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Abstract: Flower scent is an important trait of ornamental roses and has been an important character
in the selection processes. In the present study, the composition of the volatile organic compounds
(VOCs) emitted by both petals and pollen of 21 garden roses (Chinensis, Climber, English rose,
Floribunda, Hybrid Tea, Multiflora, Damascena, Musk rose, Polyantha, Rugosa and Shrub) was
investigated through the GC-MS Static Headspace method. A total of 19 different VOCs were
detected, and for each identified compound, an odorant description was included. In petals, the
most common VOCs were 2-phenylethanol, methyl eugenol, and hexanal, present in 95%, 86% and
86% of garden roses, respectively. While, in pollen were methyl eugenol, methyl-1-butanol, and
hexanal (present in 100%, 95%, and 90% of the genotypes, respectively), even if in lower content.
The comparison between the petals and pollen profile shown that, even with less quantity, the main
compounds characterizing the scent of the studied roses are present both in the petals and in the
pollen (19 and 17 compounds, respectively), with different magnitude. Overall, the content of VOCs
emitted by petals was more than five times higher than that produced by pollen. Different and
characteristic VOCs profiles were emitted by petals and pollen of the studied garden roses.

Keywords: aroma active compounds; flower fragrance; odorant descriptor; relative peak area; Rosa L.;
static headspace

1. Introduction

Plants synthesize and release a large variety of volatile organic compounds (VOCs),
which can be considered as the plant’s interface with its surrounding environment while
remaining anchored to the ground [1]. VOCs have diverse chemical structures and are
mainly classified into terpenoids, phenylpropanoids, and fatty acid derivates [2]. They can
be constitutively emitted from flowers, leaves, fruits, roots, specialized storage structures,
and other minor organs and tissues such as pollen [3,4]. In vegetative tissues, the volatile
compounds render plant defense, whereas in reproductive tissues, they aid mainly in the
attraction of pollinators [1]. VOCs play critical roles also in imparting cues to other plants
to facilitate mating and adaptation to the changes in environment such as under biotic and
abiotic stressed conditions [5–10].

Flower scent is an important trait of ornamental roses (Rosa L. spp.) that has pro-
vided pleasures for humans since antiquity, being used also for cosmetics, perfume in-
dustry, and medicine [11]. Currently, within this genus, about 250 species and more than
18,000 cultivars are documented [12]. However, among them, only few species are scented:
R. damascena Mill., R. gallica L., R. centifolia L., R. moschata Herrm., R. borboniana N.H.F. Desp.,
R. chinensis Jacq., and R. alba L. [13–16]. Rose fragrance consists of more than 400 VOCs with
diverse biosynthetic origins whose amounts vary among species and cultivars [14,15,17,18].
Rose’s VOCs can be mainly grouped into terpenes, which are generally the most abun-
dant compounds and consist of monoterpene alcohols and sesquiterpenes [19]; terpene
derivatives, such as ketones, are present in extremely low quantities but which nevertheless
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contribute significantly to the fragrance of the flower; lipid derivatives, that are synthesized
by leaves and sepals in case of injury; and aromatic compounds such as 2-phenyl-ethanol,
which can be very abundant and provide typical rose scent [1,15,20].

The amount and composition of VOCs is strongly affected by genotypes and technol-
ogy used for processing [5,12]. Gas chromatography-mass spectrometry (GC-MS) is a pow-
erful analytical technique that is widely used to profile volatile compounds in several plant
species and food types because it can efficiently separate and identify compounds [12,21].
The ideal sample preparation method for the analysis of aroma compounds in rose is a
headspace approach that involves the sampling of the gas phase above the sample in a
closed container. Static headspace (SHS) sampling can be performed to extract VOCs from
rose samples without the use of specific solid-phase materials [22]. After a certain range of
time, the headspace gas is extracted from the vial and injected into a gas chromatograph,
which separates the various components of the sample based on size and/or polarity. The
resulting mass spectrum allows for the identification of the components using standard
reference libraries. This method was already performed in several ambits, such as to
sample the VOCs emitted from the leaves of Corymbia citriodora (Hook.) K.D. Hill & L.A.S.
Johnson [23].

