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INVARIANTS OF VANISHING BRAUER CLASSES

FEDERICA GALLUZZI AND BERT VAN GEEMEN

Abstract. A specialization of a K3 surface with Picard rank one to a
K3 with rank two defines a vanishing class of order two in the Brauer
group of the general K3 surface. We give the B-field invariants of this
class. We apply this to the K3 double plane defined by a cubic fourfold
with a plane. The specialization of such a cubic fourfold whose group
of codimension two cycles has rank two to one which has rank three
induces such a specialization of the double planes. We determine the
Picard lattice of the specialized double plane as well as the vanishing
Brauer class and its relation to the natural ‘Clifford’ Brauer class. This
provides more insight in the specializations. It allows us to explicitly
determine the K3 surfaces associated to infinitely many of the conjec-
turally rational cubic fourfolds obtained as such specializations.

Introduction

In this paper, S will be a complex projective K3 surface. An element α
in the Brauer group Br(S) defines α-twisted sheaves on S which generate a
twisted derived category ([HuySt05]). A locally free α-twisted sheaf of rank
n defines a projective space bundle over S. Conversely, a projective bundle
over S is the projectivization of an α-twisted locally free sheaf. A class
α ∈ Br(S) also defines a Hodge substructure Tα(S) of the transcendental
lattice T (S).
The two-torsion subgroup Br(S)2 allows one to describe the conic bundles

over S that are the exceptional divisors in K3[2]-type hyperkähler manifolds
([vGK23]). In the case that S is a general K3 surface of degree two and
α ∈ Br(S)2 is a non-trivial class, the Hodge substructure Tα(S) is Hodge
isometric to either the transcendental lattice of a general cubic fourfold with
a plane or a general K3 surface of degree eight or to neither of these.
In this paper we will be particularly concerned with specializations of a K3
surface S and their impact on Br(S)2. That is, we consider a family of K3
surfaces over a disc with general fiber S and special fiber S2d. We focus on
the case where the rank of the Picard groups are one and two respectively,
see [C02], [MT23] for more general cases. Here the index 2d refers to the
degree of the generator of Pic(S). There are then natural identifications of
the second cohomology groups of the general and the special fiber. This
easily implies that there is a restriction map of Brauer groups from Br(S)2
to Br(S2d)2 which has a kernel of order two. The generator of this kernel is
called the vanishing Brauer class (of the specialization) and we denote it by
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2 FEDERICA GALLUZZI AND BERT VAN GEEMEN

αvan ∈ Br(S)2,

〈αvan〉 = ker
(
Br(S)2 −→ Br(S2d)2

)
.

We work out the invariants of this Brauer class. In the case of a K3 of
degree two these invariants determine whether the Brauer class corresponds
to a point of order two in J(C), where C is the ramification curve defined
by S, or to an even or odd theta characteristic on C. These results were in
in a sense anticipated in the papers [IOOV17], [Sk17] where the restriction
map Pic(S)→ Pic(C) is studied in relation to Br(S)2.

In the remainder of the introduction we discuss an application of vanishing
Brauer classes to cubic fourfolds. A well-known conjecture states that a
(complex) cubic fourfold X is rational if and only if it has an associated K3
surface S, that is the transcendental lattice T (X) of X is Hodge isometric to
T (S)(−1), the transcendental lattice of S with the opposite intersection form
([Has00],[Ku10],[AdTh14]). If it exists, S is called a K3 surface associated
to X. The general cubic fourfold X ′ does not have an associated K3 surface
since T (X ′) then has rank 22 whereas T (S) has rank at most 21.
A much studied case is the one of a cubic fourfold X containing a plane
P . In that case X defines a K3 double plane S = SX with an odd theta
characteristic, corresponding to a Brauer class αX ∈ Br(SX)2. In case
(X,P ) is general, with group of codimension two cycles generated by the
square of the hyperplane class and P , the K3 surface is not an associated
K3 surface since T (X) 6∼= T (SX)(−1). Instead there is a Hodge isometry
T (X) ∼= TαX (SX)(−1), where TαX (SX) is the index two sublattice defined
by the class αX ([Vo86]).
We consider now a specialization of a general (X,P ) to a fourfold where
the group of algebraic codimension two cycles N2(X) has rank three. These
rank three lattices have been classified and they are isomorphic to lattices
Mτ,n for a pair (τ, n) of integers, with τ ∈ {0, . . . , 4}, n ≥ 2, with a few cases
that actually do not occur ([YY23]). We denote the specialization of X by
Xτ,n and the double plane it defines by Sτ,n. The (τ, n) such that Xτ,n has
an associated K3 surface are given in ([YY23, Cor. 8.14]).
The K3 surface Sτ,n is a specializiation of SX with Picard rank of Sτ,n equal
to two, hence this specialization defines a vanishing Brauer class αvan ∈
Br(SX)2. In Br(SX)2 we now have two Brauer classes, αX and αvan. A
complete description of the specialization from SX to Sτ,n requires taking
into account not only the Picard lattice of Sτ,n and invariants of αvan but
also the relation between αX and αvan. Our main application of vanishing
Brauer classes, Theorem 4.4.1, gives all this information. The rather long
proof consists of explicit computations with lattices.
A well-known case that we recover is the case that αX = αvan which was
studied by Hassett ([Has99]). Then τ = 1, 3 and Sτ,n is a K3 surface
associated to Xτ,n, and these are the only cases in which Sτ,n is associated
to Xτ,n. The quadratic surface bundle over P2 defined by (Xτ,n, P ) then
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has a rational section and this implies that it is a rational fourfold. Since
this fourfold is birational to Xτ,n, also Xτ,n is rational, thus verifying the
conjecture.
In case τ = 0, 4, the vanishing Brauer class corresponds to a point of order
two on the ramification curve C of the double plane SX . The sum βX :=
αX + αvan corresponds to a theta characteristic on C, which is even if and
only if n is odd. A cubic fourfold Xτ,n has an associated K3 surface if and
only if n is odd. So it is of some interest to have a concrete description of
this associated K3 surface. Let Sτ,n be the K3 double plane defined by Xτ,n

and let Cτ,n be the branch curve of the double cover Sτ,n → P2. Let β be the
even theta characteristic on the branch curve Cτ,n which is the specialization
of βX on C. Then β defines a K3 surface Sβ which has a natural degree eight
polarization and there is a Hodge isometry T (Sβ) ∼= Tβ(Sτ,n). In Proposition
5.1.4 we show that Sβ is a K3 surface associated to Xτ,n. We also discuss
the example in [ABBV14], which has (τ, n) = (4, 5), in our context in the
Section 5.2.

