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Abstract 

In this paper the problem of inconsistent dynamic choice is discussed, as considered in the literature, both under certainty in the 
context of changing preferences, and under risk and uncertainty in the case of preference orderings which violate expected utility 
theory. The problem of inconsistent choice in a dynamic decision situation has been initially analysed in the literature in a 
context of certainty and related to the problem of preferences changing exogenously through time. Hammond (1976,1977) 
generalises the analysis, but keeps it confined to a situation without risk or uncertainty, which he introduces only later 
(Hammond 1988a,b;1989). Hammond overcomes the distinction between exogenously and endogenously changing tastes and 
concentrates the analysis on the essential aspect of the problem - that preferences get reversed over time. This implies 
considering dynamic choice in a general framework. The discussion on dynamic inconsistency under certainty brings about the 
definition of two different models of behaviour: the myopic approach and the sophisticated approach. 

In a context of choice under risk and uncertainty, dynamic inconsistency occurs when preference orderings over risky or 
uncertain outcomes violate Expected Utility Theory, particularly through violation of the Independence Axiom. The problem of 
the dynamic inconsistency of non-expected utility agents is illustrated first through the arguments by Raiffa (1968). Raiffa frames 
the problem of inconsistent choice in a context of dynamic choice under risk, by showing that dynamic consistency is not 
compatible with the usual choices in an Allais paradox when this is considered as a decision problem in two stages. Then we 
discuss the two main models in this context, Machina (1989) and McClennen (1990), after having illustrated briefly the general 
theoretical debate on the justification of expected utility as a normative theory, in which the dynamic inconsistency argument and 
the two models are framed. Both models offer a similar - though formally different - solution to the problem of dynamic 
inconsistency in this context. Particular attention is given to McClennen’s (1990) approach: the resolute approach. From the 
above discussion it emerges that McClennen also offers a formal and very complete model for sophisticated behaviour under risk 
and uncertainty. Therefore, we discuss other two approaches to this model of behaviour: Karni and Safra (1989b,1990), who 
elaborate a model of ‘behavioural consistency’ which represents a solution to the problem of dynamic inconsistency with non-
expected utility preferences, extending to risk and uncertainty the sophisticated approach; and  Dardanoni (1990), who frames the 
problem and discusses the limits of sophisticated choice in this context. 
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1. Dynamic inconsistency with changing preferences. Myopic and 

Sophisticated choice. 
The problem of inconsistent choice through time is introduced by Strotz (1956) for the case of 

a consumer who must choose a plan of consumption for a future period in time so to maximise the 

utility of the plan evaluated at the present moment. Inconsistent behaviour occurs in this 

framework, when the individual does not follow the optimal plan originally selected, “even though 

his original expectations of future desires and means of consumption are verified” (p.165). The 

framework is one of certainty, and tastes are assumed to change exogenously, as they depend on 

time. Strotz’s work has been followed on the same line by Pollak (1968), Phelps and Pollak (1968), 

Blackorby, Nissen, Primont and Russell (1973), Peleg and Yaari (1973). 

Two different strategies of choice are discussed by Strotz in the framework of dynamically 

inconsistent situations: 

 “myopic” or “naive” choice; 

 “Consistent planning”, later termed by Hammond (1976) “sophisticated” choice. 

Myopic choice originates from the individual’s inability to recognise that the optimal plan of 

future behaviour formulated at a given point in time is inconsistent with his actual optimising future 

behaviour, so that the individual will act inconsistently with respect to his plans. Alternatively, the 

agent can recognise the conflict, and adopt a “strategy of consistent planning”, rejecting all plans 

that he anticipates he will not follow, and adopting the best plan among those that he knows he will 

follow. 

Hammond (1976, 1977) generalises Strotz’s analysis beyond consumer theory, but keeps it 

confined to a situation without risk or uncertainty, which he will introduce only later (Hammond 

1988a,b;1989). The distinction between exogenously and endogenously changing tastes is 

overcome, and the analysis concentrates on the essential problem with changing tastes, that 

preferences get reversed over time. This implies that dynamic choice is considered in a general 

framework. Furthermore, it allows to define what is meant by inconsistent dynamic choice, and 

what are the strategies available to the agent in this situation. 

A dynamic decision problem is defined as a problem where an agent takes a sequence of 

decisions over time, responding to situations which are a function of his own previous choices, and 

of randomly determined events. The dynamic decision problem, which is assumed to be bounded, is 

represented by a decision tree, composed by some initial chance or choice/decision node; a set of 

following choice or chance nodes, which define choices to be made by the agent or by nature, 

represented graphically by squares and circles respectively; and a set of terminal nodes or outcomes 

or consequences. 
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A plan for a decision problem consists of a complete specification of the choices to be made 

at one or more future moments in time, subject to different possible chance events taking place. In 

case there are only choice nodes, a plan will define a unique path through the tree, from an initial 

node to a terminal outcome. If there are also chance nodes, the (contingency) plan will specify the 

choices to be made at each choice node, where the choice node the agent finds himself at is also a 

function of random events. 

 

The problem of “essential inconsistency” is illustrated by Hammond (1976) in the following 

simple example, in which no chance event occurs, so that the situations are only a function of the 

agent’s choices. 

Suppose that an individual is considering whether to start taking an addictive drug. The 

individual would prefer at most to take the drug without consequences. However, he is certain that 

if he starts, he will become an addict, with serious consequences for his health. Of course, he can 

refuse to take the drug at the first place. This agent is facing a simple dynamic decision problem 

with the following structure: 

 

                                           a 

    n1 

       n0                                          b 

 

                                           c 

 

Figure 1 – The potential addict problem 

 

where three options are available to him, which represent plans to adopt, and lead to the 

following outcomes: 

 take the drug till it is harmless, then stop, which leads to outcome a 

 become an addict, which leads to outcome b 

 not take the drug, which leads to outcome c. 

At the initial decision node n0 the agent has to decide whether to take the drug or not, and his 

preferences are a ≻b , a ≻ c and c ≻ b. 

At choice node n1 he has become an addict, and therefore the only relevant preferences are 

those concerning a and b, and addiction itself means that b ≻a. Thus, at n1 his initial preferences 
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between a and b get reversed. The agent will choose b inconsistently with his previous choice of 

reaching for a. 

The problem of inconsistency with (exogenously or endogenously) changing preferences, 

comes from the fact that preferences get “reversed over time, and had the reversal been anticipated, 

quite a different option (such as c) might have been chosen” (Hammond 1976, page 162). 

The requirement of dynamic consistency is a requirement of consistency between planned 

choice and actual choice. It requires that the rational agent implements the plan originally adopted, 

“particularly when the choice of a plan is based on some systematic evaluation of alternative plans” 

(McClennen 1990, page 116), and in the absence of new information or involuntary error. Dynamic 

consistency may therefore be defined in terms of the disparity which may occur between the plan 

originally adopted by the agent and his subsequent choice. Dynamic consistency requires 

coincidence between what the agent is to choose at a certain node by the strategies judged 

acceptable at the beginning, and the continuations of the strategies from that point on, which are 

judged acceptable at that node. Thus, it formalises the intuition that changes in plans, not due to 

new information, induce the agent in a form of dynamic inconsistency1. 

In the example, the agent decides initially to take the drug, then stop - a, but chooses later not 

to stop - b. The choice of the agent at node n1 on the basis of the strategies acceptable at n0 - a - 

does not coincide with the continuation of the strategy at n1 which is acceptable at n1 - b. 

Hammond considers myopic and sophisticated choice as two possibilities available to an 

agent in such a situation of dynamic inconsistency, and the two strategies have the same 

characteristics anticipated by Strotz2. 

When acting according to a myopic approach, the agent treats choice at each decision point as 

unconnected with anything he could project on the choices he will make in the future. He selects at 

each point those strategies, or strategy continuations, which he judges acceptable from the 

perspective of that point. In this way, myopic choice involves a disparity between ex ante 

evaluations of ex post options, and ex post evaluations of the same options. 

 
1 This notion of consistency, which is common to the literature on dynamic inconsistency and changing tastes considered above 
(Strotz, 1956, and others), has to be distinguished by another possible notion of consistency, which is present in Hammond (1982a,b), 
and does not impose restrictions on the agent’s behaviour as the definition considered here. At a given node in the decision tree, each 
choice by the agent is consistent with some particular plan. For any decision tree, it is possible to consider a truncated part of the tree 
starting from a given decision node. A truncated plan is that plan which is available to the agent from that decision point on. As for 
every truncated plan there exists a corresponding plan, each truncated plan is the continuation of a plan whose implementation has 
not been ruled out by the agent’s choice, so that the decision to implement that plan at the next node is consistent with the choices 
previously made. Then, any sequential choices will be consistent with each other, as they both are steps in the implementation of 
some plan. Therefore, an agent’s choice is dynamically consistent however the agent moves in the tree. 
2 However, it must be noted that the focus of Hammond’s analysis is different. According to Hammond’s definitions, both strategies 
result in consistent dynamic choice, while they are always incoherent. Only in the case of no inconsistency, they coincide, and are 
coherent. 
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In Hammond’s example, the myopic agent ignores that his tastes are changing, and chooses at 

each stage the option he considers as best at that moment. Therefore, he will choose option a at n0, 

but change his mind and choose b at n1. His final choice will be b. 

When acting according to a sophisticated approach, the agent takes into account that the 

feasibility of any plan he can adopt in the future is conditioned by his projection of what options he 

will evaluate as acceptable at that point and will reject as not feasible those plans which imply a 

choice, he anticipates he will not make. By doing so, he always ends up choosing ex post according 

to his ex-ante plans and avoids violating dynamic consistency. 

The sophisticated agent anticipates his future choice and chooses the best plan among those 

he is ready to follow to the end. In the example, at n0 he will forecast that by taking the drug he will 

become an addict, and realises that his only options are b and c. Therefore, he will choose the most 

preferred option between the two, that is, c. 

Hammond’s example of dynamic inconsistent choice allows also to introduce another 

possible model of behaviour, which is formalised only later in the literature by McClennen in the 

context of dynamic inconsistency and non-expected utility preferences and is going to be discussed 

extensively below - Resolute Choice. 

Resolute choice stands as an alternative to sophisticated choice in tackling the problem of 

dynamic inconsistency. The resolute agent anticipates that the evaluation he is going to make at 

some future node in the decision tree is going to constrain the feasibility of a plan he judges as best 

at present, and then decides to “treat evaluation at the initial decision point as dispositive of 

evaluation in the future” (McClennen 1990, page 157). The agent resolves to act according to a plan 

judged best from an ex-ante perspective, and intentionally acts on that resolve when the plan 

imposes on him ex post to make a choice, he disprefers. By so choosing he manages to act in a 

dynamically consistent manner. 

In Hammond’s example, at n0 a resolute agent would have resolved to act according to the 

plan leading to the most preferred outcome a – take the drug till it is harmless, then stop; and he 

would have acted on that resolve when at n1 the plan imposed on him to choose the less preferred 

option - going for a and not for b. 

 

2. Dynamic inconsistency with non-expected utility preferences 
The problem of dynamic inconsistency as examined in the literature on changing tastes occurs 

in situations of certainty. In a context of choice under risk or uncertainty, dynamically inconsistent 

choices may occur when the preference orderings over risky (uncertain) outcomes are nonlinear in 

the probabilities, that is, violate Expected Utility Theory, through violation of the Independence 
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Axiom3. When applied to sequential decisions, non-linearity may cause optimal strategies to be 

dynamically inconsistent. 

This can be seen by considering the link between independence and linearity, and how 

violation of independence can cause dynamic inconsistency. 