The literature on the chemistry of rose scent has extensively analyzed the VOCs
emitted from petals and essential oils of a few species, commonly used in the perfume and
cosmetic industry (R. damascena, R. rugosa Thunb., and R. moschata) [24–27]. Fragrances
in garden roses are very diverse and scent has always been an important character in
the selection process. Up to now, only old studies demonstrated that also the pollen of
some botanical roses such as R. rugosa emitted volatile compounds [28,29] and very few
studies evaluated the content and distribution of the VOCs emitted by both fresh petals
and pollen on the same genotypes [28,30]. This study aimed to broaden the knowledge on
garden rose fragrance by investigating the composition of the VOCs emitted by petals and
pollen, through the SHS method, in 21 garden roses belonging from different classes such
as Chinensis, Climber, English rose, Floribunda, Hybrid Tea, Multiflora, Damascena, Musk
rose, Polyantha, Rugosa and Shrub. This research focused on describing a portion of the
volatiloma of these genotypes and identify possible candidates for future breeding projects.

2. Materials and Methods
2.1. Plant Material

Fully opened flowers were picked from 21 garden rose genotypes (Figure 1 and Table 1)
cultivated in the nursery “Vivaio Anna Peyron” located in Castagneto Po (Italy) (Lat.
45◦9′36′′72 N; Long.07◦53′25′′80 E; 200 m a.s.l.). Roses were classified according to Cairns [31]
and the fragrance of flowers (+, mild; ++ moderate; +++ strong) were obtained based on
the public website [32].

Petals (up to three grams) and pollen (up to one gram) from at least three differ-
ent plants were separated and immediately ice stored in 20 mL headspace vials for
further analysis.
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Figure 1. Flowers of the 21 studied garden rose genotypes (for the identification code see Table 1). 
The white scale bars within each figure indicate a 2 cm length. 

  

Figure 1. Flowers of the 21 studied garden rose genotypes (for the identification code see Table 1).
The white scale bars within each figure indicate a 2 cm length.
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Table 1. Identification number, cultivar, class [31], fragrance intensity (+, mild; ++ moderate;
+++ strong) and type [32] of the tested garden roses (Rosa spp.).

ID Cultivar Class Fragrance Intensity Fragrance Type

1 ‘Irene Watts’ Chinensis ++ Sweet
2 ‘Aloha’ Climber +++ Apple
3 ‘Eric Tabarly’ Climber ++ -
4 ‘Comte de Chambord’ Damascena +++ Damask
5 ‘Peach Blossom’ English rose + -
6 ‘Sweet Juliet’ English rose +++ -
7 ‘Clair Matin’ Floribunda ++ Sweetbriar
8 ‘Crimson Glory’ Hybrid Tea +++ Clove, damask, rose
9 ‘Marie Van Houtte’ Hybrid Tea ++ -

10 ‘Mrs. Herbert Stevens’ Hybrid Tea ++ -
11 ‘Ghislaine de Feligonde’ Multiflora ++ -
12 ‘Buff Beauty’ Musk rose +++ Tea rose
13 ‘Felicia’ Musk rose +++ Sweet
14 ‘Prosperity’ Musk rose ++ -
15 ‘Vanity’ Musk rose ++ Musk
16 ‘The Fairy’ Polyantha + Apple
17 ‘Yvonne Rabier’ Polyantha ++ -
18 ‘Belle Poitevine’ Rugosa ++ Centifolia
19 ‘Sarah Van Fleet’ Rugosa +++ Old rose
20 ‘Graham Thomas’ Shrub +++ Tea rose

21 ‘Sweet Caitlin’ Shrub +++ Anise, apricot, citrus,
clove, myrrh, violets

2.2. GC-MS Analysis

Gas chromatography (GC) analysis were performed by the laboratory of Ente Sviluppo
Agricolo (Palermo, Italy), using an Agilent-technology chromatograph (Hewlett-Packard
5890 gas chromatography, Hewlett-Packard, Palo Alto, CA, USA) with HP-5 column
(30 m × 0.32 mm i.d. × 0.25 µm) with automatic headspace injector (Thermo Fisher Sci-
entific HS TriPlus 300Thermo Fisher Scientific, Waltham, MA, USA). The vial headspace
(volume of 1.5 mL) containing volatile compounds from three grams of petals and one
gram of pollen was directly introduced into a GC-MS system. The extraction incubation
parameters were agitator oven temperature of 70 ◦C, agitation (250 times/min) and incu-
bation of 7.00 min. The pressurization and injection needle time were set at 15 psi and
0.5 min, respectively.

