝑙 − 10.2𝜂𝐵𝑟 −  1.75𝜂𝐼 + 127𝜂𝑏𝑒𝑛𝑧)−1  
 
where ηC, ηH, ηO, ηN, ηS, ηF, ηCl, ηBr, ηI, and ηbenz corresponds to the number of carbon, hydrogen, 

oxygen, nitrogen, sulfur, fluorine, chlorine, bromine, and iodine atoms, and the number of benzene 
rings; and MWi and MWIS are the molecular weights of the analyte i and the IS adopted for the 
development of the model by de Saint Laumer et al.61 

In this study, quantification was obtained on the peak area of each component normalized 
versus α-thujone as IS and corrected with its RRF calculated with Eq.1 to align combustion 
enthalpies normalized versus 1-hexanol here considered as internal reference. The analyte-specific 
RRF was corrected to the 1-hexanol/methyl octanoate ratio (i.e., RRFi,1-hexanol = 0.933/RRFi, methyl 

octanoate) to adapt the model to 1-hexanol. 
With predicted RRFs, quantitative profiling was extended to additional potent odorants, 

characterizing both positive attributes and specific sensorial defects, and to phenotypic markers. 
Table 5.7.3 reports the RRF values calculated for targeted/calibrated analytes and for additional 
compounds of interest selected among those listed in Supplementary Material - Supplementary 
Table 5.7.1. They are: 3-pentanone, 1-penten-3-one, α-pinene, camphene, β-pinene, δ-3-carene, 
limonene, eucalyptol, hexyl acetate, octanal, (Z)-3-hexenyl acetate, (E)-2-heptenal, 6-methyl-5-
hepten-2-one, nonanal, (E)-2-hexen-1-ol, acetic acid, (E,E)-2,4-heptadienal, α-copaene, 

benzaldehyde, propanoic acid, 1-octanol, butanoic acid, butyrolactone, ƴ-hexalactone, propanal, 
(Z)-3-hexenal, and α-farnesene. 
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Table 5.7.3. Extended list of targeted analytes, reported with their experimental IT, molecular weight (MW) and molecular formula. Relative Response Factors (RRF) are calculated based on 
Equation 1 and are normalized over 1-hexanol taken as internal reference. β values (± SD) are calculated on the entire sample set while accuracy data is reported as Relative Error (RE%) on 
calibration solutions at 25 ng (CS25) by MHS-SPME and between MHS-SPME and HS-SPME with IS normalization on FID signals. 

  Predicted Relative Response Factor data MHS-SPME vs. HS-SPME accuracy 

Targeted analytes Exp. IT MW Formula ηC ηH ηO ηBenz RRF β (±SD) 

Relative 
Error % - 

CS25 

MHS-SPME 
FID vs. MS 

Amount 
µg/kg 

MHS-SPME 

Amount 
µg/kg 

HS-SPME IS 

Propanal 802 58.1 C3H6O 3 6 1 0 1.92 0.54 (±0.07) - 86 134 

Ethyl acetate 865 88.1 C4H8O2 4 8 2 0 2.23 0.87 (±0.08) 9 133 103 

3-Pentanone 956 86.1 C5H10O 5 10 1 0 1.49 0.52 (±0.05) - 1775 741 

1-Penten-3-one 1007 84.1 C5H8O 5 8 1 0 1.56 0.51 (±0.05) - 50 182 

α-Pinene 1026 136.2 C10H16 10 16 0 0 1.11 0.82 (±0.07) - 910 88 

Hexanal 1072 100.2 C6H12O 6 12 1 0 1.40 0.61 (±0.03) 8 461 2083 

Camphene 1078 136.2 C10H16 10 16 0 0 1.11 0.83 (±0.05) - 12 3 

2-Pentanol 1107 88.2 C5H12O 5 12 1 0 1.42 0.77 (±0.11) 6 17 17 

(E)-2-Pentenal 1121 84.1 C5H8O 5 8 1 0 1.56 0.53 (±0.02) 6 122 228 

β-Pinene 1129 136.2 C10H16 10 16 0 0 1.11 0.92 (±0.06) - 29 12 

(Z)-3-Hexenal 1132 98.1 C6H10O 6 10 1 0 1.45 0.74 (±0.03) - 44 26 

δ-3-Carene 1150 136.2 C10H16 10 16 0 0 1.11 0.90 (±0.04) - 2 7 

1-Penten-3-ol 1151 86.1 C5H10O 5 10 1 0 1.49 0.62 (±0.02) 11 259 1327 

Heptanal 1179 114.2 C7H14O 7 14 1 0 1.34 0.82 (±0.05) 3 18 16 

Limonene 1190 136.2 C10H16 10 16 0 0 1.11 0.92 (±0.06) - 125 53 

Eucalyptol 1205 154.3 C10H18O 10 18 1 0 1.26 0.94 (±0.03) - 596 3807 

(E)-2-Hexenal 1213 98.1 C6H10O 6 10 1 0 1.45 0.63 (±0.02) 8 1981 3814 

1-Pentanol 1240 88.2 C5H12O 5 12 1 0 1.42 0.71 (±0.03) 3 52 38 

Hexyl acetate 1271 144.2 C8H16O2 8 16 2 0 1.52 0.88 (±0.08) - 20 155 
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Octanal 1285 128.2 C8H16O 8 16 1 0 1.29 0.94 (±0.04) - 10 17 

