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Abstract

Nowadays machine learning (ML) tools are severely impacting many fields in science
and technology, due to their flexibility and overall reduced computational cost. This
thesis explores the application of Machine Learning (ML) techniques in materials
science across multiple length scales, focusing on three different topics related to
various condensed matter subfields.

The first example focuses on predicting the energetic stability of binary semicon-
ductors in the Zincblende and Rocksalt crystal structures. The proposed approach is
based on simple and accessible atomic properties used to build complex descriptors
employed in linear regression models. By using a dataset obtained via first-principles
simulations, our study shows that one-dimensional formulas can efficiently describe
the energetics of binary semiconductors. The approach also highlights the impor-
tance of various atomic properties in driving the stabilization of one crystal structure
over the other, with spatial atomic properties playing a significant role.

This thesis also focuses on the design of an energy-efficient magnonic device
that functions as a physical neural network. The proposed model uses spin waves as
primary information carrier, allowing data processing with minimal energy dissipa-
tion. The research builds upon a benchmark problem from the literature, where the
separation of two spin wave frequencies using a magnonic device was successfully
simulated. In our case, we first performed micromagnetic simulations on a prototype
device having a rectangular ferromagnetic area with square-shaped defects. Genetic
Algorithms (GA) were used to optimize the position of defects by minimizing a
defined cost function (i.e. maximizing frequency separation). Our results proved
GA to be an extremely efficient approach. After successfully optimizing this kind of
demultiplexer, other devices were simulated, such as classifiers of alphabet letter and
numbers.



vi

In addition, this study also explores image regression algorithms based on neural
networks, to understand changes in magnetic properties (especially perpendicular
magnetic anisotropy) resulting from external perturbations on a Co/Pd multilayer sys-
tem. Our research was inspired by an experimental investigation focused on magnetic
and structural modifications obtained upon ion-beam-irradiation. After validating the
results using micromagnetic simulations, we generated about a thousand simulated
domain images, to compensate for the lack of a significant number of experimental
images, which were used to train and test a convolutional neural network (CNN). Our
approach was shown to predict magnetic properties with high accuracy starting from
domain images and demonstrate the potential of image regression methods based on
CNN for understanding magnetic properties driven by microscopic features.

Overall, this Ph.D. thesis highlights the versatility and usefulness of ML tech-
niques in materials science at different scales, ranging from predicting energetic
stability to designing energy-efficient magnonic devices to understanding magnetic
properties from domain patterns. These findings pave the way for further research
aimed at developing AI tools for materials design and computing technologies.
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Chapter 1

Introduction to Machine Learning in
Materials Science: Exploring Multiple
Scales from Atomic to Macroscopic

Computational materials science has undoubtedly been a driving force in materials
characterization, design and discovery in the last half-century[11–15]. Indeed,
simulations are well-known to reduce time and cost in comparison to experiments,
shortening the expensive trial-and-error process usually required in experimental
materials science. Nowadays, to support simulations, scientists are increasingly
benefiting from machine learning (ML) methods[16–18]. As well known, ML
is currently revolutionizing various research and technology fields and materials
science makes no exception. The use of ML in materials science provides several
advantages over traditional methods. For example, ML techniques can analyze large
and complex data sets, enabling researchers to identify patterns and correlations
that may not be apparent with conventional approaches[19–22]. Additionally, ML
techniques allow for the rapid screening of materials for specific applications and ML
models can be trained to predict the properties of new materials based on existing
data[4, 23]. Although ML offers numerous advantages, it shows limitations as well.
In fact, the incorporation of ML into the "simulation box," - thereby including its
combination with atomic and micro-scale simulations - poses several challenges:
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from Atomic to Macroscopic

1. From the ML side, interpreting complex ML models can be difficult, making it
challenging to understand how the model makes predictions and what features
and physical ingredients are most important[24].

2. ML models trained on data from one materials class may not be transferrable
to other classes, making it challenging to generalize results across different
sets of compounds.[25]

3. Training ML models require a large amount of high-quality homogeneous data,
which can be time-consuming and expensive to generate, particularly within
accurate quantum-mechanical techniques[26].

4. Sometimes overfitting occurs, i.e. referring to the situation in which a model -
usually overly complex - fits the training data too closely, however leading to
poor performance on new data (not present in the training dataset) [27].

ML can in principle be used for any material system at any scale, given its
multifaceted nature[28]. The current thesis concentrates on three material science
problems at three different material scales. These problems address diverse ML
challenges and will be thoroughly examined, along with the employed ML tech-
niques and the attained solutions. We will cover three topics related to materials
science: i) we will present the application of linear regression[29–32] in predicting
the most stable crystallographic phase in a specific class of materials (binary semi-
conductors). ii) we will demonstrate how Genetic Algorithms (GA)[33] can be used
to construct a magnonic neural network. iii) we will showcase the Convolutional
Neural Network(CNN) implementation in relation to magnetic domain patterns.

Linear Regression starting from Density Functional Theory data

In the last 50 years, Density Functional Theory (DFT) has revolutionized the field of
materials science by enabling accurate predictions of materials’ properties starting
from their electronic structure[2, 34]. Being “ab-initio" in nature, DFT does not
need any previous information or data, apart from the atomic number and the
coordinates of the elements that are being considered. DFT applications range from
designing new materials to understanding their behavior under different conditions.
Kohn-Sham equations[3], at the basis of DFT, are transparent and transferrable:
they can be equally applied to all kinds of materials (from binaries to ternaries,
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from metals to insulators, from bulk to nanostructures, etc.), without the need to
build a new model every time one changes materials’ class. However, despite its
many benefits, DFT also has limitations. The accuracy of DFT is influenced by
the specific approximation used for the exchange-correlation functional, making it
challenging to treat excited states or correlated electrons or systems characterized
by weak bonding[35]. Additionally, while DFT codes become more and more
computationally efficient, large systems (with a number of atoms higher than a few
thousands) still require significant computational resources. Anyhow, since DFT data
are considered to be highly accurate, different ML methods are often exploited for
data analysis based on the vast amount of data generated through DFT simulations.

On the ML side, various approaches exist nowadays, each characterized by
advantages and disadvantages. Let’s take, as a paradigmatic example, Deep Learning
(DL), a type of ML algorithm relying on artificial neural networks to make complex
predictions. Although DL algorithms can be very efficient in predictions, they are
challenging to interpret due to their complex and often non-transparent structure (see
specific points 1 and 2 from the previously reported list-1). Researchers therefore
resort to alternative approaches, such as linear regression, logistic regression[36],
and decision trees[37], to improve interpretability. In the first part of the thesis,
the latter approach - privileging interpretability - was the one adopted. We started
with a case study to predict the difference in total energy between two crystal
structures in semiconductor binary compounds[4]. Linear regression was selected
as the algorithm of choice, because it allows the creation of formulas linking the
target energy difference to an interpretable set of basic atomic features. We used a
dataset from a previous study conducted by Ghiringhelli et al. as a benchmark. We
generated multiple combinations of fundamental atomic properties of the material
constituents and employed these features to train a model able to predict the energy
difference between two structures. The best-performing formulas were then analyzed
to understand the role of specific atomic features in determining the stability of the
crystal structure. We tested the predictive capability of the derived formulas on
"new" compounds (i.e. which were not present in the training dataset) and found
satisfactory agreement with first-principles results. Furthermore, we compared our
results with those reported in a previous study using a different strategy for obtaining
the descriptors. Our findings revealed a 40% improvement in accuracy compared to
the previously reported results.
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Genetic Algorithm for developing Magnonic devices

As previously mentioned, ML tools are not restricted to the atomistic scale in
materials science and engineering. Rather, they have a wide range of applications
throughout the materials world. Indeed, ML can be applied not only at the level
of individual atoms but also to larger length scales, which is of interest for the
micro/macroscopic characterization of materials and fabrication of devices[38].

On the technological side, magnonics is an innovative field that offers a new
approach to low-power information processing[39]. Unlike conventional electronics,
which rely on electrons to carry and process data, magnonics uses magnons, the
quanta of spin waves, to perform these tasks, complementing modern electronic
processors[39]. Despite the development of many magnonic devices, they are typ-
ically designed for specific functions and require specialized investigations. To
overcome this limitation, a new method called “inverse-design[40] magnonics" was
introduced by Wang et al.[6], a powerful tool in which a feedback-based compu-
tational algorithm is used to design magnonic devices for specific functions. For
example, it was used to create devices that can separate two wavelengths of spin
waves by exploiting the interaction of spin waves with defects. Micromagnetic
simulations on a prototype device consisting of a rectangular ferromagnetic area
with square-shaped defects have demonstrated this concept[6]. However, to optimize
the configurations of defects more efficiently, a finer technique than the method used
by Wang et al. is desirable. In addition, one of the challenges in developing novel
magnonic devices is represented by the high amount of data needed to train ML
models [41](cfr point 3 of the previously mentioned list).

To address this challenge, we tried two ML techniques, referred to as Binary
search and encoder-decoder sequence–to–sequence model. Here, we faced problems
similar to those reported in points number-3 and 4 of the list. Therefore, we optimized
the structure configuration using the GA[33] . The GA is a search algorithm inspired
by natural selection and can be used to create an efficient design by minimizing a
defined cost function. This leads to a reduction in the number of simulations required
to train the model, therefore minimizing the time and computational resources
required and making the process far more efficient.

The combination of inverse-design magnonics and GA also allows for optimizing
complex magnonic configurations with multiple inputs and outputs. We demon-
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strated this by creating a magnonic demultiplexer (as benchmark result), alphabetical
letter, and numerical number identifier; the latter examples illustrate the universality
of this method for linear, nonlinear, and nonreciprocal magnonic functionalities.
The advancement of magnonic devices and the implementation of inverse-design
magnonics can significantly impact various applications. Low-power information
processing using magnons has the potential to transform the field of electronics, and
the combination of inverse-design magnonics with GA provides a powerful tool to
optimize complex magnonic configurations, as shown by our benchmark outcomes
produced with fewer iterations.

CNN for understanding magnetic domains

Perpendicular magnetic anisotropy (PMA) thin films have revolutionized the field
of high-tech applications, such as ultra-high-density magnetic storage, fast memory
devices, and nanosensors[42–45]. These thin films exhibit a favorable atomic order-
ing in ultrathin stacking of Co with Pd or Pt, resulting in PMA[46, 47]. However,
the magnetic microstructure of PMA thin films and multilayers is a critical factor
in the magnetization reversal process[48, 49]. Structural manipulation, such as that
obtained by Ion Beam Radiation (IBR), has proven to be effective in changing the
magnetic microstructure and selectively improving the properties of materials[50–
52]. Indeed, ion beam radiation is a powerful tool used to modify the properties of
materials: by irradiating materials with high-energy ion beams, various changes can
be induced in their structure, morphology, and properties, including the creation of
defects, the formation of new phases, and the modification of surface properties[53].
In this respect, researchers have focused on understanding the effect of IBR on the
images of magnetic domain patterns in Co/Pd bi-layers.

One of the challenges faced in this field is the lack of a sufficiently large number
of experimental images to train any ML model. To address this issue, we used micro-
magnetic simulations to generate a sufficiently vast set of images by changing four
critical parameters: exchange length, Anisotropy constant, damping constant, and
temperature. In this respect, we note that some ML approaches also face challenges,
such as overfitting[54] (cfr point 4. mentioned in the ML challenges list).

Convolutional Neural Networks (CNNs) offer an excellent solution to these
challenges. CNNs are specifically designed to process and analyze visual data,
using convolutional layers to extract features from images and pooling layers to
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reduce their size while maintaining essential information. As well known, CNNs
are better suited for image recognition and computer vision tasks than traditional
neural networks. In this work, we have used CNNs to study magnetic domains in
perpendicularly magnetized multilayers subjected to ion-beam irradiation. We have
compared the performance of different pre-trained libraries, such as ResNets[55]
and VGG[56], with that of CNNs. The results showed that CNNs outperformed the
other ML models, achieving an accuracy of almost 94% in predicting the critical
parameters. The potential applications of this research are significant, paving the
way for enhanced PMA thin films and multilayers.

The thesis is organized in three “self-contained" chapters, each of them being
based on a different ML methodology, tackling a different problem and proposing
different solutions. In closer detail, the thesis is organized as follows: Chapter-2
shows the use of ML for the prediction of a stable crystal structure starting from DFT
data. Chapter-3 presents a compelling application of ML in materials science at the
micro-scale, where GAs are used for in-plane micro-magnetic simulations. Chapter-4
showcases the tremendous potential of ML by implementing Convolutional Neural
Networks (CNNs) in predicting multilayer perpendicular magnetic properties. By
devoting a different chapter to each application of ML, we therefore aim at showing
how ML can be proven to be a valuable and innovative tool in solving complex
problems in various aspects of materials science.



Chapter 2

Role of Atomic Properties in the
Crystal Structure Stabilization:
insights from ML

2.1 Introduction

Discovering novel materials has always represented a challenging task for mate-
rial scientists and engineers. Traditionally, it has been supported by intuition and
previous experience of scientists, an approach being time and resource consuming
though. Researchers have recently used advanced simulation tools to predict mate-
rials’ properties even before experimental synthesis. For example, first principles
methods have been shown to well describe the electronic properties of a given crystal
structure or molecule, which can in turn be used to predict a wide range of physical
response functions. The development of quantum mechanics provided a rigorous
theoretical foundation for chemistry and material science. However, despite the
exponential growth in the available computing power, first principles-based tech-
niques for predicting the properties of materials remain rather time consuming. The
combination of statistical methods with high-throughput datasets can help to identify
potential candidates as novel materials for targeted applications. Although machine
learning techniques in data analytics have drastically advanced, the process phase
for transforming raw physical data into quantitative descriptions, as required for
employing these algorithms, is yet to transpire.
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Modeling material properties with high accuracy and low computational cost
still represents one of the grand-challenges in materials science and engineering.

As for ab-initio methods, repeatedly shown to provide accurate tools for material
properties prediction, the continuous growth of available computational power [57]
has stimulated scientists to move in the direction of high-throughput simulations[58–
66]. Along this line, open access databases, such as OQMD[67][68], NOMAD[69,
70], Aflowlib[71], C2DB[72, 73], QPOD[74], Materials Project[75], Materials
Cloud[76] and related AiiDa[77, 78], provide researchers with a huge collection of
basic first-principles results. A large amount of ab-initio data is thus available, which
can be used for deeper analyses and studies, provided one can count on proper tools
to extract relevant information out of them.

In the last years, materials scientists have developed different Machine Learning
(ML) methods to rationalize the data analysis [79–89]. Each method has its own
specific advantages and limitations. Methods like Random Forest [90] or Neural
Networks (NN)[91], which are mainly behind the Deep Learning (DL), are very
efficient[92] but not always transparent, partially blurring the comprehension of the
role played by the input variables in the final results. Nonetheless, over the last
decades, improvements towards the interpretability of such “black-box” ML models
have been made through additional methodologies [93], such as model-agnostic
methods, which in turn are divided into global and local interpretation techniques
(see Ref.94 and references therein). For instance, out of various global methods,
we can cite: the permutation feature importance [95, 96], which associates to each
feature an importance values depending on how much the model error increases
when its values are shuffled; the functional decomposition [97], which decomposes
the complex prediction function into smaller parts; the global surrogate [98], which
replaces the original model with a simpler one that can be more easily interpreted.
On the other hand, among the local methods, we can cite: the local surrogate models
(LIME) [99], which replaces the complex model with a locally interpretable surrogate
model; the SHapley Additive exPlanations (SHAP) [100], which is based on Shapley
values and computes the contribution of each feature to the prediction.

Also in the specific case of DL, which structures algorithms in multiple layers
to create “artificial neural networks” (therefore enhancing the complexity in the
prediction’s interpretation), other specific interpretation methods have been proposed
[101–103], in addition to the already cited model-agnostic ones.
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However, when targeted case studies allow, the easiest way to achieve a deeper
understanding of machine learning results is to rely on interpretable models, such
as Linear regression (LR)[29–32], logistic regression [36] and Decision trees [37].
This situation can apply here to our target case, i.e - as detailed at length below
- the prediction of the difference in total energy (∆E) between rock-salt (RS) and
zinc-blende (ZB) crystal structures in semiconductor binary AB compounds, a
prototypical case in material science. Accordingly, being our goal the creation of
formulas linking the target label (∆E) to a set of basic atomic features, we selected
the LR algorithm, both in its one-dimensional and multi-dimensional forms.

In closer detail, we here propose a ML-based approach to build sets of features
(or descriptors) starting from a given set of basic variables (e.g., atomic properties),
which are subsequently used to construct LR models (or formulas). The final outcome
of our procedure is a transparent formula, not necessarily of easy mathematical
formulation, but revealing which part of the input mostly affects the output[104], i.e.
allowing the identification of the main driving physical features.

As anticipated, to test our method, we target a prototypical case in material
science: indeed, inspired by the original work of Ghiringhelli et al. [4], we optimized
our models to predict the difference in energy between rock-salt (RS) and zinc-blende
(ZB), from that optimization a classification of the most stable crystal structure be-
tween RS and ZB for semiconductor AB binary compounds naturally derives. To
identify useful features, we generate combinations of basic atomic properties (i.e.
the independent variables in our approach) of the material constituents through a
combinatorial approach[105]. We then carry out an analysis of the emerging best-
performing formulas, identifying the role of specific atomic features in determining
the final stabilization of the crystal structure. Finally, we test the predictive capability
of the obtained formulas by applying them to “new" compounds (i.e. outside the
dataset used for training the model), finding an overall satisfactory agreement with
first-principles results. As already mentioned, our approach is similar to what origi-
nally proposed by Ghiringhelli et al. [4], though with some differences and further
extensions, which will be carefully discussed in what follows. Let us also remark
that large packages are nowadays available to the scientific community, already
providing advanced and well-tested features for use in ML applied to materials
science [106, 107]. However, we here strictly followed the spirit of Ghiringhelli et
al. [4] and therefore chose their same atomic features, as detailed below. In the spirit
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Fig. 2.1 Different components used in machine learning methods and detailed for the Linear
regression. The steps include: Dataset preparation, Selection of machine learning method
and Validation.

of comparing the two approaches, we also compare our results with the reference
paper[4], where the authors have used a different strategy to obtain the descriptors.

The work presented in this chapter is in collaboration with Prof. Loriano
Storchi(a), Danila Amoroso(b) and Francesco Delodovici(b). (a. Univ. Chieti,
(b. CNR-SPIN).

