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Abstract
Frailty syndrome is prevalent among the elderly, often linked to chronic diseases and 
resulting in various adverse health outcomes. Existing research has predominantly 
focused on predicting individual frailty-related outcomes. However, this paper takes 
a novel approach by framing frailty as a multi-label learning problem, aiming to 
predict multiple adverse outcomes simultaneously. In the context of multi-label 
classification, dealing with imbalanced label distribution poses inherent challenges 
to multi-label prediction. To address this issue, our study proposes a hybrid resa-
mpling approach tailored for handling imbalance problems in the multi-label sce-
nario. The proposed resampling technique and prediction tasks were applied to a 
high-dimensional real-life medical dataset comprising individuals aged 65 years and 
above. Several multi-label algorithms were employed in the experiment, and their 
performance was evaluated using multi-label metrics. The results obtained through 
our proposed approach revealed that the best-performing prediction model achieved 
an average precision score of 83%. These findings underscore the effectiveness of 
our method in predicting multiple frailty outcomes from a complex and imbalanced 
multi-label dataset.
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1 Introduction

Frailty is a common clinical condition used to describe older people who are more 
vulnerable to stressors and therefore have a higher risk of negative health outcomes. 
It has been shown that frailty has become a major challenge in the modern society 
due to the aging population. Several definitions have been proposed in the literature 
to conceptualize and operationalize frailty [1, 2]. However, a universally accepted 
definition of frailty is still lacking, making it difficult to effectively target community 
services to older adults. Despite its challenges, frailty is not an irreversible process 
and can be reversed or delayed from its progression. Therefore, it is argued that it 
should be detected early. The frailty detection framework presented in this article 
highlights two major issues: (1) addressing the problem of highly imbalanced data 
in multi-label classification, and (2) predicting multiple adverse outcomes asso-
ciated with frailty from a balanced multi-label dataset. This section presents first 
frailty and its prevalence in elderly people. Then, frailty is framed as a multi-label 
problem, and finally, key points that summarize the contents of this paper are stated.

1.1  Prevalence of Frailty

Frailty is a dynamic and multidimensional clinical condition related to ageing, char-
acterized by a decreased ability to maintain homeostasis and perform the normal 
activities of daily life [1, 2]. It is commonly recognized that frailty aggravates the 
risk of negative health outcomes (e.g., hospitalization, functional impairment, loss 
of autonomy, and death) and that it escalates health and social challenges [3]. Sev-
eral studies [1–5] indicate that frailty has become one of the most serious health 
issues putting a heavy burden on elderly care systems. Its prevalence is expected to 
rise rapidly with the increasing number of older adults in almost all countries. In 
recent years, frailty has received increasing scientific attention as it has a signifi-
cant influence on the quality and independence of life of older adults and available 
medical healthcare resources. There are several tools that have been used for the 
detection of frailty. The Fried Phenotypic Model [4] is one of the most widely used 
tools for assessing physical frailty. It is based on the quantification of five measur-
able components: self-reported exhaustion, slow walking speed, low grip strength, 
unintended weight loss, and low physical activity. According to this model, frailty is 
present if a person has at least three of the above pre-defined components. Follow-
ing the concept of the Fried model, several studies were conducted to estimate the 
prevalence of frailty in older adults [5].

However, it should be noted that there is still considerable uncertainty around the 
concept of frailty [5, 6] and that a phenotypic evaluation of subjects is impossible 
when considering a large population. There have been several reasons why it is so 
difficult to define and conceptualize frailty, including its complex aetiology [7], the 
often-independent work of researchers in diverse areas of frailty, such as biological 
basis, social basis, environment, and technology [8, 9], and the inherent difficulty in 
distinguishing frailty from ageing and disability [10]. There also exists a considera-
ble degree of heterogeneity among the different studies of frailty models in terms of 
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sample type and size, population characteristics and settings, baseline frailty status, 
and outcomes. In general, the current challenges of frailty research include the lack 
of a standard definition of frailty, which leads to the lack of a standard screening 
and diagnostic tool, further understanding of interventions to reverse frailty, the best 
time for intervention, common understanding model to face the challenges and early 
estimation of multiple adverse outcomes in a frail patient [11, 12].

1.2  Framing Frailty as Multi‑label Problem

Until now, state-of-the-art statistical or analytical considerations have been tar-
geted at the intervention of a single outcome or risk factor associated with frailty. 
For example, Fried’s frailty phenotype was specified as a serious risk factor for six-
month mortality but was not linked with delirium and in-hospital falls [13]; simi-
larly, a frailty risk model proposed in [14] was designed to predict in-hospital mor-
tality for post cardiovascular surgery patients admitted to the intensive care unit. 
Bertini et  al. [15] developed a model to predict all-cause mortality within a year. 
Other previous researches on frailty [16, 17] have also been focused on single-out-
come prediction, where separate models were developed for predicting mortality, 
hospitalization, fracture, and disability.

Clinically, however, it is more important to make interventions on more than one 
simultaneous outcome with common heterogeneous risk factors associated with 
frailty. This is due to the fact that the co-existence of multiple chronic conditions 
or comorbidity is common in older people [18, 19], which contributes to multiple 
adverse outcomes. Therefore, this study aims to build a predictive model that con-
siders the correlation among multiple outcomes to provide a list of relevant out-
puts for a previously unseen patient. In this case, we frame frailty as a multi-label 
problem and developed a multi-label classification (MLC) model to predict the six 
outcomes of frailty simultaneously: mortality, urgent hospitalization, disability, frac-
ture, medical emergency admission at the emergency department, and preventable 
hospitalization.

MLC is focused on training prediction functions that can associate an instance 
with multiple labels that are not necessarily mutually exclusive [20]. These days, 
MLC has gained considerable attention in the machine learning community. It 
appears in many application domains, and it is natural for many real-world problems, 
such as clinical diagnosis, disease prediction, activity recognition, object detection, 
image classification, etc. The existing methods for the MLC task are algorithm 
adaptation and problem transformation methods. The former transforms the MLC 
task into one or more single label classification tasks [21], regression problems, or 
label ranking [22] tasks, while the latter could extend specific learning algorithms to 
handle multi-label datasets directly [23].

