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THE BIGGER PICTURE Deep learning models must be trained with large datasets, which often requires
pooling data from different sites and sources. In research fields dealing with sensitive information subject
to data regulations, such as biomedical research, data pooling can generate concerns about data access
and sharing across institutions, which can affect performance, energy consumption, privacy, and security.
Federated learning is a cooperative learning paradigm that addresses such concerns by sharing models
instead of data across different institutions.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Driven by the deep learning (DL) revolution, artificial intelligence (AI) has become a fundamental tool for many
biomedical tasks, including analyzing and classifying diagnostic images. Imaging, however, is not the only
source of information. Tabular data, such as personal and genomic data and blood test results, are routinely
collected but rarely considered in DL pipelines. Nevertheless, DL requires large datasets that often must be
pooled from different institutions, raising non-trivial privacy concerns. Federated learning (FL) is a coopera-
tive learning paradigm that aims to address these issues by moving models instead of data across different
institutions. Here, we present a federated multi-input architecture using images and tabular data as a meth-
odology to enhance model performance while preserving data privacy. We evaluated it on two showcases:
the prognosis of COVID-19 and patients’ stratification in Alzheimer’s disease, providing evidence of
enhanced accuracy and F1 scores against single-input models and improved generalizability against non-
federated models.
INTRODUCTION

Artificial intelligence techniques, such as machine learning (ML)

and deep learning (DL), are increasingly exploited as tools to

address challenges in various research fields, including the

biomedical one. One of the strengths of ML models is their capa-

bility to capture hidden and complex relationships inmulti-dimen-

sional data. They have been explored for several tasks, including

disease classification,1–3 human body segmentation,4–7 the defi-

nition of diagnostic scores,8 drug discovery,9,10 and data

augmentation through the generation of synthetic samples.11–14

While most of these examples concern medical images, such
This is an open access article und
as magnetic resonance imaging (MRI), X-rays, or other types of

body scans, images are not the only type of data available in hos-

pitals and clinical laboratories, which routinely collect various

diagnostic data: time series coming from electrocardiograms or

devices for monitoring vital signs, video from cameras recording

patients’ movements and positions overnight or during a rehabil-

itation therapy, and text or tabular data coming from surveys and

administrative and clinical records. This constitutes a rich and

heterogeneous data source that is used by clinicians to elaborate

on diagnosis and prognosis.

Although these data are different, they have one common

feature: they are critical data for privacy and security and must
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Figure 1. FL settings

(A) HFL, with collaborating institutions sharing the

same features space but different samples. In this

setting, only one model is being trained locally by

each institution that is also shared and aggregated.

(B) VFL, with collaborating institutions having

different features for the same samples. In this case,

each Ci has its model that flows into a unified 2nd-

level model shared across the federation.
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be treated appropriately. Examples of data regulations explicitly

created for managing the access and use of health data are the

Health Insurance Portability and Accountability Act (HIPAA)15 in

the USA and the Protection of Personal Information Act

(POPIA).16 While protecting sensitive information is a critical

mission from a governance perspective, from an artificial intelli-

gence (AI) perspective, introducing all these regulations limits

data access.

Computing paradigms like federated learning (FL)17 can help

address this challenge.18 In an FL scenario, multiple institutions

Ci holding proprietary and critical data collaborate to train a

global AI model M. The crucial aspect of the FL is that data

belonging to a specific Ci never exit from the IT facility of its

owner. Instead of sharing or exchanging data, different institu-

tions iteratively aggregate local models in a single global model

M that approximates the one that could be achieved by gath-

ering all data in a single data lake.

FL is generally categorized along two main approaches: hori-

zontal (HFL) and vertical (VFL) FL.19 In both cases, multiple insti-

tutions Ci holding proprietary data are willing to train a shared

model while never sharing their sensitive information.

The main difference between HFL and VFL resides in the

assumption of how data are split among Ci. In the HFL, the basic

assumption is that each Ci taking part in the federation has the

same feature space (i.e., data format, like MRIs) but different

sample instances (i.e., different patients). Conversely, each Ci

contributes to the federation in the VFL scenario leveraging

different data with different feature spaces while the sample in-

stances are the same. An example of HFL and VFL settings

can be found in Figure 1.

