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Using (10087 4 44) x 10° J/y events collected with the BESIII detector, numerous =~ and
A decay asymmetry parameters are simultaneously determined from the process J/w — E"E" —

A(pa~)a~A(iz°)z" and its charge-conjugate channel. The precisions of @,y for A — na® and @, for

A — i

compared to world averages are improved by factors of 4 and 1.7, respectively. The ratio of decay

asymmetry parameters of A — nz’ to that of A — pr~, (ano)/{a,_), is determined to be
0.873 £ 0.0127901}, where the first and the second uncertainties are statistical and systematic, respectively.
The ratio is smaller than unity more than 5o, which signifies the existence of the Al = 3/2 transition
in A for the first time. Besides, we test for CP symmetry in Z~ — Az~ and in A — nz° with the best

precision to date.
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The noninvariance of fundamental interactions under the
combination of charge-conjugation (C) and parity (P)
transformations is a necessary condition for baryogenesis
[1], a process that dynamically generates the matter-
antimatter asymmetry in the Universe. Although the stan-
dard model (SM) accommodates CP violation with the
Kobayashi-Maskawa phase [2,3], it can only explain a
matter-antimatter asymmetry that is at least 10 orders of
magnitude smaller than the observed value [4]. Additional
sources of CP violation beyond the SM are expected to exist,
and the weak hadronic transitions of hyperons are another
place to search for such sources of CP violation [5,6].

When two or more transition amplitudes interfere with
each other, relative weak- and strong-phase contributions
exist between them. For K — zz [7,8], the CP violating
weak phase comes from the interference between S-wave
isospin I = 0 (Ag) and isospin I = 2 (A,) amplitudes, which
correspond to Al = 1/2 and AI = 3/2 transitions, respec-
tively [9]. The unforeseen large discrepancy between the real
parts of the two isospin amplitudes, Re(Ag)/Re(A,) =
22.45 +0.06, known as the Al = 1/2 rule [10,11], is a
long-standing puzzle. Various theoretical models have been
proposed to explain this large ratio, but the dual QCD
approach [12] and lattice QCD calculation [13] can only
partially explain it. A comprehensive understanding of this
rule is desirable.
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The AI = 1/2 rule is also applicable in the decays of
spin 1/2 hyperons [14,15], which can be described in terms
of its decay asymmetry parameters, ay and ¢y [16].
The ratio of decay asymmetry parameters for the two
isospin decay modes A — nz’ and A — pr~, ayg/ap_,isa
sensitive probe to determine the contribution of A7 = 3/2
transitions. In their absence, the ratio a,o/a,_ is predicted
to be unity [15]. A recent BESIII result suggests that this
might not be the case [17]. Further studies of the isospin
amplitude in hyperon decays are required to rigorously test
the Al = 1/2 rule.

Moreover, contrary to kaon decays, CP violation in
hyperon decays could arise from the interference between
parity-conserving (P-wave) and parity-violating (S-wave)
amplitudes with a CP-odd weak phase. The decay asym-
metry parameters of hyperon are CP-odd and assuming CP
conservation ay = —ay and ¢y = —¢y, where ay and ¢y
are decay asymmetry parameters for antihyperon Y [6]. CP
symmetry, which is broken in the presence of non-
negligible weak-phase contributions, is gauged by the
CP observables Acp and A¢gp [18]:
ay + (_XY

Alp = = —tan (dp — &) tan (&p — &), (1)

Ay — Qy

% _¢Y+4_5Y: (@)

Agcp = ) = (@) cos(¢) tan (&p — &s), (2)

where (a) = (ay —ay)/2, (§) = (dy —Pv)/2, op — S5
denotes the strong-phase difference of the final-state inter-
action, and &p — &g denotes the weak-phase difference.
Experimentally, the weak-phase difference has been directly

determined to be (1.2 & 3.4 +0.8) x 1072 rad [18] for the
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FIG. 1. Distribution of antineutron missing mass. The data are

shown as black data points with error bars. The blue solid curve
represents the total fit result, and the red dashed line denotes the
signal shape. The dotted lines in green, light blue, and magenta
denote the combinatorial, resonant, and nonresonant background
contributions, respectively. The red arrows indicate the signal
region.

decay =~ — Az~ using entangled 2~ and = produced at
BESIIL

In this Letter, the process J/yw — E"E" — A(pz™)
7~ A(in®)x* is studied with (10087 4 44) x 10° J/y
events [19] collected by the BESIII detector. Benefiting
from the transversely polarized hyperons and the spin
correlation between hyperon and antihyperons, various
decay properties of 2~ and A are determined by an
extended formalism that completely describes the angular
distributions of the production and decay processes [20].