1.2.1  Imbalanced Problem in MLC

In any machine learning task, the problem of imbalanced classification is among the 
factors that pose significant challenges in the training process of a learning model. A 
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recent and comprehensive review of methods for addressing imbalanced problems in 
multi-label classification is presented in [24]. An imbalanced problem is an inherent 
and well-known characteristic of most multi-label datasets. Three types of imbal-
ance problems can be present in an MLC [24]. These are (1) imbalances between 
labels, where there is unequal frequency or distribution of labels in a multi-label 
dataset (MLD) [25]. As each sample of an MLD is usually correlated with mul-
tiple labels, some of them can be majority labels while others are minority ones. 
(2) imbalance within labels that occurs when at least one label contains a smaller 
number of positive samples, and a greater number of negative samples [26], and (3) 
imbalance among the label sets, where more frequent sets of labels and rare sets of 
labels exist in an MLD [27].

Among these three types of imbalances, the presence of imbalanced classifica-
tion between labels in an MLC is the most challenging one in which one label may 
contain a much larger number of 1’s than the other label. Such imbalanced label 
distributions are the intrinsic characteristics of most multi-label datasets. More spe-
cifically, the majority and minority labels may occur jointly in the same instances 
that affect the prediction performance of multi-label learning methods. In this study, 
a hybrid of resampling methods is proposed to reduce the imbalanced label distribu-
tions while also reducing the imbalance between classes in each label.

1.2.2  Hybrid Resampling Approaches for MLC

In single-label learning (or standard classification), it is a common practice to use 
the synthetic minority oversampling technique (SMOTE) [28], Tomek links (T-link) 
[29] or their hybrid version. However, the imbalanced problem in MLC is much 
more complicated than in single-label classification due to the presence of imbal-
ance within labels, among label sets, and between labels altogether. In this study, 
we extend systematically the use of single-label resampling approaches (SMOTE 
and T-link) for the multi-label scenario that reduces the problem of imbalance 
among labels and within the labels. In the multi-label scenario, SMOTE produces 
a set of samples, where each minority label occurs. Each minority instance will be 
the seed (i.e., used as a reference point) for a new synthetic sample. The set of fea-
tures and label sets appearing in the reference instances will also be added for the 
new instances. The hybrid version of SMOTE and T-link is used in our multi-label 
problem to avoid the imbalance between labels as well as to reduce the imbalance 
between classes in each label. The set of majority and minority labels is identified 
based on the imbalance level measures [30].

1.3  Highlights of this Study

Existing methods, such as SMOTE and Tomek, have been developed to handle 
the imbalance problem in the traditional single-label classification. Unfortunately, 
these single-label approaches fail to work in the multi-label learning problem due 
to the presence of more than one label associated with an instance of the data. This 
paper presents an extension of the single-label approach to handling imbalanced 
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multi-label classification while predicting multiple outcomes associated with frailty. 
To the best of our knowledge, this work is the first to apply MLC strategies to the 
frailty problem and to propose a novel hybrid resampling approach to address the 
intrinsic problem of imbalanced data in the multi-label learning problem. This 
innovative approach demonstrates the practical utility and relevance in a real-world 
healthcare setting, highlighting its originality and importance. The key points sum-
marizing the contents of this article include:

– This article addresses the prediction of multiple adverse outcomes associated 
with frailty based on a highly imbalanced multi-label clinical dataset.

– The core challenge in our dataset is the joint occurrence of more frequent and 
less frequent labels in the same sample, which cannot directly be solved by the 
existing single-label resampling approaches, such as oversampling, and under-
sampling methods.

– The proposed hybrid resampling approach presented in this article aims to solve 
the problem of imbalance in multi-label classification, which is strongly moti-
vated by the practical problem of predicting several outcomes associated with 
frailty from an imbalanced multi-label dataset.

– The proposed method significantly improves the classification performance of 
multi-label algorithms in predicting simultaneous outcomes.

2  Background and Preliminaries

In this section, we provide a brief introduction to the concept of MLC, imbalanced 
MLC, imbalance quantification methods, evaluation metrics, and single-label resam-
pling approaches.

2.1  Multi‑Label Classification

MLC problem is a generalization of a single-label (binary or multi-class) classifica-
tion problem where an instance is associated with more than one label simultane-
ously. In this study, the frailty risk prediction problem is formulated as a multi-label 
classification problem. Given a set of m medical records M =

{
r1, r2, ..., rm

}
 and a 

finite set of q outcomesL =
{
�1, �2, ..., �q

}
 , each record in M is associated with one 

or more outcomes inL . In this context, the ‘outcomes’ represent the labels. The set 
of multi-label training examples of the frailty classification problem can be repre-
sented byS =

{(
ri, Yi

)
, i = 1, ...,m

}
 , where ri is the feature vector and Yi ⊆ L denotes 

the set of labels for the ith record. The objective is to build a classification model to 
predict a set of labels Ŷi for every new recordri′ . In this study, for any patient, multi-
ple outcomes were identified in the data, and each outcome is considered as a label.

There are several multi-label classification strategies to train an MLD [31]. The 
most widely used and straightforward approach is binary relevance (BR). It con-
siders each label as an independent problem and trains one binary classifier per 
label. BR is the baseline MLC algorithm that does not consider the relationships 
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that may exist between labels. To overcome this limitation, several ensemble 
approaches, such as classifier chains (CC) and label powersets (LP), have been 
proposed. CC extends BR by taking some label correlation into account. It works 
by feeding the predictions of earlier classifiers as features to the latter classifier. 
However, the CC algorithms suffer from the issue of label ordering, as classifi-
ers with different chain positions receive different levels of information. LP-based 
classifiers use subsets of label-sets as class identifiers where each unique set of 
labels for an MLD is considered as a single label. On datasets with a large number 
of label combinations, LP has the drawback of ending up with a large number of 
represented classes and few samples to train on. Random k-label-set (RAkEL) [32] 
is an improvement to avoid the problem of the LP method within a large number 
of unique label sets. It builds classifiers that are the ensemble of LP, and every LP 
model is trained on a different smaller subset of labels. The class labels are then 
determined by a voting procedure based on a threshold. The RAkEL approach 
takes label correlation into account and has lower complexity than the LP method. 
All three approaches (BR, CC, and LP) are grouped under problem transforma-
tion methods, where the MLC problem is transformed into a binary or multi-class 
problem.