Many formulations of the independence axiom are given in the literature. It is sufficient to 

consider here this version by Samuelson (1952a,b)4 corresponding to ‘strong independence’, which 

considers both the cases of strong preference and indifference: 

Lottery A is (as good or) better than lottery B, if and only if the compound lottery [A, 

p; Q, 1-p] is (as good or) better than the compound lottery [B, p; Q, 1-p] for any 

positive probability p and lotteries A, B and Q. 

That is, if lottery A is (as good or) better than lottery B, then any probability mixture of 

getting A or Q is (as good or) better than any probability mixture of getting B or Q, for any positive 

value of the probability p. In Samuelson’s words, “using the same probability to combine each of 

the two prizes with a third prize should have no ‘contaminating’ effects upon the ordering of those 

two original prizes” (1952b, p.133). 

As noted by Fishburn (1988), the Independence Axiom is known as the linearity assumption, 

and is associated with similar axioms referred to as substitution principles, cancellation conditions, 

additivity axioms and sure-thing principles. The contribution of the Independence Axiom to the 

demonstration of the existence of a utility function and of its linearity, a property which is referred 

to also as the expected utility hypothesis (the utility of a lottery is equal to the expected utility of its 

prizes) has been shown by many authors (Luce and Raiffa, 1957, Marschak, 1950; Kreps, 1988; 

Fishburn, 1988; Samuelson, 1952b). Machina (1989) notes that independence is equivalent to the 

property that the individual preference function takes the expected utility form, and according to 

Anand (1993) the notion of independence is “used in a sense that amounts to requiring that utility is 

linear with respect to probability”. 

Without providing a formal demonstration of the equivalence between linearity and 

independence, it will suffice to consider here the behavioural interpretation of linearity given by 

Machina (1987, 1991), which provides a clear example of the link between the two properties. 

The property of linearity in the probabilities can be considered as a restriction on an agent’s 

preferences concerning the probability mixtures of lotteries. Consider two probability distributions 

P and P* over a common set of outcomes, x. The probability mixture (; 1-) of the two lotteries P 

 
3 The problem of dynamic inconsistency may occur also when the preference orderings violate expected utility through violation of 
the Weak Ordering condition, as will be mentioned later. In the course of the following work, attention will be on the problem of 
inconsistency when independence is violated. 
4 This version of independence corresponds to the definition in Samuelson  (1952a), modified as in Samuelson (1952b). 
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and P* will be equal to the compound lottery given by P+(1-)P* = p1+(1-)p1*,...,pn+(1-

)pn*. This can be viewed as a two-stage lottery, giving an  chance of P and a (1-) chance of P*. 

As linearity implies that the utility of this two-stage lottery is equal to the sum of the expected 

utilities of the lotteries multiplied by the probabilities which mix them, the property of 

independence follows. That is, as 

U(xi)(pi+(1-)pi*) = U(xi)pi+(1-)U(xi)pi*, 

for the agent who maximises expected utility, if lottery P is preferred to lottery P*, then the 

probability mixture P+(1-)P** will be preferred to the mixture P*+(1-)P** for any positive  

and P**. 

At this point, the property of independence can be given the following interpretation, which 

will turn useful below when the argument for dynamic inconsistency is introduced. The choice 

between P+(1-)P** and P*+(1-)P** is for the agent like tossing a coin which has a (1-) 

chance of tail, and in this case the agent will get lottery P**, and having to decide before the coin is 

tossed whether, in case head turns out (with probability ), lottery P or P* is preferred. If the coin 

lands tail, the agent gets lottery P**; if it lands head, the agent is back to the choice between P and 

P* and is supposed to rationally make the same choice as before. 

The argument for the dynamic inconsistency of non-expected utility preferences is illustrated 

first by Raiffa (1968). Raiffa frames the problem of inconsistent choice in a context of dynamic 

choice under risk, by showing that dynamic consistency is not compatible with the usual choices in 

an Allais paradox when this is considered as a decision problem in two stages. Raiffa reports of a 

similar example given by Schlaifer (1969). For this argument see also Markowitz (1959)5. 

Before introducing Raiffa’s argument, it is useful to illustrate the Allais paradox and show 

how it implies violation of expected utility and independence. 

 

2.1 An example of the Allais paradox 

Consider an agent who has to make a choice between the following couples of prospects, 

corresponding to the Allais paradox problem: 

a1=(1 chance of $1million) or 

a2=(.10 chance of $5million; .89 chance of $1million; .01 chance of $0) 

and 

a3=(.10 chance of $5million; .90 chance of $0) or 

a4=(.11 chance of $1million; .89 chance of $0). 

 
5 For a discussion of the plausibility of this argument see Anand (1993), which refers to McClennen (1988a). 
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The typical (most common) preference pattern chosen by subjects in this problem (see 

Machina (1989) for references on the experimental evidence) is a1 over a2 and a3 over a4. This 

pattern of choice can be shown to violate the expected utility hypothesis. 

According to expected utility, the preference for a1 ≻ a2 implies that 

u($1M) ≻ .10u($5M) + .01u(0) + .89 u($1M), which can be rewritten as 

.11u($1M) + .89u(0) ≻ .10u($5M)) + .90u(0). 

Therefore, expected utility implies a4 ≻ a3 and not a3 ≻ a4. 

It is also possible to show how the pattern of choice considered violates the independence 

axiom. To show this, however, it is necessary to assume that the reduction of compound lotteries 

axiom (RCLA) holds. 

According to RCLA, any compound lottery, which has another lottery as one or more of its 

prizes, can be reduced to a simple lottery of the more basic prizes by operating with the 

probabilities. Consider the following formal definition of reduction formulated by Luce and Raiffa 

(1957): 

Reduction (RD). Any compound gamble is indifferent (I) to a simple gamble with 

outcomes o1,...,or, their probabilities being computed according to the ordinary probability 

calculus. 

In particular, if g(i) = (o1, p1
(i); o2, p2

(i);...;or, pr(i)), for i = 1,...s, 

then, (g(1), q1; g(2), q2;...;g(s), qs) I (o1, p1; o2, p2;...;or, pr), 

where p1 = q1 pi
(1) + q2 pi

(2) +...+qs pi
(s). 

 

Given the RCLA, it is possible to rewrite the Allais prospects as 

a1 = (A, .11; $1M, .89) 

a2 =(B, .11; $1M, .89) 

a3 =(B, .11; $0, .89) 

a4 =(A, .11; $0, .89), 

where A  ($1M, 1) and B  ($5M,10/11; $0,1/11). 

 

The decision trees corresponding to the above prospects are 
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                       a1                                                               a2 

 
                                                                                                                $5M 
                                                                    10/11 
   .11                       $1M                 .11                      1/11 
                                                                                                                $0 

         .89                                                   .89 
                               $1M 
                                                                                                                $1M 
 
 

                      a3                                                                 a4 
 
                                         $5M 
         10/11 

       .11               1/11                                         .11                      $1M 
                                         $0 

   .89                                                              . 89 
                                                                                            $0 
                                         $0 
 
Figure 2 – Tree diagrams of the Allais paradox prospects with reduction 

 

The Samuelson definition of independence given above, implies the condition: 

A ≻ B      [A, p; Q, 1-p] ≻ [B, p; Q, 1-p]   Q, p. 

Having defined A ≡ ($1M, 1) and B ≡ ($5M,10/11; $0,1/11), it results that the condition 

above implies 

a1 ≻ a2      A ≻ B      a4 ≻ a3 

contrary to the usual Allais choices. 

 

The condition considered above is a condition of static and counterfactual consistency. It 

states that if the agent had been offered a choice between A and B instead of the actual choice 

between [A, p; Q, 1-p] and [B, p; Q, 1-p], then his preference would be consistent as stated. 
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The independence condition can be interpreted in terms of dynamic, instead of static, 

consistency in the manner illustrated by Raiffa. 

 

2.2 The dynamic inconsistency of non-expected utility agents 

Consider an urn containing 89 orange balls and 11 white balls. An agent has to draw from this 

urn one ball at random. If the ball is orange, the agent will receive a prize Q. If the ball is white, the 

agent will be given the choice between $1 million for sure (alternative A), or a lottery giving $5 

million with probability 10/11 and $0 with probability 1/11 (alternative B). 

At 8.55 in the morning the agent is asked to announce his choice between alternatives A and 

B, in case a white ball is drawn. That is, he is asked to choose ex ante between [A, p; Q, 1-p] and 

[B, p; Q, 1-p], with p = probability that a white ball is drawn. 

At 9 am the agent draws a white ball. 

At 9.05 the choice between A and B has to be made. That is, ex post the agent is asked to 

choose between A and B. There are two crucial questions here: 

 If a white ball is drawn, would the choice between A and B depend on the detailed 

description of prize Q? 

 If at 8.55 the alternative chosen has to be announced, in case a white ball is drawn, 

would the choice differ from the choice to be made at 9.05? 

If at 9.05 the agent is offered the choice between A and B, and at 8.55 he has declared he 

wants A, it would be dynamically inconsistent to change decision. Thus, 

(ex-ante) [A, p; Q, 1-p] ≻ [B, p; Q, 1-p]  (ex-post) A ≻ B 

as required by independence. If the agent is dynamically consistent in this way for any Q, it 

also follows that his ex-ante choice must be independent of Q. 

In addition, if the agent’s choice between the sure payoff and the lottery at 9.05 is 

independent of what prize Q is going to be, then there is no reason to postpone declaring of 

preferences at 8.55, and choice at this time should not differ from choice at 9.05. 

Therefore, the answer to the above questions should be negative, and negative answers are 

consistent with the independence assumption. 

Moreover, in case the Q prize were $1 million, choice of A would correspond to a choice of 

a1, and choice of B to a choice of a2. In case the Q prize were $0, choice of A would correspond to a 

choice of a4, and choice of B to a choice of a3. Therefore, the negative answers to the above 

questions, which are consistent with independence, are not compatible with choices for a1 and a3 (or 

a2 and a4) in the Allais paradox. 
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Besides, choices compatible with the Allais paradox would imply that choice at different 

times would differ, leading the agent to dynamically inconsistent choices. If Q is $1 million, the 

agent will say that in the case of a white ball, he would choose B at 9.05, but then at 9.05 he would 

instead choose A, being inconsistent with his previous choice, and with the negative answer to the 

two questions. 

Raiffa’s example shows how violation of expected utility may lead to dynamically 

inconsistent behaviour. Consider now the version of the argument given by Machina (1989, 1991). 

 

3. The problem of dynamic inconsistency in Machina 
The problem of the dynamic inconsistency of non-expected utility agents when acting in a 

dynamic context has been introduced in the previous paragraph through the example by Raiffa 

(1968), which is one of the first and best-known arguments of this kind. 

Machina constructs his argument of inconsistency by considering the violation of 

independence indirectly through violation of the separability properties which combine into the 

independence axiom. Machina’s argument 

 uses again the Allais paradox as an example of violation of the independence axiom 

in a static context; 

 shows how an agent with such non-expected utility preferences may incur into 

choices which are inconsistent when acting in a dynamic choice framework. 

 outlines - differently from Raiffa’s - the strategies which are available to the agent in 

a dynamic choice context, offering a solution to the dynamic inconsistency problem. 

As mentioned earlier, the characteristic property of the expected utility preference function is 

to be linear in the probabilities. This property does in turn imply that expected utility preferences 

are separable across mutually exclusive events. Separability can be of two different sorts: 

replacement and mixture separability6. The properties of separability (across events and/or 

sublotteries) can be combined in the independence axiom. 

