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Abstract

Stimulated Raman experiments of molecular aggregates often reveal remarkably different spectral

structure than other vibrational spectroscopies. Clear examples of such discrepancies can be found

in photosynthetic pigment-protein complexes, but also e.g. in a wide range of artificial J-aggregates.

Using time-domain techiques in these settings, one often observe extremely sparse vibrational

spectra containing predominantly low-frequency modes of surprisingly large intensity, rather than

the rich spectrum of modes found using frequency-domain techniques such as hole burning and

Raman spectroscopy. Thus, it appears that a mechanism is required which selectively enhances

the oscillator strength of a small sub-set of vibronic transitions under typical stimulated Raman

conditions in coupled molecular complexes .

In this work, we address this issue by exploring how pigment-localized vibrations couple to

the excitonic states of molecular aggregate systems. In particular, we analyze how this vibronic

coupling changes as a function of excitonic delocalization, and what the consequences are for

spectral observables.

To comprehend this phenomenon, we introduce the concept of a generalized Huang-Rhys factor

for molecular aggregates consisting of any number of monomers with arbitrary number of vibra-

tional modes. We derive compact analytical expression for this quantity, and established two

conditions – #1 and #2 – which must be simultaneously fulfilled in order to observe strong cou-

pling of the excitonic and vibrational degrees of freedom. We illustrate the remarkably strong effect

of such vibronic coupling by numerical simulations of absorption and resonance Raman spectra of

a two-mode model dimer.
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I. INTRODUCTION

In the simplest quantum mechanical treatments of light-matter interactions, photons are

absorbed and emitted as prescribed by vertical transitions between system eigenstates –

resulting in spectra composed of sharp spectral lines at frequencies directly corresponding

to the energy-differences between these eigenstates. While this picture is approximately

valid for e.g. many cold atomic gases, the situation for molecular aggregates embedded

in dissipative condensed-phase environments is far more complicated. The hundreds of

vibrational modes present in these systems – intramolecular and in the surrounding bath –

result in a high density of states, and nonadiabatic effects, vibrational relaxation, electronic

dephasing and static disorder all contribute to the optical response of the aggregate. As a

result, transitions are manifested as broad and asymmetric vibronic bands (in the frequency

domain) or complicated, often oscillatory signals (in the time domain) [1–3].

In many important systems one might suspect that some significant simplifications could

nevertheless be made to this complicated picture, as electron-vibrational coupling is often

weak. In particular, one could naively assume that vibrational modes are, to good approxi-

mation, decoupled from the electronic degrees of freedom, and that the spectroscopic signals

can be grasped in terms of a pure excitonic picture. The pigment-protein-complexes (PPCs)

found in natural photosynthesis, largely based on assemblies of small-Huang-Rhys factor

chlorophylls [4–6], are an important class of systems where one might be tempted to apply

such an approximation.

It is well known, however, that this simple picture does not hold in general: The elec-

trostatic interaction between chromophores in such aggregates results in the formation of

delocalized excitonic eigenstates, and vibrational modes that couple only weakly to the

electronic states in isolated pigment may experience substantially different coupling to the

states in the coupled multi-pigment system. It has been pointed out that such vibronic

mixing effects, appearing under suitable conditions in electronically coupled systems, could

be responsible for the relatively strong oscillatory signals observed in the ultrafast kinetics

of a wide range of biological and artificial molecular aggregates [7–16] (see also more recent

papers [17–22] and references therein).

Beyond spectroscopy, in the context of electronic energy and charge transfer processes, the

significance of resonant vibrations has been widely appreciated, and a reasonable qualitative
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understanding has been achieved [23–32]. Due to the complexity of the problem, however,

the influence of exciton-vibrational coupling on the photophysics of molecular aggregates has

been largely studied by numerical simulations of specific, usually relatively simple, models

(see papers [7–32] and reviews [33–35]).