In this work, we propose a multi-input model that can handle

different types of data, namely images and tabular text, trained

by following the orchestration paradigm of the HFL schema.

Multi-input FL tasks are usually implemented as VFL by design.

In this case, multiple models are specifically tailored to the

different data sources as shown in Figure 1.

In this context, the proposed solution solves the trade-off be-

tween using diverse data to train input-specificmodels (VFL) and

gathering homogeneous data from different populations (HFL),

better reflecting the needs encountered in multi-centric studies.

In addition, we demonstrate that our approach is helpful for

medical image classification tasks and provide evidence of

how our federated multi-input model can outperform the typical
2 Patterns 4, 100856, November 10, 2023
single-input models. For this, we focused

on two case studies addressing core is-

sues in the field, i.e., COVID-19 prognosis

and classification of patients with Alz-

heimer’s disease, relying on the COVID-
19 chest X-ray data (CXR)20 (2D data) and the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) studies21 (3D data),

respectively.

The scientific contributions of this work are the following.

d We propose an approach to translate FLmulti-input classi-

fication tasks from a complex VFL to a more straightfor-

ward HFL orchestration.

d We demonstrate how the proposed approach can effec-

tively capture knowledge from multiple data sources,

even when exploiting standard (i.e., not custom) models.

In summary, this work proposes an example of a federated

multi-input model for classification orchestrated following an

HFL schema. The proposed framework is open and flexible: it

could be used with different neural network architectures and

training algorithms.

Notice that outperforming the state of the art in the classifica-

tion tasks was not within the scope of this contribution. We are

aware that choosing the best model for the problem at hand

would lead to better performance in terms of the classification

scores. We leave this issue for further investigation.

In line with open-science initiatives, to help reproduce our re-

sults and facilitate the customization of the model, we provide

the code and instructions on how to use it in the experimental

procedures.

FL in the biomedical field
In recent years, the evolution of ML methods has been domi-

nated by the need to improve the performance of models up to

levels that can be used for practical purposes. The introduction

of DL has been a real revolution for many tasks, especially for im-

age and text analysis. Unfortunately, DL is data hungry: large-

size DL models require more and more data to be trained, and

pooling data are often needed to build an appropriate dataset.

Pooling increases the model generalizability,22,23 i.e., the ability

of a model to deal with unseen data reliably.24 Model generaliz-

ability has been extensively studied in ML literature.25–29 The

studies show how higher exposure to data can increase general-

izability, hence the need for real-life federations.25–29 FL provides

a viable solution by enabling the virtual pooling of different data-

sets while maintaining data privacy and allowing the model to

learn features appearing in examples from different data owners.
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An example of an HFL setting could be represented by a set of

institutions, like hospitals, aiming to train a shared model (i.e., for

brain tumor segmentation) by leveraging MRI scans. In this sce-

nario, the assumption is that each Ci would be able to provide

MRI scans of their patients. However, in a real-world scenario,

patients differ from hospital to hospital, leading to a non-i.i.d.

data distribution known for degrading FL performance.30

Despite being relatively new, FL has already demonstrated its

value in addressing the generalizability challenge.31,32 Due to

the high sensitivity of the data, many other works have been

performed to explore FL in the biomedical field.23,33,34 While

the effectiveness of FL in increasing the model generalizability

has already been proven, finding the best way to aggregate

the contributions from all the data owners remains an open

challenge.

Multi-input classification
Using multiple input sources to perform a classification task is a

well-known idea in literature.35 The method is referred to with

different names like multi-modal,36 multi-view,37 multi-chan-

nel,38 or mixed-data ML.39 For the sake of clarity, we are going

to refer to this topic using the multi-input label. One of the driving

factors beyond our adoption of multi-input AI approaches is data

availability.

Several multi-modal datasets can be found publicly.40–43 In

the biomedical field, coupling different types of images is a com-

mon practice. Classification of breast tumor44 and Alzheimer’s

disease (AD)45 and the fusion of learning strategies based on

different views of the same image46 are some examples.

In other cases, the fusion involves different data types, like

time series,47 or features extracted from different sources.48,49

Multi-input models have also been tested in contexts other

than the biomedical field. For example, a recent work50 proposes

MI-DCNN, a complete end-to-endmulti-input convolutional neu-

ral network that can take full advantage of multi-modal physio-

logical signals and automatically complete the process from

feature extraction to emotion classification simultaneously.