According to replacement separability, an agent who prefers the lottery (y1,p1; x2, p2;; 

xn,pn) to (x1,p1; x2, p2;; xn,pn), would also prefer to replace (x1,p1) by (y1,p1) in any lottery of the 

form (x1,p1; x*2, p*2;; x*m,p*m). This property is a direct expression of the fact that, due to the 

additive form of the expected utility function, the contribution to the sum of every utility/probability 

product does not depend on any of the other utility/probability products. 

According to mixture separability, an agent will prefer (y1,p1; x2, p2;; xn,pn) to (x1,p1; x2, 

p2;; xn,pn) if and only if he would prefer y1 to x1 in a direct choice between the two outcomes. 

 
6 The two properties of separability also apply to mutually exclusive sublotteries of a compound lottery. 
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This property directly derives from the fact that each element of the expected utility sum is the 

product of the utility of an outcome and its probability. The probability mixture of an outcome can 

be preferred to the same probability mixture of another outcome only if the utility of the first 

outcome is bigger than the utility of the second outcome, that is, if the first outcome is preferred to 

the second one. 

The two properties of separability (over events or sublotteries) can be combined in the 

independence axiom, as previously defined: 

Lottery A is preferred (indifferent) to lottery B if and only if (A, p; Q, 1-p) is preferred 

(indifferent) to (B, p; Q, 1-p) for all lotteries Q and all positive probabilities p. 

As shown in Machina, the axiom of independence implies both mixture and replacement 

separability. 

The definition of independence implies directly mixture separability, as 

[A, p; Q, 1-p] ≻ [B, p; Q, 1-p]  A ≻B. 

Applying the condition twice gives replacement separability: 

[A, p; Q, 1-p] ≻ [B, p; Q, 1-p] A ≻B  [A, p; Q*, 1-p] ≻ [B, p; Q*, 1-p]. 

 

In this framework, the typical preferences in the Allais paradox can be shown to violate the 

independence axiom through violation of replacement separability over sublotteries. 

Consider an agent who has to make a choice between the pairs of prospects of an Allais 

paradox decision problem described above and suppose that his preferences are for a1 ≻a2 and a3 

≻a4. Recalling the decision-tree representation of the Allais prospects when RCLA holds in Figure 

2, the agent who prefers a1 to a2 and a3 to a4 is willing to replace the sublottery ($5M,10/11; 

$0,1/11) with $1M for sure when the lower branch yields $1M, but not when it yields $0. 

That is, for this agent 

($1M,.11; .89, $1M) ≻ (($5M,10/11; $0,1/11), .11; .89, $1M), but not 

($1M, .11; .89, $0) ≻ (($5M,10/11; $0,1/11),.11; .89, $0), 

in violation of replacement separability and of the independence axiom. 

 

3.1 Dynamic choice with Allais-type non-expected utility preferences 

Machina develops a specific example of dynamic inconsistency by using the typical non-

expected utility preferences in the Allais paradox. He notes, however, that the problem arises with 

any kind of violation of the independence axiom, through violation of replacement or mixture 

separability, and in general of any violation of expected utility. 
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I shall consider this general argument first. Then, it will be straightforward to see how the 

application of this general argument for inconsistency to the specific lotteries and preference 

patterns of the Allais paradox allows to derive Machina’s specific example of inconsistency in a 

dynamic Allais paradox. 

An agent faces a simple dynamic choice problem, where the dynamic aspect is given by the 

fact that the agent has to pre-commit his decision at the beginning of the tree - before any 

uncertainty is resolved - on how he will move if and when he reaches the decision node and will 

actually have to move accordingly when he is there. Here, the agent has to pre-commit his choice at 

the decision node between lotteries A and B, in case he reaches it with probability p. 

 
                                                B 
                  Up 
    p 
                        Down             A 
1-p 
                                               Q 
 
Figure 3 – Dynamic decision tree which shows the potential inconsistency for any violation of 

the Independence Axiom 

 

If the agent’s preferences are of the kind considered above, that is, violate independence 

through violation of either replacement or mixture separability, for lotteries A, B and Q, and 

probability p, they will be of the form  

A ≻ B  but  (B, p ; Q,1-p) ≻ (A, p ; Q,1-p). 

Therefore, at the beginning of the decision tree the agent will plan to go Up, to get B at the 

choice node, before the uncertainty is resolved; but, after the uncertainty is resolved, when at the 

decision node (in case he arrives there) he will actually choose Down, to get lottery A. His 

behaviour will be dynamically inconsistent, as his actual choice at the decision node will differ 

from his planned choice for that node. 

 

Before introducing Machina’s example of inconsistency in a dynamic Allais paradox decision 

problem, I will consider how the specific example of dynamically inconsistent choice may be 

obtained by applying Machina’s general argument for inconsistency to the specific lotteries and 

preference patterns of the Allais paradox. 

Suppose that 
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A = (1M, 1) 

B = (5M, 10/11; 0, 1/11) 

Q = 0 

p = .11, (1-p) = .89. 

Then, the reasoning above when applied to the Allais prospects will imply: 

1. A ≻ B    that is, (1M, 1) ≻ (5M,10/11; 0,1/11), but 

2. (p,B; 1-p,Q) ≻ (p,A ; 1-p,Q)   (.11, (5M,10/11; 0,1/11); .89,0) ≻ 

        (.11, (1M,1); .89,0) 

       and 

3. (p,A; 1-p,A) ≻ (p,B; 1-p,A)   (.11,1M; .89,1M) ≻ (.11, (5M,10/11;  

        0,1/11); .89,1M). 

The preferences which result by applying the general argument for inconsistency to the Allais 

prospects show violation of replacement separability - therefore independence - under (2) and (3); 

violation of independence (through mixture separability) and inconsistency under (1) and (2); and 

no violation or inconsistency under (1) and (3). 

 

The above application of the general case of dynamically inconsistent preferences to the 

Allais paradox prospects allows to construct Machina’s specific example for the dynamic 

inconsistency of non-expected utility NEU agents with Allais-type preferences. 

Consider an agent who is facing the following decisions: 

a) a direct choice between the two prospects: B=(5M,10/11; 0,1/11); and 1M for sure 

(A); 

b) a choice on how to move in the two dynamic problems 

 
                                                5M                                                                         5M 
                               10/11                                                                   10/11 
                          1/11               0                                                      1/11                0 
.11                                                                   .11 
                                                1M                                                                         1M 
.89                                                                   .89 
 
                                                1M                                                                         0 
 
Figure 4 – Dynamic decision problems that generate the same opportunity sets as the Allais 

paradox problem 
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The different choices the agent can make in these two trees imply the Allais paradox 

prospects considered above. 

In the left hand-side tree, a choice of Up at the decision node, when combined with the 

probability at the initial chance node, implies the prospect a2=(.10 chance of $5M; .89 chance of 

$1M; .01 chance of $0). A choice of Down implies the prospect a1=(1 chance of $1M). 

In the right hand-side tree, a choice of Up implies a3=(.10 chance of $5M; .90 chance of $0). 

A choice of Down implies a4=(.11 chance of $1M; .89 chance of $0). 

An agent with the typical Allais non-expected utility preferences will act inconsistently. 

1. If his choice has been for B ≻ 1M (A). In case nature goes Up in the left hand-side 

tree, he will face exactly B and 1M, and decide to go Up (B), but change his plan to choose Down 

at the decision node (1M) instead of Up ( a1 ≻ a2). In the right hand-side tree, the agent will not be 

inconsistent. He will plan to go Up for a3 and will implement that decision when at the node. 

2. If his choice has been for 1M ≻ B. In case nature goes Up in the right hand-side tree, 

he faces B and 1M, and decides to go Down (1M), but changes his plan to choose Up at the 

decision node instead of Down (a3 ≻ a4). In the left hand-side tree, the agent will not be 

inconsistent: he will plan to go Down for a1 and will implement that decision when at the node. 

That is, the agent’s behaviour in either of the two dynamic problems will be dynamically 

inconsistent, whatever his choice in the direct alternative between the lottery and the sure outcome. 

 

3.2 The different approaches to choice available to the agent in a dynamic choice 

situation 

The argument on the dynamic inconsistency of non-expected utility agents sketched above 

relies on an assumption on the way in which the agent reconsiders his choice in the middle of a 

decision tree. In the previous example, when the problem occurred of determining how the agent 

would have moved had he actually reached the decision node, it has been assumed that he would 

have considered the tree starting at the decision node as a new decision tree. Thus, the 

reconsideration of the optimal strategy to be adopted at that point would depend only on the initial 

preferences and the outcomes/probabilities of the new tree. 

The uncertainty belonging to the rest of the tree - which has been cut off - does not matter for 

decision (in the example above, this uncertainty is the .89 probability of getting 1M in the left hand-

side tree; and the probability of getting 0 in the right hand-side tree). 
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In the previous example, if this holds, decision at the choice node is determined only by the 

agent’s preferences regarding the outright choice between the lottery and the sure outcome. It 

follows that dynamically inconsistent behaviour of the agent in the previous situation is a 

consequence of this assumption. This assumption is referred to (Machina, 1989) as 

consequentialism. The kind of agent who is non-expected utility and consequentialist (‘ -people’ 

for Machina) can be thought of being induced to dynamically inconsistent behaviour, by acting in a 

myopic manner, even if Machina does not refer to myopia explicitly. I shall refer to this agent as a 

straight inconsistent non-expected utility agent (NEU). 

An alternative to this approach would be to consider the uncertainty which has been already 

borne at the decision node as “gone in the sense of (…) consumed (or “borne”), rather than gone in 

the sense of irrelevant” (page 1647), by keeping the entire probability distributions into the 

opportunity sets, so that the agent will not confront at the node a new set of opportunities, but a 

subset of the original ones. In this way, the opportunities which were initially preferred, and 

corresponded to the initial plan, will always be available to him. In the example given, the agent 

will face at the choice node the same prospects that he was facing at the beginning of the tree. 

By so doing, he will manage to be dynamically consistent. I shall refer to this kind of agent as 

a Machina-dynamically consistent non-expected utility agent (MNEU). Machina refers to these 

agents as  -people. This different approach suggested by Machina denies consequentialism as it 

“takes into account the risk already borne in a way consistent with the agent’s original preferences”. 

Let us consider now how such an approach can be formalised. The key feature of its 

formalisation lies in the way in which nonseparable non-expected utility preferences are 

“appropriately” extended to dynamic choice settings. 

In the previous example, the agent had the NEU Allais type preferences a1 ≻ a2 and a3 ≻ a4. It 

has been shown that, whatever his preferences over lottery B and 1M, he will act inconsistently in 

one of the two dynamic decision problems. Consider a1 ≻ a2 and B ≻ 1M, where a1 = (1M, 1) and 

a2 = (5M, .10; 1M, .89; 0, .01). As B = (5M, 10/11; 0, 1/11), it is possible to write a1 = (1M, .89;1M, 

.11) and a2 = (1M, .89;B, .11). 

Define V(1M, .89;1M, .11) and V(1M, .89;B, .11) as the preference functions over the two 

lotteries. 

a1 and a2 are the prospects the agent faces at the beginning of the left-hand-side tree of Figure 

4 in the previous section. The inconsistency derives from the fact that when at the decision node, 

the prospects the agent faces are not a1 and a2, but B and 1M. 
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According to Machina’s approach, the appropriate extension of NEU preferences to dynamic 

situations has to consider that the agent with non-expected utility preferences feels the risk, which is 

gone as consumed, but not as irrelevant. This can be taken into account in two ways: 

1. by inserting the whole probability distribution into the original preference function. 