The design and performance of the BESIII detector are
described in Refs. [21,22]. The corresponding simulation,
analysis framework, and software are presented in
Refs. [23-25]. Simulated Monte Carlo (MC) samples are
produced with Geant4-based [26] MC software, which
models the experimental conditions, including the electron-
positron collision, the decays of the particles, and the
response of the detector. A sample of simulated events of
generic J/y decays, corresponding to the luminosity of
data, is used to study the potential background reactions. To
eliminate experimenter bias, the central values were
blinded by using the hidden answer technique [27] until
all selections, fits, and uncertainty evaluations were final-
ized. Simulated signal and background samples are used to
verify the analysis approaches and to study the systematic
effects. Unless otherwise indicated, the charge-conjugate
channel is implied throughout the text.

Four charged tracks are required in the multilayer
drift chamber within the range |cos 8| < 0.93, where 0 is
the polar angle with respect to the z axis, which is the
symmetry axis of the multilayer drift chamber. Because of
the nonoverlapping momentum ranges of the proton and
pions, a positively charged track with momentum greater
than 0.32 GeV/c is assigned to be a proton, while a

positively and two negatively charged tracks with momen-
tum less than 0.30 GeV/c are assigned to be pions. The
probability of misidentifying a proton for a z™ is negligible.
The sequential decay 2~ — Az~ — pa~ "~ is reconstructed
by a vertex fit [18,28], which takes into account the flight
paths of the hyperons. The combination with the smallest
(M g —mz-)* + (M- —my)* is retained, where
M 17 (pn-) denotes the invariant mass of pz~z~ (pz~)
and mg- () refers to the nominal mass of Z~ (A) [29]. The
probability of a z~ from the A and E~ decays being wrongly
assigned is found to be 0.1%, which is negligible. The
candidate events are required to satisfy |M,,- —m,| <
11 MeV/c* and M - — mz=-| < 11 MeV/c?. The decay
lengths of the 2~ and A are calculated in the vertex fit and
required to be positive. To improve the resolution and
minimize the discrepancy between data and MC simulation,
the polar angle O=- of the reconstructed =~ in the ete”
center-of-mass frame is required to satisfy | cos 0z-| < 0.84.

At least two photon candidates in the electromagnetic
calorimeter (EMC) are required. A photon candidate should
have energy greater than 25 MeV in the barrel region
(Jcosf| <0.8) or 50 MeV in the end-cap region
(0.86 < | cos 8| < 0.92). For antiprotons, which may anni-
hilate in the detector, photon candidates must be separated
from charged tracks with an opening angle greater than 20°,
while for other tracks the angle must be greater than 10°. To
suppress electronic noise and showers unrelated to the
event, photon candidates are required to have the EMC time
difference from the event start time within [0, 700] ns. To
veto the showers from antineutron interactions in the EMC,
the photon candidates should be separated from the
direction of the E~z" recoiling system with an opening
angle greater than 15°. A boosted decision tree classifier
[30] is constructed based on the shower shape variables to
discriminate a signal photon from a noise shower. The
shower shape variables include the deposited energy,
number of hits, second and Zernike moments, and depo-
sition shape [31]. The signal efficiency of the boosted
decision tree is 90%, and 55% of the background is
rejected. The 7° candidates are reconstructed from a pair
of photons by constraining their invariant mass to the z°
nominal mass, and the corresponding 43 - is required to be
less than 25. Because of combinatorial effects, it is possible
to have more than one unique z° candidate in a single event.

A kinematic fit under the hypothesis of J/y — E-z " ityy
is performed imposing energy-momentum conservation
and constraining the invariant masses of yy and yyn to
the nominal masses of z° and A, respectively. The
kinematics of the = are obtained from the above vertex
fit. The antineutron is treated as a missing particle with
unknown mass. The fit is performed for each z° candidate.
If there is more than one 7° candidate, the candidate
with the smallest y? is retained, and y> < 200 is required.
The invariant mass of 7Ayyz™ is required to satisfy
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My — mz+| < 11 MeV/c?. Since all other final state
particles are detected, the kinematic fit allows for the
reconstruction of the four momentum of antineutron.
The signal is identified by the antineutron’s missing mass,
as shown in Fig. 1 with a prominent signal peak in the
antineutron vicinity and a low level background.