Ranking by pairwise comparison (RPC) [33] creates a pairwise transformation 
of the multi-label dataset into |L|(|L|−1)

2
 binary problems, one for each pair of labels 

( �i, �j ), 1 ≤ i < j ≤ L . On each dataset, a model is trained based on examples anno-
tated by exactly one of the labels, but not both. Calibrated label ranking (CLR) [22] 
extends RPC by initiating one supplementary virtual label, which indicates the 
boundary (separation point) between relevant and irrelevant labels. When classify-
ing a new sample, each binary classifier is invoked to vote and predict one of the 
two labels. Finally, classifiers are evaluated, and the labels are ranked according to 
their sum of votes. This way, it manages to solve both the MLC and MLR (multi-
label ranking) tasks. MLkNN (Multi-label K nearest neighbours) is an adaptation 
method of the K nearest neighbours (KNN) algorithm to a multi-label problem [23]. 
MLkNN uses the same basic principle as KNN, except that MLkNN uses a Bayesian 
approach of prior probability and posterior probability to specify the relevant label 
sets. These MLC models are well-suited for modeling multiple labels simultane-
ously, unlike traditional classification, which are designed to predict a single output 
[34, 35].

2.2  Imbalance Quantification Methods

The imbalance quantification method designed for the single-label (binary /multi-
class) classification assumes the ratio of minority to majority class as an imbal-
ance measure, which is not suitable for multi-label classification. Learning from an 
imbalanced MLD is a more complex problem in MLC due to the large label space 
when considering all possible label combinations. Various measures can be used to 
quantify the level of imbalance in MLC. In this study, we use the following meas-
ures to identify minority and majority labels [27].
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IRLbl (Imbalance ratio per label) Given a set of labels L and Yi be the label set of the 
ith sample in M (M is an MLD), IRLbl is calculated for a label λ as the ratio between 
the most frequent label and the label λ. The most occurring label has an IRLbl of 1 
and a higher value for the rest.

MeanIR (Mean imbalance ratio) MeanIR can be computed as the mean imbalance 
ratio of all labels in an MLD. 

MaxIR (Maximum imbalance ratio) It is the proportion of the most common label to 
the rarest one.

CVIR (Coefficient of variation of IRLbl) CVIR measures the variation of IRLbl, i.e., 
the similarity of the level of imbalance between all labels. It indicates if labels expe-
rience a similar level of imbalance or, on the contrary, there are large differences 
among them. The higher the CVIR value, the higher would be this difference:

As it is declared in [27], the joint use of MeanIR and CVIR measures represents 
whether an MLD is imbalanced or not, while IRLbl is important to evaluate the 
imbalance level of each label. An MLD with a MeanIR value higher than 1.5 and a 
CVIR value greater than 0.2 should be considered imbalanced.

2.3  Evaluation Metrics for MLC

The evaluation of models in MLC differs from the traditional single-label classifica-
tion. It requires a special approach in order to consider performance over all labels. 
In this study, the average precision, Hamming loss, ranking loss, F-score micro aver-
aged, and area under the ROC curve (AUROC) macro average were used to evaluate 
the performance of different MLC models. To formally define each evaluation meas-
ure, consider the instances of an MLD 

(
xi, Yi

)
, i = 1, ...,m, where Yi ⊆ L is the set of 

true labels andL =
{
�1, �2, ..., �q

}
 , is the label space. For a given samplexi , the set of 

predicted labels by the MLC model is denoted byZi , and the rank that is predicted by 
a label ranking method for a label λ is represented by ri(λ).

Average precision (AP) computes the proportion of labels ranked ahead of a cer-
tain label λ∊YI which actually are in Yi . AP allows knowing the percentage of cor-
rect positive predictions.

(1)IRLbl(�) =

���
�
�
∈ L

(
∑m

i=1
h(�

�

, Yi))

∑m

i=1
h(�, Yi))

, h
�
�,Yi

�
=

�
1� ∈ Yi
0� ∉ Yi

(2)MeanIR =
1

q

∑
λ∈L

IRLbl(�)

(3)MaxIR = ���
�∈ L

(IRLbl(�))

(4)CVIR =
IRLbl�

MeanIR
, IRLbl� =

√
∑

�∈L

(IRLbl(�) −MeanIR)2

q − 1
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Hamming loss (HL) is the commonly used evaluation metric in MLC, calculated 
as the difference between the true and predicted labels divided by the sum of all of 
the labels in the MLD [36]. The score lies between 0 and 1, where 0 is the best.

The symbol Δ represents the symmetric difference between the two sets. HL 
measures how many times, on average, an observation label set is misclassified. In 
this paper, HL is used to measure the capability of the algorithm to identify the pres-
ence of frailty in terms of adverse health outcomes.

Ranking loss (RL) measures how many times a relevant label (a member of the 
true label set) appears ranked lower than a non-relevant label. The score lies between 
0 and 1, where 0 is the best:

where YI is the complementary set of YI with respect to L.
In the context of this study, RL is used to measure how well the algorithm ranks 

labels, which allows an understanding of the type of patient outcomes that have a 
strong expression, indicating where to act on time.

Label-based metric is computed for the labels by using micro and macro averag-
ing [37]. Macro averaging can be calculated on each label independently followed 
by averaging over all the obtained values, while micro-averaging can be calculated 
over all the samples and class labels. Macro and micro-averaged measures for the 
area under the ROC (AUROC) and F1 score can be calculated as follows:

The function rank(xi, �) is defined such that for a given instance xi and label 
� ∈ L , where the position of � is known, it returns a confidence level of � in the pre-
diction Zi made by the classifier.

where Zi and Yi are the predicted and actual values, respectively, for label � and 
instance i.