(Z)-2-Penten-1-ol 1306 86.1 C5H10O 5 10 1 0 1.49 0.61 (±0.02) 1 82 450 

(E)-2-Penten-1-ol 1314 86.1 C5H10O 5 10 1 0 1.49 0.65 (±0.03) 1 18 43 

(Z)-3-Hexenyl 
acetate 

1317 142.2 C8H14O2 8 14 2 0 1.57 0.89 (±0.04) - 119 1245 

(E)-2-Heptenal 1321 112.2 C7H12O 7 12 1 0 1.38 0.87 (±0.05) - 14 39 

6-Methyl-5-
hepten-2-one 

1327 126.2 C8H14O 8 14 1 0 1.33 0.91 (±0.03) - 24 25 

1-Hexanol 1346 102.2 C6H14O 6 14 1 0 1.35 0.79 (±0.02) 3 192 713 

(Z)-(3)-Hexen-1-
ol 

1379 100.2 C6H12O 6 12 1 0 1.40 0.75 (±0.01) 7 466 1943 

Nonanal 1393 142.2 C9H18O 9 18 1 0 1.26 0.95 (±0.02) - 27 58 

(E,E)-2,4-
Hexadienal 

1400 96.1 C6H8O 6 8 1 0 1.51 0.81 (±0.12) 10 69 290 

(E)-2-Hexen-1-ol 1401 100.2 C6H12O 6 12 1 0 1.40 0.83 (±0.07) - 824 776 

Acetic acid 1409 60.1 C2H4O2 2 4 2 0 5.06 0.78 (±0.09) - 426 140 

(E)-2-Octenal 1428 126.2 C8H14O 8 14 1 0 1.33 0.95 (±0.04) 10 47 5 

(E,E)-2,4-
Heptadienal 

1464 110.2 C7H10O 7 10 1 0 1.42 0.86 (±0.05) - 24 29 

α-Copaene 1491 204.4 C15H24 15 24 0 0 1.09 0.77 (±0.06) - 53 119 

Benzaldehyde 1524 106.1 C7H6O 7 6 1 1 1.28 0.91 (±0.04) - 13 31 

(E)-2-Nonenal 1534 140.2 C9H16O 9 16 1 0 1.29 0.95 (±0.02) 15 22 4 

Propanoic acid 1539 74.1 C3H6O2 3 6 2 0 2.88 0.86 (±0.05) - 54 17 

1-Octanol 1551 130.2 C8H18O 8 18 1 0 1.26 0.95 (±0.03) - 7 17 

Butanoic acid 1578 88.1 C4H8O2 4 8 2 0 2.23 0.93 (±0.05) - 9 3 

Butyrolactone 1613 86.1 C4H6O2 4 6 2 0 2.43 0.92 (±0.04) - 37 27 

ƴ-Hexalactone 1670 114.1 C10H18O2 10 18 2 0 0.96 0.94 (±0.03) - 12 2 

α-Farnesene 1753 204.4 C15H24 15 24 0 0 1.09 0.78 (±0.03) - 7 17 
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The list includes additional compounds formed along the LOX pathway and correlated to green 
and fruity notes: C5 ketones (i.e., 3-pentanone and 1-penten-3-one), C6 esters (i.e., hexyl acetate, (Z)-
3-hexenal, and (Z)-3-hexenyl acetate), and C6 alcohols (i.e., (E)-2-hexen-1-ol).24,38,62–64  

Limonene, α-pinene, β-pinene, camphene, δ-3-carene, eucalyptol, α-copaene, and α-farnesene 
are terpenoids mainly known to be genetic and/or geographic markers,65 nevertheless, they are odor 
active and could be associated with the perception of herbal, pine, and citrus-like notes.64,66 6-Methyl-
5-hepten-2-one is a ripening indicator with fruity-like odor and propanal is present in high-quality 
EVOOs and described as fresh, fruity and malty.35,45,67,68 

Compounds related to sensorial defects include butyrolactone and ƴ-hexalactone, described as 
contributing to the definition of the undesirable oily aroma,63 acetic acid, propanoic acid, and 
butanoic acid, associated with vinegary, musty and rancid defects, 38,62 1-octanol, usually found in 
oxidized samples19,39 and with a mushroom-like odor; benzaldehyde, whose presence is related to moldy 
and earthy defects.38 Finally octanal, nonanal, (E)-2-heptenal, and (E,E)-2,4-heptadienal contribute 
to rancid and fatty sensations. 

Quantification results for the 42 targeted compounds are reported in Supplementary Material 
- Supplementary Table 5.7.4. The information they bring to the sample discrimination is 
considered in the next section. Italian EVOOs aroma blueprint is defined by considering key-aroma 
compounds concentration over the odor detection threshold (i.e., odor activity value OAV). 

 

5.7.4.4 Differential information encrypted in volatiles patterns: response vs. quantitative 
data 

Volatiles fingerprints captured by mapping the responses of both untargeted and targeted 
features and 2D pattern information deriving from selected target volatiles bring differential 
information.  The regional influence on the volatiles fraction, for example, can be examined by 
supervised chemometrics. Partial least square discriminant analysis (PLS-DA) was adopted to 
develop classification models based on the production region. Results are greatly illustrative on the 
information encrypted on global fingerprint and/or on 2D patterns with selected targets. 

Figure 5.7.3A shows the score plot resulting from the PLS-DA model based on the global 
fingerprint information (i.e., UT fingerprinting process) and a cross-validation by leave-n-out 
approach (CV=4). The model was developed on the entire sample set (n=50) and resulted in an 
average sensitivity of 92.9% and a specificity of 97.4%. In particular, higher sensitivity was obtained 
for Sicilia EVOOs (100%) and lower sensitivity for Toscana samples (84.2%), with three EVOOs 
from Toscana classified as Garda and one Garda sample misclassified as Sicilia. Results confirm the 
effectiveness of the comprehensive volatiles fingerprinting for geographical classification of 
EVOOs.29,65.By examining the variables importance in the projection (VIP) score, which 
summarizes the overall contribution of each variable to the PLS-DA model, components with a 
higher informative role in describing the characteristic regional signatures were selected. Those 
having VIP value ± SD higher than 1, were 27, of them 11 untargeted and 16 targeted. Within the 
identified analytes, those with the highest VIP ranking were: (E)-2-hexenal, phenylethyl alcohol, 
ethyl acetate, 1-penten-3-ol, butyl butanoate, 2-buten-1-ol, 2-ethylfuran, 1-pentanol, tridecane, (Z)-
2-hexenal, (Z)-3-hexenol, butyrolactone, δ-3-carene, propanal, 3-pentanone, and α-farnesene. 
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Figure 5.7.3. PLS-DA score plots resulting from the model for regional discrimination of samples and based on the UT peaks 

responses (5.7.3A) or quantitated target compounds from Table 5.7.3 (5.7.3B). 

 

Figure 5.7.3B shows the score plot resulting from the PLS-DA based on the 42 quantified 
compounds. Results of a full cross-validation (CV=4) performed on the entire sample set, gave an 
average sensitivity of 73.3% and specificity of 87.1%. Nearly all EVOOs from Sicilia were correctly 
classified (one misclassified as Toscana), whereas the number of misclassified samples between 
Toscana and Garda regions increased compared to the UT fingerprinting model. For targeted 
profiling data, the list of compounds selected by VIPs scores, in decreasing order of relevance for 
regional classification, were: (E)-2-hexenal, 1-penten-3-ol, 3-pentanone, 1-pentanol, (Z)-3-hexen-1-
ol, α-copaene, ethyl acetate, and (Z)-3-hexenyl acetate. Score plot and performance parameters 
clearly show that the discrimination capacity of the model based on the quantified compounds was 
markedly lower. Analytes’ selection was in fact driven by their role in defining positive or negative 
attributes to the overall aroma and on analytical variables not necessarily related to the regional 
influence on volatiles expression (i.e., absence of HS saturation effect (β < 0.95) and co-elutions). 
However, results obtained by accurate MHS-SPME quantification are likely more robust, referable, 
and transferable in time and between different platforms.  