1. Brauer Groups of K3 surfaces

1.2. Brauer classes and B-fields. Let S be a K3 surface. The Brauer
group of S is (cf. [Huy16, 18.1])

Br(S) = H2(S,O∗S)tors .

The exponential sequence in this case gives

0 −→ H2(S,Z)/Pic(S) −→ H2(S,OS) −→ H2(S,O∗S) −→ 0 .

A two-torsion class α ∈ Br(S)2 has a lift α̃ to the one dimensional complex
vector space H2(S,OS) with 2α̃ ∈ H2(S,Z)/Pic(S). Any class B = Bα ∈
1
2H

2(S,Z) ⊂ H2(S,Q) mapping to α̃ is called a B-field representative of α

(see [HuySt05]). A B-field Bα is unique up to (1/2)Pic(S) +H2(S,Z) :

B′α = Bα +
1

2
p+ c, p ∈ Pic(S), c ∈ H2(S,Z) ,

(see [Huy05, §4], see [Ku10, §6]). Assume now that S is a general polarized
K3 surface. There is the following

Lemma 1.2.1. ([Ku10, Lemma 6.1], [vGK23, Lemma 2.1]) Let S be a K3
surface such that Pic(S) = Zh, h2 = 2d > 0. Let α ∈ Br(S)2 and Bα ∈
1
2H

2(S,Z) ⊂ H2(S,Q) a B-field representing α. The intersection numbers

(1) Bαh mod Z,
(2) B2

α mod Z, only in the case that 4Bαh+ h2 ≡ 0 mod 4,

are invariants of α.
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1.2. Brauer Groups and K3 Lattices. There is an isomorphism, with
ρ(S) the Picard number of S,

Br(S) ∼=
(
H2(S,Z)/Pic(S)

)
⊗Q/Z ∼= (Q/Z)22−ρ(S) .

The lattice H2(S,Z) is selfdual since it has a unimodular intersection form.
A class α ∈ Br(S)2 can thus be identified with a homomorphism

α : T (S) −→ Z/2Z .

If Bα represents α, this homomorphism is given by

α : x 7−→ x ·Bα mod Z (in 1
2Z/Z) .

The class α defines a sublattice Tα(S) := ker(α) in T (S). For a K3 surface
with Picard rank one the invariants of α given in Lemma 1.2.1 are invariants
of the lattice Tα(S). In fact, index two sublattices Tα, Tβ of T (S) are iso-
metric if and only if α and β have the same invariants ([vGK23, Thm.2.3]).

2. Vanishing Brauer Classes and Invariants

Definition 2.1.1. Let (S, h) be a general polarizedK3 surface with Pic(S) =
Zh, h2 = 2d > 0. Consider a specialization S2d of S where the Picard rank of
S2d is two, so Pic(S2d) = Zh⊕Zk, for some divisor class k which is primitive
in H2(S2d,Z). (By a specialization of S we mean a family of quasi-polarized
K3’s over a complex disc ∆ such that the fiber over 0 ∈ ∆ is S2d and the
fiber over some non-zero a ∈ ∆ is S). We may then identify

H2(S,Z) = H2(S2d,Z) ,

and we have inclusions

Pic(S) ⊂ Pic(S2d), T (S) ⊃ T (S2d).

Thus there is a restriction map Br(S) → Br(S2d) given by restriction of
the homomorphism α to T (S2d). Since Br(S)2 ∼= (Z/2Z)21 and Br(S2d)2 ∼=
(Z/2Z)20, there is a unique order two Brauer class that becomes trivial in
Br(S2d), that is, α generates the kernel of the restriction map. This class
αvan is the vanishing Brauer class (in this specialization).

Proposition 2.1.2. A B-field representative of αvan is provided by B =
k/2 (∈ 1

2H
2(S,Z)) .

Proof. Since k/2 6∈ (1/2)Pic(S) + H2(S,Z), it defines a non-trivial class
in Br(S)2. On the other hand, obviously k/2 ∈ (1/2)Pic(S2d), hence k/2
defines the trivial class in Br(S2d)2. Therefore B = k/2 is a B-field repre-
sentative of αvan. �

This allows us to read off the invariants of αvan from the intersection matrix
of Pic(S2d) = Zh⊕ Zk which can be written as(

h2 hk
hk k2

)
=

(
2d b
b 2c

)
for some b, c ∈ Z .
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Using the B-field representative k/2 of αvan given in Proposition 2.1.2 one
finds the corollary below.

Corollary 2.1.3. The invariants of αvan ∈ Br(S) are

Bvanh ≡ (1/2)b mod Z, B2
van ≡ (1/2)c mod Z,

where Bvan is any B-field representing αvan. In particular, 2Bvanh ≡ disc(Pic(S2d))
mod 2.

2.2. Vanishing Brauer Classes of Double Planes. We now consider
the case where we specialize a double plane S, that is a double cover of the
plane branched over a smooth sextic curve C6 with Picard rank one, to a
K3 surface S2. In this case

(1) Pic(S2) =

(
Zh⊕ Zk,

(
2 b
b 2c

))
.

The change of basis which fixes h and maps k 7→ k−mh where b = 2m, 2m+
1, shows that we may assume b = 0, 1.
The two-torsion Brauer classes on a double plane with Picard rank one
correspond to the points of order two and the theta characteristics on the
genus 10 branch curve C6. We find the following characterization of the
class αvan in terms of these line bundles on C6.

Proposition 2.2.1. Let (S, h) be a general double plane specializing to S2
with Pic(S2) = Zh⊕ Zk and intersection matrix of the form (1). Then,

(1) If Bαvanh ≡ 0 (b is even), αvan corresponds to a point of order two
p ∈ Jac(C6).