Regardless of the data type being considered, according to

Sleeman et al.,36 co-training and co-regularization are the two

possible settings of a multi-input-based approach. The co-

training refers to those problems in which the information from

one source can help to estimate missing details (like labels) on

the other, as happens in semi-supervised learning.51,52 Concern-

ing FL, the co-training setting can be easily mapped into the VFL

scenario. In the co-regularization case, the various input sources

are considered contributors for deriving a common descriptor for

representing the instances of the problem being addressed. In

this last case, the fusion occurs within the classification model it-

self after each input has been encoded independently.53 For this

work, we relied on the co-training setting to train models in an

HFL architecture.

Federated multi-input
The use of multi-input models in an FL setting to enhance gener-

alizability is still narrowly explored in literature. Most related

works propose the multi-input approach to support a VFL

setting. Huang et al.54 describe a scenario where M views are

distributed across M devices. The same considerations apply

to other recent works.55–57
In the biomedical environment, Che et al.58 propose an

approach that can work in both HFL and VFL settings. However,

the main focus is pipeline orchestration and data leakage pre-

vention, not generalization. Furthermore, the examples provided

refer to preserving the privacy of sequential data, like real-world

keyboard data, collected from the BiAffect study.59 Qayyum

et al.57 propose an FL approach where the clinical institutions

are organized into two clusters depending on what type of

data they own: X-ray data cluster and ultrasound data cluster.

Mahbub Ul and Rahim60 present an FL multi-input approach

working on the Internet of Medical Things (IoMT). However, as

claimed by the authors, the main focus is to study the heteroge-

neity of the hardware equipment used to simulate the different

clients (medical institutions) for performing evaluations on

time-series models. Regarding the tasks, a recent work61 fo-

cuses on classifying signals from Internet-of-Things (IoT) devices

using autoencoders to extract common representations from the

different data sources. However, this contribution is not directly

linked to the biomedical field. Bernecker et al.62 tackle the liver

segmentation problem by proposing a multi-input normalization

technique, which tries to encode computed tomography (CT)

and MRI scans into a common representation.

This work proposes a multi-input model to enhance classifica-

tion tasks in an HFL setting. The ultimate ambition is not to pro-

vide a specificmodel architecture but to introduce amethodology

that combines multiple input sources to improve classification

performance for an HFL pipeline. The model itself is meant to

be a proof of concept that is open and flexible such that it can

be easily customized for other tasks in different domains. We

demonstrate the feasibility of our approach by evaluating the

model on two classification tasks: prognosis of COVID-1920 dis-

ease (2D data) and patient classification in AD, relying on the

ADNI initiative21 (3D data). While our final goal is not to improve

the state-of-the-art performance for the two specific problems,

it is essential to highlight how the two considered challenges

are open andmight benefit from the proposed approach.63 Alter-

native routes to solve the COVID-19 classification task have been

explored by considering different feature extraction tech-

niques.64,65 Similar considerations apply to the classification of

AD. Many works demonstrate multiple efforts in addressing the

challenge by using transfer-learning,66 multi-modal,67 and multi-

input techniques.68–70 However, these are still hot topics, and ex-

ploiting FL to preserve data privacy while keeping competitive

performance would mark a step forward in the field.

In summary, the few works available in the literature that

implement multi-input models in federated contexts either refer

directly to the VFL setting, are unrelated to the biomedical envi-

ronment, or do not address the classification task. This article

addresses the problem of having a multi-input classification

model in an HFL setting in the biomedical field.

RESULTS

In this work, we propose leveraging different data types, i.e., im-

ages and tabular data, to improve testing accuracy and the F1

score of federated models. Results show how the federated

version of the multi-input model can outperform baseline sin-

gle-input models and increase overall generalizability compared

to equivalent centralized (non-federated) settings.
Patterns 4, 100856, November 10, 2023 3



Table 1. Accuracy in the isolated setting with COVID dataset

Input

COVID-19 hospital

A B C D E F

Only images 0:683±0:06 0:524±0:06 0:619±0:09 0:550±0:13 0:552±0:06 0:524±0:04

Only tabular 0:817±0:03 0:838±0:04* 0:677±0:05 0:900±0:03* 0:867±0:06 0:786±0:02*

Multi-input 0:883±0:03* 0:733±0:04 0:768±0:06* 0:743±0:09 0:876±0:07* 0:750±0:02

Results (mean ± standard deviation) obtainedwith 5-fold cross-validation (centralized) and five averaged runs (federated). For each experiment setting

(column), we indicated the best-performing model with an asterisk.
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We experimentally evaluated our approach on two different

datasets: the CoViD-CXR dataset20 (2D) and the ADNI dataset21

(3D). The first is publicly available, while the second can be ac-

cessed under soft licensing conditions.

