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Chapter 1

Introduction

Measurements are the fundamental tool of physics. In the past, to every progress in
measurement capability, progresses corresponded both in fundamental science and tech-
nology, especially in the Quantum Mechanics (QM) framework.

In the last decades, novel quantum measurement paradigms have been introduced,
paving the way to the fast, widespread development of quantum technologies, e.g. Quan-
tum Information, Quantum Metrology, and Quantum Sensing. In particular, the recent
scientific progress in quantum optics, atomic physics and nanotechnologies concerning the
generation and manipulation of single quantum systems, gave rise to a second quantum
revolution, based on the specific QM principles pertaining such systems, with predictions
of a huge economic and social improvement in the next future.

Currently, the cutting-edge quantum technology is quantum cryptography [1–4]. Quan-
tum key distribution (QKD) [5] devices, already marketed by a few companies, received
a huge interest due to the need of communication security in our society. This is due to
the fact that QKD security is granted by the laws of QM, differently from “traditional”
cryptography algorithms, where the security is only computational and can be compro-
mised by hardware progresses. Indeed, the security of present cryptographic protocols, as
the Rivest-Shamir-Adleman (RSA) [6], can be threatened by the development of another
relevant quantum technology, i.e. quantum computation [5].

Quantum computers allow resolving particular computational tasks much more effi-
ciently with respect to their classical counterparts, the most relevant example being the
implementation of Shor’s algorithm [7], exploiting QM for factorizing prime numbers in a
polynomial time with respect to the input length, instead of the exponential one needed
by classical computers. At the state of the art, there are different approaches for re-
alizing quantum processors [8–11] and, recently, the so-called quantum supremacy was
achieved [12], i.e. the certification of a dramatic increase in speed compared with all
known classical algorithms.

Quantum technologies look promising also in other frameworks. An emblematic exam-
ple is represented by quantum enhanced measurement, e.g. quantum imaging and quantum
sensing [13], developed in the last years and allowing to go beyond the limits of their re-
spective classical counterparts. For example, quantum imaging techniques are able to
surpass the so-called shot noise resolution limit [14,15], finding several applications in sce-
narios where there is a requirement for low-photon-flux illumination (e.g. with biological
samples).

Finally, quantum technologies play a relevant role in the so-called “blue sky” research.
To give an example, by exploiting quantum optics [16, 17] techniques it is possible to go
beyond the standard quantum limit in interferometry [18], allowing better signal-to-noise
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CHAPTER 1. INTRODUCTION

ratios in experimental setups for detecting gravitational waves [19], or for testing quantum
gravity theories [20].

During my PhD studies, I exploited the techniques of quantum optics in order to
inspect some aspects of QM foundations. In particular, I was involved in experimental
research for novel measurement paradigms in QM applied onto single- and two-photon
states, investigating quantum correlations such as the entanglement, temporal correlations,
etc.

This thesis, is structured as follows: after this introductory chapter about the the QM
formalism, in chapter 2 I describe the quantum optics techniques mostly exploited during
my PhD work. Then, in chapters 3, 4 and 5 I present the experiments in which I was
involved, regarding the study and the utilization of quantum correlations for achieving
novel paradigm of measurements in QM. Finally, the conclusions are discussed in chapter
6.

1.1 The Quantum Mechanics postulates

Here we introduce the key concepts of the mathematical formulation of QM, together
with the peculiar QM properties stemming from them, that will be used in the rest of this
thesis.

1.1.1 Quantum states

Postulate I: Associated with any isolated physical system is a complex vector space with
inner product (i.e. a Hilbert space) known as the state space of the system. The system
is completely described by its state vector, which is a unit vector in the system’s state space.

Into a n-dimensional Hilbert space H, it is possible to identify infinite sets composed
of n vectors |φi〉, that follow the properties:

〈φi|φj〉 = δij
n∑
i=1

|φi〉〈φi| = 1n
(1.1)

where 〈φi|φj〉 is the inner product between the vectors |φi〉 and |φj〉, |φi〉〈φi| indicates
the external product between 〈φi| and |φi〉, δij is the Kronecker delta, and 1n is the n-
dimensional identity matrix. Each set B = {|φi〉} composed by n vectors satisfying the
conditions in Eq. 1.1 is (by definition) a complete orthonormal basis for the space H.

A pure state |ψ〉 ∈ H can be described as a linear combination of the vectors belonging
to a complete orthonormal basis B:

|ψ〉 =
n∑
i=1

αi|φi〉 , αi ∈ C :
n∑
i=1

|αi|2 = 1 (1.2)

Furthermore, a physical system can be in a mixed state, i.e. a statistical mixture of pure
states ρ =

∑
i ci|ψi〉〈ψi|, with ci ∈ [0; 1] and

∑
i ci = 1. The quantity ρ takes the name of

density operator, and it will be discussed in section §1.2.
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1.1. THE QUANTUM MECHANICS POSTULATES

1.1.2 Quantum observables

Postulate II: With each observable physical quantity A it is associated a self-adjoint
operator Â, defined on the Hilbert space H. The ensemble of the possible measurement
outcomes of A is given by the eigenvalues spectrum of the operator Â.

Since Â is self-adjoint, it is a linear operator. Then, if it has finite dimensions, it
can be decomposed in a matrix form with respect to any basis of H, and its spectrum
consists of real eigenvalues only. The set of the Â eigenvectors |v〉, i.e. the vectors defined
by the eigenvalues equation Â|v〉 = v|v〉 (where v is the eigenvalue corresponding to the
eigenvector |v〉), constitutes a basis for H.

Two operators Â, B̂ ∈ H are said to commute if it is valid the relation:[
Â, B̂

]
= (ÂB̂ − B̂Â) = 0 (1.3)

In this case, they also share the same eigenvectors basis. From this point, the hat over the
operators will be implied in order to simplify the notation.

1.1.3 Quantum measurement

Postulate III: A measurement in QM is described by a complete set {Mm} of operators
[21] in H, where the subscript m indicates one of the possible measurement outcomes.
The measurement entails the collapse of |ψ〉 onto the eigenspace to which the eigenvector
corresponding to the obtained eigenvalue belongs:

|ψ′〉 =
Mm|ψ〉√

〈ψ|M †mMm|ψ〉
(1.4)

In order to be complete, the set {Mm} must obey the relation
∑

mM
†
mMm = 1. The

probability to obtain the outcome m is given by:

p(m) = 〈ψ|M †mMm|ψ〉 (1.5)

1.1.4 Quantum systems evolution

Postulate IV: The evolution of a closed quantum system is described by a unitary trans-
formation.

Being the system at time t1 in the state |ψ(t1)〉, the evolution postulate states that, at
time t2, the system will evolve as:

|ψ(t2)〉 = U(t1, t2)|ψ(t1)〉 (1.6)

where U(t1, t2) is a unitary operator.
This postulate can be rephrased by exploiting the Schrödinger equation, i.e. the evo-

lution of a closed quantum system is described by:

i~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉 (1.7)

where ~ is the reduced Planck constant, and H is the operator corresponding to the system
Hamiltonian.
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CHAPTER 1. INTRODUCTION

1.2 Density operator

An alternative representation of a quantum system can be obtained by using the density
operator formalism [5]. Given a generic quantum state |ψ〉, its corresponding density
operator is:

ρ =
∑
i

pi|ψi〉〈ψi| , pi ∈ [0, 1] :
∑
i

pi = 1 (1.8)

where pi is the probability associated with the pure state |ψi〉.
The QM postulates can be rewritten for this formalism. For example, the temporal

evolution of the ρ in Eq. 1.8 is given by:

ρ(t1) =
∑
i

pi|ψi(t1)〉〈ψi(t1)| U−→ ρ(t2) =
∑
i

piU |ψi(t1)〉〈ψi(t1)|U † = Uρ(t1)U † (1.9)

where, again, U is the unitary operator presented above.
By definition, a density operator must satisfy the following properties:

• being a self-adjoint operator;

• being semi-definite positive;

• having unit trace (Tr [ρ] = 1).

It follows from the definition of ρ that:

Tr
[
ρ2
]{= 1 for pure states

< 1 for mixed states
(1.10)

Another useful property is that, as stated from the 2nd QM postulate, the density
matrix elements can be expressed with respect to any basis composed by the external
product between the elements of a physical observable eigenvectors set. that will be used
in the rest of this thesis.

1.3 The qubit: the quantum-mechanical extension of the bit

In computer language, the bit is a classical state able to assume value 0 or 1, and it
represents the foundation of classical computation. In QM, the concept of bit is extended
to the quantum bit (qubit). Starting from a two-level quantum system and fixing the
computational basis {|0〉, |1〉}, the qubit si defined as:

|ψ〉 = α|0〉+ β|1〉 , α, β ∈ C : |α|2 + |β|2 = 1 (1.11)

Being |eQ1 〉 and |e
Q
2 〉 two vectors forming a complete orthonormal basis for the qubit Q,

a N qubits state can be expressed as a function of the complete orthonormal basis B, whose
elements are given by the tensorial products of the N qubits basis vectors. Therefore, for
N = 2, the whole state of the qubits A and B is:

|ψAB〉 =
2∑
i=1

2∑
j=1

αij |eAi 〉 ⊗ |eBj 〉 , αij ∈ C :
∑
i,j

|αij |2 = 1 (1.12)

In the following, we will use the notation |eiej〉 ≡ |eAi 〉 ⊗ |eBj 〉, in which it is implicit that
the left element belongs to the A qubit basis, while the right one belongs to the B qubit
basis.

4



1.4. ENTANGLEMENT

The qubit is the foundation element of quantum information, and it grants several
advantages with respect to its classical counterpart, e.g. the fact that it is not bound to be
either “0” or “1”, but it can be found in a state that is a superposition of the two. This fact
is at the base of quantum parallelism [5], one of the key features of quantum computers,
granting than the possibility to solve several computational problems in a much more
efficient way with respect to their classical counterparts.

Another fundamental resource for quantum computation (as well as for other quantum
technologies) is represented by quantum correlations within a multi-qubit system, e.g. the
entanglement, described in the following section.

1.4 Entanglement

A multi-partite pure quantum state is defined entangled if it cannot be expressed as
a tensorial product of mono-partite subsystems, i.e. if it is not separable. Analogously,
exploiting the density operator formalism, a quantum state is entangled if its density matrix
cannot be decomposed as a tensorial product of mono-partite density operators. In the
case of bipartite states, this relation can be written as:

ρ(AB) is entangled ⇐⇒ ρ(AB) 6=
∑
i,j

ωijρ
(A)
i ⊗ ρ(B)

j , ∀ωij ∈ [0; 1] :
∑
i,j

ωij = 1

(1.13)
An example of entangled two-qubit states is given by the Bell states [5], that form a

complete orthonormal basis in C4:

|φ+〉 =
|00〉+ |11〉√

2

|φ−〉 =
|00〉 − |11〉√

2

|ψ+〉 =
|01〉+ |10〉√

2

|ψ−〉 =
|01〉 − |10〉√

2

(1.14)

Historically, |ψ−〉 is dubbed singlet state, while the three remaining Bell states are called
triplet states, in analogy with the case of two entangled spin-1/2 particles.

The most important property of an entangled state is that, if one measures just one
of the subsystems, the whole state collapses. For example, taking into account the singlet
state |ψ−〉, if the outcome of the measurement of the first qubit is 0 (1), then the second
one collapses onto the state |1〉 (|0〉) even without undergoing a measurement.

Such property is due to the non-local behavior of QM, i.e. actions on a subsystem can
affect the other subsystems of the global state, even though they are space-like separated.
This opened a strong debate in the last century, started by the well known article of Ein-
stein, Podolsky and Rosen (EPR) [22], because at that time this was in plain disagreement
with the idea of completeness of a physical theory. Even if the debate whether QM is a
complete theory and probabilities have a non-epistemic character (i.e. nature is intrinsi-
cally probabilistic) or whether it is a statistical approximation of a deterministic theory
and probabilities are due to our ignorance of some parameters (i.e. they are epistemic)
dates to the beginning of the theory itself, the EPR paper rose this question by considering
an explicit example [22]. For this purpose, they introduced the concept of “element of
reality” according to the following definition: if, without disturbing in any way a system,
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CHAPTER 1. INTRODUCTION

one can predict without any uncertainty the value of a physical quantity, then there is an
element of physical reality corresponding to this quantity (i.e. introducing the hypothesis
of realism). They formulated also the reasonable hypothesis (in light of special relativity)
that any non-local action was forbidden. A theory is complete when it describes every
element of reality.

They concluded that either one of their premises was wrong or Quantum Mechanics
was not a complete theory, in the sense that not every element of physical reality had a
counterpart in the theory.

More in details, they considered a system consisting of two particles prepared in a state
such that the sum of their momenta (p1 +p2) and the difference of their positions (x1−x2)
were both defined at the same time (situation possible in QM, since they correspond to
commuting operators). The case in which (x1−x2) and (p1 +p2) have eigenvalues a and 0,
respectively, is described in QM by a Dirac delta function δ(x1−x2−a). This is an example
of an entangled state: a state of two or more particles which cannot be factorized in single-
particle states. By measuring the position of particle 1 (2), one can predict with certainty
the position of particle 2 (1), without disturbing it in any way (although, at the moment of
the measurement, the two particles might be very far from each other). Position of particle
2 (1) is therefore an element of reality, according to the previous definition. On the other
hand, a measurement of particle 1 (2) momentum allows one to infer momentum of particle
2 (1) without acting on it, thus also momentum of particle 2 (1) must be an element of
reality. Anyway, according to QM position and momentum are conjugate variables, and
perfect knowledge of one of them implies complete ignorance on the value of the other:
therefore, QM cannot predict all elements of reality, and thus it cannot be a complete
theory.

Within this debate emerged the development of the so-called local hidden variable theo-
ries: namely, of the proposal that there exists a deterministic (and local) theory describing
nature, where the precise value of all the observables of a physical system are fixed by some
unknown variables (the hidden variables). Quantum Mechanics would only be a statistical
approximation of this theory.

After some decades, Bell proved [23] that the quantum phenomena cannot be explained
by any local hidden variable theory, by introducing a set of inequalities that only non-
classical states can violate. In order to explain this concept, I will illustrate the Clauser-
Horne-Shimony-Holt (CHSH) inequality [24], one of the best known Bell inequalities.

Imagine it is performed an experiment, schematized in Fig. 1.1, involving two observers:
Alice and Bob. A third person, Charlie, prepares two-particle states. It does not matter
how he prepares the particles, just that he is able to repeat the experimental procedure
which he uses. Once he has performed the preparation, for each copy of the state he sends
one particle to Alice, and the other one to Bob.

Once Alice receives her particle, she performs a measurement on it. She has avail-
able two different measurement apparatuses, so she can choose to do one of two different
measurements. These measurements are of physical properties which are labeled PQ and
PR respectively. She does not know in advance which measurement she will perform, be-
cause it is chosen randomly for each particle. Here, it is supposed for simplicity that the
measurements can each have one of two outcomes, ±1.

Suppose also that Alice’s particle has a value Q for the property PQ. Q is assumed to
be an objective property of Alice’s particle, which is merely revealed by the measurement,
much as we imagine the position of a tennis ball to be revealed by the particles of light
being scattered off it. Similarly, let R denote the value revealed by a measurement of the
property PR.

6



1.4. ENTANGLEMENT

Figure 1.1: Schematic experimental setup for the Bell inequalities. Alice can choose to
measure either Q or R, and Bob chooses to measure either S or T . They perform their
measurements simultaneously. Alice and Bob are assumed to be space-like separated, i.e.
far enough apart that performing a measurement on one system can not have any effect
on the measurement results on the other.

Analogously, Bob randomly measures one fo the two properties PS or PT , achieving
the corresponding existing value S or T , each taking value ±1.

The timing of the experiment is arranged so that Alice and Bob do their measurements
simultaneously (or, more precisely, in a causally-disconnected manner). Therefore, Alice’s
measurement cannot disturb the result of Bob’s one (or vice ve), since physical influences
cannot propagate faster than light.

Now, let us consider the quantity:

I ≡ RS +QS +RT −QT = (R+Q)S + (R−Q)T (1.15)

Since R,Q = ±1, then either (R + Q)S = 0 or (R − Q)T = 0. In either case, it follows
that I = ±2.

Next, suppose that p(q, r, s, t) is the probability that, before the measurements are per-
formed, the system is in a state where Q = q, R = r, S = s, and T = t. These probabilities
can depend on how Charlie prepares the two-particle states, and on experimental noise.
Then the expectation value of the quantity I defined in Eq. 1.15 is:

E(I) =
∑
q,r,s,t

p(q, r, s, t)(rs+ qs+ rt− qt)

≤
∑
q,r,s,t

p(q, r, s, t)× 2 = 2
(1.16)

In addition, one can reformulate E(I) as:

E(I) =
∑
q,r,s,t

p(q, r, s, t)rs+
∑
q,r,s,t

p(q, r, s, t)qs+
∑
q,r,s,t

p(q, r, s, t)rt−
∑
q,r,s,t

p(q, r, s, t)qt

= E(RS) + E(QS) + E(RT )− E(QT )

(1.17)

Comparing the Eqs. 1.16 and 1.17, one obtains the CHSH inequality:

E(RS) + E(QS) + E(RT )− E(QT ) ≤ 2 (1.18)

7



CHAPTER 1. INTRODUCTION

By repeating the experiment many times, Alice and Bob can determine each quantity
on the left hand side of the CHSH inequality. For example, after finishing a set of experi-
ments, Alice and Bob get together to analyze their data. They look at all the experiments
where Alice measured PQ and Bob measured PS . By averaging over this sample, they can
estimate E(QS) to an accuracy only limited by the number of experiments they performed.
Analogously, they can estimate all the other quantities on the left hand side of the CHSH
inequality, and then check whether it is fulfilled in a real experiment.

However, if Charlie starts to produce quantum entangled bipartite states, e.g. identical
copies of the singlet state |ψ−〉 defined in Eq. 1.14, the scenario can radically change.

Suppose that Charlie sends the first qubit to Alice, and the second qubit to Bob. Then,
they perform measurements of the following observables:

Q = Z S = −Z +X√
2

R = X T =
Z −X√

2

(1.19)

where X and Z indicate the first and the third 2× 2 Pauli matrices, respectively.
Using the QM formalism, the expectation values of the observables involved in Eq. 1.18

are:
〈RS〉 = 〈QS〉 = 〈RT 〉 =

1√
2

; 〈QT 〉 = − 1√
2

(1.20)

Thus, for the singlet state, we obtain:

〈RS〉+ 〈QS〉+ 〈RT 〉 − 〈QT 〉 = 2
√

2 (1.21)

violating the CHSH inequality in Eq. 1.18.
This means that one or more of the assumptions made for the derivation of the Bell

inequality must be incorrect. There are two assumptions needed for the proof of Eq.
1.18 which are questionable. The first assumption is that the involved physical properties
have definite values, which exist independently with respect to a possible observation.
This is known as the assumption of realism. The second one is that Alice performing her
measurement does not influence the result of Bob’s measurement, known as the assumption
of locality.

These two assumptions together are known as local realism. Intuitively, they are plausi-
ble assumptions about how the world works, and they fit our everyday experience. However,
Bell inequalities show that at least one of these assumptions is not correct.

Experimentally, the violation of a Bell’s inequality exploiting entangled state is proved
by a number of works, e.g. the loophole-free ones [25, 26], demonstrating that a local
hidden variable theory cannot explain quantum phenomena.

1.5 Measurement in Quantum Mechanics

As mentioned before, measurement operations in QM follow the 3rd postulate. This
causes some peculiarities completely new with respect to classical measurement, e.g. the
wave function collapse, that makes not possible subsequent nor simultaneous measurements
of two non-commuting observables.

In this section, it is described the concept of projective measurement, that comes out
directly from the 3rd QM postulate. Furthermore, Positive Operator-Valued Measurement
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(POVM) [5] is introduced, and it is shown a formalism describing indirect measurements
in QM.

1.5.1 Projective measurements

As stated by the 3rd QM postulate, the measured state undergoes a projection onto
the eigenvector corresponding to the obtained eigenvalue. For this reason, “traditional”
quantum measurements are usually dubbed as projective measurements.

The projective measurement of a quantum observable is represented by a self-adjoint
operatorM ∈ H. It is possible to defineM by exploiting its decomposition in the projector
basis:

M =
∑
m

mΠm (1.22)

where the sum is extended to all the possible eigenvalues m of the observable spectrum,
and Πm = |φm〉〈φm| is the projection operator onto the eigenstate |φm〉, corresponding to
the eigenvalue m.

Being the system before the measurement in the quantum state represented by the
density matrix ρ, the probability to obtain as an outcome the eigenvalue m is:

p(m) = Tr [ρΠm] (1.23)

Then, following the measurement postulate, after the measurement the system collapses
into the state:

|ψ′〉 =
Πm|ψ〉√
p(m)

= |φm〉 (1.24)

where |φm〉 was defined in Eq. 1.2 .
By definition, the expectation value of a projective measurement M related to a quan-

tum observable is given by:

E(M) =
∑
m

mp(m) =
∑
m

〈ψ|Πm|ψ〉

= 〈ψ|

(∑
m

Πm

)
|ψ〉 = 〈ψ|M |ψ〉 ≡ 〈M〉

(1.25)

where, again, m indicates a possible eigenvalue (outcome), and p(m) its related probability,
defined in Eq. 1.23.

Therefore, experimentally it is required a statistically-relevant sample of N identical
copies of the state |ψ〉 for extracting the expectation value E(M), and the related uncer-
tainty is given by the standard deviation:

σM =

√
〈M2〉 − 〈M〉2

N
(1.26)

1.5.2 Positive operator-valued measure formalism

The quantum measurement postulate involves two elements. First, it provides a de-
scription for the measurement statistics, that is, the respective probabilities of the different
possible measurement outcomes defined in Eq. 1.23. Second, it gives a rule describing the
post-measurement state of the system (Eq. 1.24). However, for some applications the
post-measurement state of the system could result of little interest, with the main item of
interest being the probabilities of the respective measurement outcomes.

9
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In such instances, there is a mathematical tool known as the POVM formalism, focused
on the analysis of the measurement results. Let us consider the measurement of the state
|ψ〉 realized by the operators Mm. Exploiting Eq. 1.5, it is possible to associate with each
operator Mm the probability p(m) = 〈ψ|M †mMm|ψ〉.

Suppose to define the operator Em as:

Em ≡M †mMm (1.27)

From the 3rd postulate and elementary linear algebra, it is immediate to demonstrate that
Em is positive defined. In addition,

∑
mEm = 1 and p(m) = 〈ψ|Em|ψ〉. Thus, the set of

operators Em is sufficient to determine the probabilities of the different measurement out-
comes. Such operators are known as the POVM elements associated with the measurement,
and the complete set {Em} constitutes the POVM.

Projective measurements are a specific case of POVM, because the projectors observe
the equality Πm = Em.

1.5.3 Indirect quantum measurements

The measurement postulate and the POVM formalism do not take into account the
measurement apparatus and its interaction with the measured system. To amend this, the
indirect quantum measurement scheme is introduced.

Such scheme exploits an additional degree of freedom, in which ancillary observables
are defined able to extract information about the measured observable, by knowing the
interaction between the state |ψ〉 and the measurement device. Considering an observable of
interest (OoI) with its associated operator A in the Hilbert spaceHA, a related orthonormal
and complete basis BA is composed of the HA eigenstates |ψi〉, with i = 1, 2, . . . ,dimHA,
from which the projectors Πi = |ψi〉〈ψi| are defined.