The GC injector temperature and split ratio were set at 170 ◦C in split mode (10:1),
respectively. The temperature program of the GC started at 40 ◦C, maintained for 1.00 min,
then increased a rate of 5.0 ◦C/min to 170 ◦C, hold time 3.00 min, and then increased a rate
of 5.0 ◦C/min to 200.0 ◦C, hold time 5.00 min. Ultrahigh purity helium (He) was used as
a carrier gas with the flow rate at 1.00 mL/min and the ion source temperature and the
interface temperature of the MS were at 200 ◦C. Detection was performed using electron
ionization at 70 eV with a scan range of 30–300 m/z with an initial scan time of 1.00 min.
A neural networks’ in-house data acquisition, analysis, and visualization were assessed
by Xcalibur 2.1 software (Xcalibur™, Finnigan Corp., Silicon Valley, CA, USA). Besides
the possibility of quantifying single compounds, the purpose-made software allowed to
match the peak pattern with sensory wise defined flavors. For each identified component,
an odorant description was included based on previous publication released.

2.3. Calculation of the Percentage of the Relative Peak Area

The percentage of the relative peak area (%RPA) of a peak in each sample was calcu-
lated by dividing the peak area by the total peak area of all identified peaks in each chro-
matogram. The total ion chromatogram of each sample was used for peak area integration.
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2.4. Data Analysis

Principal coordinate analysis (PCA)—Biplot was performed for both petal and pollen
using PAST 4.03 software (Paleontological Statistic Software Package for Education And
Data Analysis, Oyvind Hammer, Oslo, Norway). Eigenvalues were calculated using a
covariance matrix among 38 traits as input (garden rose genotypes and emitted VOCs),
and the two-dimensional PCA biplot was constructed. Radar charts were generated by
using the rate between the %RPA of each odorant description and the sum of %RPA of
airless headspace (Microsoft Excel for Windows, Office 365, Microsoft Corp., Redmond,
WA, USA).

3. Results
3.1. Identification of VOCs in Garden Rose Petals

The main VOCs detected from garden rose petals are listed in Table 2. Their distribu-
tion in the 21 genotypes is shown in Table 3 and their odor description are represented in
the related radar charts (Figure 2).

Table 2. List, retention time (Rt), Kovats index (Ri) and odorant description of the constituents
identified both in petals and pollen of the 21 studied rose genotypes obtained by using the static
headspace GC-MS method.

Constituent Rt Ri Odorant Description

Acetaldehyde 1.53 358 [33] Fruity, pungent [34]
Dimethyl sulfide 1.63 505 [35] Organic, wet earth [36]
Isovaleraldehyde 2.45 632 [33] Fruity [36]

3-methyl-1-butanol 3.35 736 [35] Malty [34]
1-pentanol 3.90 772 [33] Fruity [34]

Hexanal 4.45 801 [35] Sweet, green, apple [36]
Trans-2-hexenal 5.49 854 [35] Bitter, almonds, green, green apple-like, fatty, bitter almond like, cut grass [36]

Trans-3-hexen-1-ol 5.61 873 [33] Green [36]
Trans-2-hexen-1-ol 5.95 879 [33] Green [37]

Hexan-1-ol 6.04 881 [33] Fruity, aromatic, soft, cut grass [38]
Heptanal 6.84 903 [35] Fatty [39]
α-pinene 7.73 939 [35] Woody, coniferous [34]

Benzaldehyde 8.73 960 [35] Bitter almond [39]
m-cresol 11.86 1084 [35] Shoe polish, machine [40]

2-phenylethanol 14.89 1104 [33] Floral, rose [41]
Nerol 16.84 1233 [35] Sweet, fruity, flower [42]

(E)-citral (Neral) 18.77 1247 [35] Lemon [34]
(Z)-citral (Geranial) 19.21 1277 [35] Sharp lemon, sweet [35]

Methyl eugenol 20.11 1407 [35] Spicy [34]
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Table 3. Chemical composition and the percentage of relative peak area (%) of volatiles emitted from petals of the 21 studied rose genotypes (see Table 1).
All constituents are ordered on the basis of their retention time (see Table 2).