For both case studies, we ran several experiments involving

training multiple models in multiple settings. More precisely,

we evaluated the performance by comparing the classification

results obtained by three model architectures, depending on

three types of input.

d Image-only input, using a ResNet-1871 model.

d Tabular-only input, leveraging a multi-layer perceptron

(MLP)72 model.

d Multi-input, using a concatenation layer to fuse the outputs

of the previous twomodels (image only and tabular only) as

shown in Figure 3.

In the image-only and multi-input cases, we used the 2D

version of ResNet-18 for the experiments based on the CoViD-

19 CXR dataset20 and the 3D version for experiments on the

ADNI dataset.21

Experiments were conducted to analyze the DL model

behavior in the following settings.

d Isolated: to simulate no collaboration among institutions.

Models were trained independently and tested using

data belonging to every single organization. In this sce-

nario, we have three models (one for each input type) for

each of the six hospitals of the COVID-19 dataset20 and

each ADNI (ADNI1, ADNI2, and ADNI3)21 study. Results

are shown in Tables 1 and 2. Moreover, isolated models

have also been tested on the data of other organizations

in order to discuss generalizability properties. Results are

shown in Figure 2.

d Centralized: to simulate collaboration among institutions

without privacy constraints. Models were trained on a uni-

fied dataset by forcing all data to be hosted in the same

computing facility. Results are shown in Table 3.

d Federated: to simulate the collaboration among institutions

subject to privacy constraints. Models were trained

following an HFL orchestration schema. Results are shown

in Table 3.
Table 2. Accuracy in the isolated setting with ADNI dataset

Input ADNI1 ADNI2 ADNI3

Only images 0:521±0:02 0:717± 0:06* 0:756± 0:02

Only tabular 0:725±0:00 0:615± 0:03 0:881± 0:03*

Multi-input 0:871±0:07* 0:605± 0:05 0:808± 0:08

4 Patterns 4, 100856, November 10, 2023
d Isolated and centralized experiments: the datasets were

split into three subsets for training, validation, and testing

using 80%, 10%, and 10% quotas, respectively. We fixed

the test set and used the train and validation sets to train

the models on five stratified folds in each centralized

experiment. The reported accuracy values were obtained

by evaluating the best model with the best validation accu-

racy on the test set.

d Federated experiments: the datasets were partitioned only

in training and testing sets for two reasons. Firstly, since

each Ci would perform only one iteration before sending

themodel back to the aggregator, running a cross-validation

stepwould not bring any benefits, as there would not be any

iterative process to optimize. Then, the tool used for running

the federated experiments would not allow a 5-fold cross-

validation phase without massive intervention to the low-

level code. To have comparable results, we preserved the

percentage of training data by splitting the dataset into train

(80%of theentiredataset) and test (the remaining20%)sets,

respectively. Further considerations are shared in the dis-

cussion subsection. We ran the federated experiments five

times to ensure that the performance would not depend on

a specific data split, and we averaged the results.
DISCUSSION

This article proposes leveraging multiple inputs, i.e., images and

tabular datasets, to improve testing accuracy and the F1 score of

models trained with HFL architecture. To assess the quality of

this approach, we structured the investigation in three steps:

first, we assessed the generalizability of each model in the iso-

lated setting; second, we evaluated how the performance would

improve when pooling the data together in a centralized setting,

and third, we repeated the evaluation in a federated setting.

