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1 Introduction

In 1949 the British chemist Toms reported that the turbulent drag could be
reduced by up to 80% through the addition of minute amounts (few tenths of
p.p.m. in weight) of long-chain soluble polymers to water. This observation
triggered an enormous experimental activity to characterize this phenomenon
(see, e.g., [1][2][3][4][5]). In spite of these e⇥orts, no fully satisfactory theory of
drag reduction is available yet. However, a recent breakthrough has been the
observation of drag reduction in numerical simulations of the turbulent channel
flow of viscoelastic fluids [6]. Most of the features of experimental flows of
dilute polymer solutions are successfully reproduced by these models, even at
the quantitative level [7][8].

Here we present the results of an extensive numerical investigation of the
viscoelastic turbulent Kolmogorov flow. This flow is realized by driving the
fluid through a parallel force with a sinusoidal profile. We will show that drag
reduction takes place notwithstanding the absence of material boundaries.

2 The viscoelastic turbulent Kolmogorov flow

To describe the dynamics of a dilute polymer solution we first consider the linear
viscoelastic model (Oldroyd-B) [9]

↵tu + (u ·⌃)u = �⌃p + ⌅0�u +
2� ⌅0

⌥
⌃ · ⌃ + F (1)

↵t⌃ + (u ·⌃)⌃=(⌃u)T · ⌃ + ⌃ · (⌃u)� 2
⌃ � 1

⌥
+ ⇥�⌃, (2)

where ⌃ is the conformation tensor of polymers ⌃ij = ⌅RiRj⇧/R2
0, being R the

end-to-end separation and R0 the equilibrium gyration radius of the polymer
molecule. The parameter ⌥ is the (slowest) polymer relaxation time. (⌃u)ij =
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Figure 1: Mean velocity profiles for a Newtonian (� = 0) and a viscoelastic
simulation (� = 0.3, El = 0.019) at given forcing amplitude F = 1.5. The
measured profiles are undistinguishable from ⌅ux⇧ = U cos(z/L) (full lines) in
both cases. The e⇥ect of elasticity is to increase the peak value U with respect
to the Newtonian case: in the present case this corresponds to a reduction of
the drag coe⇧cient, defined in eq. (3), of about 40%. In the inset, the pro-
files of the Reynolds stress ⌅uxuz⇧ = S sin(z/L) and the mean polymer stress
2⌅0�⌥�1⌅⌃xz⇧ = �T sin(z/L). In this case the Reynolds stress is reduced upon
polymer addition to approximately 70% of its Newtonian value, consistently
with experimental results at comparable drag reduction. The ”missing” turbu-
lent shear stress is compensated by the contribution of the polymer stress: the
sum of S and T is equal to F in both the Newtonian and viscoelastic case. Data
result from the numerical integration of eqs. (1) and (2) in a periodic cube of side
2⇧ by means of a fully dealiased pseudospectral code with 643 collocation points.
The mean flow lengthscale is L = 1 and the viscosity is ⌅ = 0.015625. Start-
ing from an initial configuration with a small amount of energy on the smallest
modes, after the system evolved into a statistically stationary state, time aver-
ages over 100 to 1000 eddy-turnover times have been performed to obtain the
mean velocity profiles.

↵iuj and 1 is the unit tensor. The solvent viscosity is denoted by ⌅0 and � is the
zero-shear contribution of polymers to the total solution viscosity ⌅ = ⌅0(1+ �).
The di⇥usive term ⇥�⌃ is added to prevent numerical instabilities [10]. The
forcing F maintains the system in a statistically stationary state and has the
form Fx = F cos(z/L), Fy = Fz = 0.

As shown in Fig. 1 the mean velocity profile measured in numerical exper-
iments is ⌅ux⇧ = U cos(z/L), ⌅uy⇧ = ⌅uz⇧ = 0, where ⌅· · ·⇧ denotes the time
average. The drag coe⇧cient is thus defined in terms of the centerline mean
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velocity as

f =
FL

U2
. (3)

As shown in Fig. 2 the viscoelastic flow is characterized by drag reduction for
several values of fluid parameters (for further details see Ref. [11])
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Figure 2: The drag coe⇧cient for di⇥erent viscoelastic fluid parameters.

3 The limit of strong polymer elongation

An even simpler model of viscoelastic flow is obtained by taking the limit of
strong polymer elongation, or, equivalently, of vanishingly small equilibrium
gyration radius [12]. In this case the governing equations take the following
form:

↵tu + (u ·⌃)u = �⌃p + ⌅0�u +
2� ⌅0

⌥
R ·⌃R + F (4)

↵tR + (u ·⌃)R=R ·⌃u� R
⌥

+ ⇥�R (5)

where R denotes the typical end-to-end separation of a polymer molecule.
In spite of the crude approximation, drag reduction is observed in this system

as well, as shown in the table below. These results point to the conclusion that
the basic mechanism for drag reduction does not depend neither on boundary
conditions nor on the particular choice of the model.
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⌥ ⌅u⇤2x ⇧ ⌅u⇤2y ⇧ ⌅u⇤2z ⇧ U DR[%] f f̃ �⌥R �⌥P ⌅e µe

0.1 4.01 3.21 3.56 3.57 0 0.16 0.1 2.0 0 0.57 0
1 4.01 3.1 3.74 3.64 3.8 0.15 0.1 2.0 0 0.55 0
2 3.78 2.72 3.32 3.61 2.2 0.15 0.12 1.97 0.06 0.55 0.02
4 4.16 2.11 2.27 4.04 28.1 0.12 0.16 1.80 0.22 0.45 0.05
5 4.25 1.81 1.98 4.25 29.4 0.11 0.19 1.72 0.3 0.40 0.07
10 5.89 1.41 1.36 5.31 54.8 0.07 0.21 1.5 0.54 0.28 0.10
⇤ 8.81 0.78 0.80 8.66 83 0.03 0.26 0.69 1.29 0.08 0.15

Table 1: Results from the integration of Eqs. (4) and (5) at Sc = 100 and
F = 2. The columns are: the polymer relaxation time ⌥ , the velocity variance
in the three directions, the centerline mean velocity U , the drag reduction DR,
the friction factor f , the ratio between energy input and velocity fluctuations
f̃ = (FU/2)/u3

rms, the peak Reynolds stress ⌥R = �⌅uxuz⇧, the peak polymer
stress ⌥P = 2�⌅⌥�1⌅RxRz⇧, the eddy viscosity defined by ⌥R = ⌅e↵z⌅ux⇧, and
the e⇥ective polymer viscosity defined by ⌥P = µe↵z⌅ux⇧.
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