2.2 Methodology

The approach we present here can be regarded as a combinatorial machine-learning:
a set of basic atomic properties (APs, listed in Table-2 (Appendix)) are randomly
combined (though under certain initial constraints detailed below), to build a set
of material features (MFs). The generated features are then used to train a LR
model, where the energy difference between rocksalt and zincblende structures is
the dependent variable (i.e., the label). Then, we select the best performing model
according to standard performances metrics, such as the Root Mean Squared Error
(RMSE). The final result of this procedure is a “formula", which is a concise and
clear representation of the relationship between the used atomic properties and the
energy difference between RS and ZB phases. In the following, we describe in detail
the different steps of our approach which are described in the Fig-2.1.
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Fig. 2.2 a) Basic atomic properties (APs) used to construct the material features. b) Crystal
structures of RS and ZB (plot made using the VESTA tool) [1]. Grey (yellow) spheres repre-
sent A (B) atoms. c) Workflow for formulas construction, machine learning methodology,
validation, and MF selection procedures. In the AB compounds, A is the atom with the
lowest electronegativity.

2.2.1 Dataset preparation and materials

As mentioned above, we aim at predicting the total energy difference (∆E = ERS −
EZB) between RS and ZB phases of cubic crystal structures for 82 semiconductor
binary AB compounds (the dataset is reported in table-2 in SI). We employed total
energies reported in Ref. [4], which were calculated through density functional
theory (DFT)[2][3] within the local density approximation (LDA [34]). The RS and
ZB are two cubic crystallographic phases which are often found as ground state
in binary semiconductors. One of the most important differences between the two
phases stands in the bond coordination, which is octahedral for RS and tetrahedral
for ZB.

The construction of the material features (MFs), is based on primary atomic
properties of the constituents, also taken from Ref. [4]. To facilitate the physical
interpretation of each MF, the APs are subdivided into two different kinds: (i)
“energy" properties, including highest occupied Kohn-Sham level (HOMO), lowest
unoccupied Kohn-Sham level (LUMO), Ionization Potential (IP), Electron affinity
(EA); (ii) “spatial" properties, including rs, rp, and rd , i.e. the radii where the
radial probability density of the valence s, p, and d orbitals, respectively, reaches its
maximum.
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2.2.2 Formulas construction

We rely on the LR[29, 30] approach to obtain a direct interpretation of the dependent
and independent variables. The construction of a useful LR model can become
troublesome, requiring a linear dependence between features. In Ref.[4], the au-
thors implemented an automated feature selection method employing the LASSO
regression analysis method [108, 4]. In our work, we use a combinatorial approach
to generate the dependent variable (material features) to be used within the linear
equations, and thus to finally obtain the formulas.

In Fig. 2.2, we illustrate the workflow of the formula generation and selection us-
ing LR. The process starts with the selection of the APs to be combined. Afterwards,
we choose prototype functions that are simple analytical operations applied to the
APs. In our case, we selected 5 prototype functions, f (x), namely x,x2,x3,

√
x,ex.

where x is an AP. Then, we obtain the final set of MFs by combining different
prototype functions via the combinatorial approach (see for instance [105]), and
applying the following additional set of rules:

• GEN1: combine two prototype functions in the numerator, forcing them to
belong to the same kind of APs, that is both “spatial"-like or both “energy"-
like; one prototype function is at the denominator with the only constraint to
be non-zero, such as

MF =
f1(AP1)± f2(AP2)

f3(AP3)
(2.1)

• GEN2: combine two prototype functions with same kind of APs at the numer-
ator, and a single prototype function at the denominator with argument of a
different kind with respect to the numerator ones. For instance considering
equation-2.1, if AP1 in f1(AP1) and AP2 in f2(AP2) is an “energy" term (i.e.
EA or HOMO), then AP3 must be a “spatial" term, (i.e. rp)

• GEN3: combine two prototype functions at both the numerator and denomina-
tor without any constraints

MF =
f1(AP1)± f2(AP2)

f3(AP3)± f4(AP4)
(2.2)
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• GEN4: combine two prototype functions with the same physical dimensions
at both the numerator and denominator

MF =
f1(AP1)⃝∗ f2(AP2)

f3(AP3)⃝∗ f4(AP4)
(2.3)

where where we introduce a generic ⃝∗ symbol to indicate different mathemat-
ical operations (i.e.⃝∗ =+−×÷)

Each one of these set of rules corresponds to a different MFs generator.

From the implementation point of view, each generator is a Python [109] function
that produces a set of strings. Therefore, we can easily exploit the Python capability
to parse a source code and run Python expression (code) within a program [110]
to compute all the MFs’ values starting from the generated sets of strings. This
allows for an easy implementation and plugin of other generators, as well as to
easily adopt different sets of Atomic Properties, leaving the workflow unchanged: a
new generator can be introduced implementing a Python function returning a list of
strings, each one being a valid MF.

Finally, in order to choose the optimal formula, we build a LR model for each of
the generated MF. To practically select the best model, i.e. the “best formula”, we
randomly split the full dataset into : 90% as training set to train/initialize the model;
10% as a test set to check model’s performance. We perform this random splitting N
times (with N = 150) for each model, and we calculate the RMSE from the test set
for each run. Afterwards, we again verify the top 10 resulting best formulas with a
higher value of training set and test set splitting, with N = 1000. We average it over
all N splitting, and we obtain avg(RMSE), as reported in our Tables.

We mention that different metrics for evaluating regression model can lead to
different formulas ranking. In this work, we rank the obtained models based on the
lowest avg(RMSE) for direct comparison with a previous work [4].

2.2.3 Formulas optimization

In order to further improve the performance of our models, we introduce an additional
step, which we refer to as “formula optimization". In detail, we focus on the top
10 formulas obtained using each generator and the subsequent LR, as described in
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the previous section. After that, we use a grid search to find the relative weights
of each prototype function of the atomic properties (i.e., each fi(APi)) within the
formula. A first grid search ranging between -1 to 1 with the increasing step of
0.1 is used simultaneously for all the weight coefficients (i.e. an exhaustive search
through the specified subset of values for a,b,c,d coefficients is simultaneously
performed). We multiply each fi(APi) of the formula by the weight coefficient and
we optimize the final RMSE value. Once the procedure finds a set of optimal weight
coefficients, two subsequent grid searches, with reduced incremental step values
(0.01 and 0.001 respectively) and range of search are performed to obtain the final set
of refined weight coefficients. Of note, for each set of weight coefficients generated
during the grid search, we also run the linear regression. Thus, we are performing a
proper formula optimization, as at each step of the grid search we are updating both
the weight coefficients as well as the slope and intercept coming from the LR. In
addition, it is important to underline that we made sure to find the global minimum
solution when analysing the N-D maps over the phase space of the parameters (in
the specific case of GEN2, we also double-checked the optimization results through
an analytical minimization approach via Mathematica [111, 112]).

To further clarify the procedure, we show here an exemplary equation:

∆E = m× a× f1(AP1)⃝∗ b× f2(AP2)

c× f3(AP3)⃝∗ d × f4(AP4)
+q (2.4)

where ∆E is the targeted material feature (MF), a,b,c,d denote the weight
coefficients scanned during the grid search, f1(AP1), f2(AP2), f3(AP3), f4(AP4) are
the prototype functions build on the primary atomic properties APi, and m and q are
the the slope or angular coefficient and intercept, respectively, recursively determined
upon LR. In Table 2.2, we report the optimized, best performing formula from the
different generators.

To benchmark our grid search, we also used automated coefficient-optimizing
methods: Nelder-Mead[113], Conjugate Gradient (CG)[114], Broyden– Fletcher–
Goldfarb– Shanno (BFGS) [115] and Truncated Newton method (TNC)[116]. Al-
though the resulting sets of coefficients are different in terms of single values with
respect to those obtained via the grid search, the ratios between them is almost
preserved as well as the associated RMSE. In particular, for the case of GEN1 and
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GEN2, the ratio between the numerator coefficients a and b is preserved; for GEN3
and GEN4 also the denominator coefficients ratio, between c and d, is preserved.

In Fig. S.3 of the Appendix, we show the evolution of the RMSE and different
ratios for different methods using 1D feature generated by GEN3.

Finally, we would like to underline that the whole procedure, i.e. formula
construction and its optimization, is not too expensive from a computational point
of view. Indeed, as reported in Table S.4 of SI, for almost all the generators the
whole computation can be performed in less than four hours on a standard PC. Only
GEN3, where 1091200 different formulas are generated and evaluated, is more time
consuming (i.e. almost 15 hours are needed). However, we underline that the 1D
formula construction procedure can be easily parallelized, in order to drastically
reduce its computational burden.

2.2.4 Higher-dimensional features

Following Ghiringhelli et al. idea (see Ref. 4), we also build 2D and 3D formulas, as
follows: we combined in all possible ways two or three different 1D MFs extracted
from the best 1000 ones, and checked the avg(RMSE) using multiple LR for N
test-train set splits. Thus the final equations, which relate the ∆E to the basic atomic
features, are written as follows:

∆E = m1 ×
a1 × f1(AP1)⃝∗ b1 × f2(AP2)

c1 × f3(AP3)⃝∗ d1 × f4(AP4)
+ (2.5)

+m2 ×
a2 × f5(AP5)⃝∗ b2 × f6(AP6)

c2 × f7(AP7)⃝∗ d2 × f8(AP8)
+q

for the general 2D formulas , and:

∆E = m1 ×
a1 × f1(AP1)⃝∗ b1 × f2(AP2)

c1 × f3(AP3)⃝∗ d1 × f4(AP4)
+ (2.6)

+m2 ×
a2 × f5(AP5)⃝∗ b2 × f6(AP6)

c2 × f7(AP7)⃝∗ d2 × f8(AP8)
+

+m3 ×
a3 × f9(AP9)⃝∗ b3 × f10(AP10)

c3 × f11(AP11)⃝∗ d3 × f12(AP12)
+q
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for the 3D ones. The comparison between performances is discussed in the following
Section.

2.2.5 Test of predictive power of ∆E formula for AB compounds
outside the dataset

After obtaining the optimised 1D formulas for ∆E in the case of AB compounds,
we aimed at further verifying their validity and predictive power, by considering
additional AB systems (i.e. which were not originally included in the ML training
set) and by comparing values obtained from ML-predicted ∆E formula with cor-
responding ab-initio calculated values. In closer detail, we focused on different
alloys, obtained by changing respectively the concentration of A-site atoms, such
as [AxA′

1−x]B, and of B-site atoms, such as A[BxB′
1−x]. Accordingly, one can test

the efficiency of the formulas by checking the energy difference for intermediate
concentrations as obtained from optimised 1D formulas and compare their trend
with respect to first-principles results. To this end, ab-initio electronic-structure
simulations were carried out within DFT

and LDA functional. Calculations were performed using the VASP[117–119]
code, employing a 8×8×8 k-mesh for the Brillouin zone sampling. We verified
that the results obtained with the pseudopotential VASP code for the parent binary
compounds were consistent with those reported by Ghiringhelli et al., calculated with
the all-electron FHI-aims code [120]. For simulations at different concentrations,
we adopted the so called “Virtual Crystal Approximation” (VCA), based on virtual
atoms interpolating between the real constituent atoms [121, 122]. However, as
well known from the literature, the VCA approach neglects some effects, such as
local distortions around atoms and, as such, should not be expected to reproduce
fine details of disordered alloys properties [123]. Accordingly, in some cases (i.e.
for MgxCa1−xSe alloys), in order to mimic disordered structures with an improved
accuracy, we calculated total energies using supercell structures, rather than using
the VCA method on primitive unit cells. Specifically, the considered supercell is the
cubic unit cell composed by four AB formula units with planes of cations alternating
along the c direction (see Figure S.4). The k-mesh was modified accordingly, to
maintain the same density of points employed in the simulations of primitive cells.
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2.2.6 Validation of the linear regression

We employed different verification parameters to check the model’s efficiency,
namely: RMSE, Pearson correlation coefficient, R2 values, and classification accu-
racy. RMSE represents the root mean square error of the test dataset. The Pearson
correlation coefficient, defined in equation 2.7, represents a measurement of input
and output property dependence [124]. If two properties are highly dependent one
on the other, one gets values closer to 1 or -1, whereas values closer to zero show a
much lower dependence. R2, i.e. the coefficient of determination defined in equation
2.8, describes how properly the regression line interpolates the data. Finally, the clas-
sification accuracy shows the ability of the linear model to qualitatively distinguish
different classes of the dataset, in our case RS and ZB as stable phases.

r =
∑(xi − x̄)(yi − ȳ)√

∑(xi − x̄)2 ∑(yi − ȳ)2
(2.7)

R2 = 1− SSresidual

SStotal
(2.8)

In equation 2.8: SStotal = ∑i(yi − ȳ)2, SSresidual = ∑i(yi − fi)
2 where fi are the

predicted values; xi and yi are values of input and output properties; x̄ and ȳ are mean
of the input and output values.
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2.3 Results

In this section, we present the results of our combinatorial approach and explore the
contributions of various generators and formula dimensions. We also examine the
role of atomic properties and their impact on energy and test the effectiveness of
the trained model on new binary systems. Specifically, we investigate how different
generators and formula dimensions affect the model’s accuracy and compare our
approach’s performance to other methods in the literature. Additionally, we analyze
the influence of atomic properties on the stability and energy of the materials,
shedding light on the system’s underlying physics.

2.3.1 Results from Formula Search

In this section, we will analyse the final formulas as obtained from different genera-
tors as explained in the section-2.2.2. The results are shown in Tables 2.1,2.2,2.4,2.5;
in the first row we report the results obtained by Ghiringhelli et al.[4] for comparison.

First, by comparing the avg(RMSE) values, we note that all 1D formulas obtained
from our different generators better perform with respect to the 1D ones reported in
[4], where the authors used the automated feature selection method LASSO [108].
Remarkably, some atomic primary features appearing in 1D formulas of Ref. [4] also
appear in our obtained list of 1D formulas using GEN1 and GEN2; nevertheless,
those are characterized by a higher avg(RMSE) than other formulas we obtained
via our combinatorial approaches. Additionally, formulas from GEN3 show the
lowest avg(RMSE) among all the others. We also note, from Table 2.1, that GEN1
and GEN3 provide lower avg(RMSE) compared to GEN2 and GEN4 respectively;
however, GEN2 and GEN4 have a higher success rate in terms of classification
prediction. classification prediction is the process of using a trained machine learning
model to assign a class label to a new data point based on its features. It is a form
of supervised learning where the model has been trained on labeled data to learn
the relationship between the features and the class labels. For instance, in Table-
2.3(Appendix) we report the formula optimized using the success rate as target
label. GEN4 results indeed the best performing generator with respect to GEN3,
when targeting ∆E instead. It’s noteworthy that the best formula from GEN4 shows
similar terms to the corresponding case for the ∆E-based optimization. This testifies
the fact that the choice of the performances metric to rank the material features
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Table 2.3 1D formulas after the optimization step, along with related statistics. Notation as
in table-2.1. RMSEs are in eV. Here we use "Success rate" as target function

can be different according to the target problem to be studied; different models’
performances metric are, in fact, not always correlated.

In order to gather hints on the relative contribution of the individual primary
atomic properties to the stabilization of either the rocksalt or the zincblende structure,
we extracted the best ten formulas with the lowest avg(RMSE) from each generator
(so called “original" formulas) and then apply the formula optimization, as detailed
in the previous section-2.2.2. This procedure attributes relative weights to each
f (AP), allowing to measure the importance of the individual atomic properties in
driving the energy stabilization. In principle, the avg(RMSE) value depends on
random test-train splits that we perform to our dataset. Therefore, to reduce the effect
of randomization, as a target model performances metric, we rank our optimized
formula based on the RMSE of the whole dataset, rather than based on avg(RMSE).

By comparing Table 2.1 and Table 2.2, it is evident that the optimization pro-
cedure can further change the formulas ranking, providing a different final “best
formula” with respect to the non-optimized formulas. In particular, we notice an
improvement in RMSE around 5-10% after the formula optimization.

2.3.2 Effect of atomic radii on ∆E

Interestingly, our results reveal the size of the A cation to play a leading role in the
phase stabilization; in fact, the rp(A) radius appears in the best performing formulas
more frequently than the other basic atomic properties. Therefore, we further
analysed the dependence of ∆E on rp(A). In Fig. 2.3, we show ∆E as a function of
rp(A), including fitting curves proportional to rp(A)−2 and rp(A)−3. What can be
observed is a clear dependence of ∆E on rp(A): larger (smaller) rp(A) favors RS
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Formula avg(RMSE) RMSE R2 Success rate Generator type

0.117× EA(B)−IP(B)
rp(A)2 −0.342 0.1455 0.1423 0.89 89% 1D descriptor [4]

−0.751× rp(B)3−exp[rs(B)]
rp(A)2 −0.317 0.1296 0.1193 0.92 90% GEN1

0.285×
√

|IP(B)+
√

|EA(A)|
rp(A)2 −0.387 0.1367 0.1309 0.91 91% GEN2

0.774× rp(B)+
√

|rd(A)|
rp(A)3+rp(B)3 −0.303 0.0995 0.0963 0.95 94% GEN3

1.155× rs(B)+rs(A)
rp(B)3+rp(A)3 −0.368 0.1103 0.1058 0.94 96% GEN4

Table 2.1 1D formulas, along with related statistics: avg(RMSE) denotes the root mean
squared error for average over 1000 random train-test splits of dataset. Instead, the RMSE
is the root mean squared error for the entire dataset as training and test. Similarly, the R2

values are calculated considering the entire dataset and they show the quality of fit between
predicted and actual values. The success rate (in percent) shows how many RS or ZB phases
out of 82 have been correctly identified by the descriptor. The “Generator type" column
indicates the different generators used to produce the corresponding descriptor. RMSEs are
in eV.