(2) If Bαvanh ≡ 1
2 and B2

αvan ≡
1
2 , (b, c odd), αvan corresponds to an

odd theta characteristic in C6.
(3) If Bαvanh ≡ 1

2 and B2
αvan ≡ 0 (b odd and c even), αvan corresponds

to an even theta characteristic in C6.

Proof. This follows from Corollary 2.1.3 and [vG05], [IOOV17]. Notice that
[IOOV17, Theorem 1.1] shows that the vanishing Brauer class is obtained
from the restriction of a line bundle on S to the ramification curve C6 ⊂
P2. �

3. Cubic fourfolds containing a plane

3.1. Cubics with a plane and K3 double planes. Let X be a smooth
cubic hypersurface in P5(C) containing a plane P. Consider the projection
from the plane P onto a plane in P5 disjoint from P. Blowing up X along
P , one obtains a quadric surface bundle π : Y −→ P2. The rulings of
the quadrics define a double cover S = SX of P2 branched over a degree
six curve C6, the discriminant sextic. If X does not contain a second plane
intersecting P, the curve C6 smooth and S is a K3 surface (see [Vo86, §1
Lemme 2]).
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(2) Y = BlP (X)
q

%%

// X

��

⊃ P

C6
� � i // P2

The rulings of the quadrics of the bundle also define a P1-bundle F over S
which gives a Brauer class αX ∈ Br(S)2, also known as the Clifford class.
This class αX corresponds to an odd theta characteristic L on C6 with
h0(L) = 1 (see [Vo86, §2]).
Conversely, a smooth plane sextic with such an odd theta characteristic
defines a cubic fourfold with a plane which is obtained as in loc. cit. and
also from the minimal resolution of the push-forward of L to P2 as in [Be00].

3.2. Lattices. The cohomology group H4(X,Z) with the intersection form
is a rank 23 odd, unimodular, lattice of signature (2+, 21−). It is also a
Hodge structure with Hodge numbers h3,1 = 1, h2,2 = 21. Let h3 ∈ H2(X,Z)
be the class of a hyperplane section and let h23 ∈ H4(X,Z) be its square.
Denote with N2(X) ⊂ H4(X,Z) the odd, positive definite, lattice of classes
of codimension two algebraic cycles. The transcendental lattice of X is the
even lattice defined as

T (X) := N2(X)⊥ ⊂ H4(X,Z) .

The following proposition follows from [Vo86].

Proposition 3.2.1. Let X be a smooth cubic fourfold with a plane and let
S be the K3 double plane defined by X. Then there is a Hodge isometry:

T (X) ∼= TαX (S)(−1)

with TαX (S) := kerαX : T (S) → Z/2Z (it is a sublattice of index two in
T (S) if αX is non-trivial). It follows that

rank(N2(X)) = rank(Pic(S)) + 1.

The general cubic fourfold X with a plane P has

N2(X) =

(
Zh23 ⊕ ZP, K8 :=

(
3 1
1 3

))
.

4. Noether-Lefschetz divisors in C8 and double planes

4.1. The divisors Cd in C. Hassett determined all Noether-Lefschetz divi-
sors in the moduli space C of cubic fourfolds. These (irreducible) divisors
are denoted by Cd and d > 6, d ≡ 0, 2 mod 6. The divisor Cd parametrizes
fourfolds X with a certain rank two sublattice, containing h23, denoted by
Kd ⊂ N2(X) where d = disc(Kd). Thus C8 parametrizes the cubic fourfolds
with a plane since then K8 ⊂ N2(X).
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4.2. The divisors CM in C8. Yang and Yu give a classification of all
Noether-Lefschetz divisors in C8, that is the divisors that parametrize cubics
X with a plane and rankN2(X) > 2. They correspond to positive definite
saturated sublattices of rank three M ⊂ H4(X,Z) with K8 ⊂ M , up to
isometry. Denote by CM ⊂ C8 the divisor of smooth cubic fourfolds X with
such an isometry class of embeddings M ↪→ H4(X,Z).

Proposition 4.2.1. ([YY23, Corollary 8.14]) Consider the pairs of integers
(τ, n) such that τ = 0, ..., 4, n ≥ 2 and (τ, n) 6= (3, 2), (4, 2), (4, 3). Let Mτ,n

be the rank three positive definite lattice with intersection matrix given by

Aτ,n =

3 1 0
1 3 τ
0 τ 2n

 , Mτ,n := (Z3, Aτ,n ) .

(1) If M is a positive definite rank 3 lattice such that K8 ⊂M and such
that M has a saturated embedding in H4(X,Z) then M ∼= Mτ,n with
(τ, n) as above.

(2) Up to isometry, there is a unique embedding Mτ,n ↪→ L ∼= H4(X,Z)
such that the first basis vector maps to h23.

(3) The divisor CMτ,n in C8 is non-empty and irreducible. Moreover
CMτ,n = CMτ ′,n′ if and only if (τ, n) = (τ ′, n′).

4.3. The group (Pic(C)/〈KC〉)2. Let C be a smooth curve of genus g.
Recall that x ∈ Pic(C) is a two-torsion point if 2x = 0 and it is a theta
characteristic if 2x = KC , the canonical class of C. A theta characteristic
L is called even/odd if h0(L) is even/odd, there are 2g−1(2g + 1) even and
2g−1(2g − 1) odd theta characteristics. The parity of a theta characteristic
does not change under a deformation of C.
The two-torsion points are a group, denoted by J(C)2 (= Pic(C)2); the sum
p+L of a point of order two p with a theta characteristic L is again a theta
characteristic, but the parity may change; the sum L + M of two theta
characteristics can be written as KC + p for a unique two-torsion point p.
The union of the sets of two torsion points and theta characteristics thus has
a group structure, this group can be identified with the two-torsion group
(Pic(C)/〈KC〉)2, which has order 22g+1. For any double plane S with smooth
branch curve C, there is a surjective map A : (Pic(C)/〈KC〉)2 → Br(S)2
which is thus an isomorphism if rank(Pic(S)) = 1 ([IOOV17, Thm 1.1]).
The kernel of this map is given by restrictions of certain line bundles on S
to C.