At the choice node, the agent will compare .11) ;1M,.89 1M,(  V  and .11) B,;.89 1M,(  V   - 

where the bar indicates the risk which has been already borne; that is, he will face the prospects 

a1 and a2. In this way the agent will choose a1 at the choice node - consistently with his choice at 

the beginning of the tree; 

2. by inserting the continuation of each tree branch in the conditional preference 

function V1M,.89=(•), so that he will compare V1M,.89=(1M, .11) and V1M,.89 = (B, .11), where it is 

defined that Vx1,p1;x2,p2(Z) = V(x1,p1; x2, p2; Z, (1-p1-p2). As above, the agent will face prospects 

a1 and a2 and choose a1, being consistent with his previous choice. 

Both procedures have the same effect on the agent’s behaviour: they allow the agent to 

implement at the choice node the plan adopted at the beginning of the decision problem, and 

therefore to be dynamically consistent. 

This model of choice is substantially equivalent, even if differently formalised, to 

McClennen’s model of Resolute Choice7, which will be discussed extensively below, so that I shall 

imply that a MNEU and a Resolute Chooser (RC) are the same kind of agent. 

There are still two kinds of agent which are to be considered. One is the expected utility (EU) 

agent (‘ -people’ for Machina), to whom the problem of dynamically inconsistent choice does not 

apply. The other agent is the Sophisticated Chooser (SC) (‘ -people’ for Machina). 

As discussed previously, this agent determines the optimal strategy in the tree by a process of 

‘backward induction’: he starts from the last decision nodes in the tree, considers the set of 

prospects following from those nodes and determines the optimal choice at those nodes by using his 

original preferences. The process is repeated for all previous choice nodes, given the path so 

determined out of each terminal node, till the agent determines the path from each choice node to 

the beginning of the tree. The SC agent will be consistent, as he will follow at each node the 

optimal choices so determined when moving along the tree. 

In the example in Figure 4, the agent who prefers the lottery to the sure outcome, will forecast 

that he would go Up when at the decision node in the left hand-side tree, and will then pre-commit 

to go Up instead of Down when at the beginning of the tree (a2), therefore avoiding inconsistent 

behaviour in his future choice. In the right hand-side tree he will choose Up for a3. The agent who 

prefers the sure outcome to lottery B, will forecast that he would go Down in the right hand-side 

 
7 According to Machina, Resolute Choice represents one of the “antecedents of the formal approach” presented in his paper. 
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tree, and will therefore choose Down at the beginning of the tree (a4), avoiding inconsistency. In the 

left hand-side tree he will go Down for a1. Therefore, in this dynamic choice situation the SC agent 

will behave as an EU agent, while exhibiting non-expected utility preferences in the static Allais 

problem of Figure 2. 

In the context of the simple dynamic choice problem considered, four different kinds of 

agents - or different approaches to choice available to the agent in a dynamic choice situation - can 

be outlined. An EU agent who will not be inconsistent. A NEU agent who is liable to inconsistency. 

A MNEU and a SC agent who are NEU agents but avoid inconsistent behaviour, even though the 

strategies they adopt and their choices differ. 

 

4. Models of dynamic choice and dynamic choice conditions 

After having considered Raiffa’s and Machina’s formulations of the dynamic inconsistency 

problem, it may be useful to summarise the arguments by considering the decision trees and the 

different axioms implied by the arguments and choice strategies discussed above. 

The Allais pairs of prospects considered in Figure 2 can be represented by the following two 

decision trees, with choice of A being equivalent to a1=(1 chance of $1million), choice of B to 

a2=(.10 chance of $5million; .89 chance of $1million; .01 chance of $0), choice of C to a3=(.10 

chance of $5million; .90 chance of $0) and choice of D to a4=(.11 chance of $1million; .89 chance 

of $0). 

 
                             .10         5M                                        .10            5M 
               B           .01        0                                  C 
                            .89        1M                                         .90            0 
                                                                                       .11            1M 
               A                                                           D 
                                         1M                                        .89             0 
   (a)     (b) 

Figure 5 – Decision trees representing the Allais paradox prospects 

 

As considered above, given the RCLA reduction condition, these prospects are 

probabilistically equivalent to, respectively: 
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                          10/11                     5M                                            10/11              5M 
                                                                                                                     
            .11          1/11                                                         .11                     1/11 

B              .89                                             0          C          .89                                           0 
 
 
                                                        1M                                                                     1M 
 

A               .11                                           1M          D            .11                                       1M 

 
        .89                                                                     .89 
                                                        1M                                                                     0 

   (a)      (b) 

Figure 6 – Decision trees representing the Allais paradox prospects with reduction 

 

In Figure 6, the independence condition requires that 

A ≻ B (1M, 1) ≻ (5M, 10/11; 0, 1/11)  D ≻ C. 

Therefore, reduction and independence together require that A ≻ B  D ≻ C in Figure 5. 

Consider now the dynamic interpretation of the independence condition in the manner of 

Raiffa and Machina. Compare Figure 6 with the following dynamic decision problems which 

reverse the temporal order of the first decision node and the chance node and generate the same 

opportunity sets as the Allais paradox: 

 
                            10/11         5M                                                   10/11               5M 
                 B’                                                                          C’           
                             1/11         0                                                           1/11             0 
.11                                                                    .11 
                 A’                        1M                                            D’                          1M 

          .89                                                                             .89 
 
                                             1M                                                                         0 
  (a)      (b) 

Figure 7 – Dynamic decision trees which generate the same opportunity sets as the Allais 

paradox 
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The condition of dynamic consistency requires that agent’s choices will be the same in the 

two sets of problems: the agent who prefers A to B in 6a will prefer A’ to B’ in 7a, and the agent 

who prefers D to C in 6b will prefer D’ to C’ in 7b. 

A ≻ B  A’ ≻ B’ and D ≻ C  D’ ≻ C’. 

 

Besides, in Figure 7 the condition of consequentialism according to Machina (1989) requires 

that A’ ≻ B’  D’ ≻ C’, as the consequences of these prospects are identical in the two pairs of 

decision trees. That is, according to consequentialism, in Figure 7 the payoff at the end of the 

lowest branch is not relevant at the decision node. 

Therefore, dynamic consistency and consequentialism together require that 

A ≻ B  D ≻ C in Figure 6. So reduction, dynamic consistency and consequentialism 

together require that A ≻ B  D ≻ C in Figure 5. 

Therefore, it results that whoever offers an Allais-type response in Figure 5 must violate at 

least one of reduction, dynamic consistency and consequentialism. 

Recalling the different strategies available to the agent in this situation, it is possible to see 

that the straight NEU myopic agent will violate independence and therefore dynamic consistency 

but respect consequentialism and reduction, so that in Figures 5 and 6, A ≻ B and C ≻ D, while in 

Figure 7 A’ ≻ B’ and D’ ≻ C’. 

A dynamically consistent MNEU agent will respect reduction and dynamic consistency, while 

violating consequentialism, so that A ≻ B and C ≻ D in Figures 5 and 6, while A’ ≻ B’ and C’ ≻ 

D’ in 7. 

A SC sophisticated agent will obey consequentialism and dynamic consistency, so that A ≻ B 

and D ≻ C in Figures 6 and A’ ≻ B’ and D’ ≻ C’ in 7, but violate reduction, as for this agent A ≻ 

B and C ≻ D in Figure 5. 

 

So far I have considered the argument on the dynamic inconsistency of non-expected utility 

agents through the examples of Raiffa and Machina, and the different models of dynamic choice 

discussed by Machina. 

It is important to note that other authors have discussed the issue of the linearity of the 

expected utility function and dynamic inconsistency. Karni and Safra (1989a) show that linearity of 
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expected utility is a necessary and sufficient condition for dynamic consistency in ascending bid 

auctions. Karni and Safra (1990) argue also that the same is true in the more general case where the 

set of choices is not restricted to lotteries induced by auctions. 

In the next paragraph I will consider McClennen’s approach to the problem of the dynamic 

inconsistency of individuals with non-expected utility preference patterns. The discussion will 

illustrate the conditions of dynamic choice and the different models of behaviour in a dynamic 

context through some examples, leaving the formal part of McClennen’s argument in the Appendix. 

This will allow to examine further the myopic and sophisticated models of choice, and illustrate the 

model proposed by McClennen as an alternative solution to the problem of dynamic inconsistency - 

Resolute Choice. 

Before introducing McClennen’s argument, it is useful to illustrate briefly the general 

theoretical debate in which the dynamic inconsistency argument finds its place and McClennen’s 

argument develops. 

The problem of the dynamic inconsistency of non-linear preference orderings is part of the 

general debate on the justification of expected utility as a normative theory. On the basis of a 

growing empirical evidence of systematic violations of expected utility maximisation, many non-

expected utility models have been formulated (for references see Machina, 1989). Most of these 

models maintain the ordering and continuity conditions and relax or generalise the independence 

axiom, which accounts for the linearity in the probabilities. Many different arguments have been 

formulated against non-expected utility models, in the context of static as well as dynamic choice 

(Machina, 1989; McClennen, 1990). According to Machina, the problem of dynamic inconsistency 

is one of the most “formidable” arguments against the validity of these models as normative for 

choice under risk and uncertainty and in support of the normative superiority of expected utility. 

Hammond’s consequentialist argument (1988a,b;1989) is the most formal normative 

justification of expected utility. According to Hammond's argument, violations of one of the two 

expected utility axioms of ordering and independence make the agent's preferences subject to 

dynamically inconsistent changes. If this occurs, the agent may find himself in a dynamic choice 

situation in which what at the present moment he prefers to choose at a later point in the decision 

tree is not what he will prefer to choose when he actually arrives at that decision point. 

The problem with dynamically inconsistent shifts in preferences is that they are not 

compatible with the agent always maximising with respect to his preferences for consequences. The 

agent may act according to a plan that is strictly dominated by another available plan with respect to 

preferences for outcomes. 

Hammond argues that the consequentialist principle– that acts have to be valued only by their 

consequences - suffices for the derivation of the axioms of ordering and independence, which are 
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implied by consequentialism, given a condition of consistency. In particular, Hammond shows that 

ordering and independence can be recovered as theorems under an axiomatic formalisation of the 

principle of consequences. 

 

5. The problem of dynamic inconsistency in McClennen 

McClennen (1986,1990) develops his contribution to the analysis of the dynamic 

inconsistency problem in the context of the debate on the normative validity of expected utility 

theory and two of its axiomatic presuppositions, the principles of weak ordering and independence. 

The discussion concentrates on the justification from a pragmatic perspective of a normative 

interpretation of the two axioms, that is, the justification of “the claim that a rational decision maker 

ought to avoid violating these two principles” (McClennen 1990, page 3). 

McClennen's contribution to the debate focuses on the discussion of what he considers the 

most formal and complex of the pragmatic arguments in defence of the two axioms of ordering and 

independence, Hammond's consequentialist argument. In common with the other pragmatic 

arguments, this includes reference to a dynamic choice framework. McClennen constructs his 

argument by introducing a set of conditions for rational dynamic choice, which have the purpose of 

factoring Hammond's consequentialist principle. The conditions provide a model for the 

consequentialist argument constructed in favour of the two axioms: McClennen shows that the same 

two axioms can be recovered as theorems from the conjunction of the dynamic choice conditions. 

Moreover, the conditions play an important role in a more general pragmatic approach. 

It is of particular interest to consider how McClennen uses the rational dynamic choice 

conditions to model agent’s behaviour in a dynamic choice context. For this purpose, it is sufficient 

to give here only a description of the conditions necessary to follow McClennen’s construction. A 

more detailed notation and formal definitions of the conditions and models of choice are given in 

the Appendix. 