For the first step, we evaluated eachmodel trained on the data

of a specific COVID-19 hospital (or ADNI partition) on a testing

set from each of the other COVID-19 hospitals (or ADNI parti-

tions). Results are reported in Figure 2. The diagonals show the

accuracy obtained when testing a model with data exhibiting

the same training set distribution. Figure 2 shows how isolated

models do not generalize well on new data. Indeed, when tested

on data from other institutions, the accuracy drops significantly

compared with when tested on local proprietary data. One

exception is represented by the ADNI evaluation on tabular

data, where the highest performance is obtained when testing

the model using ADNI3. This behavior is due to the high-class

imbalance of ADNI3, as reported in Table 4.



Figure 2. Accuracy values obtained by testing the isolated models on data belonging to other institutions
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For the second step, we evaluated models in a centralized

setting, gathering all samples in a single data lake to simulate

collaboration among institutions without privacy constraints. As

expected, pooling data from several institutions can improve the

generalizability of the models. Table 3 shows how the centralized

models generally perform better than the isolated models (Fig-

ure 2). This aspect can be appreciated by comparing the central-

ized accuracy with all the off-diagonal values of the two tables. As

previously noted, ADNI3 class imbalance represents an exception

to this consideration, as confirmed by looking at the F1 score ob-

tained by the three models trained on ADNI3 in Tables 5 and 6.

Overall, improvements in model generalizability are confirmed

by looking at the F1-score values in the isolated and centralized

settings, reported in Tables 5, 6 and 7, respectively. Similarly to

the accuracy values, the same conclusions can be drawn for the

F1 scores.

For the third step, we compared the federated and the central-

ized settings. Notice that the centralized setting is an upper

bound for the federated setting in terms of model performance
since it can simulate the federated one (even if this is not usually

how it is used). However, in many real-life scenarios, the central-

ized setting is unrealistic due to data regulations preventing

different institutions from sharing data. For this reason, it is

fundamental that FL performance remains aligned with central-

ized performance. Sheller et al.34 demonstrated that FL ap-

proaches can enhance themodel’s generalizability by leveraging

multiple datasets, but they suffer from slower convergence and

slightly inferior performance than centralized solutions. For the

COVID-19 dataset, the single-input results presented in Table 3

confirm this behavior. However, our proposed FL approach us-

ing multi-input models outperforms the federated single-input

versions and remains aligned with the centralized counterpart.

For the ADNI dataset, all the federated models outperform the

centralized counterparts. While counterintuitive, this can be ex-

plained by looking at the different data partitions between the

two experimental settings. Indeed, the centralized values are ob-

tained by querying the best validation model on the test set, us-

ing an 80%/10%/10% train/validation/test split instead of the
Patterns 4, 100856, November 10, 2023 5



Table 3. Accuracy in centralized and federated setting

Input

COVID-19 CXR ADNI

Centralized Federated Centralized Federated

Only images 0:731±0:06 0:558±0:02 0:777± 0:01 0:855± 0:04

Only tabular 0:740±0:03* 0:696±0:02 0:638± 0:02 0:715± 0:03

Multi-input 0:733±0:01 0:734±0:01* 0:811± 0:03* 0:866± 0:02*

Results (mean ± standard deviation) obtained with 5-fold cross-validation

(centralized) and five averaged runs (federated). For each experiment

setting (column), we indicated the best-performing model with an asterisk.
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80%/20% train/test split used for the federated setting without

cross-validation. Validation sets are usually helpful in identifying

and selecting the best-performing model among various epochs

of the training process. For our federated experiments, since

each collaborator Ci would perform only one training epoch

before sending the model back to the aggregator, running a

cross-validation step would not bring any benefits, as there

would not be any iterative process to optimize or best model

to select. Nonetheless, running multiple-fold cross-validation in

a federated setting would have required a massive refactoring

of the selected tool, as this feature is unavailable. To ease the re-

sults’ reproducibility, we fixed the number of epochs per aggre-

gation round to one epoch. As described in Casella et al.,73 fine-

tuning epochs per roundmight slightly improve the convergence

speed and the model’s performance.