For simplicity, in this dissertation the Hamiltonian associated with A is considered null,
being ρA0 the initial density matrix of the measured system.

The indirect measurement of the OoI is performed onto the meter operatorM acting
in the ancillary Hilbert space HM. A set of eigenvectors |xk〉, with k = 1, 2, . . . ,dimHM,
is associated with the meter, and it constitutes an orthonormal and complete basis in HM,
as stated by the 1st and the 2nd QM postulates.

Again, the Hamiltonian related toM is supposed to be null, and the meter is prepared
into the initial state |x(0)〉. Then, the meter (initial) density matrix is ρx0 = |x(0)〉〈x(0)|.

In this indirect approach, the total system T is given by the union of meter and OoI,
i.e. the global state is defined into the Hilbert space HT = HM ⊗HA.

The density matrix related to the initial state is:

ρ0 = ρx0 ⊗ ρA0 (1.28)

Therefore, the initial state of T is separable, i.e. not entangled.
The corresponding Hamiltonian is given by:

HT = HM +HA +Hint = Hint (1.29)

whereHM andHA are the meter and the OoI Hamiltonians respectively (null for simplicity,
as mentioned before), whereas Hint is the Hamiltonian describing the interaction between
measured system and measurement apparatus.

As established by the 4th QM postulate, the initial state of the total system T will
evolve in time undergoing the action of an unitary operator U in what is called pre-
measurement :

ρ0 = ρx0 ⊗ ρA0
U−→ U(ρx0 ⊗ ρA0 )U † ≡ ρ1 (1.30)
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For this evolution to be considered a pre-measurement with respect to A, the operator
U has to be able to discriminate between states that compose the basis BA = {|ψi〉} defined
above. By assuming that the initial state of the overall system |Ψin〉 = |x(0)〉⊗|ψi〉 is pure,
it evolves as:

|Ψin〉 = |x(0)〉 ⊗ |ψi〉
U−→ U(|x(0)〉 ⊗ |ψi〉) = |x(i)〉 ⊗ |ψi〉 (1.31)

where i = 1, 2, . . . ,dimHA, and the meter state |x(i)〉 acts as an indicator of |ψi〉. The
linearity of QM allows extending this treatise to the case in which the initial measured
state is in a superposition of eigenstates belonging to the basis:

|x(0)〉 ⊗ |ψ〉 U−→ U(|x(0)〉 ⊗ |ψ〉) =

dimHA∑
i=1

|x(i)〉 ⊗ |ψi〉 (1.32)

Remembering Eq. 1.30, the evolution of the total state density matrix during the
pre-measurement is given by:

ρ0
U−→ ρ1 = U(ρx0 ⊗ ρA0 )U †

=
∑
i,j

(
|x(i)〉 ⊗ |ψi〉〈ψi|ρA0 |ψj〉〈x(j)| ⊗ 〈ψj |

)
=
∑
i,j

(
|x(i)〉Πiρ

A
0 Πj〈x(j)|

) (1.33)

where Πi = |ψi〉〈ψi|.
From Eq. 1.33 one can observe that:

• The eigenstates |ψi〉 are still unchanged;

• After the pre-measurement evolution, the total system state becomes entangled;

• In general, the meter states |x(i)〉 are not eigenstates of the operator M, then the
temporal evolution correlates the state |ψi〉 with the meter one in a non-univocal
way, i.e 〈x(i)|x(j)〉 6= δij , since the states |x(i)〉 and |x(j)〉 might be non-orthogonal.

By performing a projective measurement of the meter observableM, one obtains:

ρ2 =
∑
k

(Πxk ⊗ 1A)ρ1(Πxk ⊗ 1A)

p(xk|ρ1)
(1.34)

where 1A is the unity matrix in HA, the xk are the eigenvalues of the meter eigenvectors
|xk〉 (with Πxk = |xk〉〈xk|), and p(xk|ρ1) is the probability to obtain the eigenvalue xk given
the (pre-measurement) state ρ1, defined in Eq. 1.33. Finally, by partially tracing ρ2 with
respect to the meter, it is possible to extract the information about the OoI.

An example of indirect measurement approach is given by the von Neumann proto-
col [27], presented in section §4.1.

After this brief introduction of the QM formalism foundations, in the next chapter the
quantum optics theoretical framework is presented.
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Chapter 2

From blackboard to lab: quantum
optics

Quantum optics (QO) [16, 17] is the scientific discipline that deals with optical phe-
nomena when quantization of the optical field cannot be neglected. We can recognize
three general approaches in the progressive development of the theory to light: classical,
semi-classical and quantum approach.

Despite Planck’s quanta hypothesis for the black-body radiation and Einstein’s theory
of the photoelectric effect appeared at the beginning of 20th century, the real QO devel-
opment started after the realization of the laser. The first unambiguous quantum optical
effect was introduced by Glauber [28] in 1963, with the description of new states of light
having different statistical properties to those of classical light.

Nowadays, QO phenomena are both a very important tool for studying the very foun-
dations of Quantum Mechanics, and a key feature of many rising quantum technologies.

2.1 Nonlinear optics

Nonlinear optics [16,29] is the study of phenomena that occur as a consequence of the
nonlinear behavior of a dielectric interacting with intense electromagnetic fields. Typically,
only laser light is sufficiently intense to make not-negligible the nonlinear behavior of a
dielectric. The beginning of the field of nonlinear optics is often taken to be the discovery
of second-harmonic generation by Franken et al. [30].

Nonlinear optical phenomena are “nonlinear” in the sense that they occur when the
response of a material system to an applied optical field does not depend linearly on the
intensity of the optical field. In classical electromagnetic theory, it is shown that the energy
H of electromagnetic field within a non-magnetic medium is

H =
1

2µ0

∫
d3rB2(r, t) +

∫
d3r

∫ D(r,t)

0
E(r, t) · dD(r, t) (2.1)

where D(r, t) is the electric displacement vector, while E(r, t) and B(r, t) are respectively
the electric and magnetic fields. It is possible to express D by exploiting the polarization
vector P:

D(r, t) = ε0E(r, t) + P(r, t) (2.2)

where ε0 is the vacuum dielectric constant. Moreover, one can expand the polarization
induced in the medium in a power series in E:

Pi = ε0(χ
(1)
ij Ej + χ

(2)
ijkEjEk + . . .) (2.3)
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where χ(n), (n = 1, 2, ...) is a n+1 rank tensor representing the n-th order electric suscepti-
bility. This is valid inside a non-dispersive medium or, in general, if the effective frequencies
of the field are not too close with respect the resonance frequencies of the medium.

When the susceptibility is strongly frequency-dependent, it is more natural to perform
a Fourier decomposition of both Pi and Ei, and to relate the Fourier components Pi(ω)
and Ei(ω) via a power series. Since each of the χ(n) involves a different frequency, it is
possible to rewrite Eq. 2.3:

Pi(ω1) = χ
(1)
ij (ω1;ω1)Ej(ω1) + χ

(2)
ijk(ω1;ω1 − ω2, ω2)Ej(ω1 − ω2)Ek(ω2) + . . . (2.4)

By using Eqs. 2.2 and 2.4, Eq. 2.1 becomes:

H =

∫ [
1

2µ0
B2(r, t) +

1

2
ε0E

2(r, t) +X1(r) +X2(r) + . . .

]
dr (2.5)

where
X1((r)) ≡ 1

2

∫ ∫
dωdω′ χ

(1)
ij (ω, ω′)Ei(r, ω

′)Ej(r, ω)

and

X2((r)) ≡ 1

3

∫ ∫ ∫
dωdω′dω′′ χ

(2)
ijk(ω

′′;ω − ω′, ω′)Ei(r, ω′′)Ej(r, ω − ω′)Ek(r, ω′)

The canonical quantization of the macroscopic field into a nonlinear medium is a non-
trivial problem [31–34]. For this reason, approximations are usually introduced depend-
ing on the physical system conditions. A natural choice is trying to replace E(r, t) and
B(r, t) by the corresponding free-field operators, as long as the nonlinearities are small,
provided the resulting Hamiltonian operator is Hermitian. Furthermore, when attention is
focused on a particular nonlinear process, it is possible to discard the expansion terms that
do not characterize the interaction, e.g. in second harmonic generation and parametric
down-conversion, for which only the second-order electric susceptibility is to be taken into
account.

2.1.1 Second harmonic generation

Second harmonic generation (SHG) is a process in which a monochromatic light beam
of frequency ω1, incident on a nonlinear medium, generates a new field at the harmonic
frequency ω2 = 2ω1. This process is mediated by combinations of creation and annihilation
operators (â and â†). Therefore, it can be described by using the nonlinear terms in Eq.
2.5.

The energy of the two-mode field is expressed in the reduced form as:

Ĥ =

2∑
i=1

~ωi
(
n̂i +

1

2

)
+ ~g

[
â†2â

2
1 + â†21 â2

]
(2.6)

in which subscrits 1 and 2 correspond to the fundamental and to the second-harmonic
modes, respectively, and g is the coupling constant that contains the nonlinear susceptibility
χ(2).

The Hamiltonian in Eq. 2.6 describes a process in which two photons at frequency
ω1 are absorbed in the dielectric and give rise to a new photon at the armonic frequency
ω2 = 2ω1, together with the inverse process. It is easy to see from Eq. 2.6, by using the
commutation relations among operators â, â† and n̂, that:[

n̂1 + 2n̂2, Ĥ
]

= 0 (2.7)
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therefore the sum n̂1 +2n̂2 is a constant of motion. Hence, two photons of the fundamental
mode are absorbed for every second-harmonic photon emitted.

It is convenient to replace â1 and â2 with the explicitly time-dependent operators Â1

and Â2, defined as:

Â1 = â1 expiω1t

Â2 = â2 expiω2t
(2.8)

which have the same commutation rules as â1 and â2. Therefore, Heisenberg equations of
motion for operators Â1 and Â2 become:

˙̂A1 =
1

i~

[
Â1, Ĥ

]
+
∂Â1

∂t
= −2igÂ†1Â2 (2.9)

˙̂A2 =
1

i~

[
Â2, Ĥ

]
+
∂Â2

∂t
= −igÂ2

1 (2.10)

For the Fourier expansion of these operators, it is possible to calculate the second deriva-
tives:

¨̂A1 = −2ig
(

˙̂A†1Â2 + Â†1
˙̂A2

)
= 4g2

(
n̂2 −

n̂1

2

)
Â1 (2.11)

¨̂A2 = −ig
(

˙̂A1Â1 + Â1
˙̂A1

)
= −4g2

(
n̂1 +

1

2

)
Â2 (2.12)

When a plane wave with fixed both frequency and direction propagates through the
medium, distance and time are mutually proportional, so they can be used interchangeably.
Because the interaction time t effectively corresponds to the propagation time through the
medium, provided it is sufficiently short, Â1 and Â2 can be approximated by a Taylor
expansion about t = 0. This leads to the equations:

Â1(t) = Â1(0) + t
˙̂A1(t) +

t2

2!
¨̂A1(0) + . . .

= Â1(0)− 2igtÂ†1(0)Â2(0) + 2g2t2
[
n̂2 +

1

2
n̂1

]
Â1(0) + . . .

(2.13)

Â2(t) = Â2(0) + t
˙̂A2(t) +

t2

2!
¨̂A2(0) + . . .

= Â2(0)− 2igtÂ2
1(0)− 2g2t2

[
n̂1 +

1

2

]
Â2(0) + . . .

(2.14)

up to terms of order (gt)2. These expansions are valid as long as 〈n̂1〉(gt)2 � 1.
Eqs. 2.13 and 2.14 can be exploited both to construct other operators like the photon

numbers n̂1 and n̂2, and to calculate their moments. If it is assumed that the state|ψ〉 of
the field at time t = 0 is a coherent state with complex amplitude v (that well approximates
a laser pump beam) for the first mode and the vacuum for the second mode, then:

Â1(0)|ψ〉 = v|ψ〉
Â2(0)|ψ〉 = 0

(2.15)

and it follows from Eqs. 2.13, that:

〈n̂1〉 = 〈ψ|Â†1(t)Â1(t)|ψ〉 = |v|2 − 2(gt)2|v|4 + . . . (2.16)
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〈n̂2〉 = 〈ψ|Â†2(t)Â2(t)|ψ〉 = (gt)2|v|4 + . . . (2.17)

Therefore, the intensity of the harmonic component grows with the square of both the
propagation time and the fundamental harmonic intensity.

With the same approach, it is possible to calculate the fluctuations of the photon
numbers and, by exploiting Eqs. 2.13,2.14, it follows that the differences between variance
and mean of both modes are given by [35]:

〈(∆n̂1)2〉 − 〈n̂1〉 = −2(gt)2|v|4 + . . . (2.18)

〈(∆n̂2)2〉 − 〈n̂2〉 = O
(
(gt)6

)
(2.19)

where O(x) denotes the order of magnitude. Therefore, the statistics of the second-
harmonic photons are close to Poissonian, but the fundamental mode presents a narrowing
of the photon distribution, or sub-Poissonian statistics [16], even if the effect is tiny for
small 〈n̂2〉.

2.1.2 Parametric down-conversion

Parametric down-conversion (PDC) is a nonlinear process in which a photon from a
strong pump laser is converted into two daughter photons usually called signal and idler,
under momentum and energy conservation. The whole process is summarized in Fig. 2.1.
PDC is simple to implement, well understood and it produces well-defined photons in
spatio-temporal modes at high rates. For these reasons, PDC is the most widely used
technique for generating entangled two-photon states [36] (see section §2.2).

Figure 2.1: Sketch of PDC. A pump field is propagating through a medium exhibiting a
χ(2) nonlinearity. During this interaction, a pump photon generates a pair of daughter
photons named signal and idler.

PDC-generated photon pairs were first observed between the late 1960s and the early
1970s [37–40]. One of the most significant properties of the light, that makes it a very
useful tool in several quantum technologies, is that photon pairs generated in this pro-
cess are naturally entangled. Kwiat et al. demonstrated in 1995 the first bright source of
highly entangled photons by exploiting PDC [41]. Thanks to this kind of sources, they
were increased the studies of the nature of entanglement, such as Bell tests with space-
like separated observers [42], entanglement-based quantum cryptography [43], quantum
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teleportation [44], multi-particle entanglement [45], etc. The development of these ap-
plications increased the demands on PDC-based photon sources [36]. In particular, the
spreading of these technologies took advantage of an enhancement in the production of
bulk and periodically-poled crystals.

PDC can be entirely described only using a quantum mechanical approach, but (just
for simplicity) it is possible to start by describing a classical form of a nonlinear paramet-
ric process like sum-frequency generation. Many of the relations between the classically
interacting fields will also hold for the PDC case.

If an electromagnetic field interacts with a dielectric medium, then it induces a po-
larization into the material. Usually, the response of the material can be approximated
as linear, i.e. the incoming electromagnetic field is not altered in frequency. However,
if the electromagnetic field intensity is sufficiently high, then nonlinear properties cannot
be neglected anymore. In terms of the electromagnetic field, the polarization P can be
expanded as in Eq. 2.3, depending on the electric susceptibility χ. The nonlinearity al-
lows the interaction between electromagnetic waves with different frequencies, and then
frequency conversion may occur. In the first nonlinear term (χ(2)), three electromagnetic
fields interact in a non-centrosymmetric medium and energy can be transferred from one
field to another (three-wave mixing process). To describe the PDC process it is enough to
consider this order.

The χ(2) frequency conversion can roughly be divided into two types. The first one has
two input fields and produces a single output field (SHG), the other has a single input field
that is converted into two output fields (as previously shown in Fig. 2.1). Historically,
for PDC the resulting fields have been named signal and idler, with the former having the
higher frequency.

The susceptibility χ(2) is a rank-3 tensor, and its components are defined through the
nonlinear part of the polarization and the electric field components (by exploiting Eq. 2.3):

P
(2)
i = ε0

3∑
j,k=1

χ
(2)
i,j,kEjEk (2.20)

with i = 1, 2, 3. Usually, the cartesian coordinates x, y, z are assigned to the indices values
1, 2, 3. Since the fields Ej and Ek can be permuted without changing the polarization, only
18 elements of the χ(2) tensor are linearly independent. Thus, it is possible to exploit the
3× 6 matrix Dχ(2) composed by these 18 elements for reducing the χ(2) tensor, in order to
obtain:

P
(2)
x

P
(2)
y

P
(2)
z

 = ε0Dχ(2) ×



E2
x

E2
y

E2
z

2EyEz
2ExEz
2ExEy

 (2.21)

If the nonlinear interaction couples pump, signal and idler fields with the same po-
larization, and these fields are coplanar, the process is called type-0 PDC. If signal and
idler have the same polarization (orthogonal to the pump one), then the process is labeled
type-I PDC, whereas if the two output fields are orthogonally polarized and one of their
polarizations is the same as the pump one it is called type-II PDC.

It is possible to add the nonlinear part of the polarization to the (macroscopic) Maxwell
equations, in order to derive the electric fields. Assuming collinear propagation of the waves
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along the x-direction, it follows the wave equation:

∂2E

∂x2
= −µ0

(
ε0
∂2E

∂t2
+
∂2P (2)

∂t2

)
(2.22)

In the case of sum-frequency generation, let us assume two incident monochromatic plane
waves in the form of

Ej = Aj(x)ei(ωjt−kjx) (2.23)

with j = 1, 2, frequencies ω1 and ω2, propagation constants k1 and k2, and a possible
varying amplitude Aj(x) along the propagation direction. This will induce a periodic
modulation of the polarization at frequency:

ω3 = ω1 + ω2 (2.24)

generating a new field E3 at frequency ω3. The expression for the new field can be derived
from Eq. 2.22 by replacing P (2) with the input fields E1 and E2 coupled to χ(2). The E3

amplitude along propagation direction is then:

dA3

dx
= − iω3

2n3c
djlA1A2e

i∆kx (2.25)

using the slowly varying amplitude approximation
(

d2E
dx2 � k dE

dx

)
, where n3 is the refractive

index associated with the E3 propagating field. Similar expressions can be obtained for
E1 and E2. The nonlinear coefficient djl is derived from the proper matrix Dχ(2) element
in Eq. 2.21, depending on the polarization of the fields. The wave-vector mismatch ∆k is
given by:

∆k = k3 − k1 − k2 =
n3ω3

c
− n1ω1

c
− n2ω2

c
(2.26)

By integrating Eq. 2.25, the amplitude of the generated field after a propagation distance
L results:

A3(L) = −
djlω3A1A2

2n3c

(
ei∆kL − 1

∆k

)
(2.27)

were the fields E1 and E2 are assumed constant throughout the interaction (the so-called
undepleted-pump approximation). The intensity of E3 after a length L is obtained by
exploiting the relation Ik = 1

2nkε0cEkE
∗
k , with k = 1, 2, 3. The result is:

I3(L) =
d2
jlω

2
3I1I2L

2

2n1n2n3c3ε0
sinc2

(
∆kL

2

)
(2.28)

Therefore, the efficiency of the conversion process strongly depends on ∆k. If ∆k 6= 0,
then the generated field becomes out of phase by π after an interaction length of

Lc =
π

∆k
(2.29)

which is also called the coherence length. In this case, the generated field starts to interfere
destructively, until the conversion efficiency reaches zero at length L = 2Lc. Hence, to
obtain an optimal frequency conversion, the phase-matching condition must be ∆k = 0,
so generalizing in three dimensions [36]:

k3 = k1 + k2 (2.30)
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This derivation only regards interactions where at least two fields are present, as in
sum-frequency generation. However, in a PDC interaction just one pump field is present,
and a purely classical treatment cannot explain the generation of two daughter fields. To
describe properly this phenomenon, a second-quantization formalism is needed.

As shown in Eq. 2.1, the classical Hamiltonian of an electric field can be written as:

HEM ∝
∫

dr3 E(r, t) ·D(r, t) (2.31)

By focusing only on the second order term, in the displacement vector D yields the inter-
action Hamiltonian for the χ(2) process

Hχ(2) ∝
∫

dr3 χ(2)Ep(r, t)Es(r, t)Ei(r, t) (2.32)

where p, s, i stand for pump, signal and idler respectively.
In second quantization, Eq. 2.32 becomes:

ĤPDC ∝ χ(2)

∫ L
2

−L
2

dz Ê(+)
p Ê(−)

s Ê
(−)
i + h.c. (2.33)

where the z-axis is the pump field propagation direction inside a crystal of length L,
neglecting the transverse degrees of freedom. The positive and negative frequency parts of
the quantum fields in Eq. 2.33 are defined as follows:

Ê(+)
x = Ê(−)†

x = A

∫
dωx e

i(kxz−ωxt)âx(ωx) (2.34)

where x = p, s, i, all constant factors have been merged into the overall constant A, and
âx(ωx) is the photon annihilation operator for a monochromatic frequency ωx with wave
vector component along the z axis kx. The PDC process type (0, I or II) depends on both
the applied pump field and the χ(2)-nonlinearity of the crystal. Since the incoming pump
field must be relatively strong because of the weakness of the nonlinear interaction, it can
be treated as a classical field:

E(+)
p = E(−)∗

p =

∫
dωp α(ωp)e

i(kp(ωp)z−ωpt) (2.35)

where α(ωp) describes the spectrum and the amplitude of the pump field: it can vary from
a delta function Epδ(ωp − ωc) for continuous-wave laser sources with central frequency ωc,
to more complex distributions.

In Schrödinger picture, the state generated in the PDC process can be described as
in [46]:

|ψ〉PDC = exp

[
− i
~

∫ t

t0

dt′ ĤPDC(t′)

]
|0〉 (2.36)

With a perturbation expansion, the PDC output state becomes:

|ψ〉full
PDC = |0〉 − i

~

∫ t

t0

dt′ ĤPDC(t′)|0〉+

(
i

~

)2 ∫ t

t0

dt′ ĤPDC(t′)

∫ t′

t0

dt′′ ĤPDC(t′′)|0〉+ · · ·

(2.37)
where the zero-order term describes the vacuum, the first-order term the photon-pair emis-
sion, the second-order term the double pair emission, and so on. When the pump field
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is not too intense and the probability of multi-pair generation is negligible [47, 48], it is
possible to truncate the expansion up to the first order:

|ψ〉PDC
∼= |0〉 −

i

~

∫ t

t0

dt′ ĤPDC(t′)|0〉 (2.38)

which describes the non-normalized two-photon PDC state emitted.
Exploiting Eqs. 2.33 2.34, 2.35, and 2.38, it follows [36]:∫ t

t0

dt′ ĤPDC(t′) = B

∫ t

t0

dt′
∫ L

2

−L
2

dz

∫ ∫ ∫
dωpdωsdωi α(ωp)e

−i(ωp−ωs−ωi)t′

× ei[kp(ωp)−ks(ωs)−ki(ωi)]zâ†sâ
†
i + h.c.

(2.39)

where all the constants are merged into the B term. By integrating along the z direction,
Eq. 2.39 becomes:∫ t

t0

dt′ ĤPDC(t′) = B

∫ t

t0

dt′
∫ ∫ ∫

dωpdωsdωi α(ωp)e
−i(ωp−ωs−ωi)t′

× L sinc

[
L

2
(kp(ωp)− ks(ωs)− ki(ωi))

]
â†sâ
†
i + h.c.