Genotype (ID)

Constituent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Air 85.8 53.3 60.5 68.3 80.2 80.7 76.4 93.7 55.2 83.7 77.5 78.3 91.2 80.6 67.1 78.1 77.9 65.5 95.6 84.3 74.5
Acetaldheyde 9.9 6.1 9.8 - 9.2 8.1 - - 6.0 9.0 8.7 - - 15.9 - - 12.9 - - 9.1 -

Dimethyl sulfide - - - 8.4 - - 11.0 - - - - 17.7 - - 16.7 11.8 - 23.9 - - 10.3
Isovaleraldehyde - - - 0.4 - - 0.5 - 0.2 - - 0.1 - - - - - - - - -

3-methyl-1-butanol 0.1 - - 0.1 0.1 0.1 - 0.1 0.1 0.1 - 0.4 0.1 0.1 0.2 0.2 0.3 0.1 - 0.1 0.1
1-pentanol 0.3 - 0.2 - 0.3 0.2 0.2 0.1 0.2 - 0.1 0.2 0.1 - - 0.1 0.1 0.1 0.1 0.1 -

Hexanal - 31.6 21.8 5.9 0.8 0.1 1.3 0.4 21.8 0.1 1.4 - 0.1 0.1 0.1 0.2 0.1 - 0.2 0.3 3.9
Trans-2-hexenal - 0.1 0.1 - - - - - 0.1 - - - - - - - - - - - -

Trans-3-hexen-1-ol - 3.6 2.4 1.1 - - - - 5.5 - - - - - - - - - - - 0.6
Trans-2-hexen-1-ol - - - - - - - - - - 8.5 - - - - - - - - - -

Hexan-1-ol 0.4 0.3 0.6 0.9 3.4 0.8 0.1 1.3 0.7 0.7 - 0.3 0.5 0.8 1.6 1.6 0.7 0.5 1.1 1.5 0.1
Heptanal - - - - - - - - 0.1 - - - - - - - - - - - -
α-pinene 1.1 - 0.1 - 0.1 - 0.1 0.3 - - - 0.1 - - 2.3 - - - 0.2 - 0.1

Benzaldehyde - - 0.1 0.1 - - 0.1 0.1 0.1 - - - - - - - - - - - 0.5
m-cresol - - - 0.1 - - 0.1 - 0.1 - - - - - 0.1 - 0.1 0.1 - 0.1 0.1

2-phenylethanol 0.5 0.3 2.9 11.5 1.8 7.9 7.8 2.4 8.7 4.0 0.6 1.2 6.4 1.5 6.2 5.8 5.6 5.2 1.4 - 4.2
Nerol - - - - - 0.1 0.1 - - 0.2 - - 0.1 - 0.7 0.2 - 1.9 - 0.4 0.9

(E)-citral (neral) - - - - - - - - - 0.1 - - - - 0.1 - - 0.1 - 0.1 0.1
(Z)-citral (geranial) - - - 0.4 - - 0.1 - - - - 0.1 0.1 - - - - 0.1 - 0.1 0.1

Methyl eugenol 0.1 - 0.1 0.1 0.1 0.1 0.1 0.1 - 0.1 0.1 0.1 0.1 0.1 - 0.1 0.1 0.1 0.1 0.1 0.1

Total 98.3 95.4 98.6 97.3 96.0 98.1 97.8 98.3 98.5 98.0 96.8 98.4 98.5 99.0 95.1 97.8 97.9 97.5 98.7 96.2 95.6
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Figure 2. Radar charts showing the percentage (0–100%) of each odour description (see Table 2)
within the airless headspace of the petals of the 21 studied garden rose genotypes. Cultivars were
grouped in horticultural classes, as indicated in Table 1.