Detailed studies are performed with MC simulation and
data in the Z~ and =+ sideband regions to evaluate the
potential backgrounds. The dominant background, referred to
as combinatorial background, is from signal events with
misreconstructed z° candidates, which do not peak in the
antineutron missing mass distribution. The remaining back-
ground sources are classified into two categories [32]:
resonant background that contains Z~=* intermediate states,
such as, J/y—yn.—yE BT > yA(— pr)r~ A(iin’)nt
and J/y —E"E" —» A(—= pr~)a~A(px*)n"; nonresonant
background without Z~E* intermediate states. The decay
processes of resonant backgrounds are well understood, and
the corresponding contributions are evaluated by MC sim-
ulation, which are generated according to the helicity ampli-
tudes and weighted according to the branching fractions [29].
MC simulation shows that the distributions of M,,-,- and
M, .+ of nonresonant background are almost flat. Therefore,
the corresponding contribution can be evaluated from the =~
and Z* sideband regions.

Signal yields are obtained from an unbinned maximum
likelihood fit of the missing mass distribution. In the fit
shown in Fig. 1, the signal is described by an MC-simulated
shape convolved by a Gaussian function accounting for the
resolution difference between data and MC simulation. The
combinatorial background is described by the signal MC
sample, and it is parametrized by a product of an ARGUS
function [33] and a cubic function. Fixing both the
magnitude and shape, the resonant and nonresonant
backgrounds are described with the MC simulation and
data events in the sideband region, respectively. The
normalization of the background and the definition of
the sideband region are shown in Sec. 2 of the
Supplemental Material [34]. The fit yields 143973 +414
signal events and a purity of 91.2% in the mass range
[0.925,0.955] GeV/c?. The same procedure is performed
for the charge-conjugate process and results in 123 208 +
382 signal events and a purity of 91.0%.

The joint angular amplitude of the full decay chain can
be written in a modular form as

3
= Z Z a/m w/ /4’0“ 0° (3)

nv=0 W V=0

Here, C,, is a 4 x4 real-valued spin density matrix
descrlblng the spin configuration of the entangled 2=
pair, a , 18 also a 4 x 4 real-valued matrix representing the
propagatlon of the spin density matrix in the decays of a
spin 1/2 hyperon into a spin 1/2 baryon and a

pseudoscalar, Y — Bz. Therefore, the distribution of the
nine helicity angles & = (0z., 0x. da.Ox. $5.0,.0,. 05, P5)
is determined by eight global parameters o = (a;,.

Aq)J/W,(ZE, =, &5, =, AA_, &/\0)' In this analysis, Y - Bz

stands for 2~ — Az~, A —» pz~, and A — iiz’. The dis-
tribution of the helicity angle ¢, in the A rest frame is
written as
dN
dcosd, 14 ap_azcosb, (4)

by integrating over the remaining eight helicity angles. The
formalism of the full angular distribution and the definition
of the reference system are discussed in detail in Ref. [18].

A simultaneous fit on the joint angular distribution is
carried out with the production parameters, a;,, and
A®y,, and decay asymmetry parameters of =~ shared
between the two charge-conjugate channels. For each
channel, the probability distribution function of the eight
unknown parameters @ can be defined in terms of the
helicity angles &

P& w) = W(&w)e(§)/N (@), (5)

where the normalization factor N (w) is calculated with
N(o) = (1/M) 371 [WV(Ej3 ) /W(Ej @en)] by a signal
MC sample generated with parameters ,,. The sum runs
over all events in the generated sample M, which is chosen
to be 30 times the yield obtained in data after the full
selection. The log-likelihood function for N observed
events is

v bk“
gz_g(ZmP(éi; ZW Zlnp §is > (6)
i=1

where the second term in brackets with j from one
to three represents the three different sources of back-
ground remaining in the final event sample. Their
contributions are evaluated with the corresponding MC
samples or data events in the sideband region and
their associated weight factors w;. The global factor,
g:(N—ZjN?kgij)/(N—l—ZjN?ngW?), corrects for
the statistical uncertainties in the weighted likelihood
fit [35].