(2.40)

The integration over the range
[
−L

2 ,
L
2

]
assumes a pump with no extra phase factors in

the center of the crystal (a pump pulse with no additional phase factor at the beginning
of the interaction leads to an additional phase factor in the final result).

Concerning the integration over the time variable, the range can be expanded to plus
and minus infinity if one is interested in the state long before and after the interaction
inside the crystal. Then, the integration of the time-dependent part results in a delta
function 2πδ(ωp−ωs−ωi). This allows to take the integral over the pump frequencies ωp:

∫ +∞

−∞
dt ĤPDC(t) = 2πB

∫ ∫
dωsdωi α(ωs + ωi)

× L sinc

[
L

2
(kp(ωs + ωi)− ks(ωs)− ki(ωi))

]
â†sâ
†
i + h.c.

(2.41)

With the last equation, it is now possible to write the formula of the generated PDC state:

|ψ〉PDC = |0〉+B′
∫ ∫

dωsdωi α(ωs + ωi)sinc

[
L

2
∆k(ωs, ωi)

]
â†sâ
†
i |0〉

= |0〉+B′
∫ ∫

dωsdωi α(ωs + ωi)Φ(ωs, ωi)â
†
sâ
†
i |0〉

= |0〉+B′
∫ ∫

dωsdωi f(ωs, ωi)â
†
sâ
†
i |0〉

(2.42)

where ∆k(ωs, ωi) = kp(ωs+ωi)−ks(ωs)−ki(ωi), and the constant factor B′ ∝ EpL linearly
depends on the crystal lenght L and the amplitude of the pump field (Eq. 2.35).

As described before, PDC generates two-photon states with a given joint-spectral am-
plitude (JSA) f(ωs, ωi). The exact shape of the JSA is defined both by the form of the
pump distribution α(ωs, ωi), and the phase-matching function Φ(ωs, ωi) determined by the
length and the dispersion of the crystal. In Eq. 2.42 we can recover the conservation
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of energy and momentum disclosed in Eqs. 2.24, 2.30, because all the signal-idler pairs
generated satisfy the so-called phase-matching conditions:{

ωp = ωs + ωi

kp = ks + ki
(2.43)

The phase-matching conditions in Eq. 2.43 represent the ideal case of infinite crystals
(L→ +∞). For finite crystals, Eq. 2.40 gives a solution∝ sinc

[
L
2 (kp(ωp)− ks(ωs)− ki(ωi))

]
,

implying that signal and idler are emitted within slight bands of momenta k. Typically,
this contribution is negligible, because one has to consider the finite frequency bandwidth
in the experimental configuration.

and this effect can be neglected experimentally because of the mandatory filtering
performed by the photon detection.

The phase-matching conditions are subject to dispersion in the nonlinear medium,
through k = ωn(ω)/c (see also Eq.2.26). In order to satisfy the condition over the wave
vectors, polarizations and the same wave vectors of the interacting field have to be selected
such that ωpnp(ωp) = ωsns(ωs) + ωini(ωi). However, inside an isotropic bulk crystal, the
normal dispersion ensures that this is not possible while also fulfilling the condition over the
frequencies. For this reason, anisotropic materials are used, in which fields with different
polarizations undergo different refractive indices. The plane containing the optical axis and
the pump wave vector is called the principal plane, and a light beam polarized orthogonally
to that plane is denoted as ordinary (o) while a beam whose polarization lies within that
plane is dubbed extraordinary (e).

In these materials, phase-matching can be achieved for orthogonally polarized fields
through birefringent phase-matching, which is most commonly done by tuning the angle
between the crystal axes and the interacting fields. This method is also known as “critical
phase-matching”, because it is quite sensitive to deviations from optimal conditions, then
it limits the angular, spectral, and temperature acceptance bandwidth. Otherwise, angle
θ between the field vector and the optical axis of the crystal can be set to 90◦, and the
phase matching occurs by varying the temperature of the crystal. This technique is defined
non-critical phase-matching.

Angular phase matching is schematically shown in Fig. 2.2.a [36]. In Fig. 2.2.b
[36] two phase-matching possibilities are shown: type-I down-conversion of a pump beam
orthogonally polarized to the two co-polarized down-conversion fields, and type-II down-
conversion, where the down-converted fields are orthogonally polarized and one of them
has the same polarization as the pump photon.

In general, the type-0 phase-matching option, where all fields are co-polarized, cannot
be implemented in bulk materials, but is often exploited with periodically-poled crystals
in the case of collinear or quasi-collinear PDC configuration.

Inside periodically-poled crystals, the nonlinear properties are spatially modulated
along the propagation direction. The dissertation of this kind of crystals is beyond this
thesis, but the reader can see the concept of quasi-phase-matching conditions needed for
PDC in periodically-poled crystals in Ref. [49].

2.2 PDC-based sources

As quantum optics applications evolved, they placed increasing demands on photon
sources. The biggest improvement to both pair creation rate and flexibility was due to rapid
advances in nonlinear optics, specifically, the development of periodically-poled crystals.
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Figure 2.2: Parametric down-conversion in a bulk crystal. (a) Angular phase matching.
The optical crystal axis (o.a.) spans an angle θ with the pump field. The down-converted
fields emerge at angles θs and θi. (b) PDC in birefringent materials can be achieved via
type-I (top) or type-II (bottom) phase matching.

PDC is largely exploited for both single photons and entangled photon pairs production,
because it is a well-known and simple-manageable process.

2.2.1 Heralded single-photon sources

If the two photons generated by PDC can be efficiently and deterministically separated,
for example distinguishing them by their polarizations or their wavelengths, then the de-
tection of one photon heralds the presence of a correlated photon, i.e. the one belonging
to the same pair. Thus, by detecting the idler photon one has a trigger for the presence
of the signal photon from the PDC state in Eq. 2.42. In presence of a single photon, a
detector with detection efficiency η can be modeled by a “click” detection operator π̂1 and
a “no-click” non-detection operator π̂0:

π̂0 =

∫
dω |0, ω〉〈0, ω|

π̂1 =

∫
dω η|1, ω〉〈1, ω|

(2.44)

where |0, ω〉 implies vacuum at frequency ω and |1, ω〉 a single photon at the same fre-
quency. Since this dissertation concerns single photons detections, higher-photon-number
components in π̂0 and π̂1 are omitted. Most of the commonly used detectors are also called
binary, because they are not able to resolve the number of photons arriving simultaneously.

The probability of detecting the trigger photon and successfully heralding a single-
photon state depends on both the efficiency η of the detector and the spectral amplitude
of the two-photon state generated in the PDC process. Obviously, employing efficient
detectors is the simplest method for increasing the heralding efficiency. Furthermore, it is
also possible to increase the pump intensity, in order to boost the amplitude of the two-
photon component in the PDC state. However, at some point the perturbation expansion
of Eq. 2.38 breaks down, and higher-order terms have to be considered to correctly model
the process.
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Thus, the non-normalized heralded single-photon state after a successful detection event
(Eqs. 2.42, 2.44) is:

ρs = Tr [π̂1|ψ〉〈ψ|]

=

∫
dω′′t 〈ω′′t |

[
η2

∫ ∫
dωsdωt f(ωs, ωt)

∫ ∫
dω′sdω

′
t f
∗(ω′s, ω

′
t)|ωs, ωt〉〈ω′s, ω′t|

]
|ω′′t 〉

= η2

∫ ∫
dωsdω

′
s

[∫
dω′′t f(ωs, ω

′′
t )f∗(ω′s, ω

′′
t )

]
|ωs〉〈ω′s|

= η2

∫ ∫
dωsdω

′
sj(ωs, ω

′
s)|ωs〉〈ω′s|

(2.45)

In the last equation, the heralded single-photon state is described with the density matrix
entries j(ωs, ω′s), determined by the joint spectral amplitude f(ωs, ωt) of the PDC state.
The j(ωs, ω′s) density matrix already provides information concerning the purity of the
state: if it is separable, then it can be written as j(ωs, ω′s) = f(ωs)f

∗(ω′s), and the photon
is heralded in a pure state. In this case Eq. 2.45 becomes:

ρs = η2

∫ ∫
dωsdω

′
s f(ωs)f

∗(ω′s)|ωs〉〈ω′s|

= η2

∫
dωs f(ωs)|ωs〉

∫
dω′s f

∗(ω′s)〈ω′s| = |ψs〉〈ψs|
(2.46)

because pure states always correspond to circular-shaped j(ωs, ω′s) [50, 51].
To obtain further insight into the PDC process, one can exploit the Schmidt decompo-

sition theorem [5]. It states that every well-behaved normalized two-dimensional function
could be decomposed as a sum over a range of possible values mk and complete sets of
orthonormal functions gk(x) and hk(y):

f(x, y) =
∑
k

mkgk(x)hk(y) ,
∑
k

m2
k = 1 (2.47)

By exploiting this decomposition, the PDC state (Eq. 2.42) becomes:

|ψ〉PDC = |0〉+ b

∫ ∫
dωsdωt

∑
k

mkgk(ωs)hk(ωt)â
†
s(ωs)â

†
t(ωt)|0〉 (2.48)

where b is a constant for normalizing B′f(ωs, ωt), with B′ defined in Eq. 2.42. If it is
performed a basis transformation from the single-frequency modes â†s(ωs) and â†t(ωt) to
the broadband frequency modes Â†k and B̂†k, defined as:

Â†k =

∫
dωsgk(ωs)â

†
s(ωs)

B̂†k =

∫
dωthk(ωt)â

†
t(ωt)

(2.49)

then, the PDC behaves as a sum over the broadband modes Â†k and B̂†k

|ψ〉PDC = |0〉+ b
∑
k

mkÂ
†
kB̂
†
k|0〉 (2.50)

Therefore, the photon pair generated from the PDC with a given frequency distribution
f(ωs, ωt) is emitted into a superposition of strictly-correlated broadband frequency modes
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Â†k and B̂†k: if the signal one is detected in the B̂†k mode, then the heralding one is present
in mode Â†k, and vice versa.

It is possible to expand also the detection observables π̂0 and π̂1 (Eq. 2.44) in the
broadband basis of the trigger modes:

π̂0 =
∑
k

|0, hk(ωt)〉〈0, hk(ωt)|

π̂1 = η
∑
k

|1, hk(ωt)〉〈1, hk(ωt)|
(2.51)

With the last two equations, the density operator of the heralded single photon can be
written as:

ρs =
∑
k

m2
k|1, gk(ωs)〉〈1, gk(ωs)| (2.52)

Hence, after the detection process, the signal photon is projected into a statistical
mixture of broadband single-photon states with probabilities mk. The amount of possible
mk and their respective amplitudes depend on the joint spectrum of the initial PDC state.

This behavior is due to the single-photon detector, because it can not discriminate
optical modes. In principle, it is impossible to know which optical mode was responsible
for triggering the detection event. Therefore, the heralded signal photon is emitted into
a statistical mixture of broadband modes. There are different measurement standards
to characterize the purity of the heralded signal photons [36], e.g. the cooperativity [52]
K = 1/(

∑
km

4
k), which is equal to one if the signal photon is in a pure state and it increases

with the amount of mixedness, or the von Neumann entropy [53] S = −
∑

km
2
k log2m

2
k,

which ranges from zero for pure states to infinity for rising degrees of impurity.

2.2.2 Two-photon entangled states sources

The generation of entangled bipartite states is crucial for studying quantum founda-
tions. PDC allows producing polarization-entangled photon pairs by conveniently selecting
the phase-matching conditions. By using bulk PDC crystals, there are two most common
ways for creating entanglement between corresponding signal and idler photons. In Fig.
2.3 these two possibilities are shown. The first one (Fig. 2.3.a) is to exploit two identi-
cal type-I PDC crystals, with corresponding optical axes orthogonally placed. Signal and
idler have the same polarization, thus they are spatially distributed belong two concentric
cones, with the surfaces that depend on the frequency of the photons. If the thickness of
the crystals is small enough, it is impossible to know in which one signal and idler were
generated and the relative amplitudes add coherently. Thus, by selecting signal and idler
photons with frequency ωs = ωi = ωp/2, this method produces entangled photon pairs
with polarization state |ψ〉PDC−I = (|HH〉+ eiφ|V V 〉)/2.

The second one (Fig. 2.3.b) consists of using a type-II PDC crystal. Since signal
and idler are orthogonally polarized, they are spatially distributed in two non-concentric
cones, because of the different refractive index they undergo inside the crystal. As in the
previous case, the surfaces of the cones depend on the frequency of their photons. By
considering again just signal and idler with frequency ωs = ωi = ωp/2, the photon pairs
that belong to the intersections of the cones are entangled in polarization, and their state
is |ψ〉PDC−II = (|HV 〉+ eiφ|V H〉)/2.
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Figure 2.3: Sketches of entangled photon pairs production with PDC. a) The pump photon
passes through two type-I PDC crystals with orthogonal optical axes. Thus, if the crystals
are thin enough, it is impossible to know in which crystal signal and idler were generated.
If they have the same frequency (equal to the half of the pump frequency), they are in an
entangled polarization state. b) The pump photon passes throug a type-II PDC crystal.
Since signal and idler are orthogonally polarized, they are spatially distributed in two
different cones, because of the different refractive index they undergo. The photon pairs
that belong to the intersections of the two cones are in an entangled polarization state.

25





Chapter 3

Optimal estimation of entanglement
and discord in bipartite states

3.1 Quantum correlation parameters and their estimation

The presence of quantum correlations in a multi-partite state plays a crucial role in
quantum information as well as in other quantum technologies, e.g. quantummetrology and
sensing [5, 17, 54]. Therefore, characterization and quantification of quantum correlations
represent a crucial task for the development of these new technologies. Undoubtedly, the
best known example of quantum correlations is entanglement [5], but there are other kind
of non-classical correlations, e.g. quantum discord [55, 56]. In this section, I am going
to describe an experiment about entanglement and discord estimation in bipartite states,
performed by exploiting polarization-entangled photon pairs [57].

In QM, a state can be completely described by its density matrix operator [5, 54].
Each property of the state, including correlations, are described by the density matrix.
Experimentally, this operator can be reconstructed by performing a quantum state tomog-
raphy [58,59], but such a procedure requires a big amount of measurements (especially for
multi-partite states), and it is very expensive computationally.

Alternatively, it is possible to find parameters suited to quantify entanglement and
discord in particular families of multi-partite states, and efficiently implement estimation
algorithms for such parameters of interest. The aim of this work is to experimentally
demonstrate a technique for the estimation of quantum parameters quantifying the amount
of non-classical correlations within bipartite states, with the smallest uncertainty available.
This result can be achieved if one has some a priori knowledge regarding the state under
exam.

In particular, we realized a source able to prepare two-photon polarization states de-
scribed by the following density matrix:

ρth = p


0 0 0 0
0 1

2 −1
2 0

0 −1
2

1
2 0

0 0 0 0

+ (1− p)


0 0 0 0
0 1

2 0 0
0 0 1

2 0
0 0 0 0

 , p ∈ [0, 1] (3.1)

that is a mixture between the pure, maximally-entangled state |ψ−〉 = (|HV 〉− |V H〉)/
√

2
and a completely decoherent state ρmix = (|HV 〉〈HV |+ |V H〉〈V H|)/2, where H and V are
respectively the horizontal and vertical polarization components, and |XY 〉 = |X〉A⊗|Y 〉B.

In order to estimate the amount of entanglement, we considered three different param-
eters: Negativity [53, 60], Concurrence [61], Log-Negativity [53]; whereas for the discord
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we considered Quantum Geometric Discord [62].
Bennett et al. [63] demonstrated that it is possible to quantify the amount of en-

tanglement inside a bipartite quantum system in terms of the von Neumann entropy [5]
calculated with respect to one of the two subsystems. If |ψ〉 is a pure two-photon state and
ρAB = |ψ〉〈ψ| is its corresponding density operator, the amount of entanglement inside |ψ〉
is:

E(ψ) = −Tr
[
ρA log2 ρ

A
]

(3.2)

where ρA = TrB
[
ρAB

]
is the partial trace of the global density operator ρAB with respect

to the subsystem B. From Eq. 3.2 it is clear that if |ψ〉 is a separable state, then E(ψ)
would be null.

In general, a measure of the entanglement E(ρ) must have the following properties:

• E(ρ) = 0 for separable states;

• E(ρ) is maximum for maximally-entangled states;

• E(ρ) is a continuous function;

• E(ρ) is a convex function, i.e. E(λρ+ (1−λ)ρ′) ≤ λE(ρ) + (1−λ)E(ρ′), ∀λ ∈ [0, 1].

Von Neumann entropy can be exploited for measuring entanglement inside pure states
only, while for mixtures other approaches have to be introduced. Several theoretical and
experimental works have addressed this topic [64–67], providing different strategies to
efficiently estimate the amount of entanglement of a quantum state from a reduced set
of measurements [68–72], e.g. visibility measurements [73], Bell tests [24], entanglement
witnesses [74–78], Schmidt number [79–81]. Many of these techniques have also been
implemented in laboratory [82–90].

As mentioned before, we chose three parameters for entanglement and one for quan-
tum discord. For each parameter, we implemented two estimators: one optimal and the
other non-optimal (an estimator is optimal if it allows achieving the minimum uncertainty
possible).

If we consider a quantum observable O, described by the parameter λ, the theoretical
limit of the uncertainty σλ is fixed by the quantum Cramér-Rao bound:

V ar(λ) ≥ 1

MH(λ)
(3.3)

where V ar(λ) is the variance related to the parameter λ, M is the number of realized
measurements and H(λ) is the quantum Fisher information [91]. The Fisher information
is a parameter connected to the entropy of the system under exam, and it is already present
in classical information theory together with the Cramér-Rao bound, although they have
to be generalized to the quantum case.

If one classically measure the estimation parameter λ and the obtained outcome is x,
the Fisher information is defined as:

F (λ) =

∫
dx p(x|λ)

(
∂ ln p(x|λ)

∂λ

)2

=

∫
dx

1

p(x|λ)

(
∂p(x|λ)

∂λ

)2

(3.4)

Therefore, the classical counterpart of Eq. 3.3 is:

V ar(λ) ≥ 1

MF (λ)
(3.5)
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In order to rewrite Eq. 3.4 in terms of quantum operators, the system has to be
described as a function of the parameter λ by exploiting the density operator ρλ. The
estimator Oλ is a self-adjoint operator, defined in the same Hilbert space associated with
ρλ, and it describes a quantum measurement with possible outcomes x.

By using an indirect procedure as an estimation algorithm, it is introduced a greater
uncertainty over the parameter under exam with respect a direct measurement. Thus, the
aim of quantum estimation theory is to minimize this induced uncertainty.

In QM, by measuring over a complete set of positive operator-valued measures (POVMs)
[5] {Πx},

∫
dxΠx = 1, one can express the probability in Eq. 3.4 as p(x|λ) = Tr [Πxρλ],

according to the Born’s rule [27]. By introducing the Symmetric Logarithmic Derivative
(SLD) Lλ as the self-adjoint operator satisfying the following equation:

Lλρλ + ρλLλ
2

=
∂ρλ
∂λ

(3.6)

it is obtained that ∂λp(x|λ) = Tr [∂λρλΠx] = Re(Tr [ρλΠxLλ]). Thus, Eq. 3.4 can be
rewritten as:

F (λ) =

∫
dx

Re(Tr [ρλΠxLλ])2

Tr [ρλΠx]
(3.7)

For a classical measurement, the lower limit of the related uncertainty can be predicted
by using Eqs. 3.4 and 3.5. It is possible to extend this limit to the QM framework by
maximizing the Fisher information referred to a quantum measurement set by increasing
the real part inside the integral in Eq. 3.7:

F (λ) ≤
∫
dx

∣∣∣∣∣Tr [ρλΠxLλ]√
Tr [ρλΠx]

∣∣∣∣∣
2

=

∫
dx

∣∣∣∣∣Tr

[ √
ρλ
√

Πx√
Tr [ρλΠx]

√
ΠxLλ

√
ρλ

]∣∣∣∣∣
2

≤
∫
dxTr [ΠxLλρλLλ]

= Tr [LλρλLλ] = Tr
[
ρλL

2
λ

]
(3.8)

Thanks to this chain of inequalities it is demonstrated that the Fisher information is
always equal or smaller than a quantity H(λ) called quantum Fisher information (QFI):

F (λ) ≤ Tr
[
ρλL

2
λ

]
= Tr [∂λρλLλ] ≡ H(λ) (3.9)

from which Eq. 3.3 is obtained.
In the following sections, we introduce the entanglement and discord parameters exam-

ined during our experiment [57].

Negativity

Negativity is a parameter introduced for estimating the amount of entanglement inside
a bipartite quantum system. It exploits the Peres’ criterion [92], which states that any sep-
arable state must have the partial-transpose density matrix with non-negative eigenvalues.
Negativity is defined by:

N (ρ) ≡ ‖ρTA‖ − 1 (3.10)

where ρTA is the partial transpose (with respect the A subsystem) of the density operator,
while ‖X‖ = Tr

[√
XTX

]
is the trace norm of the X matrix.
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Being {|iA〉} and {|iB〉} two orthonormal and complete bases respectively for the HA
and HB subspaces, an orthonormal and complete basis for the Hilbert space where the
bipartite-state density operator is given by the tensorial product between vectors of {|iA〉}
and {|iB〉}, i.e. |iA, iB〉 ≡ |iA〉 ⊗ |iB〉. The partial transpose of the ρ matrix with respect
to the A subspace is given by:

〈iA, iB|ρTA |jA, jB〉 ≡ 〈jA, iB|ρ|iA, jB〉 (3.11)

From Eq. 3.11 immediately follows the equality Tr
[
ρTA
]

= Tr [ρ] = 1. If ρ represents a
completely-separable state, also ‖ρTA‖ = Tr

[
ρTA
]

= 1 for the Peres’ criterion. Hence, by
using the Eq. 3.10 one obtains N (ρ) = 0. Otherwise, if the state is entangled, at least one
eigenvalue µi of ρTA is negative, and it follows:

‖ρTA‖ =

4∑
i=1

|µi| =
4∑
i=1

µi + 2

∣∣∣∣∣∣
∑
µi<0

µi

∣∣∣∣∣∣ ≡ 1 +N (ρ) (3.12)

Thus, the Negativity can be expressed depending on the negative µi eigenvalues:

N (ρ) = 2

∣∣∣∣∣∣
∑
µi<0

µi

∣∣∣∣∣∣ (3.13)

Eqs.3.10 and 3.13 give a Negativity definition that is simple to implement computationally,
and show that for separable states N (ρ) = 0, otherwise N (ρ) > 0.