 

5.1 Some notation and definitions 

A dynamic choice problem, as defined in section 1 above, is represented by a decision tree T, 

composed by initial chance or choice nodes, a set of following choice or chance nodes, and a set of 

terminal nodes or outcomes O(T) = {o1, ..., on} associated with T. In line with the assumption of the 

decision problem to be bounded, it is assumed that an outcome is not terminal, insofar as chance 

events and probabilities enter explicitly into its description. 

Define S as the set of plans available to the agent in T, and s, r, ... as elements of S. For any 

decision tree T, it is possible to define T(ni) as the truncated part of the tree from node ni to all 
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terminal nodes that can be reached from ni. s(ni) will be a representative truncated plan available to 

the agent at point ni and S(ni) the set of truncated plans available at ni. 

Before introducing the rational choice conditions, it is useful to consider (more formally in 

the Appendix) a crucial problem in McClennen’s approach - the evaluation of plans and the 

different perspectives from which plans can be evaluated. The difference in the perspectives of 

evaluation are the basis for the differences in the conditions and models of dynamic choice. 

i. The evaluation of plans 

D(S) is defined as the set of acceptable plans, that is, the subset of S consisting of those plans 

judged by the agent to be acceptable, by whatever criteria is employed. 

ii. The evaluation of plans at subsequent nodes 

According to McClennen there are three different perspectives from which the agent who 

finds himself at a certain (chance or choice) node ni in a tree T can evaluate the plans available at 

that point. These give rise to three different kinds of evaluation: 

· Evaluation of truncated plans. This concerns the evaluation of the alternatives 

available to the agent at node ni from the perspective of node ni itself. Given that the agent 

finds himself at some node ni, he will face the truncated tree T(ni), and will have to evaluate 

the set of plans S(ni) available to him at ni. 

· Evaluation of plan continuations. This concerns the evaluation of all the possible 

plans available to the agent before any move - by nature or by the agent - has taken place. For 

each truncated plan s(ni) available at ni, there must exist some plan s, such that s(ni) is the 

continuation of s from the point ni on. At ni the agent can perceive he faces not a set of 

truncated plans, but a set of plan continuations. From this perspective, the agent will have to 

consider which of all the plan continuations he is actually facing were considered acceptable 

by him initially. Then, it is possible to define for any node ni the set of all acceptable plans 

that the agent can still implement from ni. 

· Evaluation of truncated plans as de novo trees. This concerns the evaluation of the 

agent in the case he is given a ‘de novo’ decision problem identical to the one he is 

considering. The perspectives of evaluation considered above concern the general problem of 

how the agent should choose at a certain point within a decision tree. Choice so intended has 

a background of past choices and events, of paths that are “collateral but now counterfactual” 

(page 106). However, it is possible to consider the agent as facing, at some node ni, a 

completely new decision tree; a full tree that starts de novo at node ni and is like T(ni) except 

for “having no history and collateral paths”. 
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Prospects. For any tree T and plan s in S, a prospect gs - associated with plan s - is assumed to 

consist of a well-defined probability distribution over a set of outcomes, which can be reached by 

implementing plan s. The notion of prospects presupposes that the agent’s preference ordering over 

gambles satisfies the condition of reduction RD (defined in 2.1). This means that the agent is 

indifferent to gambles that can be reduced to the same probability distribution over the same set of 

outcomes. 

A more formal definition of a prospect is to be found in the Appendix. 

 

5.2 Dynamic choice conditions 

McClennen considers four conditions or principles of rational dynamic choice, together with 

other conditions which enter in their definition: Simple Reduction, Normal and Extensive form 

Coincidence, Dynamic Consistency, Separability. 

As noted above, definition and discussion of the dynamic choice conditions is central in 

McClennen’s analysis, as all the dynamic models of choice which McClennen develops are defined 

through the conditions that they violate or observe. Therefore, in what follows I will try to consider 

the part of the discussion which is necessary to understand McClennen’s argument, while leaving 

the more formal part of the definitions and discussion in the Appendix. 

 

5.2.1 Conditions of reduction 

Simple Reduction (SR) 

SR (as defined in the Appendix) is the extension to dynamic choice of the simple reduction 

condition RD previously defined. According to SR, the decision tree problem is equivalent to a 

simple non-sequential choice among different gambles, where n0 is the only choice node in the tree, 

and all other nodes are chance nodes. This condition requires that the ranking of plans in this kind 

of dynamic choice problem depends on the ranking of the outcomes or prospects associated with 

those plans. Thus, it requires that the evaluation that the agent makes of the prospects, and his 

subsequent choice, rules the evaluation and choice of strategies. The condition is plausible, if the 

RD version of the condition - that only outcomes and probability distributions are important in 

evaluation of gambles - holds in static choice. SR not only implies that RD holds, but is the 

extension of RD to a dynamic context. 

Plan Reduction (PR) 

This condition extends the previous SR, by eliminating the requirement that the plan be 

implemented by a single initial choice (see the Appendix for a formal definition). This is in line 

with the consideration that a plan has no value in itself, but that its value depends only on the value 

of the prospects attached to the plan and their probabilities. Then, if two plans lead to prospects 
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which are considered equivalent, the two plans are to be judged equivalent. The condition is stated 

in terms of acceptable plans. It requires a coincidence between acceptable sets over prospects and 

acceptable sets over plans that map into those prospects. 

The SR condition of reduction is more limited than PR, and therefore directly implied by it. 

Besides, by “factoring” PR (as shown in the Appendix), it is possible to see that PR adds to SR the 

requirement that, insofar as evaluation is concerned, no distinction exists between plans in normal 

and extensive form. 

In order to explain the difference between normal and extensive form of a plan, one can 

consider a plan s in S(T), where T is modified so that the agent can implement any plan in T by 

means of a single choice, for example, by the existence of a mechanism which automatically 

performs from the start all the choices required by plan s, and consider this as the normal form 

version of the plan. Given the normal form of s and the normal version of T, then, it is possible to 

formulate the condition of: 

Normal-form/extensive form coincidence (NEC). 

NEC (formally defined in the Appendix) implies that there is no difference to choice whether 

the agent is presented with the extensive or the normal form version of any plan8. 

While PR ensures the coincidence between the set of acceptable plans and the set of the 

corresponding acceptable prospects, NEC ensures the coincidence between the set of acceptable 

plans associated with a tree and the set of acceptable normal form plans associated with the same 

tree. 

There exists a relation between the conditions SR, NEC and PR. McClennen establishes the 

relation formally through two propositions, which prove that PR is equivalent to the conjunction of 

NEC and SR. The formal demonstration of the propositions will not be given here. However, the 

link connecting the different conditions of reduction will be better understood below, when the 

principles of rational dynamic choice are used to define the different models of choice in the 

context of a dynamic decision tree. 

 

5.2.2 Dynamic consistency (DC) 

As mentioned in paragraph 1, dynamic consistency is defined in terms of the “disparity 

between the plan originally adopted and subsequent choice” (McClennen 1990, page 118). As it is 

assumed that the plan adopted by the agent is a plan that he judges acceptable at the initial decision 

point, and that the plan chosen at any subsequent point is among the truncated plan judged 

acceptable from that standpoint, dynamic consistency requires coincidence between what the agent 

chooses at a certain node by the strategies judged acceptable at the outset, and the set of the strategy 
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continuations from that point on, which are judged acceptable at that node. 

More specifically, the condition of dynamic consistency requires a relation between the set of 

plans judged acceptable by the agent (in particular what it implies about the set of plans that the 

agent can still implement from a particular choice node), and the set of truncated plans judged 

acceptable which are available to the agent at the subsequent choice node under consideration. 

Formally, the DC condition of dynamic consistency is obtained by the combination of two 

different conditions – of Inclusion (DC-INC) and Exclusion (DC-EXC). The formal definition of 

the two conditions and of the resulting dynamic consistency is given in the Appendix. 

 

5.2.3 Separability (SEP) 

Separability requires that the evaluation of the options still available to the agent at some 

point within the decision tree be independent of the context of chance events and choices already 

occurred. That is, how the agent would choose if he were to confront choices de novo determines 

how he chooses at any given point in the tree. Therefore, the condition requires coincidence 

between the set of strategy continuations judged acceptable at a particular decision point and the set 

of strategies which would be judged acceptable by the agent if he were to confront the sub-tree 

starting at that decision node as a new decision tree. 

This condition of separability requires that how an agent will choose among different 

alternatives at a node in the decision tree is determined by the way he would choose among those 

alternatives de novo. That is, the choice of the agent at a node ni in the decision tree does not 

depend on “what might have happened, or what alternatives might have been available, under 

conditions that do not in fact obtain at choice point ni”, that is on “alternative but counterfactual 

choices or moves by nature” (page 122). 

The role of the SEP condition can be better understood by considering a condition of 

reduction on truncated plans, TR, which generalises the plan reduction condition PR to the case 

where ni =n0, and therefore directly implies it. 

TR (defined in the Appendix) requires the ordering of the set of plan truncations to depend 

only on the ordering of the prospects associated to them - which the agent can still have at one node 

in the tree - so that once the ordering of prospects of a truncated tree is known, the ordering of plan 

truncations is also known, independently of the rest of the tree. 

An important implication of this is that the ordering of the truncated plans at a node ni in the 

tree is independent of the prospects that might have been open to the agent earlier in the tree, had 

the agent chosen differently, or had nature moved differently at choice or chance nodes before ni. 

 
8 A thorough explanation of what is meant by normal and extensive form is not given in McClennen, as noted by Cubitt (1996). 
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In particular, it can be shown (for this see the Appendix) that by factoring TR, it is possible to 

derive TR by PR by adding the condition of separability SEP to it. Therefore, the SEP condition is 

what has to be added to PR in order to get TR. 

 

5.3 Different models of dynamic choice 

As discussed previously, two different approaches to choice have been traditionally 

considered in the literature on dynamic choice and changing preferences: myopic and sophisticated 

choice. McClennen evaluates and compares these dynamic choice models in terms of the conditions 

on dynamic choice considered above and formulates the new approach of Resolute Choice9. 

The way of framing the choice strategies in dynamic choice situations with a potential for 

inconsistency follows Strotz’s analysis. However, despite the definition of the strategies differs, the 

decision context of McClennen’s analysis is the same considered by Hammond - of dynamic 

inconsistency caused by non-expected utility non-linear preferences. 

Following McClennen’s analysis, I will use the same simple dynamic decision problem to 

evaluate the three different decision models in terms of the dynamic conditions. 

As an example of the application of Strotz’s perspective to Hammond’s problem, consider the 

following decision problem described by McClennen, and originally formulated by Kahneman and 

Tversky (1979). 

Suppose an individual is facing the following prospects: 

g1 = ($2400, 1) 

g2 = ($2500, 33/34; $0, 1/34) 

g3 = ($2400, 34/100; $0, 66/100) 

g4 = ($2500, 33/100; $0, 67/100) 

where g1 means that the agent will get $2400 with certainty; g2 means that he will get $2500 

with probability 33/34, and $0 with probability 1/34, and so on. 

In what follows it is going to be assumed that the agent prefers g1 to g2, and g4 to g3. This 

preference pattern corresponds to a class of violation of expected utility theory and the 

independence axiom, known as the “common ratio effect”. 

According to expected utility, the preference for g1 ≻ g2 implies that 

u($2400) ≻ 33/34u($2500) + 1/34u($0), which can be rewritten as 

34/100u($2400)+66/100u($0) ≻ 33/100u($2500) + 1/100u(0)+66/100u($0) or 

34/100u($2400)+66/100u($0) ≻ 33/100u($2500) + 67/100u($0). 