Let U ⊂ P(H0(P2,O(6)) ∼= P27 be the open subset whose points define
smooth sextic curves, such a curve has genus 10. There is a finite un-
ramified covering Ũ → U of degree 221 whose fiber over C is the group
(Pic(C)/〈KC〉)2. It follows from [Be86] that this covering has four con-
nected components defined by the subsets: {0}, J(C)2 and the sets of even
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theta and odd theta characteristics respectively. In particular, the mon-
odromy group of this covering, which is Sp(20,F2), acts transitively on the
odd theta characteristics.

Lemma 4.3.1. The stabilizer of an odd theta characteristic α is an orthog-
onal subgroup O−(20,F2) ⊂ Sp(20,F2). The orbits of this stabilizer on a
fiber are well known:

(1) {0},
(2) {p ∈ J(C)2 − {0} : p+ α is odd},
(3) {p ∈ J(C)2 − {0} : p+ α is even},
(4) {α},
(5) {odd theta characteristics distinct from α},
(6) {the even theta characteristics}.

Proof. This can be deduced for example from the results of Igusa [Ig72, V.6].
The group J(C)2, with the Weil pairing, can be identified with his P and the
bilinear alternating map e : P × P → {±1}. For a theta characteristic L on
C define the quadratic form qL : J(C2)→ F2 by qL(p) := h0(L+ p)− h0(L)
mod 2 ([Har82, Theorem 1.13]). The theta characteristics are then identified
with the set T of maps c : P → µ such that c(r + s) = c(r)c(s)e(r, s) where

c(r) = (−1)qL(r).
Then [Ig72, Corollary p. 213] states that the symplectic group defined by e on
P is doubly transitive on both the even and on the odd theta characteristics.
Thus the stabilizer of an odd theta characteristic is transitive on the set of
the remaining odd theta characteristics. From [Ig72, Proposition 2] one
deduces that the stabilizer of an odd theta characteristic is transitive on the
even theta characteristics. Since the second and third orbits (in J(C)2) are
in bijection with the fifth and sixth orbits (in T ) respectively, the Lemma
follows. �

4.4. The specializations of X and S. Let X be a cubic fourfold with
a plane with N2(X) = K8, which has rank two. Let S be the K3 double
plane defined by (X,P ) with branch locus C and Brauer class αX which we
identify with an odd theta characteristic on C.
We specialize X to Xτ,n when N2(Xτ,n) = Mτ,n, which has rank three.
Let S2 = Sτ,n be the K3 double plane defined by Xτ,n, it has Picard rank
two. The specialization of cubic fourfolds defines a specialization of K3
surface S to Sτ,n. Hence it defines a vanishing Brauer class αvan ∈ Br(S).
This vanishing Brauer class is non-trivial and thus lies in exactly one of the
orbits (2) . . . (6) of the stabilizer of αX .
In the following theorem we determine the Picard lattice of the specialization
Sτ,n = S2 of S and we also determine the orbit of αvan.

Theorem 4.4.1. Let X be a general cubic fourfold with a plane, so with
rankN2(X) = 2. Let S be the K3 double plane defined by X, let C be
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the branch curve and let αX ∈ Br(S)2 be the Clifford class. Let Xτ,n be a
specialization of X such that

N2(X) ∼= Mτ,n .

Let Sτ,n be the K3 double plane defined by Xτ,n. Then the specialization of
K3 double planes from S to S2 = Sτ,n has the following properties.

(1) τ = 0 : The Picard lattice of S0,n is

Pic(S0,n) ∼=
(

2 0
0 −2n

)
.

The Brauer class αvan corresponds to a point of order two p ∈
Jac(C6). Moreover, the theta characteristic p+ αX is even/odd ex-
actly when n is odd/even,

(2) τ = 1 : The Picard lattice of S1,n is

Pic(S1,n) ∼=
(

2 1
1 2− 8n

)
.

Moreover αX = αvan, so these two classes coincide.
(3) τ = 2 : The Picard lattice of S2,n is

Pic(S2,n) ∼=
(

2 1
1 2− 2n

)
.

Moreover, αX 6= αvan and αvan corresponds to a theta characteristic
which is even/odd when n is odd/even.

(4) τ = 3: The Picard lattice of S3,n is

Pic(S3,n) ∼=
(

2 1
1 14− 8n

)
.

Moreover, αX = αvan, so the two classes coincide.
(5) τ = 4 :The Picard lattice of S4,n is

Pic(S4,n) ∼=
(

2 0
0 6− 2n

)
.

The Brauer class αvan corresponds to a point of order two p ∈
Jac(C6). The theta characteristic p + αX is even/odd when n is
odd/even.

4.5. Remark. Consider a K3 double plane with a Picard lattice diag(2, 2c)
for some c < 0. Choose an odd theta characteristic with h0 = 1 on the
branch curve and let N2 be the rank three lattice of algebraic codimension
two cycles on the associated cubic fourfold. Then the theorem above shows
that N2 is isometric to either M0,c or M4,3−c. One needs information on the
orbit of the vanishing Brauer class of the specialization of a general double
plane with Picard rank one to the K3 under consideration to determine
which of the two is the correct one.
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4.6. The proof of the main result. The remainder of this section is
devoted to the proof of Theorem 4.4.1. First of all, for an α ∈ Br(S)2
corresponding to an odd theta characteristic, we work out an explicit inclu-
sion Tα(S) ⊂ Λ where Λ is a lattice isometric to H2(S,Z) in 4.7. Let X
be the cubic fourfold with a plane such that αX = α. There is an isom-
etry T (X)(−1) ∼= Tα(S). Therefore K8 ⊕ Tα(S)(−1) has an overlattice
L ∼= H4(X,Z), which is in fact unique. We determine L explicitly in 4.8.
Next, for τ, n as in Proposition 4.2.1, we choose an explicit primitive em-
bedding Mτ,n ⊂ L, compatible with K8 ↪→ L. Then the perpendicular

M⊥τ,n in L is isometric to T (Xτ,n) = Tα(Sτ,n)(−1). Since this lattice is
contained in T (X) = Tα(S)(−1) ⊂ Λ(−1), we have found the sublattice
Tα(Sτ,n) ⊂ Tα(S) ⊂ Λ. In the diagram below, the lattices in the first row
are in Λ ∼= H2(S,Z), those in the second row are in L ∼= H4(X,Z).