It is possible to demonstrate that the Negativity N is an increasing monotone function
with respect to the amount of entanglement present inside the state under exam. First, N
is a convex function. Given ρ =

∑
i piρi a density matrix referred to a mixed state, with

pi ≥ 0,
∑

i pi = 1, and where the ρi represent pure states density operators, then:

N

(∑
i

piρi

)
≤
∑
i

piN (ρi) (3.14)

because the trace norm satisfies the triangular inequality (as every norm).
By exploiting an orthonormal and complete set of projective measurements {Mi(ρ) =

piρ
′
i} onto the B subsystem, it applies that

∑
i Tr [Mi(ρ)] = Tr [ρ]. Furthermore, by

assuming that the decompositions of the projectorsMi do not exist, it follows:

Mi(ρ) = (1A ⊗Mi)ρ(1A ⊗M †i ) (3.15)

where all the Mi constitute a Kraus operator set [21], i.e. they satisfy the condition∑
iM

†
iMi ≤ 1B. From Eq. 3.15, it is evident that by construction:

Mi(ρ)TA =Mi(ρ
TA) (3.16)

Since ρTA is a self-adjoint operator, it can be decomposed as the linear combination of
two positive operators [53]:

ρTA = (1 + (N/2))ρ+ − (N/2)ρ− (3.17)

where the operators ρ±are density matrices, and N = N (ρ). By exploiting Eq. 3.16 it is
obtained:

pi(ρ
′
i)
TA =Mi(ρ)TA =Mi(ρ

TA) = (1 + (N/2))Mi(ρ
+)− (N/2)Mi(ρ

−) (3.18)

Let me introduce the following lemma:
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Lemma. For each Hermitian operator A, there exists a minimal decomposition for which
A = a+ρ

+ − a−ρ−. Hence, one has that ‖A‖ = a+ + a−, where a−(+) is the absolute value
of the A negative (positive) eigenvalues sum.

By exploiting (ρ′i)
TA defined in Eq. 3.18, it is possible both to recognize the coefficient

a− = (N/2pi) and to define N (ρ′i), where the latter is subject to the constraint N (ρ′i) ≤
(N/2pi). Finally, by multiplying by pi and by summing over the i it is obtained:∑

i

piN (ρ′i) ≤ N (ρ) (3.19)

demonstrating that the Negativity is increasing monotonically with respect to the amount
of entanglement.

Then, in order to have the maximum allowed value for Negativity one can simply
calculate its value for a maximally-entangled state, e.g. for a Bell state [5] as |ψ−〉 =
(|01〉 − |10〉)/

√
2.

ρψ− = |ψ−〉〈ψ−| =


0 0 0 0
0 1

2 −1
2 0

0 −1
2

1
2 0

0 0 0 0



ρTAψ− =


0 0 0 −1

2
0 1

2 0 0
0 0 1

2 0
−1

2 0 0 0


N (ρψ−) = ||ρTAψ− || − 1 = 1 (3.20)

Therefore, by using Eqs. 3.13, 3.19 and3.20 it follows that:

0 ≤ N (ρ) ≤ 1 (3.21)

with N = 0 for completely-separable states, and N = 1 for maximally entangled states.

3.1.1 Concurrence

The second parameter used for estimating the amount of entanglement inside a bipartite
state is the Concurrence. Historically, it was introduced as expansion of the concept of
Entanglement of Formation (EoF) [68].

In general, Eq. 3.2 is not computable for mixed states. Therefore, it is useful the
definition of EoF. Being ρ the density matrix of a generic mixed state, it can be expressed
as statistical mixture of pure states:

ρ =
∑
i

pi|ψi〉〈ψi| ≡
∑
i

piρi , pi ∈ [0, 1] ,
∑
i

pi = 1 (3.22)

The EoF associated with ρ is defined as the minimum (over all the possible ensembles
of {ρi}) of the entanglement weighted mean calculated on the pure states for which Eq.
3.2 holds:

E = min
∑
i

piE(ψi) (3.23)

By definition, the EoF is null for states that can be expressed as a product of pure
states, i.e. for separable states. It can be used in order to define entanglement for density
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matrices in the form of Eq. 3.22. For this reason, from this point it will simply be indicated
as “entanglement”. However, its form in Eq. 3.23 is not always computable as well as for
entanglement definition in Eq. 3.2, thus Concurrence was introduced.

Let us consider bipartite state density matrices with two non-zero eigenvalues. Every
statistical mixture of entangled states and separable states is represented by this kind of
density matrices. In the particular case of two-photon states, it is possible to define the
magic basis with the following four polarization states:

|e1〉 =
1√
2

(|HH〉+ |V V 〉)

|e2〉 =
1√
2
i(|HH〉 − |V V 〉)

|e3〉 =
1√
2
i(|HV 〉+ |V H〉)

|e4〉 =
1√
2

(|HV 〉 − |V H〉)

(3.24)

These are the Bell’s states expressed in function of the polarization, with proper global
phases.

When a two-photon pure state |ψ〉 is written as |ψ〉 =
∑4

i=1 αi|ei〉, its corresponding
entanglement can be expressed as a function of the αi components. Let us define the
following function:

E(x) = H

(
1

2
+

1

2

√
1− x2

)
, 0 ≤ x ≤ 1 (3.25)

where H is the Shannon’s entropy [5]with respect to an event with probability vector ~X =
(x, 1 − x): H(x) = − [x log2 x+ (1− x) log2(1− x)]. By using Eq. 3.2, the entanglement
inside |ψ〉 is:

E(ψ) = E(C(ψ)) (3.26)

where C(ψ) is the Concurrence:

C(ψ) =

∣∣∣∣∣
4∑
i=1

α2
i

∣∣∣∣∣ (3.27)

It is convenient to rewrite the Eq. 3.26 for density matrices. It is introduced the
operator R(ρ):

R(ρ) =
√√

ρρ∗
√
ρ (3.28)

The complex-conjugated ρ∗ with respect to the magic basis is:

ρ∗ =
∑
i,j

|ei〉〈ej |ρ|ei〉〈ej | (3.29)

It can be noticed from Eq. 3.28 that Tr [R] ∈ [0, 1] quantifies the “distance” between ρ and
ρ∗. Furthermore, R(ρ) is invariant with respect to unitary transformations performed on
a single subsystem composing the whole state ρ, as entanglement is.

Computationally, it is beneficial to reformulate the Concurrence as a function of the
R(ρ) eigenvalues, i.e. R(ρ) =

√√
ρ(σy ⊗ σy)ρ∗(σy ⊗ σy)

√
ρ where σy is the y Pauli matrix.

This can be done by exploiting the following theorem, introduced and demonstrated by
Hill and Wooters [61].
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Theorem. Being ρ a bipartite-state density matrix, which has at most two non-zero eigen-
values, and λmax the maximum eigenvalue of R(ρ), the EoF of ρ will be given by:

E(ρ) = E(c), c = max{0, 2λmax − Tr [R(ρ)]} (3.30)

where c is the Concurrence of ρ, and it corresponds to the definition given in Eq 3.27 when
the state is pure.

Like E, also the Concurrence can assume values within the interval [0, 1], and it is
increasing-monotone with respect to the entanglement.

3.1.2 Log-Negativity

The last parameter considered for the entanglement estimation is the Log-Negativity,
defined as:

LN (ρ) ≡ log2(1 +N (ρ)) = log2 ||ρTA || (3.31)

Thus, by definition Log-Negativity is increasing-monotone with respect to the entan-
glement. Furthermore, it is an additive function, so it is useful for estimating the amount
of entanglement inside multi-partite states represented by a density matrix in the form
ρ⊗N .

3.1.3 Quantum Geometric Discord

As mentioned before, quantum states can be divided in two categories: separable states
and entangled states. The latter category shows non-local properties, and it is an important
tool for developing quantum technologies, whereas the former is considered classical in
terms of correlations. Indeed, separable states do not violate the Bell’s inequalities [5], but
it is important to notice that also some non-separable state families do not, e.g. Werner’s
states [93]. However, there are other non-classical correlations aside entanglement, and
they can represent a useful resource too. An example of this other type of non-classical
correlations useful for quantum technologies is given by the discord [94].

In classical information theory, the correlation between two random variables A and B
of a classical system is quantified by the mutual information:

I(A : B) = H(A) +H(B)−H(A,B) (3.32)

whereH(~p ) is the Shannon’s entropy referred to a random-variable probability-distribution
vector, and H(A,B) is the Shannon’s entropy referred to the joint probability of A and B.
Remaining in the classical framework, it is possible to exploit the Bayes’ rule in order to
rewrite Eq. 3.32:

I(A : B) = H(A)−H(A|B) (3.33)

where H(A|B) is the Shannon’s entropy referred to the conditional probability distribution
of A with respect to B.

The quantum equivalent of the Shannon’s entropy is the von Neumann entropy S(ρ).
By exploiting it in Eqs. 3.32 and 3.33 (referred to subsystems ρA and ρB), one could obtain
two different values of the mutual information I(ρ) : the difference between them defines
the quantum discord.

A bipartite quantum state is defined inside the Hilbert space HAB = HA ⊗HB, given
by the tensorial product of the Hilbert spaces to which the subsystems A and B belong.
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By knowing the ρ density matrix of the whole state, the quantum analogous of the Eq.
3.32 is:

I(ρ) = S(ρA) + S(ρB)− S(ρ) (3.34)

where ρA,B = TrB,A [ρ] are the reduced density matrices referred to the two subsystems.
In order to obtain the quantum version of the Eq. 3.33, the conditional von Neumann

Entropy S(ρB|A) is required, in which ρB|A represents the B state conditioned to a mea-
surement over A. In contrast with classical measurements, quantum measurements cause
the collapse of the wave function. Therefore, in order to have an alternative version of the
mutual information one has to minimize on all the possible measurements of A:

QA(ρ) = S(ρB)−min
Ek

∑
k

S(ρB|k) (3.35)

where ρB|k = TrA [(Ek ⊗ 1B)ρ] /Tr [(Ek ⊗ 1B)ρ] is the state of B conditioned to the mea-
surement of A realized by the POVM element Ek.

Thus, the quantum discord is defined by:

DA(ρ) = I(ρ)−QA(ρ) (3.36)

From Eq. 3.35 it is evident that the quantum discord is not symmetrical with respect to
the subsystems A e B, then DA(ρ) 6= DB(ρ) in general. It is always non-negative, and
if DA(ρ) = DB(ρ) = 0, the state ρ is defined classically correlated. All other states are
considered non-classical, and they might ensure an advantage in quantum algorithm with
respect to the classical ones [94].

Unfortunately, Eq. 3.36 can be computed just for few quantum states [62]. Therefore,
some quantum discord approximations have been introduced [95, 96]. For our work, we
chose the quantum geometric discord (QGD), defined as:

D
(2)
A (ρ) = min

χ∈Ω0

||ρ− χ||2 (3.37)

where Ω0 is the ensemble of zero-discord states, and ||X||2 = Tr
[
X2
]
is the square norm

of an operator in the Hilbert-Schmidt space [97].
For a generic bipartite quantum state HA = HB = C2. Thus, its density operator can

be written by exploiting the Bloch representation [5]:

ρ =
1

4

1⊗ 1 +

3∑
i=1

xiσi ⊗ 1 +

3∑
i=1

yi1⊗ σi +

3∑
i,j=1

Tijσi ⊗ σj

 (3.38)

where the σi are the Pauli’s matrices, xi = Tr [ρ(σi ⊗ 1)] and yi = Tr [ρ(1⊗ σi)] are
the Bloch vector local components [5], Tij = Tr [ρ(σi ⊗ σj)] are the components of the
correlation tensor. To each ρ, it is possible to assign the triplet {~x, ~y, T}.

Now, it remains to define the states that belong to the Ω0 set. A zero-discord bipartite
state can be written in the form:

χ = p1|ψ1〉〈ψ1| ⊗ ρ1 + p2|ψ2〉〈ψ2| ⊗ ρ2 (3.39)

where {|ψ1〉, |ψ2〉} is an orthonormal basis referred to a subsystem of the state, and ρ1,2

are the marginal density matrices with their associated probabilities p1,2 (p1 +p2 = 1). Let
me define t ≡ p1 − p2 and the three following vectors:

~e = 〈ψ1|~σ|ψ1〉
~s± = Tr [p1ρ1 ± p2ρ2]~σ

(3.40)
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where the elements of ~σ are the Pauli matrices. It is easy to demonstrate that t~e and
~s+ represent the Bloch vectors respectively of the first and the second subsystem, while
~s− is linked with the correlation tensor by the relation T = ~e~sT−. Therefore, the Bloch
representation of a zero-discord state is χ = {t~e, ~s+, ~e~s

T
−}, where ||~e || = 1, ||~s±|| ≤ 1, and

t ∈ [−1, 1]. The trace distance between ρ and χ is given by:

||ρ− χ||2 = ||ρ||2 − 2Tr [ρχ] + ||χ||2 =

=
1

4
(1 + ||~x||2 + ||~y||2 + ||T ||2)− 1

2
(1 + t~x ·~e+ ~y ·~s+ + ~eTT~s−)+

+
1

4
(1 + t2 + ||~s+||2 + ||~s−||2)

(3.41)

In order to obtain the QGD, one has to find the minimum of the distance in Eq. 3.41 by
optimizing the parameters t and ~s±. This distance is convex and quadratic with respect to
the three vectors of Eq. 3.40, the Hessian matrix has no singularity and it is positive, and
these conditions are sufficient for having a global minimum of the function, corresponding
to the following constraints:

∂

∂t

[
||ρ− χ||2

]
=

1

2
(t− ~x ·~e) = 0

∂

∂~s+

[
||ρ− χ||2

]
=

1

2
(−~y + ~s+) = 0

∂

∂~s−

[
||ρ− χ||2

]
=

1

2
(−T T~e+ ~s−) = 0

(3.42)

with solution t = ~x ·~e, ~s+ = ~y e ~s− = T T~e. By substituting in Eq. 3.41 one obtains:

||ρ− χ||2 =
1

4

[
||~x||2 + ||T ||2 − ~eT (~x~xT + TT T )~e

]
(3.43)

that admits a minimum in the case in which ~e is an eigenvector of the matrix K = ~x~xT +
TT T , corresponding to the maximum eigenvalue kmax. For this reason, by using the Eq.
3.37, a QGD definition easy to calculate is:

D
(2)
A (ρ) =

1

4
(||~x||2 + ||T ||2 − kmax) , D

(2)
A (ρ) ∈ [0, 0.5] (3.44)

The QGD is scaled of a factor 2 with respect to the quantum discord: for maximally-
entangled states D(2)

A (ρ) = 0.5. Thus, it has to be doubled in order to properly estimate
the amount of discord into the bipartite state under exam.

3.2 Estimators

For each chosen parameter, we implemented two estimators: one non-optimal and one
optimal (i.e. saturating the quantum Cramér-Rao bound). Actually, optimal estimators,
when easy to compute, are an excellent solution in practical applications. However, we
have introduced both optimal and non-optimal estimators for each parameter, in order to
provide a direct comparison between the uncertainties in these two cases to highlight the
advantage granted by optimal estimators.

All of them allow estimating the corresponding parameter with a smaller number of
measurements with respect to a full reconstruction of the density matrix. However, one
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needs some a priori knowledge of the family of quantum systems we are going to test. As
previously mentioned, our estimators are suited for quantum states whose density matrix
can be expressed with Eq. 3.1, i.e. the ones that can be easily realized experimentally by
means of our photon pair source based on type-II PDC.

We indicate with P (|XY 〉) the probability of measuring the polarizations X and Y
respectively for the two photons of a bipartite quantum state. Defining a generic linear
single-photon polarization as a function of the θ angle with respect to the horizon, its
projector Πθ = |s(θ)〉〈s(θ)| (being |s(θ)〉 = cos θ|H〉+ sin θ|V 〉) is:

Πθ =

(
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

)
(3.45)

Therefore, the probability P (|XY 〉) is given by:

P (|s(θA)s(θB)〉) = Tr [ρ(ΠθA ⊗ΠθB )] (3.46)

All the estimators we implemented are built in the {|+〉, |−〉} polarization basis, with
|+〉 = (|H〉+ |V 〉)/

√
2 and |−〉 = (|H〉 − |V 〉)/

√
2. We chose this basis because in our case

it is sensitive to an eventual relative phase between the H and V polarization components
introduced by the interaction with the measurement setup (described in the following).

3.2.1 Negativity and Concurrence

For states described by density matrices in the form of Eq. 3.1, the behavior of Nega-
tivity and Concurrence as a function of the entanglement coincide [98]. Thus, it is possible
to exploit the same estimators for both parameters. For this aim, it is convenient to rewrite
Eq. 3.1 in the following form:

ρpq = p


0 0 0 0

0 q −
√
q(1− q) 0

0 −
√
q(1− q) 1− q 0

0 0 0 0

+ (1− p)


0 0 0 0
0 q 0 0
0 0 1− q 0
0 0 0 0



=


0 0 0 0

0 q −p
√
q(1− q) 0

0 −p
√
q(1− q) 1− q 0

0 0 0 0

 ; p, q ∈ [0, 1]

(3.47)

In our case, q = 1/2, but the following considerations are valid for the general case.
By calculating the Negativity (Eq. 3.13) and Concurrence (Eq. 3.30) for a generic state

3.47, one obtains:
N (ρpq) = C(ρpq) = 2p

√
(1− q)q (3.48)

For the parameter in Eq. 3.48, the QFI is:

H(N (ρpq)) =
1

1−N 2(ρpq)
=

1

1− 4p2q(1− q)
(3.49)

Therefore, by exploiting the quantum Cramér-Rao bound (see Eq. 3.3), the minimum
uncertainty associated with the parameter in Eq. 3.48 is given by:

σmin(N (ρpq)) =
√

1−N 2(ρpq) =
√

1− 4p2q(1− q) (3.50)
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Exploiting the fact that for the singlet state the theoretical P (|+ +〉) is zero, whereas
for a completely-decoherent state it is equal to 1/4, intuitively we defined the first (non-
optimal) estimator as:

εN1 ≡ 4(1/4− P (|+ +〉) (3.51)

Afterwards, by optimizing the QFI (Eq. 3.9) we obtained the following optimal esti-
mator:

εN2 ≡ P (|+−〉) + P (| −+〉)− P (|+ +〉)− P (| − −〉) (3.52)

where again the probabilities are defined as in Eq. 3.46, with |±〉 ≡ |s(±π
4 )〉.

3.2.2 Log-Negativity

The Log-Negativity is defined as a function of the Negativity (see Eq. 3.31). There-
fore, it is possible to exploit the estimators in Eqs. 3.51 and 3.52 in order to obtain the
corresponding ones for the Log-Negativity.

In this case, the optimal uncertainty is:

σmin(LN (ρpq)) =

√
2−LN (ρpq)(2− 2LN (ρpq))

log2(2)
=

1− 2p
√
q(1− q)

log2 2(1 + 2p
√
q(1− q)

(3.53)

The non-optimal estimator can be written as:

εLN 1 ≡ log2 [1 + εN1] = log2

[
1 + 4

(
1

4
− P (|+ +〉)

)]
(3.54)

whereas the optimal one will be:

εLN 2 ≡ log2 [1 + εN2]

= log2 [1 + (P (|+−〉) + P (| −+〉)− P (|+ +〉)− P (| − −〉))]
(3.55)

3.2.3 Quantum Geometric Discord

In principle, estimators for quantum discord would work also for QGD, but for the
sake of readability we had to rescale the estimators in order to achieve results in the range
[0, 0.5].

By using Eq. 3.44, for polarization states described by a density matrix in the form of
Eq. 3.47 the QGM is given by [57]:

QGD = 2p2(1− p)q =
N 2

2
(3.56)

In Eq. 3.56 we show that, for the state family under exam, the QGD amount is half
the square of the Negativity. Therefore, it is possible to exploit the Negativity estimators
defined in Eqs. 3.51 and 3.52 for building QGD estimators.

Calculating the QFI, we obtained the behavior of the smallest achievable uncertainty
associated with the QGD as predicted by the quantum Cramér-Rao bound:

σmin(QGD(ρpq)) =
√

2QGD(ρpq)(1− 2QGD(ρpq)) = 4p2q(1− q)(1− 4p2q(1− q)) (3.57)

The non-optimal QGD estimator is:

εQGD1 ≡
1

2
εN 2

1 = 8

(
1

4
− P (|+ +〉)

)2

(3.58)
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and the optimal one is defined as:

εQGD2 ≡
1

2
εN 2

2

=
1

2
(P (|+−〉) + P (| −+〉)− P (|+ +〉)− P (| − −〉))2

(3.59)

3.3 Experimental setup

The implemented experimental setup is shown in Fig. 3.1 [57].

Figure 3.1: The experimental setup is composed of three parts. The first one is a type-II
PDC based source of polarization entangled photons, composed by: a Ti:Sapphire mode-
locked (ML) laser, a second harmonic generator (SHG), a BBO nonlinear crystal for PDC
generation and two BBO crystals for walk-off compensation. A thick calcite birefringent
crystal, with optical axis orthogonal to the photon propagation direction, can be inserted
in the path of one photon for introducing temporal decoherence. The second part is a
tomographic apparatus, that hosts a quarter-wave plate (QWP), a half-wave plate (HWP)
and a polarizing beam splitter (PBS) in each branch. Finally, there is the detection part,
comprising two interference filters (IFs), two fiber couplers injecting the photons into multi-
mode fibers, that address them to Silicon single-photon avalanche diodes (SPADs), and
coincidence electronics.

The family of entangled states represented by Eq. 3.1 can be obtained by exploiting the
phenomenon of PDC. Thus, the first part of the setup consists of a source of polarization-
entangled photons based on a scheme [41] exploited in many experiments concerning foun-
dations of quantum mechanics and quantum technologies [82]. In particular, our source
is based on a Ti:Sapphire mode-locked laser, emitting pulses with duration of 150 fs at
808 nm. Such laser beam induces the second harmonic generation in a lithium triborate
(LBO) nonlinear crystal. Then, the resulting beam with a wavelength centered at 404 nm
is used to pump a 0.5 mm thick β-barium borate (BBO) non-linear crystal, where type-II
PDC occurs generating correlated photon pairs [99]. Two irises are used to spatially se-
lect the photons belonging to the intersections of the horizontally- and vertically-polarized
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degenerate PDC cones (808 nm). On each of the two selected paths, a 0.25 mm thick
BBO crystal is used to compensate the temporal delay between the horizontally- and the
vertically-polarized photons induced by the birefringence within the PDC crystal.

At the output of these crystals, (ideally) the polarization-entangled photons are in the
state:

|ψφ〉 =
|HV 〉+ eiφ|V H〉√

2
(3.60)

where φ represents a relative phase between H and V . To produce the singlet state, we
performed a fine tilting of one of the compensation BBO crystals, tuning the parameter φ
until the value π (corresponding to the Bell state |ψ−〉) was obtained.

It is possible to generate decoherence inside the produced state by introducing, in one
of the two paths, an additional birefringent crystal sufficiently thick: in our case it was
sufficient a 2.7 mm thick calcite crystal. In our experiment, we did not physically produce
the set of quantum states described in Eq. 3.1, but we generated (independently and
at different times) pure singlet states and completely decoherent states. To study states
with different amount of decoherence, we realized a statistical mixture of our data in post-
processing.

The measurement part consists of a typical polarization quantum tomographic appara-
tus [100]. Each path hosts a quarter-wave plate (QWP), a half-wave plate (HWP) and a
polarizing beam splitter (PBS). The combination of this three elements allows projecting
each photon polarization onto any state of the Bloch sphere surface.

Finally, there is the detection part. For each path, an interference filter spectrally
selects the photons (within a wavelength band of 3 nm centered at 808 nm), then each
photon is injected into a multi-mode fiber and sent to a Silicon single-photon avalanche
diode (SPAD) for the detection. A dedicated time correlated counting system performs
the temporal post-selection on photon counts.