In real-life scenarios, hospitals willing to train an FL model

would instead use common (ideally public) external sources to

test their model instead of sharing a subset of their proprietary

datasets. By choosing the 80%/20% training/test split, we could

simulate a more realistic scenario by keeping the testing set

external to the training process.
Conclusions
This article proposes a new approach for addressing classifica-

tion tasks for the multi-centric studies through privacy-preser-

ving ML models. The method introduces an HFL setting with

the advantage of leveraging multiple input sources. The basic

assumption for the proposed approach is that each Ci taking

part in the federation has both data types, images and tabular

data, locally available and accessible. In particular, we tested

our method on two classification tasks: prognosis of COVID-19

disease from CXR (CoViD-CXR dataset20) and detection of AD

from neuroimaging data (ADNI dataset21). We demonstrated

the goodness of our approach by running several tests based

on 2D and 3D images, respectively, combined with tabular
Table 4. Main demographic and clinical data for the three ADNI stu

ADNI Samples AD (%) CN (%) Age (avg ±

1 411 184 (44.77) 227 (55.23) 75.58 ± 6

2 288 143 (49.65) 145 (50.35) 73.69 ± 7

3 262 51 (19.47) 211 (80.53) 72.01 ± 6

Age is reported asmean ± standard deviation values and gender as the num

or 2, respectively). avg, average; SD, standard deviation.
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data and by comparing the results obtained by the multi-input

model with the only-images and only-tabular models. Results

show that enabling multi-input architectures in the FL framework

improves the performance regarding both accuracy and F1

score concerning non-federated models while complying with

data protection practices.
Limitations and future work
Themain goal of this work was to demonstrate the feasibility and

effectiveness of horizontal federated multi-input ML models in

the biomedical field. Hence, the centralized setting is not aggres-

sively optimized, so the achieved model performance does not

exceed the state of the art. However, the federated setting en-

ables the virtual pooling of different and unshared data sources

frommultiple institutions, overcoming the ‘‘little data’’ issuewhile

improving the generalization capability of the resulting model

against any model trained using only data in a single institution.

The proposed approach does not consider the problem of

missing views, which also affects clinical data processing. How-

ever, we are confident that the openness and flexibility of the

proposed framework will foster research in the field, marking a

step in data sharing and distributed processing.

Another limitation of the current study is the lack of an interme-

diate ‘‘validated federation’’ setting. This scenario would reuse

the same 5-fold data split used to run the centralized experi-

ments. Despite not being as realistic as the federated scenario

presented here, it would add better comparable results between

the centralized and federated settings and provide additional in-

dicators to the current study.

Among the main future directions are the following.

d To propose a VFL setting where each client has a different

type of input source and DL model. In particular, each

participant in a federation can have various data types,

such as images, tabular features, or text reports. In this

scenario, models trained at different institutions from

different data types should be somehow aggregated at

the end of each round. Preliminary results show that aggre-

gating only the identical architectural layers of different

networks (particularly the classifier of two different convo-

lutional neural networks [CNNs]) leads to a performance

comparable to the typical case in which all model parame-

ters are aggregated. Despite this new aggregation tech-

nique presenting the typical limitations of FL (i.e., layers

must be identical to be aggregated), further investigation

is required to analyze the weighting of the input features

of the classifier.
dy cohorts

SD)

Gender APOE4

F M Type 0 Type 1 Type 2

.21 198 213 229 143 39

.35 130 158 149 107 32

.44 136 126 169 75 18

ber of males/females, while APOE4 refers to the number of ε4 alleles (0, 1,



Table 5. F1 score in the isolated setting with COVID data

Input

COVID-19 hospital

A B C D E F

Only images 0:808±0:03 0:364±0:31 0:616± 0:13 0:147± 0:23 0:314± 0:32 0:260± 0:33

Only tabular 0:893±0:01 0:800±0:40* 0:686± 0:08 0:943± 0:08* 0:848± 0:11 0:793± 0:05*

Multi-input 0:978±0:04* 0:200±0:40 0:826± 0:11* 0:600± 0:49 1:00± 0:00* 0:687± 0:11

Results (mean ± standard deviation) obtainedwith 5-fold cross-validation (centralized) and five averaged runs (federated). For each experiment setting

(column), we indicated the best-performing model with an asterisk.
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d To explore the ‘‘validated federation’’ scenario described

above for an additional perspective and to try to answer

the question does aggregating the best-validated models

lead to a better global model?