Boxplots in Figure 5.7.4 show the quantitative distribution of selected EVOO volatiles from 
the three production regions. Interestingly, discriminant compounds mostly belong to the LOX 
signature: (E)-2-hexenal is significantly higher in EVOOs from Toscana and Garda compared to 
Sicilia; (Z)-3-hexen-1-ol and 3-pentanone are more abundant in Sicilia samples, and hexyl acetate 
shows a higher amount in Garda and Sicilia compared to Toscana samples. The sesquiterpenoid α-
copaene is more abundant in EVOOs from Sicilia and 1-pentanol is on average more concentrated 
in Sicilia samples.  
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Figure 5.7.4. Boxplots illustrating the median, minimum and maximum and mean quantitative values (red mark) for discriminant 
targeted compounds.  

 

5.7.4.5 Italian high-quality EVOO aroma blueprint 
To develop a realistic picture about the sensory contribution of quantified analytes on the 

overall EVOO aroma, odor activity values (OAVs) might be useful. By molecular sensory science 
principles (i.e., sensomics),23 odorants having an OAV >1 and with positive validation in aroma 
recombinates, are considered key-aromas.51 Although this simplification could lead to a misleading 
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interpretation of the actual role played by odor-active compounds in modulating the aroma 
perception of a food, the concept has been validated over hundreds of food products.23 OAV is a 
robust yet objective tool to identify character odorants and to rank them over the multitude of 
volatiles characterizing a given product.  

The relevance of quantitated analytes in terms of their sensory contribution to the aroma 
perception of EVOO samples is illustrated in spider-diagrams of Figure 5.7.5. Median values of 
OAVs for all potent odorants, i.e., those reporting an OAV > 1 in at least one sample, are visualized 
for each production region (Figure 5.7.5A Garda, Figure 5.7.5B Toscana, and Figure 5.7.5C Sicilia) 
and in decreasing order of OAVs taking the Garda as reference. Analytes are accompanied by their 
odor descriptors. Pictograms clearly show differences in the aroma blueprints of EVOOs from 
these different regions.  
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Figure 5.7.5. Spider-diagrams showing the EVVOs aroma blueprint and based on calculated OAVs (reported in logarithmic 

scale). Key-aroma compounds are reported in descending order taking the Garda lake group as reference. Odor qualities are also 

indicated. 

In all regions, compounds belonging to the LOX signature and related to positive attributes as 
pungent, green and grassy notes, dominate the overall aroma of EVOOs, even if in different 
proportions; e.g., (E)-2-hexenal has higher OAV in Garda and Toscana than in Sicilia, whereas (Z)-3-
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hexenyl acetate has a higher impact on Toscana and Sicilia EVOOs aroma).40,69 Compounds related 
to fruity notes, e.g. (Z)-3-hexen-1-ol, might evoke the perception of banana-like and grassy qualities, 
documented in EVOOs from Sicilia.69 1-Hexanol with fruity and banana-like perception has higher 
relevance in Garda and Toscana samples. 

The important role of terpenoids, highlighted by profiling data as regional markers, is here seen 
in the OAVs for limonene and eucalyptol, likely contributing to the definition of citrus, herbal, terpenic 
qualities. Moreover, several EVOOs from the Garda lake area show α-pinene with an OAV > 1, 
likely eliciting herbal and woody notes. 

Interestingly, among the 42 quantified analytes, only four are correlated to sensorial defects (i.e., 
acetic acid, (E,E)-2,4-heptadienal, (E)-2-nonenal, and nonanal)24,35,36,39 and only in a few samples is 
their OAV > 1. This result was expected in that the analyzed EVOOs had sensory classifications 
with the median of the coded defects equal to zero.  

 

5.7.5 Conclusions 
The possibility of performing highly informative chromatographic fingerprinting, extended to 

both untargeted and targeted volatile components, accompanied by accurate multi-target 
quantification performed on two parallel detection channels (MS/FID), has been demonstrated in 
the challenging context of high-quality EVOO valorization and characterization. Compared to 
existing methods based on 1D-GC-FID or 1D-GC-MS, the current procedure offers higher 
separation power and chromatographic resolution that improve method specificity and selectivity. 
Higher chromatographic effectiveness results in lower LODs and LOQs27 and high quality 
calibration (i.e., R2 and residual distribution)27 provides accurate quantification in a wider range of 
concentrations. Moreover, parallel detection by MS/FID offers the possibility of cross-validation 
of quantitative results and the option of adopting FID RRFs to extend quantification to 
uncalibrated analytes.  

The crucial yet fundamental role of an effective, fully automated, and highly repeatable sample 
preparation approach, i.e., MHS-SPME, is further highlighted even in a “true” quantification 
approach by evidencing the inaccuracy of semi-quantitative methodologies (e.g., HS-SPME and IS 
normalization). By exploring the possibility of adopting MHS-SPME-GC×GC-MS/FID as artificial 
intelligence smelling machine47 for EVOOs, it has been demonstrated how the great flexibility and 
reliability of multidimensional analytical techniques implemented with commercially available 
instrumentation can improve the quality and the information power of each analytical run. 

  

 

5.7.6 Supplementary material 

Supplementary material at the Google Drive’s link:  

https://drive.google.com/drive/folders/1dw3d3BviJIrAmzTWl_qhkf1GFTmHyIBF?usp=s
haring 

 

 

 
  

https://drive.google.com/drive/folders/1dw3d3BviJIrAmzTWl_qhkf1GFTmHyIBF?usp=sharing
https://drive.google.com/drive/folders/1dw3d3BviJIrAmzTWl_qhkf1GFTmHyIBF?usp=sharing


Page | 407  

 

References 

(1)  Stilo, F.; Bicchi, C.; Robbat, A.; Reichenbach, S. E.; Cordero, C. Untargeted Approaches in 
Food-Omics: The Potential of Comprehensive Two-Dimensional Gas Chromatography/Mass 
Spectrometry. TrAC Trends Anal. Chem. 2021, 135, 116162. 
https://doi.org/10.1016/j.trac.2020.116162. 

(2)  Stilo, F.; Bicchi, C.; Jimenez-Carvelo, A. M.; Cuadros-Rodriguez, L.; Reichenbach, S. E.; 
Cordero, C. Chromatographic Fingerprinting by Comprehensive Two-Dimensional 
Chromatography: Fundamentals and Tools. TrAC - Trends Anal. Chem. 2021, 134, 116133. 
https://doi.org/10.1016/j.trac.2020.116133. 

(3)  Cordero, C.; Kiefl, J.; Reichenbach, S. E.; Bicchi, C. Characterization of Odorant Patterns 
by Comprehensive Two-Dimensional Gas Chromatography: A Challenge in Omic Studies. TrAC 
Trends Anal. Chem. 2019, 113, 364–378. https://doi.org/10.1016/j.trac.2018.06.005. 

(4)  Tranchida, P. Q.; Purcaro, G.; Maimone, M.; Mondello, L. Impact of Comprehensive Two-
Dimensional Gas Chromatography with Mass Spectrometry on Food Analysis. J. Sep. Sci. 2016, 39 
(1), 149–161. https://doi.org/10.1002/jssc.201500379. 