3.4 Results

To determine the quality of the states generated by our setup, we reconstructed ex-
perimentally the density matrices of both the singlet state and the decoherent state by
performing quantum state tomography. Then, we calculated the Uhlmann’s Fidelity [101]
of the reconstructed state with respect to the theoretically-expected one:

F = Tr

[√√
ρexpρth

√
ρexp

]
, F ∈ [0, 1] : F = 1 ⇐⇒ ρexp = ρth (3.61)

where ρth indicates the theoretical density matrix and ρexp the reconstructed one. Since
quantum state tomography does not provide uncertainties related to the reconstructed
density-matrix elements, the fidelity parameter cannot be reported with an own uncer-
tainty. For this reason, the fidelity is interpreted just as an indicator of the experimental-
reconstruction goodness.

As can be inferred from Eq. 3.1, in the {|H〉, |V 〉} basis the theoretical density matrices
of the singlet state ρth|ψ−〉 and the decoherent state ρthmix are:

ρth|ψ−〉 =


0 0 0 0
0 1

2 −1
2 0

0 −1
2

1
2 0

0 0 0 0

 ρthmix =


0 0 0 0
0 1

2 0 0
0 0 1

2 0
0 0 0 0

 (3.62)

39



CHAPTER 3. OPTIMAL ESTIMATION OF ENTANGLEMENT AND DISCORD IN
BIPARTITE STATES

Figure 3.2: Real (left) and imaginary (right) part of the tomographically reconstructed den-
sity matrix for the singlet, maximally-entangled state (top) and the completely decoherent
mixture (bottom).

The experimental tomographic reconstructions are showed in Fig. 3.2 [57].
By visually comparing the obtained graphs in Fig. 3.2 with the corresponding the-

oretical matrices in Eq. 3.62 one can argue that the experimental values are in good
agreement with the predictions. This is confirmed by the values of the fidelity (see Eq.
3.61), respectively: Fψ− = 0.975 and Fmix = 0.985.

As mentioned before, for both states we performed all the measurements required for
the estimators we were interested in, with an appropriate redundancy. In particular, for
both the generated states we took 100 measurements of any possible polarization state of
the basis {|++〉, |+−〉, |−+〉, |−−〉}, then we divided them in 10 groups. For each group,
we considered the mean value NAB

X , where X indicates the singlet or the decoherent state
and A,B = +,− are related to the measured polarizations, and its standard deviation
σNAB

X
as statistical uncertainty. We underline that the σNAB

X
have been independently

evaluated on the data sample of each group, without any further statistical assumption.
Afterwards, we combined these groups in post-processing:

NAB(p) = pNAB
|ψ−〉 + (1− p)NAB

mix (3.63)

where p is defined in Eq. 3.1. This procedure was already exploited in several experi-
ments [102, 103], and it is proven to give results indistinguishable from the ones obtained
measuring a physical state with the same amount of decoherence.

The uncertainties have been propagated using the traditional statistical rules [104]:

σNAB =
√
p2σ2

NAB
|ψ−〉

+ (1− p)2σ2
NAB
mix

(3.64)

Each estimator ε was calculated using the counts in Eq. 3.63. Their statistical uncer-
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tainties are extracted with the derivative method:

σε =

√√√√∑
{AB}

(
∂ε

∂NAB(p)
σNAB(p)

)2

(3.65)

in which the sum is extended to all the involved polarization measurements. Such measured
polarizations constitute an orthonormal basis for bipartite polarization states, i.e. they are
linearly independent. For these reason, in Eq. 3.65 there are not covariance terms.

The experimental results and the related uncertainties of all the estimators are shown
in Fig. 3.3 [57].

The experimental points concerning the estimators introduced in this paper are plotted
vs. the mixing parameter p ranging from 0 (completely decoherent mixture) to 1 (pure
entangled state). For each point, p is evaluated using the tomographic state reconstruction
of the corresponding density matrix.

The uncertainty bars associated with the experimental points, defined in Eq. 3.65,
represent the standard deviation of the measurement results statistical distribution, i.e.
the statistical uncertainty associated with a single measurement. Experimental points are
compared with the theoretical value of the estimator, represented by a dashed line. The
experimental uncertainty bars are compared with the corresponding theoretical prediction,
derived from the quantum Fisher information. Dotted curves represent the theoretical
uncertainty for the non-optimal estimator, while solid curves indicate the theoretical un-
certainty for the optimal estimator, i.e. the one achieved by saturating the quantum
Cramér-Rao bound, representing the minimum uncertainty allowed by quantum estima-
tion theory.

All the theoretical curves shown in Fig. 3.3 are calculated exploiting the knowledge
of the experimental values of the parameters p and q (see Eq. 3.47), obtained from the
tomographic reconstruction of the density matrices (see Fig. 3.2) of the states involved
in the experiment. In Fig. 3.3 different colors have been used for distinguishing the
parameters. In particular, the blue is for Negativity and Concurrence, the orange for Log-
Negativity and the green for QGD. On the left side of Fig. 3.3 are shown the graphs
concerning the non-optimal estimators for each parameter, whereas on the right side one
can find the optimal estimators graphs. The figure shows a good agreement between
experimental results and theoretical predictions for each estimator, both for the value
itself and the statistical uncertainty associated with it. This is particularly relevant and
interesting for the optimal estimators case, where our results demonstrate saturation of the
quantum Cramér-Rao bound.

As anticipated in the introduction, we have demonstrated optimal estimation of en-
tanglement and discord in two-photon states, showing how optimal estimators are able
to saturate the quantum Cramér-Rao bound and, this way, outperform non-optimal esti-
mators in terms of uncertainty. A further remarkable result emerging from this work is
that, for the family of quantum states taken into account, there is an identity between
the estimators for Negativity and Concurrence, and a smooth monotone relation between
the ones for Negativity and Quantum Geometric Discord. Such result was not expected a
priori but leads to direct relations between estimators and related quantum Cramér-Rao
bound. Therefore, knowing the quantum Cramér-Rao bound and the optimal estimator
for Negativity allows an immediate derivation of such quantities also for Log-Negativity,
Concurrence and Quantum Geometric Discord. These results pave the way to the diffuse
use of these estimators in quantifying resources for quantum technologies.
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Figure 3.3: Results for Negativity and Concurrence (blue), Log-Negativity (orange), and
Quantum Geometric Discord (green) non-optimal (left side) and optimal (right side) esti-
mators, with respect to p (see Eq. 3.47). Experimental points are compared with: the-
oretical value of the quantity to estimate (dashed line), theoretical uncertainty for the
non-optimal estimator (dotted curve) and theoretical uncertainty related to the quantum
Cramér-Rao bound (solid curve).
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Chapter 4

Beyond the quantum Cramér-Rao
bound: Genetic Quantum
Measurement

4.1 Introduction

In physics, there exist several quantities of interest that are not directly accessible,
either in principle or because of experimental impediments. This is particularly true for
quantum mechanical systems, where relevant quantities like entanglement and purity are
nonlinear functions of the density matrix and cannot, even in principle, be associated with
a proper observable. In these situations indirect measurements are exploited, inferring the
value of the quantity of interest by inspecting a set of data coming from the measurement of
a different observable, or a set of observables. Therefore, it is of particular interest the field
of quantum estimation theory (QET), that provides tools for such parameters estimation
problem.

QET can be divided in two main paradigms [59,91]: global and local QET. The former
looks for the POVM minimizing a suitable cost functional, averaged over all possible values
of the parameter to be estimated. The result of a global optimization is thus a single
POVM, independent on the value of the parameter. The latter, instead, looks for the
POVM maximizing the Fisher information (see Eq. 3.4), thus minimizing the variance of
the estimator, at a fixed value of the parameter. Global QET has been mostly applied for
finding optimal measurements and for evaluating lower bounds on precision for parameters
estimation, imposed by unitary transformations. Anyway, euristically one can expect that
local QET performs better than global QET, since the optimization concerns a specific
value of the parameter, with some adaptive or feedback mechanism granting the possibility
to achieve the ultimate precision bound.

In the previous chapter, the definition of optimal measurement has been given, ac-
cording to local QET paradigm, by introducing the Cramér-Rao bound criterion [91].
However, one could ask: is there a scenario in which it is possible to achieve uncertainties
smaller than the minimum one allowed by an optimal measurement, corresponding to the
saturation of the quantum Cramér-Rao bound? The aim of this section is to provide an
affirmative answer to this question, illustrating a novel quantum measurement paradigm
able to go beyond the quantum Cramér-Rao bound in terms of precision.

In the traditional QM framework, measurements cause the collapse of the wave function,
because the state |ψ〉 undergoes a projection onto the eigenstate |φi〉 corresponding to the
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measured eigenvalue αi. For this reason, those measurements are dubbed projective. To
obtain the expectation value of an observable O, it is required a statistical evaluation of
the experimental results on several identical copies of the same quantum state:

〈O〉 = 〈ψ|O|ψ〉 =
∑
i

piαi (4.1)

where pi represents the probability associated with the outcome αi. Experimentally, it is
possible to extract the pi probabilities over a large enough amount M of identical copies
of the state |ψ〉. By exploiting the results obtained on an ensemble of identically-prepared
quantum states, the statistical uncertainty associated with 〈O〉 is calculated as the standard
deviation of the measurement outcomes distribution.

However, there are cases in which it can be difficult to realize an experimental setup
able to produce several identical copies of a chosen quantum state. Therefore, the search
for novel measurement paradigms able to achieve satisfactory uncertainties with a small
amount of initial resources (here identified with the quantum states to be produced) is a
crucial task of nowadays Quantum Metrology.

For this reason, we designed a new measurement protocol that we dubbed Genetic
Quantum Measurement (GQM), because, as will be shown in the following, it seems to
naturally exploit some evolution-inspired mechanisms reminding the ones of genetic algo-
rithms [105] in Computer Science.

These algorithms are used for finding solutions of optimization and research problems
[106, 107]: they start from an initial ensemble of solutions, then, by exploiting iterative
processes organized in subsequent steps, they select the optimal solution. Each step can
be divided in three phases, mimicking the dynamics of natural evolution. The first one
is called mutation, because the ensemble entities undergo a random swing. The second
one is a crossover phase, in which the mutated entities are recombined, producing a “new
generation” of solutions. Finally, the last one is a selection process, in which the least
fitting solutions are discarded.

In von Neumann measurement scheme [27], the measurement of an observable over a
quantum state is described exploiting a unitary operator, UvN, coupling the observable of
interest (OoI) O with an ancillary observable P called pointer :

UvN = exp [igP ⊗O] (4.2)

where we use the units system ~ = 1, and g is the coupling constant, representing the
intensity of the interaction. The information on the OoI is extracted by the reading of the
meter observable X , canonically conjugated with P.

An example of von Neumann interaction regarding single-photon states measurement
is shown in Fig. 4.1. In this case, the measured quantum system is a single photon
and the OoI is the horizontal component of the polarization, represented by the projector
ΠH = |H〉〈H| over the horizontal polarization state |H〉. The coupling unitary operator is:

U = exp [igP⊗ΠH ] (4.3)

where the P observable is the momentum in a transverse direction with respect to the
photon propagation axis, and again ~ is set equal to 1. In this framework, the meter
corresponds to the position X along the direction to which P belongs.

GQM protocol represents an evolution of von Neumann measurements, introducing an
iterative approach able to outperform “traditional” von Neumann measurements in terms of
uncertainty. In Fig. 4.1 are shown the first steps of a GQM. The initial polarization state
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|ψθ〉 is prepared by exploiting a polarizer, in which a state-filtering projection |ψθ〉〈ψθ|
occurs. Then, in each GQM step, a von Neumann interaction spatially separates (blue
circles) in different “paths” the wave functions conjugated with the pointer observable, a
mechanism that can be regarded as a “mutation” in evolutionary terms. After that, the
photons undergo a projection Πθ = |ψθ〉〈ψθ| onto the initial state, i.e. same kind of state-
filtering occurred in the initial-state preparation stage. This projection can be regarded
as a selection mechanism, because it introduces a survival probability associated to each
evolutionary path: the closer the path is to the “right” one, i.e to the one corresponding to
|ψθ〉, the higher will be the photon survival probability.

From the second step onwards, thanks to the coherent superposition of some “evolu-
tionary paths” (orange circles), with the same von Neumann interaction also a crossover
mechanism occurs, thanks to the coherent recombination of some of the wave functions
at the end of the mutation process. At the end of the step, the same state filtering as
the one of the preparation stage is made (selection). Furthermore, thanks to the quantum
parallelism [17], one of the key features of many quantum technologies, e.g. quantum
computation, all the possible evolutionary paths are inspected at the same time, grant-
ing a major advantage with respect to any classical implementation of such a bio-inspired
measurement paradigm.

Figure 4.1: GQM scheme: after the initial state-filtering preparation of the polarization
|ψθ〉, the single photons pass throughK GQM steps, each one composed by a von Neumann
interaction, represented by the operator U , in which the mechanisms of mutation (blue
rings) and crossover (orange rings) occur, and a selection performed by projecting onto the
initial state |ψθ〉.

GQM allows obtaining uncertainties below the ones related to the saturation of the
quantum Cramér-Rao bound (i.e. the ones associated with optimal measurements). This
is due to the fact that, in each step, the selection mechanism exploits a priori information
on the parameter to be estimated (the photon polarization, in our experiment), i.e., the
POVM describing the GQM is parameter-dependent [108,109]. In this scenario, the quan-
tum Cramér-Rao bound does not hold [91], then there is no violation of QM principles.
Therefore, a correct application of GQM can be the characterization of the state filtering
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process producing the quantum system under exam, instead of measuring the system itself.
For example, let us imagine a quantum mint, that produces quantum coins exploiting a
state filtering. If one wants to measure the fairness of this mint, i.e. that the generated
quantum coins are not rigged, by using the GQM protocol (exploiting such state filtering as
a selection mechanism) will cost less coins than the ones required by a prepare-and-measure
strategy to achieve a certain precision.

GQM approach has some analogies (but also significant differences) with respect to
a couple of well established theoretical measurement paradigms, namely Sequential Mea-
surement (SM) [110, 111] and Protective Measurement (PM) [112–120]. Specifically, SMs
exploit a sequence of interactions analogously to GQMs, but without introducing the se-
lective pressure (the selection measurements in GQMs) and with the aim of estimating
a parameter of the interaction rather than a quantum observable. For this reason, se-
quential measurements do not take advantage of an ancillary Hilbert space (the one of
the Pointer observable in the GQMs case). Furthermore, this theoretical idea assumes
to be able to obtain some data/information after each interaction without detecting the
individual quantum system considered (i.e. without inducing the wave function collapse),
a very challenging experimental task. On the contrary, the GQM approach extracts the
information on the expectation value of the OoI only at the final detection stage by the
measurement of the meter observable: a simpler scheme from the experimentalist’s point
of view.

The PM concept is somehow analogous to the one of GQM, since it takes advantage
of a continuous protection of the quantum state (through a potential, or a quantum-
Zeno-like [121] projective measurement) that is connected with an asymptotically infinite
sequence of extremely weak interactions. In analogy with GQMs, the OoI estimation is
obtained by measuring a pointer observable in an ancillary Hilbert space. The main concept
behind PM is that a reliable estimation of the average value of the OoI can be performed by
the detection of a SINGLE quantum system. This is possible, from a theoretical point of
view, because at each step the interaction is so weak that the probability of losing a photon,
through the potential barrier or because of the state-projection, is negligibly small even
after an infinite amount of such interaction-protection steps. Obviously, it is experimentally
impossible to have the full control at the low level of interaction strength needed, and, at the
same time, to realize something even only approximating an infinite amount of interaction-
protection steps. GQM approach considers a finite amount of interaction-selection stages
(ranging from few units to hundreds, or even thousands) and investigates any interaction
intensity, from weak to strong, in order to optimize the trade-off between single quantum
system survival and uncertainty reduction. On the contrary, PM pertains only in the
domain of weak interactions, because, for the protection mechanism to work properly, the
interaction between measured system and measurement apparatus must be faint enough
not to cause any wave function collapse.

In the next section, we will illustrate in detail the GQM theoretical framework exper-
imental results related to our GQM proof-of-principle implementation with single-photon
states, generated by a PDC-based heralded [122] single-photon source (see also Section
§2.2.1).

4.2 Theoretical model

In this section, the GQM theoretical model is described by using the case of our exper-
iment, where the OoI is the polarization of single photons. The corresponding operator is:
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P = |H〉〈H| − |V 〉〈V | (4.4)

where H and V are the horizontal and the vertical polarization components, respectively.
As previously mentioned, measurements are indirectly performed onto the pointer

Hilbert space. In our case, we exploit the spatial distribution of the quantum state in
one of the directions orthogonal with respect to its momentum. After the initial state
filtering, the single-photon states are described by:

|Ψin〉 = |fx〉 ⊗ |ψθ〉 (4.5)

Where |fx〉 represents the spatial distribution of the single photons, while |ψθ〉 is the
polarization state. In our case, these two different single-photon degrees of freedom are
described by:

|ψθ〉 = cos θ|H〉+ sin θ|V 〉

|fx〉 =

∫
dx f(x)|x〉

f(x) =
1

4
√

2πσ2
e−

x2

4σ2

(4.6)

i.e. the spatial distribution is Gaussian, and the polarization is linear.
The unitary operator assigned to each interaction is described in Eq. 4.3, where g is the

spatial walk-off between the H and V polarizations due to the birefringence of the crystals,
and it is proportional to the intensity of the interaction; P is the momentum operator and
ΠH = |H〉〈H| is the projector over the H polarization component (OoI).

Birefringent crystals induce also a temporal walk-off between |H〉 and |V 〉, but this
corresponds to a relative phase between the polarization component that can be difficult
to manage experimentally. In order to avoid this issue, we used a pair of birefringent
crystals for each interaction: the first one with optical axis 45 ◦ tilted with respect to
the photon propagation direction, and the second one with optical axis orthogonal to the
photon propagation direction. By choosing a proper thickness of the crystals, it is possible
to induce the desired spatial walk-off while compensating the temporal one.

After K steps, thanks to the selecting projections |ψθ〉〈ψθ|, for each single photon it
turns out the following (not-normalized) state:

|Ψout〉 = (ΠθU)K |Ψin〉 = (〈H|Πθ|H〉eigP + 〈V |Πθ|V 〉1x)K |Ψin〉 (4.7)

where 1x is the identity matrix of the meter Hilbert space.
The survival probability of the single photon after K step is:

Ps(K) = Tr [|Ψout〉〈Ψout|] (4.8)

while the probability to reveal the single photon in the position x0 is:

FK(x0) =
Tr [|x0〉〈x0|Ψout〉〈Ψout|]

Ps(K)

=
1

Ps(K)

[∑
i

〈i|x0〉〈x0|(ΠθU)K |Ψin〉〈Ψin|(U †Πθ)
K |i〉

]

=
1

Ps(K)

[
|〈x0|

K∑
n=0

K!

n!(K − n)!
〈H|Πθ|H〉n〈V |Πθ|V 〉K−n|Ψin〉|2

]

=
1

Ps(K)

(
K∑
n=0

K!

n!(K − n)!
〈H|Πθ|H〉n〈V |Πθ|V 〉K−nf(x0 + ng)

)2

(4.9)
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GQM scheme in Fig. 4.1 shows that mutation, crossover and selection processes de-
termine the probability of observing the single photon over different evolutionary paths,
each characterized by its own survival probability. For example, with |ψθ〉 = |+〉 =
(|H〉+ |V 〉)/

√
2, i.e. the polarization state that undergoes the maximum spatial decoher-

ence from the birefringent crystals, the first mutation interaction divides the components
of the entering polarization state in two paths with equal survival probability. At the end
of the birefringent crystal pair, both the paths passing through the selection Π+ = |+〉〈+|
host a photon survival probability equal to 50%. Naïvely, one may think that, after K
identical steps, the survival probability of the single photon undergoing the GQM is 2−K .
Actually, such probability is much higher because of the crossover mechanism [123], and it
can be easily understood by extending the analysis to the first two steps, as shown in Fig.
4.2.

Figure 4.2: First two steps of the GQM protocol with initial polarization state |ψθ〉 = |+〉.
Each birefringent crystal pair spatially separates |H〉 and |V 〉. Numbers under the state
vectors in the evolutionary paths are the probability that the photon will be mutated/
crossbreed by the birefringence, whereas after each polarizer these numbers represent the
product of the mutation/crossover probability and the survival probability after the selec-
tion. After the second step, thanks to the crossover, the initial state |ψθ〉 is recombined over
a specific path, forming a |+〉 state left unperturbed by the subsequent selection process.
Thus, the whole survival probability is 1

16 + 1
4 + 1

16 = 3
8 : higher than 2−2 (the naïve one).

There we can observe that, in the second step, the coherent superposition of two dif-
ferent paths reproduces a crossbreed state equal to the initial one with probability 50%.
Thus, at the end of the second step the survival probability is:

Ps(K = 2) =
1

2
·
3

4
=

3

8
>

1

4
(4.10)

as showed in Fig. 4.2.
As the number of implemented steps K increases, so do the survival probabilities be-

longing to the paths corresponding to polarization states close to the one of the initializa-
tion/selection filter |ψθ〉〈ψθ|.
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For K = 7 and K = 100 steps respectively, in Figs. 4.3 and 4.4 it is shown the
behavior of the survival probability depending on the initial polarization state |ψθ〉 and
the (rescaled) intensity of the birefringence interaction g/σ, where g is the spatial walk-off
induced in each step by the birefringent crystal pair, and σ is the waist of the initial spatial
distribution of the single photon spatial wave function.

Figure 4.3: Behavior of the survival probability Ps(K) as a function of both the initial
state |ψθ〉, with H polarization component cos2 θ and the intensity of the interaction g/σ
after K = 7 steps.

In Fig. 4.4, it is possible to see that, even for K = 100,the survival probability Ps(100)
never goes below 10−2. This is surprising, because since after the first step for |ψθ〉 = |+〉
the survival probability is 1/2, intuitively one could think that Ps(100) would be 2−100 ∼
10−30. This 28 orders of magnitude discrepancy is due to the crossover between mutated
states. For this reason, together with the quantum parallelism, GQMs allow achieving an
effective, disruptive advantage in terms of precision with respect to traditional (projective)
quantum measurements, as we will now demonstrate.
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Figure 4.4: Behavior of the survival probability Ps(K) in function of both the initial state
|ψθ〉, with H polarization component cos2 θ and the intensity of the interaction g/σ after
K = 100 steps.

As written before, the measurement of the spatial distribution of the photon at the
end of the GQM allows estimating the expected value of the initial polarization state.
Therefore, the precision of such estimation depends on the following uncertainty:

u(x) =
√
〈x2〉 − 〈x〉2 , 〈xn〉 =

∫
dxxnFK(x) (4.11)

where FK(x) is defined in Eq. 4.9.
Thus, it is possible to notice the correspondence between the expectation value 〈P 〉

defined in Eq. 4.4, and the average position of the single-photon state spatial distribution
〈x〉. By assuming a translation in the x axis of −gK/2 in order to obtain an analogy with
the well-known Stern and Gerlach experiment [5], the uncertainty u(P ) associated with
〈P 〉 can be easily obtained by rescaling the one of the meter observable X (canonically
conjugated with P):

u(P ) =
2

gK
u(x) (4.12)

For this analysis, it is useful to compare the uncertainties theoretically obtained with
GQM with the ones achievable with projective measurement, e.g. by using a polarizing
beam splitter (PBS). For a projective measurement, by starting with M photons in the
initial state polarization |ψ〉 (Eq. 4.6), the probability to observe m photons with po-
larization |H〉 (so M −m photons in |V 〉) is given by the binomial coefficient multiplied
by the parameter (cos θ)2. Therefore, the theoretically-predicted average polarization is
P = 2m

M − 1, whereas the associated uncertainty is:

uPBS(P ) =
√
〈P 2〉 − 〈P 〉2 =

| sin(2θ)|√
M

(4.13)

This uncertainty is considered optimal, because the quantum Fisher information [91] is in
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this case H(θ) = sin−2(2θ), saturating the quantum Cramér-Rao bound [91] and allowing
for the minimum quantum uncertainty on the estimated parameter.