Here we extend this work on aggregates of molecular chromophores – presenting a general

analytical analysis of weakly coupled pigment-localized vibrations in excitonically coupled

molecular aggregates of arbitrary size and number of vibrational modes. We introduce

a generalized Huang-Rhys factor for multi-pigment aggregates, and establish the specific

conditions under which excitonic and vibrational degrees of freedom become strongly mixed

and vibronic transitions gain intensity by redistribution of the total oscillator strength.

We substantiate the analytical results by numerical simulations of linear absorption and

resonance Raman spectra of a model dimer, using typical parameters found in pigment-

protein complexes.

Note that ~ = 1 throughout the paper.

II. STARTING EQUATIONS

We consider a generic molecular aggregate consisting of Ne chromophores placed in a

dissipative environment (solvent). Each chromophore is modeled as an electronic two-level

system possessing Nv vibrational modes. The Hamiltonian of this aggregate in site represen-

tation can be represented as a sum of the excitonic Hamiltonian, vibrational Hamiltonian,

and their coupling [36, 37]:

H = He +Hv +Hev, (1)

He =
Ne∑
k,k′

Ekk′B
†
kBk′ , (2)

Hv =
Ne∑
k=1

Nv∑
α=1

Ωkα

2

(
P 2
kα +X2

kα

)
, (3)

Hev =
Ne∑
k=1

Nv∑
α=1

ΩkακkαB
†
kBkXkα. (4)

Here, the operators B†k and Bk create excitation on site k and obey the Pauli commutation

rules [Bk, B
†
k′ ] = δkk′(1 − 2B†kBk′). Ekk′ are the site energies (k = k′) and couplings (k 6=

k′), and Xkα, Pkα and Ωkα are the dimensionless positions, dimensionless momenta, and
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frequencies of the harmonic mode α of the chromophore k. The small parameters κkα

control the strength of the intra-chromophore electron-vibrational coupling in individual

chromophores.

The Hamiltonian He can be diagonalized by the orthogonal transformation O

Ekk′ =
Ne∑
n=1

OknεnOnk′

Introducing the new excitonic operators

Cn =
Ne∑
k=1

OnkBk.

and applying the transformation O to the Hamiltonian (1), we obtain the equivalent Hamil-

tonian H in the excitonic representation [38]:

H = OHO† = He +Hv +Hev (5)

where

He =
Ne∑
n=1

εnC
†
nCn, (6)

Hev =
Ne∑

k,n,n′=1

Nv∑
α=1

Ann
′

kα C
†
nCn′Xkα, (7)

Hv = Hv (8)

and

Ann
′

kα = ΩkακkαOnkOn′k.

Note that in the excitonic representation the system now possesses both diagonal Annkα and

off-diagonal (Ann
′

kα , n 6= n′) exciton-vibrational couplings.

III. EIGENVALUES OF THE EXCITONIC HAMILTONIAN

In order to clarify how the exciton-vibrational coupling in molecular aggregates depends

on the parameters of Hamiltonians (1) and (5), we analytically evaluate the eigenvalues of

the Hamiltonian H in the limit of weak pigment-localized vibrational coupling. This limit is

relevant for biological PPCs where, for instance, the total vibrational Huang-Rhys factor S =
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∑
kα κ

2
kα for the bacterial photosynthetic reaction center [4] and the Fenna–Matthews–Olson

complex [5, 6] is ≈ 0.3.

We introduce the eigenfunctions and eigenvalues of the purely excitonic and vibrational

Hamiltonians:

He |r〉 = εr |r〉 , Hv |λ〉 = χλ |λ〉 (9)

which are readily available analytically. He and Hv commute, and we can write:

(He +Hv) |r〉 |λ〉 = (εr + χλ) |r〉 |λ〉 . (10)

We denote the eigenfunctions and eigenvalues of the total Hamiltonian as |rλ〉 and Erλ,

H |rλ〉 = Erλ |rλ〉 . (11)

Then Erλ can be found analytically in the leading, quadratic in κkα order. The detailed

derivation is given in Appendix A. Here we cite the final result:

Erλ = εr + χλ −
Ne∑

k,m=1

Nv∑
α=1

Srmkα
[
(1 + 2nλkα)ωrm + Ωkα

]
+O(κ4

kα) (12)

where

ωrm = εr − εm (13)

are the excitonic transition frequencies and

nλkα = 〈λ|a†kαakα |λ〉 (14)

are the vibrational occupation numbers (the creation and annihilation operators, a†kα and

akα, are expressed in terms of the dimensionless positions Xkα and momenta Pkα through

Eq. (A6)). As outlined below, the factor

Srmkα =
(Armkα )2

2(Ω2
kα − ω2

rm)
(15)

can be regarded as a Huang-Rhys factor generalized to multi-pigment systems. In the special

case of a dimer (Ne = 2) with a single vibrational mode per monomer (Nv = 1) this reduces

to a well known result [39].
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IV. GENERALIZED HUANG-RHYS FACTOR

Eqs. (12) and (15) are the main analytical result of the present work. It is clear that

the factor Srmkα ∼ κ2
kα defined in Eq. (15) controls the exciton-vibrational coupling in the

molecular aggregate. To elucidate how this coupling constant depends on the parameters

specifying the aggregate, it is helpful to consider two cases.

A. Single chromophore

In this case, Ne = 1 and the Hamiltonian (5) describes a collection of shifted harmonic os-

cillators. This system can be treated analytically for any κkα, but for consistency we remain

with the perturbative treatment. Adopting Eq. (12) for the case of a single chromophore,

we set

k = m = r = 1, Ork = 1, ωrm = 0,

and obtain

S11
1α = κ2

kα/2 (16)

This is the standard Huang-Rhys factor of the chromophore [40], substantiating our inter-

pretation of the vibronic coupling constant Srmkα ∼ κ2
kα as a generalized Huang-Rhys factor.

B. Molecular aggregate

For a molecular aggregate the situation is dramatically different from that of the single

chromophore. While Srmkα remains proportional to κ2
kα, significant dependencies on other

parameters appear. Due to these dependencies, the exciton-vibrational coupling in molecular

aggregates can become strong even if the coupling in the individual monomers is weak

(κ2
kα � 1). Investigating the expression Eq. (15) two conditions appear crucial to achieving

strong coupling:

1. Condition #1

For Ne > 1, the generalized Huang-Rhys factor of Eq. (15) possesses a resonant de-

nominator. Hence the strongest exciton-vibrational coupling is expected when the excitonic
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transition frequency and the vibrational mode frequency are similar,

|ωrm| ≈ |Ωkα|. (17)

In this case exciton-vibrational coupling becomes substantial, giving rise to strong mixing

of excitonic and vibrational degrees of freedom. If, on the other hand, |Ωkα| � |ωrm|

then Srmkα = O2
rkO2

mkκ
2
kα/2. As a result, the strong-coupling regime cannot be reached for

vibrational modes with frequencies large relative to the excitonic splitting - although the

actual coupling may differ from that of the individual chromophore due to the redistribution

of the coupling strength by the O2
rkO2

mk factors. Note that higher-order resonances (|ωrm| ≈

j|Ωkα| for j > 1), do not contribute to Erλ in the small κkα regime investigated here. If

|ωrm| = |Ωkα|, the unperturbed excitonic and vibrational energy levels become degenerate

and simple perturbation theory breaks down.

2. Condition #2

Condition #1 is necessary, but not sufficient for strong exciton-vibrational coupling. In

addition the site energy differences must be of the order of the inter-site couplings,

|Ekk − Ek′k′| ' |Ekk′|, k 6= k′. (18)

This requirement reflects that, in the opposite limit |Ekk − Ek′k′ | � |Ekk′|, the dynamics

becomes almost adiabatic (Ork ≈ δrk) and the Hamiltonians H and H virtually coincide.

In this case, Ann
′

kα becomes diagonal,the generalized Huang-Rhys factor reduces to Srmkα =

δrkδmkκ
2
kα/2 – i.e. a collection of the Huang-Rhys factors of the isolated pigments, and

strong exciton-vibrational coupling cannot be realized.