(5)  Magagna, F.; Valverde-Som, L.; Ruíz-Samblás, C.; Cuadros-Rodríguez, L.; Reichenbach, S. 
E.; Bicchi, C.; Cordero, C. Combined Untargeted and Targeted Fingerprinting with Comprehensive 
Two-Dimensional Chromatography for Volatiles and Ripening Indicators in Olive Oil. Anal. Chim. 
Acta 2016, 936, 245–258. https://doi.org/10.1016/j.aca.2016.07.005. 

(6)  Reichenbach, S. E.; Zini, C. A.; Nicolli, K. P.; Welke, J. E.; Cordero, C.; Tao, Q. 
Benchmarking Machine Learning Methods for Comprehensive Chemical Fingerprinting and 
Pattern Recognition. J. Chromatogr. A 2019, 1595, 158–167. 
https://doi.org/10.1016/j.chroma.2019.02.027. 

(7)  Nicolotti, L.; Cordero, C.; Cagliero, C.; Liberto, E.; Sgorbini, B.; Rubiolo, P.; Bicchi, C. 
Quantitative Fingerprinting by Headspace-Two-Dimensional Comprehensive Gas 
Chromatography-Mass Spectrometry of Solid Matrices: Some Challenging Aspects of the 
Exhaustive Assessment of Food Volatiles. Anal. Chim. Acta 2013, 798, 115–125. 
https://doi.org/10.1016/j.aca.2013.08.052. 

(8)  Cordero, C.; Rubiolo, P.; Reichenbach, S. E.; Carretta, A.; Cobelli, L.; Giardina, M.; Bicchi, 
C. Method Translation and Full Metadata Transfer from Thermal to Differential Flow Modulated 
Comprehensive Two Dimensional Gas Chromatography: Profiling of Suspected Fragrance 
Allergens. J. Chromatogr. A 2017, 1480, 70–82. https://doi.org/10.1016/j.chroma.2016.12.011. 

(9)  Cordero, C.; Rubiolo, P.; Cobelli, L.; Stani, G.; Miliazza, A.; Giardina, M.; Firor, R.; Bicchi, 
C. Potential of the Reversed-Inject Differential Flow Modulator for Comprehensive Two-
Dimensional Gas Chromatography in the Quantitative Profiling and Fingerprinting of Essential 
Oils of Different Complexity. J. Chromatogr. A 2015, 1417, 79–95. 
https://doi.org/10.1016/j.chroma.2015.09.027. 

(10)  Stilo, F.; Gabetti, E.; Bicchi, C.; Carretta, A.; Peroni, D.; Reichenbach, S. E.; 
Cordero, C.; McCurry, J. A Step Forward in the Equivalence between Thermal and Differential-
Flow Modulated Comprehensive Two-Dimensional Gas Chromatography Methods. J. Chromatogr. 
A 2020, 1627, 461396. https://doi.org/10.1016/j.chroma.2020.461396. 



Page | 408 

 

(11)  Franchina, F. A.; Maimone, M.; Tranchida, P. Q.; Mondello, L. Flow Modulation 
Comprehensive Two-Dimensional Gas Chromatography–Mass Spectrometry Using ≈4 ML Min−1 
Gas Flows. J. Chromatogr. A 2016, 1441, 134–139. https://doi.org/10.1016/j.chroma.2016.02.041. 

(12)  Seeley, J. V.; Micyus, N. J.; Bandurski, S. V.; Seeley, S. K.; McCurry, J. D. 
Microfluidic Deans Switch for Comprehensive Two-Dimensional Gas Chromatography. Anal. 
Chem. 2007, 79 (5), 1840–1847. https://doi.org/10.1021/ac061881g. 

(13)  Seeley, J. V.; Micyus, N. J.; McCurry, J. D.; Seeley, S. K. Comprehensive Two-
Dimensional Gas Chromatography with a Simple Fluidic Modulator. American Laboratory. 2006, pp 
24–26. 

(14)  Klee, M. S.; Blumberg, L. M. Theoretical and Practical Aspects of Fast Gas 
Chromatography and Method Translation. J. Chromatogr. Sci. 2002, 40 (5), 234–247. 
https://doi.org/10.1093/chromsci/40.5.234. 

(15)  Giardina, M.; McCurry, J. D.; Cardinael, P.; Semard-Jousset, G.; Cordero, C.; Bicchi, 
C. Development and Validation of a Pneumatic Model for the Reversed-Flow Differential Flow 
Modulator for Comprehensive Two-Dimensional Gas Chromatography. J. Chromatogr. A 2018, 
1577, 72–81. https://doi.org/10.1016/j.chroma.2018.09.022. 

(16)  Eurachem. Eurachem Guide: The Fitness for Purpose of Analytical Methods – A Laboratory 
Guide to Method Validation and Related Topics.; 2014. https://doi.org/978-91-87461-59-0. 

(17)  Commission, E. Commission Decision 2002/657/EC Implementing Council 
Directive 96/23/EC Concerning the Performance of Analytical Methods and the Interpretation of 
Results. Off. J. Eur. Union 2002, L221 (23 May 1996), 8–36. 

(18)  Grigg, D. Olive Oil, the Mediterranean and the World. GeoJournal 2001, 53 (2), 163–
172. 

(19)  Cecchi, L.; Migliorini, M.; Giambanelli, E.; Rossetti, A.; Cane, A.; Melani, F.; 
Mulinacci, N. Headspace Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry 
Quantification of the Volatile Profile of More than 1200 Virgin Olive Oils for Supporting the Panel 
Test in Their Classification: Comparison of Different Chemometric Approaches. J. Agric. Food 
Chem. 2019, 67 (32), 9112–9120. https://doi.org/10.1021/acs.jafc.9b03346. 

(20)  IOC. International Olive Council. Newsl. No 144 DECEMBER 2019 2019, No. 
December. 

(21)  EU Quality Schemes. 

(22)  Cuadros-Rodríguez, L.; Ruiz-Samblás, C.; Valverde-Som, L.; Pérez-Castaño, E.; 
González-Casado, A. Chromatographic Fingerprinting: An Innovative Approach for Food 
“identitation” and Food Authentication - A Tutorial. Anal. Chim. Acta 2016, 909, 9–23. 
https://doi.org/10.1016/j.aca.2015.12.042. 

(23)  Dunkel, A.; Steinhaus, M.; Kotthoff, M.; Nowak, B.; Krautwurst, D.; Schieberle, P.; 
Hofmann, T. Nature’s Chemical Signatures in Human Olfaction: A Foodborne Perspective for 
Future Biotechnology. Angew. Chemie - Int. Ed. 2014, 53 (28), 7124–7143. 
https://doi.org/10.1002/anie.201309508. 