In order to do a fair comparison, we have to consider the same amount M of initial
photons for both measurement protocols. Hence, in GQM we have to take into account
the survival probability Ps(K) of the initial polarization state after K steps: in principle,
for detecting one photon at the end of a K-step GQM it is needed M = 1/Ps(K). In our
analysis, for both GQM and projective measurement protocols we consideredM = 1/Ps(K)
initial photons. The ratio between GQM and projective measurement uncertainties is:

R =
uPBS(P )

u(P )
(4.14)

where uPBS(P ) and u(P ) are respectively defined in Eqs. 4.13 and 4.12.
In Fig. 4.5 the behavior of R is shown as a function of the initial state polarization

|ψθ〉 (represented by cos2 θ = 〈ψθ|ΠH |ψθ〉) and the intensity g/σ of the GQM interactions.
The surface in yellow is for K = 7, the one in blue corresponds to K = 100, whereas
the magenta one is the R = 1 plane, representing the threshold below which GQM is
disadvantageous with respect to projective measurement.

Figure 4.5: Ratio R = uPBS(P )
u(P ) between projective measurement and GQM uncertainties.

For fixed K = 7 (yellow) and K = 100 (blue) GQM steps, it is showed R depending on
both the initial horizontal polarization component cos2 θ and the von Neumann interaction
intensity g/σ. The amount of initial photons exploited for both measurement protocols is
M = 1/Ps(K) in order to have the same initial resources for both measurements. The sur-
face in magenta is the plane R = 1: above it GQM is advantageous in terms of uncertainty
with respect to projective measurement.
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In both K = 7 and K = 100 cases it is possible to notice that GQM is almost always
more advantageous with respect to projective measurement: in fact, we have R < 1 just for
extremely weak intensities of GQM interactions (g/σ < 0.02). These are the cases in which
the spatial displacement induced by GQM birefringent crystals is too low for granting a
proper resolution power to the measurement process. In our experiment, with g/σ ∼ 0.4
and just K = 7, a 10% advantage is already present for most of the possible states, even if
the maximum for R corresponds to g/σ ∼ 1. For K = 100, instead, the reasonably weak
interaction g/σ ∼ 0.4 grants the maximum of the advantage (R > 8.5 almost everywhere),
while for stronger interaction the advantage is reduced to R < 4.

The advantage of the GQM technique comes from the very high survival probability
of the single photons. This is due to the fact that, in presence of a sequence of identical
interaction-selection stages as in our scheme, the relative probability of losing a photon in
a selection step decreases with the single photon advancing in the sequence, since it is more
likely to find the photon close to the “right paths” created in our K interaction-selection
steps.

4.3 Experimental setup

Our experimental setup (Fig. 4.6) is essentially composed of three parts. The first part
(launcher and state preparation/selection) produces single photons in well-defined polariza-
tion states, by means of a heralded single-photon source (SPS) [124] based on Type-I PDC.
In the second part (genetic evolution) we have created K = 7 steps of interaction and the
selection mechanisms, implemented by means of birefringent crystal pairs and polarization
filters. Finally, in the third part (detection) the photons are detected by a two-dimensional
(2D) spatial-resolving detector which consists of an array of single-photon detectors. The
SPS is based on a 796 nm mode-locked Ti:Sapphire laser (repetition rate: 76 MHz), whose
second harmonic emission pumps a 10× 10× 5 mm LiIO3 non-linear crystal, in which cor-
related photons are produced by PDC. The idler photons (λi = 920 nm) are coupled to a
single-mode fiber (SMF) and then addressed to a Silicon Single-Photon Avalanche Diode
(SPAD) operated in Geiger mode, heralding the presence of the correlated signal photons
(λs = 702 nm). These, after being SMF-coupled, are addressed to a launcher injecting
them into the free-space optical path where the GQM protocol is implemented. After the
launcher, the heralded single photons are collimated in a Gaussian mode by a telescopic
system, and then prepared in the linear polarization state |ψθ〉 (by means of a calcite po-
larizer followed by a half-wave plate). We exploited the flexibility of the telescopic system
to obtain collimated spatial distributions of different widths (specifically, we observe beam
widths of 2.2 pixels (px), 3.0 px and 4.0 px of the SPAD array, corresponding to four dif-
ferent interaction strengths g/σ = 0.78, 0.55, 0.42). We have estimated the quality of our
single-photon emission with a Hanbury-Brown and Twiss interferometer [125], obtaining a
value for the parameter α [126] (directly connected to the second-order Glauber autocor-
relation function g(2)(0)) of 0.13±0.01 without any background or dark count subtraction,
that being largely below 1 testifies the goodness of our SPS. The interaction steps of the
genetic evolution couple quantum degrees of freedom of the single photon exploiting bire-
fringence. In our optical path we can insert up to K = 7 birefringent units, each of them
composed of two different calcite crystals. Although, theoretically, the probability of losing
a photon between subsequent steps due to unsuccessful verification measurement reduces
with K, this advantage is diminished due to losses originating from imperfections of the op-
tical elements. The first crystal of each element is a 2 mm thick birefringent crystal whose
extraordinary (e) optical axis lies in the X-Z plane, with an angle of 45 ◦ with respect to
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Figure 4.6: GQM experimental setup. Single photons are generated by a type-I PDC
heralded source. Then, the initial state is prepared by exploiting a state filtering done
through a polarizing plate. Afterward, K = 7 GQM steps each realizing the bio-inspired
mechanics of mutation, crossover and selection are implemented, each of them hosting a
pair of birefringent crystals and a polarizing plate. Finally, single photons are detected by
a 32× 32 SPAD array detector.

the Z direction. Due to the spatial walk-off effect experienced by the horizontally-polarized
photons, horizontal and vertical-polarization paths get slightly separated along the X di-
rection. The second crystal of each unit is a 1.1 mm thick birefringent crystal with the
optical (e)-axis along the X direction (thus not contributing to the transversal walk-off)
that nullifies, through phase compensation, the temporal walk-off introduced by the first
one. The selection of the quantum state is realized by inserting a thin-film polarizer af-
ter each birefringent unit, projecting the photons onto the same polarization of the initial
state |ψθ〉. At the end of the optical path, the photons are detected by a spatial-resolving
single-photon detector prototype developed by the Polytechnic University of Milan [127].
This device is a two-dimensional array made of 32 × 32 “smart pixels” - each one hosting
a SPAD-based single-photon detector and its front-end electronics. The SPAD array is
gated with a 6 ns detection window, triggered by the SPAD in the heralding arm, in order
to reduce the dark counts and improve the signal-to-noise ratio.

4.4 Measurement with the 32× 32 SPAD-array

As mentioned before, the SPAD array is a prototype. Thus, it has some flawed pixels
due to a disruption of the electronics impossible to fix. These pixels register a big amount
of false counts with respect to the dark-counts typical values. We called the pixels that
register an anomalous amount of dark counts hot pixels.

First, by exploiting a continuous-wave ancillary laser at 705 nm (very close to the
signal photons wavelength), we placed the SPAD camera in order to be sure that the single
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photons spatial-distribution peaks fall in a region as free from hot pixels as possible. Since
these pixels can not just be removed, we had to find a method for replacing their counts
with proper values. For this reason, we developed an algorithm able to properly replace
the hot pixels in post-processing. An example of raw image obtained with the SPAD array
is showed in Fig. 4.7. Even at a first glance it is clear that, if we simply removed the hot

Figure 4.7: Raw detected image of |V 〉-polarized single photons with Gaussian spatial
distribution (waist σ = 3.0 px).

pixels, then we would introduce a bias over the average position of the photons (i.e. the
peak of the distribution).

Thus, we designed an algorithm that works as explained in the following sentences.
It compares each pixel with its nearest neighbors: if its value is higher than a suitably
chosen threshold, i.e. the mean value of its neighbor counts multiplied by a factor of 1.6-2
(depending on the acquisition signal-to-noise ratio), then it is identified as a hot pixel, and
its value is set to zero. Then, it performs a two-dimensional Gaussian fit over the remaining
pixels, in order to replace each pixel previously set to zero with a sensible substitute, not
to introduce a bias in the estimation of 〈x〉.

By running the algorithm for the image in Fig. 4.7, we obtain the following “clean”
image (Fig. 4.8).

Figure 4.8: Resulting count distribution after running the hot pixels elimination algorithm
for the distribution in Fig. 4.7.
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4.5 Projective measurement

The aim of the experiment is to demonstrate with an experimental comparison that
GQM outperforms projective measurement in terms of uncertainties, starting from the same
initial conditions. To do this, it is possible to adapt the setup in Fig. 4.6 for performing
both measurement protocols.

As one can see from Fig. 4.1, by removing the polarizing plates realizing the selection
inside the GQM steps, a Kg-large spatial separation of the horizontal and vertical polar-
ization components is obtained, as in a Stern-Gerlach experiment. The “modified” setup is
schematized in Fig. 4.9.

Figure 4.9: Scheme of the adapted setup for projective measurement. The heralded single-
photon source and the initial state-filtering preparation are unchanged. After them, the
single photons pass through the seven birefringent crystal pairs, each composed of a 2 mm
thick birefringent crystal with optical axis inclined of 45◦ with respect to the photons
propagation direction, and a 1.1 mm thick birefringent crystal with optical axis orthogonal
to it (for compensating the polarization components temporal walk-off induced together
with the spatial displacement by the previous one). Finally, the detection part consists in
the combination of a half-wave plate and a PBS. The single photons are detected by the
32× 32 same SPAD array prototype used for the GQM realization.

After the initial state-filtering preparation and the interactions with birefringent crys-
tals, the single photons are projected by exploiting a half-wave plate and a PBS, and then
they are detected by the SPAD-array. We rescaled the experimental results in order to
consider Ntot = M measured photons. The initial state |ψθ〉 can be estimated by:

|ψθ〉 = cos θ|H〉+ sin θ|V 〉 =

√
NH

Ntot
|H〉+

√
NV

Ntot
|V 〉 (4.15)
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where the projective measurement are made in the {|H〉, |V 〉} basis, and NH (NV ) is
the amount of photons detected after projecting onto |H〉 (|V 〉) polarization, and Ntot =
NH +NV . The expectation value of P = |H〉〈H| − |V 〉〈V | is given by:

〈P 〉 = 〈ψθ|P |ψθ〉 (4.16)

and the related uncertainty is defined in Eq. 4.13.

4.6 Measurement operations

In order to identify and eliminate (or at least minimize) eventual systematic uncertain-
ties, we optimized the measurement experimental procedure by following this scheme:

• Setup optimization;

• Spatial calibration of the measurement system;

• Measurement protocols executions;

• Measurement of eventual biases within the optical measurement setup.

These measurement phases will be explained in the paragraphs below. The whole procedure
has been repeated for three different initial polarization states |ψθi〉 = cos θi|H〉+sin θi|V 〉,
where i = 1, 2, 3 and θ1 = π/4, θ2 = π/8, θ3 = 17π/60. For each initial state |ψθi〉 we
repeated again the measurements with three different spatial-distribution waist σ (σ1 =
2.2 px, σ2 = 3.0 px and σ3 = 4.0 px), i.e. varying the intensity interaction g/σ into the
GQM steps.

4.6.1 Setup optimization

Each birefringent crystal pair in the setup has to be accurately positioned, in order to
compensate the temporal walk-off induced by the first crystal. Thus, for each birefringent
crystal pair we put the first crystal onto a piezo-electric rotator able to rotate onto the
X−Z plane, in order to finely compensate the phase mismatch between the two polarization
components. To do this, before any measurement, we set the initial state equal to |+〉 =
(|H〉+ |V 〉)/

√
2, and we introduced the crystal pairs one by one.

For each pair, by deviating the photons (normally addressed to the SPAD array) to
a fiber coupler connected to a Si-SPAD, we measured the amount of heralded photons
projected onto |+〉 depending on the 45◦-birefringent crystal rotation. By rotating the first
crystal of the pair over a range of 5◦ with steps ∆θ = 0.005◦, we choose the position that
maximized the visibility of the produced state, defined by:

ζ =
Nmax −Nmin

Nmax +Nmin
(4.17)

where Nmax and Nmin are respectively the interference pattern maximum and minimum.
When the correct position is fixed, it is impossible to remove the crystal pair without

compromising the temporal walk-off compensation.
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4.6.2 Spatial calibration of the measurement system

With GQM we estimate the expectation value 〈P 〉 of the initial state polarization with
the coordinates of the mean position of the detected photons. Therefore, it is required a
calibration determining the positions of the vertical and horizontal polarization components
on the SPAD array.

After the setup optimization, the configuration is the one shown in Fig. 4.9. Hence, for
the calibration we performed two measurements of 300 s: the first one with the prepared
initial state |H〉, the other one for the state |V 〉. For both measurements, we obtained a
Gaussian distribution of the detected photons. Then, we analyzed the two spatial distri-
butions obtained, extracting the average 〈x〉 position for both of them, thus achieving an
estimate of the extremes of our OoI eigenvalue spectrum.

4.6.3 Measurement protocols execution

At this point, the experimental setup is still in the configuration shown in Fig. 4.9. For
each state-filtering preparation |ψθi〉, we performed two 300 s long projective measurements.

To realize the GQM protocol, in this phase we insert the polarizing plates, obtaining
the setup configuration shown in Fig. 4.6. For each state-filtering preparation |ψθi〉, we
performed an acquisition 3000 s long.

4.6.4 Measurement of eventual biases within the optical system

In line of principle, a polarizing plate would not introduce spatial deviations in the
single-photon propagation direction. Nonetheless, in practice it could induce a slight dis-
placement on them, and this will generate a bias over the estimated polarization value ob-
tained with the GQM protocol. In order to measure this bias, we removed the birefringent-
crystal pairs, and we left the polarizing plates oriented for projecting onto the same state-
filtering selection |ψθi〉, as during the GQM. Then, we did a 600 s long acquisition, with
which we obtained the mean position of the photons 〈x〉pol = xpol. Finally, we also removed
the seven polarizing plates, and we performed again a 600 s long acquisition, obtaining the
mean position of the photons spatial distribution without spacial displacements 〈x〉free.

The induced spacial deviation Dpol is given by:

Dpol = 〈x〉pol − 〈x〉free (4.18)

For GQM, we have to correct the SPAD-array detector calibration with the term Dpol,
obtaining:

XH = xH +Dpol

XV = xV +Dpol

(4.19)

where xH and xV are respectively the horizontal coordinates of |H〉 and |V 〉 obtained in
the previous calibration.

4.7 Data analysis

As previously described, for our comparison between GQM and projective measurement
we detected the single photons with the 32×32 SPAD-array, and we elaborated the acquired
images with the algorithm explained in section §4.4. In order to extract more precisely the
coordinates of the photons spatial distribution average position, for each “clean” image we
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selected a squared region of interest (RoI), with side 3σ, where σ is the spatial-distribution
waist of the detected photons (expressed in pixels).

Outside of the RoI, we evaluated the noise contribution as the average counts per pixel
〈Nnoise〉. Later, we subtracted this value from each pixel inside the RoI, fixing to zero
those showing negative values.

4.7.1 Projective measurement

The state |ψθ〉 = cos θ|H〉+ sin θ|V 〉 is defined in Eq. 4.15 as a function of the counts
detected in a projective measurement. By using the SPAD array, the amount of detected
counts NX , with X = H,V is given by:

NX =
∑

(x,y)∈RoI

NX(x, y) (4.20)

where NX(x, y) is the value of the measured count in the polarization state |X〉 by the
pixel with coordinates (x, y) inside the RoI. The corresponding uncertainties (see Eq. 4.13)
have to be multiplied by the survival probability in Eq. 4.8 of the state |ψθ〉 for K = 7
in order to fairly compare the uncertainties between projective measurement and GQM
protocols.

In the following figures, we show the single-photon counts acquired by performing
the projective measurement. Respectively, the initial polarization states under test are
|ψ17π/60〉 = 0.629|H〉+ 0.777|V 〉 in Fig. 4.10, |ψπ/4〉 ≡ |+〉 = (|H〉+ |V 〉)/

√
2 in Fig. 4.11,

and |ψπ/8〉 = 0.924|H〉+ 0.383|V 〉 in Fig. 4.12. For each initial state, we considered three
different Gaussian single-photon spatial distributions with waist 2.2, 3.0, and 4.0 pixels,
thus modifying the induced von Neumann interaction intensity.

Measuring the single photons, we projected at different times onto the polarizations
|H〉 and |V 〉 by means of the half-wave plate and the PBS inserted just before the SPAD
array in the setup of Fig. 4.9. This was necessary because the two correspondent count
distributions are partially overlapped in the cases of large waist, and we had to assign
to each count a precise polarization component in order to extract information about the
initial state |ψθi〉 (see Eq. 4.15).
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(a) σ = 2.2 px

(b) σ = 3.0 px

(c) σ = 4.0 px

Figure 4.10: Detected photons with polarization state |H〉 (yellow) and |V 〉 (red). We
performed three projective measurement over the initial state |ψ17π/60〉 = 0.629|H〉 +
0.777|V 〉, by changing the waist σ of the single photons Gaussian spatial distribution: a)
σ = 2.2 px, b) σ = 3.0 px and c) σ = 4.0 px.
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4.7.2 GQM results

As K increases, the survival probability of the single photons (defined in Eq. 4.8) has
higher values for the paths next to the one corresponding to the initial polarization state.
Therefore, we could expect to observe from the SPAD-array acquisitions a higher collection
of counts centered in the position corresponding to the initial polarization |ψθ〉.

Analogously to the projective measurement protocol, for each acquired image we se-
lected a squared RoI, with side length 3σ. Again, we evaluated from the pixels outside of
the RoI the average noise counts per pixel 〈Nnoise〉, and we subtracted this value from the
RoI pixels with the same procedure illustrated for the projective measurement.

The average position of each measured initial state is given by the average position of
the detected photons in function of the counts:

〈Xψ〉 =
1

Ntot

∑
(x,y)∈RoI

N(x, y) (4.21)

where the sum is extended only to the RoI, Ntot is the total amount of detected photons
and N(x, y) is the number of counts relative to the pixel with coordinates (x, y).

The calculated position 〈Xψ〉 stands between the points (XH) and (XV ); the estimation
of 〈P 〉 is given by:

〈P 〉 =
2〈Xψ〉
gK

− 1 (4.22)

where gK = 〈XH〉 − 〈XV 〉. By remembering Eq. 4.12, in which the uncertainty related to
P is defined, the uncertainty associated with the expectation value 〈P 〉 is:

u(〈P 〉) =
u(P )√
Ntot

(4.23)

In the following, we show the images obtained from the GQMs performed on the three
states under exam, with different von Neumann interaction intensity g/σ. In particular,
Figs. 4.13, 4.14 and 4.15 respectively correspond to the initial states |ψ17π/60〉 = 0.629|H〉+
0.777|V 〉, |ψπ/4〉 = (|H〉+ |V 〉)/

√
2 and |ψπ/8〉 = 0.924|H〉+ 0.383|V 〉.

(a) σ = 3.0 px
〈P 〉 = −0.25± 0.02

(b) σ = 4.1 px
〈P 〉 = −0.14± 0.04

(c) σ = 5.6 px
〈P 〉 = −0.14± 0.03

Figure 4.13: GQM results obtained for single photons initially prepared in the polarization
state |ψ17π/60〉 = 0.629|H〉+ 0.777|V 〉, corresponding to the OoI theoretical value 〈Pth〉 =
−0.208, for three different interaction intensities, achieved by varying the (Gaussian) spatial
distribution waist σ.
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(a) σ = 3.0 px
〈P 〉 = −0.005± 0.005

(b) σ = 4.1 px
〈P 〉 = −0.05± 0.03

(c) σ = 5.6 px
〈P 〉 = 0.02± 0.03

Figure 4.14: GQM results obtained for single photons initially prepared in the polarization
state |ψπ/4〉 = (|H〉 + |V 〉)/

√
2, corresponding to the OoI theoretical value 〈Pth〉 = 0, for

three different interaction intensities, achieved by varying the (Gaussian) spatial distribu-
tion waist σ.

(a) σ = 3.0 px
〈P 〉 = 0.709± 0.005

(b) σ = 4.1 px
〈P 〉 = 0.70± 0.09

(c) σ = 5.6 px
〈Pthat〉 = 0.74± 0.02

Figure 4.15: GQM results obtained for single photons initially prepared in the polarization
state |ψπ/8〉 = 0.924|H〉 + 0.383|V 〉,corresponding to the OoI theoretical value 〈Pth〉 =
0.707, for three different interaction intensities, achieved by varying the (Gaussian) spatial
distribution waist σ.

From the experimental results, it emerges that with GQM protocol we obtained the
photon counts in a spatial distribution centered on a region whose x coordinate is directly
related with the expectation value of the photons initial polarization. Along the X axis,
such distribution appears larger than along Y axis, because (see Fig. 4.1) the mutation
mechanisms inside the GQM only occur in one direction: in our case the X axis. This
asymmetry emerges clearer and clearer as the interaction intensity g/σ increases.

Under each image are reported the corresponding estimated expectation values 〈P 〉,
together with their statistical uncertainties, demonstrating how they are in good agreement
with the theoretical predictions.

4.7.3 Experimental comparison between GQM and projective measure-
ment

In Fig. 4.16 we show the statistical uncertainties related to the measurements of P .
In these three graphs one can appreciate the comparison between GQM (red) and

projective measurement (blue) related uncertainties behavior.
In order to make a fair comparison, one has to take into account that in GQM protocol

the single photons have a survival probability due to the selection mechanism. Thus, for
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measuring one photon at the end of the protocol, one needs an initial amount of initial
photons equal to Ps(K)−1, with Ps(K) defined in Eq. 4.8. Therefore, the uncertainty
related to the projective measurement is given by Eq. 4.13, where in our case M =
Ps(K)−1.

In Fig. 4.16 it is possible to notice that uPBS(P ) decreases as the interaction intensity
g/σ increases, because the survival probability decline entails the increase of the required
initial single photons amount.

On the contrary, the GQM uncertainty is defined in Eq. 4.12. We can see that the
experimental results are in good agreement with respect the theoretical predictions. In
addiction, the GQM uncertainties are always smaller than the ones given by projective
measurements, except for the case of σ = 4.0 px in correspondence with the polarization
state |ψπ

8
〉 = 0.924|H〉+ 0.383|V 〉. In that case, the interaction intensities inside the GQM

steps are weak, and it is not possible to achieve a sufficient resolution after just K = 7
steps.

This is easy to understand by observing the behavior of the ratio R (see Eq. 4.14),
that we report again in Fig. 4.17 for K = 7, underlining the three sections related to the
different polarization states under test.