T (S) ⊃ T (Sα) Tα(Sτ,n) ⊆ T (Sτ,n) ⊂ Λ

∼= ∼=
T (X)(−1) ⊃ Mτ,n(−1)⊥ = T (Xτ,n)(−1) ⊂ L

The perpendicular of Tα(Sτ,n), and also of T (Sτ,n), in Λ is then Pic(Sτ,n).
Finally we determine the vanishing Brauer class and the orbit it lies in.

4.7. The lattice Tα(S) ⊂ Λ. Let (S, h) be a K3 surface of degree 2 with
Pic(S) = Zh and let α ∈ Br(S)2 be a Brauer class defined by an odd theta
characteristic on C6, the branch curve of φh : S → P2.

There is an isomorphism

H2(S,Z)
∼=−→ Λ := U3 ⊕ E8(−1)2 = U ⊕ U ⊕ Λ′

where U =
(
Z2, ( 0 1

1 0 )
)
. Under the isomorphism, we may assume that

h =
(

( 1
1 ) , ( 0

0 ) , 0
)
, B = Bα = (1/2)

(
( 0
1 ) , ( 1

1 ) , 0
)
,

here we use that any two odd theta characteristics are in the same orbit of
the monodromy group and that for the B-field representative B of an odd
theta characteristic one has Bh = B2 = 1/2.

The transcendental lattice of S is then

T (S) = h⊥ =
〈 (

1
−1
) 〉
⊕ U ⊕ Λ′ .

The Brauer class α corresponds to the homomorphism, again denoted by α:

α : T (S) −→ Z/2Z, t 7−→ (t, 2B) mod 2.

Since the image of ((p,−p), (q, r), v) ∈ T (S) is p + q + r mod 2, the index
two (non-primitive) sublattice Tα(S) = ker(α) of T (S) is

Tα := Tα(S) := ker(α) = 〈γ1, γ2, γ3 〉 ⊕ Λ′ ,

where

γ1 :=
( (

1
−1
)
, ( 0

1 ) , 0
)
, γ2 :=

(
( 0
0 ) , ( 1

1 ) , 0
)
, γ3 :=

(
( 0
0 ) ,
(
0
2

)
, 0
)
.
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Hence Tα is the lattice

Tα(S) =

⊕3
i=1Zγi,

−2 1 0
1 2 2
0 2 0

 ⊕ Λ′ .

To glue Tα(S) to K8 we need to know its discriminant group. Let

γ∗α := 1
8(2γ1 + 4γ2 − 5γ3) = 1

8

( (
2
−2
)
,
(

4
−4
)
, 0
)
.

Since det(Tα) = 8, the discriminant group of Tα has order eight. Notice that
(γ∗α,

∑
aiγi) = a3 and thus γ∗α ∈ T ∗α, the dual lattice. Since γ∗α has order

eight in the discriminant group T ∗α/Tα, we conclude that it is a generator.
So the discriminant group is cyclic of order 8 and (γ∗α, γ

∗
α) = −5/8.

4.8. The overlattice L of K8 ⊕ Tα(S)(−1). A general cubic fourfold X
with a plane has N2(X) ∼= K8 where

K8 :=

(
Zh23 ⊕ ZP,

(
3 1
1 3

))
, let γ∗8 = (1/8)(3h23 − P ) .

Notice that the intersection form onK8 has determinant 8 and, since (γ∗8 , ah3+
bP ) = b, the discriminant group is generated by γ∗8 . As (γ∗8 , γ

∗
8) = 3/8 and

(γ∗α, γ
∗
α) = 5/8 in Tα(−1)Q we can glue the lattices K8 and Tα(−1) by adding

γ∗8 + γ∗α to their direct sum. Let

L := Z(γ∗8 + γ∗α) +
(
K8 ⊕ Tα(S)(−1)

)
,

it is a unimodular overlattice of K8⊕Tα(S)(−1) and (γ∗8+γ∗α)2 = 3/8+5/8 =
1. The lattice L is well-known to be unique, with unique sublattice K8, all
up to isometry. The lattice L is odd (because K8 is an odd sublattice)
and has signature (2 + 19, 2). As it is unimodular, it must be isometric to
< 1 >21 ⊕ < −1 >2∼= H4(X,Z).
For our computations it is convenient to write L as

L = Zh3 ⊕ ZP ⊕ Z(γ∗8 + γ∗α)⊕ Zγ1 ⊕ Z(γ2 − γ3)⊕ Λ′(−1) .

Since we work in L, the sublattice T (X) = Tα(S)(−1) which has opposite
intersection form. The Gram matrix of the first five summands is

M :=


3 1 1 0 0
1 3 0 0 0
1 0 1 0 1
0 0 0 2 −1
0 0 1 −1 2

 , let S :=


1 0 0 0 2
−1 0 0 0 −1
3 −1 −1 1 −6
−1 1 0 0 2
−2 1 1 0 4

 .

Then we have

tSMS = diag(1, 1, 1, 1,−1), hence L ∼=< 1 >⊕4 ⊕ < −1 > ⊕Λ′(−1) .

Finally we observe that h23 = 3 and (h23)
⊥ is an even lattice, which is all that

is required of the class that corresponds to the square of the hyperplane
section. The embedding K8 ↪→ H2(X,Z) is unique up to isometry and thus
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we may assume that the second generator corresponds to the class of a plane
P in X.

4.9. An embedding Mτ,n ↪→ L. For each τ = 0, 1, 2, 3, 4 we explicitly find
an mτ,n ∈ L such that

h23mτ,n = 0, Pmτ,n = τ, m2
τ,n = 2n,

and such that, with the lattice Mτ,n defined in Proposition 4.2.1,

Mτ,n
∼=−→ 〈h3, P,mτ,n 〉 ⊂ (Z5,M) ⊕ Λ′(−1) = L

is a saturated embedding.
We use the basis of Z5 as above so that

(a1, . . . , a5) = a1h3 + a2P + a3(γ
∗
8 + γ∗α) + a4γ1 + a5(γ2 − γ3).