Formula avg(RMSE) RMSE R2 Success Rate Generator type

0.127× 0.800×EA(B)−1.000×IP(B)
1.110×rp(A)2 −0.352 0.1457 0.1419 0.89 89% 1D descriptor [4]

−1.870
0.801×

√
rp(B)−0.606×exp[rp(A)]
1.010×rp(A)3 −0.968 0.1191 0.1143 0.93 91% GEN1

0.477× 0.876×
√

|HOMO(B)|+0.468×
√

|LUMO(B)|
1.110×rp(A)2 −0.372 0.1340 0.1296 0.91 91% GEN2

1.609× 0.642×rp(B)+0.502×
√

|rd(A)|
1.170×rp(A)3+1.170×rp(B)3 −0.309 0.0991 0.0961 0.95 94% GEN3

1.207× 0.878×rs(B)+0.200×rp(A)
0.512×rp(B)3+0.610×rp(A)3 −0.359 0.1045 0.1016 0.94 99% GEN4

Table 2.2 1D formulas after the optimization step, along with related statistics. Notation as
in table-2.1. RMSEs are in eV. Here we use RMSE as target function
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(ZB). Moreover, there is an overall good agreement with the fit, particularly using
the rp(A)−3 function. The latter is, in fact, the most recurrent prototype function
detected by the ML models. Such a strong dependence of the energy is not observed
with respect to the other atomic properties; other comparative plots of ∆E as a
function of other f (p) are reported in Fig.2.4. This behavior is in line with the
further observation that the rocksalt structures systematically show larger interatomic
distances with respect to the zincblende counterparts (cfr. lattice parameters reported
in Ref.4); therefore, larger cations prefer to adopt octahedral coordination (i.e. RS)
with longer bond-lengths - and bigger polyhedral volume - compared to ZB with
tetrahedral coordination.

From the obtained results, we remark that formulas based on ”spatial” atomic
properties achieve higher ranking, thus better performance, with respect to those
including atomic energy terms, both in the original models and in the optimized
ones. Accordingly, this behaviour further confirms the primary role played by the
atomic size (in terms of steric and/or bonding-related effects), in determining the
energetics of the AB compounds, i.e. in selecting the preferred crystal structure [4].
In particular, we note from the results that the well-performing GEN3 and GEN4
contain all the four radii (rs(A),rs(B),rp(A) and rp(B)), as expected from a basic
understanding of bonding in octet binary semiconductors. Note that GEN3 and
GEN4 generally show better performances as they are built to explore a wider space
of search (see Section 2.2, and Table S.4 in SI where the number of generated and
evaluated formulas is also reported).

Dependencies of the different properties on ∆E

In addition to the dependence on the rp(A)2, Figure 2.4 reports the dependence of
the total energy difference between RS and ZB phases as a function of the other
atomic features (i.e. except for rp, since that is reported in Fig. 2.3). It appears
clearly that only rs is strongly correlated with the energy difference, at variance with
other atomic features where the correlation is small or absent.

2.3.3 Proof of concept using alloy systems

In the aim of further proving such trends and validate the implemented combinatorial
ML method, we study the energetics in alloys of the type [AxA′

1−x]B and A[BxB′
1−x],
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Fig. 2.3 Energy difference between rocksalt and zincblende, ∆E (in eV), as a function of
rp(A) for different binary compounds (blue triangles). Data fit functions are also shown,
using proportionality to rp(A)−2 and rp(A)−3 (cfr: f (rp(A))) via green dashed line and
red straight line, respectively in the main graph and insets. Insert shows the linear fit of
∆E for f (rp(A)) ∈ [0 : 1], as a function of 1/rp(A)2 (green triangles) and 1/rp(A)3 (red
dots). Resulting slope (m) and intercept (q) are respectively: 1.120 (eV Å2), -0.360 (eV) for
1/rp(A)2, and 1.184 (eV Å3), -0.240 (eV) for 1/rp(A)3.
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Fig. 2.4 Dependence of ∆E on atomic features: a) rs, b) rd , c) EA, d) HOMO, e) LUMO and
f) IP. Orange dots (blue triangles) indicate values relative to the B (A) atoms. In panel-a, we
perform a fit using a function f (x) proportional to x−2 (dotted green line) and to x−3 (straight
red line).
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where x is the relative concentration of the mixing ions, monotonically tuning thus
the average size of one ion with respect the other. All the alloy input properties were
linearly interpolated between corresponding values for end binaries (i.e. AB and A′B
in the [AxA′

1−x]B case), according to the Vegard’s law [125]. For the A-ion mixing
case, we considered SrSe, CaSe, MgSe, BeSe as parent AB compounds, already
included in the original dataset. We then predicted the energy differences between
RS and ZB phases for varying concentrations using the original and optimized 1D
formulas constructed via GEN3 and GEN4 generators (Table 2.1 and Table 2.2,
respectively). To confirm the obtained predictions, we thus calculated the energy
difference via DFT simulations, for a few intermediate concentrations. The results,
shown in Fig. 2.5, demonstrate an overall agreement between first-principles calcu-
lated and machine-learning predicted energetics. In particular, we notice a change
of sign in ∆E, reflecting the change in the stability of the RS with respect to the
ZB phase, when moving from the larger Strontium to the smaller Beryllium at the
A-site, in line with the previously discussed relation between atomic radii of the
A-ions and phase stabilization. At variance, no such change of phase is observed
when mixing ions at the B-site, keeping fixed the A-type one. This is confirmed, by
looking at the energetics in B[Sb1−xPx] and Sr[Se1−xSx] alloys, shown in Fig.2.6(a)
and Fig. 2.6(b), respectively. Despite the changing size of the average B-site, the
two systems preserve the crystal structure adopted by the the parent compounds, i.e.
rocksalt for the Sr-based compounds and zincblende for the B-based compounds.
Such a behavior is still in line with preferred atomic structure fixed by the ion at the
A-site, consistently with Strontium being larger than Boron. Qualitative agreement
between ML-predicted and DFT-calculated energetics is observed again.

2.3.4 Higher dimensional features

After discussing the results related to 1D models, we now comment about the higher
dimensional formulas. Our best 2D and 3D formulas from different generators are
reported in Tables 2.4 and 2.5, respectively.

To visualize the performance of the obtained formulas, we reproduce in Fig. 2.7
the scatter plots of DFT-calculated energies as a function of model-predicted energy
differences for the best formulas obtained by GEN3 - in terms of avg(RMSE) - for
1D, 1D after formula optimization, 2D, and 3D models. From these, one can infer the
quality of the prediction for the different approaches: the narrower the area between
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Fig. 2.5 Total energy difference ∆E as a function of concentration(x) for [CaxSr1−x]Se,
[MgxCa1−x]Se and [BexMg1−x]Se alloys, highlighted in blue, green, and pink regions re-
spectively. Energy differences are predicted using original and optimized 1D descriptors
constructed using GEN3 and GEN4 and verified using DFT (black line with diamond points)
within VCA. For an improved accuracy, the two asterisk-highlighted intermediate points in
the [MgxCa1−x]Se region are calculated using the supercell approach rather than VCA.

Fig. 2.6 Total energy difference ∆E as a function of concentration (x) for Sr[SxSe1−x], see
panel a), and B[PxSb1−x] alloys, see panel b), predicted from original and optimized 1D
descriptors constructed using GEN3 and GEN4. Model predictions are verified using energy
differences calculated via DFT[2][3] (black-line with diamond points).
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red lines. the smaller the error or, equivalently, the more reliable the prediction.
Notably, this is the case when building higher dimension formulas.

In addition, a careful comparison between our results and those reported in the
reference paper, Ref.[4], is reported in Table-2 of the Appendix. In particular, in
Fig. 2.12 we compared the scatter plot of the 1D formula from GEN3 and Ref.[4],
with bar graphs of errors for individual compounds. To check the improvement
with respect to 1D formulas, we considered the avg(RMSE) value, as also chosen
in Ref.[4]. One can observe the improvement in avg(RMSE) if we examine 1D and
2D formulas in Tables 2.1 and 2.4. We notice around 10-20% improvement from
the original 1D to 2D, but less than 10% of optimized 1D to original 2D formulas.
Furthermore, we also notice that original and optimized 1D formulas from GEN3
and GEN4 better perform with respect the corresponding 2D ones reported in Ref[4].

We remark that the process of formula optimization is less computationally
expensive than the construction of higher-dimensional formulas. In addition, from
the formula optimization one can gain a better physical insights about the contribution
of individual primary atomic properties. These comments overall suggest that lower-
dimensional formulas constitute a better choice in terms of physical interpretation
and computational efficiency.

2.3.5 Heat map for 1D, 2D and 3D formulas

Before going on with the discussion, let us just remind that 2D and 3D formulas are
constructed starting from 1D formulas. Indeed, it is interesting to take a look at the
individual correlation between 1D formulas appearing inside 2D and 3D formulas.

Fig-2.9(a), 2.9(b), 2.10 show the Pearson correlation of different formulas using
heat maps for 1D, 2D and 3D formulas, respectively. Here, we chose the "best-
performing" formulas, i.e. those reported in Tables-2.1, 2.4, 2.5 (including the 1D
formula presented in the reference paper [4]). In addition, the correlation of full 1D,
2D and 3D formulas is reported in Fig-2.11.

Let us discuss the individual heatmaps. First, we created a heat map using
individual 1D formulas using different generators (cfr Fig-2.9(a)). One can see that
all the 1D formulas, including the one in the reference paper[4], show a correlation
higher than 97%; this indicates that the formulas found by different generators
have a similar dependence as shown in the reference[4], despite having different
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Fig. 2.7 Comparison of actual (i.e. DFT) vs predicted total energy difference ∆E for a) 1D,
c) 2D and d) 3D formulas constructed using GEN3. Panel b) shows the best 1D descriptors
after formula optimization. Lower-right insets show a zoom in the relevant region where
many compounds are concentrated. Red dotted lines correspond to 2×avg(RMSE) value.
The respective descriptors can be inferred from tables-2.1, 2.2, 2.4, 2.5
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Fig. 2.8 Nomenclature used in the heatmaps, taking as example a 2D formula constructed
using two 1D formulas and Gen-2. Here, G represents the generator number followed by two
numbers (1, 2 or 3): GIJ refers to the Jth 1D-formula used by Generator I when constructing
higher dimensional formula. The complete formula can be then denoted as 2DG2 (i.e. 2D
formula using generator 2).

RMSEs. On the other hand, the unique 1D formulas used in 2D and 3D show
smaller correlations, compared to 1D, for different generators (cfr Section:2.2.2).
Here, we would like to mention that we prevented our algorithm to construct higher
dimensional features using 1D formulas that showed a correlation higher than 90%.

The nomenclature used in the heatmaps 2.9(a), 2.9(b), 2.10, 2.11 is shown in
Fig-2.8, taking as example a 2D formula. A similar nomenclature can be extended
to the case of 3D formulas. In fig-2.11, we report the correlation among different
complete formulas, where we can see at-least 96% correlation between different
formulas. This shows that most of the hints are already catched by the 1D features,
which are quickly evaluated. The red boxes inside Figs. 2.9(b) and 2.10 indicate
the “internal" correlation, i.e. the correlation between 1D formulas used in the
construction of the 2D or 3D formulas. We note that in some cases the correlation
within the red box is of the order of 85 %, signalling that using two 1D formulas in
the 2D or 3D formulas is somehow “redundant".

2.3.6 Comparison with the reference 1D Formula

If we compare the error for individual binaries achieved by i) the method mentioned
in section-2.2 and ii) reference-[4], one can visualize the performance of the different
formulas. Fig-2.12 reports the error comparison of 1D formula constructed using
Gen-3 (2.12 b,d) and 1D formula presented in the publication[4](2.12 a,c)). In
addition to the predicted values, we show values corresponding to 2*RMSE using
red lines, indicating the errors’ distribution. As such, a wider distance between two
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Fig. 2.9 Heatmap of Pearson correlation coefficient between different 1D (a) and elements of
2D (b) formulas, using different generators. (c) shows the colour bar for the heatmap. The
nomenclature reported on the axes labels follows Fig-2.8. The red square inside panel (b)
shows the correlation between 1D formulas inside each 2D formula. R1 represents the 1D
formula obtained from the reference paper-[4].

red lines indicates a higher error and vice versa. We can see the improvement in our
predicted 1D formula compared to the reference publication. From Fig-2.12 (c,d)
we report the performances for different compounds of our predicted formula and
the 1D formula by Ghiringhelli et al. Here, not just the overall RMSE is reduced by
40% (cfr panels a,b), but also the absolute error for individual binaries seem to be far
more smoothly distributed.

2.3.7 Formula optimization using automated optimization meth-
ods

One may wonder the following: we are using the grid search method for optimization,
but why one cannot use other automated optimization methods to find the relative
contribution of individual atomic features in the material feature? To answer this
question, we further benchmarked our grid-search optimization for the best 1D for-
mula constructed using GEN3, defined in equation 2.9, by means of other automated
optimization methods: Nelder-Mead[113], Conjugate Gradient(CG)[114], Broyden–
Fletcher– Goldfarb– Shanno(BFGS)[115] and truncated Newton(TNC)[116]:
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Fig. 2.10 Heatmap of Pearson correlation coefficient between different elements in 3D
formulas using different generators . The nomenclature reported on the axes labels follows
Fig-2.8. The red squares show the correlation between 1D formulas inside each 3D formula.



32Role of Atomic Properties in the Crystal Structure Stabilization: insights from ML

Fig. 2.11 Heatmap of Pearson correlation coefficient between different 1D, 2D and 3D
complete formulas. The nomenclature for the axis label follows Fig-2.8. 1DR, 2DR and 3DR
denote the 1D, 2D and 3D formulas as published in the reference-paper [4], respectively.
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Fig. 2.12 Panel a reports the predicted against actual (i.e DFT) ∆E values for 1D formula
presented in Ref. 4; panel b reports those obtained by GEN3 as a comparison. Absolute
error for the same formula for different compounds in the bar graph (panels c and d). The
related formulas used to calculate the values can be inferred from the main text.
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rp(B)+
√

|rd(A)|
rp(A)3 + rp(B)3 (2.9)

if we introduce different coefficients (a,b,c,d) multiplying each atomic feature, then
the expression can be written as:

a× rp(B)+b×
√

|rd(A)|
c× rp(A)3 +d × rp(B)3 (2.10)

Through the automated optimization methods mentioned above, one can obtain
the set of coefficients that give the lowest RMSE. Each step of the optimization
is followed by LR. Thus, the optimization modifies the slope (m) and intercept
moving towards the coefficients combination with the lowest possible RMSE. From
80 to 100 iterations are needed for each method to reach the minimum RMSE, as
reported in panel a of figure 2.13. Panels from b to e report the trend of the ratios
a/b,c/d,m×a/c and m×b/d. All these quantities appear to converge to constant
values in the final steps of the optimization. We ran all the methods mentioned above
for the top ten performed 1D descriptors to verify the precision of the grid search
technique. We found that, in all forty cases, the grid search acquired variables show
the lowest RMSE.

2.3.8 Comparison with deep neural network

This section will discuss some drawbacks of using an advanced method like NN. As
shown in Fig-2.14, we are comparing fundamental ideas about the NN and formula
search. The introduction-2.1 explains why the neural network works like a total
or partial BlackBox. Indeed, the properties or features the NN uses are hard to
control and verify. In addition, it becomes very troublesome if we want to get some
physical insights out of NN. Therefore, our aim here is to use ML algorithms that
can provide output properties and scientific insights. The method shown in this
chapter is an excellent example of transparent ML techniques. Here, as we can see
in Fig-2.14(bottom path), ML not just provides a prediction, but also the path to
interpret the physical ingredients underlying the specific prediction.
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Fig. 2.13 Evolution of different parameters at each minimization step (i.e. iteration) using
different automated optimizing algorithms: Nelder-Mead (Blue lines), CG (orange lines),
BFGS (green lines) and TNC (red lines) as shown in f. Here, we show the evolution of RMSE
(eV), a/b,c/d,m×a/c and m×b/d in panels a, b, c, d and e respectively. Here, to show the
evolution of different parameters, we use a GEN3 formula

(
(rp(B)−

√
|rd(A)|)/(rp(B)3 +

rp(A)3)
)
. The ratios for grid search are −1.28, 1.00, 0.88, −0.67 for a/b, c/d, m×a/c and

m×b/d respectively.
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Fig. 2.14 Conceptual visualization of approaches based on Neural Network (top) or Formula
search method (bottom).

2.4 Summary

The knowledge of a material stable crystal structure constitutes the starting point for
any ab–initio modelling, since materials properties crucially depend on the periodic
atomic arrangement in the crystal. Within this general framework, our aim here has
been to exploit ML methods to correlate the energetic stability of different crystal
structures (zincblende vs rocksalt) for popular binary semiconducting compounds
with primary properties of their atomic constituents, the latter representing simple
and easily-accessible ingredients. Based on atomic properties, we therefore built the
material features using a combinatorial approach, we trained the machine learning
model using the created features over a density–functional–theory dataset and we
obtained simple mathematical expressions to quantitatively predict the energetic
stability of one crystal structure over the other (i.e., a formula). In addition, we have
also introduced an extra step following the linear regression to explore the relative
contributions of individual basic atomic properties.

To investigate the performance of the combinatorial approach, we compared
our results with a reference paper [4], where the authors predicted the stability of
the crystal structure using an automated feature selection method. We found that
our 1D formulas constructed using the combinatorial approach achieved a higher
accuracy with respect to the reference ones. Furthermore, we also learned more
about the underlying mechanism from the formula optimization, where we found
that the stability of RS and ZB heavily depends on the rp radius of A-sites. This



2.4 Summary 37

kind of understanding is, in general, much more difficult to achieve in heavily-
automated artificial–intelligence methods, such as neural networks, where it is
not possible to interpret directly the model results. In this respect, our approach
based on linear regression allows the construction of physical models supported by
machine-driven suggestions of relevant ingredients; as such, it should be regarded
as a methodology offering a huge range of applications in addressing microscopic
mechanisms underlying different phenomena, calling for extensive investigations in
the nearby future.



Chapter 3

Optimizing the Design and
Performance of Magnonic Devices
through Modelling and Simulation
Techniques Enhanced by Machine
Learning Algorithms

3.1 Introduction

When looking at the history of computation, we can see that the first fully transistor-
based computer was built in 1955 and replaced vacuum tubes. Since then, the
transistor size has decreased drastically, therefore providing room to place more
and more transistors in the circuit. As such, the number of transistors in the CPUs
has been on a constant rise, improving the performances of the CPUs to meet the
ever-rising demand for computation power. In 2006, CPUs were manufactured with
around 42 million transistors; after four years, in 2010, they were manufactured with
295 million transistors. This number increased to more than 1 billion transistors
in 2013; in 2018 a 16nm CPU used 1 billion transistors. Moore’s Law, stating the
number of transistors on a chip to double every two years, has therefore proven to be
rather accurate so far. However, two significant problems started rising along with
the smaller size of the traditional silicon-based transistor, which will be discussed
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Fig. 3.1 Evolution of logic devices from Vacuum tubes (a) to integrated circuits (c) to high
efficiency processors (e). The figure is reproduced using the ref-[5].

below. For a deeper understanding, we will refer to the human biological brain, in
comparison with logical devices.