(a) |ψ 17π
60
〉 = 0.629|H〉+ 0.777|V 〉 (b) |ψπ

4
〉 = (|H〉+ |V 〉)/

√
2

(c) |ψπ
8
〉 = 0.924|H〉+ 0.383|V 〉

Figure 4.16: Comparison between statistical uncertainties experimentally obtained from
GQM (red) and projective measurement (blue) protocols. For each initial polarization
state |ψθi〉, the continuous lines represent the theoretical predictions in function of the
interaction intensity g/σ, whereas the dots are the obtained experimental values.
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Figure 4.17: Sections (violet) of the R surface for K = 7 from Fig. 4.5, n correspondence
of the polarization states |ψ 17π

60
〉 = 0.629|H〉 + 0.777|V 〉, |ψπ

4
〉 = (|H〉 + |V 〉)/

√
2 and

|ψπ
8
〉 = 0.924|H〉 + 0.383|V 〉. The magenta plane represents R = 1: above it GQM is

advantageous in terms of uncertainty in comparison to the projective measurement.

In Fig. 4.18 we report the three orthogonal projections of the sections shown in Fig.
4.17. For each state under exam, we also report the experimental values of R. The
theoretical behavior of R as a function of the interaction intensity is shown in yellow,
whereas the magenta line corresponds to R = 1, below which the GQM protocol is not
convenient with respect to the traditional projective measurement.

Again, the experimental results are in good agreement with the theoretical predictions.
It is remarkable that with just K = 7 steps GQM we could achieve a gain of a factor
> 2 in terms of precision with respect to projective measurement with the same initial
conditions. As mentioned before, the only case in which the GQM was not convenient is
the one corresponding to the initial state |ψπ

8
〉 for σ = 5.6. This is due to the von Neumann

interaction intensity, that is too weak to efficiently extract information about the OoI P
after just K = 7 steps, because the induced spatial displacement is too small for granting
enough resolution.

Obviously, the above considerations assume an ideal scenario where the only source
of losses in the measurement process is represented by the projections responsible for the
selection mechanism, without optical losses due to imperfections in the optical elements
present in the experimental setup. Unfortunately, in such experimental schemes, the optical
losses greatly reduce the advantage discussed so far, but this is a technical limitation that
can be, in principle, overcome with technological progress in optics manufacturing. It is
important to underline that the advantage of the GQM technique can become absolutely
relevant in a less lossy measurement scenario, and that our proof-of-principle experiment
and simulations pave the way to the exploitation of the GQM approach, e.g., in atomic or
solid state quantum systems, where losses are typically less than the ones experienced in
photon-based experiments.
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(a) σ = 2.2 px

(b) σ = 3.0 px

(c) σ = 4.0 px

Figure 4.11: Detected photons with polarization state |H〉 (yellow) and |V 〉 (red). We
performed three projective measurement over the initial state |ψπ/4〉 = (|H〉+ |V 〉)/

√
2, by

changing the waist σ of the single photons Gaussian spatial distribution: a) σ = 2.2 px, b)
σ = 3.0 px and c) σ = 4.0 px.
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(a) σ = 2.2 px

(b) σ = 3.0 px

(c) σ = 4.0 px

Figure 4.12: Detected photons with polarization state |H〉 (yellow) and |V 〉 (red). We
performed three projective measurement over the initial state |ψπ/8〉 = 0.924|H〉+0.383|V 〉,
by changing the waist σ of the single photons Gaussian spatial distribution: a) σ = 2.2 px,
b) σ = 3.0 px and c) σ = 4.0 px.
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(a) |ψ 17π
60
〉 = 0.629|H〉+ 0.777|V 〉 (b) |ψπ

4
〉 = (|H〉+ |V 〉)/

√
2

(c) |ψπ
8
〉 = 0.924|H〉+ 0.383|V 〉

Figure 4.18: Experimental values (dots) of the ratio R between the obtained projective
measurement and GQM statistical uncertainties (Eq. 4.14). For each initial polarization
state |ψθi〉, the yellow lines is the theoretical prediction (see Fig. 4.5), whereas the magenta
line represents the threshold above which the GQM is convenient with respect to the
traditional projective measurement in terms of uncertainty.
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Chapter 5

Temporal and spatial correlations on
an equal footing: the Pseudo-Density
Operator

Since Bell’s work [23, 128], the study of quantum correlations have been playing a
crucial role in quantum foundations investigation. Most of the research works in this field
involve spatial correlations, in the form of entanglement and quantum discord [5,55,62,129]
(as mentioned in Chapter 3), but different attempts have been made to extend these efforts
to the time domain.

Considering its traditional formalism, QM presents a fundamental asymmetry between
space and time. This becomes evident when looking at the description of composite quan-
tum systems, whose density matrix, at a given time t, acts on the tensor product of the
Hilbert spaces associated with the single subsystems composing the global state, each con-
sidered at the same time instant t.

States are defined at a specific instant, and they evolve over time under the action of
a Hamiltonian. However, there exists another kind of composite systems besides these,
where the components might present both spatial and temporal correlations (even being
time-like separated, eventually). In this case, there is no standard prescription for the joint
state of such a composite system.

With relativity theory, it has been demonstrated that many distinctions between space
and time previously considered to be fundamental are not [130]. Obviously, this argument
goes beyond the aim of this thesis. Anyway, it is easy to understand that, in order to
achieve a theory that unifies QM and relativity, the research of a quantum formalism
treating on an equal footing space-like and time-like correlations is of the utmost relevance
for the scientific community.

The space/time asymmetry in QM is also in sharp contrast with classical probability
theory, where joint probabilities can be defined for sets of events whatever their spatio-
temporal relationships. Hence, although there is a well-developed analogy between density
matrices and classical probability distributions, such analogy is limited to time-like sepa-
rated systems.

If such asymmetry in QM is fundamental, then the understanding of time given by
quantum theory must be different from that suggested by a combination of relativity and
classical probability theory. If, on the other hand, this is not the case, then this asymmetry
should be removable. One way of eliminating it would be to construct quantum states for
composite systems over time. States would then be defined across both space and time,
without a separate formalism describing temporal evolution.
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The most celebrated attempt for formalizing quantum correlations in the time domain is
the one from Leggett and Garg, who demonstrated that quantum systems present temporal
correlations which cannot be explained by any macro-realistic theory [131].

In recent years, some works have exploited a different approach: to assume QM a priori,
and then examine the correlations which can arise, e.g., when studying the role of causality
in quantum systems [132–134]. Quantum states which violate the Leggett–Garg inequality
necessarily manifest these causal correlations: for this reason, recent experimental demon-
strations of violations of such inequalities might be seen as a limited observation of such
causal correlations [135–139]. In non-relativistic QM, at a given time the state of a physi-
cal system is described by the density operator, and it evolves according to Schrödinger’s
equation; this means that time represent just a parameter, and not an observable of the
system. In a recent work [130], it was investigated the possibility of defining joint states
over time in a manner that closely matches the standard quantum treatment of composite
systems at a given time. The authors showed that, if one fixes a family of operators for
describing such states, it is required a product operation, namely a “star” product ?, that
satisfies five criteria:

• Hermiticity. If the system is defined at two instants tA and tB into the Hilbert space
HAB, the star product has to be a map of the form ? : HAB ×HAB → HAB;

• Preservation of probabilistic mixtures. The output state of a quantum evolution
for a given input state must be a linear function of both the input state and the
evolutionary operator;

• Preservation of classical limit. If a state ρA described at time tA undergoes an
evolution at time tB by the operator E, and the emerging state EB|A commutes with
ρA, then the star product must satisfy the relation EB|A ? ρA = EB|AρA;

• Preservation of marginal states. Given the state ρAB = EB|A ? ρA, the marginal
states of ρAB have to be obtained by partially tracing over the remaining subsystem.

• Compositionality and associativity. If the system ρA at time tA evolves in EB|A at
time tB, and then it evolves in the state EC|B at time tC , then the star product has
to satisfy that the overall state ρABC = EC|B ? (EB|A ? ρA) = (EC|B ? EB|A) ? ρA.

However, they proved with a theorem that there is no way to construct a state over
time that satisfies all of these criteria. Nevertheless, if Hermiticity is retained, but the
assumption of associativity is dropped, they showed that there exists a formalism that
satisfies the remaining criteria: the pseudo-density operator (PDO) formalism [140]. This
formalism was introduced as an extension of the density operator able to describe spatial
and temporal correlations at once, thus representing a new significant tool for describing
quantum evolution and measurement in different scenarios. As paradigmatic examples of
the PDO formalism application, here I present two works exploiting it to describe two
scenarios that the traditional density operator formalism fails to describe in the proper
way, since both temporal and spatial correlations are involved and impossible to treat
separately. These two scenarios are, respectively, the physics of an entangled pair entering
an open time-like curve (OTC) [141], and the black hole information loss paradox [142].
In particular, we perform for the first time an experimental reconstruction of a three-
photon state PDO [143, 144] equivalent to the one describing the scenarios mentioned
above, also showing how the entanglement monogamy [145,146] violation paradox, arising
when modelling these two cases with a density operator, is naturally reconciled by the PDO
formalism, in which such violation might appear without giving up on quantum mechanical
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states linear evolution. Before going in the details of these works, in the next section the
PDO general properties are illustrated.

5.1 Pseudo-density operator

The density operator ρ of a quantum state can be defined as a probability distribution
over pure states: ρ =

∑
i pi|ψi〉〈ψi|, where pi is the probability associated with the state

|ψi〉. Since the Pauli operators, together with the identity, constitute a basis for the spaces
of Hermitian operators [5], and any density matrix ρ is Hermitian, one can write the density
operator of a generic n-particle multi-partite state as ρ = a01+

∑4n−1
i=1 aiŜi, where Ŝi is the

i-th Pauli operator, and {ai}4
n−1
i=0 are real numbers. In particular, a0 = 1/2n, because the

Pauli operators are traceless and ρ must have its trace equal to 1. Hence, the expectation
value for the Pauli operator Ŝj is given by:

〈Ŝj〉 = Tr

[
Ŝj

(
1
2n

+
4n−1∑
i=1

aiŜi

)]
= 2naj (5.1)

Thus, it is possible to alternatively define ρ as a function of the expectation value of Pauli
operators:

ρ =
1
2n

+

4n−1∑
i=1

〈Ŝi〉
2n

Ŝi (5.2)

In order to make the state correlations emerge, one can express each Pauli operator as the
tensorial product of n 2× 2 Pauli matrices, yielding:

ρ =
1

2n

3∑
i1=0

· · ·
3∑

in=0

〈
n
⊗
j=1

σij

〉(
n
⊗
j=1

σij

)
(5.3)

where σ0 = 1, σ1 = X, σ2 = Y and σ3 = Z.
Eq. 5.3 can be interpreted as a generalized definition of the density operator.

By considering a set of events {E1, . . . , EN}, where for each event a von Neumann mea-
surement [27] of a single Pauli matrix can be performed, for a particular choice of Pauli
operators {σij}nj=1 the corresponding expectation value is indicated with 〈{σij}nj+1〉. Then,
one can define a PDO as:

R =
1

2n

3∑
i1=0

· · ·
3∑

in=0

〈{σij}nj=1〉
(

n
⊗
j=1

σij

)
(5.4)

In order to compute R, according with Eq. 5.4 only the expectation values for possible
measurements are required.

By definition, the PDO can be non-positive, i.e. it can present negative eigenvalues.
When this occurs, it means that the PDO necessarily contains a temporal correlation
element [147], allowing partial discrimination between spatial and temporal correlations
(since PDOs can be positive without implying space-like separation [140], the absence of
a negative eigenvalue is not enough to exclude temporal correlations).

In what follows, I will assume that the dynamics between measurement events are in
accordance with non-relativistic QM, and that the action of each measurement is to project
the state onto the eigenspace of the measurement operator corresponding to the measure-
ment result. If one assumes that the underlying dynamics are non-relativistic, in general
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the resulting PDO is not Lorentz-covariant. However, the definition of the PDO in Eq. 5.4
does not imply a specific dynamics model. Therefore, a PDO can be reconstructed from
experimental results or derived from theoretical predictions without implicitly assuming
non-relativistic QM. If the measurement events {E1, . . . , EN} correspond to simultaneous
measurements of different subsystems of a n-partite quantum state, or in the eventuality
that these measurements occur on states which are non-interacting between measurement
events, then R corresponds to a “traditional” density operator.

The PDO inherits many of the properties of a density operator, as we will show in the
following.

Hermiticity

All PDOs are necessarily Hermitian operators.
Proof : by definition, a PDO is a weighted sum over Pauli matrices. As Pauli matrices are
Hermitian and all weights are real, the resulting PDO is Hermitian by construction.

Unit trace

All PDOs have trace equal to 1.
Proof : this property follows from definition of the PDO in Eq. 5.4, because other than the
identity, all the Pauli matrices are traceless. Hence, when taking the trace of a PDO, only
the weight for the identity term contributes. Then:

Tr [R] = Tr

[
〈1, . . . ,1〉

2n
1

]
= 1 (5.5)

Partial trace

Given a bipartite state PDORAB defined over two sets of events A and B, the “reduced”
PDO obtained from the set A can be derived from RAB by partially tracing with respect
to the subsystem B.
Proof : from the PDO definition one has:

RA =
1

DA

∑
σA

〈σA〉σA (5.6)

where DA is the dimension of the subsystem corresponding to A.
Instead, RAB is given by:

RAB =
1

DADB

∑
σA

∑
σB

〈{σA, σB}〉σA ⊗ σB (5.7)

where, analogously to Eq. 5.6, DB is the dimension of the subsystem corresponding to B.
By partially tracing RAB in Eq. 5.7 with respect to B, one obtains:

TrB [RAB] = TrB

[
1

DADB

∑
σA

∑
σB

〈{σA, σB}〉σA ⊗ σB

]

=
1

DADB

∑
σA

∑
σB

Tr [σB] 〈{σA, σB}〉σA

=
1

DA

∑
σA

〈{σA, 1}〉σA = RA

(5.8)
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Measurements

The PDO R contains information not only about Pauli measurements, but also about
the expectation value of the product of any set of local measurements with eigenvalues
restricted to ±1. For a set of measurement operators {Mj}, with eigenvalues chosen from
{−1; 1}, the expectation value for the product of their outcomes is given by:

〈{Mj}Tj=1〉 = Tr

[(
T
⊗
j=1

Mj

)
R
]

(5.9)

where Mj is defined over the set of mj subsystems on which measurement events occur at
time j.
Proof : it is sufficient to show that the expectation values related to the Mj measurements
are just a linear combination of those given by Pauli operators measurements. Considering
Mj =

∑
k αjkσ

mj
k , wheremj denotes that the Pauli operator is related tomj-th subsystem,

the expectation value follows from Eq. 5.9 by substitution:

〈{Mj}Tj=1〉 =
4m1−1∑
i1=0

· · ·
4mT−1∑
iT=0

 T∏
j=1

αjk

 〈{σmjij }Tj=1〉 (5.10)

In general, 〈{Mj}Tj=1〉 =
∑

i pioi, where pi is the probability of obtaining a product of
measurement outcomes equal to oi. For non-relativistic quantum systems, the probability
pi can be expressed as:

pi =
∑

s:
∏
j sj=oi

Tr
[
P sTT UT−1 . . . P

s1
1 ρP s1†1 . . . U †T−1P

sT †
T

]
(5.11)

where P sjj represents the projector onto eigenspace of Mj corresponding to the eigenvalue
sj , and the dynamics between subsequent measurements is described by the unitary oper-
ators Uj .

If the eigenvalues spectrum of Mj has no constraints, then P
sj
j can be a high degree

polynomial in Mj , whereas in the case of Mj eigenvalues belonging to the set {−1; 1}
the projector P±1

j can be written as P±1
j = (1±Mj)/2. Therefore, for each measurement

operator there exist two probabilities, p1 and p−1. Furthermore, since 〈{Mj}Tj=1〉 = p1−p−1

the quadratic and constant terms cancel, leaving the purely linear expression in Eq. 5.10.
Thus, there are no differences in method for calculating a measurement expectation

value with a PDO with respect to a density operator, provided that the measurement
operator has eigenvalues ±1.

This demonstrates that the PDO carries more than simple correlations between Pauli
measurements. It also contains the necessary information to predict measurement out-
comes for a wide range of measurements, without any further knowledge of the underlying
dynamics giving rise to a particular PDO, other than the non-relativistic assumption. Fur-
thermore, this shows that the information captured by the PDO is invariant under local
change of basis.

Let me introduce an example, in order to understand what PDO means physically. Con-
sider the statistics of a physical process where a single qubit [5], initially in a maximally-
mixed state, is measured at two different times t1 and t2. As specified before, each mea-
surement is considered to be performed in any of the three complementary bases X, Y , Z,
represented by the Pauli matrices. According to Eq. 5.7, in this case the PDO takes the
form:

R12 =
1

4
(112 +X1X2 + Y1Y2 + Z1Z2) (5.12)
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where the subscripts 1 and 2 represent, respectively, the time instants t1 and t2, and 112 is
the identity matrix within the Hilbert space of the two-qubit state. The PDO in Eq. 5.12
has similarities with the density operator of a singlet state, but here all the correlations
have a positive sign, whereas for the singlet 〈XX〉 = 〈Y Y 〉 = 〈ZZ〉 = −1. It is easy to
notice that R12 is not-positive, i.e. at least one of its eigenvalues is negative.

Interestingly, if one traces out one of the two subscripts from the Eq. 5.12, the obtained
marginal is a “valid” density matrix, corresponding to the maximally-mixed state 1/2.
Therefore, the marginals of R12 are both perfectly allowed physical states, whereas the
overall state is not.

Anyway, experimentally it is impossible to realize directly a negative projection (i.e. a
projection onto the state corresponding to a negative eigenvalue), because it would involve
negative probabilities [147]. Thus, we designed and implemented in an on-purpose quantum
optical setup a novel tomographic technique able to reconstruct PDOs, described in the
next section together with the first scenario that we considered, i.e. the simulation of the
dynamics of an entangled pair entering an open time-like curve.

5.2 Open time-like curve scenario simulation and PDO to-
mographic reconstruction

QM and general relativity each provide well-verified predictions, in their respective do-
mains. However, they also provide predictions that cannot be experimentally investigated
yet, but nevertheless give the opportunity of examining a rather different physics with re-
spect to the one we directly perceive at our scales, e.g. the physics of black holes [148]. Fur-
thermore, there are other interesting predictions regarding space-time correlations violating
the standard properties of QM, such as superpositions of different space-time geometries
in quantum gravity, resulting in superposing different causal orders [132].

In these cases, one might relax some of QM assumptions in order to maintain a coherent
picture which leads to proposals for new frameworks going beyond quantum theory. An
important example of such violations is the dynamics of a quantum system near closed
time-like curves (CTCs) [149], allowed solutions of Einstein’s equations constituting a
model for time travel. CTCs allow observers to travel backwards in time and, possibly,
even to interact with their former selves. Obviously, this kind of solutions has been argued
to be unphysical in classical general relativity, because paradoxes could arise, e.g. the
grandfather’s paradox [150, 151]. Some researchers even invoke a chronology-protection
principle to rule out their existence in physical reality [152].

A possible resolution for these paradoxes is given by merging general relativity with
QM, by considering the dynamics of a quantum system (e.g. a qubit) going back in time
through a CTC and interacting with its past copy, as in [149].
Here, the author demonstrates how these paradoxes, arising from chronology-violating
solutions of Einstein equations in general relativity, can be translated in computational
language by identifying the CTC space-time with an informational network including an
interaction gate with a negative delay; then, by extending these models to a quantum
mechanical framework, the reconciliation of those paradoxes becomes possible. Specifically,
the scheme for such a CTC-involving quantum network is reported in Fig. 5.1. The
chronology-respecting qubits and the ones entering the CTC (hosting the negative time
delay −T) are represented, respectively, by the density operators ρCR and ρCTC. The joint
state ρCR ⊗ ρCTC undergoes evolution, mediated by the unitary operator U , by means of
the quantum gate G. Then, the global state outgoing the quantum gate G can be written
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Figure 5.1: Scheme of a CTC quantum network. The density operator ρCR indicates the
state of the chronology-respecting qubits, while ρCTC the state of the ones entering the CTC
(indicated by the negative time delay −T). The quantum gate G, instead, is responsible
for the unitary evolution U on the joint state Hilbert space.

as:
ρG = U (ρCR ⊗ ρCTC)U † (5.13)

From this, one can find the consistency conditions for this kind of time-travel, by imposing:

ρCTC = TrCR

[
U (ρCR ⊗ ρCTC)U †

]
(5.14)

It can be shown that Eq. 5.14 admits solutions for every density operator ρCR, without any
further constraint on the chronology-respecting qubits state (in contrast to what happens
in the classical scenario, in which an eventual CTC-involving quantum network would
be mathematically consistent only with a strict constraint on the chronology-respecting
particle).
In the last years, a number of works investigated this scenario [153–157]. However, even
if it seems that these paradoxes can be reconciled in this way, the cost of the proposed
approach is that the resulting dynamical evolution of each of the involved qubit copies
is non-linear [149]. This causes significant changes to the usual QM formalism. Because
of non-linearity, CTCs can be used to perform perfect discrimination of non-orthogonal
states and other tasks forbidden in traditional QM [158], e.g. quantum cloning [159,160].
Experimentally, this kind of non-linear evolution has also been simulated, by means of a
quantum-optical setup reproducing the dynamics of a qubit entering a CTC [155].

If we have no interaction between the earlier and the later copies of the involved quan-
tum state, instead of a CTC we have a time-travel scenario called open time-like curve
(OTC). Interestingly, although paradoxes like the grandfather’s one are avoided in OTCs,
violations of entanglement basic properties (e.g. the entanglement monogamy principle)
can occur if the quantum system entering the OTC is initially entangled with another
(chronology-respecting) system [158,161]. Within the traditional QM formalism, the usual
monogamy-preserving approach to an OTC is assuming that the resulting dynamics on the
subsystems in the OTC regions violates unitarity by being entanglement breaking.

5.2.1 PDO formalism and entanglement monogamy principle

As an emblematic example of the use of PDO, we considered the case of application to
OTC, realizing also an experimental simulation of the relative PDO [143]. In particular,
this approach allows one to describe the overall state of the chronology-violating region,
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even allowing violations of the monogamy of entanglement under specific circumstances,
i.e. when temporal correlations are involved. Furthermore, with this approach linearity is
preserved, because PDOs are related by linear transformations. This opens a new line of
investigation in which, alternatively to modify the linearity of quantum theory we, modify
other properties, specifically the positivity of the quantum state in agreement with the
PDO formalism, to accommodate features induced by other physical requirements (in this
case general relativity).

In particular, we considered the scenario schematically shown in Fig. 5.2: a qubit (Q2),
initially maximally entangled with a second qubit (Q1), enters an OTC, from which its
future copy (Q3) emerges from. Although in the remote past and in the distant future
we can find only two spatially-correlated qubits (Q1-Q2 and Q1-Q3, respectively), and
therefore the density operator could perfectly describe their state, the PDO formalism is
needed in the chronology-violating region in which all of the three qubits are present.

Figure 5.2: Pictorial representation of an OTC circuit. Initially, the qubits Q1 and Q2
are maximally entangled. Then, Q2 enters a chronology-violating region, emerging as a
qubit Q3. In the chronology-violating region (shaded volume) in which the three qubits are
present, qubits Q1 and Q2 must maintain the maximum entanglement, and the same holds
for qubits Q1 and Q3 (being Q3 just a copy of Q2). Within the traditional QM formalism,
this situation violates the entanglement monogamy principle, forbidding a quantum system
to be maximally-entangled with more than another quantum system.