In summary, in order to reach the strong coupling regime it is strictly necessary to

simultaneously fulfill both conditions #1 and #2. If either or both of the conditions are not

fulfilled, Srmkα ' κ2
kα/2 – the Huang-Rhys factor of the collection of isolated chromophores.

V. NUMERICAL ILLUSTRATION

To substantiate the above analytical results and principles, we simulate the linear ab-

sorption I(ω) and resonance Raman R(ω) spectra of a model molecular dimer at room tem-

perature. Our aim is to demonstrate how vibrational-electronic coupling modulates optical
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spectra, and how relatively modest changes in model parameters can lead to substantially

different results (as implied by the conditions #1 and #2). Rather than accurate modelling

of a specific optical response, we are here concerned with general features of the model. In

order to most clearly highlight these, we make several simplifications and adopt particu-

lar choices of parameters. Most notably, we neglect vibrational relaxation and account for

the environment only through optical dephasing. We assume relatively slow dephasing at

τ = 200 fs, which allows all transitions in the absorption spectrum I(ω) to be clearly dis-

tinguishable. Similarly, the lineshapes in the resonance Raman spectra R(ω) are Lorenzian

with a width 2000 fs−1.

The resulting purely excitonic dimer system consists of two coupled monomers with site

energies ε1 and ε2. We set ε1 = 0, and systematically vary ε2 (and thus the monomer energy

splitting) in order to emulate the different site-energies found in molecular aggregates. The

dipole-dipole coupling between sites is fixed to ∆ ≡ E12 = 98 cm−1 - a fairly typical

magnitude observed in many biological aggregates, e.g. between bacteriochlorophyll sites 1

and 2 in the Fenna-Matthews-Olson PPC [42, 43]). The vibrationless dimer thus has two

excitonic states,

E1 =
1

2

(
ε2 − δε

)
, E2 =

1

2

(
ε2 + δε

)
, (19)

split by an energy:

δε =
√
ε22 + 4∆2.

To this excitonic system we introduce a low-frequency and a high-frequency vibrational mode

at each monomer site. We choose representative bacteriochlorophyll vibrational frequencies

[41] Ω1 = 195 cm−1 and Ω2 = 724 cm−1. The electron-vibrational couplings are κ1 = 0.289

and κ2 = 0.226, respectively – again typical of bacteriochlorophylls. The dimer is thus

described by the Hamiltonian of Eq. (1), with Ne = 2 and Nv = 2 and having Ne ×Nv = 4

vibrational modes.

While it is clear from Eq. (12) that the system eigenstates depend on the interaction be-

tween excitonic and vibrational degrees of freedom, the consequences in terms of observables

I(ω) and R(ω) are not obvious and their detailed exploration requires numerical simulations.

For this dimer system, the transition dipole moment operators are defined as [36, 37]

Z = B1µ1 +B2µ2, Z
† = B†1µ1 +B†2µ2

where µk are the dipole moment vectors. As optical spectra can become rather congested,
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we enhance the visibility of vibronic coupling effects by assuming that only monomer 1 is

optically bright (µ1 = 1), while monomer 2 is optically dark (µ2 = 0). Straightforward

evaluation of I(ω) and R(ω) now requires propagation of the dipole moment operator with

the Hamiltonian H comprising three excitonic states and four vibrational modes. This can

be done by standard basis-set or grid methods, but the actual computations are rather time

consuming. Instead of employing more advanced computational techniques [18, 22, 45–

48], here we partition the vibrations into the so-called ”plus” and ”minus” coordinates and

momenta [14, 20, 21, 28, 39, 49]. As detailed in Appendix B, this procedure drastically

simplifies calculations and reduces computational cost.