Let’s go back to the two significant problems occurring with a traditional
transistor-based device: heat dissipation and energy consumption. Let’s consider the
average life of SOC as ten years and a PC with 1 billion transistors as our standard
SOC. The energy consumption for this processor would be around 95-125W, which
accumulates to 11kW when considering 100 billion transistors, heat dissipation
summing up to 11kW ×3.41 = 37.5kBTU/h. Let’s now compare this to the human
brain, which contains around 100 billion neurons working as processing units. At
variance with the PC case, the energy consumed by the brain would be close to
20W[126], and heat dissipation close to 0.072kBTU/h. From the above comparison,
we can see that even though we are close to biological processing in terms of number
of processing units, we still need to make significant progresses in terms of energy-
and heat-efficient devices. On the positive side, advancements in technology have
resulted in smaller transistor sizes, which consume less energy to switch. Currently,
the trend in transistor size reduction has nearly reached its limits, as evidenced
by the 4nm gap layer between p-type and n-type semiconductors, as depicted in
Figure 3.1(e). However, further downscaling will result in increased Joule heating
in interconnects, leading to higher energy consumption by CPUs. Moreover, even
minor imperfections in the transistors can potentially disrupt their functioning.
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At present, we cannot replace the traditional silicon doped transistor, due to
its reliability[127]. Therefore, in recent years, computer specialists have tried to
distribute the workload on the CPUs by exploiting the GPUs and TPUs for differ-
ent processing tasks[128]. Nevertheless, the core components of these units are
traditional transistors with specific types of structuring, which come with similar
problems to those mentioned above. Therefore, it is of interest to propose processing
units that can assist the traditional transistor-based SOCs, to perform tasks - like
neuromorphic computing - to help CPUs to distribute loads. It is in this broad context
that the studies presented in this chapter could find application. Graphics processing
unit

Magnonics is an emerging field of complex magnetism, in turn one of the
most fascinating areas of solid-state physics. Magnonics combines the study of
waves and magnetism. In closer detail, a spin wave relates to spin-excitations
and can be defined as a propagating disturbance in an ordered magnetic material;
the wave propagates via rotation of magnetic moments. The field of magnonics
offers a new type of low-power information processing in which magnons (i.e. the
quanta of spin waves) - instead of electrons - carry and process data. As such, no
electrical charge motion is involved, in principle dissipating no heat. In recent years,
scientists have been exploiting different characteristics of magnons, such as magnetic
anisotropy control using voltages [129], spin Hall effect [130], spin orbit torques
[131], the propagation of magnetic droplets [132] and the creation of a nanoscale
wake-up receiver using spin waves [133]. In addition to that, other magnetic-based
technologies are also getting popular; for example, MRAM can store data with lower
switching time/energy than traditional memories [134] and spin valves can be used
for neuromorphic computing[135].

Here, the aim is to propose a magnonic device that could perform a particular
task of NN (like filtering images), reducing the computation load on the CPU. This is
motivated by the extensive use of magnonic devices, that has come to light in recent
years [39]. Tan et al.[136] suggested the multi-sensory neural network with cross-
modal integration, inspired by biological objects such as eyes, ears, etc. However,
the development of each device requires complex investigations, and usually one
device design is suitable for one function only[136].

Demultiplexer. The spin waves have wavelengths ranging from micrometers down
to atomic scales[137] and show a variety of pronounced nonlinear phenomena[138];
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as such, they look promising for Boolean computing[139], radio frequency appli-
cations [140] and neuromorphic computing[141] at the nanoscale. Recently, in the
field of photonics (i.e. operating with light waves to process data) the approach of
inverse-design devices[142] was proposed. This approach was adopted by Wang et
al. [6] to create and demonstrate a demultiplexer, which could separate two different
spin-wave frequencies using a material-based structure. We considered this device
as our starting point, which we used to construct more complex devices using state
of the art machine learning and optimization methods. To this end, we perforned
micromagnetic simulations by means of the GPU-accelerated simulation package
MuMax3[143], including both exchange and dipolar interactions, to calculate the
space- and time-dependent magnetization dynamics in the investigated structures.
After the simulation phase carried out in this thesis, in the longer term, the exper-
imental group in Aalto University (Finland), led by Prof. Sebastiaan van Dijken,
will consider experimentally fabricating the device, to cross-check the theoretical
preditcions and test the relevance of the proposed device from the technological
point of view.

The design of the demultiplexer is shown in Fig.3.2. Here, the magnonic fre-
quency demultiplexer consists of one input waveguide and two output waveguides
with a width of 300 nm connected by a 1×1µm2 design region. The design region
has been divided into 10× 10 elements, each with a size of 100× 100nm2. The
yellow region indicates the magnetic material (Yttrium Iron Garnet, YIG), and the
white holes denote regions where the material has been removed. Here, spin waves
react differently depending on the arrangement of the defects ; therefore, our aim is
to find the combinations of holes (defects), for which the frequency splitting is the
highest. In this case, we note incidentally that a traditional trial and error method
will not work, due to many possible combinations. In fact, the possible combinations
are 2100, which convert to 1.26×1030. If we consider 10 seconds to perform one
simulation, it will take around 4×1023 years to finish the sample design ! Therefore,
we must use innovative, novel machine-learning techniques to find the optimum
structure. To this aim, the authors in [6] used the Binary search method, an approach
which is easy to implement and to understand. Therefore, first, we tried to simulate
the stripe to check the frequencies and wavelength for the spin waves; after that,
we have implemented the Binary search algorithm, as suggested in our reference
article[6]. Then, we have implemented a more efficient method to find the optimum
structure. At last, we used our in-house implemented method to construct a more
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Fig. 3.2 a) Structure for the design of the magnonic frequency demultiplexer suggested by
Wang et al.[6]. b) Complete structure of the demultiplexer device. C) Visualization of spin
waves inside the demultiplexer.

complex device. We would like to mention that the research activity presented in
this chapter is performed in collaboration with the group led by Prof. Sebastiaan Van
Dijken at Aalto University.

3.2 Methodology and Technical details

3.2.1 MuMax3 code

MuMax3 is an open-source software package for micromagnetic simulations, used
to model the behavior of magnetic materials at the micro and nano scale. It uses
the Landau-Lifshitz-Torque(as referred in the equation-3.2.1) [143] equation to
simulate the dynamics of the magnetization and can be used to study a wide range
of phenomena, such as magnetic domain formation, spin wave excitations, and
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magnetization reversal. It is written in the programming language Go and can run on
a variety of platforms, including Windows, Mac, and Linux[143]. It is capable of
handling large simulation cells, and has support for multi-GPU acceleration which
helps to speed up the simulations. The Landau-Lifshitz-Torque[143] can be written
as follows;

τ⃗LL = γLL
1

1+α2

(−→m ×−→
B eff +α

(−→m ×
(−→m ×−→

B eff

)))
with γLL the gyromagnetic ratio (rad/Ts),α the dimensionless damping parame-

ter and
−→
B eff the effective field (T). The default value for γLL can be overridden by

the user.
−→
B eff has the following contributions:

• externally applied field
−→
B ext

• magnetostatic field
−→
B demag

• Heisenberg exchange field
−→
B exch

• Dzyaloshinskii-Moriya exchange field
−→
B⃗ dm

• magneto-crystalline anisotropy field
−→
B anis

• thermal field
−→
B therm .

MuMax3 also provides a wide range of post-processing tools to analyze the
results of the simulation, such as visualization of the magnetic structure and the
calculation of various physical quantities (i.e. magnetic energy, magnetization, and
magnetic susceptibility). It also includes a scripting interface that allows users to
automate the simulation process and perform parameter sweeps.

It is used in a variety of research fields such as spintronics, magnetic data storage,
and microwave engineering, and has been applied to the study of magnetic materials
such as thin films, multilayers, and nanoparticles[143].

MuMax3 is actively developed and maintained by the group of Prof. M. V.
Costache at the Hasselt University, Belgium and is distributed under the GNU
General Public License. The software can be downloaded and used for free, and the
source code is available on Github[143].
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3.2.2 Micromagnetic simulations of demultiplexer

All the simulations were done using the MuMax3 micro-magnetic package, as
mentioned in section-(Section-2.2). In this case, our first task was to replicate
the computational experiment that Wang et al. performed. Therefore, for simple
verification, we considered the single stripe with 1µm in length and 300nm in width,
to verify the wavelengths mentioned in the reference article[6].

As a second task, we simulated the entire device where the simulation box size
is the 10240×1000nm2 with a cell size of 20×20×20nm3. We set the saturation
magnetization at 14× 104A/m , the exchange stiffness at 3.5× pJ/m , and the
damping constant at 2×10−4 . An external magnetic field of 200 milli-Tesla (mT) is
being imposed and the direction of this field is along the y-axis. This simulation was
run for 100ns. Here, we considered the YIG material for the spin wave propagation
and vacuum for the holes. In addition, we have also created a 0.5µm wide waveguide
on the left and right side of the device with higher damping parameters to prevent the
reflection of the spin waves. The entire device is shown in Fig.3.2(b), highlighting
the middle region and crop-out section.

3.3 Results and Discussion of different ML methods

3.3.1 Binary Search Method

Methodology

The binary - or half-interval - search is an efficient algorithm for finding a specific
item from a sorted list of items. It works by repeatedly dividing in half the portion of
the list that could contain the item, until the possible locations have been narrowed
down to just one. In this case, first, we represented our 1µm×1µm by means of a
two-dimensional array; M0(m,n)(m ∈ [1;10],n ∈ [1;10]. This array was optimized
to maximize the following objective function:

O = (I f1,O1 − I f1,O2)(I f2,O1 − I f2,O2) (3.1)
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Fig. 3.3 Simulations of different stripes of YIG to calculate the wavelengths associated to
different frequencies. The size of the stripes is 10µm× 0.4µm. The vertical blue line in
each of the stripes indicates the place of the antenna that we have used to excite the spin
waves. The different frequencies are shown in the legend. Red and blue regions show the
spin wave amplitude (high and low) in the Z direction. Here, panel a) shows the spin waves
for different frequencies and panel b). shows the spin wave amplitude in the central section
of the stripes for different frequencies.
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Fig. 3.4 (a) Algorithm of the Binary search method published in the paper-[6]; (b) schematic
explanation, using different structures. The detailed explanation is provided in Section-3.3.1

where I fi,O j is the spin-wave intensity of frequency fi at the j− th output waveg-
uide (i, j = 1,2). We estimated each value individually, and only positive values
were accepted. This objective function aimed at maximizing the transmission of the
spin wave of frequency f1( f2) to the output waveguide 1 (2) and simultaneously
minimizing the crosstalk between them, i.e., to realize the function of a demultiplexer.

The Binary search algorithm is an optimization method that sequentially eval-
uates every element of the design region. First, we select a random structure with
holes and material inside the design region. After that, we set the initial saturation
magnetization and other parameters needed for the MuMax3 simulations. We ob-
tained the ground state of the device by relaxation of magnetization. Subsequently,
the spin-wave propagation in the structure is simulated after relaxation, to calculate
the spin-wave intensity in the output waveguides. In the structure, we put the vertical
antenna in the middle of the input waveguide, as shown in Fig-3.4 to excite the spin
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waves. In the device, the wave will propagate through the input waveguide, then to
the design region with material and holes and, finally, to the output waveguides. In
the end, we check the intensities of two frequencies at two output waveguides to
calculate the objective function-3.1.

We then repeat this process with a new structure with random combinations
of indices (m,n). We apply these new indices into the device’s design region part,
where the material properties will be set according to either YIG or vacuum. Again,
we calculate the objective function Om,n for the new combination. If the value of
the new function are Om,n > O, then we accept the new structure and the value of
O is replaced by Om,n for the next iteration. Otherwise, we keep O as reference
and proceed from there on. We repeat this process until no further improvement is
achieved, as Wang et al. suggested in their article [6].

Results

The advantage of the binary search method is that it is easy to implement and
converges quickly to find the minima for various linear, nonlinear, and nonreciprocal
magnonic devices, as shown by Wang et al. [6] for different simulation cases. In our
simulations, we found the same structure as the authors of the reference paper [6]
when we started from the given initial structure; however, the number of steps we
required was close to 800, to be compared to 400 that was required by the authors[6].

From this study, we learned some valuable insights:

• The final structure is highly dependent on the initial structure in the BS.

• The binary search algorithm is only saving information about the last structure;
as such, there is a high probability to be stuck in local minima.

• We are not exploiting any knowledge from the rejected structures in BS, which
could anyway provide insights.

The above-mentioned observations also possibly happened due to a different
implementation of the BS algorithm or of the objective function, since the authors
didn’t provide any detailed description about the code or extraction method. In any
case, our aim was to find a more efficient method than the BS algorithm and, in order
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to do so, we decided to list a few rules that can be used to select the most appropriate
method. The rules are listed as follows:

1. The method should be easy to understand and implement.

2. The method should be robust.

3. The method should not be stuck in local minima.

4. The method should be computationally more efficient.

5. The method should learn from all the simulated structures.

3.3.2 Encoder-Decoder Sequence Model (EDSM)

Methodology

Our literature study points to the type of Neural network, known as the Encoder-
Decoder network or Sequence to Sequence network, a model consisting of two
Recurrent Neural Networks (RNN) called the encoder and decoder. The encoder
reads an input sequence and outputs a single vector known as the state, and the
decoder reads the state (vector) as input to produce an output sequence. An RNN is
an artificial neural network (ANN) generally applied for sequential or time series
data. Researchers use these neural networks for ordinal or temporal problems, such
as language translation, natural language processing (NLP), and speech recognition.
They are related to popular mobile applications such as Siri [144] in Apple, voice
search in Alexa [145], and language translation in Google Translate [146]. We show
the schematic difference between the CNN and RNN (Encoder-decoder network)
in Fig-3.5. Here, one can see that CNN (right) uses a feed-forward neural network
(transferring all the information in one direction) compared to RNN (left), which
uses a backward feed network in the hidden layer (transferring information back to
the hidden layer). One can find a detailed comparison in the article [147].

EDSMs refer to two recurrent neural networks: one network to encode the input
sequence, called the encoder, and a second to decode the encoded input sequence
into the decoder target sequence. Here, we discuss the list-3.3.1 as mentioned above
to evaluate the performance of the EDSM method compared to BS as shown in
Fig-3.6. From the list, we can see that we are satisfying points 2, 3, and 5. In fact,
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Fig. 3.5 Schematic difference between the CNN (right) and RNN (left) types of Networks.
The figure shows the main difference between the two types of networks: RNN feeds the
results back into the network, whereas CNN uses feed-forward architecture types.

since RNNs are "Robust" by definition and are trained using all the structures as
shown in schematics Fig-3.6(b), we have less probability of being stuck into local
minima. However, EDSM is not as easy to understand and implement as BS, and
we need to check the method’s efficiency. To compare with the BS, first, we need
to generate the dataset, then we decide on the architecture, and later, we check the
performance of the EDSM.

Dataset Generation

In order to train the EDSM, we need the dataset to train and test the algorithm.
Therefore, instead of generating a new dataset for the EDSM, we use the data
calculated during the Binary search method. In that case, we calculated around
one thousand different configurations, which we use for the training and test cases.
Before using the data to train the model, we should check the distribution of the
objective function. Therefore, first, we separate our objective function according to
the two output waveguides. So, for output waveguide 1, we calculate (I f1,O1 − I f1,O2)

and for output waveguide 2, we use (I f2,O1 − I f2,O2). Moreover, we normalized both
values and plotted the distribution in Fig-3.7.

In order to train the EDSM properly, the distribution should be normal; in fact, if
the distribution is not normal, the model will automatically incline towards the more
frequent regions. From Fig-3.7, we can see that the number of the samples having
intensities between 0.0 and 0.1 is double with respect to the rest of the distribution.
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Fig. 3.6 Schematic difference between the BS (left) and EDSM (right) types of Networks.
We can see that the BS will start from the initial structure and optimize from the first one.
On the other hand, EDSM needs to be trained before generating results. Other differences
are given in the text. The panel (b) is constructed using the ref-[7].
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Fig. 3.7 Histogram of relative intensity flowing through each arm. The blue bars indicate
the 2.6GHz flowing in output guide 1 and orange bars indicate the 2.8GHz flows into the
output guide 2 for any particular configurations. The Y-axis indicates the number of sample
(configurations) resulting in the intensity.

To account for this situation, we used a random number of 100 samples out of 200,
with an intensity of frequencies between 0.0 and 0.1. In this way, we are left with
900 configurations, which have intensities of frequencies between 0.0 to 0.92, as
shown in Fig.3.7.

EDSM Results.

In our case, we use the "Many to Many sequence model" architecture for the EDSMs,
as shown in Fig-3.8. We provide the detailed code in the Appendix-1. This type of
Network "waits" for the encoding step to finish producing the internal state (Fig-3.8
blue colored region). Then, it starts decoding when the encoder is finished (Fig-
3.8 orange colored region). So, the two parts work individually, translating from
sequence to state for the encoder and state to sequence in the decoder.

In the EDSM, first, we will try to predict the objective function from the sequence
of {0,1} in the encoder part, and after that, we will transmit the objective function to
the decoder part to recreate the sequence which was given as the input as shown in
Fig-3.9. We will stop the training as the decoder generates a similar sequence as the
input. After that, we will disconnect the encoder part and only use the decoder part
to predict the effective sequence.
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Fig. 3.8 Graphical representation of Many to Many sequence model. Here, (x1,x2,xn),
(y1,y2,yn) represent the input and output vector respectively. (h1,t ,h2,t ,hn,t), (s1,ts2,t ,sn,t)
represent the hidden state vector for the time t for the encoder and decoder respectively. Cn,t

represents the objective function we try to predict at time t.