(5)AP =
1

m

∑m

i=1

1

||YI
||

∑
�∈Yi

|||
{
�� ∈ Yi ∶ ri

(
��
)
≤ ri(�)

}|||
ri(�)

(6)HL =
1

m

∑m

i=1

||YiΔZi||
|L|

(7)RL =
1

m

∑m

i=1

1

||YI
||
|||Yi

|||
|
{(

𝜆a, 𝜆b
)
∶ ri

(
𝜆a
)
> ri

(
𝜆b
)
,
(
𝜆a, 𝜆b

)
∈ YixYi

}
|,

(8)AUROCmacro =
1

q

∑
�∈L

����

�
x�,x��∶rank(x�, L�) ≥ rank(x��, L�), (x

�, x��)∈X�×X�

�����
�X��.���X�

���
,X� =

�
xi�L� ∈ Yi

�
,X� =

�
xi�L� ∉ Yi

�

(9)F1micro =

∑m

i=1

∑q

�=1
Zi × Yi

∑m

i=1

∑q

�=1
Ŷi +

∑m

i=1

∑q

�=1
Yi
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2.4  Single‑label Resampling Approaches

This section presents the essential background information on two resampling 
approaches: Tomek Links and Synthetic Minority Oversampling Technique. These 
methods have been widely used in addressing the challenge of imbalance in the sin-
gle-label classification problem.

2.4.1  Tomek Links

Tomek links [29], T-link for short, is an enhancement of the nearest neighbour rule 
[38], which heuristically removes only the noisy or boundary instances of the two 
classes. The basic idea of the T-link algorithm is as follows:

1. Let i be an instance of class A and j be an instance of class B.
2. Let d(i, j) be the distance between i and j.
3. (i,j) is a T-link, if for any instance m ≠ i,j, d(i,j) < d(i,m) or d(i,j) < d(j,m). If any 

two examples are T-links, then one of the instances is noise, or both instances are 
located at the border of the class.

4. Remove noise or border points.
5. Repeat steps 1 to 3 until all possible pairs of classes are processed.

For a dataset with two target class values, a T-link is a pair of samples that are 
(1) nearest neighbours of one another, and (2) have different target class values [29]. 
Instances that belong to T-link pairs are likely to be either noise points or points 
that lie close to the optimal decision boundary. Eliminating those points can result 
in more well-defined class groups in the training data, which can lead to better clas-
sification [39]. T-link could be used as an under-sampling technique or as a post-
process cleaning step [40]. If it is used as an under-sampling technique, only the 
samples from the majority class are removed. If it is used as a post-process cleaning 
step, samples from both the majority and minority classes are removed.

2.4.2  Synthetic Minority Oversampling

The Synthetic Minority Oversampling (SMOTE) [28] technique is an oversampling 
method where a minority class is oversampled to generate new instances using an inter-
polation technique. The basic idea is to create new samples that are located anywhere 
on the line that joins together each of the minority class samples and all (or some) of its 
k nearest neighbours (KNN). KNN uses the Euclidean distance function as the distance 
metric. The synthetic samples in SMOTE are generated using the following steps:

1. Choose the feature vector of the current sample (minority class sample).
2. Calculate its k nearest neighbours and randomly select the feature vector of one 

of these nearest neighbours.
3. The new instances are generated by interpolation technique (e.g., the difference 

between the selected sample’s feature vector and its selected nearest neighbour).
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4. Multiply the result obtained in step 3 with a random value between 0 and 1 and 
add this vector to the feature vector of the current sample. This causes the selection 
of a random point along the line segment between two specific feature vectors.

5. The new vector will be the synthetic sample. Repeat these steps until the 
required number of instances to be generated is reached.

3  Proposed Methodology

In this section, we present the proposed multi-label-based frailty prediction frame-
work, briefly describing the data, analysis of label distributions and imbalance level 
in the data, the proposed hybrid resampling algorithm, multi-label classification 
methods along with evaluation measures and model development tools, as shown in 
Fig. 1.

3.1  Data Source and Description

A detailed description of input and output variables in the data and related informa-
tion is presented in [16]. Briefly, to develop a multi-label predictive model, we used 
health information retrieved from two years of administrative databases of older 
adults aged 65 years and above. Data were collected using an individual record link-
age between the Italian 2011 census and the administrative health databases (enroll-
ees’ registry, hospital discharges, drug prescriptions, outpatient clinical investigation 
database, and health exemptions).

There are around 1 million anonymous record items consisting of input varia-
bles such as demographic, socioeconomic, and chronic conditions and output vari-
ables, which are described as outcomes or measurable changes in the health status 
of patients. In this study, six output variables that are associated with everyone’s 
status are used as labels. They are mortality, urgent hospitalization, medical emer-
gency admission at the emergency department, disability, fracture, and preventable 
hospitalization. This type of data is what we call a multi-label dataset (MLD). The 
way the data set is organized is such that one patient can have multiple outcomes.

3.2  Label Distributions

All the six labels (i.e., the outcomes) in the data are binary-valued, as shown in 
Table 1, which presents some selected records from the original dataset. Labels 
that are associated with each record are called relevant (or active) labels, whereas 
the remaining (i.e., the non-associated labels) are the irrelevant ones. For exam-
ple, in Table 1, labels 3, 5, and 6 are relevant to the first record, while labels 1, 2, 
and 4 are irrelevant ones (non-associated labels). Both the relevant and irrelevant 
labels are represented as a binary vector, with the size equal to the total number 
of labels in the data.
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Original MLD

Data preparation and transformation

Imbalance level quantification

BR

CC

LP

CLR

MLkNN

RAkEL

MLC approaches

Balanced MLD

Split MLD for training and testing 

Majority/minority labels selection

Multi-label SMOTE

Multi-label T-link

Reassemnet of imbalance level

MLD pre-processing and 

analysis of imbalance level

Hybrid resampling method  

Resampled and balanced MLD

MLC model training and testing 

Multi-label prediction results 

Final results

Model evaluation 

Fig. 1  The proposed framework of multi-label-based frailty prediction
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We used label cardinality (Card) and label density (Dens) to describe the characteristics 
of our dataset. Label cardinality of a dataset M, denoted by card (M), is the average number 
of labels of examples in M. Label density of a dataset M, denoted by dens (M), is the aver-
age number of labels of examples in M divided by the number of labels. These measures 
are defined in Eqs. (10) and (11) [41], where =m|M| denotes the size of the dataset, |Yi| 
represents the number of labels for ith instance and |L| the number of labels in M. Table 2 
shows the summary of the original dataset in terms of Card, Dens, number of input fea-
tures (NF), the number of labels |L|, and the number of distinct label combinations (DC).