 
9 An experimental analysis of the three model of dynamic choice is attempted in Hey and Lotito (2009). 
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Therefore, expected utility implies g3 ≻ g4 and not g4 ≻ g3. 

It is also possible to show how the pattern of choice considered violates the independence 

axiom. Given the RCLA, it is possible to rewrite the prospects as 

g1 = (A) 

g2 = (B) 

g3 = (A, 34/100; $0, 66/100) 

g4 = (B, 34/100; $0, 66/100), 

where A  ($2400, 1) and B  ($2500,33/34; $0,1/34). 

As argued above, the condition implied by independence is: 

A ≻ B      [A, p; Q, 1-p] ≻ [B, p; Q, 1-p]   Q, p. 

Having defined A ≡ ($2400, 1) and B ≡ ($2500,33/34; $0,1/34), it results that the condition 

above implies 

g1 ≻ g2      A ≻ B      g3 ≻ g4. 

Following Machina’s analysis, the preferences in the common ratio effect problem can be 

shown to violate the independence axiom through violation of mixture separability over 

sublotteries. 

Recalling the representation of the prospects when RCLA holds, it can be seen that the agent 

who prefers g1 to g2 and g4 to g3 prefers the lottery ($2400, 1) to the lottery ($2500,33/34; $0,1/34) 

in a direct choice between the two, but not when they are mixed with the other lottery ($0, 66/100). 

That is, for this agent 

($2400, 1)≻ ($2500,33/34; $0,1/34), but not 

($2400, 34/100; $0, 66/100) ≻ (($2500,33/34; $0,1/34)), 34/100; $0, 66/100), 

in violation of mixture separability and of the independence axiom. 

 

Suppose now that this other prospect is also available 

g3+ = ($2401, 34/100; $1, 66/100), 

where the agent can have slightly higher payoffs with the same probability than in g3. If g4 is 

strictly preferred to g3 it is always possible to construct g3+ so that very small increments in g3 will 

still result in a prospect less preferred than g4, so that the agent will prefer g4 to g3+ and g3+ to g3. 

The choice of the agent among these prospects can be represented by the following decision 

tree, once the notation and definitions considered above are assumed. 
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                                                                                       33/34                    $2500 
                                                                       n4 
                                               s(n3)                                         1/34 
                                       n3                                                                         $0 
                                                            r(n3) 
                                  34/100                                                                       $2400 
           n1 
                                   66/100 
             s, r                                                                                                  $0 
        n0 
 
 
      (r+)                                  34/100                                                        $2401 
            n2 
                                               66/100                                                        $1 
 
Figure 8 – Decision tree representing choice of a variation of the “common ratio effect” 

prospects 

 

Consider the options available to the agent in this situation. 

At the first choice node n0 the agent is facing the possibility of choosing plan s or plan r, by 

going Up at choice node, or going Down by choosing (r+) and getting prospect g3+. In case he 

chooses to go Up at n0, he is in fact facing the two prospects g3 and g4. In case at n3 he chooses 

s(n3), he will get (($2500, 33/34; $0, 1/34) with probability 34/100; and $0 with probability 66/100), 

which is just g4 = ($2500, 33/100; $0, 67/100). In case at n3 he chooses r(n3), he will get (($2400, 

with probability 34/100; and $0 with probability 66/100), which is just g3 = ($2400, 33/100; $0, 

66/100). 

According to McClennen there are three different models of behaviour which the agent can 

adopt in this dynamic decision problem – Myopic Choice, Sophisticated Choice and Resolute 

Choice. 

 

5.3.1 Myopic Choice (MC) 

When acting according to a myopic approach, the agent selects at each point the strategies, or 

strategy continuations, which he judges acceptable from the perspective of that point. 

Remind that the agent prefers g1 to g2 and g4 to g3 (and to g3+). Therefore. he will choose plan 

s at n0 in order to choose s(n3) at node n3. However, in case he actually finds himself at node n3, the 
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agent will in fact decide to go for r(n3) and drop s(n3), as he is now facing prospects g1 and g2 and 

prefers the first to the latter. 

Therefore, when faced with this decision problem, at n0 the agent will choose plan s, while at 

n3 he will choose the plan continuation r(n3) instead of the continuation of the plan originally 

adopted s(n3), then behaving in a dynamically inconsistent manner - adopting a plan and leaving it 

at a later node. 

McClennen uses the conditions of dynamic choice defined above to offer a model of the 

agent’s behaviour. A detailed description of how this is done can be found in the Appendix. Here it 

is sufficient to conclude that the agent who has the preferences considered above – that is, who 

ranks g1 over g2 and g4 over g3 - and follows all three conditions SR, NEC (which together imply 

PR) and SEP, will select plan s at n0 and r(n3) at node n3. In this way, he will violate the condition 

of dynamic consistency DC. 

PR requires coincidence between acceptable sets over prospects and acceptable sets over 

plans that map into those prospects. Given the agent’s preferences for g4 over g3, g4 is in the set of 

acceptable prospects, while g3 is not. Thus, according to PR plan s is in the set of acceptable plans, 

while plan r is not. 

According to SEP, the agent will choose at n3 as if facing a new tree. Then, for SR at the new 

tree starting at n3, the prospect associated with plan s is g2 and the prospect associated with plan r is 

g1. Then, r will be in the set of acceptable plans, s will not. Then, for PR (SR+NEC) and SEP, the 

agent will select s at n0 and r at n3, violating DC. 

This kind of behaviour corresponds to the myopic choice model of behaviour introduced by 

Strotz. 

 

5.3.2 Sophisticated Choice (SC) 

When acting according to a sophisticated approach, the agent always makes his ex post choice 

according to his ex ante plans, and avoids violating dynamic consistency. The SC agent will avoid 

choosing inconsistently with the plan adopted at the start, by restricting the set of feasible plans. 

Besides, the sophisticated agent is committed to SEP, as his preferences over options at a future 

time are only shaped by considerations for those consequences that remain realisable at that future 

time, and abstract from earlier evaluations. He violates NEC, allowing for a disparity between how 

he evaluates outcomes abstractly considered and strategies which access those outcomes. 

Consider the behaviour predicted by this strategy in the above example. 

When at the starting choice node n0, the SC agent will anticipate that by moving Up towards 

n1 he will choose r(n3) over s(n3) in case chance takes him at node n3. Then, he will consider plan s 

as not feasible. Therefore, having dropped s, which constitutes a choice of g4, he is now confronting 
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the two plans which lead to prospects g3 and g3+, that is, r and (r+) respectively. As, by assumption, 

g3+ is preferred to g3, the agent will decide to adopt plan (r+) at the start. 

In order to see how the conditions of rational dynamic choice can offer a model of the agent’s 

behaviour in the SC case, it is necessary to consider a refinement of the reduction conditions, and 

their relation with SC. This will be done in detail in the Appendix, and applied to the decision 

problem in the example. 

From the refinement of the reduction conditions it will result that the SC agent makes choice 

as required by the SR, SEP and DC conditions; but - when he faces a potential violation of DC - he 

commits only to a restricted modified form of PR. This modification of PR is characterised by a 

rejection of the NEC condition as applicable to all possible plans available to the agent at n0. 

PR requires that the set of acceptable plans coincides with the set of acceptable prospects. 

NEC requires that the acceptable set of plans associated with any tree coincides with the 

acceptable set of normal form (NF) plans associated with the same tree. Taking any tree T – like the 

one in Figure 8 – and modifying it so that at the outset the agent can implement any plan in T with a 

single choice, one gets a tree Tn – like the one in Figure 8a - which is the normal version of T. A 

plan sn in Tn is the normal version of plan s in T. 

 

                                                                                       33/34                     $2500 

 

                                             34/100                                    1/34 

                                                                                                                     $0 

                                                                           66/100                               $0 

              

              

     sn 

                                                                         34/100                                  $2400 

        n0                                          rn 

                                                                         66/100                                  $0 

  

   r+n                               34/100                                                                    $2401 

                   

                                        66/100                                                                    $1 

 

Figure 8a – Decision tree Tn representing the normal form version of the tree in Figure 8 
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According to NEC, the acceptable set of plans in T coincides with the acceptable set of plans 

in Tn. 

SR requires that the set of acceptable plans coincides with the set of acceptable prospects if 

the decision tree is equivalent to a simple non-sequential choice among lotteries, where n0 is the 

only choice node in the tree, and all other nodes are chance nodes. According to SR, the acceptable 

set of NF plans in Tn coincides with the acceptable set of corresponding prospects. 

But plans in Tn and in T map into the same prospects, so that sn and s map into g4, rn and r 

map into g3, and r+n and r+ map into g3+. 

The SC agent violates NEC, as the acceptable set of plans in T do not coincide with the 

acceptable set of plans in Tn. In Tn plan sn - leading to prospect g4 - is in the acceptable set, while in 

T plan s is not in the acceptable set. 

However, the SC agent maintains SR, which is a rather slack condition: the acceptable sets of 

plans in Tn coincides with the acceptable sets of corresponding prospects: if g4 is acceptable, sn is 

acceptable. 

By violating NEC, the SC agent violates PR, as the set of acceptable plans in T does not 

coincide with the set of acceptable prospects. g4 is acceptable, but s is not in the set of acceptable 

plans, as acceptable plans in Tn and in T do not coincide. 

An agent who accepts the conditions SR, SEP and DC and rejects NEC provides a model for 

Hammond’s sophisticated choice and Strotz’s consistent planning. 

 

5.3.3 Resolute Choice (RC) 

The characteristic feature of the sophisticated choice strategy is that of avoiding dynamic 

inconsistency. According to McClennen, in the literature concerned with dynamic inconsistency, 

sophisticated choice is considered the only strategy which offers a solution to the problem, with the 

exception of Johnsen and Donaldson (1985)10. Resolute choice is an alternative to sophisticated 

choice in solving the problem of dynamic inconsistency. As seen above, the resolute agent resolves 

to act according to a plan judged best from an ex ante perspective, and intentionally acts on that 

resolve when the plan imposes on him ex post to make a choice he disprefers. By so choosing he 

avoids to act in a dynamically inconsistent manner. 

However, the resolute agent violates the separability condition: he does not evaluate outcomes 

at tree continuation points as he would evaluate them de novo. A disparity exists between how the 

resolute agent evaluates options ex post and how he evaluates the same options de novo. Violation 

of separability means that choice at decision nodes within the tree cannot be explained only with 
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reference to the options that the agent confronts at those points: his preferences over options at a 

future time do not abstract from earlier evaluations. 

Consider this in more detail. A more formal description is given in the Appendix. 

Sophisticated choice avoids dynamic inconsistency by making ex post choice behaviour shape 

ex ante choice of a plan. However, the condition of dynamic consistency only requires consistency 

between present and future choice, but does not specify how this choice is found, on which basis to 

determine what alternative is best at a future given point. 

Sophisticated choice gives an answer to the problem of dynamic inconsistency by specifying 

that choice at the initial node is constrained by expected choices at each following node. 

Resolute Choice adopts the opposite perspective: it makes choice of a plan judged best ex 

ante shape ex post behaviour. 

Compare the behaviour prescription of SC and RC in the decision problem given in the 

example of Figure 8. SC makes the agent choose plan (r+), even if the agent would prefer s if it 

were feasible. RC makes the agent choose s and then “intentionally choose” s(n3) when he gets to 

node n3. 

The RC agent resolves to implement the plan he originally adopted - despite this implies at 

some future node choice(s) that the agent would not have liked to make - and therefore behaves 

consistently. Besides, by moving through the tree for implementing his initial plan, the RC agent 

shows his commitment to the NEC condition, as he does not consider the difference between the 

normal and extensive form of plans. However, observing the DC condition in this way, forces the 

agent to introduce a difference in the way he values the same alternatives at a given node in the tree, 

and the way he would value them if he faced a new decision tree starting at that choice node. 