(24)  Purcaro, G.; Cordero, C.; Liberto, E.; Bicchi, C.; Conte, L. S. Toward a Definition 
of Blueprint of Virgin Olive Oil by Comprehensive Two-Dimensional Gas Chromatography. J. 
Chromatogr. A 2014, 1334, 101–111. https://doi.org/10.1016/j.chroma.2014.01.067. 



Page | 409  

 

(25)  Belhassen, E.; Bressanello, D.; Merle, P.; Raynaud, E.; Bicchi, C.; Chaintreau, A.; 
Cordero, C. Routine Quantification of 54 Allergens in Fragrances Using Comprehensive Two-
Dimensional Gas Chromatography-Quadrupole Mass Spectrometry with Dual Parallel Secondary 
Columns. Part I: Method Development. Flavour Fragr. J. 2018, 33 (1), 63–74. 
https://doi.org/10.1002/ffj.3416. 

(26)  Cordero, C.; Guglielmetti, A.; Sgorbini, B.; Bicchi, C.; Allegrucci, E.; Gobino, G.; 
Baroux, L.; Merle, P. Odorants Quantitation in High-Quality Cocoa by Multiple Headspace Solid 
Phase Micro-Extraction: Adoption of FID-Predicted Response Factors to Extend Method 
Capabilities and Information Potential. Anal. Chim. Acta 2019, 1052. 
https://doi.org/10.1016/j.aca.2018.11.043. 

(27)  Casadei, E.; Valli, E.; Aparicio-Ruiz, R.; Ortiz-Romero, C.; García-González, D. L.; 
Vichi, S.; Quintanilla-Casas, B.; Tres, A.; Bendini, A.; Toschi, T. G. Peer Inter-Laboratory 
Validation Study of a Harmonized SPME-GC-FID Method for the Analysis of Selected Volatile 
Compounds in Virgin Olive Oils. Food Control 2021, 123 (July 2020). 
https://doi.org/10.1016/j.foodcont.2020.107823. 

(28)  Vichi, S.; Pizzale, L.; Conte, L. S.; Buxaderas, S.; López-Tamames, E. Solid-Phase 
Microextraction in the Analysis of Virgin Olive Oil Volatile Fraction: Characterization of Virgin 
Olive Oils from Two Distinct Geographical Areas of Northern Italy. J. Agric. Food Chem. 2003, 51 
(22), 6572–6577. https://doi.org/10.1021/jf030269c. 

(29)  Quintanilla-Casas, B.; Bustamante, J.; Guardiola, F.; García-González, D. L.; 
Barbieri, S.; Bendini, A.; Toschi, T. G.; Vichi, S.; Tres, A. Virgin Olive Oil Volatile Fingerprint and 
Chemometrics: Towards an Instrumental Screening Tool to Grade the Sensory Quality. LWT 2020, 
121, 108936. https://doi.org/https://doi.org/10.1016/j.lwt.2019.108936. 

(30)  Quintanilla-Casas, B.; Marin, M.; Guardiola, F.; García-González, D. L.; Barbieri, 
S.; Bendini, A.; Toschi, T. G.; Vichi, S.; Tres, A. Supporting the Sensory Panel to Grade Virgin 
Olive Oils: An in-House-Validated Screening Tool by Volatile Fingerprinting and Chemometrics. 
Foods 2020, 9 (10), 1–14. https://doi.org/10.3390/foods9101509. 

(31)  Vaz-Freire, L. T.; da Silva, M. D. R. G.; Freitas, A. M. C. Comprehensive Two-
Dimensional Gas Chromatography for Fingerprint Pattern Recognition in Olive Oils Produced by 
Two Different Techniques in Portuguese Olive Varieties Galega Vulgar, Cobrançosa e 
Carrasquenha. Anal. Chim. Acta 2009, 633 (2), 263–270. https://doi.org/10.1016/j.aca.2008.11.057. 

(32)  Stilo, F.; Liberto, E.; Reichenbach, S. E.; Tao, Q.; Bicchi, C.; Cordero, C. Untargeted 
and Targeted Fingerprinting of Extra Virgin Olive Oil Volatiles by Comprehensive Two-
Dimensional Gas Chromatography with Mass Spectrometry: Challenges in Long-Term Studies. J. 
Agric. Food Chem. 2019, 67 (18), 5289–5302. https://doi.org/10.1021/acs.jafc.9b01661. 

(33)  EU Food Quality Labels. 

(34)  Progetto Ager. Violin Project; 2016. 

(35)  Neugebauer, A.; Granvogl, M.; Schieberle, P. Characterization of the Key Odorants 
in High-Quality Extra Virgin Olive Oils and Certified Off-Flavor Oils to Elucidate Aroma 
Compounds Causing a Rancid Off-Flavor. J. Agric. Food Chem. 2020, 68 (21), 5927–5937. 
https://doi.org/10.1021/acs.jafc.0c01674. 

(36)  Kalua, C. M.; Allen, M. S.; Bedgood, D. R.; Bishop, A. G.; Prenzler, P. D.; Robards, 
K. Olive Oil Volatile Compounds, Flavour Development and Quality: A Critical Review. Food Chem. 
2007, 100 (1), 273–286. https://doi.org/10.1016/j.foodchem.2005.09.059. 



Page | 410 

 

(37)  Stilo, F.; Cordero, C.; Sgorbini, B.; Bicchi, C.; Liberto, E. Highly Informative 
Fingerprinting of Extra-Virgin Olive Oil Volatiles: The Role of High Concentration-Capacity 
Sampling in Combination with Comprehensive Two-Dimensional Gas Chromatography. Separations 
2019, 6 (3), 34. https://doi.org/10.3390/separations6030034. 

(38)  Angerosa, F. Influence of Volatile Compounds on Virgin Olive Oil Quality 
Evaluated by Analytical Approaches and Sensor Panels. Eur. J. Lipid Sci. Technol. 2002, 104 (9–10), 
639–660. https://doi.org/https://doi.org/10.1002/1438-9312(200210)104:9/10<639::AID-
EJLT639>3.0.CO;2-U. 

(39)  Morales, M. T.; Luna, G.; Aparicio, R. Comparative Study of Virgin Olive Oil 
Sensory Defects. Food Chem. 2005, 91 (2), 293–301. 
https://doi.org/10.1016/j.foodchem.2004.06.011. 

(40)  Aprea, E.; Gasperi, F.; Betta, E.; Sani, G.; Cantini, C. Variability in Volatile 
Compounds from Lipoxygenase Pathway in Extra Virgin Olive Oils from Tuscan Olive 
Germoplasm by Quantitative SPME/GC-MS. J. Mass Spectrom. 2018, 53 (9), 824–832. 
https://doi.org/10.1002/jms.4274. 

(41)  Cecchi, L.; Migliorini, M.; Mulinacci, N. Virgin Olive Oil Volatile Compounds: 
Composition, Sensory Characteristics, Analytical Approaches, Quality Control, and Authentication. 
J. Agric. Food Chem. 2021. https://doi.org/10.1021/acs.jafc.0c07744. 