In the list below vτ,n ∈ Λ′(−1) is such that m2
τ,n = 2n, such a vτ,n exists for

any n, τ as one can choose a suitable vτ,n in the summand U ⊂ Λ′.

m0,n = (0, 0, 0, 1, 0) + v0,n 2n = m2
0,n = 2 + v20,n ,

m1,n = (1, 0,−3, 1, 1) + v1,n 2n = m2
1,n = 2 + v21,n ,

m2,n = (2, 0,−6, 1, 3) + v2,n 2n = m2
2,n = 2 + v22,n ,

m3,n = (0, 1,−1, 1, 1) + v3,n 2n = m2
3,n = 4 + v23,n ,

m4,n = (1, 1,−4, 1, 2) + v4,n 2n = m2
4,n = 6 + v24,n .

Since h3 = (1, 0, 0, 0, 0), P = (0, 1, 0, 0, 0) and the coefficient of γ1 in each of
these mτ,n is equal to one, the sublattice generated by h3, P,mτ,n is primi-
tive.
Next we determine a primitive vector tτ,n ∈ L (unique up to sign) such that

Aτ,n ∩K⊥8 = Aτ,n ∩ 〈h3, P 〉⊥ = Ztτ,n .

We found:

t0,n = 0 · h3 + 0 · P + 1 ·m0,n = (0, 0, 0, 1, 0) + v0,n ,

t1,n = 1 · h3 − 3 · P + 8 ·m1,n = (9,−3,−24, 8, 8) + 8v1,n ,

t2,n = 1 · h3 − 3 · P + 4 ·m2,n = (9,−3,−24, 4, 12) + 4v2,n ,

t3,n = 3 · h3 − 9 · P + 8 ·m3,n = (3,−1,−8, 8, 8) + 8v3,n ,

t4,n = 1 · h3 − 3 · P + 2 ·m4,n = (3,−1,−8, 2, 4) + 2v4,n .

Since tτ,n ∈ K⊥8 = Tα(−1), it is an integral linear combination of γ1, . . . , γ3
and an element in Λ′. As a first step we use that 8γ∗8 = 3h23 − P , from this
we see that

tτ,n = (a1, . . . , a5) =⇒ tτ,n = a3γ
∗
8 + a4γ1 + a5(γ2 − γ3) .
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Next we use the definition of γ∗α, to avoid unnecessary fractions we let a3 =
8a′3:

tτ,n = (2a′3 + a4)γ1 + (4a′3 + a5)γ2 + (−5a′3 − a5)γ3, (a3 = 8a′3) .

Finally we use the definition of the γi ∈ U2 ⊕Λ′ and notice that the sign of
the bilinear form changes again since we are back in Tα ⊂ Λ.

t0,n =
((

1
−1
)
, ( 0

1 ) , v0,n
)
, v20,n = −2n+ 2,

t1,n =
((

2
−2
)
,
(−4

12

)
, 8v1,n

)
, v21,n = −2n+ 2,

t2,n =
((−2

2

)
, ( 0

4 ) , 4v2,n
)
, v22,n = −2n+ 2,

t3,n =
((

6
−6
)
, ( 4

4 ) , 8v3,n
)
, v23,n = −2n+ 4,

t4,n = (( 0
0 ) , ( 0

2 ) , 2v4,n) , v24,n = −2n+ 6.

The class tτ,n is transcendental in H2(S,Z), but in the specialization under
consideration it becomes algebraic, so tτ,n ∈ Pic(Sτ,n).

4.10. The Picard lattice Pic(Sτ,n) and the Brauer class αvan. We com-
pute the Picard group of Sτ,n, the K3 surface associated to a cubic fourfold
Xτ,n with N2(X) = Mτ,n as:

Pic(Sτ,n) = 〈h, tτ,n〉sat,

We will do so for each of the five cases for τ in the next sections. We
determine the vanishing Brauer class αvan ∈ Br(S) for the specialization of
S to Sτ,n induced by the one of a general cubic fourfold with a plane to one
with N2(X) = Mτ,n. The finer classification of αvan in terms of the orbits
of the stabilizer of the Brauer class (the Clifford invariant) α = αX ∈ Br(S)
defined by the cubic fourfold X is also given. Recall from §4.7 that α has
B-field representative

Bα = 1
2

(
( 0
1 ) , ( 1

1 ) , 0
)
,

and that Pic(S) = Zh, with

h = 1
2

(
( 1
1 ) , ( 0

0 ) , 0
)
.

4.11. The case τ = 0. In this case the sublattice generated by h, t0,n is
primitive, hence

Pic(S0,n) = 〈h, t0,n =
((

1
−1
)
, ( 0

1 ) , v0,n
)
〉sat = 〈h, t0,n〉 =

(
2 0
0 −2n

)
.

Notice that det(Pic(S0,n)) = −4n whereas det(A0,n) = 16 · n− 3 · 02 = 16n.
The invariants of the vanishing Brauer class are determined from Corollary
2.1.3. The Gram matrix of Pic(S0,n) has b = 0, 2c = −2n. Hence the van-
ishing Brauer class has invariants Bvanh = 0 and B2

van = 0. By Proposition
2.2.1 it corresponds to a point of order two (as b is even).
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A B-field representing the vanishing Brauer class is obtained from the second
basis vector of Pic(S0,n):

Bvan := 1
2 t0,n = 1

2

((
1
−1
)
, ( 0

1 ) , v0,n
)
.

Now we use the addition in the Brauer group. The sum of the Clifford class
and the vanishing Brauer class has a B-field representative given by

Bα +Bvan = 1
2

(
( 1
0 ) , ( 1

2 ) , v0,n
)
.

This B-field has invariant h · (Bα + Bvan) = 1
2 , so the sum of the Brauer

classes corresponds to a theta characteristic. Using v20,n = −2n+2 one finds

(Bα +Bvan)2 = 1
4(0 + 4 + v20,n) = 1

2(−n+ 3) .

Using Proposition 2.2.1 again, we find that the theta characteristic is even
when n ≡ 1 mod 2 and it is odd otherwise.

4.12. The case τ = 1. The Picard lattice is (notice that 2h+t1,n is divisible
by 4):

Pic(S1,n) = 〈h, t1,n =
( (

2
−2
)
,
(−4

12

)
, 8v1,τ

)
〉sat = 〈h,

(
( 1
0 ) ,
(−1

3

)
, 2v1,τ

)
〉 .