In the previous example, the RC agent ranks plan s - which requires choice of s(n3) and allows 

to get prospect g4 - over plan r - which requires choice of r(n3) and allows to get prospect g3. In case 

the agent reaches node n3, he implements his decision, and chooses s(n3), despite the fact that he 

would have chosen r(n3) over s(n3) in an outright choice between the two, if these two alternatives 

had been the only two plans of a de novo decision tree starting at n3. Therefore, in avoiding 

dynamic inconsistency, the RC agent violates the separability condition SEP. 

Violation of SEP means that the agent does not choose at a node in the decision tree by 

abstracting from choices or moves by nature which could have been available under conditions that 

do not occur at that choice node - “alternative but counterfactual choices or moves by nature”. In 

the example, in order to observe SEP, the agent should have considered as irrelevant at node n3 

what might have happened at node n1 (the probability of 66/100 of getting $0), but did not occur, 

 
10 As previously discussed, Machina (1989) formulates a model of dynamic choice behaviour alternative to SC, and substantially 
equivalent to RC. In his paper are also references of other formal antecedents of his formulation: Anand (1987), Donaldson and 
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since he is now at n3. If the agent considered that event as relevant at n3, then he would cut off that 

branch from the tree, and face only a tree starting at n3, that is, prospects g1 and g2. By violating 

SEP, the agent considers that branch as relevant, and therefore faces prospects g3 and g4 instead. 

For this agent, as Machina (1989) phrases it, “risk which is borne but not realised is gone in 

the sense of having been consumed, rather than gone in the sense of irrelevant” (page 1647). 

 

6. Other models for Sophisticated Choice 

The strategy of sophisticated choice has been previously considered in the context of dynamic 

inconsistency with changing preferences, both in the consumption model of Strotz, and in the more 

general case of Hammond’s (1976) potential addict. In that context, the sophisticated chooser has 

been described as an agent who anticipates his future choice and chooses the best option among 

those that he is ready to follow. In the context of dynamic choice under risk and uncertainty, where 

inconsistency is a problem in case preferences are non-expected utility, sophisticated choice can be 

characterised similarly. As discussed above, McClennen has offered a model of sophisticated 

behaviour in this context by modelling the strategy through dynamic choice conditions. Machina 

has discussed a strategy which represents the equivalent of sophisticated choice in the same 

dynamic context. In what follows I discuss other models of sophisticated behaviour in dynamic 

choice under risk. 

Consider the following dynamic choice decision problem, introduced by Karni and Safra 

(1989b) and discussed by Dardanoni (1990). This example shows how violation of the 

independence axiom on the part of the agent’s preferences generates a problem of dynamically 

inconsistent choice and allows also to outline the different predictions of the myopic and 

sophisticated choice models. 

 

            Up                  ½                                 Up 

1                          2                              3                              D 

        Down                  ½                             Down 

    

A                         B                           C 

 

Figure 9 – Decision tree showing the potential dynamic inconsistency of violations of the 

Independence Axiom 

 

 
Selden (1981), Machina (1981), Loomes and Sugden (1986), Yaari (1985), McClennen, (1988a,1988b,1990), which is RC itself. 
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The agent faces the outcomes A, B, C and D, which can be considered to be lotteries. Suppose 

that his preferences are such that D ≻ C but (½ B + ½ C) ≻ (½ B + ½ D), in violation of the 

independence axiom, which would imply that since D ≻ C, then (½ B + ½ D) ≻ (½ B + ½ C). 

In addition, assume also that 

A ≻ (½ B + ½ D) but (½ B + ½ C) ≻ A. 

At each decision node, the agent has to decide whether to go Up or Down. 

At the beginning of the tree, the agent has three possible courses of action to take: 

 Up at the first node, and Up at the second, which implies lottery (½ B + ½ D) 

 Up at the first node, and Down at the second, which implies lottery (½ B + ½ C) 

 Down at the first node, which implies lottery A. 

At the second decision node, the agent faces two courses of action: going Up, which implies 

lottery D, and going Down, which implies lottery C. 

According to the agent’s preferences, at the beginning of the tree, the best action to take 

would be to go Up at the first decision node, and Down at the second. However, at the second 

decision node, the best action is Up. Therefore, the optimal continuation at the second decision 

node does not coincide with the continuation of the optimal course of action at the initial decision 

node. There is a potential for dynamic inconsistent choice, which is a consequence of the violation 

of independence. 

An agent choosing according to myopic choice, will incur in dynamically inconsistent 

behaviour. He will follow at each decision node the strategy that is most preferred at that node, on 

the basis of the options which result from the continuation of the strategy, ignoring any 

inconsistency which may arise from this behaviour. The myopic agent is described by Machina 

(1989) as a “  -type” decision maker. In the above example he will choose to go Up at the first 

decision node and will plan to go Down at the second decision node, following his preferred lottery, 

(½ B + ½ C). At the second choice node, however, he will be left with the options resulting from 

the continuation of the strategy, C and D, and will choose D. The myopic agent will act differently 

from his original plan and obtain an outcome which is dispreferred. 

An agent choosing according to the equivalent of the sophisticated choice model in dynamic 

choice under certainty, will anticipate his future choice, and choose at each decision node the 

strategy which he will be able to follow, eliminating those plans which he anticipates he would not 

be able to implement. In the example, the agent “folds backwards”; he anticipates that at the second 

decision node he would choose the dispreferred lottery D, and rules out the possibility of making 

such a choice, by going for lottery A at the first decision node. 
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Karni and Safra’s model of “behavioural consistency” is a way of implementing the 

sophisticated choice approach (Machina, 1989), and represents a solution to the problem of 

dynamic inconsistency with non-linear preferences, “equivalent (...) to the ‘sophisticated’ approach 

to dynamic consistency in choices under certainty” (Dardanoni, 1990). The decision maker is 

represented by a “collection“ of agents, one at each node of the decision tree, and behaviour is 

modelled so to represent the subgame perfect equilibrium (Selten, 1975) of the game among the 

agents representing the decision maker at the different decision nodes. 

In the above example, Karni and Safra consider “unreasonable“ to suppose that the agent 

would choose the course of action (Up, Down) at the beginning of the tree, being aware of his 

preferences at the second decision node, and suggest as more “plausible“ that he will reject that plan 

as “self-deceiving“. The reasonable choice remains Down at the first decision node. This is 

achieved by backward induction. 

The course of action of going Down at the first decision node is the unique subgame perfect 

equilibrium of the game between two players situated at the first and the second decision nodes. 

The behaviour which represents the subgame perfect equilibrium of the game among the agents at 

the different nodes, is consistent, and the course of action it generates is behaviourally consistent. 

The notion of Nash equilibrium as a solution to the choice of an optimal consumption plan 

when tastes are endogenously changing had been already proposed by Peleg and Yaari (1973). As 

discussed previously in the chapter, references of similar approaches and their applications to the 

problem of inconsistent dynamic choice under risk are found in Machina (1989). He defines the 

dynamically consistent non-expected utility agents, who adopt a backward induction for 

determining the optimal strategy in a dynamic decision problem, as -type decision makers11. 

 

Karni and Safra (1989b) analyse ascending-bid auctions with non-expected utility 

preferences, and replace dynamic consistency with the model of behavioural consistency, 

maintaining consequentialism and reduction of compound lotteries. Behavioural consistency is 

considered also in Karni and Safra (1990) as a necessary assumption when preferences are non-

expected utility to avoid dynamic inconsistent choices. In Karni and Safra (1990) behavioural 

consistency is applied to the analysis of optimal stopping rules. 

 

The model of dynamic choice considered, which will be referred to as sophisticated choice, 

resolves the problem of inconsistency. However, it may give rise to “undesirable“ behaviour. 

Machina (1989) argues that the sophisticated approach may generate different choices in decision 

 
11 Machina does not use directly the term sophisticated choice for this kind of approach. 
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trees which are strategically equivalent, with a consequent non-indifference between these trees; 

and may exhibit aversion to costless information (pages 1654-5)12. 

Dardanoni (1990) gives an example of how the sophisticated approach can lead to a choice of 

‘dominated’ strategies. In the previous example, sophisticated consistent behaviour was leading to 

an outcome dominant with respect to the myopic choice outcome according to the preferences of 

the agent at the beginning of the tree. Different results can be obtained in case a perspective of 

Pareto dominance is adopted as a criterion for strategy evaluation. Dardanoni (1990) shows that it is 

possible to construct examples, where Pareto dominance is not implied by dominance according to 

the first agent’s preferences. Furthermore, he gives an example of a game where behavioural 

consistency leads to a Pareto dominated outcome with respect to myopic choice. 

These results resemble the ones in Grout (1982), where it is shown that myopic choice can be 

dominant over sophisticated choice in a dynamic choice situation in conditions of certainty with 

changing preferences. 

Dardanoni (1990) may be considered as an extension of Grout’s result to the case of 

unchanging preferences under conditions of risk. 

 
12 Aversion to information is one of the dynamic arguments against non-expected utility. In Machina (1989) the argument concerns 
an agent who behaves according to sophisticated choice. Karni and Safra have pointed out that in game theory terms, aversion to 
information is a “pre-commitment strategy“ on the side of the fist agent against moves on the part of the later stage agents. Strategic 
use of pre-commitment allows Cubitt, Starmer and Sugden (1998a) to interpret some results they obtain in their experiment as 
sophisticated choice behaviour. 
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7. Conclusion 
In this paper the main contributions to the discussion of the problem of  inconsistency in a 

dynamic decision problem have been reviewed. 

In a context of choice under certainty the attention has been focused on the initial contribution 

by Hammond (1976, 1977), which contains many elements on which the following literature will 

develop. 

In a context of choice under risk and uncertainty the problem occurs when preference 

orderings violate Expected Utility Theory. Here the case of violation of Expected Utility through 

violation of the Independence Axiom has been considered. The problem is introduced through the 

example by Raiffa (1968), which uses the Allais paradox to show the link between violation of 

independence and dynamic inconsistency. A review of Machina (1989) follows. Particular attention 

has been given to the general example of how any violation of independence generates dynamically 

inconsistent choices, and to the application of this example to the prospects of the Allais paradox. 

This application allows to introduce the specific example of the dynamic inconsistency of non-

expected utility agents with Allais kind of preferences. In the context of these decision problems, 

the different models of choice available to the agent have been discussed, with particular attention 

to Machina’s solution to the problem of inconsistent choice and his discussion of consequentialism. 

The different arguments, conditions and strategies of choice have then been summarized and 

related through some simple decision trees. 

McClennen’s (1990) contribution to the debate has then been reviewed. First, the general 

theoretical frame of the dynamic inconsistency problem has been mentioned, as McClennen’s and 

Machina’s arguments are contributions to that debate. Then, the elements of McClennen’s analysis 

have been considered. A description of the rational dynamic choice conditions has been introduced, 

and the models of choice available to the agent - myopic, sophisticated, and resolute choice - 

discussed in the context of a dynamic decision problem, when the agent’s preferences violate 

independence. Different models of choice maintain and violate different conditions. Resolute 

Choice maintains dynamic consistency and is McClenenn’s solution to the inconsistency problem. 

To conclude, other contributions have been considered which discuss the model of 

Sophisticated Choice. 
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8. Appendix - Notation and formal definitions of McClennen’s dynamic 

choice conditions and models of choice 
8.1 Some notation and definitions 

1) The evaluation of plans 

The minimal requirement on the coherence of the ranking is made, that for any T for which a finite 

set of plans is defined, there is at least one plan that the agent does not rank below the others. 