d To expand the hyper-parameter tuning phase, starting with

parameters specifically related to training a federated

model compared with a centralized one. In particular, we

will test our proposed architecture with more than one

epoch per round, enabling us to select the best model to

simulate cross-validation and, ideally, achieve perfor-

mance gain.
Table 7. F1 score in centralized and federated setting

Input

CoViD-19 CXR ADNI

Centralized Federated Centralized Federated
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for information and resources used in this article should be ad-

dressed to Walter Riviera (walter.riviera@univr.it).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The CoViD-CXR20 and ADNI datasets21 are publicly available. The code used

for experimental evaluation is publicly available.74

Implementation details

All the experiments for COVID-19 prognosis were performed at the HPC4AI75

facility of the University of Torino (node: 8 cores per CPU, AMD EPYC-IPBP, 1

NVIDIA A40 GPU). For FL experiments, we adopted OpenFL,76 the new frame-

work for FL developed by the Intel Internet of Things Group (IOTG) and Intel

Labs. FL experiments were executed on a distributed environment encom-

passing six collaborators (clients in the federation that train a global model

on a local dataset) and one aggregator (aggregating the model updates

received from collaborators), each running on the previously described node.

For the ADNI case study, all the experiments were performed on a 4-node

cluster of dual-socket machines equipped with Intel Xeon Platinum 8380

CPU @ 2.30 GHz, with 40 physical cores per socket.

Architecture

Figure 3 displays the architecture of a multi-input NN. The general idea is to

aggregate two different NNs trained on the same dataset using different

data types. In particular, the ultimate goal is to aggregate a CNN77 and an

MLP,72 respectively trained using as input features a set of images and a

tabular data frame. CNN and MLP are used as feature extractors. We used
ble 6. F1 score in the isolated setting with ADNI data

ut ADNI1 ADNI2 ADNI3

ly images 0:289±0:29 0:667±0:08* 0:081±0:13

ly tabular 0:684±0:02 0:542±0:05 0:173±0:12*

lti-input 0:703±0:03* 0:463±0:13 0:058±0:07
ResNet-1871 as a reference model for the CNN and defined a custom MLP

consisting of 3 hidden layers.

The architectures of both models are available on the project repository.74

Evaluation metric: for each experiment, we returned the test accuracy value

definedas the ratiobetweencorrectguessesamongallguesses;moreprecisely:

accuracy =
TP+TN

TP+TN+FP+FN
(Equation 1)

where T and F stand for true and false and P or N refers to positive or negative.

However, for biomedical applications, accuracy might not be enough to un-

derstand the goodness of a classifier. For a more in-depth analysis, we also

calculated the F1 score for each experiment, which takes into account data

unbalance. Thismetric is defined as the harmonicmean of precision and recall.

Specifically, the metrics are defined as follows:

precision =
TP

TP+FP
(Equation 2)

recall =
TP

TP+FN
(Equation 3)

F1 � score = 2 � precision � recall

precision+recall
(Equation 4)

Model: models were trained by minimizing the binary cross-entropy loss

with mini-batch gradient descent using the Adam optimizer with learning

rate 1e � 4 and OneCycleLR as scheduler. The local batch size was 8.

The number of training epochs and FL rounds on the COVID-19 classifica-

tion task was set to 100, while the Alzheimer’s detection task was set

to 200.

Datasets

We tested the multi-input NN on two tasks.

(1)Prognosis of COVID-19 disease from CXR, using the CoViD-CXR

dataset.20

(2)Detection of AD from neuroimaging data, using the ADNI dataset.21

The federated setting emulates a realistic medical non-i.i.d. scenario,

where each Ci is hosted on an independent computing node using its data-

set, contrasting with standard procedures where non-i.i.d distributions are
Only

images

0:515± 0:30 0:197±0:14 0:662± 0:03 0:735± 0:05

Only

tabular

0:562± 0:28* 0:623±0:01 0:379± 0:02 0:573± 0:04

Multi-input 0:520± 0:30 0:636±0:05* 0:742± 0:03* 0:745± 0:04*

Results (mean ± standard deviation) obtained with 5-fold cross-validation

(centralized) and five averaged runs (federated). For each experiment

setting (column), we indicated the best-performingmodel with an asterisk.
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Figure 3. A general FL infrastructure with

multi-input neural network models

Table 8. Statistics of the CoViD-19 CXR dataset with class-

balance percentages

Hospital Samples Positives (%) Negatives (%)

A 120 85 (70.83) 35 (29.17)

B 104 59 (56.73) 45 (43.27)

C 151 81 (53.64) 70 (46.36)

D 139 76 (54.68) 63 (45.32)

E 101 55 (54.46) 46 (45.54)

F 974 546(56.06) 428 (43.94)
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often simulated by splitting a single source dataset hosted in a single

machine.