3.3  Imbalance Levels

Based on the imbalance measures described in Sect. 2.2, the frailty dataset used in this 
paper has a MeanIR of 2.85 and a CVIR of 0.80, which shows that the dataset is imbal-
anced. Table 3 presents the imbalance ratio per label (IRLbl) of the six labels in the data. 
In this dataset, the most frequent (majority) labels are mortality and urgent hospitalization 

(10)Card(M) =
1

m

∑m

i=1
||Yi

||

(11)Dens(M) =
1

m

∑m

i=1

||Yi
||

|L|

Table 1  An example of multi-
label data records with the six 
labels

1 points out the outcomes associated with each record, and 0 repre-
sents non-associated

Records Label 1 Label 2 Label 3 Label 4 Label 5 Label 6

r
1

0 0 1 0 1 1
r
2

0 0 1 1 1 0
r
3

0 1 1 1 0 0
.. 1 1 1 0 0 1
r
m

1 1 1 1 1 0

Table 2  Description of the 
multi-label dataset in the 
experiment

Dataset Instances NF |L| DC Card Dens

Frailty 1,095,613 58 6 64 0.133 0.022

Table 3  The imbalance level of 
each label in the frailty dataset

S.N Labels IRLbl

1 Mortality 1.000000
2 Urgent hospitalization 1.074644
3 Disability 1.330798
4 Preventable hospitalization 2.192901
5 Emergency admission 5.584591
6 Fracture 5.904701
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with an IRLbl of 1.0 approximately, whereas fracture and emergency admission are the 
less frequent (minority) ones with an IRLbl of 5.9 and 5.6, respectively.

3.4  Proposed Resampling Approach

Several resampling approaches have been proposed to reduce the problem of imbal-
ance in an MLC [24]. One of the main challenges of balancing label distribution 
through resampling methods is that adding new instances with minority labels also 
increases the frequency of labels, which are already majority ones. Similarly, removing 
instances from majority labels will lead to the loss of minority ones [27]. This problem 
has a strong impact on the resampling methods applied to our frailty dataset because, 
in most instances of the dataset, minority labels occur together with the majority ones. 
Thus, we proposed a new method by extending the existing approaches for solving the 
problem of imbalanced data in MLC suitable for the dataset we want to work with.

To solve this joint occurrence of majority and minority label distribution in the 
frailty dataset, we proposed a hybrid approach that combines SMOTE (synthetic minor-
ity oversampling) with Tomek links named ML-TLSMOTE (Multi-label SMOTE with 
Tomek links). ML-TLSMOTE can be used as a heuristic-based approach and combina-
tion of pre-processing methods whereby the SMOTE and Tomek links (T-link) clean-
ing methods are applied sequentially. SMOTE is applied first to generate synthetic 
instances of minority labels, and subsequently, T-link, which is used as a post-process 
cleaning step, is applied to the dataset composed of the original and new synthetic 
instances with majority labels. Each method and its hybrid version, which worked well 
for the traditional classification problem, is extended to the multi-label scenario to nar-
row down the gap between the most frequent labels and the least frequent ones as well 
as to reduce the imbalance between classes within each label.

To balance labels using ML-TLSMOTE, all instances that are both associated and 
non-associated with the current minority label are considered for SMOTE; at the same 
time, these instances should be non-associated with other label combinations. Then, 
T-link is applied for each majority label to make some adjustments between the classes 
of each label. The joint use of the SMOTE and T-link algorithms is designed to remove 
the imbalance between the labels and also reduce the imbalance within the labels.

3.4.1  Proposed Algorithm for ML‑TLSMOTE

The detailed algorithm for the proposed hybrid approach (ML-TLSMOTE) is pre-
sented in Algorithm  1. The high-level description of the algorithm is summa-
rized in four main parts in accordance with the following consecutive procedures:

a Minority and Majority labels selection: First, the set of minority labels and set of 
majority labels are identified from the MLD with the help of MeanIR and IRLbl. 
Labels with IRLbl less than MeanIR are considered majority labels and labels with 
IRLbl higher than MeanIR can be considered minority labels [27]. In Algorithm 1, 
lines from 1–4 handle the selection of minority labels, while lines from 6–12 select 
majority labels from the dataset based on the values of MeanIR and IRLbl.
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Algorithm 1  Proposed Algorithm for ML-TLSMOTE
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b Multi-label SMOTE: Our MLD has more than one minority label. Therefore, 
each instance associated with each minority label (i.e., instances with 1’s for the 
minority label), but non-associated (value 0’s) with other label combinations 
are oversampled using SMOTE. Selecting active (associated) labels of minority 
instances and non-associated labels of majority instances help to increase only 
the frequency of rare labels without cloning the instances that are linked to the 
majority labels. In Algorithm 1, line 5a(i-v) computes multi-label SMOTE by 
taking inputs from the previous step.

c Multi-label T-Link: In this step, instances that are linked to the majority of 
labels are treated through the T-link cleaning method. T-link allows removing 
only the noisy or border samples of the majority labels. Removing T-link points 
can result in more well-defined class clusters in the training data, which can 
improve the performance of classifiers. As shown from lines 13–17 of the ML-
TLSMOTE algorithm, we used T-link as a post-process cleaning step for two 
main reasons: (1) to reduce the imbalance between labels by removing instances 
that are associated with the majority labels, and (2) at the same time to clean up 
the non-associated instances of labels that were added as a result of the SMOTE 
preprocessing procedure (line 1-5v.), so that the imbalance within a label can 
be reduced or will not go to the extreme. In addition, after applying SMOTE on 
minority labels, the class groups of labels may not be well defined or overlapped 
due to the invasion of synthetic samples. Therefore, a data cleaning stage is desir-
able to clean up the borders between each class.

d Reassess the imbalance level: Finally, the IRLbl, MeanIR, and CVIR will be 
recalculated to check if the pre-processed MLD is balanced. At this stage, the 
MLD could have a more balanced label distribution and would be easier to pro-
cess by the MLC algorithms. In Algorithm 1, line 18 returns a preprocessed and 
balanced dataset for further analysis using the MLC classifiers.