We show simulated absorption spectra I(ω) at a range of parameters in Fig. 1. Note that,

while the spectra are plotted in arbitrary units, the total oscillator strength is conserved,

since (Eq. (B6))
∫∞
−∞ dωI(ω) = 2πC(0) [50]. The monomer spectrum (equivalent to the

spectrum of a homo-dimer with the dipole coupling ∆ = 0) shown in panel (a) is simple,

with an intense 0-0 transition and weak vibrational features at 195 cm−1 and 724 cm−1

corresponding to the fundamentals of the modes Ω1 and Ω2. Turning on the coupling in

this completely degenerate dimer results in dramatic changes to the absorption spectrum,

as seen in panel (a) of Fig. 1. While excitonic splitting and redistribution of oscillator

strength is a consequence in any coupled dimer, it is clear that the inclusion of weakly

coupled vibrations at each site has a substantial effect on the spectral shape. In particular,

while a transition appears as expected at E1 = −1

2
δε, the absorption peak expected at

E2 =
1

2
δε in a purely excitonic dimer instead appears as two equal intensity bands split

almost symmetrically around the pure excitonic energy (indicated by vertical dashed lines).

As illustrated in panel (b) of Fig. 1, this qualitative picture of a single low-frequency

absorption feature in combination with split higher-frequency transitions prevails as the

site energy ε2 increases. It is clear, however, that as ε2 increases the redistribution of

oscillator strength is strongly suppressed. Concomitant with this suppression, the peak

splitting increases, and the spectral lineshape tends towards that of a purely excitonic dimer

with decoupled vibrations. Comparing the observed transition frequencies with those of the

excitonic dimer is revealing. According to Eq. (12), we should expect strong transition

frequency deviations only when vibronic coupling is strong – i.e. when conditions #1 and

#2 are fulfilled. Plotting the frequency of the three lowest frequency transitions (hereafter,

to states 1, 2, and 3) as a function of ε2 in panels (c) and (d) corroborates this. The lowest
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a b

c d

FIG. 1. a) Linear absorption spectra for homodimer with (blue) and without (red) dipole couplings

∆. b) Heterodimer absorption spectra as a function of the splitting ε2 of monomer energies.

Splitting energies given in units of the vibrational frequencies. c) The calculated position (in

units of vibrational frequency Ω1) of the lowest energy transition as a function of ε2, compared

with the expected position of the lowest energy exciton in a pure excitonic dimer (dashed line).

d) The calculated position of the second (red) and third (blue) transition as a function of ε2.

For comparison we show the expected energy of the high-energy transition in an excitonic dimer

(dashed line), the energy of the exciton in panel c plus a decoupled vibration Ω1 (short dashed),

and the peak-position = ε2 diagonal line (gray line).

frequency transition – essentially to a zero-vibrational state – shows negligible deviations

from the purely excitonic transition to E1 (Fig. 1(c)). Similarly, at large ε2 transitions to

states 2 and 3 are virtually indistinguishable from transitions to a decoupled vibration and

a pure excitonic state, respectively (Fig. 1(d)). At small ε2, on the other hand, the situation

is completely different: here, both transitions are strongly modulated by the interaction

between electronic and vibrational degrees of freedom. This results in substantial shifts of

the system eigenenergies, as predicted by Eq. (12). We note that vibronic interactions are

also observable in the spectral region around Ω2, but as the coupling strength is rather small
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FIG. 2. Resonance Raman spectra as a function of site energies ε2. Excitation resonant with the

lowest energy state 1 (left panel), state 2 (middle panel), and state 3 (right panel).

relative to the energy gap, the resulting redistribution of oscillator strength is small, and

the spectral evolution is much more subtle.

Due to the resonant interactions, one might expect that also the resonance Raman spectra

show a substantial dependence on vibronic coupling. This is demonstrated in Fig. 2, where

it is clear that the qualitative shapes also of vibrational spectra are strongly dependent on

both the electronic structure and excitation frequency. We note that the observed vibrations

are associated with the electronic ground-state [40, 51, 52], and are thus themselves not

vibronic in character. As such, we do not observe e.g. frequency shifts upon excited-state

electronic structure changes. Instead, the peak intensities – and their ratios – become

reporters on vibronically coupled excited states through their dependence on the transition

dipole moments.