Horticulturae 2022, 8, 1049 8 of 16

In general, a part air, a total of 19 different VOCs were detected. The most common
were 2-phenylethanol, methyl eugenol, and hexanal, present in 95%, 86% and 86% of roses,
respectively (Table 3). Among them, methyl eugenol was always present in very low
concentration (average of RPA equal to 0.1%), while the others at superior content, ranging
between 0.1% and 31.6% RPA and 0.3% and 11.5% RPA for hexanal and 2-phenylethanol,
respectively. Among the remaining 17 compounds, three of these, hexan-1-ol, acetaldehyde,
and dimethyl sulphide, are present in at least 33–52% of the studied varieties.

The cultivar with more identified compounds was ‘Sweet Caitlin’ with 13 molecules,
while the cultivar with the highest content of molecules was ‘Marie Van Houtte’ with a
total of RPA percentage equal to 43.3% (with 55.2% of air) (Table 3).

The headspace of the studied petals generally presented a distinctive molecule profile
(Figure 2). The cultivars ‘Irene Watts’, ‘Peach Blossom’, ‘Sweet Juliet’, ‘Mrs. Herbert
Stevens’, ‘Ghislaine de Feligonde’, ‘Prosperity’, ‘Yvonne Rabier’, and ‘Graham Thomas’
have acetaldheyde and a pronounced fruity and pungent like odor. The cultivars ‘Clair
Matin’, ‘Buff Beauty’, ‘Vanity’, ‘The Fairy’, ‘Belle Poitevine’, and ‘Sweet Caitlin’ were
characterized by dimethyl sulphide and an organic and wet like odor. Instead, hexanal
is the most present compound in the VOCs emitted by the petals of the cultivars ‘Aloha’,
‘Eric Tabarly’, and ‘Marie Van Houtte’ with a sweet, green and apple like odor. Lastly,
2-phenylethanol and a related floral and rose like odor described the cultivar ‘Comte de
Chambord’, ‘Crimson Glory’, ‘Felicia’, and ‘Sarah Van Fleet’.

3.2. Identification of VOCs in Rose Pollen

The VOCs detected in the studied rose pollen are reported in Tables 2 and 4. In total,
a part air, the applied SHS method allowed to identify 17 compounds. The cultivar ‘Belle
Poitevine’ presented the highest number of detected compounds (12) with a total amount of
16.1 RPA%. The most common VOCs are methyl eugenol, 3-methyl-1-butanol, and hexanal
(present in 100%, 95%, and 90% of the cultivars, respectively), even if in low concentration
(0.1, 0.6 and 0.5 RPA%, respectively). Different compounds resulted distinctive of some
varieties as shown by the radar charts in Figure 3. Acetaldheyde, with its fruity, pungent
like odor, is the main compounds of the pollen of the cultivars ‘Peach Blossom’ and
‘Crimson Glory’. Dimethyl sulphide, with its organic and wet earth like odor, characterized
the cultivar ‘Belle Poitevine’. 2-phenylethanol and the related floral and rose like odor
characterized the cultivar ‘Comte de Chambord’, ‘Prosperity’, and ‘Yvonne Rabier’. The
odor of seven roses (‘Aloha’, ‘Clair Matin’, ‘Marie Van Houtte’, ‘Ghislaine de Feligonde’,
‘Vanity’, ‘Buff Beauty’, ‘The Fairy’ and ‘Sweet Caitlin’) was mainly described as malty
due to 3-methyl-1-butanol. Instead, hexanal is the most present compound in the VOCs
emitted by the pollen of the cultivars ‘Irene Watts’, ‘Sweet Juliet’, ‘Mrs. Herbert Stevens’
and ‘Graham Thomas’ with a sweet, green and apple like odor. Lastly, pollen of ‘Eric
Tabarly’, ‘Felicia’ and ‘Sarah Van Fleet’ was mainly typified by methyl eugenol (spicy),
hexan-1-ol (fruity, aromatic, soft, cut grass) and nerol (sweet, fruity, flower).
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Table 4. Chemical composition and the percentage of relative peak area (%) of volatiles emitted from pollen of the 21 studied rose genotypes (see Table 1).
All constituents are ordered on the basis of their retention time (see Table 2).