COVID-19 dataset

This task relied on real-world data of CXR and clinical parameters, divided into

training and testing sets. Data were collected from six hospitals in emergency

conditions during the first outbreak in Northern Italy in collaboration with Cen-

tro Diagnostico Italiano and Bracco Imaging. Due to the different data collec-

tion procedures, the distribution of image features varies across hospitals,

leading to the well-known problem of non-i.i.d.ness.30,78 The CoViD-19 CXR

dataset consists of 1,589 patients. Each of them is provided with a CXR and

some clinical parameters (namely age, sex, positivity at admission, tempera-

ture, days of fever, cough, difficulty in breathing, white blood cell [WBC], red

blood cell [RBC], C-reactive protein [CRP], glucose, lactate dehydrogenase

[LDH], INR, PaO2, PaCO2, pH, high blood pressure, diabetes, dementia,

BPCO, cancer, CKD, and respiratory failure). The dataset details are summa-

rized in Table 8. Additional information about this dataset can be found at

https://aiforcovid.radiomica.it/.

This dataset exhibits a clear quantity skew distribution because, as shown in

Table 8, more than 60% of the data are stored in hospital F. However, recent

works30,78 in FL literature show that quantity skew does not degrade the

model’s performance because most FL algorithms, such as FedAvg,17 adopt

a weighted averaging of the parameters. As a result, the distribution of sam-

ples (except for the quantity) is uniform among parties, which is the easiest

setting. All the images, provided in JPEG format, were rescaled to 256 3

256. As for data augmentation, we performed random horizontal flips and

random crops with a probability of 50%.

ADNI dataset

Data used in the preparation of this article were obtained from the ADNI

database (https://adni.loni.usc.edu). The ADNI dataset represents an

ongoing, longitudinal, and multicenter study, the main landmark repository

currently available for AD. Beginning in October 2004, ADNI has the pri-

mary goal of defining outcome measures to be used in clinical trials for as-

sessing the treatment effectiveness in patients with AD. However, its scope

has been further widened over the years, pointing to identifying early-diag-

nosis biomarkers in the pre-dementia stage. A comprehensive set of clin-

ical, neuropsychological, neuroimaging (MRI and positron emission tomog-

raphy), genetic, and biochemical data are currently collected in large

cohorts of healthy elderly subjects, patients with mild cognitive impairment

(MCI), and patients with AD. In particular, this study has been organized

into different subsequent phases, the main ones being ADNI1 (2004–

2011), ADNI2 (2011–2016), and ADNI3 (2016–ongoing), each of which has

witnessed the enrollment of a significant number of new subjects over

time and the progressive expansion of the adopted technologies and
8 Patterns 4, 100856, November 10, 2023
collected data.21,79 Up-to-date information is

available at https://adni.loni.usc.edu.

We downloaded and used the 3D T1-weighted

MRI scans acquired at baseline as imaging data

for this study. We leveraged healthy control (CN)

subjects and patients with AD for each ADNI set as

two distinct classes. Details about the acquisition

protocols regarding scanners, sequences, and cor-

responding parameters can be found at https://adni.

loni.usc.edu/methods/documents/mri-protocols/.

The coded information in the updated ‘‘ADNIMER-

GE.csv’’ file was retained to build the tabular fea-

tures used to feed the models. More precisely, the

following indicators were considered: age, gender,

and APOE4 (ε4 allele of apolipoprotein E). The latter,

in particular, represents the most decisive known

genetic risk factor for AD and assumes either 0, 1,
or 2 according to the number of ε4 alleles of the APOE gene. Subjects with

incomplete data were removed, leading to the final samples reported in

Table 4.

ADNI pre-processing

The individual 3D T1-weighted volumes were minimally pre-processed,

including reorientation, bias-field correction and non-linear registration to

the MNI152-2 mm standard space with dimensions of 913 1093 91 (fsl_anat

tool80). Data used to feed the models have also been normalized using the

‘‘min-max’’ scaling formula reported below.

For each input image X,

scaledX =
X � minðXÞ

maxðXÞ � minðXÞ (Equation 5)
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