Fig. 3.9 Examples of the configuration that we have used to train the Encoder part. On every
configuration, the top line suggests the value of the intensity of f1 in the output guide 1,
similarly for the output guide 2. The yellow color shows the YIG material, whereas the black
color indicates the vacuum.
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Fig. 3.10 Left (right) panel: results from the encoder (decoder) network. Here, we give the
sequence of the configuration to the encoder to predict the intensity in two output guides.
These intensities will transmit to the decoder network to predict the input configuration. Here
"O" represent value of objective function3.1 on X and Y axis. In addition to that, accurate
and prediction O in the encoder suggest the Mumax3 calculation and machine learning
output for the provided sequences respectively. However, on the decoder side, accurate and
prediction O suggest the Mumax3 simulations of actual sequence and predicted sequence
from EDSM

In Fig-3.10, we plot the results from the encoder (left) and decoder (right) for the
900 configurations. In Fig-3.10, Encoder(left) part predicts the two output values of
the objective function from the sequence of 0,1. At a later stage, the decoder(right)
part predicts the sequence of 0,1 from the applied objective function. In the end, We
simulate the sequence(predicted configuration) using Mumax3 and compare these
values again with the predicted values shown in the decoder(right) From these plots,
we can conclude that the encoder part works relatively better than the decoder. These
two sequences iteratively optimize the structure, and training is done by making a
probability map of accuracy for different configurations. We found that the number
of steps required to train the model is higher than the previous BS. However, we
also remark that, provided enough steps are taken to train the model, the accuracy
is higher than the BS algorithm. Nevertheless, since our bottleneck is represented
by the time to perform MuMax3 simulations, we limit ourselves to optimizing the
configuration within 1000 steps. Therefore, our conclusion is that point-4 (about
computational efficiency) in the list3.3.1 is not well fulfilled and we need to find
another method.
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Fig. 3.11 Graphical representation of the concept of Genetic algorithm in nature (a) and its
use to optimize the configuration (b). The panel a) was taken from the ref-[8]

3.3.3 Genetic Algorithm

From the above two methods (BS and EDSM), we can conclude that BS takes
fewer steps to find the optimum configuration, but it is more likely stuck in local
minima. On the other hand, EDSM is less likely to be stuck in local minima, but
needs a considerable amount of data to be trained. Therefore, we need to find
a method which shows the advantages of both methods. To this end, we used a
Genetic Algorithm, inspired by the process of natural selection (Fig-3.11(a)) and
belonging to the larger class of evolutionary algorithms (Fig-3.11(b)). This method
creates a population consisting of several different configurations and calculates
the frequency separation of each configuration. The configurations with higher
separation of frequency will go ahead for crossover, stochastically generating new
solutions from an existing population. Recursively, we optimize the configurations,
and after several generations, we have an efficient structure as shown in Fig-3.11(b).
We anticipate that configurations evolved in 80 steps, i.e. five times less than the BS
algorithm. Furthermore, we found that the GA could optimize the structure more
efficiently than the method used in the reference article[6].

Methodology

Initial Population The process begins with a set of individuals, called a Population.
Each individual is a solution to the problem one needs to solve. These individuals
contain a set of variables or parameters, known as Genes. In the mathematical
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model, these genes are combined to create an individual. In our case, we have 10
configurations in a population, each containing 100 genes (converting 10×10 matrix
into one dimensional array). A simple example of conversion is shown in Fig-3.12

Fig. 3.12 Graphical representation of population generation.

Fitness Function In general, the fitness function determines how fit an individual
is. It gives a fitness score to each individual. The idea of the selection phase is to
select the fittest individuals from the population and let them transfer their genes
to the next generation. Here, we select two pairs of individuals based on their
fitness scores. Individuals with high fitness have more chance to be selected for
reproduction. In our case, we consider the fitness function to be the same as the
objective function-3.1 calculated above. We would like to mention that this is the
most expensive step in Genetic Algorithm, since it includes the MuMax3 [143]
calculations.

Crossover This is the most important step in the GA. Each individual selected in
the previous step, becomes a parent. For each pair of parents to be mated, a crossover
point is chosen at a random point from where genes will interchange, as shown in
Fig-3.13. The interchanged individual is known as offspring.

Fig. 3.13 An example of single point crossover and its new off springs.

Mutation In certain new offspring formed, some genes can be subjected to a
mutation with a low random probability. This implies that some of the bits in the bit
string can be flipped. Mutation occurs to maintain diversity within the population.
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Fig. 3.14 An example of Mutation. The panel on the left shows the unmutated individual and
the panel on the right shows the mutated version (see numbers in red).

Termination This function serves two purposes. 1). If the population reaches the
predefined target fitness, the entire algorithm stops and provides the solution. 2).
If one does not achieve the target function, then the function decides to keep the
individual (configuration in our case), which shows high fitness (objective function
value) and terminates the rest of the individuals. Here, we can keep one, two or three
pairs which can move forward to the next generation to keep growing from there.
However, there is no rule of thumb to decide the number of pairs to keep. In our
case, we found that two pairs out of five show an optimal convergence. If we use
less than two pairs, the randomness in the result will increase, and it will take longer
to converge; on the other hand, if we use more than two pairs, we might again face
the problem of being stuck in local minima, though convergence is faster.

Results from the Genetic Algorithm

Performance of methods for the demultiplexer with respect to the main general
objectives. Here, we compare the results from three different methods. We utilized
the above mentioned list-3.3.1 to check the method’s efficiency. For simplicity, we
recall the list 3.3 below: From that, we can see that the GA method satisfies point
number 2, 3 and 5, which we recall to be related to robustness, local minima and
learning from all the simulated structures, respectively. Indeed, the GA method can
be used for any set of problems, therefore it is robust. In addition to that, we are
adding random structures at all times, therefore the algorithm is less likely to be
stuck in local minima. Lastly, the GA method is optimizing from all the structures
that we are using. Furthermore, the implementation of the method is not as easy
as BS, but also not as difficult as the EDSM. Therefore, we partially satisfy point
number 1. In addition, the results shown in Fig. 3.15, are achieved in 9 generations
(converted to 90 MuMax3 structures) compared to the 800 steps needed in the BS.
Wang at el. reaches the maximum accuracy of 96% and 80% for two frequencies
after 800 steps. By using GA, we achieve the accuracy of 86% and 83% for the
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same frequency in around 90 steps. Therefore, the GA satisfactorily reaches all our
objectives, as shown in list-3.3.1.

1. The method should be easy to understand and implement.

2. The method should be robust.

3. The method should not be stuck in local minima.

4. The method should be computationally more efficient.

5. The method should learn from all the simulated structures.

Given these premises, we proceeded by using GA to simulate another device.

Attenuator. Among the possible choice of devices to be simulated, we have
created an attenuator using the GA. Here, we would like to reduce the amplitude of
the two output waveguides without changing the wavelength. Hence, we used the
same design shown in Fig-3.2. In this case, we decided to reduce the amplitude by
one-third without loosing the phase. Therefore, we should get one-third of the input
amplitude into each output waveguide and one-third of the total amplitude should be
absorbed inside the design region.

In the aim of doing this, we first initiated the structure and then created different
configurations inside the design region. We used the steps described in section-3.3.3
to find the optimum structure. In order to do so, we first generated the initial popula-
tion with ten configurations. Then we performed the MuMax3 simulations to check
the fitness of each configuration. After that, we selected the top 4 configurations with
the highest fitness score (high-objective function). Then, we performed single-point
cross-over and mutation on the best four configurations. In addition to that, we also
created six new random configurations which will be our population for the next
generation. In the end, we got the optimal solution shown in Fig-3.15(c). Here, from
the graph shown in the right insets of Fig-3.15(c), we can see that the Attenuator
works as expected. In fact, the orange and blue lines in the plot show that both
output spin-wave signals have the same phase and we also reduce the spin-wave
amplitude to 33% in both output waveguides. Therefore, this additional example of
the attenuator helps us to confirm the effectiveness and robustness of the GA method
as a tool to be used for more complex tasks.
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Fig. 3.15 Three types of devices. a) demultiplexer submitted in the reference article [6].
b) demultiplexer achieved by the GA. c) attenuator (reducing amplitude) created using
the GA. The graphs on the right column show, for each device, the amplitude at different
lengths. Here, we plot the green line for 2.6+2.8GHz at the input waveguide, whereas the
orange and blue lines show the spin-wave signals in the two output waveguides. Moreover,
Figure-i,ii,iii shows the amplitude of spinwave at the horizontal cross section of device for
a,b,c respectively.
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3.4 Additional GA-optimized magnonic devices for
complex tasks

After checking on benchmark problems, we started simulating more complex devices,
where - instead of separating two different frequencies - we would like to create a
device which can perform more complex tasks. So, after successfully verifying the
technique, we created some complex magnonic devices, which will be discussed
in this section. We would like to mention that all the devices mentioned in this
section are optimized by the GA. Remarkably, we were able to achieve the optimal
configuration in less than 100 steps, i.e. a number significantly lower than the BS
algorithm and EDSM and, as such, a clear sign of efficiency.

3.4.1 Demultiplexer for three frequencies

As mentioned above, we also would like to use multiple input and output guides to
simulate complex devices. However, we must first verify that multiple input and
output guides are applicable. In order to do that, we first used a fairly complex
example shown in Fig-3.16, where the design region is separating three frequencies
(2.4, 2.5, 2.6 GHz). We use one input guide and check the output at three output
waveguides. We aim to guide each of the frequencies’ spin waves into one of the
output arms; in other words, each frequency (2.4, 2.5, 2.6 GHz) should have the
highest amplitude in one of the three waveguides.

The size of the total simulation box is 15.3×4.096µm2. In addition, the size of
input and output arms are 5.7×0.42µm2 with a square design region of 15.68µm2.
Each square defect inside the design region is 0.1764µm2. The entire device is
shown in Fig-3.16(a). After constructing the device mentioned above, the aim is
to find the configuration of the optimal defects to separate the three frequencies.
Therefore, we used a similar technique to that used for the demultiplexer with two
output waveguides[6]. We optimize the device using the GA constructing 10×10
matrix inside the design region constituted by material and holes.

After optimization with GA, we found the optimal configuration to separate the
frequencies. In Fig-3.16(a), we show one of the frequencies (2.6GHz) guiding to one
of the output waveguides ( f0,1). In addition to that, we also observe frequencies (2.4
GHz, 2.5GHz) that are maximized in the output waveguides ( f0,2, f0,3) respectively.
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However, we also notice some problems, when converting to more complex devices,
as follows;

• The absorption - as observed in Fig-3.16(b) - is here comparatively higher than
in the demultiplexer.

• The separation between all three frequencies is less distinguishable, compared
to two output waveguides; in other words, i.e. much of the amplitude of a
particular frequency is propagating through the other waveguides.

First, we notice that the number of defects (holes) directly affected the spin
waves’ absorption rate; this is straightforward, due to the increase of interactions
between the spin waves with a larger number of holes. From Fig-3.16(b), we can see
that the amplitude in the input waveguide (blue line) is significantly higher than the
output waveguides (orange and green lines). The results mentioned above effectively
address our second concern, which relates to the trade-off between the absorption and
separation of spin waves. In order to separate more than two frequencies, additional
defects (holes) need to be created, which, in turn, results in higher absorption.
Conversely, fewer defects lead to less separation. To strike a balance between the
two, we have slightly modified our objective function- 3.1. Rather than calculating
the intensity of the output waveguide, we have calculated the relative intensity among
three waveguides. This approach has also been employed in another case discussed
below. Moreover, we remark that, the small difference in frequency between the
input signals represent a limiting factor for differentiation, since spin waves with
similar frequencies interact with defects in a similar way. Using signals with larger
frequency differences, such as 2.2, 2.5, and 2.8 GHz, could yield better results. This
presents a promising opportunity to enhance the performance of the magnonic neural
network.

3.4.2 Alphabet Identifier

In this section, we delve deeper into creating a more complex magnonic device by
leveraging the knowledge gained thus far. Our goal is to build a magnonic device
that can identify alphabet characters from pixels. We use a frequency of 2.6 GHz
with nine inputs, each representing a 3x3 grid of pixels.
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Fig. 3.16 (a) Demultiplexer with one input and three output. (b) Amplitude of the device at
the input (blue line) and output waveguide (orange and green lines). The red and blue colors
inside the device represent the total magnetization in Z direction (positive and negative Z
shown in red and blue, respectively).

To avoid cross-talk between the output signals, we use three output waveguides.
Cross-talk refers to the undesired effect caused by a spin wave transmitted on
one waveguide affecting another waveguide. Furthermore, we must address the
absorption problem identified in the previous section. As a result, we decided to
distinguish between three classes of characters.

Using a 3x3 grid of pixels, we can create 12 alphabet characters, as depicted
in Fig-3.17. To ensure compatibility with future experimental realizations, we use
a simulation box size of 50 micrometers by 10 micrometers. We represent each
pixel with a separate input waveguide, as shown in Fig-3.18(b). To set an alphabet
character, we block the input corresponding to the character’s pixels, as illustrated in
Fig-3.18(c). The complete MuMax3 script is provided in the appendix (Appendix-.2)
along with the accompanying figure (Fig-2)

As benchmark, we used three alphabet characters out of 12, as shown in Fig-3.17.
We follow the process shown in Fig-3.18 to simulate the device. First, we chose
three alphabet characters: L, N and X. We then converted our 3×3 matrix into the
one-dimensional array, as shown in Fig-3.18(b). According to the generated array,
we block the spin-wave of the input device by creating a hole inside the waveguide,
as shown in Fig-3.18(c). Then, we created the defects inside the design region.
Subsequently, we excited the spin waves by antennas, which propagate from the
input waveguide to the design region and output waveguide. We calculated the
intensity of the spin wave at each output waveguide after 100ns. We repeated this
process for other classes of the alphabet (i.e.letters N and X). We again use the GA
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Fig. 3.17 Representation of 12 alphabet characters by a 3×3 matrix.

to optimize the design region and configuration, so that it can distinguish between
the three alphabet classes.

In this case, we could indeed differentiate between three different alphabetical
characters. The simulation for the letter "L" can be observed in Fig. 3.19. As
depicted in Fig.3.19(b), the matrix in the center absorbs a considerable amplitude.
Nonetheless, the demultiplexer remains capable of distinguishing between three
letters. One issue that needs to be addressed is thus the balance between amplitude
separation and absorption in the matrix, as can be seen in Fig-3.19(b). In fact, we
also observe weak spin waves magnitude at output waveguides. In addition to the
problems we had faced in the previous device, we also encounter cross-talks between
the two output waveguides. To this end, one also needs to optimize the distance
between output waveguides.

3.4.3 Digit Identifier

We used our previous experience to build a device that works as a physical neural
network. In order to do that, we simulate a device which can identify the digits
from the pixels. Digit identification is a fairly common problem in Deep Learning,
so that it can be a good starting point for constructing the Physical neural network.
Therefore, unlike the previous section, here we use seven pixels, as shown in Fig-
3.20(b). Using these seven pixels, we can create all the numbers between zero to
nine, as shown in Fig-3.20(a). In addition, here, we are using one input and nine
output arms. Furthermore, each pixel is represented by a different frequency of
2.4,2.5,2.6,2.7,2.8,2.9,3.0 GHz. In addition, upon learning from our previous
problems, we would like to be free from the waveguide cross-talk issues. Therefore,
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Fig. 3.18 Workflow of the alphabet identifier. Panel a) shows three letters: L,N,X . Panel b)
shows the binary conversion of the 3×3 pixels. Panel c) shows the complete device with
nine inputs, representing the binary array created in panel-b. Panel d) shows the simulation
result for the letter L. Here, we took the example of the letter L to show the Workflow,
represented by the red lines.

Fig. 3.19 Example of alphabet identifier. a) device simulation using input letter "L" at 50 ns.
b) magnetic amplitudes, presented for three distinct cross sections located at the midpoint of
each output waveguide along its length. c) zoom out of panel-(b) in the range from 34 to 44
µm. d) legend used for the different arms.
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Fig. 3.20 Concept of physical Neural Network devices where Digits from pixels can be
classified using optimized structure defects. Panel a) shows that all digits can be described
by seven pixels. Panel b) shows the example of digit zero conversion to related frequencies.
Panel c) shows the physical magnonic device to classify each digit.

instead of putting nine arms in one direction, we put three output arms in three
different directions, as shown in Fig-3.20(c).

The size of the simulation box is 15µm× 15µm, with the arms’ size being
5.68µm×0.4µm. The middle section of the design region of the device is 4µm×
4µm, where we also created a 10×10 matrix; the latter is to be optimized according
to the objective function. Here, we again use the GA to optimize the device and
to calculate the objective function; we calculate the amplitude of each arm at 95ns.
We assign the arm with the highest intensity for that particular number and run the
new simulation for other number. In the end, we check how many of the numbers
are assigned to their unique output arm. The algorithm stops exploring the new
configuration when all the arms have uniquely assigned numbers. Here we would
like to mention that according to Fig-3.20, we did not consider an output guide for
the number "8", because it has no input frequency. Therefore, we only need to care
about nine arms instead of ten.

We limit ourselves to 1000 steps with 100ns simulation time for each number,
since MuMax3 simulations need intensive computational resources. In our case,
1000 steps with a 1024×1024 simulation size took around three days. Therefore,
if we limit GA to optimize the structure in 1000 steps limit, we found the optimum
configuration with seven unique arms assigned to seven different numbers. However,
we again run into the problem of spin-wave absorption, when we increase the number
of defects. In addition, we also noticed that the input frequencies are not significantly
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Fig. 3.21 The problem with the digit identifier is shown in the Figure above. The Left and
right side panel shows the spin-wave propagation of frequencies representing number 1 and
number 7, respectively. The badge in the output guides of both figures shows the waveguide
with the highest amplitude, suggesting the input number. The two panels show that the
waveguide with the highest amplitude is less distinguishable than in the demultiplexer case,
due to the frequency similarity between the two numbers. The insets in the top left corner of
each Figure with badge show that 4 frequencies are the same in both numbers.

different from some of the numbers, as shown in Fig-3.21. This figure shows the
spin-wave structure of two numbers: one and seven. By pixelating the numbers,
as depicted in the top left corner of each figure, we notice that four of the five
frequencies are identical, causing slight differences in the intensities of the output
signals. The frequency separation in the input signals is also limited. To obtain more
favorable results, using a wider frequency separation may be considered..

3.5 Summary

Upon successfully separating spin waves between two frequencies, our main objec-
tive for this project was to build a device that can work like a physical NN or NN
filter; as such, it could help to assist the traditional transistor based silicon SOC. In
order to do that, first we have started with a simple example from the literature[6],
where we separated two frequencies by creating defects in the design region. Com-
pared to the literature, we used an alternative approach based on Genetic Algoirhtm
which proved much more efficient than previously proposed approaches. As a next
step, we wanted to identify the digits using a magnonic NN device, as shown in
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Fig-[3.20]. Here, we assigned different frequencies to different pixels for each digit,
as shown in 3.20(b). After this step, we created defects as 3.20(c) and found the
optimized configuration, where each frequency related to each digit is guided into
one of the specific output arms.