(42)  Wang, Y.; O’Reilly, J.; Chen, Y.; Pawliszyn, J. Equilibrium In-Fibre Standardisation 
Technique for Solid-Phase Microextraction. J. Chromatogr. A 2005, 1072 (1), 13–17. 
https://doi.org/10.1016/j.chroma.2004.12.084. 

(43)  Vichi, S.; Guadayol, J. M.; Caixach, J.; Lopeztamames, E.; Buxaderas, S.; López-
Tamames, E.; Buxaderas, S. Comparative Study of Different Extraction Techniques for the Analysis 
of Virgin Olive Oil Aroma. Food Chem. 2007, 105 (3), 1171–1178. 
https://doi.org/10.1016/j.foodchem.2007.02.018. 

(44)  Cordero, C.; Cagliero, C.; Liberto, E.; Nicolotti, L.; Rubiolo, P.; Sgorbini, B.; Bicchi, 
C. High Concentration Capacity Sample Preparation Techniques to Improve the Informative 
Potential of Two-Dimensional Comprehensive Gas Chromatography-Mass Spectrometry: 
Application to Sensomics. J. Chromatogr. A 2013, 1318, 1–11. 
https://doi.org/10.1016/j.chroma.2013.09.065. 

(45)  Stilo, F.; Liberto, E.; Reichenbach, S. E.; Tao, Q.; Bicchi, C.; Cordero, C. Exploring 
the Extra-Virgin Olive Oil Volatilome by Adding Extra Dimensions to Comprehensive Two-
Dimensional Gas Chromatography and Time of Flight Mass Spectrometry Featuring Tandem 
Ionization: Validation of Ripening Markers in Headspace Linearity Conditio. J. AOAC Int. 2020. 
https://doi.org/10.1093/jaoacint/qsaa095. 

(46)  Kolb, B.; Ettre, L. S. Static Headspace-Gas Chromatography : Theory and Practice; Wiley-
VCH: New York, 2006. 

(47)  Nicolotti, L.; Mall, V.; Schieberle, P. Characterization of Key Aroma Compounds 
in a Commercial Rum and an Australian Red Wine by Means of a New Sensomics-Based Expert 
System (SEBES)—An Approach To Use Artificial Intelligence in Determining Food Odor Codes. 
J. Agric. Food Chem. 2019, 67 (14), 4011–4022. https://doi.org/10.1021/acs.jafc.9b00708. 

(48)  Bicchi, C.; Ruosi, M. R.; Cagliero, C.; Cordero, C.; Liberto, E.; Rubiolo, P.; Sgorbini, 
B. Quantitative Analysis of Volatiles from Solid Matrices of Vegetable Origin by High 



Page | 411  

 

Concentration Capacity Headspace Techniques: Determination of Furan in Roasted Coffee. J. 
Chromatogr. A 2011, 1218 (6), 753–762. https://doi.org/10.1016/j.chroma.2010.12.002. 

(49)  Pawliszyn, J.; Ross, C. F. Headspace Analysis. In Comprehensive Sampling and Sample 
Preparation; Elsevier, 2012; Vol. 2, pp 27–50. https://doi.org/10.1016/B978-0-12-381373-2.10036-
5. 

(50)  Sgorbini, B.; Cagliero, C.; Liberto, E.; Rubiolo, P.; Bicchi, C.; Cordero, C. Strategies 
for Accurate Quantitation of Volatiles from Foods and Plant-Origin Materials: A Challenging Task. 
J. Agric. Food Chem. 2019, acs.jafc.8b06601. https://doi.org/10.1021/acs.jafc.8b06601. 

(51)  Cordero, C.; Guglielmetti, A.; Sgorbini, B.; Bicchi, C.; Allegrucci, E.; Gobino, G.; 
Baroux, L.; Merle, P. Odorants Quantitation in High-Quality Cocoa by Multiple Headspace Solid 
Phase Micro-Extraction: Adoption of FID-Predicted Response Factors to Extend Method 
Capabilities and Information Potential. Anal. Chim. Acta 2019, 1052, 190–201. 
https://doi.org/10.1016/j.aca.2018.11.043. 

(52)  Kolb, B.; Ettre, L. S. Theory and Practice of Multiple Headspace Extraction. 
Chromatographia 1991, 32 (11–12), 505–513. https://doi.org/10.1007/BF02327895. 

(53)  Suzuki, M.; Tsuge, S.; Takeuchi, T. Gas Chromatographic Estimation of Occluded 
Solvents in Adhesive Tape by Periodic Introduction Method. Anal. Chem. 1970, 42 (14), 1705–1708. 
https://doi.org/10.1021/ac50160a035. 

(54)  MCAULLIFE C. GC Determination of Solutes by Multiple Phase Equilibration. 
Chem. Tech. 1971, No. 1, 46–51. 

(55)  Sgorbini, B.; Bicchi, C.; Cagliero, C.; Cordero, C.; Liberto, E.; Rubiolo, P. Herbs and 
Spices: Characterization and Quantitation of Biologically-Active Markers for Routine Quality 
Control by Multiple Headspace Solid-Phase Microextraction Combined with Separative or Non-
Separative Analysis. J. Chromatogr. A 2015, 1376, 9–17. 
https://doi.org/10.1016/j.chroma.2014.12.007. 

(56)  Costa, R.; Tedone, L.; De Grazia, S.; Dugo, P.; Mondello, L. Multiple Headspace-
Solid-Phase Microextraction: An Application to Quantification of Mushroom Volatiles. Anal. Chim. 
Acta 2013, 770, 1–6. https://doi.org/10.1016/j.aca.2013.01.041. 

(57)  Ezquerro, Ó.; Ortiz, G.; Pons, B.; Tena, M. T. Determination of Benzene, Toluene, 
Ethylbenzene and Xylenes in Soils by Multiple Headspace Solid-Phase Microextraction. J. 
Chromatogr. A 2004, 1035 (1), 17–22. https://doi.org/10.1016/j.chroma.2004.02.030. 

(58)  Xie, W.-Q.; Gong, Y.-X.; Yu, K.-X. Enhancing the Sensitivity of Full Evaporation 
Technique Using Multiple Headspace Extraction Analysis. Chromatographia 2017, 80 (8), 1263–1268. 
https://doi.org/10.1007/s10337-017-3343-x. 

(59)  Wenzl, T.; Haedrich, J.; Schaechtele, A.; Robouch, P.; Stroka, J. Guidance Document 
on the Estimation of LOD and LOQ for Measurements in the Field of Contaminants in Feed and Food. EUR 
28099 EN; 2016. https://doi.org/10.2787/8931. 

(60)  Cordero, C.; Kiefl, J.; Schieberle, P.; Reichenbach, S. E.; Bicchi, C. Comprehensive 
Two-Dimensional Gas Chromatography and Food Sensory Properties: Potential and Challenges. 
Anal. Bioanal. Chem. 2015, 407 (1), 169–191. https://doi.org/10.1007/s00216-014-8248-z. 