The corresponding PDO fully describes the three-qubit system even within the OTC
chronology-violating region, and also encapsulates the entanglement monogamy violation
within it. Here, we conjecture that the PDO R23 of the same form as in Eq. 5.12 describes
the state formed by the qubit entering the OTC (Q2) and by its copy emerging from it
(Q3), because the two qubits are then perfectly correlated in all bases. More in detail,
a maximally-entangled qubit pair (Q1-Q2) is created in the distant past of the region of
space-time that contains the OTC. Then, Q2 is sent into the OTC, and its copy emerging
from it is represented by a third qubit (Q3). Both in the distant past and in the distant
future, the system state corresponds to a maximally-entangled pair, described by the PDO:

74



5.2. OPEN TIME-LIKE CURVE SCENARIO SIMULATION AND PDO
TOMOGRAPHIC RECONSTRUCTION

R1j =
1

4
(11j −X1Xj − Y1Yj − Z1Zj) j = 2, 3. (5.15)

However, in the chronology-violating region we exploit a PDOR123 for modelling the whole
state, thus describing the fact that Q1 has to be maximally-entangled both with the qubit
emerging from the OTC (Q3) and with the one entering it (Q2) (see Fig. 5.2). Thus, the
two marginal PDOs R12 and R13 must correspond to two density operators of the form of
Eq. 5.15, because they both represent a maximally-entangled pair, whereas the marginal
R23 is a PDO (not a physical state) describing perfect correlation in time between the past
and the future copy of the same qubit. The whole descriptor R123 is also not a physical
state (i.e. it presents negative eigenvalues), and it can be written as:

R123 =
1

8
(1123 − Σ12 + Σ23 − Σ13) (5.16)

where Σij = XiXj1k + YiYj1k + ZiZj1k and 1k is the identity in the k-th qubit Hilbert
space.

By partially tracing R123 in Eq. 5.16 with respect to one of the subsystems, one can
obtain the following marginals:

R12 =
1

4
(112 − Σ12)

R23 =
1

4
(123 + Σ23)

R13 =
1

4
(113 − Σ13)

(5.17)

As described before, the qubits Q1 and Q2 are prepared in a maximally-entangled
state, but also Q1 and Q3 are maximally entangled, being qubit Q3 the copy of Q2 that
entered the OTC. Furthermore, Q2 and Q3 are maximally correlated in all bases, because
they describe the later and earlier qubits in the chronology-violating region (i.e. they are
described by a PDO, which is not a physical state). The whole PDO R123 represents a
state in which three qubits are maximally anti-correlated in every basis, which is, again,
an unphysical state.

It is important to notice that the qubit entering an OTC could undergo some unitary
transformation. This transformation would not change its being maximally entangled with
the other qubit, so it could be incorporated in the description above by modifying the
reduced state of Q1 and Q2 and of Q2 and Q3 to be different maximally entangled states.
However, it still remains true that the qubit just before entering the OTC (Q2) and just
after emerging from it (Q3) are two copies of the same qubit, which is why they can be
described by R23.

In this scenario, for measuring a violation of the entanglement monogamy principle,
a simple way is to exploit the marginals Rij for verifying the violation of a Bell’s in-
equality, e.g. the Clauser-Horne-Shimony-Holt (CHSH) inequality [24], in more than one
bipartite subsystem at the same time. In particular, setting Cij = Tr [RijBij], where
Bij =

√
2(XiZj + ZiXj) is the observable used in the CHSH inequality tests on qubits i

and j, the entanglement monogamy principle can be expressed as [162]:

Cmk + Cnk ≤ 4 (5.18)
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with k,m, n = 1, 2, 3 and k 6= m,n. It is immediate to show that the inequality in Eq. 5.18
is violated in the state described by R123, because both R12 and R13 describe a maximally-
entangled bipartite state, then C12 = C13 = 2

√
2. Since R23 describes perfect correlations

in all basis, we have also C23 = 2
√

2, as expected. Note that this is an application of the
PDO to describe two distinct time-like separated qubits, i.e. the past and future copy of
the qubit within the OTC, which are perfectly correlated in all bases. This differs from
the standard use of the PDO as a tool to describe time-like correlations belonging to the
same qubit (already known to violate monogamy of entanglement).

5.2.2 Experimental simulation

As a paradigmatic example of the use of the PDO formalism, we implemented a
quantum-optical simulation of an OTC, allowing to demonstrate experimentally the en-
tanglement monogamy violation and, at the same time, to reconstruct (for the first time)
the PDO modelling the three-qubit system within the OTC chronology-violating region
described above. Such simulation consists in reconstructing all the statistics contained in
the PDO R123 defined in Eq. 5.16, which represents the OTC in our model. This statis-
tics was collected by creating different sub-ensembles of entangled photon pairs, on which
different measurements were realized.

For this purpose, we generated a number of ensembles of polarization-entangled photon
pairs, and we exploited each ensemble for generating different statistics. Our setup is built
such that one photon can only be measured one time at t = t1, whereas the other one
undergoes two sequential measurements respectively at time t1 and t2. In the simulation,
the former photon takes the role of qubit Q1, while the latter photon represents the qubit
entering the OTC (Q2) and its copy emerging from the OTC (Q3).

The experimental setup is shown in Fig. 5.3. We exploit type-II parametric down-
conversion (PDC) to generate the entangled state |ψ−〉 = (|HV 〉 − |V H〉)/

√
2 [163].

In order to evaluate both spatial and temporal correlations, in one of the two photon
branches two polarization measurements occur consecutively (Q2 and Q3), both carried by
a half-wave plate (HWP, labeled H in Fig. 5.3) followed by a quarter-wave plate (QWP,
labeled Q in the figure) and a polarizing beam splitter (PBS). After the PBS in Q2, we put
again a QWP and a HWP, for counterbalancing the polarization rotation induced in the
measurement process before the Q3 measurement takes place. The other photon branch
hosts an identical combination of HWP, QWP and PBS, realizing the Q1 measurement.

The entangled photons are filtered by interference filters (IFs) centered at λ = 808 nm
and with a 3 nm full width at half-maximum (FWHM), and coupled to multi-mode optical
fibers connected to silicon single-photon avalanche diodes (SPADs), whose outputs are sent
to coincidence electronics.

To obtain the R123 reconstruction we exploited different measurements to collect the
three-point and the two-point correlations on the two-photon polarization states. The
three-point and two-point measurements have been properly chosen in order to constitute
a minimal quorum allowing for a full tomographic reconstruction [100] of R123. This
was needed because, in our experimental simulation, it would be impossible to realize a
standard three-qubit quantum tomography procedure able to reconstruct R123, because at
t1 the Q2 measurement would obviously affect the one at time t2 (Q3). Thus, we restricted
ourselves to a particular sub-sample of the standard three-qubit tomographic measurements
quorum in which the sequential measurements Q2 and Q3 involved commuting observables
(i.e. they have been performed in the same polarization basis), avoiding the issues deriving
from the measurements temporal ordering. The remaining information needed for the PDO
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Figure 5.3: Experimental setup. A CW laser at 532 nm pumps a Ti:Sapphire crystal in an
optical cavity, generating a mode-locked laser at 808 nm with a 76 MHz repetition rate. The
pulsed laser is frequency-doubled by second harmonic generation (SHG) and then injected
into a 0.5 mm thick β-barium borate (BBO) crystal, where degenerate non-collinear type-
II PDC occurs. By spatially selecting the photons belonging to the intersections of the
two PDC cones with interference filters (IFs) and properly compensating the temporal
walk-off between the horizontal (H) and vertical (V ) polarizations by adding a 0.25 mm
thick BBO crystal in both photon paths, we generate the entangled state |ψ−〉 = (|HV 〉 −
|V H〉)/

√
2. Exploiting the combination of a quarter-wave (Q), a half-wave plate (H) and a

polarizing beam splitter (PBS), two polarization measurements (Q2 and Q3) are performed
in sequence on a branch and one (Q1) on the other branch. Correlations among them allow
demonstrating violation of monogamy relation for PDO, simulating the OTC scenario.

reconstruction, instead, is obtained from the two-point correlation measurements. More
in detail, for the two-point correlations we prepared an ensemble for which one photon
undergoes the measurement of the whole set of observables {X,Y, Z} at time t1 and t2,
including all possible cross-correlations between different observables. This provides the full
reconstruction of the reduced pseudo-state R23 defined in Eq. 5.17. To complete the two-
point correlations extraction procedure, other two ensembles are needed: one for measuring
{X,Y, Z} on both photons at time t1, providing R12, and the other for reconstructing R13,
where one of the two photons undergoes the measurement of {X,Y, Z} at time t2. Finally,
for computing the three-point correlations, it is necessary an ensemble where one measures
{X,Y, Z} once at time t1 on one photon, and twice at time t1 and t2 on the other one.
From the conjectured R123 (see Eq. 5.16) we expect all the three-point correlations to be
equal to zero.

Our predictions are well confirmed by the experimental results, shown in the following
section.

5.2.3 Experimental results

The reconstructed PDO R123 and its marginals are shown in Fig. 5.4 [143] compared
with the respective theoretical expectations. This procedure highlights interesting prop-
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Figure 5.4: PDO tomographic reconstruction. In the upper row, we plot the real part
of the theoretical R123 (a) (since, theoretically, Im [R123] = 0), compared with the real
(b) and imaginary (c) part of the experimentally-reconstructed R123. Below, theoretical
marginals R12, R13 and R23 (plots (d), (g) and (j) respectively, again considering that
in our model Im [R12] = Im [R13] = Im [R23] = 0) compared with the real (plots (e), (h)
and (k)) and imaginary (plots (f), (i) and (l)) part of their reconstructed counterparts.

erties of the PDO, which had gone unnoticed until now. Formally, just like for density
operators, the reduced PDO of some subsystems is obtained by taking the trace on the
remaining subsystems, e.g. R13 = Tr2 [R123] in our case.

However, unlike for density operators, R13 cannot be reconstructed experimentally by
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exploiting the measurements obtained for the three-point correlations and then averaging
over the results of the measurements on the other photon measured at time t1. This is
because the trace over a temporal degree of freedom is not equivalent to averaging with
respect to all possible values of the observables that can be measured at that time. Indeed,
Tr [ΠR123], where Π is a generic projector could be negative, hence it cannot be interpreted,
in general, as a probability (unless we allow probabilities to take negative values [147]).
This is a general property of PDOs: they are not-positive operators because the subsystems’
degrees of freedom they describe do not always represent spatial subsystems, but they could
represent time-like separated systems, as in the case of qubits Q2 and Q3. Therefore, the
full tomographic reconstruction procedure for a PDO is necessarily different with respect
to the one needed for a traditional density operator.

Concerning our OTC quantum-optical simulation, all the PDO reconstructions are in
excellent agreement with the theoretical predictions, as certified by the Uhlmann fidelities
[101] obtained for the two PDO marginals modelling proper physical states, i.e. R12 and
R13, for which we respectively obtained F12 = 0.964 and F13 = 0.963 (being Fij the fidelity
of the reconstructed Rij marginal with respect to the theoretically-expected singlet state
density operator).

By using Eq. 5.18, we also reconstructed the statistics from a CHSH test on all the
possible pairs among the qubits Q1, Q2 and Q3, to demonstrate the predicted violation
of the entanglement monogamy principle. For the temporal domain, the CHSH inequal-
ity is C(exp)

23 = 2.84 ± 0.02, in perfect agreement with the predicted maximal violation,
corresponding to the Tsirelson’s bound 2

√
2. Then, we measured the CHSH on both the

photons at time t1 (Q1 and Q2, spatial domain), achieving C(exp)
12 = 2.69 ± 0.02: a sharp

violation of the classical bound. From these results, it follows:

C
(exp)
12 + C

(exp)
23 = 5.52± 0.03 (5.19)

showing a 160 standard deviations violation of the entanglement monogamy relation given
by Eq. 5.18. Furthermore, since we could not perform a direct CHSH inequality mea-
surement on qubits Q1 and Q3 because of the occurring Q2 measurement, in this case
we extracted the CHSH inequality value directly from the reconstructed R13, obtaining
C

(rec)
13 = 2.73. This allows obtaining the remaining entanglement monogamy violations:

C
(exp)
12 + C

(rec)
13 = 5.42± 0.07 (5.20)

C
(exp)
23 + C

(rec)
13 = 5.55± 0.07 (5.21)

where, as uncertainty, we consider a 99% confidence interval on the experimental data.
These results, showing the first PDO reconstruction, give a clear demonstration of the ro-
bustness and reliability of our technique, granting the possibility of using PDOs to describe
scenarios in which temporal correlations play a crucial role in the dynamics of the system,
preserving at the same time the linearity of such dynamics.

5.3 PDO formalism and the reconciliation of the black hole
information loss paradox

In a subsequent work [144], we applied the PDO formalism to the second scenario
mentioned in this chapter introduction, i.e. the black hole evaporation [148]. This process
represents a problem from the quantum mechanical perspective [142,148,164,165], as well
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as other cosmological aspects [166–169]. In short, if the process is unitary as prescribed
by quantum theory, then entanglement must be created between the exterior and the
interior of the black hole as particle pairs are generated through the process of Hawking
radiation [170–173].

This can be better understood by considering an elementary model of evaporation based
on a finite number of qubits. After half of the qubits in the black hole has evaporated,
one can conjecture that a maximally-entangled state has formed between the qubits in the
interior and the ones in the exterior of the black hole, assuming thermal radiation has been
emitted in the process. As the black hole continues to evaporate, Hawking radiation would
imply that even more entanglement is generated between the interior and the exterior of the
black hole. Anyway, for the previously mentioned entanglement monogamy principle, this
cannot happen, since qubits already maximally entangled cannot be made entangled with
anything else. Therefore, the claim is that, if one is trying to preserve the unitarity of black
hole evaporation, then the black hole evaporation itself ought to violate the monogamy of
entanglement [174].

Actually, the issue of whether such a paradox exists or not goes beyond the aim of this
thesis. However, it has been hotly debated, and the reader can see e.g. Ref. [175] and
references herein. With our work, we would like instead to suggest that, assuming that
the paradox exists, a simple re-interpretation of the evaporation process could provide a
reconciliation of such paradox. In general relativity, crossing the event horizon of a black
hole for a particle is equivalent to swapping the signatures of the spatial and temporal co-
ordinates of the space-time [176]. If one thinks of a typical quantum phase factor ei(kx−ωt),
the change of the sign of space and time simply corresponds to complex conjugation of such
phase factor. For these reason, the effect on a density operator of an in-falling quantum
system should be described by the operation of transposition (which swaps the operator
off-diagonal elements, therefore implementing the complex conjugation). It is well known
that transposition is a positive, but not completely positive, operation. Then, if one per-
forms the transposition on just one of two entangled subsystems, the overall system may
not end up being a physical density operator. Here, we proposed to use this fact to resolve
the apparent entanglement monogamy violation during the evaporation of a black hole by
exploiting the PDO formalism, because of its possibility of describing temporal correla-
tions, thus including physical scenarios efficiently described by Hermitian operators that
are not positive.

Our point is that, given that the partial transposition can model what happens to a
pair of entangled qubits due to one of them falling into a black hole, one could use the
PDO R12 defined in Eq. 5.12 as a candidate for describing the state of such pair after one
of the qubits has entered the black hole.

Based on this heuristic reasoning, we proposed a PDO to model the situation where
one of the qubits in the pair gets further entangled with a third particle. In particular, we
showed that a viable solution to the black hole information problem can be achieved by
postulating that the PDO R123 defined in Eq. 5.17, generalizing the above pseudo-state
R12, represents the state of two initially entangled qubits after one of them has crossed the
event horizon and fallen into the black hole, getting entangled with a third qubit. This PDO
can perfectly model the correlations associated with the black-hole evaporation scenario,
because it treats equally temporal and spatial correlations and, unlike density operators,
PDOs can be used to describe a situation in which one of two maximally temporally-
correlated qubits becomes entangled (i.e. maximally spatially correlated) with another
qubit.

Since the PDO needed to describe this scenario is formally equivalent to the one mod-
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elling the OTC framework, we can consider the experimental results obtained in our OTC
quantum-optical simulation to be valid also for the case of an entangled particle falling
into the evaporating black hole. Aside of the reconstruction of the physical system PDO
R123 presented in Fig. 5.4, what is more interesting in this case is that, even in the black-
hole evaporation framework, the occurring entanglement monogamy violations reported in
Eqs. 5.19-5.21 are not paradoxical anymore within this new formalism, as the PDO could
accommodate and describe correlations generating such violations when temporal degrees
of freedom are involved.

This work only offers a first exploration of applying this idea to the specific scenario
of black-hole evaporation, leaving a more general theory to be developed in the future,
should this approach prove useful. More generally, some models of quantum gravity might
require space-time to be quantized, whereby the distinction between time-like and space-
like degrees of freedom may become blurred below certain scales. This has prompted a
number of proposals, for example, to modify the commutation relations of observables of
different subsystems [177], or to incorporate indefinite causal order [132, 134, 178]. The
PDO formalism, in light of what is proposed in our papers in Refs. [143] and [144], might
be a candidate to generalize the notion of quantum states to these scenarios.
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Chapter 6

Conclusions

During my PhD studies, I was involved in several experiments regarding different mea-
surement paradigms in QM and their possible applications to both the fundamental re-
search and the quantum technologies framework (e.g. Quantum Metrology and Quantum
Information). All of these experiments were based on quantum-optical setups, implemented
within the “Carlo Novero” Quantum Optics laboratories of the Istituto Nazionale di Ricerca
Metrologica (INRiM). Among them, in this thesis I presented the four works in which I
was more involved.

The first one aimed to demonstrate an efficient method to obtain the optimal estima-
tion (i.e. the one giving the minimum quantum uncertainty achievable) of several non-
classicality parameters, related either to entanglement or discord in two-qubit states. We
directly evaluated the amount of entanglement by estimating Negativity, Concurrence and
Log-Negativity, while we approximately evaluated the amount of discord by estimating the
Quantum Geometric Discord. For each of these quantities, we introduced two estimators, a
non-optimal one and an optimal one, for a particular family of states that have a recognized
importance in the field of quantum information and related technologies. By evaluating the
statistical uncertainties as the standard deviations on repeated measurements, we achieved
a good agreement between the theoretical predictions and the experimental results. In par-
ticular, we demonstrated that optimal estimators allow reaching the ultimate theoretical
precision limit represented by the quantum Cramér-Rao bound. The agreement between
the computed uncertainty bars and theoretical uncertainty curves, also for what concerns
non-optimal estimators, represents a further check on the consistency between our experi-
mental data and the theory. It is possible to note a significant reduction of the uncertainties
given by the optimal estimators with respect to the ones granted by the non-optimal es-
timators, demonstrating a strong and practical advantage in the use of the optimal ones.
These results pave the way to the diffuse use of these estimators in quantifying resources
for quantum technologies.

For our second work, we theoretically derived and experimentally implemented a new
paradigm of quantum measurement: the Genetic Quantum Measurement (GQM). Such
paradigm takes advantage of a genetic-like approach to significantly surpass, in terms of
precision, the performances of the conventional projector-based quantum measurement
techniques. GQMs exploit a sequence of identical steps, each composed of a first part of
(unitary) interaction/interference, and a second part in which a selective measurement oc-
curs. The effect of the interaction-interference event consists in coupling the observable of
interest (OoI) with an ancillary “meter” observable that will be used to perform the indirect
measurement of the OoI, as in von Neumann measurement, and then applying a “selection
pressure” on the resulting state. This procedure is repeated several times, before detecting
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the quantum system. By looking at the whole GQM process, one can find similarities
with the bio-inspired mechanisms of mutation, crossover and selection (the first two medi-
ated by the interaction/interference, the last one by the selective measurement) typical of
genetic algorithms. Furthermore, GQM allows obtaining an uncertainty substantially re-
duced with respect to the one achievable with the usual projective measurement approach
when the same initial resources, i.e. the number of initial individual quantum systems,
are considered, a quite surprising feature, because projective measurements saturate the
Quantum Cramér-Rao bound in the investigated framework. Thus, with our results we
showed both theoretically and experimentally that GQMs represent a real paradigm shift in
quantum measurement, granting unprecedented measurement capability and representing
a potentially groundbreaking tool for Quantum Metrology and other quantum technologies.
GQMs can be extremely useful, e.g., for testing the fairness of quantum random number
generators, largely exploited in Quantum Key Distribution protocols.

In the last two works, we investigated the properties of a new formalism for describing
quantum mechanical systems, i.e. the Pseudo-Density Operator (PDO): a generalization
of the density operator formalism allowing to describe on an equal footing both spatial and
temporal correlations within quantum states.

In the first of these works, our proposal was to show a radically different way of gener-
alizing quantum theory to describe chronology-violating regions containing an open time-
like curve (OTC), whose features we have simulated experimentally. The proposed PDO
is a viable descriptor of the physical situation where a qubit, entangled with a second
qubit, enters an OTC. By proposing to use a PDO to describe the three qubits in the
chronology-violating region, we depart from standard quantum mechanics, because we use
a non-positive operator to describe the (pseudo-)state of the qubits within the chronology-
violation region. Our proposal hints at a different way of formulating quantum theory,
where, to describe a physical system with a certain dynamics, one gives the PDO as a
faithful description of that physical situation. In order to experimentally demonstrate our
claims, we performed for the first time a variant of traditional quantum state tomography,
able to reconstruct the three-qubit PDO modelling the OTC physical scenario. Then, we
calculated the violation of the entanglement monogamy principle (a paradoxical event in
the traditional density operator framework, naturally allowed by the PDO when tempo-
ral correlations are involved) directly with the marginals obtained from such experimental
PDO reconstruction, achieving an excellent agreement with respect to the theoretical pre-
dictions.

Now, once that step is taken, is it still possible to preserve some notion of linearity even
when describing situations where properties like entanglement monogamy are violated? We
conjecture that the answer is yes, because any two PDOs describing such physical situations
(e.g. two OTCs with different initial states) can be related by a linear transformation. This
notion of linearity is, however, different from the linearity of quantum mechanical evolution.

In the second experiment, instead, we proposed an alternative resolution of the informa-
tion loss paradox in black hole evaporation, based on the PDO formalism. We conjectured
that the phenomenology of black hole evaporation, as described by Hawking’s radiation,
could be modeled by a PDO instead of a standard density operator. We proposed a specific
form for the PDO that could describe a pair of initially entangled qubits, one falling into a
black hole and the other maximally entangled with a third qubit, after evaporating. The
usual paradoxes due to violations of entanglement monogamy did not arise in this formal-
ism, as the PDO could accommodate and describe correlations that violated monogamy.
In order to illustrate the temporal and spatial correlations in the proposed PDO, we used
a quantum optical demonstration, building an experiment that simulated this physical
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phenomenon as described by the same pseudo-density matrix. We reconstructed experi-
mentally the correlations in the proposed pseudo-density matrix, demonstrating how the
violation of entanglement monogamy could emerge in the analyzed framework.

All these results promise to have further implications both in the Quantum Metrology
and the QM foundations research frameworks, representing a first step towards novel the-
oretical and experimental approaches both in fundamental research and for the applied,
fast-growing field of quantum technologies.
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