However, in our study, we found that the CPU time for micro-magnetic stimu-
lations increases with complexity. For example, the present method takes around a
week of simulation time of sample optimization. Therefore, we need to optimize the
ongoing method to shorten the simulation time or to find a more efficient method.
After successfully modeling the device, the group in Aalto will consider experimen-
tally fabricating the device to get an experimental confirmation of our predictions
and move to real-world applications.

In the future, we would like to create a dynamic device, where we can exploit
another magnetic property, such as the anisotropy, to manipulate the spin waves. In
this case, we can add an additional layer on top of the device, which can change
or control the magnetization at different sites. On a longer time-scale, building
more accurate spin wave-based devices might indeed have the potential to replace
traditional transistor-based devices.



Chapter 4

Understanding the Modification of
Magnetic Domains Using Machine
Learning

4.1 Introduction

Magnetic thin films with perpendicular magnetic anisotropy (PMA) are of great
technological relevance and are considered as promising materials for spintronic
nanodevices. These films are widely used in areas like ultrahigh-density magnetic
storage, fast memory applications, and nanosensors. When favorable atomic ordering
is achieved, ultrathin stacking of Co with Pd or Pt exhibits PMA[42–45].

Having information on magnetic microstructure of PMA thin films and multilay-
ers is critical in understanding magnetization reversal processes. This is because the
net magnetic energy of a thin film can be represented as the sum of the anisotropy
energy, exchange energy, magnetostatic energy, and Zeeman energy[46, 47]. The
minimization of the anisotropy energy occurs when the magnetization points along
the easy axis; the latter can be tuned by adjusting the thickness, growth parameters,
and processing routes of the material. The exchange energy is minimized when the
spins align in a parallel (or antiparallel in case of antiferromagnets) way, leading
to the formation of a single domain. On the other hand, the magnetostatic energy
opposes the single domain formation and is primarily related to the saturation mag-
netization and to the shape anisotropy. Finally, we recall that the Zeeman energy
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is the energy term that occurs when the magnetized system is placed in an external
magnetic field.

Recently, machine learning techniques, particularly Convolutional Neural Net-
works (CNNs)[147], have been used to understand the modifications of magnetic
domains in perpendicularly magnetized multilayers. These advanced machine learn-
ing methods have been applied in various interdisciplinary research domains, such
as microstructure optimization, prediction of magnetic fields, phase transitions, mag-
netic grain size studies, modeling of magnetic domains, and estimation of different
components of Hamiltonian [148–156].

In additon to that, we recall that Ion-beam irradiation is a popular technique used
to tune magnetic properties in magnetic multilayers[50, 51]. The ion energy and
fluence can be adjusted to control the depth and lateral extent of the modification
effects, leading to changes in magnetic properties[52]. Studies have shown that ion-
beam irradiation can create graded anisotropy media by positioning domain walls and
can also induce depth-resolved structural modifications in magnetic multilayers[53,
54, 50].

Despite ongoing efforts to refine the control of these parameters, the multidimen-
sional phase space in which parameters can be changed pose a significant challenge
for researchers to effectively use this approach. That’s why we’re proposing to
harness the power of Machine Learning to overcome the limitations. As already
noted, in the 21st century, machine learning techniques are increasingly proposed as
a useful tool to understand materials systems with interdependent and simultaneously
variable properties. In this chapter, we will address the application of the convo-
lutional neural network to understand the modifications of magnetic domains in
perpendicularly magnetized multilayers, observed experimentally by using ion-beam
irradiation[50–52]. Recently advanced machine learning techniques have acquired
immense importance in interdisciplinary research related to magnetism, such as
micro-structure optimization[157], prediction of harmonic magnetic field based on
Helmholtz equations [158], phase transition [159], magnetic grain size study[160],
modelling magnetic domains [161, 162], the relation between different magnetic
chiral states[163], prediction of effective magnetic spin configurations[164, 165], 2D
metal-organic frameworks with high magnetic anisotropy[166], and different com-
ponents of Hamiltonian including Dzyaloshinskii–Moriya interaction (DMI)[167]
using different deep learning and machine learning methods. From the point of view



4.2 Methodology 69

of atomistic magnetism, researchers [165, 164] have tried to estimate and analyze var-
ious components of spin-based Hamiltonians, such as exchange constants, anisotropy
constants, and DMI using different convolutional neural networks (CNN)[168]. The
advanced CNN methods showed effectiveness and accuracy in different research
domains. However, these methods generally require a large data set[169] to properly
train and test the model, which might represent an obstacle in using these methods
to analyze regular experimental data (cfr .3).

Before proceeding further, we mention that the presented work was done in
collaboration with Abhishek Talapatra (at Aalto University, Finland) Syam Prasad
(at Indian Institute of Technology, India), Jeyaramane Arout Chelvane (at Defence
Metallurgical Research Laboratory, India) and Jyoti Ranjan Mohanty (at Indian
Institute of Technology, India).

4.2 Methodology

4.2.1 Micromagnetic Simulations

Micromagnetic simulations of magnetic domains in perpendicularly magnetized thin
films/multilayer were performed using the MuMax3 software [143], as explained
in Chapter-2. The system of interest was a Co/Pd multilayer, considered as a
single magnetic layer with an effective anisotropy constant (Ku1) and effective
thickness (te f f ) of the magnetic layers, comparable to the multilayer one. The
input parameters were close to the values reported in the literature [170]: exchange
constant (Aex) = 23 pJ/m, saturation magnetization (Ms) = 1 MA/m, and Ku1 = 1
MJ/m3. The simulation temperature (T ) and damping constant (α) were 300 K and
0.9, respectively. Cubic meshes of volume (4 nm)3 were used for the discretization
of the total area of simulations (∼ 2µm×2µm) with te f f = 16 nm. The simulations
started from arbitrary initial spin configurations and ran for 100 ns to obtain energy-
minimized stable magnetization configuration, following the Landau-Lifshitz-Gilbert
equation [171, 172]. Here our main focus was to analyze the domain images, which
essentially indicate the spatial variation of the overall magnetization (M).
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Fig. 4.1 Correspondance between the colorbar for magnetic moments projected on the XY
plane and related arrows. We will use the same colorbar to describe the domain images in this
chapter. In addition to that, we note that the black and white colors show the magnetisation
in positive Z and negative Z direction, respectively.

4.2.2 Simulated Domain Configurations

In this section, we are going i) to discuss the possible changes in the magnetic
domains pattern, as a function of Ku1 and Aex and ii) to address the qualitative
comparison between simulated and experimental results. It is well known that domain
walls (DW) can be represented by the net in-plane component of magnetization
(
√

M2
x +M2

y ), occurring at the boundary between the out-of-plane magnetized (±Mz)

domains. The width of the DW is proportional to
√

Aex
Ku1

. We recall that the spin
reorientation transition (SRT) is a phenomenon that occurs in magnetic materials,
characterized by a change in the direction of the magnetic moments of the constituent
atoms as a result of variations in external parameters, such as temperature, magnetic
field, or other factors. The SRT can be well understood in terms of magnetization
anisotropy, which is also relevant in controlling the width of the DW. The simulated
domain images are presented in Fig. 4.2 for two different Aex values and for four
different Ku1 values. For all the domain images of Fig-4.2, the white and black colors
indicate two mutually opposite out-of-plane components of magnetization, and the
other colors indicate the in-plane components, the orientations of which are shown
by the arrows. The domain image in Fig. 4.2(a) with Ku1 = 1MJ/m3 (top) displays
an extended maze-like domain structure with strong perpendicular anisotropy. With
the reduction in Ku1 to 0.8 MJ/m3 , the domain size decreases, and the pattern
appears as extended periodic stripes with no preferential orientations and higher
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Fig. 4.2 Simulated domain images with different Ku1 (repored on the side of the panel)
with Aex (reported on the top of the panel). The color bar is the same for all the images,
consistently with Fig-4.1.
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in-plane contrast. Upon further reduction in Ku1, the extended stripe patterns shrink
to circular stripes (not shown) to minimize the magneto-static energy. Interestingly, a
strong in-plane contrast leading to asymmetric vortex structure with an out-of-plane
magnetized core can be observed with Ku1 = 0.5 MJ/m3. Further reduction in
Ku1 results in a feather-like structure with multiple vortices (bottom of Fig. 4.2).
The domain features display significant changes with the reduction of Aex to 50%,
keeping the same Ku1. Unlike extended maze-like patterns, worm-like domains
without preferential orientation can be observed with Aex = 11.5 pJ/m, as shown in
Fig. 4.2(b). Stronger out of plane contrast with reduced domain sizes can be observed
with respect to the corresponding domain images of Fig. 4.2(a) with the same Ku1.
Here, the threshold for transition from out-of-plane to in-plane magnetization can be
marked at Ku1 = 0.5 MJ/m3, where the out of plane components shrink to a thread-
like region, bounded by in-plane magnetization in a different direction. Further
reduction of Ku1 leads to a symmetric vortex configuration. Thus, by changing
the combination of variable Ku1 and Aex, one can achieve a tunability in magnetic
domain structure. This appears to be qualitatively similar to the experimentally
observed domain images in terms of extended maze-like pattern in the pristine
condition, fragmented thinner domains with reduced out of plane magnetization
after irradiation at lower fluences, and finally, feather-like structure with dominating
in-plane magnetization in response to the irradiation at higher ion fluences, as shown
in Appendix-.3.
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4.2.3 Overview of the Convolutional Neural Network

Fig. 4.3 Schematic of an artificial neural network with three input and one output neurons.
Here, wi, x, and fi are weights, input values, and threshold function respectively.

First, we are going to explain the different components of a Neural Network (NN)
and the generally used terminologies. A NN primarily consists of node layers that
include input and output layers, and hidden layers (i.e. dense layers between the
input and output layers). Each neuron is connected with other neurons through
weights. If the output value of a neuron reaches the threshold values, that particular
neuron is activated to send information to the next layer. In general, the weights
between different connections can be adjusted by various methods following the
back-propagation, or forward-propagation algorithms to minimize the error in the
output node layer. The simplest model is to consider a NN of 3 input layers and 1
output layer, as shown in the schematic of Fig. 4.3. In this case, we can write the
equations for the input layer, and the simple threshold or activation function ( fi(x))
as,

y = ∑wixi +b = w1x1 +w2x2 +w3x3 +b (4.1)

fi(x) =

1, if (∑wixi +b)≥ 0.

0, otherwise.
(4.2)



74 Understanding the Modification of Magnetic Domains Using Machine Learning

where, wi, xi and b are the weights, input values and bias respectively. A bias
vector is an additional set of weights in a neural network with no input, and thus
it corresponds to the output of an artificial neural network with zero input. Once
the weights wi are determined, we can also investigate the contribution of different
input properties. In general, larger weights for the input values with comparable
magnitude represent a higher contribution to the prediction. Then, the summed
function will pass through the activation function which determines the output. If
the output values are higher than the threshold values, the neuron will be activated.
This leads to the propagation of the data to the next layer. In this way, finally, we
calculate and minimize the cost function or error function as fe(x) =

√
∑

n
0(y− ȳ)2,

by adjusting the weights.

4.2.4 Addition of Convolutional layers to the Neural Network

While dealing with images, we don’t have exact numerical values of the parameters,
as mentioned above. Therefore, convolutional layers are used to extract those features
from the images[173]. Thus, in addition to the dense layers, the CNN model contains
convolutional layers and pooling layers which are used to extract important features
from the images. A convolutional nervous system (CNN) is a network of hundred
or thousands of neurons that covers the entire image (2D) or visual field (3D) and
processes data in the similar way as a biological eye. Each neuron works in its
attuned small field, and every neuron is connected to other neurons to interconnect in
a way that covers the entire image area. Just as each neuron responds to a particular
stimulus only in the restricted region of the visual field, each neuron in a CNN
processes data only in its receptive field.

In addition to the fully connected NN, the CNN also consists of the Convolution
layer and pooling layer. The Convolution layer, core building block of a CNN,
performs a dot product between two matrices: one matrix contains the set of learnable
parameters - also known as a kernel -, and the other matrix is the restricted portion of
the receptive field (part of the image), as explained by the authors[174] and shown
in Fig-4.5. The kernel is spatially smaller than an image, but develops more “in-
depth" (usually 3×3 or 4×4 matrix). This means that, if the image is composed
of three (RGB) channels, the kernel height and width will be spatially small, but
the depth extends up to all three channels. In addition to that, we divide the RGB
image into three color layers image, where each kernel will work on each of the
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color layer as part of the image (cfr Fig-4.5). Generally, neural network layers use
matrix multiplication to describe the interaction between the input and output unit,
as explained in the previous section. This means that every output unit interacts
with every input unit. However, convolution neural networks use scattered or sparse
interaction. As such, the resolution of the image can vary from hundreds to millions
of pixels, whereas the kernel dimension can vary from tens to hundreds of pixels,
resulting in fewer parameters and therefore reducing the memory requirements.

Fig. 4.4 Convolutional layer expression between (a) the image and (b) the example kernel.
The result of the activation map is shown in panel (c).
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Fig. 4.5 An example of image separation into the three primary colors: Red, Green, Blue

Pooling layer

The pooling layer replaces the network’s output at specific locations by deriving
a summary statistic of the nearby outcomes. Pooling operations help reduce the
representation’s spatial size, which decreases the required amount of computation and
weights. The pooling operation is processed on every slice of the image individually.

There are several pooling functions, such as the average of the rectangular
neighborhood, the L2 norm of the rectangular neighbor area, and a weighted average
based on the distance from the central pixel. However, researchers generally use the
max pooling and average pooling, i.e. reporting the maximum output and average
output from the neighborhood, respectively, as shown in Fig-4.6.
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Fig. 4.6 The two different pooling operations: a) the original image; b) the average pooling;
C) the max pooling.

4.2.5 Building and Training of CNN

In this work, the convolutional neural network-based image regression technique
is used. We have used different popular deep learning (DL) models as mentioned
below:

• Custom multi-layer perceptron model using TensorFlow [175].

• Residual neural network architectures ResNets with and without pre-trained
model [55].

• VGG16 with improved (3x3) convolution filters [56]

• DenseNet which uses dense connections between layers through dense blocks
[176].

• One of the classic DL algorithms: AlexNet [177]

• EfficientNet uniformly scales all dimensions of depth, width, and resolution
using compound coefficients [178, 179].

Some other technical details related to the machine learning models are given in
this paragraph. The custom architecture of CNN contains a multi-layer perceptron[180]
with a batch normalization[181] layer followed by a dense neural network. For opti-
mization, during the training of CNN, the default function Adam[182] is used, which
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is a first-order gradient-based optimization of stochastic objective functions. For the
pre-trained ResNets models, we have used the Fastai[183] and PyTorch[184] libraries
to train and predict the different magnetic properties from the simulated domains
images. We have also compared the performances using different models, such as
ResNet-18 and ResNet-34, comprising 18 and 34 layers, respectively. Overfitting
is prevented by employing the default early-stopping[185] algorithm. The learning
rate is set to 0.001 with a strategy to reduce the learning rate when the error stops
decreasing with several steps. Furthermore, early-stopping is implemented in a way
that it decides to stop training based on the accuracy improvement. The fit-one-cycle
method was used for the dynamic learning rate[186], as implemented in PyTorch.
We have also checked our model using pre-trained weights. In addition to the custom
model, we have also used other models to verify advantages and disadvantages. For
example, is "Deeper NN always better"? If that is the case, the performance of
ResNet-34 should be more satisfactory than that of ResNet-18. Furthermore, can
we run into the famous "vanishing gradient" problem in the VGG16 model?. The
vanishing gradient problem refers to the (rare) situation in which the gradient will
be relatively small, effectively preventing the weight from changing its value. As
the network becomes denser by an increasing number of layers, we need to use
certain activation functions for the neural networks, resulting in gradients of the loss
function approaching zero, making the network hard to train. The latter situation is
commonly known as the vanishing gradient problem [187].

Dataset Preparation

In order to create a large data set for training the neural network, we have used 960
simulated images, obtained by variations of four micromagnetic input parameters in
realistic ranges viz., Aex (range: 10-230 pJ/m ), α (range: 0.825-0.925), Ku1 (range:
within the order of 1k-100M J/m3), and T (range: 300-1000 K). Fig-4.7 shows some
examples for different combinations of Aex and Ku1. Physically, the variation of Aex

and Ku1 result in changes of the domain wall energy (proportional to
√

Aex ×Ku1).
The variation in temperature introduces thermal motion, that results in fluctuations
of magnetization near the boundary between two oppositely magnetized domains. α

controls the relaxation of magnetization. One can see that a wide variety of domain
patterns is captured. The considered range of parameters make the data sets versatile
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by incorporating various types of magnetic domains of different characteristic length
scales and spatial features.

The entire data set was divided into three different groups, as mentioned below.

• The first group was used for training the model, using 63% (605) of the total
images.

• The second group was used for validating and for the rearrangement of weights,
using 7% (67) of the total images.

• The third group was used to test the model, using 30% (288) of the total
images.

It is worth mentioning that the images used for validating were also used during the
training process. However, the images used for testing the model were never exposed
to the machine during training.

brief introduction of the CNN model

As shown by the simulated images reported in Fig-4.7, it is evident that a proper
analysis of magnetic domain patterns can provide a route towards understanding the
changes in the micromagnetic energetics. Thus, it would be desirable to establish
a reliable path for a proper estimate of important parameters, which control the
energetics and which we visualize in the form of magnetic domains. It is important
to mention that recognizing the modifications in the micromagnetic parameters
from the domain images becomes extremely difficult with human eyes, when the
change in parameters does not lead to a significant change in the images, or domain
patterns obtained by simultaneous changes of two or more parameters. In this
regard, we propose different convolutional neural network architectures to identify
the micromagnetic parameters from the domain images; this also helps immensely
to complement the experimental results. As mentioned earlier, the training of CNN
requires a large and homogeneous data set, which is not easy to obtain through the
modifications of experimental process conditions. Therefore, in this project, we are
using 960 domain images obtained through micromagnetic simulations considering
different combinations of Ku1, Aex, T , and α . The tuning of domain size and
net magnetization can arise from the modification of the above parameters, but
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Fig. 4.7 Simulated domain images with different Ku1 (reported in the top of the panel) with
Aex (reported on the left of the panel). The scale bar is the same for all the images, as shown
in Fig-4.1.
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Fig. 4.8 Details of custom neural network with different descriptions: a) schematic for the
reduction in dimension of the input image in each layer of CNN, b) flow chart of a custom
CNN model, c) qualitative working principles of CNN.

pinpointing the exact parameters with higher accuracy from the entire parameters
space is not straightforward. In order to reduce the cost of simulation time and to
increase accuracy, we reduced the simulation area to around 1µm×1µm. However,
the CNN model is not limited by the size of the images, as we have confirmed by
verifying our model with different sizes of images.