(61)  De Saint Laumer, J. Y.; Leocata, S.; Tissot, E.; Baroux, L.; Kampf, D. M.; Merle, P.; 
Boschung, A.; Seyfried, M.; Chaintreau, A. Prediction of Response Factors for Gas 
Chromatography with Flame Ionization Detection: Algorithm Improvement, Extension to Silylated 



Page | 412 

 

Compounds, and Application to the Quantification of Metabolites. J. Sep. Sci. 2015, 38 (18), 3209–
3217. https://doi.org/10.1002/jssc.201500106. 

(62)  Cecchi, L.; Migliorini, M.; Giambanelli, E.; Rossetti, A.; Cane, A.; Mulinacci, N. New 
Volatile Molecular Markers of Rancidity in Virgin Olive Oils under Nonaccelerated Oxidative 
Storage Conditions. J. Agric. Food Chem. 2019, 67 (47), 13150–13163. 
https://doi.org/10.1021/acs.jafc.9b05809. 

(63)  Angerosa, F.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G. 
Volatile Compounds in Virgin Olive Oil: Occurrence and Their Relationship with the Quality. J. 
Chromatogr. A 2004, 1054 (1–2), 17–31. https://doi.org/10.1016/j.chroma.2004.07.093. 

(64)  Genovese, A.; Caporaso, N.; Leone, T.; Paduano, A.; Mena, C.; Perez-Jimenez, M. 
A.; Sacchi, R. Use of Odorant Series for Extra Virgin Olive Oil Aroma Characterisation. J. Sci. Food 
Agric. 2019, 99 (3), 1215–1224. https://doi.org/10.1002/jsfa.9293. 

(65)  Quintanilla-Casas, B.; Bertin, S.; Leik, K.; Bustamante, J.; Guardiola, F.; Valli, E.; 
Bendini, A.; Toschi, T. G.; Tres, A.; Vichi, S. Profiling versus Fingerprinting Analysis of 
Sesquiterpene Hydrocarbons for the Geographical Authentication of Extra Virgin Olive Oils. Food 
Chem. 2020, 307 (March 2019). https://doi.org/10.1016/j.foodchem.2019.125556. 

(66)  Cavalli, J. F.; Fernandez, X.; Lizzani-Cuvelier, L.; Loiseau, A. M. Characterization 
of Volatile Compounds of French and Spanish Virgin Olive Oils by HS-SPME: Identification of 
Quality-Freshness Markers. Food Chem. 2004, 88 (1), 151–157. 
https://doi.org/10.1016/j.foodchem.2004.04.003. 

(67)  Aparicio, R.; Morales, M. T.; Aparicio-Ruiz, R.; Tena, N.; García-González, D. L. 
Authenticity of Olive Oil: Mapping and Comparing Official Methods and Promising Alternatives. 
Food Res. Int. 2013, 54 (2), 2025–2038. https://doi.org/10.1016/j.foodres.2013.07.039. 

(68)  Hachicha Hbaieb, R.; Kotti, F.; Gargouri, M.; Msallem, M.; Vichi, S. Ripening and 
Storage Conditions of Chétoui and Arbequina Olives: Part I. Effect on Olive Oils Volatiles Profile. 
Food Chem. 2016, 203, 548–558. https://doi.org/10.1016/j.foodchem.2016.01.089. 

(69)  Ros, A. Da; Masuero, D.; Riccadonna, S.; Bubola, K. B.; Mulinacci, N.; Mattivi, F.; 
Lukić, I.; Vrhovsek, U. Complementary Untargeted and Targeted Metabolomics for Differentiation 
of Extra Virgin Olive Oils of Different Origin of Purchase Based on Volatile and Phenolic 
Composition and Sensory Quality. Molecules 2019, 24 (16), 1–17. 
https://doi.org/10.3390/molecules24162896. 

 
  



Page | 413  

 

  



Page | 414 

 

 

Conclusions 
 

 

 

 

 

The aim of this Doctoral Thesis was the development of advanced and innovative analytical 
strategies for the characterization of the Italian olive oil through the in-depth investigation of their 
complex volatile fraction. 

In this context, the role of the reviews was on the conceptualization of peculiar investigation 
approaches (i.e., chromatographic fingerprinting by GC×GC), on the critical evaluation of some 
trends and strategies adopted in the field of food-omics. 

The contribution entitled “Chromatographic fingerprinting by comprehensive two-dimensional 
chromatography: fundamentals and tools” reviewed the state-of-the art literature dealing with 
chromatographic fingerprinting concept. The approaches were described and discussed for their 
potentials and limitations to give access to a higher level of information about sample(s)’ 
composition. Different type of features available for chromatographic fingerprinting (i.e., datapoint, 
region, peak and peak-region features) were rationalized and related strategies analyzed in depth. 
Challenging scenarios with parallel detection, translation of methods from thermal to differential-
flow modulated GC×GC and variable ionization energy MS were also accounted for their relevance 
in specific applications. Machine learning was briefly introduced highlighting its fundamental role 
in supporting fingerprinting workflows. 

The focus of the contribution entitled “Untargeted approaches in food-omics: the potential of 
comprehensive two-dimensional gas chromatography/mass spectrometry” was on untargeted processing 
approaches currently adopted to explore the complex data matrices produced by the GC×GC-MS 
when adopted in food-omics investigations. In this review, it was found that the increased 
separation space offered by GC×GC coupled with MS feature alignment can detect/identify 
“unknown – knowns” while providing the means to obtain the total, detectable metabolome in 
agricultural crops and food. 

The latest contribution, entitled “Comprehensive two-dimensional gas chromatography as a boosting 
technology in food-omics investigations” was focused on the role that GC×GC can play within the 
investigation workflows of food-omics and related disciplines and sub-disciplines, including food 
metabolomics, nutrimetabolomics, sensomics, and food safety, which require a truly comprehensive 
approaches to capture compositional complexity of samples and to establish robust correlations to 
better understand complex biological phenomena. The potential of GC×GC to tackle 
compositional challenges and dedicated data processing were analyzed, leading to the modern 
concepts of individual/personalized investigations. 

 



Page | 415  

 

Research papers followed a rational progression by investigating critical steps of the whole 
analytical process matching for full automation, robustness and an increased informative potential: 
sample preparation, separation and detection, data processing and quantitative analysis.  

In particular, the study entitled “Highly informative fingerprinting of extra-virgin olive oil volatiles: The 
role of high concentration-capacity sampling in combination with comprehensive two-dimensional gas chromatography” 
showed how high concentration capacity HS sampling could successfully be integrated in a 
GC×GC-TOF MS platform for highly informative fingerprinting of the complex EVOO 
volatilome. The influence of different variables on extraction effectiveness was shown, focusing on 
potent odorants and/or on key-markers known to be correlated with oil sensory defects. SPME 
with a multi-component fiber confirmed its good quali-quantitative coverage of the different 
chemical dimensions present in the EVOO volatilome. Moreover, it was indicated that, to derive 
consistent and accurate quantitative considerations, HS linearity should be accomplished at the 
sampling stage.  