The last generator has norm −6 + 4v21,τ = 2 − 8n and the Gram matrix of
the Picard lattice w.r.t. this basis is

Pic(S1,n) =

(
2 1
1 2− 8n

)
.

Notice that det(Pic(S1,n)) = 3−16n which is the opposite of det(A1,n). The
Gram matrix has b = 1, 2c = 2 − 8n. Hence the vanishing Brauer class is
defined by a theta characteristic (as b is odd) which is odd since c = 1− 4n
is odd.
A B-field representing the vanishing Brauer class is obtained from the second
basis vector of Pic(S1,n):

Bvan := 1
2

(
( 1
0 ) ,
(−1

3

)
, 2v
)
≡ 1

2

(
( 0
1 ) , ( 1

1 ) , 0
)
,

where the congruence is modulo 1
2Pic(S1,n) + H2(S1,n,Z), hence the van-

ishing Brauer class coincides with the one defined by Bα, the Clifford class
αX .

4.13. The case τ = 2. The Picard lattice is (2h + t2,n is divisible by 4),
hence:

Pic(S2,n) =
〈
h, t2,n =

( (−2
2

)
, ( 0

4 ) , 4v
)
〉sat = 〈h,

(
( 0
1 ) , ( 0

1 ) , v
)
〉

so the Gram matrix is:

Pic(S2,n) =

(
2 1
1 2− 2n

)
.

Notice that det(Pic(S2,n)) = 3 − 4n whereas det(A2,n) = 16 · n − 3 · 22 =
4(4n − 3). The Gram matrix of Pic(S2,n) has b = 1, 2c = 2 − 2n. Hence
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the vanishing Brauer class is defined by a theta characteristic (as b is odd)
which is even/odd iff c = 1− n is even/odd iff n is odd/even.
A B-field representing the vanishing Brauer class is obtained from the second
basis vector of Pic(S2,n):

Bvan := 1
2

(
( 0
1 ) , ( 0

1 ) , v
)
.

The transcendental lattice contains the vector

t :=
((−1

1

)
, ( 0

1 ) , 0
)
∈ T (S2,n) = Pic(S2,n)⊥ .

The restriction of the Brauer class αX to T (S2,n) is not trivial since Bα · t =
1
2(−1 + 2) 6≡ 0 mod Z. Hence αX 6= αvan.

4.14. The case τ = 3. The Picard lattice is (notice that 2h+t3,n is divisible
by 4):

Pic(S3,n) = 〈h, t3,n =
( (

6
−6
)
, ( 4

4 ) , 8v
)
〉sat = 〈

(
h,
(

2
−1
)
, ( 1

1 ) , 2v
)
〉 ,

as the last vector has length −4 + 2 − 4v23,n = 14 − 8n we find the Gram
matrix:

Pic(S3,n) =

(
2 1
1 14− 8n

)
.

Notice that det(Pic(S3,n)) = 27 − 16n which is the opposite of det(A3,n).
The Gram matrix of Pic(S3,n) has b = 1, 2c = 14− 8n. Hence the vanishing
Brauer class is defined by a theta characteristic (as b is odd) which is odd
since c = 7− 4n is odd.
A B-field representing the vanishing Brauer class is obtained from the second
basis vector of Pic(S3,n):

Bvan := 1
2

((
2
−1
)
, ( 1

1 ) , 2v
)
≡ 1

2 (( 0
1 ) , ( 1

1 ) , 0) ≡ Bα mod H2(S3,n,Z) ,

hence the vanishing Brauer class coincides, as in the case τ = 1, with αX .

4.15. The case τ = 4. The Picard lattice is (notice that t4,n is divisible by
2 in H2(S4,n,Z)):

Pic(S2) = 〈h, t4,n =
(

( 0
0 ) , ( 0

2 ) , 2v4,n
)
〉sat = 〈h,

(
( 0
0 ) , ( 0

1 ) , v4,n
)
〉 .

Hence

Pic(S4,n) =

(
2 0
0 6− 2n

)
.

Notice that det(Pic(S4,n)) = 12 − 4n whereas det(A4,n) = 16 · n − 3 · 42 =
4 · (4n− 12). Therefore the vanishing Brauer class is defined by a point of
order two (as b is even).
A B-field representing the vanishing Brauer class is obtained from the second
basis vector of Pic(S4,n):

Bvan := 1
2

(
( 0
0 ) , ( 0

1 ) , v4,n
)
.

Notice that

Bα +Bvan = 1
2

(
( 0
1 ) , ( 1

1 ) , 0
)

+ 1
2

(
( 0
0 ) , ( 0

1 ) , v4,n
)

= 1
2

(
( 0
1 ) , ( 1

2 ) , v4,n
)
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is a B-field with invariants h · (Bα +Bvan) = 1
2 , so it corresponds to a theta

characteristic, and

(Bα +Bvan)2 = 1
4(0 + 4 + v2) ≡ 1

4(10− 2n) ≡ 1
2(1− n) mod Z .

The theta characteristic corresponding to αX + αvan is thus even iff n is
odd. �

4.16. Remark. In 4.11,. . . ,4.15 of the proof of Theorem 4.4.1 we observed
that−4 det(Pic(Sτ,n)) = det(Mτ,n) for τ = 0, 2, 4 whereas−det(Pic(Sτ,n)) =
det(Mτ,n) if τ = 1, 3. This relation was already observed in [ABBV14,
Proposition 1]. Notice also that det(Pic(Sτ,n)) is even iff τ = 0, 4 and that
in these cases αX 6= αvan, so αX restricts to a non-trivial Brauer class on
Sτ,n. This was already shown in [ABBV14, Proposition 2]. See also [Gal17,
Theorem 4.8 and Proposition 4.10].

5. Associated K3 surfaces and the divisors CM
5.1. Classification of admissible Lattices in C8. In [YY23] there is also
a lattice-theoretic characterization of the cubic fourfolds in C8 with an asso-
ciated K3 surface, that is, of those that are conjecturally rational.

Definition 5.1.1. ([YY23, Definition 8.1]) A lattice Mτ,n is admissible if
T (Xτ,n)(−1) is Hodge isometric to the transcendental lattice of a K3 surface.

Remark 5.1.2. The definition in [YY23] is different, but it is equivalent.