When dealing with images, we don’t have the exact numerical values of the
parameters mentioned above. Therefore, convolutional layers are used to extract
those features from the images[173]. Thus, in addition to dense layers, the CNN
model contains convolutional layers and pooling layers, which are used to extract
important features from the images. The schematic for the distribution of different
layers in a typical custom CNN is shown in Fig. 4.8(a), where three convolution lay-
ers and four dense layers were used. In order to extract the features, the convolution
layer transforms the input image using different convoluted filters. A filter is a small
matrix, with a dimension smaller than that of the image to be convoluted. A single
convolution layer contains a series of filters, as shown in Fig. 4.8(c). Following the
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convolution layer (Conv2D), we have also used the pooling layer (MaxPooling2D)
to reduce the dimensions of the feature maps (Fig. 4.8(a)); this is helpful to reduce
the number of parameters to learn and the amount of computations performed in the
network. A reduction in the lateral dimension of the input image can be observed
after getting filtered through each layer. While the convolution layer increases the
depth effect with a little reduction in the lateral dimension, the pooling layer only
contributes to the reduction in the lateral dimension (cfr. Fig-.3 for the ResNet34
model). After getting filtered through a series of convolution and pooling layers, the
images pass through the global average pooling layer and various dense layers. The
dimension reduction chart is also shown for the ResNet-34 in the appendix-4. The
sequence of different filters in our custom model and the corresponding changes in
dimension at each layer is clearly illustrated in the flow chart of Fig. 4.8(b). The
machine essentially understands and compares the ‘higher dimensional images´, ob-
tained after filtering through all the layers of the CNN model. The features, extracted
using the filters, were further used for the prediction or classification. The entire
process of working principles of CNN can be understood through the scheme of Fig.
4.8(c). However, in practice, substantially more convolutional and pooling layers are
used in a CNN to extract different features from the images. In order to understand
the effect of filters inside different convolution and pooling layers, we show an
example of image regression in Fig. 4.9, illustrating the action of filtering three
important features when the simulated domain image of Fig. 4.2(a) pass through
different filters in different convolution and pooling layers. In Fig. 4.9(a), the first
filter (top row) is extracting the distribution of the out-of-plane magnetization; the
second filter (middle row) in Fig. 4.9(b) marks the domain walls (i.e. boundaries
between two oppositely magnetized areas); the third filter (bottom) in Fig. 4.9(c)
brings information about the domain curvature, which is physically related to domain
nucleation and branching. However, the information extracted in the last layer (4th

Conv2D layer and higher) from a specific filter in Fig. 4.9 becomes complex to
understand with human eyes. Several other filters were also used to produce this
higher dimensional information which was further fed to the neural network to
identify particular features inside the image where we use different functionalities
mentioned above to predict the magnetic properties. It is important to notice that the
lateral dimension of the images decreases from 256×256 to 15×15 after passing
through all the filters, as observed from Fig. 4.9.
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Fig. 4.9 Evolution of images with the application of different filters on the input image and
feature extraction from different layers: a) distribution of out-of-plane magnetization, b)
domain boundaries, c) curvature or branching.
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Let us now focus on the training process of the CNN model. For the training, we
use particular images, grouped with batch sizes of 32 images (the batch size decides
the number of images trained at a time). We trained the CNN model on the entire
training data set, also known as epochs. After training the model, we checked the
prediction of the model on validated images and calculated the Mean squared error
(MSE) for each epoch. Based on the errors, the model tries to adjust the weights to
reduce the MSE. We have used different models for training and their comparative
performances are shown in Fig. 4.10, where the MSE has been plotted at different
epochs. A large MSE difference between the trained and validation data sets indicates
over-fitting in the model. As observed from Fig. 4.10, the difference between the
validation data set and the trained data set is small, implying that the models are
learning different features from the images. Furthermore, the three different models
are converging with comparable values of MSE (close to 5%) for higher epochs.

4.3 Results and Discussion

Comparison with Pre-trained CNN Architectures

We have constructed our custom CNN architecture and compared it with different
available CNN architectures. Many numerical methods - such as Pearson correlation
coefficient, Mean Squared Error (MSE), R2 score, etc. - are used to check the
accuracy of predictions. In our case, we have checked the accuracy of each model by
the goodness parameter, i.e. the R2 score, as defined below in equation 2.8. It is a
measure of fit that indicates the variation of a dependent variable, expressed by the
independent variable(s) in a regression model. Furthermore, we also report different
R2 scores for different methods in Table 4.1. Here, it is worth mentioning that
reported R2 scores are calculated using the test images, which were never exposed to
the model during the training process.

R2 = 1− SSresidual

SStotal
(4.3)

In equation 2.8, SStotal = ∑i(yi − ȳ)2, SSresidual = ∑i(yi − fi)
2 where fi are the pre-

dicted values; xi and yi are values of input and output properties; x̄ and ȳ are the mean
of the input and output values. In general, the values of R2 score should lie between 0
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Fig. 4.10 Evolution of loss function for different CNN models as a function of epochs. Here
loss for training and validation images are shown by solid and dashed lines, respectively.
The blue solid line represents a reference level at 5%.
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Table 4.1 Comparison of R2 scores, and time of training for 1000 epochs (500 epochs with
each of frozen and unfrozen weights) for different CNN models. The time for training is
based on an Intel i5 quad core processor.

Name of the
Model

R2 score
(%)

Training time
(sec×103)

Custom Model[Fig. 4.8] 81.8 5
ResNet18 90.2 130
ResNet34 93.4 145
VGG16 93.9 72

EfficientNet 92.9 65
AlexNet 89.1 35

DenseNet 91.1 75

to 1; 0 indicates no dependency of input parameters on output properties (minimum
accuracy), while 1 shows a 100% dependence (maximum accuracy). Negative values
of R2 score are also possible, indicating the worst performance by selecting the mean
value from the data set.

When referring to Table 4.1, we observe that the pre-trained models, which
have a significantly large number of layers compared to the custom model, work
comparatively better. We run each pre-trained model in two-parts scheme: 1) using
the frozen (unchanged) weights, and 2) using the unfrozen weights, as suggested in
the model manual[55]. This is a general practice to decrease the load on the computer
and preserve the prefixed weights in pre-trained models; this is due to the fact that
these CNN architectures have around half a million parameters to adjust. We can see
a significant improvement, when we increase the layers from the custom model to
ResNet18; after that, the improvement is not significant when increasing the number
of layers in ResNet34. Larger number of layers generally capture higher-dimensional
features from the images; however, above some threshold number of layers in the
model, the possibility of over-fitting increases. In addition to that, we also didn’t
encounter the Vanishing gradient problem in the case of VGG16. We note that the
VGG16 has turned out to be the best model for properties prediction.
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4.4 Test on experimental MFM image: discussion and
summary

As mentioned in this chapter, we have generated almost 960 images using micromag-
netic simulations by changing the combinations of four input parameters [namely:
Ku1, exchange constant (Aex), Temperature (T ), and damping constant (α)]. Train-
ing, testing, and validating with the simulated domain images provided a maximum
accuracy of 93.9% (cfr Table 4.1 of the present chapter). Let us now apply the
previously trained model on an experimental MFM image. Fig-4.11(a) shows an
experimental image (yellow scale), which we convert into the grey-scale Fig-4.11(b).
Due to a different colour profile with respect to the simulated images - as shown in
Fig-4.1- , we cannot use the yellow scale image to predict the parameters. Lastly,
the simulated image - obtained with MuMax3 using the parameters predicted from
CNN - is shown in Fig-4.11(c). We note that the colour information in the exper-
imental MFM images differs from that of the simulated images. Moreover, the
Fourier transform filter was applied to the original MFM images to eliminate the
tip-induced artifacts. Despite the dissimilarities, we tried to compare the simulated
and experimental images on the same footing by converting them into grayscale. In
order to do that, we again trained the convolutional neural network (CNN) separately
with the simulated domain images using the grayscale format. Now, the MFM image
in Fig-4.11(a) of the present chapter was tested with the CNN and provided the
following values of the magnetic parameters: Ku1 = 2.39 MJ/m3, Aex = 196 pJ/m,
T = 316 K, and α = 0.9. The same set of values was used for the domain simulations.
The results are presented in Fig-4.11, displaying the experimental (Fig-4.11(a), (b)
and simulated domain images in the grayscale format (Fig-4.11(c)). The simulated
domain image is qualitatively comparable with the experimental domain images in
nanoscale, periodic, interconnected maze-like domains with comparable dimensions,
the curling and branching of domains highlighting the probability for nucleation-
dominated reversal and the presence of in-plane domain walls. As such, the proposed
approach proved to be entirely satisfactory and promising.
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Fig. 4.11 Experimental and simulated domain images, obtained with the input parameters
derived from the image regression algorithm, applied on the experimental domain image.
a) shows the experimental image of the sample. b) shows the greyscale conversion of the
image-a. c) shows the simulated image from the MuMax3 where different parameters were
predicted using the trained CNN model on image-(b).



Chapter 5

Conclusion and Outlook

In conclusion, the three scientific studies presented above showcase the potential
of machine learning in advancing our understanding of complex phenomena in
materials science and technology.

The first study (Chapter-2) addresses the general problem of a compound crys-
tallographic phase in the ground state and explores the use of machine learning to
predict the energetic stability of different crystal structures in binary semiconduc-
tors. By building material features based on atomic properties and by training a
machine learning model using density-functional-theory data, our study developed
a formula that can quantitatively predict the energetic stability of one crystal struc-
ture over the other with high accuracy. Based on linear regression, the approach
allows for a deeper physics understanding supported by machine-driven suggestions
of relevant ingredients, offering a methodology with a huge range of applications
in addressing microscopic mechanisms underlying different phenomena. Future
research in this field could explore the application of our machine learning software
to predict complex properties of ferroelectric oxide-based perovskites (for exam-
ple Curie temperature, ferroelectric polarization or piezoelectric coefficients) as a
function of descriptors based on atomic properties of the constituen elements on the
A and B perovskite sites. We also note that our publicly-available software can be
easily modified to include not only descriptors based on the constituents’ atomic
properties (as in the current version of the code), but also ingredients related to
structural properties of the compound (i.e. lattice constants, bond lengths, bond
angles) that might be important in the description of complex properties, such as
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ferroelectric or magnetic properties. We finally remark that integrating experimental
data into machine learning models could significantly help in refining predictions
and in expanding the range of applications.

Chapter-3 of this thesis presents a potential advancement in the field of neuromor-
phic computing, by introducing a spin wave-based device that functions as a physical
neural network or neural network filter. The proposed device separates spin waves
between two frequencies and goes beyond the solution presented in the literature,
by using Genetic algorithms to optimize the defect-based configuration at a much
faster pace. The results show the versatility of Genetic algorithms, which could be
employed to simulate other devices (such as attenuators, three-frequencies separa-
tion, and digit identifiers), opening up new possibilities in neuromorphic devices.
This study not only contributes to the computational design of spin wave-based
devices, but also promises further developments from the experimental point of
view. Our collaborators at Aalto University (Finland) are planning to fabricate the
device to obtain real data and validate our computational predictions, paving the way
for further research in this field. Future research can also explore other “handles",
such as magnetic fields or magnetic anisotropy, to manipulate spin waves and create
more dynamic neuromorphic devices, on the way to the exploration and design of
innovative magnonic devices.

The third study (Chapter-4) investigates the modifications of magnetic domains
in perpendicularly magnetized Co/Pd multi-layers, intending to improve the under-
standing of magnetic materials and their properties. The study focuses on developing
an automated and reliable way to predict magnetic properties directly from a micro-
scopic investigation using advanced machine learning algorithms in the form of a
Convolutional Neural Network (CNN). By generating a large dataset of images to
train the CNN through micromagnetic simulations, the study successfully predicts
micromagnetic parameters with high accuracy, achieving maximum efficiency of
93.9%. The results of this study have several implications for the field of magnetic
materials and their applications. Using machine learning algorithms, along with the
automated prediction of magnetic properties, can lead to significant time and cost
savings in identifying promising materials for specific applications, such as magnetic
storage devices or sensors. In the future, the CNN model developed in this study
can also be extended to more complex systems, including the prediction of novel
magnetic materials with chiral domain walls or skyrmion–like spin textures, possibly
manipulated using electrical currents. Overall, this study presents an innovative
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contribution to the field of ML in magnetic materials and its results hold promise for
future technological advancements.

In summary, these studies demonstrate the strong potential of machine learning
in advancing our understanding of complex phenomena in materials science and
technology at different length scales and for different purposes. The insights gained
from these studies have the potential to lead to the design of novel materials and
devices with improved performances and functionalities. It is clear that the potential
applications of versatile ML methods in materials science are vast and, upon further
research and developments, we can undoubtedly expect to see significant progresses
in the years to come.
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Appendix A

Additional Information

.1 Analysis of the best 1D, 2D and 3D formulas

Table-1 reports other verification parameters calculated for the best formulas of
each generator, including those presented in Chapter-2. The relevance of calcu-
lating avg(RMSE train) and avg(RMSE test) lies in analysing the bias-variance
tradeoff[188] in LR. Max_E and Min_E indicate the maximum and minimum error
in the prediction for the specific formula.
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Details avg(RSME train) (eV) avg(RMSE test) (eV) RMSE (eV) R2 Pearson_coeff success rate Max_E Min_E Std_deviation
0 Ref_1D[4] 0.1420 0.1455 0.1422 0.89 0.947 89% 0.0523 0.0041 0.0081
1 1D_GEN1 0.1186 0.1296 0.1192 0.92 0.963 90% 0.0743 0.0014 0.0083
2 1D_GEN2 0.1305 0.1367 0.1309 0.91 0.956 91% 0.0676 0.0027 0.0105
3 1D_GEN3 0.0961 0.0995 0.0963 0.95 0.976 94% 0.0234 0.0016 0.0032
4 1D_GEN4 0.1055 0.1103 0.1058 0.94 0.971 96% 0.0330 0.0012 0.0044
5 Ref_2D[4] 0.0983 0.1041 0.0987 0.95 0.975 96% 0.0323 0.0019 0.0044
6 2D_GEN1 0.0941 0.0988 0.0943 0.95 0.977 89% 0.0419 0.0020 0.0040
7 2D_GEN2 0.1095 0.1163 0.1099 0.93 0.969 87% 0.0489 0.0011 0.0083
8 2D_GEN3 0.0875 0.0911 0.0878 0.96 0.980 88% 0.0178 0.0014 0.0026
9 2D_GEN4 0.0951 0.0995 0.0954 0.95 0.977 93% 0.0221 0.0016 0.0033

10 Ref_3D[4] 0.0751 0.0814 0.0755 0.97 0.985 93% 0.0185 0.0009 0.0031
11 3D_GEN1 0.0929 0.1003 0.0933 0.95 0.978 90% 0.0282 0.0024 0.0038
12 3D_GEN2 0.1200 0.1300 0.1205 0.92 0.963 91% 0.1119 0.0021 0.0103
13 3D_GEN3 0.0832 0.0874 0.0834 0.96 0.982 98% 0.0199 0.0015 0.0026
14 3D_GEN4 0.0915 0.0989 0.0919 0.96 0.978 93% 0.0227 0.0013 0.0035

Table 1 Different verification parameters for 1D, 2D and 3D descriptors calculated in the
present work and descriptors presented in Ref.[4]. Here, avg(RMSE train), avg(RMSE test)
and RMSE indicate the root mean squared error for training data, test data and full dataset,
respectively. R2 and Pearson coeff are goodness parameters. Max_E and Min_E show the
maximum and minimum absolute error in prediction.