Genotype (ID)

Constituent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Air 97.6 93.6 99.1 92.3 83.7 83.4 93.0 84.0 92.6 95.8 97.6 94.0 94.6 97.4 92.4 97.5 95.8 80.6 97.9 93.8 94.2
Acetaldheyde - - - - 11.4 - - 8.4 - - - - - - - - - - - - -

Dimethyl sulfide - - - - - - - - - - - - - - - - - 12.2 - - -
Isovaleraldehyde 0.3 - - - - - 0.5 - 0.1 - - 0.3 0.2 - 0.7 - - 0.4 - - -
Methyl-1-butanol 0.1 0.9 - 1.0 0.5 0.1 1.2 0.3 0.7 0.2 0.3 1.0 0.5 0.2 1.6 0.2 0.2 0.3 0.1 0.3 1.5

1-pentanol - 0.1 - - 0.2 - 0.1 - - - - - - - 0.1 - - - - - -
Hexanal 0.5 0.2 - 0.3 0.3 4.3 1.1 0.1 - 0.2 0.1 0.3 0.2 0.2 0.1 0.1 0.2 0.3 0.1 0.7 0.4

Trans-2-hexenal - 0.1 - 0.1 - - 0.1 - - - - - - - - - - - - - -
Hexan-1-ol 0.1 0.3 - 0.2 0.6 1.2 0.1 - - 0.1 - - 0.5 0.1 0.3 0.1 0.1 0.2 - 0.1 0.1
Heptanal - - - - - - - - 0.1 - - - - - - - - 0.1 - - -
α-pinene - - - 0.2 - 0.1 - - - - - - - - - 0.2 - - - - -

Benzaldehyde - - - - - - 0.1 - - - 0.1 0.1 - - - - - 0.1 - - -
m-cresol - - - - - - - - - - - - - - - - - - - - 0.1

2-phenylethanol - 0.2 - 1.7 1.3 0.2 - - - 1.1 - 0.7 0.7 0.2 0.2 - 1.1 1.9 - - -
Nerol 0.1 - - 0.7 - 2.2 - 0.3 - - - - 0.2 - - - - 0.4 0.1 - -

(E)-citral (neral) - - - 0.2 - 1.2 - 0.1 - - - - 0.1 - - - - 0.1 0.1 - -
(Z)-citral (geranial) - - - 0.2 - 1.7 - 0.1 - - - - 0.1 - - - - 0.1 - - -

Methyl eugenol 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Total 98.8 95.5 99.2 96.8 98.2 94.2 96.2 93.2 93.6 97.7 98.2 96.4 97.3 98.3 95.3 98.2 97.7 96.7 98.5 95.0 96.3
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Figure 3. Radar charts showing the percentage (0–100%) of each odor description (see Table 2) within
the airless headspace of the pollen of the 21 studied garden rose genotypes. Cultivars were grouped
in horticultural classes, as indicated in Table 1.
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3.3. Principal Component Analysis (PCA)

Based on Mantel tests, no correlation between the petal and pollen metabolite profiles
were found (Mantel r statistic = −0.19, p = 0.75). In order to visualize congruence between
garden rose genotypes and emitted volatile metabolites in petal and pollen, the whole
datasets were subjected to a Principal Component Analysis (PCA; Figures 4 and 5). Three
main groups related to petal VOCs were clearly divided by the first two axes (36.4% and
26.1% of the variance accounted for Axis 1 and Axis 2, respectively) (Figure 4).
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Figure 4. Principal component analysis (PCA)-biplot of the studied garden rose genotypes and
volatile compounds emitted by petals. Numbers indicated the garden rose genotypes as listed in
Table 1.

The two climber cultivars ‘Aloha’ and ‘Eric Tabarly’ and the Hybrid Tea ‘Marie Van
Utte’ were grouped for negative values of Axis 1 and positive values of Axis 2. These
cultivars resulted positively correlated with the emission of hexanal, trans-2-hexenal, and
trans-3-hexen-1-ol. At negative values of both axes were mainly grouped the cultivars
belonging to the English rose, Chinensis, Multiflora (‘Peach Blossom’, ‘Sweet Juliet’, ‘Irene
Watts’, ‘Ghislaine de Feligonde’, respectively), and from other classes such as ‘Graham
Thomas’, ‘Yvonne Rabier’, ‘Mrs. Herbert Stevens’, and ‘Prosperity’. These cultivars resulted
correlated to the emission of trans-2-hexen-1-ol, acetaldehyde, and 1-pentanol. All the other
cultivars and volatiles clustered for positive values of Axis 1. Between them, ‘Compte de
Chambord’ and ‘Sweet Caitlin’ resulted positively correlated to heptanal, benzaldehyde
and isovaleraldehyde. The PCA based on rose pollen data set is shown in Figure 5.