Proposition 5.1.3. ([YY23, Corollary 8.14]) The lattice Mτ,n is admissible
if and only if one of the following conditions is true

(1) (a) τ = 1, 3 ;
(2) (b) τ = 0, 2, 4 and n is odd.

We already discussed the cases τ = 1, 3 in the introduction. In these cases
αvan = αX , where X is a cubic fourfold with N2(X) ∼= K8 and Sτ,n, the K3
double plane defined by Xτ,n, is a K3 surface associated to Xτ,n. Moreover,
Hassett proved the rationality of these cubic fourfolds in [Has99].

The case τ = 2, n odd, is still under investigation. In the remaining cases
we have identified an associated K3 surface, see the proposition below. We
are investigating its geometry in relation to the cubic fourfolds.

Proposition 5.1.4. Let Xτ,n be a cubic fourfold with N2(Xτ,n) ∼= Mτ,n. Let
Sτ,n be the K3 double plane defined by Xτ,n and let Cτ,n be the branch curve
of the double cover Sτ,n → P2. Let τ = 0, 4 and n odd, and let β be the even
theta characteristic β on Cτ,n which is the specialization of the even theta
characteristic βX := αvan + αX on the branch curve of SX . Then the K3
surface Sβ, a degree 8 surface in P5, defined by the even theta characteristic
β is a K3 surface associated to Xτ,n.
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Proof. Let X be a general cubic fourfold with a plane and let C6 be the
branch curve of SX → P2. We proved that for τ = 0, 4 the vanishing Brauer
class αvan corresponds to a point of order two in J(C6) and that βX :=
αvan + αX corresponds to an even theta characteristic on C6. Specializing
C6 to Cτ,n, we obtain an even theta characteristic β on Cτ,n. Then (the
push forward to P2 of) β admits a minimal resolution

0 −→ OP2(−2)6
M−→ OP2(−1)6 −→ β −→ 0

where M is a 6 × 6 matrix of linear forms on P2 and detM = F where
F = 0 is an equation defining Cτ,n ([Be00, Proposition 4.2]). The base locus
of these quadrics is a K3 surface Sβ of degree 8 in P5.
The transcendental lattice of Sβ is Tβ(Sτ,n), see [vG05], [IOOV17] for the
case of a K3 with Picard rank one, and by specialization it also holds for
Sτ,n. Since αvan is trivial on T (Sτ,n), the homomorphisms β and αX have
the same restriction to T (Sτ,n), hence

T (Sβ) ∼= ker(β : T (Sτ,n)→ Z/2Z) = ker(αX : T (Sτ,n)→ Z/2Z) = T (Xτ,n)(−1) .

Therefore the K3 surface Sβ is associated to X. �

5.2. Pfaffian cubic fourfolds with a plane. An interesting example of a
pfaffian, hence rational, cubic fourfold X with a plane and rank(N2(X)) = 3,
but with αX 6= 0, is given in [ABBV14, §4]. They determine τ, n explicitly
(but notice that they use a different convention for writing the lattices Mτ,n).
We verify this here, using Theorem 4.4.1.
The double plane S = SX is branched along a smooth sextic C = C6 ⊂ P2

with a tangent conic. Since the inverse image of this conic consists of two
smooth rational curves n, n′ in S, the Picard lattice of S is

Pic(S) =

(
Zh⊕ Zn,

(
2 2
2 −2

))
∼=
(
Zh⊕ Z(h− n),

(
2 0
0 −4

))
.

So we are in case τ = 0, n = 2 or in the case τ = 4, n = 5. The vanishing
Brauer class is thus a point of order two in J(C)2 and αX + αvan is an
odd/even theta characteristic in the first/second second case respectively.
The tangent conic cuts out a divisor 2D on C ⊂ P2 and the rational curves
n, n′ each cut out D on C ⊂ S. The intersection of h with C ⊂ S is a divisor
class Dl such that 2Dl ≡ 2D ∈ Pic(C). The image of h−n ∈ Pic(S) is then
p := Dl −D ∈ Pic(C), which a point of order two, and p must correspond
to the vanishing Brauer class by [IOOV17, Theorem 1.1].
The Clifford class αX corresponds to a theta characteristic L on C with
h0(L) = 1 and 2L ∈ |KC = 3Dl| is cut out by a cubic curve C3 tangent to
C. Following [Vo86] and using the description of X from [ABBV14, §4], one
finds that

C3 : 14x3 + 15x2y+ 4x2z+ 9xyz+ 14xz2 + 16y3 + 11y2z+ 8yz2 + z3 = 0

is the determinant of the 3× 3 submatrix of linear forms in the 4× 4 matrix
(obtained from the minimal resolution of L) defining the quadric bundle on
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the cubic fourfold ([Be00, Proposition 4.2b]). So if (with x = x0, . . . , w = u2)

F (x0, x1, x2, u0, u1, u2) =
(x0 − 4x1 − x2)u20 + . . . − x32 =

∑
0≤i,j≤2 Fij(x0, x1, x2)uiuj + . . .

is the defining (pfaffian) cubic polynomial for X, where the remaining terms
are of degree at most one in the ui, then C3 is defined by det(Fij)i,j=0,1,2 = 0.
The theta characteristic L+ p = L+Dl −D = L+D−Dl has, using Serre
duality on C:

h0(L+ p) = h0(KC − (L+D −Dl)) = h0(4Dl − (L+D)) .

Since |4Dl| is cut out by degree four curves on C and an explicit (Magma)
computation shows that there are no such curves passing through the sup-
port of L + D, we conclude that h0(L + p) = 0, so L + p is an even theta
characteristic.
Comparing with Theorem 4.4.1 we see that we are indeed in the case that
(τ, n) = (4, 5), that is N2(X) ∼= M4,5.
In particular, there is a K3 surface associated to X = X4,5 which is identi-
fied in [ABBV14] with the pfaffian K3 surface associated by Beauville and
Donagi in [BD85] to the pfaffian fourfold X. This K3 surface has a natural
embedding of degree 14 in G(2, 6). Instead, we associated the K3 surface Sβ
to X in Proposition 5.1.4. In a sequel to this paper we intend to investigate
Sβ in this particular case as well as for τ = 4 and any odd n.
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