Therefore, D(S) is not empty for any S. 

2) The evaluation of plans at subsequent nodes 

 Evaluation of truncated plans 

D(S(ni)) is defined as the set of truncated plans that the agent judges acceptable from the new 

point ni. 

 Evaluation of plan continuations 

From this perspective, the agent will have to consider which of the present plan continuations are 

continuations of members of D(S) defined at any point ni. Then, it is possible to define for any node 

ni, D(S)(ni) as the set of all plans in D(S) that the agent can still implement from ni, so that D(S)(ni) 

is the restriction of D(S) to the continuations from ni onward of plans in D(S). 

 Evaluation of truncated plans as de novo trees 

For any T define T(ni)d as the truncated tree T(ni) conceived as a full tree that starts de novo at 

node ni, and is like T(ni), except for “having no history or collateral paths”. Then, S(ni)d is the set of 

plans available to the agent in T(ni)d and D(S(ni)d) is the set of plans for T(ni)d acceptable to the 

agent. 

The different perspectives from which the agent who finds himself at a certain node ni in a tree T 

can evaluate the plans from that point are the following three. 

 D(S)(ni) concerns the evaluation made by the agent of all the possible plans available to him 

before any move by nature or by the agent himself has taken place. 

 D(S(ni)) concerns the evaluation of the alternatives available to the agent at node ni, from the 

perspective of node ni itself. 

 D(S(ni)d) concerns the evaluation of the agent in the case he is given a ‘de novo’ decision 

problem identical to the one he is considering. 
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Prospects 

For any tree T and plan s in S, gs is defined as the prospect associated with s, and GS the set of 

prospects associated with S. 

For any truncated plan s(ni) at ni, gs(ni) is defined to be the prospect associated with s(ni), and 

GS(ni) the set of prospects associated with S(ni). 

 

8.2 Dynamic choice conditions 

8.2.1 Conditions of reduction 

Simple Reduction (SR). Given T with associated S, such that each s in S requires for its 

implementation a single choice “up front” by the agent, and the set GS of prospects 

associated with those plans, then for any s in S and associated gs in GS, s is in D(S) iff gs is 

in the set of acceptable prospects D(GS). 

Plan Reduction (PR). Given T with associated S, and the set of prospects associated with 

those plans GS, then for any s in S and associated gs in GS, s is in D(S) iff gs is in D(GS). 

By “factoring” PR it is possible to show that PR adds to SR the condition that, insofar as 

evaluation is concerned, no distinction exists between plans in normal and extensive form. Given sn 

the normal form of s and Tn the normal version of T, it is possible to formulate the following 

condition: 

Normal-form/extensive form coincidence (NEC). Let T be any decision tree with associated 

S, and Tn the decision problem resulting by converting each s in S into its normal form, so 

that each s in S is mapped into sn in Sn. Then, for any s in S, s is in D(S) iff sn is in D(Sn). 

SR ensures the coincidence between the set of acceptable plans D(S) and the set D(GS) of 

the corresponding acceptable prospects. NEC ensures the coincidence between the set of 

acceptable plans D(S) associated with a tree and the set of acceptable normal form plans 

D(Sn) associated to the same tree. 

 

8.2.2 Dynamic consistency (DC) 

For any choice point ni in a decision tree T, if D(S)(ni) is non-empty and s(ni) is in 

D(S(ni)), then s(ni) is in D(S)(ni); and if s(ni) is in D(S)(ni), then s(ni) is in D(S(ni)). 

In order to reach the formulation of DC given above, two relations have to be established. 

(1) Inclusion (DC-INC). For any choice point ni in T, if D(S)(ni) is non-empty and s(ni) is 

in D(S(ni)), then there is some plan s* in D(S) such that s(ni) = s*(ni) is the plan 

continuation of s* at ni, and hence such that s(ni) = s*(ni) is in D(S(ni)). 
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Dynamic consistency can be formulated in terms of a relation between what is an 

acceptable choice to make at a node ni from the point of view of the beginning of the tree, and what 

is an acceptable choice to make at ni from the point of view of ni itself, that is, a relation between 

D(S)(ni) and D(S(ni)). First of all, it is necessary to assume that at a node ni at which the set D(S)(ni) 

is non-empty, the intersection between the two sets D(S)(ni) and D(S(ni)) is itself non-empty. If this 

does not hold, then it is possible that the agent will choose inconsistently with the plan adopted, as 

that plan is a member of D(S), and what the agent chooses at ni is supposed to be a member of 

D(S(ni)). Besides, given that this holds, it is possible that there exists at ni a plan continuation r(ni), 

which is an element of D(S(ni)), but that no plan r exists in D(S) such that r(ni) is its continuation. 

Then, by choosing r(ni) at ni, the agent will choose inconsistently with the original plan. The DC-

INC condition avoids this by assuming that there must exist some plan r in D(S) whose continuation 

at node ni is r(ni). 

(2) Exclusion (DC-EXC). For any choice point ni in T, if s(ni) is defined and is not in 

D(S(ni)), then s is not in D(S). 

So far it has been required that, if a plan continuation at point n0  is in the set of acceptable 

plans from the point of view of that node, but in the set of acceptable plans there is not a plan whose 

continuation is in the set of plans acceptable at the node from the point of view of the beginning of 

the tree, then there is a possibility for inconsistent choice. That is, plan s must be included in D(S) if 

there is a possibility for its continuation s(ni) to be chosen. 

The DC-EXC condition requires in addition that a plan s should not be in the set of 

acceptable plans D(S), if there are conditions for which its continuation s(ni) will not be chosen, 

because not in the set D(S(ni)) of plans acceptable at a node in the tree from the point of view of the 

node itself. In case this does not hold, it is possible for the agent to choose inconsistently with his 

original plan. That is, plan s must be excluded from D(S) if there is a possibility for its continuation 

s(ni) not to be chosen. 

The condition DC of dynamic consistency defined above is obtained by combining the 

above conditions of inclusion and exclusion. 

 

8.2.3 Separability (SEP) 

SEP requires the agent to choose in the truncated tree T(ni) in the same way he would 

choose in the separate tree T(ni)d corresponding to T(ni), therefore stating a connection between 

D(S(ni)) and D(S(ni)d). SEP is defined as follows: 

For any tree T and node ni in T, let T(ni)d be a separate tree that begins at node ni and 

coincides with T(ni), and let S(ni)d be the set of plans available in T(ni)d that correspond 
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one to one with the set of truncated plans S(ni) available in T(ni). Then, s(ni) is in D(S(ni)) 

iff s(ni)d is in D(S(ni)d). 

The role of SEP can be better understood by considering the following condition: 

Truncated plan reduction (TR). Let ni be any node in a decision tree T, and S(ni) be the set 

of truncated plans that can be associated with T(ni). Then s(ni) is in D(S(ni)) iff gs(ni) is in 

D(GS(ni)). 

By factoring TR, it is possible to see that TR can be derived by PR by adding the condition 

of separability SEP to it. 

Consider the distinction between the truncated tree T(ni) and the truncated tree T(ni)d, 

identical to T(ni) but conceived as a new tree starting at node ni. The condition PR will apply to 

T(ni)d as this is a whole tree. Then, s(ni)d is in D(S(ni)d) iff gs(ni)
d is in D(GS(ni)

d). This means that 

s(ni)d is in D(S(ni)d) iff gs(ni) is in D(GS(ni)), as GS(ni)
d = GS(ni). So, TR follows if one assumes in 

addition that s(ni) is in D(S(ni)) iff s(ni)d is in D(S(ni)d), which is just SEP. 

 

8.3 Different models of dynamic choice 

8.3.1 Myopic Choice (MC) 
According to MC, the agent selects at each point the strategies or strategy continuations, 

which he judges acceptable from the perspective of that point. 

In the decision tree of Figure 8 the agent who ranks g1 over g2 and g4 over g3, and follows 

all three conditions SR, NEC and SEP, will select plan s at n0 and r(n3) at node n3 and violate DC. 

According to the PR condition, which is equivalent to the conjunction of SR and NEC, 

plan s is in D(S), while plan r is not. As the prospects associated with plans s and r are respectively 

g4 and g3, and the first is preferred to the latter, g4 is in the set of acceptable prospects, while g3 is 

not, and according to PR, its associated plan s is in the set of acceptable plans, while r is not. 

Conditions SR and SEP require that r(n3) is in the set D(S(n3)), while s(n3) is not. 

According to SEP the agent will choose at decision node n3 as if he were facing a new tree starting 

from n3. For SR the plan s in the new tree is associated with prospect g2, while plan r with the 

preferred prospect g1, so that plan r will, while plan s will not, be in the set of acceptable plans, and 

will be chosen. Then, for SEP r(n3) and not s(n3) will be in the set of acceptable plans at n3. 

 

8.3.2 Sophisticated Choice (SC) 

Consider the following definition of sophisticated choice: 

A SC agent regards a plan s as not feasible, and then as not in D(S), if he projects that at 

some point n for which s(ni) is defined, s(ni) is not in D(S(ni)). 
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In terms of the dynamic inconsistency problem, the implication of this definition is that the 

SC agent will avoid violation of DC by restricting the set of feasible plans. 

In order to see how the rational dynamic choice conditions can offer a model of SC 

consider the following refinement of the reduction conditions and their relation with SC. 

Sophisticated choice and reduction - weakening of the PR condition 

Recall the condition of plan reduction PR which has been defined above. In the following, 

PR is going to be weakened. The restricted version of plan reduction which will be considered, 

corresponds to the following restricted conception of feasibility: 

Separable feasibility (SF). A plan is feasible iff s(ni)d is in D(S(ni)d) for every choice point 

ni, ni 0, for which s is defined. 

Restricted plan reduction (RPR). For any plan s, such that s satisfies SF, s is in D(S) iff gs 

is in D(GS). 

RPR requires that the mapping of acceptable plans in the decision tree T into acceptable 

plans in its normal form Tn, does not apply to all possible plans in T, but only to the separably 

feasible plans. That is, in its restricted version, PR holds only with respect to the evaluation of the 

plans which are feasible according to SF. But then, what characterises the change in a commitment 

to PR here is a rejection of NEC as applicable to all possible plans at n0, that is, the emergence of a 

disparity between the evaluation of plans at the moment of decision, and the evaluation of plans in a 

once-and-for-all choice, so that whether plans are in extensive or normal form makes a difference. 

Given SF, NEC can be understood to apply only to sets of plans that are separably feasible, not to 

all plans at n0. 

Therefore, an SC agent makes choice as required by SR, SEP and DC; but when he faces a 

potential violation of DC, he commits to PR only in its restricted modified form of RPR. This 

modification of PR is characterised by a rejection of NEC as applicable to all possible plans 

available to the agent at n0. The SC agent accepts the conditions SR, SEP and RPR. 

 

8.3.3 Resolute Choice (RC) 

In formal terms, dynamic consistency only requires that the (non-empty) restriction of  

D(S) to ni, that is, D(S)(ni), coincides with D(S(ni)). 

SC requires that D(S)(ni) has to be constrained to D(S(ni)) for any ni at which D(S)(ni) is 

non-empty, and that D(S(ni)) has to be constrained to D(S(ni)d. That is, what the agent expects to 

choose is conditioned by SR, SEP, and his preferences with respect to the prospects associated at 

each new tree corresponding to each node ni. 

RC requires to apply PR to n0 in order to determine D(S), and then to constrain D(S(ni)) to 

D(S)(ni) for any ni for which D(S)(ni) is non-empty. 
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