3.5  MLC Methods and Performance Metrics

To predict frailty using the resampled data already, six different MLC algorithms 
were chosen [42]: Binary Relevance (BR), Classifier Chains (CC), Label Powerset 
(LP), Random k-label sets (RAkEL), Calibrated Label Ranking (CLR) and MLkNN. 
The classification results are evaluated using five multi-label metrics: Hamming 
loss, ranking loss, average precision, and label-based measures (F1score micro aver-
aged, and AUROC macro averaged). The description of MLC methods and perfor-
mance measures are presented in Sections. 2.1 and 2.3, respectively.

3.6  Experimental Setup and Software Tools

The implementation and experiments were carried out on a personal computer 
with Intel(R) Core i7-1185G7 processor and installed memory (RAM) of 32 GB. 
The proposed resampling method was developed using Python version 3.7, while 
the experiments and evaluation of all MLC classifiers were carried out using the 
MEKA library [43]. MEKA is an open-source framework for multi-label learning 



609Journal of Healthcare Informatics Research (2024) 8:594–618 

and evaluation, which has been employed for the training and comparison of multi-
label classifiers. We also used Rstudio statistical package for performing statistical 
test analysis for our experimental results.

The performance and efficiency of the proposed approach and MLC methods are 
highly dependent on the choice of a base classifier [44]. In order to select the best 
base classifiers for each MLC strategy (BR, CC, CLR, LP, MLkNN, and RakEL), 
we first consulted literature guidelines [44, 45] and performed preliminary experi-
mental analysis. Based on this, we selected the commonly used base classifiers, 
namely random forest (RF), random tree (RT), decision tree (DT), support vector 
machine (SVM), and naïve Bayes (NB). The parameters of the base learners were 
set according to the recommendations in MEKA. For instance, when using SVM 
as the base learner, the following parameters were employed: the kernel was set to 
"polynomial" with a degree of 1 and the values chosen for C and gamma were 0.1 
and 0.001, respectively. Next, we conducted further experimental studies on resam-
pled datasets to determine the most effective base algorithm for each MLC strategy. 
These base classifiers are commonly used as hyperparameters for MLC strategies, 
with only one base algorithm used for training each MLC strategy [46]. For RAkEL, 
different values were set for the size of the label set (k = 2,3,4,5,6) and the number of 
models (m = 6,8,10,12,14,16) and the value k = 3 (default) and m = 12 were optimal. 
The parameters taken for the rest of the MLC methods were the default ones as sug-
gested by their authors.

4  Experimental Results

This section presents the experimental results of MLC methods achieved through 
the proposed ML-TLSMOTE approach. We split the results into two subsections, 
resampling results, and classification results.

4.1  Resampling Results

For experimental analysis, we used 105,962 instances of an MLD, where each 
instance is associated with at least one active label of the label set. As already 
described in Section  3.2, the dataset contains six simultaneous adverse outcomes 
(i.e., labels) associated with frailty. Samples that are not associated with at least one 
active label in the dataset are excluded from the experiment. Moreover, the multi-
label experimentation using MEKA has limited capability to handle the whole 
dataset. Once the resampling approaches were applied to the extracted MLD, the 
imbalance level of the pre-processed data was re-evaluated. Table  4 presents the 
imbalance level of the original MLD (i.e., the MLD without resampling, noted as 
Base), and the resampled MLD using T-link, SMOTE and ML-TLSMOTE, which 
is measured in terms of MaxIR, MeanIR, and CVIR values. The average imbalance 
level of the data after applying ML-TLSMOTE is MeanIR = 1.17 and CVIR = 0.12, 
which gives evidence that the imbalanced problem has been much reduced in 
the data as compared to SMOTE or T-link. The imbalance scores imply that the 
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multi-label frailty dataset has a more balanced label distribution that can be further 
processed by the multi-label classification algorithms.

From the results in Table 4, the behaviour of the original dataset has changed after 
applying the ML-TLSMOTE, which clearly shows that there is a general improve-
ment in the imbalance levels. For the hybrid approach, the values of MeanIR and 
CVIR are below the threshold, which gives evidence that the ratio between the most 
frequent labels and the least frequent ones has been improved in the data. Thus, the 
MLD contain a more balanced label distribution that can be analyzed by the MLC 
methods.

4.2  Classification Results via ML‑TLSMOTE

Using the resampled MLDs in Table 4, several experiments were conducted using 
various MLC classification algorithms. To understand how the proposed hybrid res-
ampling method (ML-TLSMOTE) has influenced the classification results, we used 
various multi-label classifiers, including BR, CC, LP, RAkEL, CLR, and MLKNN. 
The classification experiments were conducted using the resampled dataset as the 
training set and the non-resampled dataset as the test set. On the training dataset, a 
tenfold cross-validation was applied to train the MLC models. The proposed resam-
pling algorithm was only performed on the training dataset, i.e., the dataset that was 
balanced, while the non-resampled test dataset which is representative of the origi-
nal imbalanced dataset was used for the evaluation of classifiers.

Although the change in imbalance level will not necessarily imply better multi-
label classification results, it has been observed that the lower the values of the 
imbalance levels, the better the performance of the MLC algorithms. However, there 
is an exception with the T-link method, where the performance of MLC classifiers 
on T-link was not improved. Table 5 presents the predictive performance of six dif-
ferent MLC classifiers using five multi-label metrics (AUROC, average precision, 
F1 score, Hamming loss and ranking loss) across the sampling approaches. The 
results show that CLR is the best model in terms of average precision and outper-
formed all other MLC classifiers via ML-TLSMOTE. It has also the best-ranking 
loss compared to the results obtained from the other classifiers. Table 5 also presents 
the standard deviation of each metric’s performance value across all models, which 
provides insights into the consistency or variability of the models’ performance 
within each resampled dataset.