The spectra acquired by excitation resonant with the lowest energy – and essentially

purely excitonic – State 1 (Fig. 2, left panel) are simple. These are dominated by the

Rayleigh line, as expected given the small Huang-Rhys factors of the chromophores, and

the overall shape of the spectrum is virtually unaffected by the excited state structure.

The observed change in signal intensity at increasing ε2 simply reflects the redistribution of

oscillator strength towards the lowest energy exciton as the effect of coupling decreases, as

one would expect given the absorption spectra in Fig. 1(b). The character of states 2 and

3 is strongly dependent on vibronic coupling, as evident from the linear absorption spectra

and Eq. (12). The vibronic coupling manifests itself as a strong dependence of the resonance

Raman spectra – both in overall signal strength and in spectral shape – on ε2 (see Fig. 2(b)

and (c)).
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The non-trivial changes in spectral shape can be illustrated by comparison of the ho-

modimer with and without coupling (Fig. 3(a)). In the ∆ = 0 case, excitation resonant

at Ω1 results in a Raman spectrum dominated by this 195 cm−1 feature due to favorable

Franck-Condon integrals. As we allow coupling between the sites, the states 2 and 3 take

on partially electronic character due to the vibronic coupling, resulting in a less favorable

Franck-Condon integral and decrease of Raman-to-Rayleigh scatter. The consequences of

these mixing processes are, as illustrated by plotting the Ω1 to Rayleigh line ratios in Fig.

3(b), highly non-trivial functions of the excited-state electronic structure with a maximum

around ε2/Ω1 ≈ 0.5. It is clear, however, that as ε2 increases, the overall behavior tends

towards that of the uncoupled dimer, with states 2 and 3 approaching a pure vibrational

state and a pure excitonic state, respectively.

While a larger degree of vibrational character of a state thus seems to increase the relative

intensity of particular lines in the resonance Raman experiment, estimation of the absolute

magnitude of the signal is less simple. As is clearly demonstrated in Fig. 3(c), strong

vibrational mixing (i.e. small ε2) tend to increase the overall signal intensity in this model

due to the redistribution of oscillator strength into the vibronically mixed higher-energy

states. Finding the optimal parameters for enhancement of a particular mode thus becomes

a non-trivial optimization problem, where the favorable Franck-Condon factors of a purely

vibrational system must be weighed against the potentially significantly enhanced oscillator

strength in the vibronically mixed situation.

VI. CONCLUSION

In the present work we have established, in the perturbative limit, the rigorous rules which

govern coupling of excitonic and vibrational degrees of freedom in chromophore aggregates,

and highlighted the consequences of such coupling for optical spectra. We have validated our

analysis by the numerical simulations of optical spectra of a model dimer consisting of chro-

mophores with two (low-frequency and high-frequency) vibrational modes. The compact

analytical formula for the eigenvalues of the general exciton-vibrational Hamiltonian (in the

leading second order) allowed us to define a generalized Huang-Rhys factor for molecular ag-

gregates. Further, we could establish the required conditions for strong coupling of excitonic

and vibrational degrees of freedom - conditions #1 and #2. The simultaneous fulfillment of
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a

b

c

FIG. 3. a) The effect of electronic coupling on the Resonance Raman spectra a homodimer.