Three main groups were clearly potted by Axis 1 and Axis 2, which accounted for
32.3% and 25.7% of variance, respectively. The cultivars ‘Peach Blossom’ and ‘Crimson
Glory’ grouped together for negative values of Axis 1 and positive of Axis 2. The headspace
emitted by their pollen was positively related to acetaldehyde. While, for positive values of
both axes, the cultivar ‘Belle Poitevine’ was plotted closed to dimethyl sulfide, heptanal,
and 2-phenylethanol. All the remained cultivars grouped together for positive values of
Axis 1 and negative of Axis 2 and resulted related to the remained volatile compounds.
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4. Discussion

Roses are called the “queen of scents” because of the attractive and sweet aroma that
they emit [1]. Floral scent is a composite character determined by a complex mixture of low-
molecular-weight volatile molecules [43]. Rose breeders have recently tried to introduce
new fragrances, for instance, reminiscent of fruit or spice odors. But despite their efforts,
some roses in the market are not very fragrant, especially the ones selected for the cut
flower market. The cause of this lack of scent is not completely known [44].

Regarding petals, the applied method was able to identify 19 molecules with methyl
eugenol, hexanal, and 2-phenylethanol as the most present. Among them, methyl eugenol
is reported as a naturally occurring carcinogenic compound found in a number of essential
oils, including rose oil distilled from Rosa damascena Mill flowers [45]. As reported by
Hirata et al. [1], 2-phenylethanol is generally emitted by petals of European roses that are
used for perfume industries. In according with our results, Feng et al. [25], by using a
GC-MS method, identified a total of 33 volatile compounds from 23 R. rugosa cultivars, with
2-phenylethanol as one of the major components of the petals. This compound was present
also in the headspace of R. hybrida ‘Honesty’ [24]. More recently, Jandoust and Karami [27],
applying a CombiPAL Headspace Techniques to evaluate the floral scent from fresh flowers
of R. moschata, identified 21 VOCs with 2-phenylethanol as the most important component.
This compound is known to be an insect attractant for seed dispersers [29,46]. Regarding
the other detected compounds, Ibrahim et al. [47] by using a headspace solid phase micro-
extraction identified a total of six and 14 volatile compounds in petals of different cultivars
of Floribunda and Hybrid Tea roses, respectively, with α-pinene as a main compound.
Accordingly, we observed the presence of α-pinene in the studied Floribunda rose ‘Clair
Matin’. At the full-blooming stage, Ren et al. [48] identified 65 volatile compounds from
the petals of the cultivar ‘Rose de Rescht’, a damask rose. These authors detected as main
constituent nerol as well as in the cultivar ‘Comte de Chambord’, in which we detected a
high content of nerol. These components contribute mainly to the perfumery value of rose
oil and are generally present in the distillate rose water [49–51].

The characterization of chemical constituents present in the odor of pollen has been
largely ignored because of difficulties in sampling and analysis. Even if petal epidermal
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are the main sites for scent production and emission [48–53], few and old studies demon-
strated that also the pollen of some botanical roses such as R. rugosa emitted volatile
compounds [28,29]. This agrees with our results on R. rugosa ‘Belle Poitevine’, that showed
a pollen volatile profile with dimethyl sulfide as main compound. Dobson et al. [28] re-
ported that in this species, the androecium and particularly the pollen is a major source
of scent. In R. rugosa, pollen-specific volatiles are used by foraging bumblebees to assess
the availability of pollen in flowers [29]. Emission of this volatile is predicted to be the
key olfactory cue of Satyrium pumilum Thunb. flowers for attracting the flesh-eating fly
pollinators [54], as assessed with bioassays in other plants such as Helicodiceros muscivorus
(L. f.) Engl. [55–57]. Some VOCs in pollen have concurrent multiple functions. A variety of
volatiles identified in the scent and considered to be attractants to pollinators might also
have microbial and fungal defensive functions [58]. In the studied pollens, methyl eugenol
was detected in all the genotypes and this molecule is reported to have antimicrobial
activities that could protect pollen [59].