Table 4  Characteristics of the MLD before and after applying resampling algorithms

Resampling Methods MaxIR MeanIR CVIR Card Dense

Without resampling (Base) 5.90 2.85 0.80 1.38 0.23
T-link (Under sampling) 1.70 1.42 0.18 0.50 0.08
SMOTE (Oversampling) 1.42 1.25 0.13 2.02 0.34
ML-TLSMOTE (Hybrid version) 1.40 1.17 0.12 1.8 0.30
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We also noticed that the use of different base classifiers for each MLC algorithm 
had shown a more significant effect on the variation of classification results on ML-
TLSMOTE. In this study, five base classifiers (DT, RF, RT, SVM, NB) were evalu-
ated on each MLC strategy, where BR, CC, and CLR have shown the best results 
when using the RT as a base classifier.

LP and RAkEL have achieved the best results when using SVM as the base 
classifier, while MLkNN used naïve Bayes as the best base classifier. However, 
we also found that using DT or RF as base classifiers resulted in relatively lower 

Table 5  Prediction performance for six MLC algorithms across the resampled datasets, with the best val-
ues highlighted in bold, and the standard deviation of each metric’s score across all models

*AUROC (macro averaged), AP: average precision, F1-score (micro averaged), HL: Hamming loss, RL: 
Ranking loss

Resampling
Approaches

MLC Algorithms MLC Measures*

AUROC AP F1-score HL RL

Hybrid proposed
(ML-LSMOTE)

BR 0.78 0.79 0.68 0.17 0.19
CC 0.76 0.62 0.68 0.18 0.28
LP 0.76 0.79 0.69 0.17 0.20
RAkEL 0.83 0.75 0.60 0.15 0.19
CLR 0.81 0.83 0.67 0.20 0.16
MLkNN 0.74 0.72 0.62 0.22 0.23

Standard deviation 0.033 0.059 0.029 0.019 0.029
Oversampling
(SMOTE)

BR 0.73 0.73 0.54 0.20 0.21
CC 0.71 0.64 0.55 0.17 0.29
LP 0.73 0.70 0.58 0.17 0.23
RAkEL 0.74 0.67 0.57 0.17 0.20
CLR 0.78 0.75 0.59 0.22 0.16
MLkNN 0.72 0.70 0.51 0.21 0.21

Standard deviation 0.021 0.029 0.018 0.012 0.05
Undersampling
(T-link)

BR 0.55 0.58 0.40 0.27 0.32
CC 0.55 0.65 0.41 0.35 0.37
LP 0.57 0.50 0.44 0.30 0.36
RAkEL 0.57 0.50 0.40 0.35 0.36
CLR 0.56 0.53 0.37 0.43 0.41
MLkNN 0.57 0.62 0.46 0.32 0.38

Standard deviation 0.012 0.034 0.018 0.065 0.023
Base
(Without resampling)

BR 0.54 0.62 0.34 0.23 0.31
CC 0.54 0.51 0.37 0.24 0.34
LP 0.52 0.43 0.37 0.30 0.38
RAkEL 0.57 0.57 0.46 0.33 0.31
CLR 0.57 0.55 0.41 0.42 0.30
MLkNN 0.57 0.64 0.34 0.27 0.26

Standard deviation 0.014 0.062 0.036 0.074 0.026
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performance for all MLC methods. Overall, the results show that proposed method 
significantly outperforms traditional approaches and baseline across all metrics. For 
example, with F1 score, the BR algorithm via ML-TLSMOTE shows significant 
improvements over the SMOTE, T-link and baseline across all MLC algorithms, 
with performance increase from 5.26% to 25.93%.

5  Discussions

This study framed the frailty problem into a multi-label learning task for the predic-
tion of more than one adverse outcome simultaneously. This multi-label prediction 
problem is strongly motivated by the practical challenge of predicting several out-
comes of frailty simultaneously from an imbalanced multi-label dataset. Although 
the single-label models (statistical or machine learning) for a clinical prediction 
problem have shown a strong predictive ability to estimate the risk of a single out-
come associated with a disease condition [47–49], they are not well aligned to han-
dle multiple outcomes simultaneously if the data originally contains multiple health 
outcomes. Moreover, the current studies on single-label classification for com-
plex multi-label datasets fail to handle new approaches to improving performance 
through exploiting label correlations. The next section presents an analysis of exper-
imental results aiming to detect more than one adverse outcome concurrently using 
the multi-label learning method.

5.1  Analysis of Prediction Performance

The proposed ML-TLSMOTE method was evaluated considering the imbalanced 
multi-label dataset of older adults aged 65  years and above. Several experiments 
were conducted for testing the MLC algorithms using the proposed resampling 
method. Among the MLC algorithms, RAkEL, LP, and BR achieved the best per-
formance in terms of the Hamming loss with ML-TLSMOTE (Table 5). RAkEL has 
shown the best performance in terms of macro average AUROC (83%) followed by 
the BR and LP with a score of 78% and 76%, respectively. CLR has achieved the 
best result in the average precision (83%). The Hamming loss captures the fraction 
of labels that are incorrectly predicted, while the ranking loss measures the aver-
age fraction of labels that are ordered incorrectly. For example, the ranking loss of 
RAkEL is 0.19, which means that 19% of the label pairs are wrongly ordered for 
instances. With the ranking evaluation measures, the CLR outperforms the other 
algorithms, which rank the relevant labels higher than irrelevant labels efficiently 
based on the pairwise comparison of labels. MLKNN showed poor performances 
in the Hamming loss and the ranking loss as compared to the BR, RAkEL, and LP.

For the concrete establishment of the best model across all resampled datasets, 
we calculated the ranking of each model according to their average precision, where 
the average rank of each model was calculated using the formula:



613Journal of Healthcare Informatics Research (2024) 8:594–618 

where Sj
i
 is the rank of  ith model for the  jth resampled dataset. The calculated aver-

age ranks of the models in all resampled datasets are shown in Table 6. The results 
can be observed that BR and CLR have the lowest average rankings score across all 
datasets, which means that they are the best-performing classifiers when measured 
with average precision, while CC has a higher average ranking which indicates it 
is consistently performing poorly in all resampled datasets. CLR is also the best-
performing model on ML-TLSMOTE and SMOTE, while CC is the worst classifier.