The S function is minimized using Minuit2 [36] to
determine the production and decay asymmetry parameters
w. The results from the fit, as shown in Table I, are
consistent with previous measurements, but with improved
precision. In particular, a,, is almost the same in magni-
tude and opposite in sign as @&,y, and its precision is
improved by a factor of 4 over previous measurements.

If CP is conserved, the product of the decay asymmetry
parameters a,_oz and a,.as should be equal to each
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TABLE 1.

The production and decay asymmetry parameters, the weak- and strong-phase differences from =~

decay, the tests of CP symmetry, and the ratios of decay asymmetry parameters, a,g/as_ and @ng/ay .. The first
and second uncertainties are statistical and systematic, respectively.

Parameters This work Previous result

Ay 0.611 £ 0.007-5003 0.586 +0.012 £ 0.010 [18]
A®, ), (rad) 1.30 £ 003503 1.213 £ 0.046 £ 0.016 [18]
as —0.367 £ 0.00470 603 —0.376 & 0.007 £ 0.003 [18]
¢= (rad) —0.016 & 0.0127950¢ 0.011 £ 0.019 = 0.009 [18]
as 0.374 = 0.00475 005 0.371 4 0.007 £ 0.002 [18]
¢= (rad) 0.010 + 001279003 —0.021 4+ 0.019 + 0.007 [18]
ap- 0.764 =+ 0.008" 00 0.7519 £ 0.0036 =+ 0.0024 [37]
apy —0.774 + 0.0097 0502 —0.7559 = 0.0036 =+ 0.0030 [37]
A0 0.670 + 0.009 0% 0.75 £ 0.05 [29]

@ro —0.668 £ 0.0087 008 —0.692 £ 0.016 + 0.006 [17]
8p — 3 (rad) 0.033 £ 0.02070.098 ~0.040 + 0.033 + 0.017 [18]
¢p — & (rad) 0.007 + 0.020%00% 0.012 £ 0.034 £ 0.008 [18]
A%, —0.009 £ 0.008§07 0.006 = 0.013 = 0.006 [18]
ApZp (rad) —0.003 + 0.008+9:9% —0.005 £ 0.014 & 0.003 [18]
AZp —0.007 = 0.00825 005 —0.0025 £ 0.0046 == 0.0012 [37]
AZp 0.001 4 0.009* 993

AR, —0.004 = 0.00750;

apo/an- 0.877 £0.015-301¢ 1.01 £0.07 [29]

apo/ ap+ 0.863 £ 0.01470012 0.913 £ 0.028 £ 0.012 [17]

other, and the ratios of helicity angular distributions for
different nucleons in the final states, R(cos,,cosf;) =
(1+as_agcos@),)/(1 +ay azcos;) and R(cosb,,
cos8;) = (1 + appazcosb,)/(1 + aygaz cosb;), are flat
and equal to unity. In a similar way, if there is no Al = 3/2
transition in A decay, a,_ should be equal to a,g
and the ratios, R(cos#,,cosf,)=(1+aypazcosd,)/(1+
ap_agcosh,) and R(cos 6, cos ;) = (1 + appaz cosd;)/
(1 + ap azcosby), are also flat and equal to unity. The
accuracy of the CP symmetry and the Al = 1/2 rule tests
can be improved by using the isospin average for Rj,
R, = (1 +apazcos)/(1 + apaz cosd), where cosf
stands for the helicity angle of nucleon, @, is defined as
(2ap_ + apg)/3, and the average of the decay symmetry
parameters of hyperon and antihyperon for R,, R, =
(1 + {ano)(az) cos8)/(1 + (ap-){az) cos0).

To illustrate the tests of CP symmetry and the Al = 1/2
rule, four ratios of the helicity angular distributions for
different nucleons in the final states are shown in Fig. 2 by
dots with error bars. R; and R, with parameters from
Table I are also presented in Fig. 2. The ratios obtained by
fitting the events in bins of cos @ are in good agreement
with the global curves obtained for R; and R,. The nearly
flat distribution of R; is consistent with CP conservation.
The sloping distribution of R, indicates the existence of the
contribution of Al = 3/2 transition in A decay.