Excitation into state 1 (top), state 2 (middle), and state 3 (bottom). b) The intensity ratio between

Rayleigh scatter and the Ω1 Raman line as a function of ε2. Excitation frequencies resonant with

the states noted in the panel. c) The intensity of the Rayleigh and Raman features as a function

of ε2. Excitation resonant with state 1 (top), state 2 (middle), and state 3 (bottom).

both of these ensures that excitonic and vibrational degrees of freedom are strongly coupled

despite weak coupling in the individual constituent chromophores. Considering typical mag-

nitudes of excitonic energies and dipole couplings in biological pigment-protein complexes,

we predict that these conditions are only reasonably well fulfilled for relatively low-frequency

(say . 500 cm−1) vibrational modes. For higher-frequency modes the conditions are gener-

ally not fulfilled in natural systems, as the coupling becomes small relative to the energy-level

splitting. These results qualitatively explain why only relatively low-frequency vibrational

modes have been detected in time-domain experiments on aggregates such as the photosys-

tem II reaction center [44], chlorosomes [53], the Fenna-Matthews-Olson complex [55, 56],

as well as artificial light-harvesting J-aggregates [54].
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Appendix A: Evaluation of eigenenergies of the excitonic Hamiltonian

1. Second order perturbation theory

Consider a Hamiltonian

H = H0 + V,

where H0 is a certain zero-order Hamiltonian and V is a perturbation,

‖ H0 ‖�‖ V ‖ .

Let us introduce the eigenfunction representation for H0,

H0 |a〉 = E(0)
a |a〉 .

Then the eigenenergies Ea of the total Hamiltonian H, up to the second order in V , are

written as (see, e.g., Ref. [57])

Ea = E(0)
a + Vaa +

∑
b 6=a

|Vab|2

E
(0)
a − E(0)

b

(A1)

where

Vab = 〈a|V |b〉.

For the problem we are interested here V is real and

〈a|V |a〉 = 0. (A2)

Hence

Ea = E(0)
a +

∑
b 6=a

V 2
ab

E
(0)
a − E(0)

b

. (A3)

To evaluate Eq. (A3), it is convenient to rewrite it in the equivalent operator form:

Ea = E(0)
a − i lim

ν→0

∫ ∞
0

e−νt〈a|eiH0tV e−iH0tV |a〉. (A4)
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2. Application to the Hamiltonian of Eq. (5)

Let us now set

H0 = He +Hv, V = Hev.

Adopting the notation (9)-(11), we see that Eq. (A2) is fulfilled since 〈λ|Xkα |λ〉 = 0. It is

further convenient to define the vibrational creation and annihilation operators akα and a†kα,

[akα, a
†
k′β] = δkk′δαβ, (A5)

in terms of which

Xkα =
1√
2

(a†kα + akα), Pkα =
1√
2

(a†kα − akα). (A6)

Hence Eq. (A4) assumes the form:

Erλ = εr + ωλ −
i

2

Ne∑
k,n,n′,k′,m,m′=1

Nv∑
α,β=1

Ann
′

kα A
mm′

k′β G (A7)

where

G = lim
ν→0

∫ ∞
0

e−νt〈λ|〈r|eiH0tC†nCn′(akα + a†kα)e−iH0tC†mCm′(ak′β + a†k′β) |r〉 |λ〉 .

Since

[He, Hv] = 0 (A8)

we can use the identities

eiH0tC†n = eiεntC†ne
iH0t, eiH0tCn = e−iεntCne

iH0t,

eiH0ta†kα = eiΩkαta†kαe
iH0t, eiH0takα = e−iΩkαtakαe

iH0t,

which are the consequence of the Heisenberg equations of motion for excitonic and vibrational

operators. Therefore,

G = lim
ν→0

∫ ∞
0

e−νtei(εn−εn′ )t〈λ|〈r|C†nCn′(akαe
−iΩkαt + a†kαe

iΩkαt)C†mCm′(ak′β + a†k′β) |r〉 |λ〉 .

Performing the time integral and employing Eq. (A5), we obtain

G = −1

i
〈r|C†nCn′C†mCm′ |r〉 δkk′δαβ

[
1 + nλkα

ωnn′ − Ωkα

+
nλkα

ωnn′ + Ωkα

]
(A9)

where ωnn′ and nλkα are given by Eqs. (13) and (14), respectively.
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If we consider only singly excited excitonic states, then

|r〉 = C†r |0〉

(|0〉 being the excitonic vacuum) and

〈r|C†nCn′C†mCm′ |r〉 = δm′rδnrδn′m. (A10)

Then, combining Eqs. (A7), (A9) and (A10) we obtain Eq. (12).