In addition, to highlight the efficacy of our proposed algorithm, a non-parametric 
Friedman aligned ranking (FAR) [50] and Wilcoxon signed rank test are carried out, 
following literature guidelines [51]. Both tests are performed in terms of F1-score (micro 
averaged) where FAR is applied across all the six MLC methods using multiple com-
parison procedures [52], and Wilcoxon signed rank test is performed to check the sig-
nificance of the difference between ML-TLSMOTE and other resampling algorithms. 
Table 7 presents the ranking of the proposed resampling algorithm using FAR and the 
pairwise comparison results according to the Wilcoxon signed rank test with α = 0.05.

As shown in Table  7, statistical analysis using F1-score (micro averaged), and 
other metrics (AUROC and average precision) have been performed to measure 
the significance of differences between the ML-TLSMOTE and other single-label 
approaches. The statistical results show evidence that ML-TLSMOTE achieved the 
highest statistical ranking with higher classification performance of MLC methods 

Ri =
1

N

N∑

i=1

S
j

i

Table 6  Average ranks of MLC 
models for frailty prediction 
based on their average 
precision over SMOTE, T-link, 
ML-TLSMOTE, and Base 
datasets

Average Rank of MLC Models

Datasets BR CC LP RAkEL CLR MLkNN

Base 2 5 6 3 4 1
T-link 3 1 5.5 5.5 4 2
SMOTE 2 6 3.5 5 1 3.5
ML-TLSMOTE 2.5 6 2.5 4 1 5
Average Rank 2.38 4.5 4.38 4.38 2.5 2.88

Table 7  Friedman aligned ranking (FAR) and Wilcoxon signed-rank test

Algorithms FAR Algorithms Wilcoxon signed-rank test

P-value Null hypothesis

ML-TLSMOTE 1.13 - - -
SMOTE 2.17 ML-TLSMOTE vs. SMOTE 0.036 Rejected
T-link 3.33 ML-TLSMOTE vs

T-link
0.031 Rejected

Base 3.67 ML-TLSMOTE vs. Base 0.030 Rejected



614 Journal of Healthcare Informatics Research (2024) 8:594–618

in the frailty problem. The performance results of the MLC approach via ML-TLS-
MOTE are in line with the statistical test result (FAR = 1.13) ranking. In addition, 
the pairwise test using Wilcoxon signed rank test shows the significance of the dif-
ference between ML-TLSMOTE and other methods (SMOTE, T-link and the Base).

Overall, from the analysis of results, it can be concluded that the proposed strat-
egy (I.e., ML-TLSMOTE) is an effective approach for solving an imbalanced MLC 
and has a more positive influence over all the multi-label classifiers, which enhances 
the prediction of multiple outcomes associated with frailty syndrome.

5.2  Computational Complexity

Finally, with efficiency measures, the computational complexity of the BR, CLR, and LP 
depends on the complexity of the base classifier and the parameters of the learning problem 
[44]. We observed that using tree-based methods as a base classifier (e.g., C4.5) is more effi-
cient than using the SVM-based methods. The BR algorithm, which builds separate models 
for each label associated with frailty, is the simplest one. In our experiment for the data pre-
processed with ML-TLSMOTE, the training time of BR using C4.5 as the base classifier was 
20.24 min, while the training time of BR using SVM was 3.5 h. The CLR is the next least 
complex algorithm, requiring |L| the number of BR models and additionally |L|*(|N|-1)/2 one 
against one model. Through ML-TLSMOTE, the training time of CLR using a random tree 
as the base classifier was 8.5 min. The LP is relatively the most sophisticated algorithm, since 
it trains a multi-class classifier, with the number of classes being equal to the number of dis-
tinct label sets in the MLD. The computational complexity of MLKNN is |L| times the com-
putational cost of computing K nearest neighbours. The training MLKNN model is linear 
with the size of the training dataset and the length of the data vector.

The main advantage of our proposed resampling approach (ML-TLSMOTE) is that 
it is independent of both the multi-label classifiers and the base algorithms. Thus, it 
does not demand training any of these classification algorithms and can be used as a 
general solution to the problem. Regardless of the imbalanced solution proposed in 
this study, any multi-label learning problem has additional complexities due to the 
presence of a large number of labels, high multidimensionality and concurrency of 
imbalanced labels. ML-TLSMOTE is developed to solve the concurrency of imbal-
anced labels and to reduce imbalance within labels. Generally, concurrency is a more 
complicated problem as the number of labels increases, where the proposed ML-TLS-
MOTE approach can help to handle the challenge of concurrency between labels.

6  Conclusions

Detecting frailty in elderly people represents an essential research problem, and there 
is a potential to prevent frailty and intervene early. In this study, MLC was devel-
oped for the purpose of predicting multiple outcomes of frailty conditions: mortal-
ity, fracture, disability, medical emergency admission at the emergency department, 
urgent hospitalization, and preventable hospitalization. MLC models are valu-
able tools to construct a predictive model that considers the prediction of multiple 
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outcomes and interventions in an unseen patient. The study consists of two major 
points: the first is addressing the imbalance problem in an MLC. ML-TLSMOTE 
was proposed to reduce the imbalance between labels and improve the performance 
of MLC algorithms for frailty prediction. The results of the experiment show that 
ML-TLSMOTE was an efficient approach as compared to SMOTE or T-link. The 
second part presents a comparative study of the six MLC algorithms (BR, ECC, LP, 
CLR, RAkEL, and MLKNN) for the prediction of frailty. RAkEL achieved the best 
performance in terms of the Hamming loss and macro averaged AUROC, while the 
CLR showed the best value of the ranking loss and average precision.

In future work, three problems need further investigation in our study. The first is 
dimensionality reduction to optimize and improve the performance of the training 
models, which is one of the challenging topics in the MLC task. Second, with the 
advances in sensor technologies, many elderly people with frailty can use wearable 
sensors [53–55] to monitor their physiological signals; thus, it is essential to collect 
and analyze real-time data from wearable sensors to make a more accurate frailty 
risk assessment. Finally, we need to apply and test ML-TLSMOTE on other bench-
mark multi-label databases, such as images, and textual datasets using advanced deep 
learning models [56] and evaluate its performance and computational complexity.
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