The systematic uncertainties are split into different
categories: reconstruction and event selection of the
signal candidates, the uncertainties related to the background
contributions, and the effects which arise from the
final fit procedure. The uncertainty of the z° reconstruction
is investigated by studying the decay J/w — Xt (pz)
a~A(pr*) +c.c. as it has a similar final state topology
and decay length as the signal. The systematic uncertainty
from 7 reconstruction is investigated by using a control
sample of J/y — E 5" — A(pa~)n~A(prt)nt +c.c.
The systematic uncertainties due to different resolutions in
data and simulation are studied by varying selection criteria
(the decay points and invariant masses of A and E~, the polar
angle of -, the missing mass and the y? of the kinematic fit)
around their nominal values and repeating the fit. The
uncertainty due to the combinatorial background is deter-
mined by both smearing the parameters of model and varying
its yield from the fit to the missing mass distribution by £ 1.
The uncertainties associated with the resonant backgrounds,
which are propagated from the uncertainties in branching
fractions, number of J/y events, and MC sample statistics,
are also evaluated by varying the background yield by +-16. In
the case of nonresonant background, the fit is repeated
without this background component, and the deviation from
the nominal fit is taken as the systematic uncertainty.
To estimate the systematic uncertainty of the fit procedure,
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FIG. 2. The ratios of helicity angular distributions for different
nucleons in the final states, R(cos 6,,cos 91—,) and R(cos 8, cos 0;)
(top) as well as R(cos6,,cosf,) and R(cos ;. cos 6;) (bottom)
versus cos 6. The dots with errors are determined by independent fits
for each cos @ bin of the corresponding nucleons. The solid curves
inred with 1o (red) and 36 (pink) statistical uncertainty bands show
the results of the simultaneous fit. The dashed curves in black show

the CP-conserving and no Al = 3/2 transition expectations.

1000 sets of toy MC samples are generated with the
parameters from Table 1. Each set is fitted to obtain the
distribution of the output parameters. The average values of
the difference between the input and output parameters and
statistical errors of the average differences are regarded as
systematic uncertainties. More details can be found in the
Supplemental Material [34].

In summary, the decay asymmetry parameters listed in
Table I are simultaneously determined from the process
J/y = E"E" - A(pr~)a~ A(iz°)z* and its charge-con-
jugate channel with (10087 +44) x 10° J/y events
collected by the BESIII detector. Using Egs. (1) and (2),
the CP observables A%, and A¢Z, for 2~ decay, as well as
Acp = (an-+any)/(ar-—any) and AQp = (ang + @no)/
(apo — @pg) of the charged and neutral A decays, are
obtained from the corresponding decay asymmetry param-
eters and correlations. A%, and A¢Z, are measured with
world-leading precision, and A%, is measured for the first
time. The correlations p(as_, @, ) and p(ang, @rg) mea-
sured from two charge-conjugate channels are negligible.
The precise CP symmetry test of the A decay is conducted
with its isospin averages, A2, = (2Agp +A%p)/3,
which improves the sensitivity of the CP symmetry test
by 20% compared to the individual tests for each
isospin decay mode. The strong-phase and weak-phase
differences of 2=~ — Az, derived from Egs. (1) and (2),

are both consistent with previous BESIII results [18]. The
strong-phase difference is also in agreement with the
HyperCP measurement [38]. The CP symmetry is con-
served in the decay of 2~ and A within the current preci-
sion. The theoretical predictions within the SM [39,40]
are 0.5 x 1070 < (AZ,)gy <6 x 1075, =3.8x 1074 < (&p—
Eg)em < —0.3x 107 and =3 x 1075 < (A%p) gy <3x 1075

The ratios of a,o/ax_ and ayg/ s, deviate from unity
by more than 5 standard deviations, which signifies the
existence of the Al = 3/2 transition in both A and A
decays for the first time. Using the averages of the ratio
(ano)/{ax—) = 0.870 £ 0.0127J01} with combinations of
the decay rates I'(A — pz~), T'(A — na®) [29] and the
N-r scattering phase shift [41], the ratio of Al =1/2 to
Al =3/2 transitions in S wave is determined to be
S,/S3 =28.4+ 137§ +3.9, while in P wave P;/P; =
—13.0 £ 1.41]) £ 0.7 according to Ref. [5], where the first
uncertainties are statistical, the second systematic, and the
third from the input parameters. The ratio in S wave is
consistent with Re(Ay)/Re(A,) in K — zz within the
uncertainty, while the ratio in P wave is measured for
the first time and found different from that in S wave. This
measurement provides a constraint for lattice QCD [13] and
dual QCD [12] approach to understand the Al = 1/2 rule.
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