The paper entitled “Chromatographic fingerprinting by template matching for data collected by comprehensive 
two-dimensional gas chromatography” delineated the operative protocol for the application of the 
template matching approach, enabling 2D pattern recognition in a very effective, specific, semi-
automatic and intuitive way. The visual approach, moreover, is able to completely change the 
perspective on chromatograms interpretation and elaboration, and it was applied to demonstrate 
its effectiveness to compare EVOOs from different Italian regions. This contribution will be soon 
available as a “video protocol” freely accessible (open-access). 

The publication “Untargeted and Targeted Fingerprinting of Extra Virgin Olive Oil Volatiles by 
Comprehensive Two-Dimensional Gas Chromatography with Mass Spectrometry: Challenges in Long-Term 
Studies” focuses on the complex volatile fraction of EVOO and addresses 2D-peak patterns 
variations, including MS signal fluctuations, as they may occur in long-term studies where pedo-
climatic, harvest year or shelf-life changes are studied. 2D-pattern misalignments were forced and 
simulated by changing chromatographic settings and MS acquisition, and all procedural steps, 
preceding pattern recognition by template matching, were analyzed defining a rational workflow to 
accurately re-align patterns and analytes metadata. S/R detection threshold, reference spectra 
extraction, and similarity match factor threshold are critical to avoid false-negative matches, while 
distance thresholds and polynomial transform parameters are key for effective template matching. 
The accuracy reached for the combined untargeted and targeted (UT) fingerprinting was 97.9 %.  

“A step forward in the equivalence between thermal and differential-flow modulated comprehensive two-
dimensional gas chromatography methods” investigated the performances of differential flow modulation 
as valid alternative to thermal modulation, especially in routine applications. Six different columns 
configurations were systematically evaluated for the flow-modulated counterpart and the set-up 
providing best performances (20 m x 0.18 mm dc x 0.18 μm df + 1.8 m x 0.18 mm dc x 0.18 μm df) 
was further evaluated to assess method sensitivity, linearity, accuracy, and pattern reliability. The 
experimental results convincingly showed that the method translation procedure was effective, 
allowing a successful transfer of target analytes template metadata. However, the need for higher 
flows to the 2D of a FM system, at least to achieve adequate separation power, slightly limits system 
performances resulting either in an equivalent sensitivity and quantitation consistency at the cost of 
~20 % separation power.  

The study “Exploring the extra-virgin olive oil volatilome by adding extra dimensions to comprehensive two-
dimensional gas chromatography and time of flight mass spectrometry featuring tandem ionization: validation of 
ripening markers in headspace linearity conditions” explored the complex EVOO volatilome by combining 
HS-SPME, applied under HS linearity conditions, to GC×GC-TOF MS featuring hard and soft 



Page | 416 

 

ionization in tandem. Multiple analytical dimensions were combined in a single run and evaluated 
in terms of chemical dimensionality, method absolute and relative sensitivity, identification 
reliability provided by spectral signatures acquired at 70 and 12 eV, and dynamic and linear range 
of response provided by soft ionization. Method effectiveness was validated on a sample set of oils 
from Picual olives (Altipiano de Granada, Spain) harvested at different ripening stages. Markers (3,4-
diethyl-1,5-hexadiene (RS/SR), 3,4-diethyl-1,5-hexadiene (meso), (5Z)-3-ethyl-1,5-octadiene, (5E)-
3-ethyl-1,5-octadiene, (E,Z)-3,7-decadiene and (E,E)-3,7-decadiene, (Z)-2-hexenal, (Z)-3-hexenal 
and (Z)-3-hexenal, (E)-2-pentenal, (Z)-2-pentenal, 1-pentanol, 1-penten-3-ol, 3-pentanone, and 1-
penten-3-one) and quality indexes ((Z)-3-Hexenal/Nonanal, (Z)-3-Hexenal/Octane, (E)-2-
Pentenal/Nonanal, and (E)-2-Pentenal/Octane) were confirmed for their validity in HS linearity 
conditions. For the complex olive oil volatilome, the proposed approach offered concrete 
advantages for the validation of the informative role of existing analytes while suggesting new 
potential markers to be studied in larger sample sets. 

“Chromatographic fingerprinting enables effective discrimination and identitation of high-quality Italian extra-
virgin olive oils” was focused on the high-quality food authentication, a challenging process that takes 
advantages by highly informative chromatographic fingerprinting and its identitation potential. In this 
study, the unique chemical traits of the complex volatile fraction of EVOO from Italian production, 
was captured by GC×GC-TOF MS and explored by pattern recognition algorithms. The consistent 
re-alignment of untargeted and targeted features over 73 samples, including oils obtained by 
different olives cultivar (n=24), harvest years (n=3) and processing technologies, provided solid 
foundation for samples identification and discrimination based on production Region (n=6). 
Through a dedicated multivariate statistics workflow, identitation was achieved by two-level PLS 
regression, that highlighted Region diagnostic patterns accounting between 58 and 82 of untargeted 
and targeted compounds, while samples classification was by sequential application of SIMCA 
models, one for each production Region. Samples were correctly classified in five of the six single-
class models and quality parameters (i.e., sensitivity, specificity, precision, efficiency, and area under 
the receiver operating characteristic curve (AUC)) were equal to 1.00.  

“Delineating the extra-virgin olive oil aroma blueprint by multiple headspace solid phase microextraction and 
differential-flow modulated comprehensive two-dimensional gas chromatography” was focused on the adoption 
of comprehensive two-dimensional gas chromatography with parallel mass spectrometry and flame 
ionization detection (GC×GC-MS/FID) to enable effective chromatographic fingerprinting of 
complex samples by comprehensively mapping untargeted and targeted components. The 
complementary characteristics of MS and FID opened the possibility of performing multi-target 
quantitative profiling with great accuracy. In this study, untargeted/targeted (UT) fingerprinting of 
EVOO volatile fractions was combined with accurate quantitative profiling by multiple headspace 
solid phase microextraction (MHS-SPME), highlighting and measuring the inaccuracy of the largely 
adopted approach that uses single internal standardization for quantitative purposes. Subsequently, 
external calibration on fifteen pre-selected analytes and FID predicted relative response factors 
(RRFs) enabled the accurate quantification of forty-two analytes in total, including key-aroma 
compounds, potent odorants, and olive oil geographical markers. Finally, through odor activity 
values (OAVs), the sensory contribution of the quantified analytes was integrated in the process, 
and the MHS-SPME-GC×GC-MS/FID method was here adopted as an artificial intelligence smelling 
machine to delineate EVOOs aroma blueprints. 
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