Appendix B: Useful tricks with the dimer Hamiltonian

To simplify the calculations, we introduce the symmetrized (the superscript s) and anti-

symmetrized (the superscript a) coordinates and momenta (cf. Refs. [14, 20, 21, 28, 39, 49]):

xsα = (X1α +X2α)/
√

2, xaα = (X1α +X2α)/
√

2,

psα = (P1α + P2α)/
√

2, paα = (P1α + P2α)/
√

2. (B1)

The inverse transformation reads:

X1α = (xsα + xaα)/
√

2, X2α = (xsα − xaα)/
√

2,

P1α = (psα + paα)/
√

2, P2α = (psα − paα)/
√

2. (B2)

After the insertion of Eqs. (B2) into Eq. (1) with Ne = 2, one obtains

Hv = Hs
v +Ha

v , Hev = Hs
ev +Ha

ev.

Explicitly,

Hs
v =

Nv∑
α=1

Ωα

2

(
[psα]2 + [xsα]2

)
,

Ha
v =

Nv∑
α=1

Ωα

2

(
[paα]2 + [xaα]2

)
;

Hs
ev =

(
B†1B1 +B†2B2

)
hsev,

Ha
ev =

(
B†1B1 −B†2B2

)
haev,

hsev =
Nv∑
α=1

Ωακ̄αx
s
α, h

a
ev =

Nv∑
α=1

Ωακ̄αx
a
α.
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In the above formulas,

κ̄α = κα/
√

2.

With these definitions, the Hamiltonian H decomposes into the sum of two commuting

Hamiltonians,

H = Hs +Ha, [Hs, Ha] = 0. (B3)

Explicitly,

Hs = Hs
ev +Hs

v , (B4)

Ha = He +Ha
ev +Ha

v . (B5)

The linear absorption spectrum is determined by the Fourier transform of the correlation

function C(t) of the transition dipole moment operators [40],

I(ω) = Re

∫ ∞
0

dte−t/τe−iωtC(t), (B6)

C(t) = Tr
{
ρeqe

iHtZe−iHtZ†
}
. (B7)

Here Tr {...} is the trace over the excitonic and vibrational degrees of freedom and

ρeq = Z−1
eq e

−Hv/(kBT )

is the equilibrium vibrational distribution (kB is the Boltzmann constant and T is temper-

ature) and τ is the optical dephasing time. Making use of the fact that

eiH
stZe−iH

st = eiH
s
vte−i(H

s
v+hsev)tZ,

we obtain

C(t) = Cs(t)Ca(t)

where

Cs(t) = Trs
{
ρseqe

iHs
vte−i(H

s
v+hsev)t

}
,

Ca(t) = Tra
{
ρaeqe

iHatZe−iH
atZ†

}
Here Trs {...} is a trace over symmetric vibrational modes, Tra {...} is a trace over excitonic

degrees of freedom and asymmetric vibrational modes and

ρseq = Z−1
s e−H

s
v/(kBT ), ρaeq = Z−1

a e−H
a
v /(kBT ), ρeq = ρseqρ

a
eq.
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Cs(t) can be evaluated analytically as described e.g. in Ref. [40]:

Cs(t) = e−g(t)

where

g(t) =
Nv∑
α=1

gα(t),

gα(t) =
κ̄2
α

2

{
coth

(
Ωα

2kBT

)
(1− cos(Ωαt)) + i (sin(Ωαt)− (Ωαt))

}
.

Hence only the antisymmetrized correlation function Ca(t) has to be computed numerically.

It is governed by the Hamiltonian Ha which contains just a half of the original number of

vibrational degrees of freedom. In the present case of Ne = Nv = 2, Ha has two vibrational

modes.

Raman signals were computed by employing the partitioning (B3)-(B5) of the total Hamil-

tonian and using the Kramers-Heisenberg expression for Raman scattering [40].
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