Fig. 1 Mg0.5Ca0.5Se rocksalt supercell: Mg is reported in orange, Ca in blue and Se in green.
The supercell is obtained alternating layers of Mg and Ca in the cation sub-lattice along the c
primitive vector.
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A B DFT
Classification

∆E IP(A) EA(A) HOMO(A) LUMO(A) rs(A) rp(A) rd(A) IP(B) EB(B) HOMO(B) LUMO(B) rs(B) rp(B) rd(B)

Li F RS -0.059 -5.329 -0.698 -2.874 -0.978 1.652 1.995 6.930 -19.404 -4.273 -11.294 1.251 0.406 0.371 1.428
Li Cl RS -0.038 -5.329 -0.698 -2.874 -0.978 1.652 1.995 6.930 -13.902 -3.971 -8.700 0.574 0.679 0.756 1.666
Li Br RS -0.033 -5.329 -0.698 -2.874 -0.978 1.652 1.995 6.930 -12.650 -3.739 -8.001 0.708 0.749 0.882 1.869
Li I RS -0.022 -5.329 -0.698 -2.874 -0.978 1.652 1.995 6.930 -11.257 -3.513 -7.236 0.213 0.896 1.071 1.722
Be O ZB 0.430 -9.459 0.631 -5.600 -2.098 1.078 1.211 2.877 -16.433 -3.006 -9.197 2.541 0.462 0.427 2.219
Be S ZB 0.506 -9.459 0.631 -5.600 -2.098 1.078 1.211 2.877 -11.795 -2.845 -7.106 0.642 0.742 0.847 2.366
Be Se ZB 0.495 -9.459 0.631 -5.600 -2.098 1.078 1.211 2.877 -10.946 -2.751 -6.654 1.316 0.798 0.952 2.177
Be Te ZB 0.466 -9.459 0.631 -5.600 -2.098 1.078 1.211 2.877 -9.867 -2.666 -6.109 0.099 0.945 1.141 1.827
B N ZB 1.713 -8.190 -0.107 -3.715 2.248 0.805 0.826 1.946 -13.585 -1.867 -7.239 3.057 0.539 0.511 1.540
B P ZB 1.020 -8.190 -0.107 -3.715 2.248 0.805 0.826 1.946 -9.751 -1.920 -5.596 0.183 0.826 0.966 1.771
B As ZB 0.879 -8.190 -0.107 -3.715 2.248 0.805 0.826 1.946 -9.262 -1.839 -5.341 0.064 0.847 1.043 2.023
C C ZB 2.638 -10.852 -0.872 -5.416 1.992 0.644 0.630 1.631 -10.852 -0.872 -5.416 1.992 0.644 0.630 1.631
Na F RS -0.146 -5.223 -0.716 -2.819 -0.718 1.715 2.597 6.566 -19.404 -4.273 -11.294 1.251 0.406 0.371 1.428
Na Cl RS -0.133 -5.223 -0.716 -2.819 -0.718 1.715 2.597 6.566 -13.902 -3.971 -8.700 0.574 0.679 0.756 1.666
Na Br RS -0.127 -5.223 -0.716 -2.819 -0.718 1.715 2.597 6.566 -12.650 -3.739 -8.001 0.708 0.749 0.882 1.869
Na I RS -0.115 -5.223 -0.716 -2.819 -0.718 1.715 2.597 6.566 -11.257 -3.513 -7.236 0.213 0.896 1.071 1.722
Mg O RS -0.178 -8.037 0.693 -4.782 -1.358 1.330 1.897 3.171 -16.433 -3.006 -9.197 2.541 0.462 0.427 2.219
Mg S RS -0.087 -8.037 0.693 -4.782 -1.358 1.330 1.897 3.171 -11.795 -2.845 -7.106 0.642 0.742 0.847 2.366
Mg Se RS -0.055 -8.037 0.693 -4.782 -1.358 1.330 1.897 3.171 -10.946 -2.751 -6.654 1.316 0.798 0.952 2.177
Mg Te RS -0.005 -8.037 0.693 -4.782 -1.358 1.330 1.897 3.171 -9.867 -2.666 -6.109 0.099 0.945 1.141 1.827
Al N ZB 0.072 -5.780 -0.313 -2.784 0.695 1.092 1.393 1.939 -13.585 -1.867 -7.239 3.057 0.539 0.511 1.540
Al P ZB 0.219 -5.780 -0.313 -2.784 0.695 1.092 1.393 1.939 -9.751 -1.920 -5.596 0.183 0.826 0.966 1.771
Al As ZB 0.212 -5.780 -0.313 -2.784 0.695 1.092 1.393 1.939 -9.262 -1.839 -5.341 0.064 0.847 1.043 2.023
Al Sb ZB 0.150 -5.780 -0.313 -2.784 0.695 1.092 1.393 1.939 -8.468 -1.847 -4.991 0.105 1.001 1.232 2.065
Si C ZB 0.668 -7.758 -0.993 -4.163 0.440 0.938 1.134 1.890 -10.852 -0.872 -5.416 1.992 0.644 0.630 1.631
Si Si ZB 0.275 -7.758 -0.993 -4.163 0.440 0.938 1.134 1.890 -7.758 -0.993 -4.163 0.440 0.938 1.134 1.890
K F RS -0.146 -4.433 -0.621 -2.426 -0.697 2.128 2.443 1.785 -19.404 -4.273 -11.294 1.251 0.406 0.371 1.428
K Cl RS -0.165 -4.433 -0.621 -2.426 -0.697 2.128 2.443 1.785 -13.902 -3.971 -8.700 0.574 0.679 0.756 1.666
K Br RS -0.166 -4.433 -0.621 -2.426 -0.697 2.128 2.443 1.785 -12.650 -3.739 -8.001 0.708 0.749 0.882 1.869
K I RS -0.168 -4.433 -0.621 -2.426 -0.697 2.128 2.443 1.785 -11.257 -3.513 -7.236 0.213 0.896 1.071 1.722
Ca O RS -0.266 -6.428 0.304 -3.864 -2.133 1.757 2.324 0.679 -16.433 -3.006 -9.197 2.541 0.462 0.427 2.219
Ca S RS -0.369 -6.428 0.304 -3.864 -2.133 1.757 2.324 0.679 -11.795 -2.845 -7.106 0.642 0.742 0.847 2.366
Ca Se RS -0.361 -6.428 0.304 -3.864 -2.133 1.757 2.324 0.679 -10.946 -2.751 -6.654 1.316 0.798 0.952 2.177
Ca Te RS -0.350 -6.428 0.304 -3.864 -2.133 1.757 2.324 0.679 -9.867 -2.666 -6.109 0.099 0.945 1.141 1.827
Cu F RS -0.019 -8.389 -1.638 -4.856 -0.641 1.197 1.680 2.576 -19.404 -4.273 -11.294 1.251 0.406 0.371 1.428
Cu Cl ZB 0.156 -8.389 -1.638 -4.856 -0.641 1.197 1.680 2.576 -13.902 -3.971 -8.700 0.574 0.679 0.756 1.666
Cu Br ZB 0.152 -8.389 -1.638 -4.856 -0.641 1.197 1.680 2.576 -12.650 -3.739 -8.001 0.708 0.749 0.882 1.869
Cu I ZB 0.203 -8.389 -1.638 -4.856 -0.641 1.197 1.680 2.576 -11.257 -3.513 -7.236 0.213 0.896 1.071 1.722
Zn O ZB 0.102 -10.136 1.081 -6.217 -1.194 1.099 1.547 2.254 -16.433 -3.006 -9.197 2.541 0.462 0.427 2.219
Zn S ZB 0.275 -10.136 1.081 -6.217 -1.194 1.099 1.547 2.254 -11.795 -2.845 -7.106 0.642 0.742 0.847 2.366
Zn Se ZB 0.259 -10.136 1.081 -6.217 -1.194 1.099 1.547 2.254 -10.946 -2.751 -6.654 1.316 0.798 0.952 2.177
Zn Te ZB 0.241 -10.136 1.081 -6.217 -1.194 1.099 1.547 2.254 -9.867 -2.666 -6.109 0.099 0.945 1.141 1.827
Ga N ZB 0.433 -5.818 -0.108 -2.732 0.130 0.994 1.330 2.163 -13.585 -1.867 -7.239 3.057 0.539 0.511 1.540
Ga P ZB 0.341 -5.818 -0.108 -2.732 0.130 0.994 1.330 2.163 -9.751 -1.920 -5.596 0.183 0.826 0.966 1.771
Ga As ZB 0.271 -5.818 -0.108 -2.732 0.130 0.994 1.330 2.163 -9.262 -1.839 -5.341 0.064 0.847 1.043 2.023
Ga Sb ZB 0.158 -5.818 -0.108 -2.732 0.130 0.994 1.330 2.163 -8.468 -1.847 -4.991 0.105 1.001 1.232 2.065
Ge Ge ZB 0.202 -7.567 -0.949 -4.046 2.175 0.917 1.162 2.373 -7.567 -0.949 -4.046 2.175 0.917 1.162 2.373
Rb F RS -0.136 -4.289 -0.590 -2.360 -0.705 2.240 3.199 1.960 -19.404 -4.273 -11.294 1.251 0.406 0.371 1.428
Rb Cl RS -0.161 -4.289 -0.590 -2.360 -0.705 2.240 3.199 1.960 -13.902 -3.971 -8.700 0.574 0.679 0.756 1.666
Rb Br RS -0.164 -4.289 -0.590 -2.360 -0.705 2.240 3.199 1.960 -12.650 -3.739 -8.001 0.708 0.749 0.882 1.869
Rb I RS -0.169 -4.289 -0.590 -2.360 -0.705 2.240 3.199 1.960 -11.257 -3.513 -7.236 0.213 0.896 1.071 1.722
Sr O RS -0.221 -6.032 0.343 -3.641 -1.379 1.911 2.548 1.204 -16.433 -3.006 -9.197 2.541 0.462 0.427 2.219
Sr S RS -0.369 -6.032 0.343 -3.641 -1.379 1.911 2.548 1.204 -11.795 -2.845 -7.106 0.642 0.742 0.847 2.366
Sr Se RS -0.375 -6.032 0.343 -3.641 -1.379 1.911 2.548 1.204 -10.946 -2.751 -6.654 1.316 0.798 0.952 2.177
Sr Te RS -0.381 -6.032 0.343 -3.641 -1.379 1.911 2.548 1.204 -9.867 -2.666 -6.109 0.099 0.945 1.141 1.827
Ag F RS -0.156 -8.058 -1.667 -4.710 -0.479 1.316 1.883 2.968 -19.404 -4.273 -11.294 1.251 0.406 0.371 1.428
Ag Cl RS -0.044 -8.058 -1.667 -4.710 -0.479 1.316 1.883 2.968 -13.902 -3.971 -8.700 0.574 0.679 0.756 1.666
Ag Br RS -0.030 -8.058 -1.667 -4.710 -0.479 1.316 1.883 2.968 -12.650 -3.739 -8.001 0.708 0.749 0.882 1.869
Ag I ZB 0.037 -8.058 -1.667 -4.710 -0.479 1.316 1.883 2.968 -11.257 -3.513 -7.236 0.213 0.896 1.071 1.722
Cd O RS -0.087 -9.581 0.839 -5.952 -1.309 1.232 1.736 2.604 -16.433 -3.006 -9.197 2.541 0.462 0.427 2.219
Cd S ZB 0.070 -9.581 0.839 -5.952 -1.309 1.232 1.736 2.604 -11.795 -2.845 -7.106 0.642 0.742 0.847 2.366
Cd Se ZB 0.083 -9.581 0.839 -5.952 -1.309 1.232 1.736 2.604 -10.946 -2.751 -6.654 1.316 0.798 0.952 2.177
Cd Te ZB 0.113 -9.581 0.839 -5.952 -1.309 1.232 1.736 2.604 -9.867 -2.666 -6.109 0.099 0.945 1.141 1.827
In N ZB 0.150 -5.537 -0.256 -2.697 0.368 1.134 1.498 3.108 -13.585 -1.867 -7.239 3.057 0.539 0.511 1.540
In P ZB 0.170 -5.537 -0.256 -2.697 0.368 1.134 1.498 3.108 -9.751 -1.920 -5.596 0.183 0.826 0.966 1.771
In As ZB 0.122 -5.537 -0.256 -2.697 0.368 1.134 1.498 3.108 -9.262 -1.839 -5.341 0.064 0.847 1.043 2.023
In Sb ZB 0.080 -5.537 -0.256 -2.697 0.368 1.134 1.498 3.108 -8.468 -1.847 -4.991 0.105 1.001 1.232 2.065
Sn Sn ZB 0.016 -7.043 -1.039 -3.866 0.008 1.057 1.344 2.030 -7.043 -1.039 -3.866 0.008 1.057 1.344 2.030
B Sb ZB 0.581 -8.190 -0.107 -3.715 2.248 0.805 0.826 1.946 -8.468 -1.847 -4.991 0.105 1.001 1.232 2.065
Cs F RS -0.112 -4.006 -0.570 -2.220 -0.548 2.464 3.164 1.974 -19.404 -4.273 -11.294 1.251 0.406 0.371 1.428
Cs Cl RS -0.152 -4.006 -0.570 -2.220 -0.548 2.464 3.164 1.974 -13.902 -3.971 -8.700 0.574 0.679 0.756 1.666
Cs Br RS -0.158 -4.006 -0.570 -2.220 -0.548 2.464 3.164 1.974 -12.650 -3.739 -8.001 0.708 0.749 0.882 1.869
Cs I RS -0.165 -4.006 -0.570 -2.220 -0.548 2.464 3.164 1.974 -11.257 -3.513 -7.236 0.213 0.896 1.071 1.722
Ba O RS -0.095 -5.516 0.278 -3.346 -2.129 2.149 2.632 1.351 -16.433 -3.006 -9.197 2.541 0.462 0.427 2.219
Ba S RS -0.326 -5.516 0.278 -3.346 -2.129 2.149 2.632 1.351 -11.795 -2.845 -7.106 0.642 0.742 0.847 2.366
Ba Se RS -0.350 -5.516 0.278 -3.346 -2.129 2.149 2.632 1.351 -10.946 -2.751 -6.654 1.316 0.798 0.952 2.177
Ba Te RS -0.381 -5.516 0.278 -3.346 -2.129 2.149 2.632 1.351 -9.867 -2.666 -6.109 0.099 0.945 1.141 1.827
Ge C ZB 0.808 -7.567 -0.949 -4.046 2.175 0.917 1.162 2.373 -10.852 -0.872 -5.416 1.992 0.644 0.630 1.631
Sn C ZB 0.450 -7.043 -1.039 -3.866 0.008 1.057 1.344 2.030 -10.852 -0.872 -5.416 1.992 0.644 0.630 1.631
Ge Si ZB 0.264 -7.567 -0.949 -4.046 2.175 0.917 1.162 2.373 -7.758 -0.993 -4.163 0.440 0.938 1.134 1.890
Sn Si ZB 0.136 -7.043 -1.039 -3.866 0.008 1.057 1.344 2.030 -7.758 -0.993 -4.163 0.440 0.938 1.134 1.890
Sn Ge ZB 0.087 -7.043 -1.039 -3.866 0.008 1.057 1.344 2.030 -7.567 -0.949 -4.046 2.175 0.917 1.162 2.373

Table 2 Values related to 82 AB binaries: total energy difference between Rock-Salt and
Zinc-Blende (∆E = ERS −EZB) (calculated using DFT) and seven atomic properties of
corresponding A and B atom[4].
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.2 Script for the alphabet identifier

Nx:=512

Ny:=128

Nz:=1

cx:=100e-9

cy:=100e-9

cz:=100e-9

SetGridsize(Nx, Ny, Nz)

SetCellsize(cx, cy, cz)

Mid_rect := rect(10000e-9, 10000e-9)

arms := rect(20600e-9, 400e-9)

in_arm1 := arms.transl(-15300e-9,-44cy,0)

in_arm2 := arms.transl(-15300e-9,-33cy,0)

in_arm3 := arms.transl(-15300e-9,-22cy,0)

in_arm4 := arms.transl(-15300e-9,-11cy,0)

in_arm5 := arms.transl(-15300e-9, 0 ,0)

in_arm6 := arms.transl(-15300e-9, 11cy,0)

in_arm7 := arms.transl(-15300e-9, 22cy,0)

in_arm8 := arms.transl(-15300e-9, 33cy,0)

in_arm9 := arms.transl(-15300e-9, 44cy,0)

out_arm1:= arms.transl( 15300e-9,-33cy,0)

out_arm2 := arms.transl( 15300e-9, 0 ,0)

out_arm3 := arms.transl( 15300e-9, 33cy,0)

total_struct := Mid_rect.add(in_arm1).add(in_arm2).add(in_arm3)

.add(in_arm4).add(in_arm5).add(in_arm6).add(in_arm7)

.add(in_arm8).add(in_arm9)

total_struct = total_struct.add(out_arm1).add(out_arm2).add(out_arm3)

demultiflexer := zrange(-50e-9, 50e-9).intersect(total_struct)

setgeom(total_struct)

//defining regions

defRegion(1, xrange( -Nxcx/2, (-Nxcx/2)+1e-6) ) // left 1-



.2 Script for the alphabet identifier 113

um damped YIG

defRegion(2, xrange((-Nxcx/2)+1e-6, ( Nxcx/2)-1e-6) ) //

middle YIG

defRegion(3, xrange(( Nxcx/2)-1e-6, Nxcx/2 ) ) // right 1-

um damped YIG

save(regions)

Msat.setRegion(0,0)

Aex.setRegion(0,0)

alpha.setRegion(0,10000)

Msat.setRegion(1, 14e4)

Aex.setRegion(1, 3.5e-12)

alpha.setRegion(1, 0.5)

Msat.setRegion(2, 14e4)

Aex.setRegion(2, 3.5e-12)

alpha.setRegion(2, 2e-4)

Msat.setRegion(3, 14e4)

Aex.setRegion(3, 3.5e-12)

alpha.setRegion(3, 0.5)

T_loc := 1e-9

B_ext = vector(0, 0, 200e-3)

f1 := 2.6e+9

pos1 := Nx/4

B_exc := 1e-2

mask1 := newVectorMask(Nx, Ny, Nz)

for i := pos1; i<pos1+1; i++ {

for j := 0; j< Ny; j++

{ for k := 0; k<Nz; k++

{ r := index2coord(i,j,k)

x := r.X()



114 Additional Information

Fig. 2 Representation of 12 alphabets possible to visualize by the 3×3 matrix.

y := r.Y()

z := r.Z()

mask1.setVector(i,j,k, vector(1.0, 0, 0)) } } }

B_ext.add(mask1, B_excsin(2pif1(t-T_loc)))

m = uniform(0, 1, 0)

relax()

OutputFormat = OVF2_TEXT save(m)

save(B_demag)

save(B_eff)

autosave(m, 10e-10)

tableautosave(10e-15)

B_ext = vector(0, 0, 200E-3)

run(100e-9)
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Fig. 3 Series of normalized (a) AFM images with simultaneously captured corresponding (b)
MFM images for the films irradiated with 100 kev of Ar+ ions at various fluences (mentioned
on top of the image). The scale bar is same for all the images.

.3 Understanding Domain Modification Using Ma-
chine Learning

.3.1 Atomic and Magnetic Force Microscopy

Fig. 3 (a) and (b) show the AFM and MFM images, respectively, obtained after
exposing the sample to increasing fluences ranging from 0.5×1014 to 1016. These
images illustrate the changes in magnetic domain evolution resulting from the
fluence.
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.3.2 Mumax3 script

Nx := 256

Ny := 256

Nz := 4

sizeX := 1024e-9

sizeY := 1024e-9

sizeZ := 16e-9

SetGridSize(Nx, Ny, Nz)

SetCellsize(sizeX/Nx, sizeY/Ny, sizeZ/Nz)

//input from the python Msat = 1200000.0

Aex = 2.3e-10

alpha = 0.925

Ku1 = 5000000

anisU = vector(0,0,1)

Temp = 287

//end input from the python

m = RandomMag()

FixDt = 1e-12

run(100e-9)

saveas(m, Domain_CoPd_K_1E6_Ms_1p2)

snapshot(m)

tableadd(Edens_total)

tableadd(Edens_anis)

tableadd(Edens_demag)

tableadd(Edens_exch)

tablesave()
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Fig. 4 Lateral dimensions decrement in the ResNet-34 [9]. Picture taken from ref-[10]

.3.3 ResNet Models

The ResNet34 model’s conv and pooling layers are depicted in Fig. 4, revealing the
structure of each layer. The convolutional process results in a decrease in the lateral
dimensions of the image, as evident from the figure.
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