Samples of odors from pollen analyzed with headspace techniques have been found
to be chemically different from scent from whole flowers [60,61], and the diversity of
compounds identified is often lower in pollen [61,62]. The comparison between the petals
and pollen profile shown that, even with less quantity, the main compounds characterizing
the scent of the studied roses are present both in the petals and in the pollen (19 and
17 compounds, respectively), with different magnitude. Overall, the content of volatiles
emitted by the petals was considerably higher than that produced by pollen (more than
five times), suggesting that contributed most to the whole-flower fragrance. Odors from
pollen are probably detected at short distances by insects in those cases in which pollen
emissions of VOCs are quantitatively less abundant than those from the entire flower [59].
However, many species may present stronger pollen odors than others [63]. Among the
identified volatiles, 2-phenylethanol was detected in both petals and pollen in most of the
studied cultivars. To the best of our knowledge, this is the first time in which this molecule
was identified not only in petals but also in pollen. Specifically, this molecule is present in
high content in both the studied R. rugosa cultivars ‘Belle Poitevine’ and ‘Sarah Van Fleet’.

No correlation between petal and pollen data sets was observed, thus we can presume
that the biosynthesis of the VOCs follows different biosynthetic pathways. These findings
agree with those obtained by Dobson et al. [28,30] in whole flowers and pollen of R. rugosa
and R. canina L. Dobson et al. [28] highlighted that the distinct fragrances that characterize
the different flower parts of R. rugosa differently contribute for distinctive roles: petals to
attract pollinators, pollen to signal food availability, androecium to guide pollinators and
sepal to protect from herbivores. An example is found in foraging bumblebees, in which
landing is most effectively elicited when combining olfactory signals from pollen with
visual stimuli from anthers [64]. Dobson et al. [29], in a series of behavioral field studies of
bumblebees foraging for pollen on R. rugosa, provided the strongest evidence that bees use
scents from pollen to distinguish between flowers that have different amounts of pollen.
Similar results were observed also in the emission of volatiles from different organs of Inula
viscosa (L.) Aiton and Capparis spinosa L. [65,66].

Apart from the ecological functions, garden roses are selected primarily for fragrance,
whereas marketed roses bred for cut flower production often lack perfume, notwith-
standing the efforts of breeders [67]. As recently reported by Baudino et al. [44] and
Giovannini et al. [68], even fragrance-free roses emit small quantities of fragrant molecules,
as they have not completely lost their ability to produce them, but according to a recent
hypothesis, it would be a malfunction of the biosynthetic pathway of VOCs. Unfortunately,
the biosynthetic pathways of many rose scent compounds are not completely known.
On this topic, Yan et al. [69] suggested that a eugenol synthase (RcEGS1) cloned from
the petals of R. chinensis ‘Old Blush’ is involved in the biosynthesis of methyl eugenol in
rose, studying its over expression and down regulation by gene silencing. Taking together
all of this information, our work can be of precious interest in the development of new
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technologies in the field of breeding, suggesting the presence of molecules present even in
low quantities both in the petals and in the pollen of limited studied garden roses.

5. Conclusions

The conducted analyses have shown that different and characteristic VOCs profiles
are emitted by petals and pollen of the studied garden roses. The obtained dataset could
become a valuable resource for the floricultural industry as well as for the fragrance,
cosmetic, and food industries.

The static headspace method can be used as both a quality assessment system and a
mean to distinguish rose varieties by using also scarce compounds emitted at low rates.
Therefore, volatile compounds determined using this technique might serve as flavor tools
for breeders in improving sensory quality. Some studies have confirmed that the functions
of different floral organs are reflected in different profiles of emission. A desirable long-term
goal of this research is to determine composition and function of floral scent bouquets on a
finer spatial scale within the flower and their biosynthetic pathways.
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